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ABSTRACT

RICHARD V. LINCHANGCO. The Semantics of Diet and Health: Knowledge
Based Discovery through Data Integration, Text Mining, and Network Analysis.

(Under the direction of DR. CORY BROUWER)

Consumption of fruits and vegetables has been linked to a reduced risk of cancer

and other chronic diseases, but the molecular mechanisms supporting these connec-

tions remain largely unknown. A wealth of association data linking components of a

plant-based diet, human genes, biological pathways, and phenotypes can be found in

public databases and scientific literature. However, this massive amount of data is dis-

tributed across disparate sources, presenting a significant barrier to the investigation

of the effects that plant-based diets impart on human health.

This dissertation describes an integrated association network composed of existing

curated and text-mined relationships which connect the agricultural and biomedical

entities that define diet and disease. This research also describes HetERel, a meta

path-based relevance ranking method for extracting highly relevant relationships be-

tween different types of entities in this network, such as a plant and the chemicals

it produces. HetERel is tested on a network of chemical-disease association data for

validation and performance. The method is then applied to the full-scale, integrated

diet-disease network to discover distant, indirect links between plant-based chemicals

and human phenotypes.

The integrated diet-disease association network provides a foundational resource

that connects plants and human health. Paired with the relevance search and prioriti-

zation method, HetERel, these methods empower researchers to generate hypotheses
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which elucidate the molecular mechanisms between plants and human disease.
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CHAPTER 1: DISCOVERING LINKS BETWEEN DIET AND HUMAN HEALTH
AT THE MOLECULAR LEVEL

Three of the leading causes of death in the United States, cardiovascular disease, di-

abetes, and cancer, are significantly linked to lifestyle choices. These chronic diseases

have reached epidemic proportions, prompting researchers to investigate contribut-

ing factors such as physical activity, genetics, and diet [29]. Traditionally, diet and

human health have been studied at the phenotypic and observational level through

epidemiological studies [148]. These types of studies create a gap in knowledge of the

mechanisms by which dietary components affect human health.

High throughput (HT) studies have begun to characterize the composition of foods

and the genetic variations between healthy and diseased individuals [127]. Nutritional

genomics uses HT techniques to study effects elicited from the interaction of dietary

components with the human genome [118]. Different combinations of HT techniques

have associated specific compounds in foods with altered gene activity and changes

in human health phenotypes [54]. The challenge lies in not only identifying associ-

ations between dietary components and human health, but also in the discovery of

molecular mechanisms supporting such associations. However, these associations are

distributed across separate heterogeneous databases and buried within the text of sci-

entific publications. Analysis of these associations requires the assimilation of massive

amounts of data from myriad disparate resources such as association databases and
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the scientific literature.

The knowledge-based identification of diet and human health associations provides

insight into the importance of the molecular effects of diet on disease prevention. An

understanding of these molecular mechanisms can provide scientific support to filter

the deluge of fictitious health claims commonly propagated in the media today. A

similar problem exists in pharmacogenomics when exploring drug response in various

genotypes and phenotypes. Pharmacogenomics researchers have applied data mining

techniques to process the immense volume and heterogeneity of data from databases

and the literature on drug response [69]. Data mining techniques offer a compre-

hensive view of existing knowledge and require significantly less time and resources

than expert manual curation or benchtop assays [13, 69, 150]. These techniques can

be implemented to build upon and complement research in pharmacogenomics in or-

der to identify associations between dietary compounds and disease related genes.

The identification of these associations aid in explicating the molecular mechanisms

behind diet and human health.

This research describes a novel method to elucidate the molecular mechanisms by

which plant-based foods influence human health through the identification and pri-

oritization of linked information from a large relationship graph of agricultural and

biomedical associations. First, the difficulties of procuring, extracting, and integrat-

ing data from many diverse sources are discussed. Relevant entities and relationships

between plants, chemicals, genes, pathways, and disease are extracted from biomedical

and agricultural databases, as well as scientific literature using a host of mining tech-

niques. Second, a novel, quantitative metric for searching and ranking the relevance
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of entities within a heterogeneous information network is designed, implemented, and

tested on a chemical-disease network. Finally, the ranking method and metric are

applied to biological use cases in a diet-disease network for the discovery of testable

biological hypotheses. This approach consolidates current knowledge from a variety

of public resources, expedites hypothesis development through entity prioritization,

and aids in the discovery, at the molecular level, of the relationship between diet and

human health.

1.1 Integrating Agricultural and Biomedical Association Data

Advances in HT technologies have generated massive volumes of data available for

nutrition research. The most disruptive of these technologies has been high through-

put sequencing. Sequencing was instrumental to the release of the Human Genome

Project, which supplied a reference genome for researchers to investigate human phe-

notypes at the gene level [35, 36]. Agricultural research makes use of HT technolo-

gies, such as metabolomics, to determine the biochemical composition of plants and

sequencing to understand the basis for the biochemical products of plants [46]. These

and other types of agricultural and biomedical data are collected, stored, and in-

terpreted by different research groups utilizing various standards. The problem of

identifying associations that connect agricultural and biomedical entities for prioriti-

zation is exacerbated by the multitude of uniquely defined standards.

To overcome this obstacle, diverse datasets must be aggregated, integrated, and

made easily accessible. These datasets are stored in disparate sources of varying

types, such as databases and structured vocabularies. In order to harness the wealth
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of data for hypothesis generation through candidate prioritization, the complexity of

data from agricultural and biomedical research sources need to be understood.

1.1.1 Public Resources of Curated Data

Only machine accessible data can be used in computational algorithms for the

prioritization of molecular mechanisms between diet and human health. There are

numerous public databases that span the domains of plants, chemicals, genes, biolog-

ical pathways, and human phenotypes. These resources store entity and association

data in a number of different formats, including association databases and structured

vocabularies, made accessible as a database or other parseable flat files. Table 1

provides an overview of collective data sources that encompass biomedical and agri-

cultural entities. Association databases contain entities, their associations, including

cross references to other sources, and metadata (data that describes the data). Struc-

tured vocabularies contain hierarchically related entities used to describe the semantic

skeleton of a domain. The quality, reusability, throughput, and accurate representa-

tion of biological domain were the criteria for selecting publicly available sources for

the diet-disease network.

Table 1: The listed data sources are comprehensive sources with multiple databases
and structured vocabularies that contain entity and association data describing the
agricultural and biomedical domains. These sources are discussed in further detail in
Chapter 2.

Data Source Entity Types References

National Center for Biotechnology Information Species, Chemicals, Genes, Phenotypes [151]

European Bioinformatics Institute Chemicals, Genes, Phenotypes [89]

National Center for Biomedical Ontology Species, Chemicals, Pathways, Phenotypes [164]

USDA National Agricultural Library Species, Chemicals, Genes, Phenotypes [124]

Each source contains unique entity identifiers (EIDs), preferred terms (PT), and
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associations for agricultural and biomedical entities. EIDs are distinct references to

entities within a data source, such as chemicals or genes. PTs are lexical descriptors

of entities, such as the term glucoraphanin which describes a phytochemical. Associ-

ations are explicit connections between entities within a source and cross references

to external sources. A semantic label generically explains associations, such as is a

which indicates a subsuming association. In database instances, semantic labels are

often not specified. Associations in structured vocabularies, ontologies specifically,

provide semantic labels that help organize entities hierarchically. Associations may

also have metadata that provide information, such as the source or confidence value,

for the association. Association types must be independently quantified based on

quality, scope, and detail, which will be discussed in detail in Chapter 2.

1.1.1.1 National Center for Biotechnology Information Sources

The National Center for Biotechnology Information (NCBI) maintains publicly

accessible data and tools for computational analysis in the biomedical domain [2].

There are 39 databases for biomedical research, called Entrez, in NCBI. NCBI’s E-

Utilities web service was developed as a query interface system for programmatic

access to the Entrez databases. This research integrates data from the following four

resources of the NCBI.

The Taxonomy Database, hosted by NCBI, contains a classification of all species

represented in the Entrez sequence databases [20]. It represents a curated, hierar-

chically organized nomenclature for almost 550,000 taxa, including all land plants,

Embryophyta. Embryophyta encompass 170,650 agriculturally relevant plants. Data
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from the NCBI Taxonomy Database can be downloaded from NCBI’s FTP site or

accessed with E-Utilities.

The Entrez Gene Database stores gene information for over 20.5 million species [106].

Gene information from Entrez Gene can include nomenclature, sequences, member-

ship in pathways, associations to phenotypes, and cross references to other relevant

databases. Entrez Gene serves as the most commonly used reference for gene infor-

mation in biomedical research. Entrez Gene data can be downloaded as flat files from

NCBI’s FTP site or through E-Utilities.

PubMed is an indexed, freely available citation database containing over 27 million

biomedical publication abstracts [60]. PubMed contains citation metadata such as

author lists, journals, publication dates, and keyword indices. MEDLINE is a subset

of PubMed that contains over 24 million abstracts from biomedical and life sciences

research [59]. MEDLINE does not contain in-process or ”Ahead of Print” citations.

It is the most widely used body of literature in text mining for biomedical research.

PubMed and MEDLINE share cross references to many other NCBI hosted databases

and resources, such as Entrez Gene and the Medical Subject Headings. The annual

baseline set of citations for PubMed and MEDLINE can be downloaded in XML

format from the NCBI FTP site.

The Medical Subject Headings (MeSH) resource is a structured vocabulary main-

tained by NCBI that defines a hierarchically organized, standard terminology and

provides synonyms for biological and medical terms [100]. MeSH is used as a means

of indexing the articles found in PubMed and MEDLINE. These articles are anno-

tated with MeSH terms by expert curators which aids in filtering PubMed searches.
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MeSH files can be downloaded from the National Library of Medicine MeSH FTP

site.

The Online Mendelian Inheritance in Man Database (OMIM) is a highly curated,

online resource that holds detailed descriptions and associations between human genes

and phenotypes [70]. The database focuses on hereditary diseases and draws on expert

curation from publications which associate genes and disease. OMIM is regarded as a

g̈old standard̈for gene and disease associations, based on its extensive scope in human

disease. OMIM is accessible through the OMIM API and as flat files from the OMIM

FTP site.

1.1.1.2 United States Department of Agriculture Sources

The United States Department of Agriculture (USDA) oversees the National Agri-

cultural Library (NAL) which maintains a physical and electronic library of resources

related to agriculture [124]. The NAL hosts numerous services for agricultural re-

search, such as repositories, and information centers for food safety and nutrition.

NAL hosts the Agricultural Online Access (AGRICOLA), a public citation database

devoted to agricultural publications [123]. AGRICOLA contains over 6 million publi-

cation records from scientific journals, books, and government reports. AGRICOLA

can be accessed through the NAL Catalog site https://agricola.nal.usda.gov/.

In its entirety, AGRICOLA is available by lease from the National Technical Infor-

mation Service as a data file.

The NAL Thesaurus is a structured vocabulary that includes descriptions, syn-

onyms, and hierarchical relationships between agriculture related terms [125]. NAL

https://agricola.nal.usda.gov/
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Thesaurus terms are used to index citations in AGRICOLA. Curators annotate pub-

lication records using the NAL Thesaurus terms to assist in filtering the output of

AGRICOLA article searches. The NAL Thesaurus is available for download in mul-

tiple file formats from the USDA NAL site.

The USDA National Nutrient Database for Standard Reference (NDB) stores nu-

trient information for raw and processed foods commonly consumed in the United

States [182]. The NDB connects over 8,000 foods and 150 nutrients. Food and nu-

trient data from the NDB include association sources, descriptions, food weights,

and nutrient values. The NDB can be downloaded as a set of flat files from the

Agricultural Research Service website.

1.1.1.3 Open Biological and Biomedical Ontology Sources

The Open Biological and Biomedical Ontologies (OBO) Foundry is a repository of

biomedical controlled vocabularies, called ontologies. The OBO Foundry was devel-

oped with the goal of fostering interoperability through the use of a standardized, flat

file format called OBO [164]. These ontologies contain term definitions, synonyms,

relationships, and cross references to other ontologies and databases.

The Gene Ontology (GO) is a structured vocabulary that standardizes terminology

which describes the role of genes and proteins in cells [10]. The GO specifies and

associates concepts that explain gene function, location, and pathway membership

across all species. It is comprised of three ontologies, molecular function, cellular

component, and biological process. The GO is the most widely known and used

ontology in biomedical research and has been used to annotate and categorize results
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in tens of thousands of publications. The Gene Ontology can be downloaded directly

from the project’s FTP site.

The Plant Ontology (PO) adheres to the OBO format to provide a structured

vocabulary describing plant anatomy, morphology, and developmental stages [12]. It

contains cross references to external ontologies such as the Gene Ontology and the

Chemicals of Biological Interest. The PO is available from the Planteome project

FTP site.

The Human Phenotype Ontology (HPO) is a structured vocabulary representing

phenotypic anomalies of diseases in humans [145]. The HPO has cross references

to many ontologies used in this research. It also aids in providing structural depth

where other resources, such as MeSH, are lacking. The HPO and phenotype to gene

annotations are available from the HPO GitHub reposistory.

The Mammalian Phenotype Ontology (MPO) is similar to the HPO but contains

terminology specific to rat and mouse models of human biology and disease [165].

The MPO is available from the Mouse Genome Informatics website.

The Disease Ontology (DO) is a publicly available, structured vocabulary that as-

sists in integrating biomedical data associated with human disease [152]. It provides

definitions of human disease terms, phenotypic characteristics, and medical vocabu-

lary concepts. The DO has extensive mappings to MeSH and OMIM. The DO can

be downloaded from OBO Foundry repository.
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1.1.1.4 European Molecular Biology Laboratory and European Bioinformatics

Institute Sources

The European Molecular Biology Laboratory (EMBL) and European Bioinformat-

ics Institute (EBI) are the main public resources for molecular biology information

in Europe [89]. They support data repositories and analysis tools for molecular and

computational biologists.

The Chemical Entities of Biological Interest (ChEBI) is a structured vocabulary

for small molecular entities produced in nature or synthesized to affect pathways in

living organisms [72]. ChEBI serves as a database and an ontology, storing relevant

information such as molecular formula, structure, charge, and mass. The ChEBI

ontology and taxonomic origins of compounds are available from the EBI FTP site.

1.1.1.5 Chemical, Gene, and Disease Association Databases

Secondary association databases gather data from primary sources in order to tease

out interesting patterns and investigate newly generated hypotheses. These associa-

tion databases map interactions between genes, chemicals, gene products, and human

disease.

The Comparative Toxicogenomics Database (CTD) contains associations of chem-

icals, genes, and diseases [42]. The CTD is a publicly available association database

that aids in the investigation of how chemicals influence human disease. Associations

in the CTD are highly curated and map entities between biomedical resources, such

as MeSH, GO and Entrez Gene. Association data from the CTD is accessible via the

CTD’s project website as flat files.
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As evidenced by the information sources described, biomedicine and agriculture

continue to be active areas of independent research. The identification of genetic

contributors to disease focuses on the molecular function of genes and gene prod-

ucts. Research in agriculture focuses on the benefit of bioactive chemicals for stress

response in plants. However, an understanding behind the molecular mechanisms

linking phytochemicals with their effects on human genes is still largely missing.

Although a deluge of data from agricultural and biomedical research exists, it is

distributed across numerous public repositories and shares sparse relationships that

connect the different domains. There are monolithic sources that contain cross ref-

erences to link various databases in the biomedical domain, such as the National

Center for Biotechnology Information Sources or the European Bioinformatics In-

stitute [89, 151]. Despite these monolithic resources, cross domain associations that

link entities, such as phytochemicals and human genes, are few in number. There

is a dearth of sources that associate plants and their phytochemical products to the

effects of those phytochemicals on human genes. Scarce associations can be aggre-

gated through the integration of publicly available sources and supplemented with

the addition of relationships mined from scientific literature.

1.1.2 Augmenting Public Resources of Curated Data

The sources for extensively curated diet-disease relationships are scarce and gener-

ally disjointed. A minimum of four domains (plants - chemicals - genes - phenotype)

must be traversed to link plant-based diets to disease. These four domains span the

agricultural and biomedical research space, yet do not frequently overlap. Sparse
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overlap creates a need to connect these domains to explain the relationship between

diet and disease. This need can be addressed by extracting overlapping associations

from the scientific literature. A wealth of agricultural and biomedical knowledge de-

scribing the interaction of phytochemicals with the human genome is available in the

scientific literature.

Unlike the structured data found in databases, scientific literature follows a free-

text format, easily understood by humans but unavailable for computation by com-

puters. Compounding the problem is the size of the scientific literature. MEDLINE,

the most prominent citation database in biomedicine, contains over 24 million ab-

stracts to date with a growth rate over one million articles per year [59]. At this

pace, scientists struggle to remain current, even within their specific field of research.

In addition, in order to study plant-based diets it is necessary to include literature

from agricultural research. AGRICOLA is the most widely used citation database

for agricultural research, storing over 6 million abstracts [123]. The volume of litera-

ture across biomedicine and agriculture, totaling over 30 million abstracts, cannot be

assimilated by humans alone. High throughput methods, such as text mining, are re-

quired to extract associations buried in these massive sets of literature [5]. Extracting

the latent associations from both agricultural and biomedical literature provides the

supplemental associations needed to link plant-based diets with human health and

disease.
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1.2 Literature Based Discovery Methods for Relevance Search

Literature based discovery (LBD) is the process of using collections of scientific

literature to infer implicit relationships from existing knowledge, resulting in data

driven, testable hypotheses [189]. Swanson was the first to propose a literature driven

hypothesis, proposing that dietary fish oils (DFOs) could prevent and treat the ef-

fects of Raynaud’s Syndrome (RS) [174]. From all available literature about DFOs,

Swanson deduced that DFOs lower blood viscosity, platelet aggregability, and vascu-

lar reactivity, providing the potential to improve blood circulation. In all available

literature relevant to RS, Swanson found high blood viscosity, platelet aggregabil-

ity, and vasoconstriction to be associated with the circulatory disorder RS. At the

time, the existing knowledge for DFOs and RS shared common attributes but were

found in non-interacting sets of literature. Swanson combined observations from these

non-interacting sets of literature, leading to the novel postulation that DFOs might

ameliorate or prevent RS.

Swanson realized that by aggregating scattered bits of research literature, a reader

can infer implicit connections. The logical connections were generalized into the

ABC model of discovery [174]. The model states that two concepts, A and C, may

be connected by transitive property if an intermediate set of concepts, B, connects

both A and C. To illustrate Swanson’s DFO-RS hypothesis, let A represent DFOs

and B represent reduced blood viscosity, platelet aggregability, and vasoconstriction,

and let C represent RS amelioration, as in Figure 3. The literature shows DFOs (A)

cause reduced blood viscosity (B). The literature also shows reduced blood viscosity
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(B) causes RS amelioration (C ). According to Swanson’s model, because A causes

B and B causes C, it can be inferred that A may cause C, or that DFOs may cause

RS amelioration. This hypothesis, along with others, was clinically validated in later

experiments [161–163,174–176].

Figure 1: ABC Model of Discovery illustrates the inference between Dietary Fish Oils
and Raynaud’s Syndrome. Solid lines represent the existing links from concepts A
and C to the set of B concepts. The dashed line represents the inferred link between
concepts A and C due to the overlap of intermediate set of B concepts.

The ABC model takes two forms, called closed discovery and open discovery. In

the closed discovery process, both concepts A and C are known, restricting the can-

didate concepts of interest to the set B, common to both A and C. To illustrate,

an observed association in nutrition research states that broccoli, concept A, reduces

chronic inflammation, concept C [185]. Closed discovery attempts to find the connec-

tion between broccoli(A) and chronic inflammation(C ) via a transitive relationship

between A-B and B -C. Oxidative stress is a shared concept associated to both broc-

coli and chronic inflammation that provides such a transitive relationship, acting as
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a concept B [199]. In the open discovery process, only the starting concept, A, is

known. Following the previous example, if A was broccoli, concepts B and C could

be any biomedical concepts of interest, such as chemicals or metabolic pathways.

Open discovery is a computationally difficult problem, as it presents a combinatorial

explosion of candidate concepts for investigation. This research focuses on the more

tractable form of closed discovery, with the modularity to extend the method to open

discovery in the future.

LBD methods are composed of three major tasks that include text mining, asso-

ciation mining for ranking, and network analysis [101]. Text mining methods range

from simple co-occurrence within documents to the use of natural language processing

techniques for high throughput extraction of interesting entities and their relation-

ships. Co-occurrence methods provide non-descript associations, while advanced text

mining methods provide semantic relationships between entities. The vast possibility

of associations from text mining qualify the need for methods to filter and prioritize

candidate hypotheses inferred by LBD, such as interestingness measures and network

analysis techniques.

1.2.1 Text Mining

Text mining is the process of extracting useful information from document collec-

tions through the identification and exploration of interesting patterns in unstructured

textual data [53]. The value of text mining comes from automation and throughput.

As previously mentioned, text mining is essential in LBD for identifying and ex-

tracting associations from the vast volume of scientific literature. Its application in
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pharmacogenomics, mining knowledge between drug and human gene interactions,

parallels its potential in the field of nutrition, where interactions of phytochemicals

and human genes are the focus [69].

A document corpora, such as abstracts from MEDLINE, is the input for text min-

ing. The output varies based on the goals of mining but is generally organized and

results in machine-readable data structures containing entities and associations of

interest. In the case of this research, text mining output consists of tables of agri-

cultural and biomedical entities and the semantic relationships between them. Text

mining can be broken down into two subtasks, information retrieval and information

extraction.

Information retrieval (IR) is the storage, organization, and access to information

found in informational objects such as documents or web pages [1]. The basic func-

tion of information retrieval systems is to rapidly and accurately reduce the search

space of a given information collection by returning information objects relevant to

keyword-based queries. An IR system allows researchers to quickly access the pub-

lications in PubMed based on keyword searches. Keywords from a user are mapped

to MeSH, the vocabulary used to index all publications in PubMed. The IR system

finds all documents indexed with the mapped keywords and returns them to the user

in seconds. For example, a researcher interested in publications relevant to broccoli

and glucosinolates would input the two terms into PubMed’s IR system. The system

maps the terms to their closest matches in MeSH. For instance, broccoli would map

to Brassica oleracea var. italica. All publications indexed with Brassica oleracea

var. italica and glucosinolates would then be returned to the researcher. IR quickly
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narrows the corpora of literature to a subset of the most pertinent, user desired

information. Smaller subsets can still be unmanageable, such as the broccoli and glu-

cosinolates query which returns over one thousand publications. The next subtask of

text mining, information extraction, assists in automatically structuring information

from the free text within the literature from IR for computational analysis.

Information extraction (IE) transforms the data from unstructured text into rel-

evant, machine-readable information [53]. Information extraction is the most im-

portant subtask in text mining as the structured information it produces ultimately

represents the output of text mining. IE can be divided into two major subtasks,

named entity recognition and relation extraction, that identify entities and the re-

lationships between them from unstructured text. Modern approaches combine the

subtasks using a combination of named entity recognition techniques.

Named entity recognition (NER) identifies entities of interest, such as agricultural

or biomedical terms, from the documents returned by IR [96]. There are three main

categories of NER techniques: dictionary-based approaches, rule-based approaches,

and machine learning approaches.

Dictionary based NER is the simplest and most accurate approach. In the context

of NER, a dictionary is a collection of terms that represent entities of interest [96].

In this approach, exact matches of dictionary terms are found in the text, ensuring

precision but to the detriment of recall. Dictionary based approaches also lack the

flexibility to recognize undefined terms, such as synonyms or alternate spellings, not

found in the dictionary. For example, if b̈roccolïıs the only explicitly defined term for

the plant in the dictionary, other instances, such as B̈roccoliör Brassica oleracea var.
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italica, will not be recognized. Inexact or fuzzy matching techniques can generate

spelling variants of terms to increase matches. Integrating ontologies and controlled

vocabularies as dictionaries supplies synonyms and other representations of terms

for increased recall in dictionary based NER methods. In the Whatizit system, all

dictionaries are generated from biomedical databases and ontologies to maximize

recall [138]. The added benefit to using database and ontology terms in these systems

is the ease of interoperability of sources when mining across domains.

Rule-based NER approaches rely on rules or patterns derived from prior knowl-

edge [34, 96]. Early approaches used rules taken from biomedical nomenclature to

identify entity classes. For example, protein and gene symbols tend to be single

ẅordsc̈onsisting of upper-case letters, numbers, and hyphens, such as the protein

interleukin-1 symbol, IL-1 [61]. More advanced systems define specific patterns as

rules, such as ”chemical entity” regulates the expression of ”gene entity”. The most

sophisticated rule-based systems employ natural language processing techniques for

NER.

Natural language processing (NLP) makes use of linguistic concepts, such as parts

of speech and grammatical structure, to parse and represent free text [85]. An early

example of an NLP text mining tool is the freely available, web-based Chilibot system

that implements NLP techniques for NER and rule extraction [28]. The requirement

of prior knowledge and the potential time investment for manual deduction of rules

are drawbacks of rule-based NER approaches. Domain specific rules can also make it

difficult to scale these methods to larger, diverse document collections.

Machine learning (ML) and statistical based approaches treat NER as a classifica-
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tion problem [34, 96]. Based on the value of defined features, these approaches can

tag entities and parts of speech, or classify entire documents into different categories.

ML approaches require a comprehensive and manually annotated set of data to train

classifiers. The three most implemented machine learning techniques for NER are

naive Bayes, hidden Markov models, and support vector machines.

Naive Bayes classifiers commonly represent a class as a vector of feature variables.

In NER, these feature variables can be words, phrases, or other characters that define

a class entity. Each feature is assumed to be independent of any other feature. A

supervised learning stage involves training the classifier with a manually annotated

dataset. After training, the classifier is fed the test dataset to classify. The conditional

probability of a certain class or category existing in a document given the features of

that document, is calculated and evaluated against a defined threshold.

Support vector machines (SVMs) are similar in concept to naive Bayes classifiers.

The difference lies in the assumption of independence of features in naive Bayes. In

SVMs, linear combinations of features, called support vectors, are found from a set of

positive and negative examples. These linear combinations separate the feature space

into either positive or negative, classifying text based on which side of the linear

combination they fall [68]. SVMs perform best when the assumption of independence

between features does not hold, according to the data and problem being solved.

Hidden Markov models (HMMs) build on feature identification and add another

level of complexity to NER. HMMs take into account the sequence of features (words

or phrases in NER) as they appear in text. Then HMMs use statistical information

from annotated examples which predict the most probable sequence of features and
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if that exists within the text being searched [140]. As with the other ML techniques,

HMMs tend to require larger, highly curated training datasets for the best results.

Also, the more specific the features are to a domain, the less they can be reused as

features for other domains.

NER is best performed with hybrid approaches that draw from dictionary, rule, and

machine learning based methods. Current approaches utilize ontologies, controlled

vocabularies, and database entries to define dictionaries for NER. These dictionar-

ies are combined with grammatical and common pattern rules to annotate training

datasets to be used in machine learning classifiers for NER.

Relation extraction for information extraction is built on either co-occurrence or

NLP methods. Co-occurrence counts the existence of two entities of interest found

within the same text as a relation. The definition of same text can differ, based on

what boundaries are set. Co-occurrence can exist within the entire document, within

a specific section of a document (such as the results section of a publication), or within

a sentence. Co-occurrence based text mining makes use of dictionary-based methods

of NER. NLP based approaches are more advanced, implementing rule and ML based

algorithms that were previously described. The resulting output of IR and IE are

relations and entities in a structured format for use in downstream computational

analyses. [77]

The main goal of text mining in this work is to augment existing associations

for knowledge discovery: the realization of new information through identification of

implicit associations between relevant entities [69].
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1.2.2 Association Mining for Ranking

Association mining is the probabilistic determination of associations between co-

occurring items within a collection, expressed as association rules of the form (X →

Y ) [179]. Association rules signify that whenever items in X are present in the

collection, items in Y are also likely to be present. In the context of knowledge based

discovery, association mining discovers the probability of a pair of entities sharing an

association or relationship within a collection, such as an integrated knowledge base.

Association mining treats a dataset of associated items as a series of event in-

stances, where each instance contains a set of co-occurring items called an itemset.

For example, purchase data from a grocery store can be thought of as a series of

transactions where each transaction contains a set of purchased items, such as milk

and eggs. Association mining can be succinctly described in two general steps. First,

unique itemsets are defined across the collection of event instances. The occurrence of

unique itemsets are then counted. Those itemsets that meet or exceed a user-defined

minimum probability threshold are called frequent itemsets. Frequent itemsets are

used in the next step of rule generation. In rule generation, frequent itemsets are

ranked based on an interestingness measure. Highly ranked frequent itemsets pro-

duce the most likely candidate association rules for that dataset [177]. In many cases,

confidence is used as the default interestingness measure and those candidate rules

with high confidence are returned as strong association rules.

Interestingess measures used in biomedical association mining are split into two cat-

egories, objective and subjective. Objective measures use statistics that describe the
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data and a user-defined threshold to filter uninteresting associations. These measures

are domain independent and data driven with little reliance on prior user knowledge

or input. In addition to the dataset, subjective measures depend on user input and

expert knowledge. As this work crosses the domains of agriculture and biomedicine,

we focus exclusively on objective measures.

Support and confidence were the first formally defined interestingness measures [4].

Support is the probability that an event contains items of both itemsets X and Y.

Confidence is the probability that an event contains the items of Y given those in X.

The support-confidence framework has limitations for both support and confidence.

Support eliminates low probability items that may create interesting patterns while

confidence ignores the support of the consequent itemset, Y in (X ⇒ Y ). In doing

so, confidence generates rules where an item is highly likely to occur on its own,

regardless of the presence of other items. Lift is an interestingness measure that was

developed to overcome the drawback of confidence by including the support of the

consequent in calculating the interestingess of a rule [137]. It is essentially a test of

independence, where a value of 1 indicates independence between X and Y. Other

common objective interestingness measures that test independence are chi-squared

(χ2) and Fisher’s exact test. These correlation measures face the limitation of being

influenced by proportional changes to the sample size. In many biological databases,

a specific association between two entities, such as a chemical interaction with a

gene, is often a small probability event in relation to the total number of associations

within the database. Within such a database, many associations will not include

that chemical and gene, and are deemed null events with respect to that chemical or
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gene. Interestingness measures affected by null events have been found to perform

poorly in large databases [195]. The importance of the null-invariance property in

interestingness measures has been investigated in a number of studies [126,178,194].

Null-invariant measures account for small probability events, where a particular

item in an itemset may not occur frequently given the total number of events. These

low probability events are of potential interest for developing novel hypotheses be-

tween bioactive components in food and human health phenotypes. Null-invariant

measures, including the Jaccard similarity coefficient, cosine similarity, and Kul-

czynski measure, have been reviewed in different rule mining studies [62, 177, 194].

Null-invariant interestingness measures have been extensively studied and the selec-

tion criteria for the best applicable measure has been determined to be data de-

pendent [195]. Null-invariant measures follow an inherent ordering and follow four

properties. The first property is that each measure follows a range from 0, repre-

senting no co-occurrence, to 1, indicating two entities always co-occur. The second

property states that more co-occurrences leads to a higher interestingness value, while

the inverse is also true. The third property states that the measure is symmetric under

event permutations. The final property of these measures is that they are invariant

to scaling, where multiplying the support values by a scaling factor makes no differ-

ence in the overall value [195]. These properties are favorable to association analysis

within large databases, thus warranting their comparison for use in assessing the in-

terestingness of relationships in a diet-disease network. Furthermore, the design of

a new relevance ranking measure, based on a null-invariance measure in combina-

tion with heterogeneous information network analysis techniques, will be discussed in
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great detail in Chapter 3 of this work.

1.2.3 Information Network Analysis

Data in numerous research fields, including the social sciences, library science, and

biology, are increasingly modeled as large, highly linked collections of interrelated

objects, called information networks [73, 109,186]. Information networks contain ob-

jects, which represent concepts, connected by links that represent the relationships

between concepts. When the objects and links in an information network all share a

single type, it is considered a homogeneous network. The objects and links in het-

erogeneous networks have different types which convey subtle semantic information.

Heterogeneous networks are more representative of current data, such as the inter-

action between chemicals, genes, and disease. Consequently, many different methods

have been developed for analyzing homogeneous and heterogeneous networks.

Methods for the quantification of similarity between two objects within an infor-

mation network are of particular interest in information network analysis for LBD.

An application of similarity search in the biological domain is the identification and

ranking of genes associated to disease. Given a network of gene-disease associations,

a similarity search can identify and prioritize genes based on their similarity to a

specific disease. The similarity of two objects can be quantified and evaluated by a

similarity measure. Traditional similarity measures, such as the Jaccard coefficient or

PageRank, were developed for homogeneous networks, unable to capture the semantic

information of heterogeneous networks [98,128].

Similarity measures designed for heterogeneous networks, such as PathSim and
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Path Constrained Random Walk, utilize the concept of meta paths to distinguish

the semantics of paths connecting differently typed objects [91, 169]. A meta path

is a sequence of relations between different object types, which defines a composite

relation between the first and last object types of the path. These meta path based

methods perform well in cases where similarity is measured between objects of the

same type, such as calculating the similarity of two genes associated to a disease.

However, cases exist where the relationship between objects of different types is of

interest. For example, a plant researcher would be interested in determining the

relevance between plants and chemicals to generate a plant’s chemical profile.

The distinct task of measuring the relevance of differently typed objects is less

studied than measuring the similarity of same typed objects. Straight forward mea-

sures, such as path count (PC) and pairwise random walk (PRW), calculate relevance

but have biases [169]. Path count measures relevance as the number of instances of

a meta path between a start and end object. It favors objects with high link counts.

Himmelstein proposed a relevance measure that extends path count, implementing a

down weighting factor to overcome high count bias [75]. Pairwise random walk begins

by splitting the meta path into two even paths. Then it calculates the probability

of two random walks, originating from the start and end objects of the meta path,

reaching the same middle object. PRW is biased because it values densely linked mid-

dle objects. HeteSim is an extension of PRW that accounts for bias by normalizing

the random walk probability for each step composite relation in a meta path [156].

The HeteSim measure exhibits a pair of beneficial properties. It is a symmetric mea-

sure, which provides a single value to compare the relative relatedness between pairs
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of differently typed objects. It also has the property of a self-maximum, meaning

HeteSim values are constrained to a range between 0.0 and 1.0. This allows for easy

comparison to other measures with a self-maximum.

1.3 Challenges and Limitations of Current Relevance Search Methods

Current relevance measures are applied to small, bibliographic networks or sparse,

disease specific networks generated from subsets of data found in monolithic sources.

The sparsity of linked data between agricultural and biomedical research is exacer-

bated by the isolation of existing associations in domain specific data silos with low

interoperability, such as those hosted by the USDA. This work overcomes the spar-

sity of association data connecting agriculture and biomedicine through integration

of current data and augmentation with text mined relationships extracted from sci-

entific literature. The combination of these techniques results in the development of

a large, semantically rich diet-disease network.

Recent network analysis methods focus on similarity search within homogeneous

networks. These measures are based on incomplete models of the complex networks

they represent and ignore the latent semantic information in association data. Most

measures developed for heterogeneous networks search for similarity between objects

of the same type, neglecting the potential value of quantifying the relevance between

differently typed objects. Measures designed for relevance search fail to incorporate all

possible semantic detail. The heterogeneity of link types extracted from text mining

and curated sources can provide detailed semantics which affect the relatedness of

two objects. This work considers link types mined from the literature and curated
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sources to better inform the relevance between objects.

1.4 Improving LBD with Semantically Informed Heterogeneous Network Analysis

It is difficult to draw meaningful conclusions from the sparse data available linking

plant-based diets with human health. Current methods attempt to overcome data

sparsity by integrating existing curated data, but curated associations connecting

agricultural and biomedical research exhibit low interoperability and are generally

not publicly available. My method integrates data from public sources of agricultural

and biomedical associations. My method also augments this data with text mined

relationships that provide support for low probability associations and bridge the gap

in association data between plants, chemicals, and human health. The extraction

of text mined relationships add heterogeneity and subtle semantic information that

can be incorporated into heterogeneous information network analysis tasks, such as

relevance search. My semantically informed technique helps generate phytochemi-

cal profiles, hypotheses for diet and gene interaction, and enables the elucidation of

molecular mechanisms by which plants affect human health phenotypes.

This research produces a diet-disease network that supplements curated data with

text mining and a semantically informed relevance search measure for ranking related

agricultural and biomedical entities. This work investigates three separate, but re-

lated, topics: data integration and augmentation methods for disparate data sources,

a heterogeneous network analysis method for relevance search, and a large-scale rel-

evance analysis of agricultural and biomedical entities in an integrated diet-disease

network. Figure 2 shows the overall workflow implemented in this work to investigate
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the molecular mechanisms behind plant-based diet and human health phenotypes.

Figure 2: This is the general workflow used in this research. The curated sources and
text mined results from scientific literature are identified and subjected to several
data integration techniques. The association data is then transformed for storage
in a Neo4j graph database. Relevance calculations are performed on results from
database queries and prioritized objects and paths are returned as tables. Ranked
results can be visualized in the Neo4j Browser.

Chapter 2 discusses the development of a novel diet-disease network, stored in a

graph database. The sources, format, and types of data for the network, both curated

and mined, are described in detail. Concepts of graph theory and applicability to the

computational problem of linking multiple domains are also explained.

Chapter 3 describes the design, development, and implementation of a meta path

based relevance ranking measure for generating candidate hypotheses. The identifi-

cation and quantification of relevant objects from a heterogeneous network of curated

and text mined data is a difficult task. It is necessary to filter the noise from the

explosion of information available in agriculture and biomedicine. Recently, the rel-

evance search task is more commonly approached with machine learning techniques
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that require large, curated training datasets which are difficult to generate and specific

a research domain. The novel ranking measure HetRel is semi-supervised, requiring

little input from the user. HetRel is evaluated and compared to existing relevance

measures using gold standard datasets, ranked by each measure.

Chapter 4 investigates the biological use cases of the novel diet-disease network.

It also implements the HetRel ranking measure described in the previous chapters.

This chapter showcases the utility of the diet-disease network and the HetRel measure

when used in concert.

Chapter 5 briefly describes limitations of this work and the future improvements

and goals which can overcome them. It outlines the applicability of the modular

framework for many other domain linking problems relevant to research areas in

human health phenotypes.



CHAPTER 2: DEVELOPMENT OF A DIET-DISEASE ASSOCIATION
NETWORK

The advent of HT technology has produced vast amounts of data in biomedical

research that allows a broader view of biological interactions at the systems level.

The rise in read length and depth, coupled with the falling cost of genome sequencing

has afforded new insight into plant products and function. The last decade has

seen a growing trend where contextual evidence is incorporated across domains to

draw meaningful conclusions from the influx of data, as evidenced by the field of

nutrigenomics that diverged from nutrition science [117]. Elucidating the molecular

mechanisms behind the health benefits of plant-based foods requires the aggregation,

integration, and curation of data from relevant domains.

One of the main obstacles to identifying the mechanisms by which diet affects dis-

ease is that a comprehensive resource which integrates knowledge from the literature

with relevant contextual data does not exist. Present databases describing diet and

disease entities limit their scope to specific domains, exhibit sparse associations, and

lack descriptive relationships for their associations. Additively, these issues impede

the discovery of plausible molecular mechanisms of diet and disease. We developed

a novel diet-disease network that integrates heterogeneous biological domains and

enriches current associations to address these obstacles.

Developing a diet-disease network requires the identification, aggregation, and inte-
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gration of data from relevant information domains. Data from available sources need

to be understood for proper integration and subsequent analyses. The data should

follow accepted standards (such as those outlined by the OBO Foundry [164]), contain

cross references to other pertinent sources, be comprehensive, and properly represent

molecular biology. A great example is the Gene Ontology (GO) which provides defini-

tions and relationships for concepts describing gene and gene product function across

species in both OBO and OWL formats [10]. The GO has been adopted for gene

annotation by all major genomic repositories, generating associations across many

prevalent databases. Data that meet these criteria facilitate the integration process.

Numerous public sources contain such data, yet a dearth of associations and relation-

ships linking different domains still exists.

Within the published scientific literature are relationships that link otherwise sepa-

rate domains of knowledge. Recent studies have showcased the power of text mining,

particularly in the field of biomedicine, for integrating knowledge from literature and

other relevant data sources [13,30,69,153]. Text mining is a high throughput means of

aggregating information from the literature, but returns a higher error rate than man-

ually curated associations. The combination of curated associations from databases

with text mined associations has been found to result in a larger collection of results,

while maintaining an adequate error rate [81, 135]. In this work, text mining is used

to extract relationships from titles and abstracts in PubMed and Agricola to augment

the associations found in and between the agricultural and biomedical domains.

A comprehensive dataset that integrates agricultural and biomedical entities pro-

vides a foundation for studying the relationship between plant-based foods and human
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disease. It is costly from a time and resources standpoint to design, perform, and

analyze large random assays to determine phytochemical profiles or molecular inter-

actions of plant-based foods. It is more feasible to assimilate current knowledge of

plant products and their effects on the human genome to generate more focused,

data-driven hypotheses for further inquiry. A heterogeneous network that integrates

domains in agriculture and biomedicine broadens the resources for understanding the

molecular mechanisms of diet and disease.

Proper data integration is crucial for downstream analysis in LBD and can affect

downstream results if done poorly. Integration methods that broadly match enti-

ties can lead to an overabundance of associations and relationships between domains

which creates excess noise within the dataset. On the other hand, overly specific

integration methods that match few entities can suffer from a sparsity of associations

and relationships which reduces the signal from the dataset. To that end, this chap-

ter discusses solutions to overcome challenges posed by the integration of biological

entities that describe diet and disease. Biological entities included in the integration

process include plant species, chemicals and compounds, genes and gene products,

biological pathways, and human phenotypes with a focus on disease.

2.1 Data Sources and Types

There are many agricultural and biomedical data sources for the elucidation of

molecular mechanisms linking plant-based diets and disease. These available sources

can be classified into three broad data formats: 1)controlled vocabularies, 2)associa-

tion databases, and 3)text mined associations and relationships. Controlled vocabu-
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laries provide a list of explicitly defined, unambiguous, and non-redundant terms to

which describe a domain. Secondary databases consist of data derived from analyses

of experimental data found in primary databases. These databases store associa-

tions and relationships determined from experimental studies that were gathered into

a domain specific resource. Text mined associations and relationships are extracted

from the literature, as previously described in Chapter 1, to quickly capture existing

knowledge that may not have been assimilated into other sources. When integrated,

the data from these three sources form a consistent representation of plant-based diets

and disease from which hypotheses can be generated.

Determining which sources and data to include within the network was essential

to the investigating the effects of diet on disease. Each source has distinct properties,

influenced by objectives and standards adopted by that particular project, which

dictate the source’s utility in achieving project goals. The goals of the project direct

considerations of pertinence for entities and associations of sources. For example,

the Gene Ontology project provides a structured vocabulary that defines gene and

gene product functions, cellular locations, and involvement in biological processes.

However, the Gene Ontology does not contain genome and gene-specific information

such as gene names and the species genes are found in. Entrez Gene stores genomes

and gene-specific information, but must cross reference other repositories, such as the

Gene Ontology, to associate genes with function.

These sources span various domains and are built on different assumptions and

datasets that produce dissimilar formats, making interoperability difficult. Table 2

catalogs the curated sources incorporated into the diet-disease network by their data
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formats and lists the data types extracted from each. To understand the complexity

involved in integrating heterogeneous data, the data types of all sources are described

in greater detail.
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2.1.1 Controlled Vocabularies

The main purpose of a controlled vocabulary is to express the knowledge of a

domain in a standardized, reusable format to resolve ambiguity between concepts.

A controlled vocabulary is a defined list of terms for use within a domain. Further

information, such as associations, can be added to a controlled vocabulary to provide

it with structure. Controlled vocabularies can be categorized by the type of data

contained and format followed. Three categories of controlled vocabularies commonly

utilized in integration analyses are taxonomies, thesauri, and ontologies.

Taxonomies are controlled vocabularies that contain parent-child relationships that

form a hierarchical structure. The NCBI Taxonomy is a prime example of a tax-

onomy, with parent-child relationships structured by biological taxonomic rank [52].

Taxonomies contain, at minimum, three types of data that include an entity identifier,

parent-child relationships, and metadata, which in this case included preferred term

names and possible synonyms. Aside from describing taxonomic homology amongst

species, a taxonomy alone provides little in the way of investigating the effects of

plant based foods on human health.

Thesauri also contain relationships that form a structured vocabulary. They in-

clude declarative links of varying expressivity between entities. Relationships such

as ”broader term” and ”narrower term” further specify parent-child associations, like

those expressed in taxonomies. A thesaurus also stores additional metadata such as

synonyms, cross references to other structured vocabularies and databases, descrip-

tions, and dates of discovery. The prominent thesaurus in biomedical research is the
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Medical Subject Headings Thesaurus (MeSH) from the NCBI National Library of

Medicine [100]. In agriculture, the most widely used thesaurus is the National Agri-

cultural Library Thesaurus from the United States Department of Agriculture [125].

Synonyms, cross references, and descriptions were extracted from these two thesauri

for integration into the diet-disease network. Thesauri cover a broad range of entities

but, in doing so, may lack depth and detail.

Ontologies are hierarchically structured vocabularies with relationships and at-

tributes specific to a particular domain. The purpose of an ontology is to create a

reliable semantic specification to promote interoperability and communication within

a domain. Relationships in ontologies are the most expressive links found in struc-

tured vocabularies. The Gene Ontology (GO), ubiquitous in life science research as

evidenced by tens of thousands of article citations, serves as a great example of ex-

pressive relationships in ontologies [10]. There are 11 relation types of varying detail

used to describe the links between gene products within the GO. A relation provides

semantic meaning to a relationship far better than a simple parent-child associa-

tion, like those of thesauri and taxonomies. Relations, such as negatively regulates

or positively regulates, yield further semantic detail and add negative or positive di-

rectionality to the link. Other ontologies contain distinctive relations for pheno-

types and disease (has symptom), chemicals (is conjugate base of ), and plants (iso-

lated from germplasm). Data extracted from ontologies consisted of entity identifiers,

preferred terms, synonyms, descriptions, and relation types. Ontologies provide a

wealth of detail for specific domains, but suffer from sparsity of entity links across

domains.
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Controlled vocabularies are made available in numerous data formats. The NCBI

Taxonomy is separated into a number of files that contain the species identifiers,

preferred terms, and synonyms. These files are structured into rows and columns, de-

limited by specific characters. In the case of the NCBI Taxonomy, columns are sepa-

rated with a combination of tabs and pipes, as such: [column1Value | column2Value].

Thesauri and ontologies are commonly self-contained within single files that are struc-

tured into stanzas for each entity definition. A stanza is a related group of lines that

consist of the entity identifier and all other properties of that entity, such as preferred

term, synonyms, and associations. The OBO format serves as a standard for bio-

logical ontologies. The GO and all other ontologies used in this work followed the

OBO format for ease of parsing and extensibility. Links to parsers for the controlled

vocabularies used to populate the diet-disease network can be found in Appendix

A.

2.1.2 Association Databases

NCBI and EBI host biomedical databases that act as reference libraries to re-

searchers across all domains of the biological sciences. The main purpose of these

databases is to classify and provide access to biomedical data. Inherently, classifying

the data involves standardization, which aids in downstream interoperability and ease

of access for these databases.

Primary and secondary data can be stored in association databases. Experimen-

tally obtained data in primary databases is submitted directly from scientists into

primary databases. Secondary databases assimilate primary data into a collection to
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investigate broader patterns through data mining. Databases serve the dual purpose

of defining biological entities, such as genes in Entrez Gene, and linking these entities

across multiple sources. A thesaurus or ontology acts as a foundation for databases,

defining concept classes that classify instances of data. When based on a thesaurus

or ontology, a database will inherit entity identifiers, preferred terms, synonyms, de-

scriptions and associations from that structured vocabulary. Databases build upon

an ontology by incorporating curated associations between internal entities and cross

references derived from external databases and structured vocabularies. The amount

and variety of metadata and associations available in association databases imparts

greater density to the skeletal structure of structured vocabularies. The wealth of

associations, both internal and external, from databases add significant detail and

interoperability to the diet-disease network described in this work.

The Entrez Gene Database is an example of a primary database for gene infor-

mation where researchers directly deposit experimentally derived data. Entrez Gene

entity identifiers and links to species, pathways, and phenotypes were extracted as

definitions of genes and their associations with other pertinent entities involved in diet

to disease interactions. OMIM and CTD represent secondary association databases

for chemical, gene, pathway, and phenotype information amalgamated from various

sources. These secondary databases draw information from MeSH, NCBI Taxonomy,

GO, and other ontologies to associate chemicals, genes, and disease. OMIM contains

detailed text summaries of curated instances of associations from the scientific lit-

erature. As previously mentioned, developers of biomedical databases use standard

ontologies and thesauri to not only classify, but to foster the sharing of data and
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information.

Data from biomedical databases can be accessed in variety of ways in part due to

an ability to be indexed from the structure of ontologies and thesauri. NCBI has

developed web portals for all resources it hosts, including NCBI Taxonomy, MeSH,

OMIM, and Entrez Gene. Web portals such as these provide quick single query access

to data within these resources. For larger, multi-step and batch queries, biomedical

repositories allow programmatic access via application programming interface tools,

such as NCBI E-Utilities. Studies that require the entirety of data in these databases

are able to download database or flat files directly from their respective ftp sites.

Data from biomedical repositories are commonly available in two file formats, flat

file records or as character delimited files. The database files used in this work were

downloaded from FTP sites in the form of multiple character delimited files per

database. These delimited files required entity mapping to one another, similar to that

of tables within a relational database. This concept of linking tables with key fields in

relational databases will be explained in greater detail in the following section. Links

to parsers for data extraction from databases used within the diet-disease network

can be found in Appendix A.

2.1.3 Data Types

Data from controlled vocabularies and association databases must be parsed from

original source files for use in computational analyses. The foremost consideration in

data integration is deciding which data types best describe and connect agricultural

and biomedical entities. The data types that define agricultural and biomedical con-



41

cepts are entity identifiers, associations that connect entities, and metadata. All data

sources utilized to develop the diet-disease network contain, at minimum, these three

data types.

Entity identifiers (EIDs) for biological concepts are the most prevalent type of

data in agricultural and biomedical sources. EIDs act as unique references to specific

agricultural or biomedical concepts, such as a species, chemical, or gene. They can be

characters, numbers, letters, or a combination of those. Table 2 displays examples of

entity identifiers from each of the three data source formats. The degree of uniqueness

of an identifier varies by data source. NCBI Taxonomy and Entrez Gene employ

arbitrary EIDs to species and genes. The EIDs are a series of sequential numbers

assigned to entities based on the order that data was input into the database. As

such, these EIDs are only unique to specific entities within their respective databases.

Ontologies, such as the GO, use a combination of letters, characters, and numbers to

ensure uniqueness and opacity (when an identifier provides no metadata, such as the

order of data entry). The GO has standardized EIDs to follow this particular format

of a prefix, ”GO:”, followed by a seven digit number with leading zeroes. For example,

the EID for chronic inflammatory response is GO:0002544. Opaque identifiers are

critical for combining and integrating data from disparate sources.

Entity associations connect agricultural and biomedical concepts within sources and

provide cross references to other sources. These associations are stored in structured

vocabularies and databases. Internal associations, between entities within a source,

occur frequently in structured vocabularies. Association databases consist mainly of

cross reference associations that connect various external sources.
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Table 3: The relationship types extracted from various data sources and formats are
listed. When relationships had no explicit type: Internal relationships were issued
the is a type, External relationships were issued the xref type

Data Source Data Format Relationship Types References

Gene Ontology CV occurs in [10]

Chemical Entities of Biological Interest CV has role [72]

Disease Ontology CV complicated by [152]

Plant Ontology CV isolated from germplasm [12]

NCBI Entrez Gene Asc xref [106]

PubMed Citation produc [60]

Connections between entities have varying levels of detail. Generally, associations

are expressed as mapped pairs of EIDs. An association identifies the existence of

a simple link between two entities. Building upon that, a relationship assigns a

descriptive type to links between entities. Descriptive types are standardized by

structured vocabularies, namely ontologies such as the Gene Ontology. Examples of

relationship types are provided in Table 3. In this case, a relationship forms a triple

of the format (EID, relationship type, EID). The addition of relationship types aids

in standardizing complex associations.

The associations and relationships available from the sources previously described

are highly curated. Manual curation demands high costs in both time and labor,

which limits the scope and quantity of associations from these sources. The diet-

disease network presented here integrates resources using unique internal identifiers

and expands the scope of data through the aggregation of associations across domains.

It provides a single access point to dense amounts of highly curated associations in a

standard format.

Metadata includes information relevant to the association, such as data version or

the publication identifiers from which data was retrieved. It is crucial in integration
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and reproducibility of analyses to maintain the history and provenance of source data.

For instance, every updated version of a structured vocabulary will add new entities

and associations. If the versions of two integrated sources are out of sync, adding

associations from an entity in the updated source to a non-existent entity in the out

of date source would fail. This work has recorded versions, dates of access, and noted

manual alterations to data acquired from aforementioned sources in order to track

metadata.

Optional data types contained by these sources include entity definitions and syn-

onym lists. Entity definitions are text explanations of the given entity. Synonym lists

reduce entity ambiguity by mapping common terms sharing the same meaning to a

single, preferred term, such as broccoli, a synonym falling under the preferred entity

term Brassica oleracea var. italica.

This compilation of entities is essential for developing text mining queries, which

extract valuable information from scientific literature. Volumes of literature are avail-

able to create phytochemical profiles for plants found in the human diet. Fortunately,

the data aggregated from publicly available sources including ontologies, taxonomies,

food composition sources, and chemical databases aids text mining methods in the

identification of entities and their associations in the literature.

2.2 Text Mining Workflow

Even with the integration of curated sources boasting millions of associations, there

exists a sparsity of computationally accessible connections between plant-based foods

and human health. A lack of associations, particularly between plants, chemicals,
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and human genes, causes a disconnect between plant-based foods and their effects on

human health.

The published scientific literature is a valuable resource for augmenting existing

associations in agriculture and biomedicine. Reading and assimilating the information

and knowledge within the vast amount of literature is not humanly possible. In

order to access such knowledge, a high throughput method capable of mining the

literature for relationships between relevant entities and extracting the data in a

machine readable format is necessary. Text mining methods, as were discussed in

Chapter 1, are able to perform these tasks.

Text mining the scientific literature serves three purposes within knowledge based

discovery. The extracted knowledge from text mining creates a review of the current

research in agriculture and biomedicine, adds semantic detail to entity associations,

and augments sparse associations from current repositories.

Mining scientific articles provides a cursory view of the multiple facets in agri-

cultural and biomedical research. Raw results from text mining uncover popular

research trends in specific plants and phytochemicals with health benefits. Associa-

tions of phytochemicals to agronomic plants of interest extracted from the scientific

literature communicate the disparity in research for different plant-based foods. Fig-

ure 3 displays the top 10 plants with the highest citation count of associations with

chemicals, which include corn, rice, wheat, soybean, and spinach. Cruciferous veg-

etables (Brassicaceae) show far fewer phytochemical associations from the scientific

literature, which suggests the potential for further research.

A drawback of simple associations is the constricted expressivity of associations



45

Figure 3: Bar plot depicts the state of research for agriculture. The first 10 plants
have the highest citation count for plant to chemical associations in articles from
PubMed and Agricola. The remaining 6 plants in the plot represent research in
the cruciferous vegetable family Brassicaceae. The juxtaposition of the two types
highlights the gap in knowledge in agricultural research.

between entities. The vast majority of text mining studies for knowledge based dis-

covery rely on co-occurrence methods of simple associations [75,77,81]. Co-occurrence

mining methods exhibit high recall, returning large numbers of associations. These

methods return instances where two entities occur within a text. The definition of

text differs between implementations, where text could be a document, title, abstract,

article section (e.g. Results), paragraph, or sentence. Many studies establish a text

as an entire abstract in order to reduce computation during mining and improve re-

call. In many instances, these associations are completely unrelated aside from being

mentioned within the same abstract. The relationship of the co-occurring entities

is unknown without reading the context of the association, impeding the speed of

interpretation.

NLP based text mining methods begin with co-occurrence techniques and refine
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results based on grammatical and semantic features surrounding the co-occurrence.

The benefit of NLP methods is their ability to identify and extract extra information

from the co-occurrence, such as grammatical verbs and actions (semantic predicates

or relationship types). Semantic predicates provide meaning to associations between

entities, as opposed to manually identifying their meaning from co-occurrence or

concept derived associations [78,143]. For example, extracting the semantic predicate

(dietary fish oils INHIBITS platelet aggregation) indicates the specific relationship

between DFOs and platelet aggregation, rather than a simple association between the

entities. Semantic predicates extracted by text mining will be overlaid on the diet-

disease network generated from ontologies and association databases. The extraction

of relationship types will return a smaller number of associated entities because,

within these extracted relationships, co-occurrences are known to exist but many are

filtered out due to a strict set of rules in text mining queries. An example of a rule

defines the boundary of a text, where a text mining result is returned if two entities

co-occur within the same sentence or phrase, as opposed to the more lax boundaries

of the entire abstract.

Text mining is capable of programmatically and comprehensively adding entity

connections to current research databases. The benefit of text mining published lit-

erature in agriculture and biomedicine is that these relationships are accepted as

truths, having been published in peer-reviewed journals in their respective fields.

With current sources of agriculture and biomedical research, it is impossible to find

a connection linking plants, their chemicals, and human genes, pathways, and pheno-

types. Explicitly mining for relationships between each set of these entities provides
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a large collection of associations to augment current sources, enabling researchers to

make that connection.

The methods applied in this work were chosen to take advantage of the benefits of

text mining just described. These methods consist of defining the document corpus,

designing or identifying text mining softwares and pipelines, query development and

result extraction, and an overview of text mining results.

2.2.1 Document Corpus

The main input of text mining is the collection of documents for information ex-

traction. The three requirements for selecting a document corpus for text mining are

a defined scope, evaluation of information quality, and ease of accessibility.

Studies which utilize large text corpuses, such as Wikipedia [114, 198], attempt to

identify general trends and information. The problem with using general texts as the

source input for text mining is that the information, although vast and comprehensive,

do not define a specific scope, which introduces noise in mined results. Also, mining

irrelevant text unnecessarily increases the need for computational time and resources.

In addition, such large text sources are not always curated, which leads to variability

in information quality. However, sources such as Wikipedia are publicly available and

easily accessible via download.

A combination of the citation databases Medline and Agricola were selected to

fulfill the selection requirements for the document corpus in this work. This study

encompasses the fields of biomedical and agricultural research. Medline is the stan-

dard text corpus for biomedical text mining and is used exclusively in the majority



48

of studies [13, 24, 30, 69, 154]. The agricultural equivalent to Medline is Agricola. To

date, this work is the first to text mine the Agricola bibliographic database. As

the scope of the project includes agriculture, it is necessary to incorporate relevant

agricultural research texts from a reputable source. Together, these biographical

databases comprehensively represent current knowledge in the scope of biomedicine

and agriculture. The millions of citations in these databases are amassed from thou-

sands of peer-reviewed journals, theses, and book chapters which ensures high quality

information. Medline and AGRICOLA are also publicly available in common file for-

mats. In biomedical text mining, bibliographic records are formatted using available

metadata, such as journal, publication date, and authors, based on the text mining

method or software used.

2.2.2 Text Mining Tools

Following document corpus selection and formatting, the next step in text mining is

designing or implementing a text mining tool. The important features of text mining

tools are the underlying text mining methods and licensing availability.

As previously discussed in Chapter 1, many text mining methods exist such as co-

occurrence, statistical, machine learning, and NLP based methods [34,85,200]. Early

tools relied heavily on co-occurrence as the primary method of text mining, generating

high recall at the expense of precision. Many associations extracted by these methods

returned false positives, requiring filtering and curation. Studies employed these tools

and methods for their simplicity, high recall, and open source licensing [34]. More

recently, hybrid approaches have been found to manage the shortfalls of previous
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techniques by combining text mining methods, resulting in higher precision with a

reasonable cost to recall [53,56,81]. Higher precision, hybrid approaches have become

prevalent in current open source and proprietary text mining tools used in biomedical

research. A major difference between open source and proprietary tools is the level of

support, in the form of documentation and developer wikis, available to researchers.

Several open source and proprietary tools are available for text mining in the con-

text of biomedical research. Some of these tools are discussed in the following section.

2.2.2.1 Open Source Tools

The foundation of many open source text mining tools is the Stanford Natural

Language Toolkit (NLTK) [25, 31, 147]. The NLTK is a suite of tools for developing

text mining programs in the Python programming language. It includes modules

for text parsing, classification, natural language processing algorithms, and visual-

izations [21]. The corpora and controlled vocabularies included in the NLTK are

generic, meant for broader mining projects with input text usually unrelated to agri-

culture or biomedicine. The NLTK provides a platform for biomedical text mining

tools to be built on, but is purposely non-specific for use across any domain. As a

result, it is the most widely used open source tool with vast and constantly updated

documentation and community support. The major limitation of the NLTK is the

programming language it supports. Python has a shallow learning curve that reduces

the barrier to entry for new users, has a rapid development and testing cycle, is fairly

human readable, and is object oriented [104]. However, it is an arduous task to de-

velop multi-threaded programs in Python, making it difficult to scale NLTK-based
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text mining tools for big data [149]. The document corpus in this project is over

30 million documents, which can prove computationally intensive when there is an

inability to run text mining processes in parallel.

The tm package is a framework for developing text mining applications within

the R programming language. This package in R is capable of preprocessing text

data, performing association analyses, document clustering, concept summarization,

and text classification [111]. R makes use of co-occurrence and statistics methods

to perform clustering and association analyses. The advantage of the tm package is

that it can extend other R packages such as OpenNLP and lsa [14,190]. Text mining

with the tm package provides access to advanced statistical methods, such as latent

semantic analysis, and open source NLP algorithms. The statistical methods in R are

invaluable for text and data mining, but the R programming language is not able to

scale to handle extremely large datasets. With a document corpus of over 30 million

documents, running advanced statistical methods on complex sentences within this

many documents would be not be feasible in a reasonable amount of time.

WhatIzIt is a suite of open-source text mining modules hosted by the EBI for

biomedical literature, such as the EBI installation of Medline. This tool has mod-

ules specific to named entity types, such as organisms, chemicals, and diseases [138].

WhatIzIt is specific to biomedical literature, drawing from controlled vocabularies

such as ChEBI, GO, and NCBI Taxonomy. It takes into account morphological vari-

ability and includes ambiguous acronyms for named entities. The tool is hosted as

a webservice to scale with the size of literature in Medline and number of controlled

vocabularies available for named entity recognition. However, as a webservice there
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are limitations to batch processing and ability to configure custom functionalities.

MetaMap is a highly configurable text mining tool that maps concepts from the

highly curated unified medical language system metathesaurus to biomedical litera-

ture. This tool can be accessed as a webservice or installed to run on a local machine,

allowing highly configurable batch processing. MetaMap is heavily computational and

based on symbolic, NLP, and linguistic techniques [8]. The drawback of MetaMap’s

exhaustive thoroughness in concept mapping is its relative slowness, making it inap-

propriate for real-time use and iterative refinement. Complex sentences can generate

hundreds of thousands of candidate concept mappings which increases the problem

of ambiguity, requiring several hours for MetaMap to complete [9].

2.2.2.2 Proprietary Tools

Statistical Analysis Text Miner, a product of SAS, implements text mining tech-

niques to identify patterns found within the entirety of a document collection. SAS

differentiates the definition of text mining from NLP and knowledge extraction, citing

the single document specificity of the former compared to the overall collection in the

latter [3]. The Text Miner preprocesses and parses free-format text with text mining

techniques to transform it into structured data and make it available to data mining

algorithms. The SAS Text Miner is capable of text clustering, classification, and

identifying essential concepts in the context of an entire text collection. To that end,

SAS Text Miner has been implemented in sentiment analyses, business intelligence,

and the development of drug efficacy models through prediction. This work requires

not only a summarization of trends within a collection, but also document specific
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information extraction including relation extraction. For this reason, SAS Text Miner

does not fulfill the requirements of a text mining tool for this project.

I2E is an NLP based text mining platform developed by Linguamatics for the

task of information extraction from large document collections across numerous do-

mains [115]. I2E provides an interactive information extraction tool that allows users

to identify relationships between entities of interest using user-defined ontologies, tax-

onomies, and thesauri in combination with rule-based pattern matching, NLP, and

linguistic algorithms to help define the context of a query. This platform supports

input from external domain sources to help define context. Queries are built accessing

classes of concepts defined by ontologies combined with linguistic patterns. A ben-

eficial feature is that users can develop and refine queries in real time over millions

of documents. A simple query against an indexed Medline collection (over 24 million

citations) for eleven micronutrients in the Brassica family and ten potential molec-

ular interactions in mammals takes under 28 seconds. Results from I2E queries are

returned in configurable, machine-readable, structured formats for further analysis.

The efficiency, advanced NLP mining methods, and extensive configurability of the

I2E system, coupled with great support from Linguamatics subject matter experts

and an active user community, fulfilled the needs of this project.

I2E has successfully been implemented in domains of the life sciences for various

studies. Bandy et al. extracted protein-protein interactions to investigate the associ-

ations between a set of 50 genes of interest [15]. Liu et al. utilized I2E results to train

an algorithm that automatically categorized pneumonia diagnoses from chest x-ray

reports [103]. Tari et al. incorporated I2E into a drug target and biomarker discovery
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pipeline. Linguamatics I2E will be used in this work to extract relationships between

entities describing the effects of plant based diets and disease from the abstracts of

over 30 million scientific articles in Agricola and PubMed.

2.2.3 Text Mining with Linguamatics I2E

The text mining workflow in I2E consists of three major steps that are conceptu-

alized in Figure 4. It starts with the acquisition, preprocessing, and indexing of the

document corpus to be mined. In parallel, controlled vocabularies and ontologies are

also acquired and indexed to form ”classes” which represent named entities. This

step generally occurs once per corpus and controlled vocabulary update. Indexing is

followed by specific query development, which produces query results. Query devel-

opment and results are involved in an iterative loop of refinement that continues until

the results meet the user’s standards. The details of controlled vocabulary selection

and query development and refinement for investigating diet and disease relationships

are discussed in this section.

2.2.3.1 Named Entities Indexed for Text Mining

I2E was developed as an ontology-based interactive information extraction system,

providing background knowledge through the incorporation of domain specific ontolo-

gies. Entities from these ontologies are treated as classes in I2E, retaining relationship

structure and sets of synonyms for each class. This inherited knowledge from ontolo-

gies enables querying at a conceptual level, requiring little to no knowledge of all the

synonyms or subsumed (included under a broader definition) entities of a class. It also

allows for queries between a specific entity or a family of entities. For example, if one
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Figure 4: Overview of three step text mining workflow. Workflow begins with induc-
tion, preprocessing, and indexing of document corpora and controlled vocabularies.
Named entities from controlled vocabularies are used in query development and iter-
ative refinement of query results. Following result refinement, text mining results are
exported for further use.

were interested in mining the literature for the phytochemical profile of broccoli, they

could select the specific class of broccoli from the NCBI Taxonomy and the more

general class of chemical entities from ChEBI. I2E would search the corpus for all

synonyms of Brassica oleracea var. italica, the preferred term for broccoli, and their

occurrences with any chemical subsumed by the chemical entity class of ChEBI, such

as glucosinolate or glucoraphanin. Without background knowledge from ontologies,

a query such as this would prove arduous, requiring manual compilation of broccoli

synonyms and list of chemicals.

To elucidate the molecular mechanisms of diet on disease, six structured vocab-

ularies describing plants, chemicals, genes, biological pathways, and human health

phenotypes (described in Chapter 1) are indexed as named entity classes in I2E.
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As MeSH and the NAL Thesaurus index the entirety of the corpus, named entities

from these structured vocabularies are heavily utilized in text mining for this project.

Table 4 separates named entity classes into distinct types based on domain and

identifies the structured vocabularies that define them within the context of this text

mining project.

Table 4: The entity types of nodes in the diet-disease network and their sources.

Entity Type Data Sources

Plant NCBI Taxonomy(Embryophyta)

MeSH(Embryophyta)

NALT(Plantae)

Chemical ChEBI(chemical entity)

MeSH(Chemicals and Drugs Branch)

NALT(Biochemical compounds)

Gene Entrez Gene(Homo sapiens)

Pathway GO(Biological Process)

MeSH(Diseases Branch)

Phenotype Disease ontology

NALT(diseases and disorders)

MeSH(Diseases Branch)

2.2.3.2 Query Development

In this work, the overall goal of text mining is to augment the relationships linking

the domains of diet and disease at the molecular level. This goal dictates entities

of interest and the structure of the relationships that connect them. The biological

inquiry can be broken down into four more manageable questions: 1) What phyto-

chemicals are associated to plants? 2) What effect do phytochemicals have on human

gene expression? 3) How does altered gene expression affect biological pathways in

humans? and 4) How do perturbations in biological pathways affect human pheno-

types? Four sets of text mining queries, connecting five domains, were developed to

answer these questions.
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As previously mentioned, the format of extracted entity relationships in this work

follows that of RDF triples. Triples add detail to associations found in the literature

by providing semantic predicates for the extracted relationship. Additionally, the

extraction of triples acts as a filter by restricting entity associations to those connected

by a semantic predicate within the boundary of a sentence. For example, if broccoli

and a pesticide are mentioned within the same article abstract, the pair would not be

extracted as an association. If broccoli and isothiocyanates are mentioned within the

same sentence and are connected by a predicate, such as contains or produces, then

the triple (broccoli, contains, isothiocyanates) would be returned as a mined result.

With this in mind, the iterative process of query development can be described.

Each set of queries begins with a combination of named entity classes defined in

Table 4. The classes chosen to represent the five domains are broad and subsume a

multitude of classes that can introduce spurious results if not carefully excluded. Uni-

versal exceptions in text mining exist to reduce noise introduced by common terms

and phrases. The natural language group at Stanford introduced a stop word list

that was included within each query developed in this project. Otherwise, exclusions

varied based on the context of the biological question, as well as specificity of the

selected classes. The most biologically relevant exclusions were in plant, chemical,

and phenotype entity types. In order to be comprehensive, all green land plants are

considered to be edible and were included in this study. In the NCBI Taxonomy

and MeSH, Embryophyta, also referred to as Plantae in the NAL Thesaurus, is the

classification of terrestrial plant species indexed for text mining for this analysis, ex-

cluding Chlorophyta, green algae. In chemical classes, ChEBI specifically, fertilizers,
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pesticides, and chemical solutions were excluded from text mining queries. The focus

of this study was to identify naturally occurring chemicals within plants, not those

added or supplemented by humans. Excluded phenotype classes included sprains,

strains, wounds, and injuries. Changes in these phenotypes are unrelated to diet and

are excluded to reduce computational time and resources in text mining.

Preliminary queries start by mining for the co-occurrence of entity classes. The

entire article is set as the initial boundary for the co-occurrence of entities. After re-

viewing cursory co-occurrence mining results, the next iteration of query development

sets stricter boundaries, such as within the title or abstract, down to a single sentence

of an article. Upon manual review of successive co-occurrence results, the sentence

structure of entity mentions are abstracted to linguistic patterns to refine the query.

Linguistic patterns differ given the set of mined entities classes being queried. Again,

each query is driven by one of the four biological questions. For example, a linguistic

pattern between a plant and chemical entity is structured as, plant X contains/pro-

duces/synthesizes chemical Y. Alternatively, another linguistic pattern of plants and

chemicals is, chemical Y isolated/extracted/derived from plant X. With every itera-

tion, precision is increased while being mindful of drastic decreases in recall. Semantic

predicates mentioned in the linguistic patterns, such as contains and isolate, were not

limited to previously defined verbs or phrases in order to preserve the semantic detail

of relationships found in the literature. Instead, semantic predicates were discovered

by way of a parts of speech class that identifies verbs and phrases between specified

entities implemented in I2E.

I2E incorporates a series of linguistic constraints that were also used in query devel-
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opment to increase precision in text mining. An option in I2E allows for the selection

of boundaries for matching a query entity class. The three available settings are

linguistic, exact, or strict, ordered by the level of specificity of the boundary. The

linguistic boundary matches any part of an identified linguistic unit. A linguistic

unit is a phrase that contains a queried entity class. For example, a query for broc-

coli, a verb, and a chemical could return the linguistic unit, ”Broccoli sprouts con-

tain health-promoting glucosinolates”. The linguistic units for broccoli and chemical

would be, ”Broccoli sprouts” and ”health-promoting glucosinolates”. The linguistic

setting would match any part of the linguistic unit for the queried entity class while

the strict setting would not match broccoli in ”Broccoli sprouts” because it is part of

a larger linguistic unit. Another linguistic constraint imposed in text mining queries

was a disambiguation filter determined by a Linguamatics calculated confidence met-

ric. Disambiguation attempts to resolve the multiple meanings of words mined in the

literature. Over the course of query refinement, it was determined that the threshold

for the confidence metric should be set to 50.

Query results were manually reviewed until each query returned 80% accuracy for

1000 randomly selected text mined triples. Results were output once these require-

ments were satisfied. Queries, formatted as .i2q files, are available in Appendix

A.

2.2.4 Text Mining Results

Text mining output included entity properties, relationship metadata, and relation-

ship evidence for text mined results. Entity properties, for both entities extracted
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in the relationship triple, consist of the entity’s original source identifier, preferred

term, and term identified within the literature. Relationship metadata includes the

semantic predicate and location, title or abstract, where the relationship was identi-

fied. The evidence extracted is the exact sentence from the literature containing the

relationship. Results were output in a tab delimited format for ease of organization

and parsing.

Text mining results augmented curated connections between the five different do-

mains spanning from plant species to human phenotypes. Table 5 summarize the

results returned from the four sets of queries between plants, chemicals, genes, biolog-

ical pathways, and human health phenotypes. 3,249,155 relationships were returned

across all query sets. Of these over three million relationships, there were 72,470

distinct semantic predicates and 54,293 individual entities. These relationships were

extracted from 103,723 Agricola and 821,777 Medline citations. The addition of all

extracted relationships could enrich the investigation but, realistically, confidence in

text mining results is variable. It is important to consider the proper balance between

the recall of text mining and it’s error rate.

Table 5: Text mined results separated by query. Result statistics include total overall
and unique results of relationships and relationship types.

Entity Pair Query Overall Mined Unique Mined Overall Predicates Unique Predicates

Plant, Chemical 622,559 281,277 14,015 4,010

Chemical, Gene 910,605 409,833 23,080 3,975

Gene, Pathway 599,622 385,357 26,550 3,582

Pathway, Phenotype 1,116,369 415,907 33,419 4,502

All Pairs 3,249,155 1,492,371 72,470 8,946

Manual curation of millions of relationships is an onerous task. To this end, dif-
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ferent methods of filtering were performed to assist in curation. First, only results

from articles written in English were included as viable results. Relationships ex-

tracted from articles in 14 other languages, all found within the Agricola citation

database, were excluded from the results. The highly heterogeneous number of se-

mantic predicates introduced noise, with many low and single occurrence instances,

while providing little extra semantic detail. To retain semantic detail while reduc-

ing heterogeneity in relationships, predicates were collapsed into higher, subsuming

relationships. Predicate phrases were tokenized and the longest single term was se-

lected from these tokens to represent the semantic detail of the phrase. All single

term predicates were then stemmed to remove morphological affixes using the Porter-

Stemmer implementation from the NLTK. The combination of selecting the longest

term in predicate phrases and stemming predicates significantly reduced the number

of unique predicates from 72,470 to 8,946. After applying these filters, the resulting

number of distinct, overall relationships from text mining was 1,492,371.

Entities, associations, and relationships from curated sources and text mining dis-

cussed in this Chapter are used to populate the diet-disease network described in the

following sections.

2.3 Data Munging and Integration

Generally, data munging is the process of cleansing and transforming data into

a usable form for computational analysis. Cleansing data is a crucial step in data

munging and overall analysis that consumes a majority of the time of a data project

due to many considerations. A researcher must contemplate what data to include,
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map, and establish provenance during the cleansing component of data munging [50].

This crucial stage facilitates data integration and heavily influences all downstream

analyses.

2.3.1 Cleansing Data from Diet-Disease Sources

Data cleansing begins with a detailed understanding of the data sources and types

needed for a project. The data types included in the development of the Diet-Disease

Network, described in Section 2.1, are entity identifiers, associations, and metadata.

Entity identifiers (EIDs), previously described, provide distinct points of reference

for mapping entity data, associations, and metadata. Once EIDs are parsed from

a source, a researcher must consider what supporting data for entities, associations,

and metadata to include in the data project.

Each data type has a set of features that can be used in this data project. The

inclusion of features is determined by the goals of the project and the discretion of the

researcher. EIDs feature synonym lists, entity definitions, and a preferred term. These

features provide labels to entities for visualization and pattern recognition. They also

act as a means of pattern matching that eases the burden of knowing a specific entity

name while querying the data. Association features consist of the source and evidence

of an association. Association sources fall into 3 categories, experimentally validated,

curated from publications, or inferred by computational means. Evidence for asso-

ciations is dependent on the source of the association. Evidence for experimentally

validated associations may include instrument measurements. Associations curated

from publications store publication identifiers of articles mentioning the associations.
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Evidence supporting computationally inferred associations may be a qualitative met-

ric, such as sequence similarity between genes of related species, or a text excerpt of

the association from text mining.

The selected data features are then parsed to be mapped to EIDs. At this juncture,

the quality of data is taken into account, particularly associations with metric-based

evidence features. Acceptance thresholds, specific to the association evidence, are

useful for cleaning up a dataset by excluding associations that can introduce noise

and provide false positives in the analysis. For instance, text mined relationships in

this project were excluded based on their number of occurrences within the collection

of publications. A text mined relationship between two entities was accepted into the

dataset if it occurred at least twice within the publication collection. This occurrence

threshold prevents the introduction of excess noise from low confidence relationships.

Data provenance describes the lineage of how data was generated, processed, and

modified. Provenance keeps a record of metadata for data, such as version and source

information. Data provenance can occur at different levels, such as a database as

a whole, files within a database, or single entries in files [183]. Establishing data

provenance within data projects is important to ensure compatibility when mapping

datasets to one another, especially when integrating data from multiple sources into

a searchable data warehouse.

2.3.2 Data Integration

Data integration is the task of combining data from heterogeneous sources to pro-

vide a unified, systematic view of these data [95]. The aggregation and integration of
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data from heterogeneous domain sources is a powerful way to overcome data sparsity.

It accumulates stronger evidence through consolidating scarce data into a more com-

plete dataset. It also helps to add semantic structure and detail that would otherwise

not exist in a single data source. The model framework for data integration is com-

posed of two major components, a set of data sources and a global schema that maps

and reconciles the data. Irrespective of the integrative mapping approach, discrete

identifiers are necessary to properly map the associations and relationships between

entities.

2.3.2.1 Resolving Ambiguous Identifiers

As described in Section 2.1.3, some sources assign arbitrary identifiers to en-

tities. The identifiers are unique within those sources but upon integration with

multiple sources they may be ambiguous and result in possible entity identifier col-

lisions. Listed in Table 6are the five sources in this study that utilize arbitrary

EIDs. Discrete, internal identifiers were created to circumvent EID collisions within

the diet-disease network. The designated format follows a similar pattern to those

used in ontologies, such as the Gene Ontology. The pattern prefix includes the source

name, with words separated by periods, followed by .id:. EIDs from the original source

are appended to this prefix to generate discrete, internal identifiers. An example of

a discrete EID from Entrez Gene is nih.nlm.ncbi.gene.id:3586 for the IL10 gene in

Homo sapiens. Mappings from sources that refer to arbitrary EIDs from the original

sources are redirected to the unique internal EIDs for those entities. After resolving

the ambiguity between source EIDs in an integrated resource, one must specify the
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approach for mapping data. The two common approaches are known as the Global

As View and the Local As View.

Table 6: Five data sources with arbitrary entity identifiers were integrated into the
diet-disease network. Internal entity identifiers were assigned to these sources to
ensure uniqueness.

Data Source Source EID Internal EID

NCBI Taxonomy 36774 nih.nlm.ncbi.taxonomy.id:36774

NCBI Entrez Gene 4780 nih.nlm.ncbi.gene.id:4780

National Agricultural Library Thesaurus 6949 usda.nal.thesaurus.id:6949

USDA Nutrient Database 341 usda.ndb.id:341

OMIM 614594 omim.disease.id:614594

2.3.2.2 Entity Association Mapping

The Global As View (GAV) attempts to map entities of the global schema to those

found in the original data sources. The GAV approach models the integrated data

such that structuring queries is simplified, needing only to create queries based on

the global schema. This results in efficiency for query development and execution.

The main disadvantage of the GAV is the requirement of explicitly specifying the

mapping and merging of entities between multiple sources into a global schema [95].

This requirement does not allow the addition of a new data source independently of

other sources. It stymies the incorporation of new data by necessitating a remapping

of the global schema for new sources.

The Local As View (LAV) follows the opposite approach of the GAV, mapping

entities from the local schemas of original data sources to the global schema. The

LAV approach addresses the disadvantage of the GAV, allowing new data sources to

be integrated independently of existing sources. However, the approach introduces

complexity to query development, requiring more sophisticated queries to capture
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data not explicitly defined in the global schema [95]. In this project, the LAV mapping

approach was utilized for data integration to allow efficient addition of new data

sources for. The development of more complex queries for the integrated data was

a logical trade-off for the flexibility of incorporating new data independently of the

global schema. This modularity enables scalability of the project in the future, given

the exponential growth of biological data available.

This project incorporates associations that link entities across a variety of sources

to enable integration. Many of the sources provide associations linking chemical, gene,

pathway, and phenotype entities described by the NCBI, ChEBI, and Gene Ontology.

Sparse data in single sources is supplemented in the integrated Diet-Disease Net-

work by aggregating and mapping entity associations from the multitude of sources.

The scarcity of data connecting plant species with their phytochemical profiles was

augmenting with relationships extracted via ontology-based text mining, which used

structured vocabularies from sources such as the NCBI and EBI.

2.3.3 Data Formatting

In order to use the aggregated and integrated data as a single, unified resource, it

must to be formatted into a form suitable for data management systems. Database

management systems (DBMSs) are responsible for defining, creating, creating, query-

ing, and updating a structured collection of information. DBMSs are capable of

accepting many data format types as input, the most popular being the delimiter

separated value format.

The delimiter separated value format stores data as a two dimensional array of
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columns and rows. This is achieved by separating column values in each row with

specific delimiter characters. A delimiter can be any character, with the stipulation

that the character does not appear in any value of the data. Commas, tabs, colons,

spaces, and the vertical bar, also known as a pipe, are the most widely used delimiters

due to their rarity in most data. This format is simple to interpret and parse, making

it highly versatile and widely accepted as a data input format. The data of columns

and rows is decided by the database systems that best meets the needs of a data

project.

2.4 Data Storage

Traditionally, the standard method of storing and querying data in the biological

sciences has been relational databases. Relational databases (RDBs) are capable

of storing, organizing, and providing access to large amounts of association data.

They also efficiently capture metadata for biological concepts. However, when faced

with the challenge of storing and querying large, heterogeneous data from multiple

domains, RDBs are met with computational limitations.

2.4.1 Canonical Database Limitations

The most prominent limitation of RDBs is the normalization of data into tables.

Normalization organizes data into varying levels of a normal form, essential to re-

ducing data redundancy and maintaining data integrity within a database. The issue

with normalized RDBs arises when complex queries require a series of aggregation and

retrieval inquiries (called by the JOIN method in the SQL query language) mapping

primary keys and foreign keys from multiple, normalized tables. JOINs are com-
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putationally intensive and when many-to-many relationships exist between tables,

require the generation of associative tables which raises computational costs expo-

nentially [43]. For example, a table of genes and a table of biological pathways share

many-to-many relationships. A biological pathway can involve many genes and a gene

can be involved in many biological pathways. De-normalizing data to decrease the

number of joins offset computational costs from complex queries in RDBs. However,

these techniques can only go so far and also disregard the strict design of RDBs.

Another limitation of RDBs stems from their strict modeling of data, again brought

about due to normalization. Strict data models are great for reducing redundancy

and preserving data integrity particularly when assimilating updated data. An issue

arises when new data types are added to an RDB. The introduction of new data

types requires a redesign of the database schema to accommodate the structure of

new associations. Database schema redesign is an intricate process, accounting for

previous considerations that improved query efficiency while following logical con-

straints for data normalization, to incorporate new data [17]. To remain current with

the expanding breadth of data in the biological sciences, RDBs will inevitably require

extensive schema redesigns. This task, in addition to the complications from complex

JOIN queries, introduces a formidable hurdle to scalability for storing and querying

across molecular biology concepts.

Within the context of identifying the molecular mechanisms behind diet and dis-

ease, RDBs are not the best option for creating a diet-disease network. The amount,

heterogeneity, and interconnected nature of data aggregated to describe the effects of

diet on disease test the limitations found in RDBs. Recently, graph databases (GDBs)
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have been adopted in various domains of computational biology because of their effi-

ciency in traversing highly inter-connected data. In the remainder of this section, we

discuss the benefits and development of a graph-based diet-disease network.

2.4.2 Applicability of Graphs for Diet-Disease Network

Graphs are frequently used in various domains for fraud detection, social networks,

and recommendation engines [6, 142]. More recently, graphs have been applied in

computational biology to study protein-protein interactions, gene clustering, and

metabolic networks [64, 113, 130, 191]. Modeling biological entities and interactions

as a graph has gained popularity because of the highly connected nature of the data.

Graph databases are capable of overcoming the limitations of complex query efficiency,

schema rigidity, and scalability found in relational databases.

Native graph databases are efficient in traversal operations, especially with highly

connected data. On the other hand, traversal operations in relational databases re-

quire computationally expensive and complicated join queries which can exponentially

degrade query performance. Traversal operations are efficient in graph databases be-

cause the data is formatted as a graph where both entities and relationships between

entities are stored. In contrast, relational databases only store data as tables and infer

relationships through multiple join operations. Explicitly storing the relationships be-

tween entities circumvents expensive join operations which leads to significantly faster

queries when comparing graph and relational databases. Graph databases will not

fall prey to expensive many-to-many join operations slowdowns.

Graph databases are schema-less which allows for scalability and data intake and
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integration. In relational databases, all data is required to conform to a strict, nor-

malized schema structured as tables. The rigid schema of a relational database must

be redesigned when introducing new data types. In schema-less graph databases,

new data types can be incorporated quickly without significantly affecting existing

data. Although schema-less, graph databases generally model data for efficient query

performance. Large scale applications of graphs, such as massive and dynamic social

networks, are capable of efficiently storing and querying across millions of entities and

relationships. This demonstrates the capability of graphs to encompass the deluge of

data in the biological domain.

The application of graphs for biological research was introduced as early as 1994 [65],

as a means of storing and querying the growing data of the human genome. The

ease of data integration, scalability, and complex query efficiency were key factors

for proposing the implementation of a graph database for the human genome. The

efficacy of traversal queries in graphs drove Wilkowski to introduce graph theory to

literature-based discovery. He investigated the pathophysiology of depressive disorder

by implementing ”discovery chains” of proteins, pathways, and phenotype relation-

ships as paths in a graph [191]. Graph traversals have also been used in pharmalogical

research to infer indirect connections between drugs and phenotypes. A combination

of graph and linguistic theory was proposed to mathematically drive the development

of drug repurposing hypotheses [64]. The principles of graph theory remain constant

amongst these studies, but the implementation of graphs is variable. Graphs can be

implemented as data models within relational databases, but can also exist as native

graph databases.
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2.4.3 Graph Database Management Systems

Native graph databases store, manage, and analyze relationship data. They im-

prove performance, scalability, and flexibility when handling highly interconnected

data compared to relational databases. Open-source native graph database manage-

ment systems include Neo4j, OrientDB, and Titan. Currently, Neo4j is one of the

most popular graph databases and has outperformed OrientDB and Titan [19].

Neo4j is an open-source, ACID compliant transactional database with native graph

storage, processing, and analytics [119]. It is managed by the Neo4j graph plat-

form which includes well supported application programming interfaces and drivers,

a declarative query language called Cypher, built-in graph algorithms, and an inter-

active user interface that provides basic visualization. Neo4j also supports plugins

and extensions for added functionality, such as performing graph queries with the

Gremlin query language and visualizing results in Cytoscape. An advantage of Neo4j

being open-source is that it has the largest active graph database community, which

contributes to comprehensive documentation and current development support.

Many biological databases implementing graphs for storage and querying have

adopted Neo4j. The most prominent biological database using Neo4j is the Reac-

tome Knowledgebase. Reactome provides curated, molecular details of biological

processes including gene, protein, and pathway information [51]. Another database

built on Neo4j is biochem4j, which aggregates chemical, biochemical, and other bi-

ology resources for expanding research in systems biology [173]. Hetionet utilized

the Neo4j graph database management system to encode compounds, diseases, genes,
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and pathways to develop an edge prediction method for drug repurposing [76]. The

applicability of the Neo4j graph database management system is made obvious by

these and other published projects.

2.4.4 Graph Structure and Modeling

Graphs help conceptualize data by abstracting diverse concepts as nodes and mak-

ing connections between them using edges. This conceptualization is beneficial for

visualization and pattern recognition as it parallels how the human mind organizes

information. Formally, a graph G is defined as a pair (V,E) where V is a set of ver-

tices (referred to as nodes in this text) and E is a set of edges, denoted as G = (V,E).

Nodes represent concepts within a domain, such as entities describing plant-based

diets and human health phenotypes. Edges represent associations and relationships

between these concepts. Edges are defined as E = (i, j)|i, j ∈ V where each member

of E is a single connection between the nodes i and j [37]. Different variations of

graphs are based on the properties exhibited by their edges.

In directed graphs, an edge E = (i,j) has direction from i to j. Each edge in E

is mapped to an ordered pair of nodes in V and are called directed edges. Directed

graphs are most applicable for modeling biological pathways or sequential processes.

Directed acyclic graphs (DAGs) are directed graphs not containing edges that con-

nect a node to itself, called cyclic edges [37]. DAGs provide semantic structure with

directed, acyclic parent-child relationships. In the biological contest, DAGs are im-

plemented for organizing data in ontologies and taxonomies. A DAG is the natural

structure for integrating data from structured vocabularies into a single graph re-
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source.

In weighted graphs, each edge is assigned a weight, given by a weight function

w : E ⇒ R where R is the set of all real numbers. The weight w(i,j) of an edge

(i, j) ∈ E represents the confidence in or relevance of an association. Weighted

edges aid the efficiency of graph traversal algorithms by prioritizing edges between

nodes. Performing graph traversals in large graphs with millions of nodes and edges

is computationally demanding but can be executed by graph algorithms that utilize

weights to quickly disregard low confidence edges. The diet-disease network described

in this Chapter is structured as a weighted directed acyclic graph and is implemented

as a Neo4j graph database instance.

Traditionally, graphs have been treated as homogeneous networks where nodes and

edges are considered to belong to a single type, such as a protein-protein interaction

network. In the last decade, researches have realized that graphs effectively model

real world networks that contain objects and relationships of multiple, different types,

such as social or bibliographic networks. These heterogeneous graphs have various

types, or labels, that provide semantic information about nodes and the relationships

between them. The computational difference between homogeneous and heteroge-

neous networks will be discussed in detail in Chapter 3.

2.4.4.1 Graph model

Neo4j databases are modeled as labeled property graphs. As with any graph, a

labeled property graph (LPG) consists of nodes and edges. Nodes represent entities,

such as a plant or a chemical. Edges represent associations or relationships between
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entities. LPGs are unique in that their nodes and edges have internal structure in

the form of stored attributes. Each node and edge in an LPG stores an identifier,

a set of key-value pairs called properties, and types that are called labels. Nodes

and edges may have any number of properties that describe the entity or association.

Nodes can also be assigned labels that identify the type of node and edges can be

assigned relationship types which define associations [188]. The Diet-Disease Network

follows the labeled property graph model, as evidenced by the graph schema shown

in Figure 5.

Figure 5: Diet-Disease Network schema which includes five node types and numerous
edge types.

In this Diet-Disease Network, five entity labels are used to logically partition nodes

for organization and query efficiency. The five entity types are: Plant, Chemical,

Gene, Pathway, and Phenotype. In Neo4j, multiple node labels can be assigned,

allowing for a source label for each of the 13 sources aggregated into the data ware-

house. Retaining the source of each entity assists in data provenance and integrity by
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way of validating entity and association numbers throughout the extract, transform,

and load process of database population. There is a minimum requirement of data

for each node. It includes the entity’s source identifier and preferred term or name.

When available, a synonym list and the definition of the entity is also included as

node properties. Nodes are connected by edges in a property graph, which also have

sets of properties and labels.

The most defining characteristic of edges in LPGs is the definition of edge types.

Edge types provide semantic meaning to associations between entities. The advantage

of assigning types to edges is the ability to uniquely identify instances of a relationship.

Compared to other storage graph models, such as RDF triple stores, edges in LPGs

can have multiple instances of the same relationship type. In RDF triple stores,

connections of the same type between the same node pair cannot occur because it

would represent the same triple with no added information. The ability to uniquely

identify instances of the same edge type creates a more compact graph. It also

allows an accurate count of edge types for use in graph traversal algorithms and

ranking metrics. In the Diet-Disease Network, relationship types are derived from

specified associations from ingested curated sources and predicates extracted from

text mining, resulting in a highly heterogeneous set. Heterogeneity of relationship

types is beneficial for adding semantic detail to associations, commonly ignored by

most studies who utilize text mined data [139]. However, high heterogeneity means

high disparity in instance counts for common and rare relationship types. Instance

counts are an important factor in the weighting function for edge weights, influencing

downstream graph querying and analyses. This disadvantage is resolved through the
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weighting scheme and ranking metric described in Chapter 3.

In addition to relationship type, each edge stores the source and evidence of the

relationship as properties. Edges are sourced from curated structured vocabularies,

association databases, and text mined from scientific publications. Text mined edges

also store evidence for each instance of an edge as an array of tilde (˜) separated

strings. Each string has six fields that explain instances of that edge type. Each

evidence string includes an article identifier, the publication section the relationship

was mined (either the title or abstract), the (subject,predicate,object) triplet, and the

sentence of text the relationship was extracted from. Evidence, specifically the section

of the publication the relationship was found, is used as part of the weighting scheme

and ranking metric developed in Chapter 3.

The main features of the labeled property graph model are labels for nodes, re-

lationship types for edges, and key-value properties that are assigned to both nodes

and edges. An understanding of the Diet-Disease Network graph model is necessary

to translate biological questions about data in the graph into queries that return

plausible answers.

2.4.5 Graph Querying

The most beneficial feature of Neo4j is the graph-centric Cypher query language.

Cypher is an expressive, declarative query language designed exclusively for Neo4j’s

native, labeled property graphs. It conceptually visualizes nodes and their respective

edges as the textual queries themselves. Figure 6 displays a Cypher query alongside

its result, visualized by the Neo4j web interface. The MATCH clause can be seen
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as a visualization of a specific relationship type connecting two nodes, denoted by

closed parentheses. Cypher consists of clauses, keywords, and expressions that are

similar to those in SQL, the universal query language for relational databases. Basic

SQL statements are easily translated into Cypher statements because they share

the same basic format and logic. Cypher has also become open-source as part of

the openCypher project with the goal of becoming a modern graph query language

supported by many graph databases [121]. As an open-source project, Cypher is

under constant development with efficiency and support from a large community. It

is familiar and intuitive, allowing a researcher to focus on developing more complex

queries to uncover insights from the data.

Figure 6: Example cypher query to determine the chemicals associated with the
plant broccoli (Brassica oleracea var. italica). Results are truncated for brevity.

The efficiency of the Cypher language is a direct result of graph theory and algo-

rithms. To that end, practical graph algorithms for searching a graph and computing
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shortest paths between vertices have been directly implemented as clauses in Cypher.

In addition to these canonical graph algorithms, contributors to openCypher have

implemented in Java a series of user-defined procedures named Awesome Procedures

On Cypher (APOC) [120]. The APOC package includes algorithms for computing

PageRank, closeness and betweenness centrality, and community detection. The abil-

ity to call these procedures directly from Cypher strengthens the languages versatility

and efficiency in graph querying. It also allows for ”real-time” visualization of query

results.

The Neo4j Server provides a web browser-based graphical user interface that allows

access to the graph database. The Neo4j Browser supplies a Cypher console for in-

teracting with the database, data profiling tools, query templates, and customizable

query result visualization. Exploratory queries can be run in the Cypher console and

the results visualized immediately. The visualization can be customized to better

illustrate patterns and anomalies in the results. Data profiling tools determine quan-

tities and characteristics of graph data, such as the number of nodes, relationships,

and relationship types. Query templates and can be utilized in combination with re-

sult visualization for iterative refinement during query development. Programmatic

access to Neo4j graphs is available through drivers in Python, Java, JavaScript, and

C#. This project makes use of the Python driver for programmatic access to the

Diet-Disease Network and the Neo4j Browser for result visualizations.
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2.5 Integration and Augmentation of Data Sources to Span Diet-Disease Domains

To augment the available relationships describing the connection between diet and

disease, the presented methods of data integration, storage, and querying were applied

to the data types and sources discussed in Chapters 1.1 and 2.1. The application

of these methods culminated in a unified data warehouse called the Diet-Disease

Network that serves as a foundational resource to answer the questions: 1) What

is the phytochemical profile of plant-based foods? 2) How do these phytochemicals

affect human genes? and 3) How do these effects on human genes influence human

health phenotypes, such as disease?

The aggregated data provides a vast, comprehensive dataset for determining the

molecular mechanisms that drive the effects of diet on human health. Table 7 exem-

plifies the sparsity of singular data sources when compared to the aggregated dataset

compiled. After the inclusion of closure inferences and consolidation of non-unique

relationships, the integrated dataset stores over 732,094 entities connected by over

460 million relationships and associations.

2.5.1 Data Source Integration

Data describing the components of diet and their relation to human phenotypes

is sparse and scattered in various resources. In particular, comprehensive sources of

connections between plants and their chemicals are few and exhibit little integration

with human genomic and metabolic pathway data. Separately, no single source is

capable of connecting the entities linking plant-based foods to human health pheno-

types at the molecular level. Monolithic repositories, such as NCBI, contain and link
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Table 7: Entity and association count statistics for all data sources included in the
diet-disease network. Note that 42 of the 52 million associations from CTD are gene
to disease associations.

Data Source Total Entities Total Associations

NCBI Taxonomy 170,651 203,002

Medical Subject Headings 252,626 406,477,330

Chemical Entities of Biological Interest 102,425 236,589

National Agricultural Thesaurus 58,113 150,251

USDA Nutrient Database 8,768 9,908

Gene Ontology 30,366 95,143

Disease Ontology 9,678 14,379

Human Phenotype Ontology 11,940 16,675

Mammalian Phenotype Ontology 14,309 11,864

Plant Ontology 1,730 2,893

Entrez Gene 59,599 324,029

Online Mendelian Inheritance in Man Database 20,914 26,312

Comparative Toxicogenomics Database 52,088,758

TOTALS 741,119 459,592,356

genomic, pathway, and phenotype data but lack significant connections to chemicals

from plant-based foods.

The integration of diverse, reliable sources adds substantially more associations

that increase connectivity amongst diet and disease entities. Structured vocabularies

contribute semantic details while association databases connect the entities of different

domains.

2.5.2 Augmentation of Data Sources To Traverse Diet-Disease Path

The aggregation and integration of 13 data sources creates a unified data warehouse

for querying and discovery browsing. However, even with the integration of multiple

sources, a dearth of associations connecting edible plants, their chemicals, and their

effect on human gene expression exists. The diet-disease network composed of the 13

integrated data sources has only 3537 relationships between plants and chemicals.

To augment the current data, text mining was used to extract latent knowledge
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from agricultural and biomedical literature. The introduction of text mined associ-

ations to the diet-disease network increased connectivity fifteen-fold between plants

and chemicals alone to 55,651. The combination of integrated sources and text-mined

relationships better represents the current domain knowledge while providing more

relationships as evidence to discern important entities. Additionally, the integration

and augmentation of data describing the components of diet and disease facilitates

reachability across the entirety of the diet-disease network. For example, without aug-

menting the 13 data sources with text-mined relationships, a query between a plant,

such as broccoli, and a biological pathway, such as inflammation, would not return a

result. Text mining provides connections between domains that do not exist in the

13 data sources. This improved reachability allows researchers to ask questions such

as, ”What effects do plant X have on human health phenotypes?”. The challenges of

querying, filtering, and determining important paths from a large integrated dataset

such as the diet-disease network will be discussed and resolved in great detail in the

next chapter.



CHAPTER 3: A META PATH BASED RELEVANCE SEARCH AND RANKING
METHOD

The surge of big data in genomics and metabolomics furnishes the evidence nec-

essary to explain the molecular effects of plant-based foods on human phenotypes.

These biological datasets are enormous, containing millions of highly connected ob-

jects and links of multiple types. Existing studies show a recent trend in modeling

biological data as information networks, stored in graph data structures, to emphasize

the relationships between molecular entities [27, 51, 75, 82, 173, 187, 202]. Information

networks enable the discovery of knowledge by facilitating integration, scalability,

and efficient mining of large amounts of interrelated data. A fundamental task of

the discovery process is the evaluation of similarity or relevance between two entities

within an information network. In the context of diet and disease, thousands of po-

tential associations between phytochemicals of plant based foods and human health

phenotypes must be identified and prioritized to develop data-driven hypotheses that

explain the molecular mechanisms behind the effects of diet on human health.

Traditionally, the similarity between two objects in information network analysis

has focused on their similarity, determined by node or edge based methods in homoge-

neous information networks [82,98]. Node based methods, such as common neighbors

and the Jaccard Coefficient, follow the notion that two nodes are similar if they share

a large overlap of adjacent nodes. Edge based methods, such as PageRank and Sim-
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Rank, compute similarity based on random walk algorithms between the nodes of

interest [80,128]. These methods perform well on homogeneous information networks

but ignore the inherent information stored in the heterogeneity of object and link

types. The consideration of object and link types hinders the direct application of

homogeneous network analysis techniques in heterogeneous information networks.

Heterogeneous Information Networks (HINs) encapsulate the semantic information

provided by unique types of objects and links that exist in complex networks, such

as drug-target interaction and gene-disease association networks [27, 75]. HINs are

graphs consisting of nodes and edges of multiple types that allow for a scalable and

detailed expression of semantics within a dataset. HIN analysis methods utilize the

concepts of meta paths and meta structures to include the information from different

object and link types [75,76,79,97,157,168–170]. Meta paths are sequences of differ-

ing object types connected by various link types. Current techniques for biological

network integration and gene prioritization utilize the concept of meta paths to rank

the relevance of objects in HINs [75, 76, 97, 169]. Recently, Huang introduced the

concept of meta structure, a directed acyclic graph of multiple types of objects and

links, to represent the relationship of two objects in a graph [79]. However, many of

these studies measure the similarity of objects of the same type, such as the similarity

of a gene with another gene. Searching for the similarity of differently typed objects

seems counterintuitive, yet many query applications require a measure to evaluate

objects with different types. For instance, researchers who study drug targets would

like to measure the relatedness of a chemical to a disease in order to rank which

diseases would be affected by a drug. In this work, these HIN analysis methodolo-
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gies are extended to rank the relevance between differently typed objects in a large,

heterogeneous diet-disease network.

Heterogeneous networks integrate data from different domains to provide context

and encompass the complexity of systems being investigated, reiterating the purpose

of the diet-disease network described in Chapter 2. The integration of numerous

diet and disease data sources provides aggregated support for low confidence rela-

tionships recorded in single resources. Aggregated support increases the signal to

noise ratio for such entity relationships and allows them to be identified as novel,

evidence-driven candidates for further investigation. Entity and relationship types in

the diet-disease network are defined by predicates extracted from the literature and

ontology associations. These types provide a semi-structured network schema able to

accommodate new data sources and types of any size.

The link mining task of link based object ranking in heterogeneous networks re-

quires a general and extensible method to accommodate the continued exponential

growth of biological datasets from current and new molecular techniques. A rank-

ing method should also account for the latent semantic information present within a

heterogeneous network. This chapter describes a meta path based method to rank

objects by their connectivity in a heterogeneous diet-disease network. These rankings

help to elucidate the molecular mechanisms between plant-based foods and human

health. The method utilizes a novel relevance measure described and evaluated in

Section 3.2.
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3.1 Data Mining in Heterogeneous Networks of Nutritional Systems Biology

In functional genomics and pharmacogenomics, data mining methods employing

measures of similarity and interestingness have been used to evaluate similarity and

prioritize relevant relationships between entities in a network, such as chemicals or

genes to disease [22, 64, 80, 83, 99, 102, 128, 129, 131, 132, 141, 187]. Many of these

network based methods were developed for homogeneous networks, which ignore the

heterogeneity of entities and relationships in real world information networks, such as

biological systems. Link mining is an area of research that investigates data mining

techniques which explicitly consider heterogeneous, linked data [62]. Motivated by the

relevance search problem in heterogeneous information networks, this work develops

a new method for measuring the relevance of and ranking objects with different types

in a heterogeneous network. The method also incorporates null invariant measures

from association mining to account for novel, low probability events.

3.1.1 Heterogeneous Network Definitions and Concepts

Sun proposed a distinct formalization of Information Networks to distinguish the

difference between homogeneous and heterogeneous information networks [170]. Sun

introduced essential concepts of heterogeneous information analysis, such as network

schema, meta paths, and a novel similarity measure called PathSim. A more en-

compassing notion of meta paths, called meta structures, was recently proposed by

Huang to further capture underlying semantic information within heterogeneous net-

works [79]. In this section, these concepts are defined to lay the foundation for the

design of the novel relevance measure presented in this work.
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Formally, an Information Network is defined as a directed graph G = (V,E)

with an object type mapping function φ : V → A and link type mapping function

ψ : E → R, where each object v ∈ V belongs to one particular object type φ(v) ∈ A,

and each link e ∈ E belongs to a particular relation type ψ(e) ∈ R. This is a

unique definition of an information network as it distinctly identifies object and link

types within the network [169]. Information networks are classified as heterogeneous

information network when object types |A| > 1 or link types |R| > 1 and is considered

a homogeneous information network for all other instances.

Figure 7: This representation of a heterogeneous information network contains four
biological object types, denoted by different shapes and labels. Object types are
linked to one another by arrows.

Figure 7 displays an example of a heterogeneous information network in biology

that stores objects of the following types: Chemical compounds (C), Genes (G),

Biological Pathways (M), and Diseases (D). Each disease d ∈ D has links to a set of

biological pathways, genes, and chemicals, while each chemical compound c ∈ C has

links to a set of plants. These relationships represent the various link types in the
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biological information network. HINs can become complex, requiring an abstract,

or meta, view of the network to better comprehend their semantic relationships.

Heterogeneous networks follow a network schema which provides a meta-structure

that aids in search, mining, and analysis of the network [168]. Cognizant of this, the

concept of a Network Schema is defined.

A Network Schema is a meta view for a heterogeneous network G = (V,E) with

object type mapping function φ : V → A and link type mapping function ψ : E → R.

It is a directed graph TG = (A,R), defined over object types A with link types R.

A network schema acts as a blueprint by identifying all object types and link types

connecting a HIN. Figure 8a provides a network schema for the biological infor-

mation network example in Figure 7. Network schemas in HINs are conceptually

similar to Entity Relationship models in current relational databases. The difference

is that network schemas are more abstract in that they only model entity and relation-

ship types, disregarding entity type attributes. This property allows a more general

framework with the capability to model unstructured, non-normalized data, while

also facilitating graph theoretic network analysis methods, such as the quantification

of paths between objects.
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(a) Network Schema of Biological Heteroge-
neous Information Network

(b) Meta Paths in Biological Heterogeneous
Information Network

(c) Meta Structure in Biological Heterogeneous Information Network

Figure 8: Visualization of key concepts that describe a heterogeneous information
network, such as those found in biology. 8a is a representation of a heterogeneous
information network contains four biological object types, denoted by different shapes
and labels. Object types are linked to one another by arrows. 8b displays four possible
meta paths from 8a between the Chemical and Disease object types are displayed,
each with a different number of steps. 8c is the meta structure from Chemical to
Disease object types derived from the network schema in 8a

.

As evidenced in network schemas, two objects can be linked by more than one path.

In graph theory, a path is defined as a sequence of adjacent, distinct vertices connected

by distinct edges. A meta path is an extrapolation of this concept. Formally, a meta

path P is a path defined on the graph of an HIN network schema TG = (A,R), and is
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expressed in the form A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, which defines a composite relation

R = R1 ◦R2 ◦ . . . ◦Rl between types A1 to Al+1, where ◦ is the composition operator

on relations. For brevity, meta paths can be denoted as a sequence of adjacent object

types P = (A1, A2, . . . , Al). For example, given the network schema in Figure 8a, the

meta path P1 = (C,G,M,D) in Figure 8b describes the relationship of a chemical

compound (source) and a disease (target) that share associations with sets of genes

and biological pathways. A path p = (a1, a2, . . . , al+1) in network G is a path instance

of a meta path p ∈ P if ∀i, φ(ai) = Ai, and each link ei =< aiai+1 > belongs to each

relation Ri ∈ P . Two meta paths P1 = (A1, A2, . . . , Al) and P2 = (A′1, A
′
2, . . . , A

′
k) are

considered concatenable if and only if Al = A′1. The concatenated path is denoted as

P = (P1, P2), equivalent to P = (A1, A2, . . . , Al, A
′
2, . . . , A

′
k). A simple concatenated

path example can be made between (G,M) and (M,D), denoted as (G,M,D), which

describes the relationship between genes and diseases by way of common biological

pathway associations.

A further abstraction of meta paths, called meta structures, was proposed by Huang

for complex relationships between source and target objects that meta paths are

unable to express [79]. For example, illustrated in Figure 8c is a complex relationship

S between a chemical compound and a disease that cannot be expressed by a single

meta path. One way to capture this relationship would be to calculate the linear

combination of relevances of the meta paths derived from the meta structure. This

method loses the information gained from a node with edges to different types within a

meta structure. Formally, a meta structure S is a directed acyclic graph with a single
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source node ns with in-degree 0, and a single target node nt with out-degree 0, defined

on an HIN schema TG = (L,R). A meta structure is denoted as S = (N,M, ns, nt),

where N is a set of nodes and M is a set of edges. For any node x ∈ N, x ∈ L; for any

link (x, y) ∈ M, (x, y) ∈ R. The concept of a layer for meta structure is essential for

meta structure based relevance measures. Given a meta structure S = (N,M, ns, nt),

the nodes can be partitioned by their topological order in S. The nodes of the i-th

layer can be denoted as S[i] ⊆ N and S[i : j](1 ≤ i ≤ j) as the nodes from the i-th

layer to the j-th layer. The number of layers is denoted by dS, meaning S[1 : dS] = N .

To illustrate, the number of layers in the meta structure in Figure 8c is dS = 3,

where S[i] for 1 ≤ i ≤ 3 are {C}, {G,M}, and {D}, respectively.

The concept of meta paths has been applied in numerous data and link mining

tasks, such as ranking, top-k search, link prediction, and clustering [75, 91, 97, 156,

169–171]. Recent relevance search methods also use meta paths and meta structures

to measure and rank heterogeneous objects [75, 79, 91, 156]. With the concepts of

heterogeneous networks defined, similarity and relevance search methods can be re-

viewed for their influences in the development of a new meta path based relevance

measure.

3.1.2 Similarity Search in Heterogeneous Networks

The most equivalent data mining task to relevance search is similarity search. Sim-

ilarity search is extensively studied and its methods can be separated into node or

edge based approaches. Node based approaches measure the overlap between objects

to assess similarity between objects. These approaches include cosine similarity, the



90

Jaccard Coefficient, and the Rand Index [98]. Another class of node based methods

are derived from association rule mining. Association rule mining methods, particu-

larly null-invariant measures, are capable of searching for rare, unusual associations

and relationships [195].

Edge based approaches make use of the connectivity of objects within a network to

measure object similarity. The most well-known edge based similarity search method,

Personalized PageRank, calculates the likelihood of reaching a target object from a

starting object via a random walk with restart algorithm [128]. SimRank is another

edge based approach that evaluates object similarity through the similarity of neigh-

boring objects. The intuition behind SimRank is ”two objects are similar if similar

objects reference them” [80]. These node and edge based similarity search methods

are grounded in the assumption that all nodes and edges are the same type, ignoring

the semantics of paths with objects of different types.

In the last decade, the formalization of heterogeneous networks has encouraged the

design of various different similarity search methods. Many of these methods are based

on the concept of meta paths, previously described in Section 3.1.1. Sun defined

heterogeneous information networks and introduced four meta path based similarity

measures that laid the foundation for similarity and relevance measures [169]. Path-

Count, Equation 1, is the most straightforward measure and evaluates similarity by

counting the number of path instances p between x and y following a meta path P.

It should be noted that PathCount is unbounded, making it difficult to compare to

bounded measures.
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PathCount(x, y) = |{p : p ∈ P}| (1)

Random walk, Equation 2, calculates the probability of a random walk that

starts at x and ends at y following meta path P. The similarity measure is the sum

of probabilities for all path instances p ∈ P between x and y.

RandomWalk(x, y) =
∑
p∈P

Prob(p) (2)

Pairwise random walk, Equation 3, decomposes a meta path P into two equal

length meta paths P = (P1, P2). It measures similarity by the probability of two

random walks that start from x and y which terminate at the same middle object.

PairwiseRandomWalk(x, y) =
∑

(p1p2)∈(P1P2)

Prob(p1)Prob(p−1
2 ) (3)

These count based measures are biased towards highly visible (degree centrality) or

concentrated (betweenness centrality) objects. Path count and random walk reward

paths of objects with more connections, while pairwise random walk favors paths with

middle objects that act as bridges between start and target objects. The PathSim

metric normalizes the PathCount measure to avoid the bias of high visibility. Given

a symmetric meta path P, PathSim computes similarity between two objects of the

same type x and y as shown in Equation 4.

PathSim(x, y) =
2 ∗ |{px→y : px→y ∈ P}|

|{px→x : px→x ∈ P}|+ |{px→y : px→y ∈ P}|
(4)

In Equation 4, px→y is a path instance between x and y, px→x is an instance be-
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tween x and itself, and py→y is an instance between y and itself. These heterogeneous

network based measures have been shown to perform better than similarity measures

that disregard the semantics in paths of multiple object and link types. However, they

focus on symmetric meta paths where the start object and target object share the

same type. For instance, given the biological heterogeneous network in Figure 7, a

symmetric path could involve a path P = (G,M,G) where the similarity of two genes

is the focus, based on shared links to a biological pathway. Asymmetric paths are

equally interesting and applicable in various domains. Within the biological heteroge-

neous network in Figure 7, a biologically interesting asymmetric path P = (G,M,D)

searches for the influence of genes on disease via their affects in biological pathways.

Recently, more robust methods have been proposed to handle both symmetric and

asymmetric paths in heterogeneous networks in search of relevance, as opposed to

similarity.

3.1.3 Relevance Search in Heterogeneous Networks

Relevance and similarity search methods are built on the same concepts in heteroge-

neous network analysis. However, relevance search measures the relevance of objects

with different types within a heterogeneous network, as opposed to the similarity of

objects of the same type. In information retrieval, relevance denotes how pertinent a

returned document, or set of documents, is to the information needs of a query [92].

In the context of heterogeneous networks, relevance search defines the relatedness of

objects with different types based on their connectedness in the network.

Many of the methods developed for relevance search between differently typed ob-
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jects relied on earlier similarity search methods, such as those proposed by Sun [169].

Degree Weighted Path Count (DWPC) is a measure based on the meta path based

measure of PathCount. DWPC forgoes a normalized PathCount (NPC), Equation 5,

in favor of distinct degree adjustments for each meta path instance [167].

NPCm(s, t) =
PCm(s, t)∑

ti∈Tm
PCm(s, ti) +

∑
si∈Sm

PCm(si, t)
(5)

The denominator of the NPC favors paths of high degree nodes over more specific,

lower degree paths. To combat this bias, a Path Degree Product (PDP) is calculated

by downweighting each relation in a path instance by raising both the in-degrees and

out-degrees of each node in a path to the -w power, where w ≥ 0, and multiplying

all degrees Equation 6. The DWPC, Equation 7, is the sum of all PDPs between

the source s and target t objects.

PDP (path) =
∏

d∈Dpath

d−w (6)

DWPCm(s, t) =
∑

path∈Pathsm(s,t)

PDP (path) (7)

As simple as the computation is, DWPC is a supervised method that requires

learning for optimization for the damping exponent w parameter. Another supervised

relevance measure for ranking objects of different types was the Path Constrained

Random Walk (PCRW) method, introduced by Lao and Cohen. The PCRW method

searches labeled, directed graph networks following a random walk algorithm that

assigns weights for each edge label as proximities between objects. The random

walk algorithm is constrained by a defined sequence of objects, referred to as ”path
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experts” [91]. The labeled, directed graph can be thought of as a network schema

and ”path experts” sequences as meta paths defined on the schema. The PCRW is

a supervised learning model which calculates the probability that a random walk,

restricted on a path P that starts from an object os will arrive at an ending object ot.

Although PCRW can be used as a relevance method, Shi stressed a possible weakness

due to it being an asymmetric measure.

Shi argued that a symmetric measure allows for the comparison of relatedness for

pairs of heterogeneous objects. To that end, Shi proposed a symmetric relevance

measure called HeteSim. HeteSim follows the basis of the SimRank measure in ho-

mogeneous networks that objects are more likely to be related if they are referenced

by other similar objects [156]. For example, a gene is more relevant to a disease if

the gene is associated with the biological pathways that affect the disease. Given a

relevance path P = R1 ◦ R2 ◦ . . . ◦ Rl, HeteSim between two objects s, s ∈ R1.S and

t, t ∈ Rl.T is calculated by Equation 8.

HeteSim(s, t|R1 ◦R2 ◦ . . . ◦Rl) = 1
|O(s|R1||I(t|Rl)|

|O(s|R1)|∑
i=1

|I(t|Rl)|∑
j=1

HeteSim(Oi(s|R1), Ij(t|Rl)|R2 ◦ . . . ◦Rl−1)

(8)

In Equation 8 O(s|R1) is the out-neighbors of s given relation R1 and I(t|Rl) is

the in-neighbors of t given relation Rl. HeteSim simplifies the complexity of SimRank

by constraining a pairwise random walk to a specific relevance path, while being able

to determine relevance between heterogeneous objects of arbitrary path length. The

properties and efficiency of HeteSim make it useful in a variety of applications such as
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ranking, clustering, and filtering. All relevance measures described are based on the

notion of meta paths and efficiently quantify the relatedness between heterogeneous

objects of different types. However, meta paths are not always capable of capturing

more complex relationships.

Most recently, a meta structure based relevance measure was proposed by Huang.

A meta structure, formally described in Section 3.1.1, is a directed acyclic graph of

differently typed objects connected by differently typed edges describing the relation-

ships between them. Huang developed two meta structure based relevance measures

that are combined into a unified measure called the Biased Structure Constrained

Subgraph Expansion (BSCSE) [79]. Given a heterogeneous information network G

= (V,E), a meta structure S, a source object os ∈ V , and a target object ot ∈ V , the

relevance of an i-th layer subgraph g ⊆ G is defined in Equation 9.

BSCSE(g, i|S, ot) =

∑
g′∈σ(g,i|S,G)

BSCSE(g′, i+ 1|S, ot)

|σ(g, i|S,G)|α
(9)

In Equation 9, σ(g, i|S,G) represents the (i+1)-th layer’s instances expanded

from g ∈ S[1 : i] on G and α is a bias factor between [0,1]. A smaller α will bias

the measure towards higher visibility subgraphs, while a larger α favors the probabil-

ity of random expansions reaching the target object. The BSCSE measure performs

subgraph matching over a heterogenous network which can become computationally

intensive given the size of a typical heterogeneous network. In large datasets, this

method provides minimal gain in the task of ranking at the high expense of compu-

tational resources and time.
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3.1.4 Integrated Heterogeneous Information Network for Link Mining Analysis

This chapter describes a semi supervised, semantically rich, scalable method for

relevance ranking analysis in a large heterogeneous information network. This semi

supervised method negates the need to identify true positive data sets for training

purposes, as is required by other learn to rank, machine learning methods. The defini-

tion and inclusion of both object and link types within the heterogeneous information

network captures semantic information that is lost in single typed, homogeneous net-

works. Lastly, the method is applied to a data structure capable of easily storing,

integrating, and querying large datasets, regardless of data type.

The data for relevance analysis is stored in a graph framework which follows the

description of a heterogeneous information network outlined in Section 3.1.1. It

utilizes a labeled property graph model, stored, queried, and modified with the

Neo4j graph database. Nodes, representing biological entities, are connected by

edges, the relationships extracted from the data sources and literature. Formally,

the graph G = (V,E) maps the set of nodes to four different entity types, v : V →

{A1, A2, A3, A4}, and the set of edges to six different relationship types, e : E →

{R1, R2, R3, R4, R5, R6}. Figure 8a visually defines the schema of the heterogeneous

network. The network schema abstracts the connectivity in the network while captur-

ing latent semantic information held within its topology. This analysis also accounts

for specific edge labels provided by curated and text mined sources. Curated sources

link entities with a set of types defined by curators, such as ı̈s a¨ or p̈art of¨ from the

Gene Ontology. Link types from text mining are the predicates extracted with a pair
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of entities from the published literature. These link types can be highly variable but

add semantic detail to text mined relationships. The definition of meta paths on the

schema simplify the heterogeneity of link types by aggregating them as an abstract

type, based on the entity types they connect. Figure 8b illustrates four meta paths

derived from the network schema that provide support for quantifying and ranking

the relevance between a chemical and disease. Meta paths embody the semantics and

structure of a heterogeneous network.

In the development of any analysis method, it is necessary to possess an intimate

understanding of the data to be analyzed. This relevance analysis employs a combi-

nation of databases and structured vocabularies that describe and connect chemicals,

genes, biological pathways, and phenotypes. The National Center for Biotechnology

Information (NCBI) hosts numerous linked databases and structured vocabularies en-

compassing a majority of these biological entities. Publicly available NCBI databases

such as Entrez Gene and OMIM contain cross references to entities in structured

vocabularies such as the Medical Subject Headings, Gene Ontology, and Disease On-

tology. The Comparative Toxicogenomics Database (CTD) contains curated links for

entities stored in the data sources of the NCBI. Incorporating NCBI databases and

structured vocabularies with association information from the CTD creates a highly

connected, heterogeneous dataset perfectly suited to test a novel relevance ranking

measure. The data for genes, biological pathways, and phenotypes were restricted

to human only for the purposes of testing and evaluation. The data repositories and

their statistics are described in Chapter 2 while Python scripts for data munging

and database loading are available in Appendix A.
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3.2 Design and Development of A Meta Path Based Relevance Measure

Several design objectives and considerations must be observed in the development

of a meta path based relevance measure. Most importantly, the relevance measure

must be applicable to heterogeneous information networks, which are ubiquitous data

representations across many research domains, such as biology. Second, designing a

semi supervised method to measure relatedness reduces the barrier to acceptance and

use. A final design objective for a relevance measure is the ease by which it can

be interpreted and compared to other measures. Although beneficial, these design

objectives introduce issues that must be accounted for in the development of a meta

path based relevance measure.

3.2.1 Objectives and Considerations for a Meta Path Based Relevance Ranking

Method

Biological systems have been modeled as networks for numerous link mining tasks,

such as similarity search and link prediction. Many methods have been developed

to measure the similarity between connected entities within these biological net-

works [80,131,132]. However, early network analysis methods conflated the naturally

heterogeneous node and edge types found in complex networks into single, homoge-

neous types. Inherently, biological networks are composed of different entity types

connected by relationships that convey subtle semantic meaning as paths.

Meta path based methods were developed to quantify and evaluate the similarity

of objects while considering the topological structure of the heterogeneous network.

These methods impose a path constraint on network queries which can reduce the
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search space, and therefore computational time in calculating similarity [157,168,169].

Many meta path based similarity methods were designed to find similar objects of

the same type. For example, given a bibliographic network one can compare the

similarity of an author to another author, based on which conferences they published

papers in. Meta path based relevance search methods extend the concept of similarity

to measure relatedness between objects of the same or different types. For example,

within that same bibliographic network, one may be interested in the relatedness of

an author and a research domain, based on terms included in their published papers.

Within the context of a biological network, a relevance search between a gene and a

disease provides insight into genetic factors or molecular drug targets for a disease.

An issue introduced by meta path based methods is the oversimplification of link

types. Curated sources provide link types which add specific semantic detail to direct

relationships between entities. The most common link type in ontologies is the parent-

child relationship (is a). Text mining can also produce link types which detail the

relationship between extracted entities. Link types extracted from text mining are

generally predicates which describe or modify the concepts within text, such as the

link type (produces) between plant and chemical type objects. Current methods

aggregate these heterogeneous link types into abstract types defined by the pairs of

entity types they connect.

Including this semantic detail reduces the bias from high visibility paths. Figure 9

illustrates this concept between two entity types A and B connected by various link

types r. The number of links between A1 to B2 is 3 (r5, r6, r7) and A2 to B2 is 2

(r9, r10). Although A1 has a higher path count to B2 than A2, the majority of links
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from A2 (2/3) connect to B2 while a smaller ratio of links from A1 (3/7) connect

to B2. From this illustration it can be concluded that A2 and B2 have a stronger

association than A1 and B2.

(a) Conflated A
R−→ B Relation (b) Expanded A

R−→ B where r ∈ R

Figure 9: Semantic value exists in the inclusion of weights derived from the detailed
connections available from controlled vocabularies and the literature.

The second design objective considers the input requirements of supervised and

semi supervised methods. Supervised methods are used to predict outcomes based

on validated, true positive training data. This input requirement places the onerous

task of identifying large sets of training data on end users. In many research fields,

a sparsity of large, publicly available, true positive datasets for make it difficult to

adequately train supervised machine learning models. In contrast, semi supervised

methods require little to no human input which reduces the barrier to implementation

by removing the onus of locating true positive training data. Less or no human

input also improves the reproducibility of results. Semi supervised, meta path based

relevance measures only require the definition of meta paths.

The design of any measure should consider the interpretability of the resulting val-

ues. Unbounded measures, such as PathCount, produce values that are difficult to



101

interpret without context [169]. Simple methods of normalization, such as finding the

arithmetic mean of a value, scale unbounded values into an easily interpretable range,

commonly between 0-1.0. Consequently, many similarity and relevance measures are

designed to produce values that fall within these bounds, which creates a common

interface for comparing the efficacy of measures. Therefore, a meta path based rel-

evance measure for ranking should be bounded to aid in result comprehension and

evaluation against existing measures.

There are two major considerations in designing a meta path based relevance mea-

sure for heterogeneous object ranking. The first is the selection of a search method for

quantifying the relevance between objects in a heterogeneous network. The second

consideration is the determination of technique for defining meta paths in a hetero-

geneous network. These selected methods should adhere to the design objectives

previously outlined.

The relevance search method that best satisfies the criteria outlined is the Het-

eSim measure [156]. Firstly, the HeteSim measure provides a uniform framework to

calculate the relatedness of same or differently typed objects for arbitrary paths in a

heterogeneous network. This flexibility permits the use of the measure in numerous

data mining tasks, such as object profiling and clustering. HeteSim scores are nor-

malized via a cosine function that scales them into the easily interpretable and com-

parable range of 0-1.0. In addition, the HeteSim measure also exhibits the property

of symmetry, which allows for comparisons of the relatedness between heterogeneous

object pairs to show their relative importance. Lastly, the HeteSim measure is semi

supervised, with input limited to interesting meta paths.
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Meta paths used in relevance measures can be defined by a user based on do-

main knowledge, experience, and research question. They can also be automati-

cally selected by supervised learning methods that calculate the importance of meta

paths [90]. The HeteSim measures selects paths based on the knowledge and require-

ments of users. This enables users to tailor relevance searches to specific, pertinent

research inquiries. For example, given a biological network of plants, chemicals, genes,

biological pathways, and diseases, a nutrition researcher may be interested in mea-

suring the relevance of certain plant based foods to human diseases and define a meta

path between plants, chemicals, and human diseases. Based on these design objectives

and considerations, the next section describes the development of a novel, meta path

based relevance measure for ranking differently typed objects within a heterogeneous

network.

3.2.2 A Meta Path Based Relevance Metric

The heterogeneity of detailed link types within a meta path provides latent semantic

value. Considering the design objectives and considerations described, I define a

novel metric called the Kulczynski Product Edge Weight (KPEW) that quantifies the

semantic value of variable link types between node types in a meta path. Given two

differently typed objects a and b, where a ∈ A, b ∈ B, and the link type between

them R specified by a meta path P = R1 ◦R2 ◦ . . .◦Rl, the Kulczynski Product Edge

Weight is defined by

KPEW (a, b, R) = 1−

√∑
r∈(R|P ) KRP (a, r, b)2

n(R)
(10)
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The variable r represents detailed, heterogeneous types that belong to the broader

link type R that connects objects of type A and B, from the given meta path P.

Including the distinct r types in KPEW incorporates the subtle semantic value of

predicates extracted from ontologies and text mining.

KPEW implements a sum of squares based mean of Kulczynski Relationship Prod-

ucts (KRP) between objects a of type A and b of type B to aggregate and normalize

object-link-object probabilities as a single, quantified weight connecting a and b. A

sum of squares average approach also upweights the low probability events calculated

by the KRP and downweights high probability events.

The Kulczynski Relationship Product (KRP) is the product of the probabilities

that object a of type A and b of type B are associated through link r of link type

R. KRP is unique to each step, R1 ◦ R2 ◦ . . . ◦ Rl in a meta path P. This allows

each r between different object type pairs to provide a unique semantic value. For

example, the predicate affects could exist between the object types of chemical-gene

and gene-pathway. The probability that affects links a chemical to a gene is different

than a gene to a pathway based on the distribution of associations of the two steps.

KRP utilizes the Kulczynski 2 Index to determine these conditional probabilities, as

shown in Equation 11.

KRP (a, ri, b) = Kulc2(a, ri) ∗Kulc2(b, ri) (11)

Kulc2(vi, rj) =
(P (vi|rj) + P (rj|vi))

2
(12)

In Equation 11, the average conditional probability between object and detailed
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link types a,r and b,r is calculated with the Kulczynski 2 Index (Kulc). Kulc is a null-

invariant measure used in assessing the likelihood of small probability events. Small

probability events are discretized events that occur a small number of times with

respect to the total number of interactions, such as the existence of an association

between an object, a or b, and a detailed link type, r. Equation 12 defines the

Kulczynski 2 Index between an object v and a detailed link type r.

Based on the concept that relevant objects are referenced by other relevant objects,

KPEW is directly applied to HeteSim to produce a novel, meta path based relevance

metric I have named HetERel (Heterogeneous Edge-adjusted Relevance), to parallel

HeteSim.

HetERel(s, t|R1 ◦R2 ◦ . . . ◦Rl) =

|O(KPEW (s,R1,k)|R1)|∑
i=1

|I(KPEW (t,Rl,m)|Rl)|∑
j=1

HetERel(Oi(KPEW (s,R1,k)|R1),Ij(KPEW (t,Rl,m)|Rl)|R2◦...◦Rl−1)

|O(KPEW (s,R1,k)|R1)||I(KPEW (t,Rl,m)|Rl)|

(13)

Equation 13 defines HetERel, where O(KPEW (s, R1, k)|R1) are the KPEW

weighted out-neighbors of s given relation R1, and I(KPEW (t, Rl,m)|Rl) are the

KPEW weighted in-neighbors of t given relation Rl. For instances where s has no out-

neighbors (O(KPEW (s, R1, k)|R1) = 0) or t has no in-neighbors (I(KPEW (t, Rl,m)|Rl)

= 0) following the given path, relevance scores are set to 0, as a random walk from

start to target will never complete. In the case that s and t share the same object

type and are equivalent (i.e. s = t), it should be assumed that the object has a

self-relation to itself. Logic posits that an object would be most relevant to itself

and warrant a relevance measure score of 1. However, this logic does not hold in the



105

equation of HetERel, requiring a normalization step.

In order to describe the normalization step, I first discuss the calculation of HetERel

for any two objects that follow a given meta path of a heterogeneous information

network. HetERel is computed in three phases: 1) KPEW calculation, 2) matrix

multiplication, and 3) relevance computation. Figure 10 provides an example of the

HetERel calculation, based on the definition of a simple relation A
R−→ B.

The first phase of HetERel, shown in Figure 10a, describes the relationship R

between A and B as a set of detailed link types r, r ∈ R known as predicates. The

semantic value of each predicate r within link type R is quantified by the Kulczynski

Relationship Product. As denoted in Equation 11, the KRP of each object pair and

predicate (a,r,b) is calculated as the product of two independent Kulcznski 2 Index

(Equation 12) calculations between (a,r) and (b,r). The set of KRPs are input

into Equation 10 to quantify the semantic value of relation R between A and B.

In Equation 13 KPEW is calculated for each instance of relationship R between all

objects in types A and B.

The second phase of computing HetERel represents object relationships as matrices.

The quantified relationship R, between A and B can be expressed as a weighted

adjacency matrix, (WAB)n∗m where the KPEW value for each object pair (A,B) is

used to represent adjacency. WAB normalized along the row vector generates UAB,

the transition probability matrix (TPM) of A
R−→ B. Formally, UAB is determined

by Equation 14. Normalizing WAB along the column vector results in VAB, which

represents the TPM of B
R−1

−−→ A. Previously, it was proven by Shi that a TPM has

the property UAB = V ′BA and VAB = U ′BA where V ′BA is the transpose of VBA [156].
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UAB(i, j) =
WAB(i, j) ∗KPEW (i, j, R)∑m
k=1WAB(i, k) ∗KPEW (k, j, R)

(14)

The simple relationship A
R−→ B can be extended into a meta path P = A1

R1−→

A2
R2−→ . . .

Rl−→ Al+1 of length l, where R is a composite relation R = R1 ◦R2 ◦ . . . ◦Rl.

The relationship from A1 to Al+1 from path P can be expressed as a reachable proba-

bility matrix RPMP defined in Equation 15, where (RPM(i, j)) is the probability

that object i ∈ A1 reaches object j ∈ Al+1 under path P.

RPMP = UA1A2UA2A3 . . . UAlAl+1
(15)

Applying the TPM property proven by Shi to Equation 15 produces the non-

normalized equation of HetERel. It is the inner product of two probability distri-

butions that A1 reaches a middle object type along path P and Al+1 reaches the

same middle object type against path P. The non-normalized equation for HetERel

is derived by

HetERel(A1, Al+1|P ) = HetERel(A1, Al+1|PLPR) = RPMPL
RPM ′

P−1
R

(16)

where RPM ′
P−1
R

is the transpose of RPMPR
. Equation 16 separates a meta path

into two equal parts. Paths of even length can be split into two paths, P = PLPR,

where PL = A1 . . . Amid and PR = Amid . . . Al+1, and mid = l
2

+ 1. For example, a

meta path P=(GMD) has an even length of two. Objects of type G and D meet at

the middle type object M. The path can easily split into two equal paths, PL = GM
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and PR = MD.

Odd length meta paths have start and target object types that never meet at a

middle object type. For instance, a path P=(CGMD) with start object type C and

target object type D would meet at the intersection of object types GM, as opposed to

either G or M. To account for this, Shi proposed a decomposition step for odd length

paths that adds an intermediate middle object type E between the atomic relation

of the two middle object types such that start and target objects would meet at E

(e.g., P=(CGMD) becomes P=(CGEMD)). This method increases the computational

complexity of the calculation which prevents application to large, highly connected

datasets. HetERel handles odd length paths with a computationally efficient approach

that creates two separate split paths and calculates their mean HetERel score. The

split paths are as follows: 1) PL = A1 . . . A l+1
2
−1A l+1

2
and PR = A l+1

2
A l+1

2
+1 . . . Al+1,

2) PL = A1 . . . A l+1
2
A l+1

2
+1 and PR = A l+1

2
+1 . . . Al+1.

The final phase is the computation and normalization of the relevance score for

two instances a ∈ A1 and b ∈ Al+1 given a meta path P. The vectors of a and b from

their respective RPMs are multiplied and normalized over their cosine. Formally, the

normalized HetERel score between two instances a ∈ A1 and b ∈ Al+1 given a meta

path P is

HetERel(a, b|P ) =
RPMPL

(a, :) ∗RPM ′
P−1
R

(b :)

‖RPMPL
(a, :)‖2 ∗ ‖RPM ′

P−1
R

(b :)‖2

(17)

where RPMPL
(a, :) is the row vector of a across RPMPL

and RPM ′
PR−1

(b, :) is

the row vector of b across RPM ′
PR−1

. HetERel measures the cosine of the weighted
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probability distributions that a and b meet at a middle object type, with a following

path P and b going against path P. In the case where the path length is odd, the

scores for each separate pair of split paths are calculated and their mean is taken as

the final set of scores.

Given the heterogenous information network in Figure 10c, we illustrate the

phases for calculating HetERel scores between A and C type objects following the

path P=ABC. First, the meta path P=ABC is split in two, where PL = AB and

PR = BC. Figure 10b illustrates the KPEW phase for a1 to all instances of object

type B, which is performed for all pairs of objects in PL, PR. The adjacency matrices

of WAB and WCB, where WCB = (WBC)T are weighted with their respective KPEW

values, and their normalization along their row vectors into transition probability

matrices UAB and UCB are calculated as follows:

Weighted Adjacency Matrices

WAB =


0.85 0 0 0.67

0 0.65 0 0

0 0.55 0.77 0.74

 ,WCB =

 0 0.68 0 0

0.55 0.74 0.80 0


Transition Probability Matrices

UAB =


0.5592 0 0 0.4408

0 1 0 0

0 0.2670 0.3738 0.3592

 , UCB =

 0 1 0 0

0.2632 0.3541 0.3828 0



In this instance, because the two separate paths PL = AB and PR = BC are both a

single step, their reachable probability matrices RPM−1
R are equal to their transition
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probability matrices (i.e.- RPML = UAB and RPM−1
R = UCB. The final phase is

calculating the normalized HetERel from the reachable probability matrices using

HetERel(a, c|ABC) =
UAB(a, :) ∗ UCB(c, :)

‖UAB(a, :)‖2 ∗ ‖UCB(c, :)‖2

where the start and target pair (a,c) can be substituted for each instance of object

types A and C from the heterogeneous information network in Figure 10c. The

global set of HetERel scores for this example are shown in the following matrix

HetERel(A,C|ABC) =



c1 c2

a1 0 0.3539

a2 1 0.6062

a3 0.4579 0.6976


In contrast, a similar implementation where the adjacency matrices (WAB and

WCB) have either a 1 when objects are adjacent or 0 when they are not, produces the

following matrix of scores

HeteSim(A,C|ABC) =



c1 c2

a1 0 0.4082

a2 1 0.5774

a3 0.5774 0.6667


HetERel is able to incorporate semantic information found in the predicates be-

tween objects and produce fine-tuned weights that resolve similar rankings, such as

between (a2, c2) and (a3, c1).
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The normalized version of HetERel is bounded, HetERel(a, b|P ) ∈ [0, 1], which al-

lows ease of interpretation and comparison to other, bounded relevance metrics. The

normalization step of HetERel also ensures a self-maximum, whereHetERel(a, b|P ) =

1 if, and only if, RPMPL
(a, :) = RPMPR−1 . HetERel inherits a general symmetric

property for both symmetric and asymmetric paths as it utilizes a path decomposition

step for odd-length paths, akin to HeteSim [156]. The decomposition step provides

modularity for HetERel scores to be calculated for any arbitrary path length, both

even and odd.

3.2.3 Implementation of a Meta Path Based Relevance Analysis

As with any data analysis method, the input data underwent a series of prepro-

cessing procedures prior to analysis by HetERel. Data sets were fetched from sources,

parsed, and transformed into typed objects and links (nodes and edges, respectively)

for input into the high-performance graph database platform, Neo4J, as previously

described in Chapter 2. In parsing and loading the data, exclusions were made to

restrict the scope of the analysis to knowledge pertinent to plants and human health.

Neo4J provides interactive access to the data through a combination of the Cypher

query language and numerous programming language drivers. The heterogeneous

information network data preprocessing code is available in Appendix A. The im-

plementation of HetERel follows the phases described in the previous section with the

addition of an initial graph query phase at the beginning. The Neo4J graph instance

is queried via Cypher for pairs of typed objects and their associated detailed links.

Next, the KPEWs for each typed object pair (e.g., Plant to Chemical and Chemical
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to Gene) are calculated for use in typed object pair adjacency matrices. The third

phase generates weighted adjacency matrices WAB between object type pairs, as de-

termined by the given meta path. Weighted adjacency matrices are then normalized

into transition probability matrices UAB and undergo chain matrix multiplication to

determine the two reachable probability matrices RPML, RPMR−1 . Finally, HetERel

is computed via matrix multiplication of RPML and RPMR, and normalized over its

cosine. Algorithm 1 is an example of a Python implementation of KPEW and Al-

gorithm 2 is an example pseudo-code implementation of HetERel. Pairs of start and

target objects are sorted by HetERel scores and written file for searching of specific

instances.

Simple optimization methods were applied to the naive implementation of Het-

ERel to attain a remarkable difference in runtime. The most significant speedup was

achieved by adopting a reuse strategy for time-intensive tasks. The query, KPEW

calculation, and HetERel calculation phases benefitted from implementing a reuse

strategy that writes results to disk for later access. The query task requires commu-

nication with the Neo4J graph database that, when performed for each instance of

an object type pair, accumulates unnecessary run time. The reuse strategy ensures

that graph queries occur a single time and are made available on disk by subsequent

equations of HetERel. The KPEW calculation phase of HetERel reuses saved graph

query results to compute pairwise KPEW values once and save them to disk for the

matrix multiplication and relevance computation phases. Finally, calculated HetERel

scores are saved to file for fast look up between start and target objects of interest in

O(n) time. The reuse strategy is applicable to HetERel for these tasks because the
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data and calculations do not change for the duration of the analysis. The introduction

of new data necessitates these time-intensive tasks to be rerun for new analyses.

Source code for HetERel computation and Cypher querying is available in Ap-

pendix A.

3.3 Evaluation Method for Comparing Meta Path Based Relevance Ranking

In this chapter, a heterogeneous information network that consists of chemicals,

genes, pathways, and diseases was created to develop and test HetERel. From this

network, HetERel can be used to identify and rank the relevance between chemicals

and disease (3 steps away) and genes and disease (2 steps away). To evaluate the

meta path based ranking capabilities of HetERel, it is necessary to aggregate ”gold

standard” sets of known associations for chemicals to disease and genes to disease.

3.3.1 Gold Standard Datasets

The Comparative Toxicogenomics Database (CTD) is a highly curated knowl-

edgebase containing direct associations between chemicals and human health pheno-

types [42]. The CTD is the foremost authority on chemical interaction with genomes

of model organisms relevant to Homo sapiens. It contains millions of associations

between chemicals, genes, and disease which are utilized within the heterogeneous

information network described in Chapter 2. The CTD has previously been used as

the baseline for chemical-disease association inference and analysis [11, 87, 180] and

maps directly to MeSH term, Entrez Gene, and OMIM identifiers. In the CTD, direct

chemical-disease associations can be supported by direct evidence from curated sci-

entific articles or inferred through chemical-gene and gene-disease associations. The



113

Algorithm 1 KPEW Calculation Phase-Example Python Implementation

1: procedure kulczynskiSim2(xr, x, r)
2: term1 = xr/xr + x
3: term2 = xr/xr + r
4: ks2 = (term1 + term2)/2.0

5: procedure createContingencyTable(object,WXRXY
, RXY , kulcDict)

6: for predicate in WXRXY
[object] do

7: XR = WXRXY
[object][predicate]

8: X = sum(WXRXY
[object].values())

9: R = RXY [predicate]
10: kulc = kulczynskiSim2(XR,X,R)
11: kulcDict[object][predicate] = kulc

12: procedure kulcRelationshipProduct(WXY , kulcDict)
13: krpDict = defaultdict()
14: for xry in WXY do
15: objectX = xry[0]
16: predicateR = xry[1]
17: objectY = xry[2]
18: xrk = kulcDict[x][r]
19: yrk = kulcDict[y][r]
20: krpDict← xrk, yrk

21: procedure kulcProductEdgeWeight(krpDict)
22: kpewDict = defaultdict()
23: for x in WXY do
24: for y in WXY do
25: totalN = 0
26: kpewSum = 0
27: for krp in WXY do
28: totalN+ = 1
29: kpewSum+ = krp ∗ krp
30: kpew = 1− sqrtkpewSum/totalN
31: kpewDict[x][y] = kpew

32: return kpewDict

33: procedure calculateKPEW(RAB,WARAB
,WBRAB

,WAB)
34: kulcDict← defaultdict()
35: for a in WARAB

do
36: createContingencyTable(a,WARAB

, RAB, kulcDict)

37: for b in WBRAB
do

38: createContingencyTable(b,WBRAB
, RAB, kulcDict)

39: krpDict← kulcRelationshipProduct(WAB, kulcDict)
40: kpewDict← kulcProductEdgeWeight(krpDict)
41: return kpewDict
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Algorithm 2 HetERel Algorithm-Psuedocode Implementation

1: procedure calculateHalfPath(halfPath)
2: for step in halfPath do
3: associations← parseSavedAssociations(step) return

4: procedure calculateHetERel(metaPath)
5: if metaPath == even then
6: leftPath← metaPath/2
7: rightPath← metaPath/2
8: calculateHalfPath(leftPath)
9: calculateHalfPath(rightPath)

10: for associationSet in halfPath do
11: createAdjacencyMatrix(associationSet)
12: normalizeAdjacencyMatrix(adjacencyMatrix)

13: matrixMultiplication(leftMatrices)
14: matrixMultiplication(rightMatrices)
15: hetERelScores = cosineNormalization(leftMatrices, rightMatrices)

16: if metaPath == odd then
17: leftPath← (metaPath/2) + 1
18: rightPath← (metaPath/2)− 1
19: calculateHalfPath(leftPath)
20: calculateHalfPath(rightPath)
21: for pair of halfPaths do
22: for associationSet in halfPath do
23: createAdjacencyMatrix(associationSet)
24: normalizeAdjacencyMatrix(adjacencyMatrix)

25: matrixMultiplication(leftMatrices)
26: matrixMultiplication(rightMatrices)
27: hetERelScores2← cosineNormalization(leftMatrices, rightMatrices)

28: finalScores = (hetERelScores+ hetERelScores2)/2
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CTD associates 8,840 chemicals to 3,075 diseases through direct evidence.

DisGeNET is a publicly available, comprehensive, integrated resource for gene and

gene variant to disease associations [134]. It encompasses a variety of gene-disease

association sources such as UniProt, the CTD, OMIM, and Genetics Association

Database. DisGeNET includes gene-disease associations for human, rat, and mouse

species. Associations in DisGeNET are organized into curated or predicted sets,

with an all-inclusive set also available. In this evaluation, only curated gene-disease

associations are considered. DisGeNET contains curated associations between 8,949

genes and 13,075 diseases.

Preprocessing of CTD and DisGeNET data was performed to compare HetERel

scoring with chemical-disease and gene-disease gold standards. For the chemical-

disease gold standard, the CTD chemicals diseases.tsv file from the CTD was

parsed. All chemical and disease identifiers in the file are MeSH identifiers, facili-

tating the ease of comparison to results from HetERel. As previously mentioned,

only associations with direct evidence were included as part of the gold standard

set of chemical-disease associations, amounting to 88,359 curated chemical-disease

associations from the CTD. The curated gene disease associations.tsv file from

DisGeNET was parsed to make the gene-disease gold standard. Entrez Gene identi-

fiers are associated to diseases via Unified Medical Language System concept unique

identifiers (CUIs). The disease mappings.tsv file from DisGeNET maps UMLS

CUIs to other controlled vocabularies, such as MeSH, the Disease Ontology, and the

Human Phenotype Ontology. Only human genes and MeSH mapped diseases were

parsed for the gold standard dataset. The association file from DisGeNET contained
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130,821 curated gene-disease associations. The source code used to parse and prepro-

cess the CTD and DisGeNET gold standards can be found in Appendix A.

3.3.2 Relevance Ranking Analyses

Global relevance analyses from genes and chemicals to disease concepts were per-

formed on the test network described in Section 3.1.4. Ranked lists of genes and

chemicals from these relevance analyses are compared to their respective gold stan-

dard sets to determine the total amount of true positives and false positives. True

positives are genes or chemicals present in both the ranked list result and the gold

standards set while false positives are genes or chemicals present only in the ranked

list result. True positives and false positives are used to create a Receiver Operating

Characteristic (ROC) curve to measure the performance of meta path based relevance

ranking measures. An ROC curve plots the true positive rate (sensitivity) and false

positive rate (1 - specificity) of results from the relevance measures. A perfect rele-

vance measure would produce an ROC curve that follows the left hand border and

top border of the plot, indicating a sensitivity and (1-specificity) of 1.

3.3.3 Comparison of Results to Existing Methods

Relevance ranking analysis were performed by HetERel and three existing meta

path based relevance ranking methods for comparison. These meta path based meth-

ods are capable of determining similarity between objects of the same type or relevance

between different types of objects in heterogeneous information networks. The meth-

ods tested, like HetERel, are semi-supervised and do not require a training data set

for relevance ranking. Unlike these methods, HetERel includes predicate probabilities
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between pairs of objects in its calculation for ranking.

HeteSim serves as the basis for two meta path based ranking methods compared

in this work, HetERel and AvgSim. HeteSim is a pair-wise random walk method

developed by Shi [156] that possesses metric properties, previously described, that

provide a desirable foundation for numerous data mining tasks. However, HeteSim

has been implemented in smaller, less connected heterogeneous information networks

such as computer science conference citation networks, movie databases, and protein

interaction networks [156,197]. The complexity of the decomposition step in HeteSim

for odd length paths generates a combinatorial explosion of intermediate associations

that hamper scalability to larger, more complex datasets.

AvgSim was developed to measure relatedness between objects of different types in

large heterogeneous information networks. To circumvent the complexity in HeteSim’s

decomposition step for odd length paths, AvgSim implements a forward random walk

from start to target object, and reverse random walk from target object to start object

constrained to a given path. The AvgSim score is the arithmetic mean of these path

constrained walks. Further optimization involves dynamic programming, to deter-

mine the most efficient order of matrix multiplication operations, and parallelization

of matrix multiplication using the MapReduce algorithm [110]. AvgSim increases

the computational efficiency of HeteSim for use in large networks but performance

was only tested on the same datasets as HeteSim, with the addition of large, sparse,

randomly generated data.

The Degree Weighted Path Count (DWPC) metric is the most dissimilar of the

methods compared in this work. It is an extension of the path count algorithm
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that reduces the bias introduced by general objects exhibiting high connectivity in

a network. DWPC does so by introducing a damping exponent to the path count

for each object in a meta path, thereby downweighting high degree objects along the

meta path. DWPC has been used to quantify relationships for the prioritization of

gene and disease, as well as drug and disease, associations [75,76]. Similar to HetERel,

DWPC does assign predicates to relationships between objects but still summarizes

them as a single predicate type.

11 well-known, diet related diseases were selected to compare the relevance ranking

performance of HetERel, HeteSim, AvgSim, and DWPC in the large biological het-

erogeneous information network described in Section 3.1.4. The implementations

for all methods can be found in Appendix A. For comparison, two meta paths of

different length were selected, connecting chemicals to disease (meta path of length

3) and genes to disease (meta path of length 2). All possible pairs of chemicals or

genes to disease were included and ranked by each method, when computationally

possible. Due to the complexity and in-memory consumption of it’s decomposition

step, HeteSim could not calculate scores for the entirety of chemical to disease pairs.

As such, the HeteSim decomposition step was substituted in favor of the HetERel de-

composition step. This allowed HeteSim to perform a global analysis of the chemical

to disease meta path.

The results of relevance ranking from each method were saved in a pairwise, tab-

separated format for ease of comparison. ROC analysis was performed on the results

of the selected diseases and the highest ranking 2000 chemicals (Figure 11)and

1000 genes (Figure 12)were used to generate ROC plots and AUCs. HetERel out-
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performs AvgSim and DWPC with significantly different (p ¡ 0.05 ) AUCs for all

chemical to disease rankings except for Colonic Neoplasms, as calculated by imple-

mentation of a bootstrapped AUC comparison test [144]. The low overall AUC for

all methods ranking chemicals and Colonic Neoplasms highlights the widespread ef-

fect of inflammation in cancers and the complex interaction of bacterial metabolites

in the intestines [93, 105]. The performance between HeteSim and HetERel is only

incrementally different in both chemical and gene to disease rankings, with HetERel

producing similar or slightly larger AUCs.

The similarity in performance can be attributed to the uniform framework imple-

mented by both HeteSim and HetERel to quantify and search for relevance between

objects of same or arbitrary types. HetERel weights the adjacency matrices using

the KPEW while HeteSim favors a binary scoring system. The normalization step

for each adjacency matrix relegates the influence of KPEW weighting on overall score

calculations. However, the inclusion of predicate probability distributions in HetERel

allows it to discern granular differences in pair-wise object ranking. This is exempli-

fied in ROC plots (Figure 13)of the top 100 gene to disease rankings of Figure 12

where HetERel outperforms all compared methods in each disease. Furthermore, the

gene-disease rankings include well-studied diseases of dietary relevance, such as those

affecting the cardiovascular and digestive systems. The ability of HetERel to provide

a more accurate ranked list of the top 100 associated genes, or any biological concept,

supplies a short, evidence-based set of biological candidates for experimental valida-

tion. This is extraordinarily functional in the biological domain that is inundated

with thousands of proposed associations [166].
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(a) Expansion of relation A
R−→ B (b) Calculation of KPEW between a and b.

(c) Example HIN for HetERel calculation

Figure 10: Breakdown and visualization of KPEW and HetERel calculations. In

10a the simple relation A
R−→ B is expanded to further capture semantic information

from detailed link types via a
r1,r2,...,rn−−−−−−→ b where r ∈ R. 10b visualizes the Kulczynski

Relationship Products used to calculate the KPEW between A and B. In 10c HetERel
is calculated based on the heterogeneous information network, following the path
P=ABC.
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3.4 Conclusion

HetERel is a novel, data-agnostic metric which ranks the relevance between objects

of arbitrary types in large, complex heterogeneous information networks. The Het-

ERel metric incorporates specific predicates in object relationships to quantify the

strength of relevance between objects. Developed as an extension of previous relevance

metrics, HetERel inherits the metric properties of symmetry and self-maximum(scores

bounded to [0-1]). In addition, HetERel exhibits a null-invariant property that al-

lows recovery of low probability predicates which add semantic information and detail.

The evaluation of HetERel displays the granular improvement in ranking gained from

including the semantic value held in predicates mined from literature and extracted

from structured vocabularies.

Meta path selection is an onerous task with numerous possibilities. Further inves-

tigation into the multitude of meta paths can improve the quantification and ranking

of relevant objects within a heterogeneous network. For example, of the four meta

paths presented in Figure 8b between chemicals and diseases in the test biological

heterogeneous network, P1 was tested for odd path length and variety of object types.

The remaining meta paths may provide higher relevance rankings than P1 based on

the information they contain. The addition of connected data could also provide a

better prioritization of relevant objects. The inclusion of curated and manually an-

notated relationships between objects would supplement existing relationships drawn

from controlled vocabularies and text mining.

Relevance search methods, such as HetERel, are essential for mining large biolog-
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ical knowledgebases for evidence-based, indirect associations and patterns that can

elucidate the chemical interactions of food and the human genome.



CHAPTER 4: BIOLOGICAL USE CASES FOR THE DIET-DISEASE
NETWORK AND META PATH BASED RANKING METHOD

Genetics and diet play crucial roles in the development of many cardiovascular,

digestive, and metabolic diseases. Historically, biomedical research has emphasized

the influence of genetic variance in the development of disease. As a result, thou-

sands of associations connecting genes and disease have been identified and stored in

various databases [48, 160, 184]. More recently, metabolomic studies have identified,

beyond an observational level, associations between the components of diet and hu-

man health [23, 67]. However, the segmented and exponential growth of association

data for diet, genetics, and disease outpaces the ability of researchers to analyze and

prioritize interesting patterns.

Association data that describes the link between diet and disease is stored in nu-

merous, domain specific databases. Associations between plants and chemicals are

available from the UDSA Nutrient Database (sparse), while more specific chemical

detail can be found in the Chemical entities of Biological Interest (CheBI) [72, 182].

The Comparative Toxicogenomics Database (CTD) links chemicals to the genes they

interact with [42]. There are many gene to disease association databases which do

not include the relationships from biological pathways to genes or disease [70, 134].

Genes and biological pathways are connected across many heterogeneous databases

such as KEGG and the Gene Ontology [10,84]. The data to connect the components
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of plant-based diets with human disease phenotypes is separated amongst various

data repositories, preventing general data exploration and high throughput hypothe-

sis generation.

Currently, no single resource contains the data or a prioritization method capable

of investigating the molecular effects of plant-based diet on human health. Existing

resources tend to be disease-centric or focus on small molecule drugs as opposed to

phytochemicals in diet [76, 82, 181]. A general resource that aggregates link data

between biological and chemical concepts from plants to human health phenotypes

can reduce the data sparsity found in specific, single resources. For example, when

searching for genes relevant to a disease, such as type 2 diabetes mellitus, genes that

affect biological pathways associated to diabetes would be returned, in addition to

genes directly associated to diabetes. A method to mine this resource which provides

a relevance-based prioritization of concepts of interest would allow researchers to

efficiently investigate the molecular effects of phytochemicals on disease.

The development of an integrated diet-disease network encompassing all land plants

and human health phenotypes was described in Chapter 2. In Chapter 3, the design

and implementation of a meta path based relevance ranking framework was discussed.

This chapter provides insights into the research trends of plants through exploratory

analysis of the diet-disease network and amalgamates the meta path based ranking

framework with the diet-disease network to determine the most relevant molecular

interactions of dietary components and human disease.
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4.1 Diet-Disease Network

The CTD is one of the most comprehensive resources connecting the components of

plant-based diets with human disease phenotypes. It explicitly includes associations

spanning from chemicals to genes, genes to biological pathways, and biological path-

ways to disease [42]. The CTD contains few associations between phytochemicals and

their plants of origin. As a result, the relevance of most plants to chemicals, genes,

and diseases cannot be calculated.

The Diet-Disease Network developed in Chapter 2 extends and enhances the

associations found in the CTD. The network aggregates multiple sources of association

data and integrates their entities to ameliorate the sparsity of connections between

plants, chemicals, and human genes. In addition, association density is augmented

with text-mined relationships from the agricultural and biomedical literature. The

diet-disease network also retains the relationship types extracted from text mining and

curated association data. Specific relationship types provide semantic information

that help to distinguish the relevance between two like objects. The integration

and augmentation of data describing the components of diet and disease facilitates

reachability across the entirety of the diet-disease network.

4.1.1 Overview of Diet-Disease Network

The diet-disease network consists of 5 types of agricultural, biological, and chemical

entities integrated 13 different curated data sources. The 5 entity types are Plant

(E), Chemical (C), Gene (G), Pathway (M), and Disease (D). Overall, there are

732,094 unique nodes within the diet-disease network. These entity types are linked
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by 9,109 unique relationship types. The high variation in relationship type results

from the extraction of predicates from text mining. The heterogeneous information

network schema in Figure 14a displays the connectivity between entities of the diet-

disease network. From this network schema, several meta paths linking plants (E)

to disease (D) can be deduced, as shown in Figure 20b. Meta paths which connect

plants to all other entity types can be derived from those four meta paths. The

semantics underlying each meta path portrays a distinct meaning between plants and

disease. The biological inquiries posed by a researcher can be used to guide meta

path selection.

4.1.2 Meta Path Based Exploratory Analysis of Diet-Disease Network

General inquiries of the diet-disease network provide insight into the interesting

properties of plants with potential benefits for human health. The results from ex-

ploratory queries highlight plants with high connectivity to other concepts, such as

chemicals and genes, summarizing the current state of agricultural and biomedical

research. This entire work is premised on the question, ”Why do certain plant-based

foods confer benefits to human health?”. In Chapter 2.5, that question is decom-

posed into three more manageable questions which guided the selection of meta paths

for global exploratory analysis of the diet-disease network. The three biological ques-

tions are: 1)What is the phytochemical profile of plant-based foods? 2) How do these

phytochemicals affect human genes? and 3) How do these effects on human genes

influence human health phenotypes, such as disease?

The first question can be answered through analysis of the meta path P = E → C.
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This meta path, of length 1, consists of a single pair of associated objects linked

by a single step. A unique count of plant to chemical associations quickly identifies

the overall size of plant chemical profiles. The 10 plants with the most chemical

associations from the diet-disease network are shown in Figure 15a, ranging from

2,180 down to 598 unique chemicals. Among them are common agricultural crops

one would expect to be well characterized, such as soybeans (Glycine max ), corn

(Zea mays subsp. mays), spinach (Spinacia oleracea), coffee (Coffea arabica), and

oats (Avena sativa). There is a clear difference in the number of unique chemicals

associated to the top 10 plants in the diet-disease network compared to the top 10

chemically characterized plants from the CTD (Figure 15b). This indicates that

the aggregation and integration technique used in developing the network successfully

augmented the existing, curated data. It is interesting to note that two of the top ten

plants, Nicotiana tabacum and Arabidopsis thaliana, are not edible plants, but are

highly characterized for their economic and research value, respectively [196]. Plants

with large chemical profiles exhibit a diverse pool of potential bioactive components

which warrant further investigation. Specific plants and their associated chemicals

will be discussed in further detail in the coming section, based on their relevance

rankings.

The meta path P = E → C → G, of length 2, is composed of the three object types

Plant(E), Chemical(C), and Gene(G). This meta path answers the second biological

question by determining the subset of human genes affected by chemicals associated

to plants. Figure 16a displays the top 10 plants with unique associations to human

genes, ranging from 19,161 (approximately a third of human genes) to 14,905 unique
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genes. Four of the top ten plants associated to human genes did not have the largest

phytochemical profiles. These exploratory results indicate that the quantity of chem-

ical associations plays a role in but is not the driving factor for the overall interaction

of a plant with the human genome. This trend continues as the top k number of

plants is increased. When the reverse meta path is queried (P = G → C → E),

the human genes most affected overall by plants is found. The top 10 human genes

are shown in Figure 16b, interacting with between 3,326 and 2,427 plants. These

top genes are involved hallmark biological processes which lead to chronic disease,

including transcriptional regulation, inflammation, and oxidative stress [44, 86, 94].

Particular plants of interest and the human genes they affect will be discussed in

detail in the following section.

The third question explores which biological pathways are perturbed by the inter-

action of phytochemicals and human genes. Querying the meta path P = E → C →

G→M returns a list of biological pathways affected by each plant. To gain a general

understanding of the most commonly affected biological pathways, the reverse meta

path P = M → G → C → E is analyzed. The top 10 biological pathways affected

by plants are shown in Figure 17, with counts of unique plants between 5,228 and

5,146. Plants affect many of the cellular processes in humans, such as signaling,

biosynthesis, and apoptosis. Perturbation of these essential biological pathways can

have detrimental effects on human health [16, 38, 107]. Noise can be introduced in

meta path with longer lengths. Most search algorithms, such as Dijkstra, search for

the shortest path to avoid the effects of noise. However, the implementation of a pri-

oritization framework can account for this and identifies the signal from the noise. To
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make the best use of the diet-disease network, we apply the meta path based ranking

method developed in Chapter 3.

4.2 Application of Meta Path Based Ranking Framework in Diet-Disease Network

The exploratory analysis of the diet-disease network provides a cursory survey

of plants and chemicals that elicit an effect on the human genome. From these

insights, hypotheses can be developed to explain the molecular interactions between

specific plants of interest and human disease. Hypothesis development is driven by

the same biological questions that guide exploratory analysis. Each question guides

the relevance analysis and informs a researcher about which meta paths best satisfy

the biological inquiry. The application of the meta path based ranking framework in

querying the diet-disease network prioritizes the molecular entities associated with

the specific plant or chemical of interest. The top prioritized candidates help refine

relevance results to generate evidence-based, testable hypotheses.

4.2.1 Phytochemical Profiling

Identifying the chemical profile of plants establishes the phytochemical space of

bioactive candidates for human health. A global relevance analysis was performed on

the diet-disease network along the meta path P = E → C which included all land

plants (Embryophyta). The analysis generated phytochemical lists for each plant

ranked by the HetERel relevance metric. Any Embryophyta can be quickly found

and their ranked chemical profile returned. In this section, we investigate the profiles

of three plants of dietary interest.

Broccoli (Brassica oleracea var. italica) is a commonly consumed vegetable as-
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sociated with a reduced risk of numerous chronic diseases [159]. In the literature,

this effect is attributed to derivatives of a group of chemicals called glucosinolates.

Glucosinolates are found in the Brassicaceae family of cruciferous vegetables. They

are broken down by the enzyme myrosinase through the process of mastication and

release sulfur compounds called isothiocyanates. The most well-studied of these isoth-

iocyanates is glucoraphanin and its breakdown products including sulforaphane [74].

The relevance analysis of broccoli returned 215 unique chemicals, which include many

of the known derivatives of glucosinolates. Table 8 displays the top 10 relevance

ranked chemicals associated to broccoli in the diet-disease network. Many of these

chemicals, such as 4-methoxyglucobrassicin and glucoiberin, have been found to have

antioxidant properties linked to the reduction of inflammation in humans [40].

Oats (Avena sativa) are a global food staple, commonly eaten as oatmeal or cereal.

The dietary fiber found in oats have been proven to lower cholesterol and reduce

the risk of cardiovascular disease and obesity [49, 57]. Phytochemical groups such

as avenanthramides and carbohydrates (mainly beta-glucans) are responsible for the

antioxidant and LDL-cholesterol reducing effects found in oats [158]. These phyto-

chemical groups are represented in the top 10 of 598 unique chemicals associated to

oats (Table 8) in the diet-disease network. Beta-glucans, such as lichenin and xy-

lotetraose, are well-known for their effects in cardiovascular health, but have recently

shown potential antitumor properties as well [33, 201]. An interesting component of

oat in the top 10 table, is the protein avenin. Avenin is a protein in oat that people,

rarely, can be sensitive to, similar to that of gluten found in wheat or barley [71].

Coffee (Coffea arabica) is one of the most popular beverages worldwide. Coffee
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is well-known for its caffeine content and effect on alertness [203]. Recently, meta-

analyses of the correlation between coffee consumption and various health outcomes

from a multitude of observational studies highlighted liver outcomes to have large and

consistent effect sizes. Beneficial associations were also found for specific cancers and

metabolic diseases, such as prostate cancer and type 2 diabetes mellitus [45,66,136].

Opposing studies have proposed that the presence of volatile compounds, such as

pyrroles and 4-methylimidazole, have had detrimental, carcinogenic effects in in-vitro

studies [39,116,133]. The top 10 chemicals associated with coffee (Table 8) are cited

as key active compounds in a number of these studies. Cafestol is a bioactive diterpene

proposed to decrease the mutagenic effect of multiple carcinogens through different

mechanisms, such as antioxidant defense and inhibition of carcinogenic activation [26].

Defining the chemical profiles of plant-based foods reduces the search space for iden-

tifying potential bioactive compounds in the human diet. A compound has bioactive

properties if it interacts with and produces an effect on human gene products. In or-

der to identify these interactions, the meta path is extended another step to include

associations between chemicals and human genes.

4.2.2 Gene Prioritization

Canonically, the purpose of gene prioritization has been to rank genes according

to their association to a phenotype or disease. A wealth of data connecting human

genes and disease exists in the biomedical domain for this task. Far less data exists

linking plant-based foods and their chemical products to human genes. Text-mined

associations integrated into the diet-disease network help bridge this gap in computer



135

readable data, allowing a researcher to apply the gene prioritization task to the do-

mains of diet and nutrition. The meta path (P = E → C → G), of length 2, was used

to analyze the relevance between plants and the human genes their chemical products

interact with. In this section, the most relevant genes affected by broccoli(Brassica

oleracea var. italica), oat(Avena sativa), and coffee(Coffea arabica) are discussed.

The compounds in the chemical profile of broccoli were associated to 11,507 unique

human genes. To gain a general understanding of the functions of the gene set, the

top ranked 1000 genes were subjected to a gene function analysis using the PAN-

THER classification system [112]. An overrepresentation analysis using a Fisher’s

Exact Test against the GO-slim molecular function annotation data set, with FDR

correction p < 0.05, was performed to generate the bar plot in Figure 18a. The

most overrepresented molecular functions of genes associated to broccoli include per-

oxidase activity, antioxidant activity, and oxidoreductase activity. It can be deduced

from these results that the chemical constituents, namely isothiocyanates, of broccoli

promote the reduction of peroxides and reactive oxygen species in the human body,

as proposed in the literature [108]. This type of molecular function generally reduces

inflammation and oxidative stress throughout the cardiovascular and digestive system

via interaction with isothiocyanates that induce ARE-mediated pathways. [122,193].

Oat related chemicals were found to be associated to 13,690 unique human genes.

An overrepresentation analysis was also performed on the top 1000 ranked genes as-

sociated to Oat to characterize their molecular function. Figure 18b presents the

most overrepresented molecular functions of oat associated genes. The most overrep-

resented functions are neuropeptide hormone activity at 8.97 fold enrichment, and
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tumor necrosis factor receptor binding at 8.74 fold enrichment. The avenanthramides

in oat have been found to have potent anti-inflammatory effects on the skin leading to

reduced dermatological by blocking neurogenic inflammation from sensory receptors

in the skin. This is accomplished through a mechanism of anti-inflammatory activity

in human skin cells involving tumor necrosis factor (TNF) induced inhibition of the

transcription factor NFKB [172]. Many pro-inflammatory genes from the interleukin

family of genes are regulated by NFKB, meaning its inhibition by avenanthramides

leads to a reduction in the production of interleukin gene products.

Coffee related chemicals in the diet-disease network were found to be associated

with 13,249 unique human genes. The PANTHER molecular function analysis results

(Figure 18c) show that the neuropeptide hormone activity, tumor necrosis factor

receptor binding, and guanylate cyclase activity are the top 3 statistically overrep-

resented molecular functions of coffee associated genes. Cafestol, a chemical unique

to coffee, has a suppressive effect on the expression of the COX2 gene which serves a

crucial role in inflammation and carcinogenesis. It suppresses NFKB, which in turn

suppresses TNF-mediated COX2 expression [155]. The caffeine found in coffee has

been studied for mechanisms of reducing the risk of heart disease. Caffeine stimulates

the reduction of calcium in the vascular smooth muscle cell, in turn increasing uptake

in endothelial cells. It also stimulates the production of nitric oxide (NO). NO binds

to the guanylate cyclase enzyme and activates it to create cyclic GMP which increases

protein kinase activity, acting as a vasodilator and lowering blood pressure. At the

same time, caffeine acts as a competitive inhibitor of phosphodiesterase enzymes that

are meant to degrade cyclic GMP, leading to an accumulation of cyclic GMP and
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increasing the effect of vasodilation [47].

4.2.3 Relevance of Plant-Based Diets and Human Health

The diet-disease network spans the agricultural, chemical, and biological domains to

connect plants and human health. Building upon the relevance results from generat-

ing phytochemical profiles and prioritizing candidate genes, the indirect link between

plant-based foods and human health can be calculated. In the diet-disease network,

the meta path (P = E → C → G → M → D), of length 4, determines the rele-

vance between plants and disease. This complete path sheds light on the molecular

mechanisms by which edible plants affect human health.

Table 9 displays the top 10 diseases related to broccoli, oat, and coffee ranked by

their HetERel relevance score. The most relevant diseases linked to broccoli are as

expected, including 4 varieties of cancer, oxidative stress, and inflammation. Oat is

most associated with chronic conditions of cardiovascular disease and precursors to

diabetes, such as obesity and metabolic syndrome, as one would gather from current

dietary guidelines and research. The top 10 diseases relevant to coffee in the diet-

disease network are similar to oat, with the exception of brain damage and poisoning.

Upon cursory review of the literature, many published studies refer to the difficulty

in performing the task of coffee preparation for those with brain damage [18,63]. Fur-

ther research within the diet-disease network revealed that caffeine and caffeic acid

in coffee inhibits the activation of TNF and the NFKB signaling pathway. This inter-

action provides vasodilative activity that reduces the risk of ischemia to not just the

heart but also the brain, preventing brain damageFigure 19. Reference information
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to the literature was readily available in the properties of each link in the diet-disease

network. Uncommon inferences, such as the relevance between coffee and brain dam-

age, can be easily investigated when the association data that links them is available

in a single, integrated network. Hypotheses can be generated by traversing the diet-

disease network along any desired meta path P previously described, each step guided

by HetERel relevance scores. Two examples of hypotheses for the relevance between

broccoli and disease are visualized with the Neo4J browser interface in Figure 20.

4.3 Conclusion

The ability to mine data linking plants, chemicals, human genes, biological path-

ways, and human health phenotypes in a high throughput manner is highly valuable

for investigating the molecular effects of plant-based diets on human health. The

relevance results and hypotheses generated in this chapter display the efficacy of

the HetERel relevance ranking method in parallel with a comprehensive, integrated

information network connecting plants and human disease.

Generating knowledge-based hypotheses that elucidate the molecular pathways

leading to health effects from plant-based diets is an essential and time consum-

ing task for an individual researcher. In combination, HetERel and the Diet-Disease

Network provides prioritized, evidence-based lists of biologically relevant candidates

for laboratory or clinical validation, with data provenance and predicate detail. The

HetERel framework and the Diet-Disease Network enables agricultural and biomedi-

cal researchers to efficiently access the available knowledge in their fields to not only

remain current, but develop data driven experiments in search of bioactive phyto-
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chemicals.
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(a) Schema for Diet-Disease Network, as displayed in Chapter 2.

(b) All possible meta paths between objects of the types Plant (E) and Disease (D).
These meta paths encompass all meta paths in the network.

Figure 14: The schema for the Diet-Disease Network and all possible meta paths
between object types of Plant (E) and Disease (D)
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(a) Top 10 plants with unique phytochemical counts from diet-disease
network

(b) Top 10 plants with unique phytochemical counts from the CTD

Figure 15: Comparison of the top 10 best characterized plants from the diet-disease
network and the curated CTD following the meta path P = E → C
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(a) Top 10 Plants associated, through the meta path P = E → C →
G. Highly connected plants are likely to influence disease development,
progression, or amelioration

(b) Top 10 Genes with unique associations to plants through the meta
path P = G→ C → E

Figure 16: Overview of the top 10 plants that interact with human genes and the top
10 human genes that are affected by plants
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Figure 17: The top 10 biological pathways affected by plants
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Table 8: Top 10 chemicals associated with Brassica oleracea var. italica, Avena sativa,
and Coffea arabica.

Plant Chemical HetERel Score

Brassica oleracea var. italica glucoraphanin(1-) 0.066835

3,3’-diindolylmethane 0.06670

selenoproteins 0.066751

4-methoxyglucobrassicin 0.066372

glucoiberin 0.066369

3H-1,2-dithiole-3-thione 0.066349

(R)-sulforaphane 0.048000

gluconasturtiin 0.047278

glucotropeolin(1-) 0.047050

neoglucobrassicin 0.046811

Avena sativa vitexin 2”-O-beta-L-rhamnoside 0.040521

lichenin 0.028638

diferulic acid 0.028630

2’-deoxymugineic acid 0.028628

indol-3-ylacetaldehyde 0.028628

methylpyrazine 0.028599

hydroxyanthranilic acid 0.028570

avenin 0.028560

xylotetraose 0.028508

gramine 0.028455

Coffea arabica chalcogran 0.039570

benzene-1,2,4-triol 0.039566

isoamyl formate 0.039563

delta-tocopherol 0.039537

pyrroles 0.039432

N-methylpyridinium 0.039349

D-ribosylnicotinic acid 0.039338

melanoidins 0.039304

cafestol 0.039072

4-methylimidazole 0.038269
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(a) Overrepresented molecular function of genes associated
to Brassica oleracea var. italica

(b) Overrepresented molecular function of genes associated
to Avena sativa

(c) Overrepresented molecular function of genes associated
to Coffea arabica

Figure 18: Fold enrichment for molecular function of genes associated to Brassica
oleracea var. italica, Avena sativa, and Coffea arabica
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Table 9: Top 10 Phenotypes associated with Brassica oleracea var. italica, Avena
sativa, and Coffea arabica.

Plant Disease HetERel Score

Brassica oleracea var. italica oxidative stress 0.565160
liver neoplasms 0.535610
breast neoplasms 0.528981
inflammation 0.521293
infarction 0.517824
lung neoplasms 0.517176
pneumonia 0.514951
heat stress 0.513441
colorectal neoplasms 0.511281
rheumatoid arthritis 0.510549

Avena sativa oxidative stress 0.684840
hyperglycemia 0.658581
metabolic syndrome 0.658245
inflammation 0.655189
breast neoplasms 0.654367
myocardial infarction 0.645413
myocardial ischemia 0.643975
hypertrophy 0.639481
rheumatoid arthritis 0.638790
obesity 0.638421

Coffea arabica oxidative stress 0.672117
brain damage 0.633576
infarction 0.629755
inflammation 0.623943
poisoning 0.621713
liver neoplasms 0.615741
hyperglycemia 0.615291
myocardial ischemia 0.614992
metabolic syndrome 0.614617
stroke 0.612817
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Figure 19: The Diet-Disease Network is capable of explaining inferred paths by pro-
viding access to the evidence for each link between objects. This visualization de-
picts the meta path (P=E,C,G,M,D) traversing the network from the plant Coffea
arabica(green) to chemicals(yellow) to genes(blue) to pathways(purple) to pheno-
type(red).
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(a) This visualization depicts the meta path (P=E,C,G,M,D). It generates multiple
hypotheses explaining the relevance between broccoli and colorectal neoplasms.

(b) This visualization depicts the meta path (P=E,C,G,M,D). It generates multiple
hypotheses explaining the relevance between broccoli and infarction.

Figure 20: Hypotheses can be generated when searching the diet-disease network with
the HetERel meta path based relevance ranking framework.



CHAPTER 5: KNOWLEDGE BASED DISCOVERY THROUGH DATA MINING,
INTEGRATION, AND SEMANTIC PRIORITIZATION

The advancements in high-throughput technologies has brought about an expo-

nential increase in data for agricultural and biomedical research. The wealth of data

continues to be studied, generating new knowledge and hypotheses. However, the rate

of data collection has far outpaced current methods of data analysis. In addition, the

data linking agricultural and biomedical research are distributed across disparate

databases or hidden within the unstructured text of scientific literature. This neces-

sitates the development of integrated knowledge bases which connect and encompass

various research domains. The vast amount of data these knowledge bases amass

requires an efficient framework capable of searching and determining the relevance

of heterogeneous agricultural and biomedical concepts. The diet-disease network

and meta path-based relevance ranking framework described in this work serve as a

scalable foundation for linking distinct research domains and efficiently developing

evidence-based insights from the current deluge of data.

5.1 Limitations and Considerations of the Diet-Disease Network and Relevance

Ranking Method

The identification of limitations and considerations of a scientific work is important

to address for the improvement of science and illuminate future avenues of research.

In this work, the availability and access to data did impose certain limitations to
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analysis.

Publicly available, curated association data connecting plants to chemicals was dif-

ficult to identify and procure, as opposed to the multitude of databases connecting

chemicals, genes, pathways, and phenotypes. This gap in data was filled by the re-

sults of text mining the agricultural and biomedical literature. More recently, data

resources, such as FooDB and PhenolExplorer, have become available that can aug-

ment the plant-chemical associations and extracted from text mining [146,192].

Recently, studies in microbiome research have discovered the highly influential

interaction between the gut microbiome, diet, and human health [32, 41]. This work

does not analyze the effect of microbial communities in humans due to the minimal

amount of microbiome data and knowledge available at the inception of this work, as

well as the level of complexity it introduces. However, the modular and scalable design

of the diet-disease network allows for the integration of microbial data, including

bacterial taxonomy and chemical byproducts. The HetERel relevance ranking method

is also data agnostic, meaning it is capable of analyzing new types of data, such as

microbiome data.

The discussion of these limitations naturally leads into the various directions this

work can lead to in the future. The considerations to the listed limitations provide

an immediate goal of acquiring supplemental data to augment sparse data and refine

the relevance metric.



151

5.2 Future Directions

In this work, an integrated network and relevance ranking framework were devel-

oped to investigate the interactions between dietary components and human health.

The constant influx of new data and scientific publications presents an opportunity

to expand the integrated network and apply relevance ranking to other diet-disease

related domains of research.

As previously discussed, the gut microbiome has been found to play an impactful

role in human health [32]. The integration of bacterial species, genes, and chemical

byproducts into the diet-disease network would empower the development of hypothe-

ses in the growing domain of microbiome research. Different biological inquiries could

be investigated with the inclusion of microbiome data, such as the mitigated impact

of diet on human health, based on the microbial composition of the human gut [7].

The variability of the human gut microbiome is attributed to various factors, such as

a person’s environment and their personal genetic makeup. The resulting hypotheses

about the microbiome feed into other research fields, such as personalized nutrition.

The field of nutrigenomics combines nutrition and genome research to discover op-

timal diet and exercise plans based on an individual’s genotypes and phenotypes [55].

The current integrated network and ranking framework could be extended to investi-

gate the effects of dietary components on specific genotypes for personalized nutrition.

Data from genetic variation databases and more general chemical databases, such as

cosmic and ChEMBL, respectively, could be integrated into the network to provide

insights into personalized nutrition [58,88].
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The development of the integrated diet-disease network and relevance ranking

method enables researchers to explore new datasets and their connectivity with ex-

isting diet-disease knowledge in a scalable and efficient way.

5.3 Conclusion

The research described in this work addresses some of the recent issues brought

about by big data faced by scientists across many research domains. The growing ac-

cumulation of agricultural and biomedical data and its distribution across numerous,

disparate sources hampers knowledge-based discovery in the effects of diet on disease.

This work provides a comprehensive analysis that leverages existing data and seman-

tics to efficiently determine the most relevant results to explain the molecular paths

of diet and disease interaction.

The diet-disease network is a foundational resource for investigating the mecha-

nisms of action between dietary components and human health phenotypes. It is

the first graph-based, heterogeneous information network to traverse the five distinct

types of agricultural, chemical, and biological entities of diet and disease. The diet-

disease network also incorporates text mined relationships as triples, including the

predicates that define the association between entities. Text mined relationships ex-

tracted from two citation databases, PubMed and Agricola, provide overlap between

agricultural and biomedical research.

The algorithmically simple weighting metric and meta path-based ranking method

developed in this work discovers the molecular entities most relevant to describing

the link between diet and disease. It takes into account the fine semantic detail in
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relationships by calculating relevance with predicate probabilities. Simultaneously,

the inclusion of predicates assigns evidence-based weight to the heterogeneous links

within the diet-disease network. The evidence-based weights provide a more distinct

measure of relevance compared to existing methods.

Together, the diet-disease network and novel meta path-based relevance ranking

metric, HetERel, allow scientists to comprehensively investigate the associations pro-

posed between diet and human health. The knowledge-based identification of diet

and human health associations provides insight into the importance of the molecular

effects of diet on disease prevention. An understanding of these molecular mechanisms

can provide scientific support to filter the deluge of fictitious health claims commonly

propagated in the media today.
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APPENDIX A: CODE FOR ETL AND RANKING

The code for data extraction, transformation, and loading into the Neo4j graph

database consists of over 2,000 lines of code in Python, bash, and Cypher. The

entirety of code for ranking was written in Python and Cypher, with over 3,000

lines of code. Full source code, documentation, and usage instructions is available at

https://github.com/rlinchangco/Dissertation_PhD.

https://github.com/rlinchangco/Dissertation_PhD

	LIST OF FIGURES
	LIST OF TABLES
	DISCOVERING LINKS BETWEEN DIET AND HUMAN HEALTH AT THE MOLECULAR LEVEL
	Integrating Agricultural and Biomedical Association Data
	Public Resources of Curated Data
	National Center for Biotechnology Information Sources
	United States Department of Agriculture Sources
	Open Biological and Biomedical Ontology Sources
	European Molecular Biology Laboratory and European Bioinformatics Institute Sources
	Chemical, Gene, and Disease Association Databases
	Augmenting Public Resources of Curated Data
	Literature Based Discovery Methods for Relevance Search
	Text Mining
	Association Mining for Ranking
	Information Network Analysis
	Challenges and Limitations of Current Relevance Search Methods
	Improving LBD with Semantically Informed Heterogeneous Network Analysis
	DEVELOPMENT OF A DIET-DISEASE ASSOCIATION NETWORK
	Data Sources and Types
	Controlled Vocabularies
	Association Databases
	Data Types
	Text Mining Workflow
	Document Corpus
	Text Mining Tools
	Open Source Tools
	Proprietary Tools
	Text Mining with Linguamatics I2E
	Named Entities Indexed for Text Mining
	Query Development
	Text Mining Results
	Data Munging and Integration
	Cleansing Data from Diet-Disease Sources
	Data Integration
	Resolving Ambiguous Identifiers
	Entity Association Mapping
	Data Formatting
	Data Storage
	Canonical Database Limitations
	Applicability of Graphs for Diet-Disease Network
	Graph Database Management Systems
	Graph Structure and Modeling
	Graph model
	Graph Querying
	Integration and Augmentation of Data Sources to Span Diet-Disease Domains
	Data Source Integration
	Augmentation of Data Sources To Traverse Diet-Disease Path
	A META PATH BASED RELEVANCE SEARCH AND RANKING METHOD
	Data Mining in Heterogeneous Networks of Nutritional Systems Biology
	Heterogeneous Network Definitions and Concepts
	Similarity Search in Heterogeneous Networks
	Relevance Search in Heterogeneous Networks
	Integrated Heterogeneous Information Network for Link Mining Analysis
	Design and Development of A Meta Path Based Relevance Measure
	Objectives and Considerations for a Meta Path Based Relevance Ranking Method
	A Meta Path Based Relevance Metric
	Implementation of a Meta Path Based Relevance Analysis
	Evaluation Method for Comparing Meta Path Based Relevance Ranking
	Gold Standard Datasets
	Relevance Ranking Analyses
	Comparison of Results to Existing Methods
	Conclusion
	BIOLOGICAL USE CASES FOR THE DIET-DISEASE NETWORK AND META PATH BASED RANKING METHOD
	Diet-Disease Network
	Overview of Diet-Disease Network
	Meta Path Based Exploratory Analysis of Diet-Disease Network
	Application of Meta Path Based Ranking Framework in Diet-Disease Network
	Phytochemical Profiling
	Gene Prioritization
	Relevance of Plant-Based Diets and Human Health
	Conclusion
	KNOWLEDGE BASED DISCOVERY THROUGH DATA MINING, INTEGRATION, AND SEMANTIC PRIORITIZATION
	Limitations and Considerations of the Diet-Disease Network and Relevance Ranking Method
	Future Directions
	Conclusion
	REFERENCES
	APPENDIX A: CODE FOR ETL AND RANKING

