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ABSTRACT 

 

 

YI-CHEN CHUANG. Complex photonic crystals for broadband “all-angle” self-

collimation. (Under the direction of DR. THOMAS J. SULESKI) 

 

 

Self-collimation is a dispersion property of many photonic crystals (PCs), in 

which light beam can propagate free of divergence in the PCs. While self-collimation is a 

desired property for applications related to wave guiding and light collection, most of the 

current self-collimating PCs have restrictions on incident angles and/or operating 

wavelengths. These restrictions limit the operation flexibility of current self-collimating 

devices, and prevent the usefulness of self-collimation in many potential applications. In 

this dissertation, different PC structures are proposed to enable broadband, (in-plane) 

“all-angle” self-collimation or three-dimensional (3D) “omnidirectional” self-collimation.  

For in-plane self-collimation, a group of non-conventional two-dimensional (2D) 

PC structures inspired by the irradiance distributions resulting from the fractional Talbot 

effect (“Talbot crystals”) is studied for the first time. A complex rhombus lattice Talbot 

crystal is found to support broadband virtual “all-angle” self-collimation. Such concepts 

are further extended to 3D. Multiple PC structures and different design strategies are 

proposed and compared in terms of the resulting self-collimation performance. Several 

desired 3D properties are realized for the first time, including broadband virtual 3D 

limited-angled self-collimation, 3D omnidirectional beam confinement, and broadband 

3D omnidirectional self-collimation. These results may enable future self-collimation 

applications, such as PC core fibers and solar light collection, and suggest a possible 

whole-band self-collimation phenomenon. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Motivation 

Self-collimation (also referred to as self-guiding [1] or super-collimation [2]) is a 

dispersion property of many photonic crystals (PCs), which describes an optical 

phenomenon where light propagating in a medium is free of diffraction and divergence 

along the collimating direction. It can be used for different purposes, such as, confining 

light from spreading, eliminating power loss during propagation, and combining or 

collecting multiple incident beams toward the same direction. Self-collimation allows a 

narrow beam to propagate in the PC without engineered defects (such as waveguides), 

and thus it may simplify fabrication processes for some PC devices. In addition, PCs are 

incident position invariant (i.e. beams can be self-collimated by the structure regardless 

of the positions at which the beams are incident); therefore beam alignment in self-

collimating PCs is relatively straightforward. 

Self-collimation is a very useful phenomenon that can benefit a variety of 

applications related to wave guiding and/or light collection. Current self-collimation 

applications include waveguides [3, 4], beam splitters [5-12], optical switches [13], 

interferometers [14-16], wave plates [17], resonators [18, 19], lasing cavities [20], and 

beam combiners [21]. Most of the current applications apply self-collimation to a single 

propagation beam and do not require a wide angular collimating range and/or broad 

wavelength/frequency range for operation. While there have been few studies applying 
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self-collimation to multiple beams, self-collimation can also be very useful for beam 

combining and light collecting purposes. Potential applications include multiplexers [22, 

23]
1
, solar light collection [24-30]

2
, and PC core fibers [31-33]

3
. These applications 

utilize the property that light incident from different incident angles within a valid 

angular collimating range will be collimated to the same direction. Besides non-channel 

waveguiding and easy alignment that is generally offered by the self-collimation 

phenomenon, self-collimation in these applications can also provide additional benefits. 

For example, a self-collimating beam combiner or multiplexer requires no input or output 

waveguides, thus simplifying the device design. A self-collimating PC on the top of a 

solar cell could help to gather and guide light from large incident angles to reach the solar 

cell at smaller incident angles, potentially reducing the need for the solar panel to track 

the sun throughout the day as the incident angles change. A PC core fiber using self-

collimating PC as the fiber core can allow a larger acceptance cone for light coupling. 

These potential applications have not yet benefited from self-collimation phenomenon 

because current PCs do not support the desired self-collimation performance (i.e. a wide 

angular collimating range and a broad operating wavelength/frequency range) in suitable 

orientation for the purposes mentioned. 

 

 

 

 

 

 
1~3: 

These references provide general information about the applications mentioned, but do not apply self-

collimation ideas. 
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1.2 Objectives 

Although a collimating structure that can be used for all incident angles across a 

broad wavelength range is highly desirable, very few related studies have been published 

with this purpose [2, 34]. Also, previously reported broadband “all-angle” self-

collimation is limited to in-plane propagation. PC structures supporting broadband self-

collimation in a three-dimensional (3D) manner have not yet been reported (an 

introduction will be given later in Section 2.4). This dissertation is intended to present 

and discuss improvements to self-collimation performance through engineering of PC 

structures. Several PC structures are investigated to achieve ideal broadband (in-plane) 

“all-angle” or (3D) “omnidirectional” self-collimation. The work in this dissertation can 

be divided to two parts. The first part explores additional two-dimensional (2D) PC 

structures to support broadband “all-angle” self-collimation. In particular, a group of non-

conventional 2D PC structures inspired by the irradiance distributions resulting from the 

fractional Talbot effect [35-38] (“Talbot crystals”) is studied for the first time. Talbot 

crystals are considered because they have more design flexibility over traditional PCs. 

Comparisons between the self-collimating Talbot crystals and previously reported self-

collimating PCs are made in terms of self-collimation performance and other practical 

performance metrics. The second part of this work further extends the concept of 

broadband “all-angle” self-collimation to 3D. Several PC structures are proposed to 

enable 3D broadband omnidirectional self-collimation, including 3D tetragonal lattice 

structures, 3D complex hexagonal lattice structures, and two 2D PC structures* (*PC 

structures in 3D space with 2D periodicity). Detailed structure descriptions will be 

provided in CHAPTER 6. Different design strategies are presented and compared in 
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terms of the resulting self-collimation performance. 3D self-collimation effects realized 

by different mechanisms are also discussed. 

Background knowledge and basic terminology for self-collimation studies are 

presented in CHAPTER 2, and theories and numerical methods used in these studies are 

described in CHAPTER 3. Detailed descriptions of Talbot crystals are given in 

CHAPTER 4, including comparison between Talbot crystals and conventional PCs. 

CHAPTER 5 presents simulation results of self-collimation in a complex rhombus lattice 

Talbot crystal. Structure optimization and the effects of adding an anti-reflection feature 

to the Talbot crystals are also discussed. CHAPTER6 focuses on PC structures proposed 

for broadband omnidirectional self-collimation. Different design strategies with the 

resulting self-collimation performance are presented and compared in detail. Conclusions 

and future work are provided in CHAPTER 7. 

 

 



CHAPTER 2: BACKGROUND OF SELF-COLLIMATION STUDIES 

 

 

In this dissertation, self-collimation performance of different PC structures is 

quantitatively investigated and compared. For this purpose, background knowledge and 

related terminologies are provided in this chapter. First, the media that are used to realize 

self-collimation phenomenon (i.e. PCs) are introduced. Then the essential tools to 

identify and quantitatively study self-collimation (i.e. isofrequency diagrams) are 

described. Conditions where self-collimation is realized are summarized, followed by 

quantitative definitions of self-collimation performance metrics. Performance of 

previously reported self-collimating PC structures are also reviewed and compared. 

2.1 Photonic crystals 

PCs are periodic or quasi-periodic dielectric materials designed to control and 

manipulate light through careful engineering. Simple examples of one-dimensional (1D), 

2D, and 3D PCs are displayed in (FIGURE 2.1) Due to their small size and flexibility for 

integration with other optical components, PCs have become promising candidates to 

realize desired optical properties in many optical devices, especially for optical integrated 

circuits [39, 40]. Many interesting optical phenomena that do not exist in nature have 

been found in PCs, including photonic band gaps (PBGs) [39, 41-44], negative refraction, 

superprism effects, and self-collimation. 
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A PBG prohibits light propagation in a PC within a certain frequency range. One 

may incorporate defects in such PBG structures to allow desired modes to propagate. 

There have been different applications utilizing the PBG property, for example, mirrors 

[45], filters [46, 47], waveguides [48-50], beam splitters, [51], and PC lasers [52, 53]. A 

PC often requires a large refractive index contrast between the materials used to open a 

PBG [39, 54, 55]. Therefore, the materials that can be used for this purpose are limited. 

In addition to the PBG property, PCs can also possess complicated photonic band 

structures allowing light to display strong dispersion and anisotropy, including negative 

refraction [56-62], self-collimation [3, 6, 7, 20, 63-69], and superprism effects [70, 71]. 

These phenomena are generally referred to as the dispersion properties of PCs and have 

attracted large attention recently. Instead of searching for a PBG, the wave vector (k-

vector) and the directionality of the band structure become the main focus of related 

studies. Since dispersion properties of a PC do not require a PBG, dispersion properties 

can be realized using materials with low refractive index contrast. Thus materials with 

relatively low refractive index, such as glass [72], chalcogenide glass [7], polymer [73], 

FIGURE 2.1: Examples of 1D, 2D, and 3D PCs. The different colors represent 

materials with different dielectric constants. The defining feature of a PC is the 

periodicity of dielectric material along one or more axes. [39] 
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SiNx [74], and SU-8 [75, 76], can be utilized to provide more design flexibility and 

functionality. 

2.2 Isofrequency diagrams 

To study dispersion properties of PCs, an isofrequency diagram (or wavevector 

diagram) [39] is an essential guide map to determine beam propagation direction. An 

isofrequency diagram is a contour plot of the eigen-frequencies of Maxwell’s equations 

(angular frequency, (k)) in 2D or 3D wave vector space (k-space). It is similar to the 

representation of the band diagram, except band diagrams only plot (k) of the k-points 

along the boundary of the irreducible Brillouin zone (BZ) while isofrequency diagrams 

include (k) of a k-point mesh covering the whole chosen k-space. The required eigen-

frequencies can be calculated using numerical methods, such as the plane wave 

expansion method (PWEM) as will be introduced in Section 3.1. As an example, the band 

diagram of a 2D rectangular lattice structure (FIGURE 2.2(a)) is shown in FIGURE 2.2(b) 

along with its isofrequency diagram in FIGURE 2.2(c). 

The contour lines in 2D isofrequency diagram and contour surfaces in 3D 

isofrequency diagram are usually referred to equi-frequency contours (EFCs) (or 

isofrequency contours [39]) and equi-frequency surfaces (EFSs) (or isofrequency 

surfaces [39]) respectively. EFCs and EFSs of isotropic materials, such as air, are circles 

and spherical surfaces respectively. The radius of each EFC/EFS represents the 

wavenumber (2n /) of the corresponding incident light, where n is the refractive index 

of the material and  is the incident wavelength. In this case, light propagation follows 

Snell’s law. On the other hand, EFCs and EFSs of anisotropic materials, such as many 

PCs, can be different shapes. As a result, by engineering the shape of EFCs/EFSs, one 
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may manipulate beam propagation in such anisotropic materials to create a variety of 

interesting non-conventional optical properties (i.e., dispersion properties of PCs as 

mentioned earlier) to benefit many applications. 

 

Since the direction of propagating light in a medium is the direction of its group 

velocity, vg=k(k), this direction can be determined based on EFCs (and/or EFSs) of the 

incident and propagating media and the incident k-vector [39, 77, 78]. An illustration of 

this concept is shown in FIGURE 2.3 [39], where schematic examples of EFCs of a PC 

FIGURE 2.2: Example of band diagram and isofrequency diagram. (a) Geometry of 

the lattice structure (b) (left) selected k-points along the boundary of the irreducible 

BZ; (right) band diagram of the rectangular lattice structure (c) (left) selected k-point 

mesh in the k-space; (right) isofrequency diagram of the same structure [3] 
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and the incident medium (assumed air) are displayed as indicated. Assume light with 

incident k-vector (blue arrow, FIGURE 2.3) is incident from air to a PC. The propagating 

direction of light in the PC (red arrow ) is the gradient direction of its corresponding 

EFCs at the intersection with the tangential k-vector conservation line (blue dot line) 

away from the air-PC interface. Based on this principle, one may determine the 

propagating direction in a PC (red arrows~) using EFCs as long as the incident 

wavelength and incident angle (corresponding black arrows~) are given. 

 

2.3 Conditions for self-collimation 

Self-collimation only occurs under certain conditions. First, the PC structure must 

show partially or totally flat EFCs; also, at least one of these flat EFCs must intersect 

with their corresponding k-vector conservation lines (the lines indicate surface-parallel k-

vector conservation) at the same frequency (FIGURE 2.3 [39]). Similar principles apply 

to 3D cases, where flat EFS intersecting with the corresponding k-vector conservation 

FIGURE 2.3: Schematic example of EFC in PC (right, red) and corresponding air 

contour (left, black). Arrows show the group velocity directions for a variety of k 

vectors (dots) with different ky components. The horizontal dot line (blue) indicates 

surface parallel k-vector conservation. The flat contour of the PC implies self-

collimation phenomenon. [39] 
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line is essential. These requirements can limit the self-collimation phenomenon, including 

incident angles and/or working wavelengths, as will be discussed in the next section. 

2.4 Quantifying self-collimation performance 

One may describe the performance of self-collimation in terms of three 

parameters: angular collimating range, operating range (in terms of wavelength and/or 

frequency), and degree of self-collimation. 

The angular collimating range is the range of valid incident angles (i) showing 

self-collimation. It is described by |i|   in this dissertation, where  is the half-angle of 

the angular collimating range as shown in FIGURE 2.4(a). In this example, the projection 

of the partially flat EFC parallel to the air-PC interface is shorter than the diameter of the 

corresponding air contour; only light rays incident within the shaded area have their k-

vector conservation lines intersect with the flat EFC. Therefore, the shaded area indicates 

the valid angular collimating range of this case. Only light incident within this valid 

angular collimating range can be collimated. Light incident from other angles does not 

have its k-vector conservation lines intersect with the flat EFC, thus this light will be 

refracted to other directions or may not even be coupled to this PC. On the other hand, in 

the partially flat EFC shown in FIGURE 2.4(b), the projection of the flat EFC parallel to 

the air-PC interface is longer than the diameter of the corresponding air contour, and thus 

“all-angle” self-collimation occurs. “All-angle” self-collimation in 2D representation 

refers to a phenomenon that all incident light in the plane of incidence from -90 degrees 

to 90 degrees (|i| < 90) can be collimated [6]. In a special case of open flat EFCs, “all-

angle” self-collimation is shown regardless of the size of the corresponding air contour 

(FIGURE 2.4(c)). Therefore, open flat EFCs are not essential to show “all-angle” self-
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collimation but remain a preferable characteristic for this purpose. Such open flat EFCs 

can be seen in a rectangular lattice structure proposed by Xu [6] at a specific operating 

frequency. 

 

Operating range () is the range of wavelengths supporting self-collimation. It is 

also represented by its relative form, /c or its equivalent form f/fc, where c, f, and fc 

are the central wavelength, frequency, and central frequency, respectively. The definition 

of this relative operating range is very similar to the expression of the gap-midgap ratio 

used to describe the size of a photonic band gap [39]. Since relative operating range is 

invariant no matter the wavelength of interest, it is a more objective measure of the 

operating range. If a PC structure has multiple open flat EFCs across a broad operating 

wavelength (or frequency) range (FIGURE 2.4(d)), this structure could be a good 

candidate to realize broadband “all-angle” self-collimation. 

In some cases, EFCs are not perfectly flat, thus only a degree of self-collimation 

FIGURE 2.4: Schematic examples of EFCs (color lines) and corresponding air 
contours (circles) of (a) limited angle self-collimation; (b) “all-angle” self-collimation; 

(c) “all-angle” self-collimation by open flat EFC; (d) “all-angle” self-collimation by 

open flat EFC for multiple operating wavelengths. The arrows indicate light 

propagating directions. Shade areas imply the valid angular collimating range of each 

case mentioned; (e) schematic diagram showing the maximum absolute refraction 

angle (|p|max). In this example, the primary collimating direction is the air-PC 

interface normal. 

 
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is achievable. We introduce the maximum absolute refraction angle (|p|max) as a means 

to quantify the degree of self-collimation. The angle |p|max is the largest deviation of the 

propagation direction from the primary collimating direction (FIGURE 2.4(e)); in the 

ideal self-collimation cases mentioned earlier, |p|max = 0. As a result, the smaller the 

value of |p|max, the flatter the EFC, and the better the degree of self-collimation. In this 

case, light beams in the PC would be refracted slightly off the primary propagating 

direction within an angle of |p|max. If multiple frequencies are considered, |p|max refers 

to the overall maximum value of |p|max among all chosen frequencies. Such a virtual 

collimated beam will also slightly diverge as it propagates. However, in case where ideal 

self-collimation performance is not achievable for broadband “all-angle” operation, some 

slight compromises on the degree of self-collimation might be acceptable in order to 

improve both angular collimating range and operating wavelength range. 

The EFC examples given in FIGURE 2.4 illustrate the performance of “in-plane” 

self-collimation in 2D PC structures, where the out-of-plane k-vector is assumed zero 

(kz=0, FIGURE 2.5(a)) But the same principles can be extended to 3D cases, where the 

out-of-plane k-vector is not necessary zero and the valid angular self-collimation range is 

described by an angular collimating “cone” (FIGURE 2.5(b)). In 3D cases, the area and 

the flatness of the EFSs decide the performance of self-collimation. Assume the radius of 

the inscribed circle of the flat EFS is rk, then the acceptance angle () of the angular 

collimating “cone” can be determined by =sin
-1

(rk/ra), where ra is the radius of the 

corresponding air contour surface at the same frequency. If , it refers to ideal 

omnidirectional self-collimation. The term “omnidirectional”, as used in omnidirectional 

mirrors [39], includes all incident angles in the semi-spherical space of the incident 
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medium. In this dissertation, the air-PC interface is assumed extended to infinity so that 

light incident on the “sides” of a PC is excluded in our discussion. To date, 

omnidirectional self-collimation has not yet been reported in any PC structure. 

From an application point of view, a collimating device that can be used for all 

incident angles across a broad operating range is greatly desirable. Therefore, a wider 

angular collimating range and a broader operating range imply broader applicability for 

self-collimation effects. 

 

2.5 Previous self-collimation studies 

Many different lattice structures exhibiting self-collimation have been considered 

by other researchers. It is shown that the performance of self-collimation is strongly 

dependent on the geometry of the PC structures. In the following subsections, these 

lattice structures are reviewed, and their self-collimation performances are discussed. 

2.5.1 3D autocloned stacking structure 

The first PC found showing self-collimation is a 3D autocloned stacking structure. 

This structure was fabricated by depositing alternating layers of Si and SiO2 on a Si 

FIGURE 2.5: Schematic diagram showing the orientation of (a) in-plane, and (b) 

“3D”, self-collimation. The dot fan and dot cone indicate the range of incident angles 

supporting self-collimation, where i and i represent incident angles in the angular 

collimating ranges of the two cases respectively.   and  imply the half-angle and the 

acceptance angle supporting self-collimation of the two cases respectively. If  =90, 

omnidirectional self-collimation occurs. 

i 

 



x 

y 

z 

(a) (b) 

z 

x 

y 

i  
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substrate with a SiO2 buffer that had a hexagonal array of holes, resulting in self-

organized (autocloned) Si/SiO2 stacking layers [67, 79] (FIGURE 2.6(a) [77]) Each layer 

of this structure can be considered a 2D triangular/hexagonal PC slab. In this reference, 

experimental results of a self-collimated beam are presented (FIGURE 2.6(b) [67], top-

plane image) when a TM polarized (magnetic field parallel to the plane, as defined in 

[39]) laser beam (956 nm) is incident from the side of the structure at 15 (|i| = 15). In 

this structure, the self-collimated beam is confined to propagate in plane by the 

alternating layers; and the self-collimation phenomenon is mainly caused by the 

anisotropy of the triangular lattice feature. However, self-collimation in this stacking 

structure only occurs at a specific incident angle for a particular wavelength. 

 

2.5.2 2D PC structures 

Since the discovery of self-collimation phenomenon, many different 2D PC 

structures have been proposed and studied. Generally, PCs with lower geometric 

symmetry tend to support a wider angular collimating range [6] and/or broader operating 

FIGURE 2.6: (a) 3D autocloned PC structure showing self-collimation and 

superprism effect [77] (b) experimental self-collimated beam in the 3D autocloned PC 

structure (top-plane image) [67] 

(a) (b) 
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range of self-collimation. For some frequencies, the form of EFCs mimics the form of the 

BZ of the crystal. In such case, a longer side of the BZ corresponds to a longer flat EFC. 

For example, a four-fold symmetry square lattice has a better chance to have longer flat 

EFCs compared with a six-fold triangular one, which results in a larger angular 

collimating range (FIGURE 2.7) [1]. Therefore, square lattice structures have been 

extensively studied for self-collimation applications [5, 7-9, 13-17, 19-21, 63]. In 

addition to conventional circular scatterers, different scatterer shapes in a square lattice 

structure have also been investigated to improve self-collimation performance and enable 

polarization-independent self-collimation (absolute self-collimation) [5, 80]. Very 

recently, 2D square lattice structures using elliptical scatterers were reported that show 

broadband “all-angle” self-collimation [34]. 

Based on the same principle of breaking the geometric symmetry, 2D rectangular 

and parallelogram lattice structures were proposed [3, 6, 68]. These two structures 

successfully realized “all-angle” self-collimation with a relatively narrow operating range 

[3, 6] and/or relatively broadband self-collimation within limited incident angles [3]. In 

such cases, a shorter side of the BZ implies a better chance to obtain open EFCs [6] 

which is a desired condition for “all-angle” self-collimation as mentioned in Section 2.4. 

An illustration of this concept can be referred to the example shown in FIGURE 2.2. 

Such properties are particularly desirable for self-collimating beam combiners and 

multiplexers. Unfortunately, the operating wavelength ranges of the “all-angle” self-

collimation in these 2D rectangular and parallelogram lattice structures are narrow 

compared to previously mentioned square lattice structure proposed by Liang [34] and a 

hybrid square lattice structure proposed by Hamam [2] (Section 2.5.3). 
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2.5.3 2D complex PC structures 

2D complex PC structures (hybrid lattice structures [2], or superlattice structures 

[81]) refer to PC structures which include multiple sub-lattices and/or different shaped 

scatterers in a unit cell. Recently, Hamam et al. designed a 2D hybrid square lattice 

structure to realize broadband “all-angle” self-collimation [2]. In this structure, a 1D 

waveguide array is superposed with a 2D rod-type square lattice sub-lattice (FIGURE 

2.8). The 1D waveguide array provides the broadband feature while the square sub-lattice 

shows self-collimation phenomenon [2]. This structure supports 2D “all-angle” self-

collimation over a 13 % operating range for TM polarization. This result suggests the 

possibility of achieving self-collimation of polychromatic beams. 

FIGURE 2.7: Example EFCs of (a) a square lattice structure; and (b) a triangular 
lattice structure. Both of the structures are made of dielectric rods (n=2.9; r=0.15a, 

where n, r, and a are refractive index, radius of the rods, and lattice constant, 

respectively) in air [1] 

 

(a) (b) 

a a 
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Although 2D PC structures are capable of realizing broadband “all-angle” self-

collimation, such properties are limited to in-plane propagation (kz=0). In other words, 

light beams in such 2D PCs can only be collimated in the plane with periodicity (x-y 

plane, FIGURE 2.5); a light beam with any non-zero out-of-plane k-vector (kz0) is still 

likely divergent in the third direction (z-direction). One may confine out-of-plane 

propagation using index guiding in 2D PC slabs, but the propagating beams are not 

“truly” 3D self-collimated beams. 

2.5.4 3D PC structures 

As discussed earlier, 3D self-collimation is highly desirable, but 3D structures 

require significant computational resources for numerical calculation, and fabrication of 

3D structures are challenging. As a consequence, there have been relatively few studies 

using 3D structures to realize self-collimation. All the reported 3D self-collimating PCs 

to date are highly symmetric lattice structures, such as simple cubic (sc) lattice structures 

[66, 82, 83], face centered cubic (fcc) lattice structures (including woodpile structures, 

inverse opal structures [84], contact-free woodpile-like structures [85]), and body 

FIGURE 2.8: (a) 2D complex PC showing (b) broadband flat EFCs [2] 

(a) (b) 
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centered cubic (bcc) [64]. As a result, the angular collimating range and operating range 

of self-collimation in these structures are both relatively narrow. And 3D self-collimating 

PCs have only been considered for applications like optical routing [66], optical bends 

and beam splitters [64]. While a PC showing broadband omnidirectional self-collimation 

is highly desired, to date no work has been reported in terms of PC design to achieve this 

goal. 

In this section, we have briefly reviewed current self-collimating PCs. The 

geometrical structure of the PCs discussed and their performance is summarized in 

TABLE 2.1. Self-collimation performance of our proposed structures will be presented in 

CHAPTER 5 and CHAPTER 6. Comparisons between current self-collimating PCs and 

our proposed structures will be discussed in terms of self-collimation performance and 

some practical concerns. 
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PC structures Example self-collimation 

performance 

Reference 

3D autocloned stacking 

structures 
Only a single i was reported 

Only a single  was reported 
TM polarization 

Kosaka et al. 

(1999) [67, 79] 

2D square lattice structures |i|<19
(†)

 

Only a single  was reported 
TM polarization 

Chigrin et al. 

(2003) [1] 

2D square lattice structures 

with pill-void scatterers 
|i|<45; /c=2.8 %

(†)
 

Absolute self-collimation 

Xu et al. (2009) 

[80] 

2D square lattice structures 

with elliptical scatterers 

“All-angle” self-collimation 

(|i|<90) 

/c=10.9 %
(†)

 for TM 
polarization (rod-type structure) 

/c=9 %
(†)

 for TE polarization 

(hole-type structure) 

Liang et al. 

(2010) [34] 

2D rectangular lattice 

structures 

“All-angle” self-collimation 

(|i|<90) 

/c=4 %
(†)

; TE polarization 

Gao et al. 

(2008) [3] 

|i|<10
(†)

; /c=23 %
(†)

; TE 

polarization 

Gao et al. 

(2008) [3] 

2D complex lattice structures “All-angle” self-collimation 

(|i|<90) 

/c=13 %; TM polarization 

Hamam et al. 

(2009) [2] 

3D sc |i|<29 for |p|max~6.7
(†)

 

Only a single  was reported 

Lu et al. (2006) 

[82] 

3D woodpile structures (fcc) |i|<23.6
(†)

 for average curvature 

0.134 

Only a single  was reported 

Iliew et al. 

(2005) [84] 

3D bcc |i|<20 for |p|max~0.52
(†)

 

Only a single  was reported 

Shin et al. 

(2005) [64] 

 

TABLE 2.1: Summary of current self-collimating PCs and their performance. 

†Determined (calculated by us) based on the published data 

 



20 

2.6 Key features for broadband “all-angle” self-collimation 

To summarize, there are three keys to obtain broadband “all-angle” self-

collimation in 2D PCs. First, the structure must have periodicity along the desired 

collimating direction [2]; it provides the chance for the curvature of the EFC to flip sign, 

resulting in the flat EFCs (EFSs for 3D cases) required for self-collimation. This is the 

conventional criteria for the self-collimation phenomenon. Second, the structure is 

preferred to include (to some extent) an isolated waveguiding configuration along the 

desired collimating direction; such features provide broadband properties in higher-order 

bands, similar to the concept of tight-bonding bands in solid state physics [2]. The 

waveguiding configuration can be, for example, the 1D waveguide in Hamam’s hybrid 

square lattice structure [2], and the aligned elliptical scatterers in Liang’s square lattice 

structure [34], the aligned pill-void scatterers in Xu’s square lattice structure [80], and the 

aligned circular scatterers in Gao’s rectangular lattice structure [3]. Third, structures with 

lower geometrical symmetry tend to show a wider angular collimating range. This result 

can be understood in terms of the size of the 1
st
 BZ. Structures with lower geometrical 

symmetry usually have 1
st
 BZs that have less symmetrical shapes. A longer side of the 1

st
 

BZ corresponds to a longer flat EFC for cases where the form of the EFCs mimics the 

form of the BZ of the crystal [1]. In many other cases, a shorter side of the 1
st
 BZ 

perpendicular to the desired collimating direction can help to obtain open flat EFCs, thus 

resulting in a wider angular collimating range [6]. Such concepts can be found in 2D PCs 

supporting “all-angle” self-collimation, including rectangular, parallelogram, and 

rhombus lattice structures [3, 6, 86]. These design rules will be extended to 3D to realize 

broadband omnidirectiona” self-collimation in CHAPTER 6. 



CHAPTER 3: NUMERICAL METHODS & MATHEMATICAL BACKGROUND 

 

 

Numerical methods are of critical importance for modeling and simulation of the 

optical properties of PCs, including band diagrams and/or isofrequency diagrams, 

modeling field distributions, and to determine transmission and/or reflection efficiency. 

In this chapter, numerical methods applied in this dissertation are discussed, including the 

plane wave expansion method (PWEM), the finite-difference time-domain method 

(FDTD), and rigorous coupled-wave analysis (RCWA). The purposes and basic 

principles of these numerical methods are introduced in the following sections. In 

addition, numerical methods are required to model periodic/quasi-periodic irradiance 

distributions resulting from the fractional Talbot effect, which are used as design 

templates to obtain Talbot crystals (details in CHAPTER 4). To this end, related 

mathematical concepts behind the fractional Talbot effect are also introduced. 

3.1 Plane wave expansion method 

The PWEM [55, 87-90] is a popular numerical method to calculate band diagrams 

and isofrequency diagrams of PCs. This approach solves Maxwell’s equations as an 

eigenvalue problem, where the eigenvalues represent the angular frequencies of the 

existing modes in the PC while the eigenvectors represent the amplitude coefficients of 

the fields. In the PWEM, the dielectric function and field are expanded by Fourier series 

in reciprocal space (k-space). Due to slow convergence of the Fourier series for structures 

with high refractive index contrast (such as metal), the PWEM is best suited to analyze
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periodic structures with low to moderate index contrast [89]. 

In a source-free non-magnetic medium, the two Maxwell’s equations relating 

electric field (E(r)) to magnetic field (H(r)) are: 

    00  rHirE



 

(3.1) 

      00  rErirH



 

(3.2) 

 

where 0 and 0 are the free-space permittivity and permeability of the material 

respectively, (r) is the dielectric function, and  is the angular frequency. Decoupling 

these equations can lead to the master equation [39]: 
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where c is the speed of light in vacuum. Since the dielectric function is assumed to be 

periodic, it can be expanded by Fourier series, such that 

  rGi

G

Ger






   (3.4) 

where G is the Fourier transform of the dielectric function and G


 are the expansion 

vectors in reciprocal space. The expansion vectors are a set of finite-numbered plane 

waves. Based on Bloch’s theorem [39, 91], a mode in an infinite PC can be expanded as a 

sum of an infinite number of plane waves. Therefore, the magnetic field in Eq. (3.3) can 

be described as [87]: 

   
l

rGki

lG

lG eeHrH ˆ
,

,


  (3.5) 

where HG is the coefficient of the field component along the direction of lê , and k


 is the 

wave vector. The index l is equal to 1 or 2, so that lê  represents the two unit vectors 
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perpendicular to the propagating direction Gk


  (i.e. 1̂e , 2ê , and Gk


  are perpendicular 

to each other). When Eq. (3.4) and Eq. (3.5) substitute back into Eq. (3.3), a set of linear 

equations is formed [88, 92]: 
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Eq. (3.6) is an eigenvalue problem [39, 93] and can be solved using an 

eigensolver, such as MATLAB™. In a 2D PWEM problem, assume Gk


 , 1̂e  are in the 

x-y plane, and 2ê  is along the z-direction. Then H1 corresponds to TM polarization (H 

components are only in x-y plane [39]) while H2 corresponds to TE polarization (H 

components are along z-direction [39]). One may further specify Eq.(3.6) to two different 

equations for TM and TE polarizations respectively [94]: 
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The following procedures describe the implementation of the PWEM:  

1. Define primitive lattice vectors ( 1t , 2t , 3t ) of a unit cell 

2. Define dielectric function (r) of the unit cell 

3. Construct expansion vectors in terms of the reciprocal lattice vectors ( 1T , 2T , 3T ). 

Obtain the convolution matrix  'GG


  by applying Fourier transform to (r) 

4. Construct the “global matrix” for the eigenvalue problem, which is 
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5. Solve the eigenvalue problem 

In procedure 3, the number of expansion vectors (the number of plane waves used) 

is related to the accuracy of the calculated results. The more plane waves used, the closer 

the calculated results will be to the converged values. However, this increases the 

required computational memory and time. A convergence study is necessary to determine 

the proper number of plane waves to use. In this dissertation, the number of plane waves 

is described by the following manner: assume a plane wave in the expansion vector set is 

labeled by an index (p, q, r), then the number of plane waves in each direction is 2P+1, 

2Q+1, and 2R+1 respectively, where |p|P, |q|Q, |r|R and P, Q, R are integers. The total 

number of plane waves is then (2P+1)*(2Q+1)*(2R+1). In procedure 4, if the structures 

under study do not have simple geometries allowing the use of the analytical Fourier 

transform, then the numerical fast Fourier transform (FFT) has to be applied [88]. 

In this work, the PWEM is used to obtain band diagrams and isofrequency 

diagrams of PCs. Three software packages are chosen: an in-house source code written in 

MATLAB is mainly used for 2D simulation (Appendix A); a commercial software 

package Rsoft BandSOLVE
TM

 [95] is used to confirm the results. Lastly, a freely 

distributed software package, the MIT Photonic Bands (MPB) package [87], is used for 

3D simulation. 

3.2 Finite-difference time-domain method 

The FDTD method [96, 97] is a rigorous solution to Maxwell’s equations, and is a 

flexible technique for broadband characterization and field visualization. It allows the 

simulation of almost any structure, including non-periodic and complicated structures. In 

addition, this scattering algorithm can also be used to calculate eigen-modes and obtain 
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band diagrams. 

In the FDTD method, the structures under study are represented by discrete grid 

points (the Yee’s mesh [97]) in the spatial domain. The E and H field components at all 

grid points are then computed by iterating the time-dependent Maxwell’s equations over 

time. In a source-free medium, the time-dependent Maxwell’s equations can be written as 

six scalar equations, where the temporal change in the electric field is dependent on the 

spatial variation of the magnetic field, and vice versa: 
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The FDTD method discretizes these equations via central differences in time and 

space: the E and H field components are interlaced on the Yee’s mesh in the spatial 

domain (FIGURE 3.1), and time is broken up into discrete steps of t. Maxwell’s 

equations are iteratively solved by alternatively computing the E and H fields at 

subsequent t/2 intervals. For example, the E field components are computed at times 

t=mt while the H field components are computed at t=(m+0.5)t, where m is an integer. 

This method results in six equations that can be used to compute the field at a given mesh 

point, denoted by integers (i, j, k): 
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where x, y, z are the grid spacings in their respective directions. 

 

The weakness of the FDTD method, however, is computational expense. The 

amount of required memory scales inversely with the grid size needed to approximate the 

profile. While a larger grid size is preferred for the sake of saving computational memory, 

the grid size must meet the following criteria. First, the grid spacing must be small 

FIGURE 3.1: Yee’s mesh [97] 
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enough to resolve the finest feature of the structure. Second, the grid spacing must be 

small enough to resolve the shortest wavelength of interest. It is typical to use /10~/30 

for the grid spacing, where  is the shortest wavelength in the region of higher refractive 

index material. 

In this dissertation, a commercial software package, Rsoft FullWAVE
TM

 [98] is 

used to implement the FDTD method. Periodic boundary conditions and perfectly 

matched layers (PMLs) [99] are both considered for a chosen limited size PC. Dielectric 

structure extending into the PML can be treated as if it extends to infinity. 

3.3 Rigorous coupled-wave analysis 

RCWA [100-102] calculates the diffraction efficiency and field distribution for 

periodic structures with low to moderate index contrast. It is a fully-vectorial solution of 

Maxwell’s equations, and is thus suitable for structures with periods at and below the 

scale of the illuminating wavelength. RCWA is a semi-analytical method, where the 

wave equation is solved analytically in the longitudinal direction and periodic boundary 

conditions are applied in the transverse direction. In other words, the periodic structures 

under study are assumed extended to infinity in the transverse direction and may have 

arbitrary variations in the longitudinal direction, as long as the two semi-finite regions 

adjacent to the periodic structure are homogenous. Therefore, RCWA is usually used in 

the design process of applications involving subwavelength structures, PCs, and other 

grating-assisted devices. 

To implement the RCWA method, structures are divided into layers that are 

uniform in the longitudinal direction. In each layer, the electromagnetic fields are 

represented as a sum of coupled waves (or spatial harmonics [89]). A periodic dielectric 
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function is represented using Fourier harmonics. Each coupled wave is related to a 

Fourier harmonic, allowing Maxwell’s equations to be solved in the Fourier domain as an 

eigen-value problem. The eigen-vectors characterize the spatial field distributions in each 

layer while the eigen-values indicate the longitudinal behavior in terms of a complex 

propagation constant which incorporates loss, gain, and coupling between modes. The 

overall diffraction efficiencies are calculated at the end of simulation by applying the 

boundary conditions at the interfaces of the layers. For simple structures that can be 

described well with few Fourier series terms, RCWA is especially fast and efficient. 

The derivation of RCWA starts from expanding Maxwell’s curl equations (Eq. 

(3.1) and Eq. (3.2)) to six coupled equations: 
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In these equations, the dielectric material of a chosen layer is characterized by a diagonal 

permittivity tensor with respect to the principle axes. The diagonal elements are rx , ry , 

and rz . By substituting Eq. (3.10c, f) into Eq. (3.10a, b, d, e), Maxwell’s equations can 

be described by the following transverse format: 
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Based on Bloch’s theorem, field components in a periodic layer can be described as: 

   zik

m

zik

m

m

qpmx

p q

qypxi
ykxki

x
mmyxyx egefaeeE




















  ,,,

22

00



 (3.12a) 

   zik

m

zik

m

m

qpmy

p q

qypxi
ykxki

y
mmyxyx egefaeeE




















  ,,,

22

00



 (3.12b) 

   zik

m

zik

m

m

qpmx

p q

qypxi
ykxki

x
mmyxyx egefbeeH




















  ,,,

22

00



 (3.12c) 

   zik

m

zik

m

m

qpmy

p q

qypxi
ykxki

y
mmyxyx egefbeeH




















  ,,,

22

00



 (3.12d) 

 

Substituting Eq. (3.12) into Eq. (3.11) results in an eigen-value equation that can be 

solved as a regular eigen-value problem.  

In this dissertation, a commercial RCWA software packages, GSolver©  [103], is 

used to calculate the complex field coefficients needed in the rigorous diffraction theorem 

to obtain periodic/quasi-periodic irradiance distributions based on the Talbot effect.  

TABLE 3.1 lists and describes all the numerical methods used. 
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Numerical Method Purpose Software Used 

Rigorous couple wave 

analysis (RCWA) 

To obtain complex 

coefficients required in the 

propagation field from an 

optical grating (Eq. (3.16)) 

GSolver ©  

Plane wave expansion 

method (PWEM) 

To obtain EFCs/EFSs of a 

PC 

1. Custom source code 

using MATLAB 

2. Rsoft BandSOLVE
TM

 

3. MPB package 

Finite domain time domain 

method (FDTD) 

To simulate beam 

propagation and to 

determine transmission 

efficiency 

Rsoft FullWAVE
TM

 

 

TABLE 3.1: List of numerical methods used and their purposes 

 

3.4 Mathematical background of the fractional Talbot effect 

The fractional Talbot effect is a self-imaging property of periodic structures (such 

as optical gratings), that will be applied to generate periodic/quasi-periodic irradiance 

distributions for Talbot crystals (CHAPTER 4). To this end, the electromagnetic theory 

behind the fractional Talbot effect is introduced in this section. A 1D optical grating is 

used as a simple example to describe the concept. 

Assume a 1D grating (with periodicity in x-direction) is illuminated with coherent 

plane waves, where the incident and propagating medium are both homogeneous with 

refractive index of ni and nt respectively (FIGURE 3.2). The transmitted wave fields 

beyond the grating (along z-direction) can be expressed in the form of the Rayleigh 

expansion [104-106]. 
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The coefficient Tm represents the complex amplitudes of the m
th

 transmitted diffraction 
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order; mk


 and mt


 are the wave vectors in the incident medium and propagating medium 

respectively. Based on Bloch’s theorem and surface-parallel k-vector conservation, we 

have [39, 105]: 
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where  is the grating period along the x-direction, and k is the wave number in vacuum. 

Assuming normal incidence (i=0) for simplicity, Eq. (3.13) can be rewritten as: 
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Eq. (3.16) describes the wave field distributions after light passes through an 

optical grating. The complex coefficient in Eq. (3.16), Tm, can be determined by applying 

the electromagnetic boundary conditions at the boundary of the grating and the 

propagating medium (z=0 in FIGURE 3.2) [35, 105]. At the boundary, generally, the 

various components of the electric and magnetic fields are coupled through Maxwell’s 

equations and cannot be treated independently [35]. In many cases where the grating 

period is much larger (typically five times larger or more) than the illuminating 

wavelength (>>), the coupling effect of the boundary conditions on the electric and 

magnetic fields may be small [35]. Thus scalar diffraction theory may be used for simple 

calculation [35, 36]. This means the complex coefficients, Tm, in Eq. (3.16) can be 

expressed by Fourier transform of the input distribution, UT(x;z=0) [36]. However, if the 

grating period is approximately the same scale as the illuminating wavelength (~), the 

complex coefficients in Eq. (3.16) then have to be obtained using rigorous numerical 
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methods, such as RCWA, as introduced in Section 3.3. 

 
In this dissertation, rigorous numerical methods are required to calculate the 

irradiance distributions because we intentionally chose a grating period on the same scale 

as the incident wavelength. In this case, the resulting periodic/quasi-periodic irradiance is 

relatively simple and can be considered as a design template for 2D complex PCs. This 

concept and approach will be discussed in more detail in Section 4.4. An in-house source 

code to calculate the irradiance distributions from a 1D phase grating was written in 

MATLAB (Appendix B). This code is based on the electromagnetic theory described in 

this section. 

FIGURE 3.2: Geometry for diffraction of a plane wave by a 1D optical grating 
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CHAPTER 4:  INTRODUCTION TO TALBOT CRYSTALS 

 

 

In this chapter, a group of non-conventional 2D PC structures is introduced for 

self-collimation studies. These PC structures are inspired by the periodic/quasi-periodic 

irradiance distributions resulting from the fractional Talbot effect [35-38]; thus such PCs 

are referred to as “Talbot crystals.” Talbot crystals generally have more design flexibility 

compared with conventional PCs. In this dissertation, 2D Talbot crystals are considered 

as options to realize broadband “all-angle” (in-plane) self-collimation as introduced in 

Section 2.4. Talbot crystals have the potential to support these desired properties because 

Talbot crystals are usually complex lattice structures with 2D rectangular or rhombus 

lattice geometries, where complex lattice structures and rectangular lattice structures have 

been demonstrated as good candidates for the purpose mentioned [2, 3, 6]. 

In the following sections, the fractional Talbot effect and the methods used to 

obtain Talbot crystals will be introduced. Derivation of the geometries of Talbot crystals 

is provided and other advantages of Talbot crystals will also be discussed. 

4.1 The fractional Talbot effect 

The Talbot effect refers to a self-imaging property of periodic structures due to 

near field diffraction and interference. When collimated coherent light illuminates a 

periodic structure (including but not limited to an optical grating), periodic and/or quasi-

periodic field distributions are formed along the propagating direction through Talbot 

self-imaging [35, 36, 38, 107, 108]. The longitudinal distance between the periodic 
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structure and the location of the first self-image is defined as one “Talbot distance” (ZT), 

which is a function of the illuminating wavelength () and the period of the periodic 

structure () as described in the following equation. 

2
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


TZ  

(4.1) 

Derivation of the Talbot distance is included in Appendix C. Because of the Talbot effect, 

the field distribution immediately following a periodic structure is replicated at integer 

multiples of the Talbot distance from the periodic structure. In addition, multiple phase-

shifted replicas of the input field distribution are also created at different fractions of the 

Talbot distance. This is referred to as the fractional Talbot effect. 

FIGURE 4.1 gives a simple example showing the basic concept of the fractional 

Talbot effect. The pattern shown in FIGURE 4.1 is the simulation result of the irradiance 

distribution generated from a simple 1D binary amplitude grating. The grating is assumed 

placed in the x-y plane (z=0) with periodicity along the x-direction. If the grating is 

normally illuminated from the left by a coherent collimated beam (plane waves), 

periodic/quasi-periodic irradiance distributions are formed along the +z-direction (refer to 

FIGURE 4.2 for setup orientation). The displayed area in FIGURE 4.1 is ZT (length) by 

2* (width) with arbitrary units. As shown in the figure, the patterns at ZT /2 and ZT have 

the original grating period; the patterns at ZT /4, ZT /6, and ZT /8 have half, one-third, and 

quarter of the grating period, respectively. Therefore, one may observe single images at 

ZT /2 and ZT; double, triple, and quadruple images at ZT /4, ZT /6, and ZT /8, respectively. 

Additional images can also be observed at other fractions of the Talbot distance. 



35 

 

4.2 Talbot crystal geometries 

The geometries of the Talbot crystals are normally rhombus or rectangular lattices, 

but may also include triangular lattices and square lattices in some special cases. This can 

be shown by applying the following simple derivation. 

As mentioned in Eq. (4.1), Talbot distance (ZT) can be described in terms of the 

grating period () and the incident wavelength (). In order to assure the Talbot distance 

is a positive real number, the denominator of Eq. (4.1) must be a positive real number. 

Mathematically, this implies that the grating period should be at least equal to or larger 

than the incident wavelength (). 

Assume  = m*, where m is a positive real number and m  1. Eq. (4.1) can be 

rewritten as 

1
11

22 













mm

m

m

ZT








 

(4.2) 

FIGURE 4.1: 2D irradiance profile from 1D binary amplitude grating (simulation 

result). The image displayed in the figure is ZT in length (z-direction) and 2 in width 
(x-direction) with arbitrary units. The grating has 1/24 (~4.2 %) duty cycle; the 

irradiance distribution is calculated based on scalar diffraction theorem assuming the 

grating period is much larger than the incident wavelength. 
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Since 


m
mm

m


 12
, we have 

ZT   (4.3) 

According to this result, the Talbot distance must be equal or larger than the 

grating period. This implies that the irradiance distributions based on the fractional 

Talbot effect have longer longitudinal periods (along the propagation direction; z-

direction as in FIGURE 4.1) than lateral periods (along x-direction). Therefore, 2D 

Talbot crystals are generally rhombus or rectangular lattice structures. These structures 

have relatively lower geometrical symmetry, which have a better chance to support 

broadband “all-angle” self-collimation as mentioned earlier (Section 2.5.2 and Section 

2.6). 

4.3 Realization of the fractional Talbot effect 

To realize the fractional Talbot effect experimentally, a collimated coherent light 

source and a periodic structure are essential. The required periodic structure could be any 

periodic optical component, including optical gratings, phase masks, and photonic 

crystals. The periodicity of the periodic structure could be in 1D, 2D, and even 3D. If 1D 

periodic structures are used, 2D periodic/quasi-periodic irradiance distributions are 

generated (in x-z plane as in FIGURE 4.2). Since the irradiance in the third direction (y-

direction) is assumed uniform, it is usually not displayed for the sake of convenience. On 

the other hand, if 2D or 3D periodic structures are used, then 3D periodic/quasi-periodic 

irradiance distributions are formed based on the same principle. In this dissertation, only 

1D optical gratings are considered for the self-collimation study. 
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4.4 Manipulating the irradiance distributions 

The irradiance distributions resulting from the fractional Talbot effect can be 

easily manipulated through the control of the illuminating wavelength and the choice of 

the optical grating. A wide variety of novel irradiance distributions can be synthesized 

through design of the grating structures. As will be introduced in Section 4.5, these 

irradiance distributions will be used as the design templates for Talbot crystals. Therefore, 

Talbot crystals generally have significant design flexibility that can enable desired optical 

properties (in our case for example, broadband “all-angle” self-collimation). 

There are generally two kinds of optical gratings available for this purpose, 

amplitude gratings and phase gratings. Amplitude gratings modulate the irradiance of the 

illuminating light while phase gratings modulate the phase. The fundamental behavior of 

the fractional Talbot effect is the same for both kinds. However, phase gratings give 

additional degrees of freedom in engineering more complex irradiance distributions in 

fractional Talbot planes. The irradiance distribution shown in FIGURE 4.1 is generated 

from a 1D amplitude grating. The rest of this dissertation will focus on irradiance 

distributions generated from 1D phase gratings for the reason given above. 

For a binary phase grating, grating period (), phase step (), and duty cycle (or 

y 

z 

x 

FIGURE 4.2: Schematic diagram of the setup to generate periodic/quasi-periodic 
irradiance distribution based on the fractional Talbot effect. Plane waves are normally 

incident to the periodic structure (optical grating) as indicated by the array of arrows. 
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opening factor, which is the ratio of grating opening divided by the grating period) are 

three main parameters that can affect resulting irradiance distributions. FIGURE 

4.3(a)~(c) are sample irradiance distributions generated from 1D phase gratings with 

different grating periods and/or duty cycles. All the cases in FIGURE 4.3 are simulation 

results calculated based on rigorous diffraction theory assuming the same incident 

wavelength (=364 nm) and grating phase step (=0.5). This example shows that the 

irradiance distributions resulting from the fractional Talbot effect can be very different 

even if only one grating parameter is changed. 

In general, irradiance distributions resulting from a grating with a smaller period 

to wavelength ratio (/) and/or larger duty cycle are relatively simple compared with 

those from a grating with a larger period to wavelength ratio and/or smaller duty cycle. 

For example, the irradiance distributions shown in FIGURE 4.3 (/=1.1, 1.5, 1.5; duty 

cycle=1/8 (12.5 %), 1/8 (12.5 %), 1/2 (50 %) in the case of (a), (b), (c) correspondingly) 

are relatively simple compared with the one given in FIGURE 4.1 (/>>5; duty 

cycle=1/24 (~4.2 %). 

 

FIGURE 4.3: Examples of irradiance distributions resulting from the fractional Talbot 

effect. Assume =0.364 m; Different grating parameters are used in these cases (a)  

=1.1; duty cycle=12.5 %; (b)  =1.5; duty cycle=12.5 %; (c)  =1.5; duty 

cycle=50 %. The phase step is /2 (=/2). (Plots are not to scale.) 

(a) (b) (c) 
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4.5 Realization of Talbot crystals 

In this dissertation, two methods are considered to realize Talbot crystals. 

Descriptions of each case are given as follows. 

The first method is to assume the irradiance distributions can be directly 

converted to dielectric structures through exposure of photosensitive materials and 

subsequent processing, i.e. some Talbot crystals have the potential to be fabricated by a 

single exposure using the periodic/quasi-periodic irradiance distribution as the exposure 

light source. For the simple example given in FIGURE 4.2 (1D grating cases), assume a 

3D photosensitive material (photosensitive bulk) is placed behind the grating before the 

light is illuminated. Ideally, since the photosensitive bulk is only crosslinked where the 

irradiance is higher than a exposure threshold, a 3D structure (with 2D periodicity) is 

formed in the photosensitive bulk after the irradiance distribution generated in the 

photosensitive bulk. For simplicity, the examples given later all belong to this case. 

Similar ideas can be extended to 2D grating cases, where the generated irradiance 

distributions (the light source) and the resulting Talbot crystals both have 3D periodicity. 

But such cases are excluded in our discussion. After the exposed photosensitive bulk is 

developed, a basic Talbot crystal (comprised of the photosensitive material and air) is 

obtained. If a Talbot crystal made with higher index materials is desired, it can be 

obtained by infiltrating the basic Talbot structure with the desired material then 

dissolving the developed photosensitive material. The former process can be done using 

inverse opal methods [109, 110] and/or atomic layer deposition (ALD) [111].  

The second method of realizing Talbot crystals is to use the irradiance distribution 

as a design template. Talbot crystals are then created by mimicking the main features of 
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the irradiance distributions. In this case, Talbot crystals can be fabricated through 

techniques used for conventional 2D PCs, including conventional photo-lithography or 

direct e-beam or laser writing to expose/draw the desired pattern in the photosensitive 

material. The developed pattern may be further converted to other dielectric structure 

with subsequent process, including deposition, etching and/or lift-off. 

4.5.1 Talbot crystals directly converted from the irradiance distributions 

To convert the irradiance distribution to a dielectric structure, a simple irradiance 

threshold is assumed for dielectric contours. FIGURE 4.4 shows several examples of 

resultant Talbot crystals. FIGURE 4.4 (a), (b), and (c) correspond to the irradiance 

distributions shown in FIGURE 4.3 (a), (b), and (c), assuming the same irradiance 

threshold. In these examples, areas where the irradiance is higher than the threshold value 

(40 % of the maximum irradiance) are indicated in red, while areas where the irradiance 

is lower than the threshold value are indicated in blue. These two colors represent two 

different media. The red areas can be dielectric material while blue areas imply air, and 

vice versa, depending on the fabrication method and the type of light sensitive material 

used. For instance, assume a negative tone light sensitive material is exposed to an 

irradiance distribution; a dielectric structure can be formed by the remaining areas (the 

red areas) after subsequent development to remove unexposed portions (the blue areas). 

As seen in FIGURE 4.4, different Talbot crystals can be obtained based on different 

irradiance distributions. 



41 

 

In addition, different Talbot crystals can be obtained based on a chosen irradiance 

distribution but assuming different irradiance thresholds. As in FIGURE 4.5, these 

dramatically different Talbot crystals result from the irradiance distribution shown in 

FIGURE 4.3 (a) but assume different irradiance thresholds (40 %, 30 %, and 10 % of the 

maximum irradiance in FIGURE 4.5 (a), (b), and (c), respectively). 

 

4.5.2 Talbot crystals created based on the main features of the irradiance distributions 

The second method to obtain Talbot crystals is to use the irradiance distribution as 

a design template. In this case, Talbot crystals are created by mimicking the main features 

of the irradiance distributions also in a binary manner (i.e. the resulting Talbot crystals 

only contain two materials). The example shown in FIGURE 4.6 is one such pattern. The 

FIGURE 4.4: Examples of the Talbot crystals directly converted from the irradiance 
distributions by assuming a simple threshold as the contour reference. All of the cases 

are converted from the previous examples individually by assuming the threshold 

value is 40 % of the maximum irradiance. (Plots are not to scale.)  
 

 

 

 

(a) (b) (c) 

   

ZT=1.3254 m ZT=2.5738 m ZT=2.5738 m 

FIGURE 4.5: Examples of the Talbot crystals directly converted from an irradiance 
distribution by assuming different irradiance thresholds as the contour reference. The 

threshold value of (a), (b), and (c) is 40 %, 30 %, and 10 % of the maximum 

irradiance, respectively. (Plots are not to scale.) 

 

(a) (b) (c) 

   

ZT=1.3254 m ZT=1.3254 m ZT=1.3254 m 
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pattern was created based on the irradiance distribution shown in FIGURE 4.3 (b). This 

Talbot crystal is very similar to the example shown in FIGURE 4.4 (b), but these two 

structures are not exactly the same. The created Talbot crystals can be considered 

complex lattices made by superimposing multiple sub-lattice structures. Such complex 

structures are usually designed to present combined optical properties from different sub-

lattice structures, for example, combining self-collimation behavior with broadband 

properties [2]. 

 

Procedures to generate and simulate the properties of Talbot crystals are outlined 

in TABLE 4.1. After generating the dielectric function describing the Talbot crystal, the 

dielectric function is imported into the PWEM source code for dispersion property 

studies, as discussed in more detail in CHAPTER 5. 

 

ZT=2.5738 m 

FIGURE 4.6: Example of Talbot crystal created by mimicking the main features of 

the irradiance distribution resulting from the fractional Talbot effect. This particular 

example is created based on the second irradiance distribution as in FIGURE 4.3. 
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TABLE 4.1: Procedures to generate and simulate the optical properties of Talbot 

crystals 

Obtain the complex coefficients required in the propagation field 

from an optical grating (Eq. (3.16)) using RCWA method 

Obtain the irradiance distributions based on the Talbot effect 

using rigorous diffraction theorem 

Obtain the dielectric functions describing the Talbot crystals 

by assuming a single threshold value 

Import the dielectric functions to the PWEM code to obtain 

dispersion diagrams and/or isofrequency diagrams 

Create the dielectric functions describing the Talbot crystals 

using the irradiance distributions as design templates 



CHAPTER 5: SELF-COLLIMATION IN COMPLEX RHOMBUS LATTICE TALBOT 

CRYSTALS 

 

 

In this chapter, a complex rhombus lattice Talbot crystal is investigated in detail 

for self-collimation properties. This Talbot crystal was created by mimicking the main 

features of an irradiance distribution pattern generated from a 1D phase grating, as 

introduced in Section 4.5.2. A set of custom codes written in MATLAB is used to 

generate the dielectric function of the structure (Appendix D). The Talbot crystal 

presented here contains several desired structure geometries for broadband “all-angle” 

self-collimation. In the following sections, the structure design is described, the EFCs are 

presented, and the self-collimation performance is discussed in detail. Transmission 

efficiency and related analysis of some practical performance issues are also given. 

5.1 Numerical method and notation for isofrequency diagrams 

The EFCs shown in this chapter are calculated by the PWEM as mentioned in 

Section 3.1. A set of custom codes written in MATLAB is used for this purpose 

(Appendix A). A commercial software package, Rsoft BandSOLVE
TM

, is also used to 

confirm the results. The total number of plane waves is chosen so that the calculated 

eigen-frequencies show convergence to within 1 % of their corresponding converged 

values. The number of plane waves along each primitive lattice vector is assumed to be 

proportional to the magnitude of the corresponding reciprocal lattice vector, thus the total 

number of plane waves used in different structures varies. For the structures under study, 

the desired convergence is achievable at the fifth band using 11~17 plane waves along
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the shorter reciprocal lattice vector (assuming the number of plane waves along the other 

reciprocal lattice vector is defined accordingly). The number of plane waves used in each 

structure will be mentioned along with their EFC results. In a band diagram or an 

isofrequency diagram, eigen-frequencies of Maxwell’s equations (/c) are typically 

presented in their normalized form, a/2c or a/, where a is the lattice constant. 

However, since Talbot crystals might not have a well defined lattice constant, we present 

the eigen-frequencies in the form of /2c or 1/ with unit of m
-1

. 

5.2 Description of the structure 

The complex rhombus lattice Talbot crystal discussed in this chapter was created 

by mimicking the main feature of the irradiance distribution shown in FIGURE 4.3(b). 

The Talbot crystal consists of two different sized elliptical dielectric rods embedded in an 

air background (FIGURE 5.1(a)). These elliptical rods are periodically spaced as 

indicated. The bigger elliptical rods form two identical rhombus sub-lattices (FIGURE 

5.1(b)), while the smaller elliptical rods form a rectangular sub-lattice (FIGURE 5.1(c)).  

Structure parameters are defined as follows to describe this complex rhombus 

lattice structure: the diagonals of the rhombus lattice unit cell in the x-direction/y-

direction as Dx and Dy; the semi-major/semi-minor axes of the bigger elliptical rods as 

SaB and SbB; and the semi-major/semi-minor axes of the smaller elliptical rods as SaS and 

SbS. The original design adopts the parameters from the dimensions of the irradiance 

distribution by assuming =0.364 m and =0.546 m with the corresponding Talbot 

distance, ZT=2.5738 m. Since the lateral period (Dy) and the longitudinal period (Dx) of 

the resulting irradiance distribution are equivalent to the grating period and the Talbot 

distance respectively, Dy==0.546 m and Dx=ZT=2.5738 m. Based on the dimensions 
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of the irradiance pattern shown in FIGURE 4.3(b), the rest of the parameters are chosen 

as follow: SaB=0.17 m, SbB=0.06 m, SaS=0.12 m, and SbS=0.05 m. 

 

5.3 Comparison of structures made of different materials 

Here we consider two different dielectric materials to compose the elliptical rods 

in an air background. The refractive indexes used in the numerical simulation are 1.642 

and 3.464, corresponding to possible materials such as a photo-sensitive material (SU-8, 

(n=1.653~1.52 within the range 325 nm~1650 nm [112]), and silicon (Si, 

n=3.5193~3.4321 (=12.4~11.8) within the range 1200 nm~3500 nm [113]). SU-8 is a 

negative photoresist commonly used for micro-electro-mechanical systems (MEMS), and 

is a potential material to realize Talbot crystals directly converted from the irradiance 

2*SaS 

2*SbS 

x 

y 

2*SaB 

2*SbB 

yD  

xD  
4

yD
 

8

xD
 

FIGURE 5.1: Complex rhombus lattice structure with elliptical rods embedded in air 

background. This structure can be considered a superposition of two rhombus sub-

lattices and a rectangular one as shown in (b) and (c), respectively. Dotted lines 

indicate the unit cell of the structure and the sub-lattices. The two identical rhombus 

sub-lattices are related by a horizontal shift. 

 

(a) 

(b) 

(c) 
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distributions resulting from the fractional Talbot effect (Section 4.5.1). For simplicity, the 

refractive index in each case is assumed wavelength-independent throughout any 

wavelength range of interest.  

First, the refractive index of the rods is assumed n=1.642. FIGURE 5.2(a) shows 

the fifth band EFCs of the complex rhombus lattice structure mentioned for TM 

polarization. The total number of plane waves used was 297 (11 along one reciprocal 

lattice vector; 27 along the other). The rectangular-like EFCs at frequencies about 1.4 

m
-1

 to 1.45 m
-1

 (=689 nm~714 nm; /c=3.6 %) imply potential self-collimation 

phenomenon. The EFCs at 1.4 m
-1 

(=714 nm) are displayed in FIGURE 5.2(b). In the 

figure, the dashed circle is the corresponding air-contour at the same wavelength and the 

dashed parallel lines are the construction lines for surface-parallel k-vector conservation, 

assuming the air-PC interface is along the -M1 direction. There are several separate flat 

EFCs along the -K3 direction, implying the self-collimation phenomenon will occur in 

separate angular ranges. These ranges are |i|<2, 12<|i|<18.5, 31.5<|i|<38 and 

54.5<|i|<66 as indicated by the shaded areas. Light incident from other angles will be 

refracted to other directions (EFC is not parallel to the air-crystal interface) or cannot be 

coupled into this structure (the construction line does not intersect with the EFC, i.e. such 

modes do not exist in the PC structure based on k-vector conservation). Similar analysis 

can be applied to other wavelengths from 689 nm to 714 nm. As a result, using n=1.642 

as the refractive index of the rods only shows limited-angle self-collimation within the 

wavelength range mentioned. 
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i

i
p

 0p

FIGURE 5.2: (a) Fifth band EFCs for TM polarization of the Talbot crystal shown in 

FIGURE 5.1(a). Hexagonal area (dotted line) is the first BZ and special k-points are 

indicated in the figure. (b) Fifth band EFCs at frequency of 1.4 m
-1 

(=714 nm). The 

dashed circle is the air contour at the same frequency, and dashed parallel lines are 

construction lines for surface-parallel k-vector conservation. The shaded areas indicate 

the seven ranges of the incident angles that exhibit self-collimation behavior. Two 

examples of incident light are given here. Bold arrows show the case where light is 

incident within the angular self-collimation range (p=0); thin arrows represent the 
case where light is not incident from those angle ranges showing self-collimation 

phenomenon (p0). The arrow style () indicates the directions of incident light 

while the arrow style () shows the directions of refracted light. 
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On the other hand, if the refractive index of the rods is assumed n=3.464, the 

complex rhombus lattice structure shows a broadband open wavy EFCs (in short, “wavy” 

EFSs) from 0.66 m
-1

 to 0.78 m
-1

 (=1282 nm~1515 nm) at the fifth band for TM 

polarization as seen in FIGURE 5.3(a). This result has a reasonable explanation. Because 

modes are easier to concentrate in the dielectric regions with higher refractive index 

contrast [39], the rectangular sub-lattice presents a stronger waveguiding effect, which 

traps more light along the waveguiding direction, thus allowing the EFCs to become 

connected.  

The EFCs presented here were obtained using 697 plane waves (17 along one 

reciprocal lattice vector; 41 along the other). The relative range (f/fc or /c) of these 

“wavy” EFCs is (0.78-0.66)/0.72=16.7 %. The degree of self-collimation (|p|max, as 

defined in Section 2.4) of these open EFCs is 12 (|p|max=12). An example is given for 

0.66 m
-1

 (=1515 nm) in FIGURE 5.3(b). As seen in the figure, light beams incident 

from different angles are refracted to different directions. Although this result is not what 

is desired for self-collimation, this design implies a possibility of showing broadband 

“all-angle” self-collimation if the structure is further optimized. 
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5.4 Broadband virtual “all-angle” self-collimation 

In this subsection, the lattice aspect ratio (Dx/Dy) and the ellipticity of the rods are 

tuned to improve and broaden the self-collimation performance of the Si complex 

rhombus Talbot crystal. These two variables were chosen in our investigation based on 

the idea that structures with reduced geometrical symmetry have tendencies towards 

better self-collimation performance (Section 2.5.2). While tuning the variables mentioned, 

FIGURE 5.3: (a) Fifth band EFCs for TM polarization using Si as the dielectric 
material. Hexagonal area (dot lines) indicates the first BZ with some special k-points 

defined as in the figure. (b) Fifth band EFCs at frequency 0.66 m
-1

 (=1515 nm). 

Dashed circle is the corresponding air contour at the same frequency, and the dashed 

parallel lines are construction lines for surface-parallel wave vector conservation. The 

arrow style () indicates wave vectors of lights incident from different angles, while 

the arrow style () shows their corresponding refracted wave vectors. The insertion 

defines the maximum absolution refraction angle (|p|max) among all the refraction 
angles. 

 

|p|max 

(a) (b) 
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the parameters in the y-direction (i.e. Dy, SbB, and SbS) are assumed constant. Also, all the 

rods were scaled based on the same scaling ratio. We define a general longitudinal 

scaling ratio to describe how these parameters were tuned. The longitudinal scaling ratio 

is the ratio of the value of a chosen parameter (for example, lattice aspect ratio or 

ellipticity of the rods) after stretching/compression to the original value. Longitudinal 

scaling ratios larger than one imply the structure is stretched; while values less than one 

indicate compression. 

In the previously mentioned Si complex rhombus Talbot crystal, the lattice aspect 

ratio and the ellipticity of the bigger rods are 4.7139 (Dx/Dy=2.5738/0.546=4.71) and 

2.83 (SaB/SbB =0.17/0.06=2.83) respectively. To further explore and optimize the 

structure, the lattice aspect ratio was tuned from 4.71 to 6.6 (based on a longitudinal 

scaling ratio from 1 to 1.4 with 0.1 increment), and the ellipticity of the bigger rods was 

tuned from 2.27 to 3.4 (based on a longitudinal scaling ratio from 0.8 to 1.2 with 0.1 

increment). The total number of plane waves used varied from 697 (17 along one 

reciprocal lattice vector; 41 along the other) to 969 (17 along one reciprocal lattice vector; 

57 along the other), depending on the dimensions of the unit cell. Within the domain of 

study, open nearly flat (in short, “nearly flat” assuming |p|max=2 unless otherwise stated) 

EFCs are realized in the fifth band for TM polarization when the lattice aspect ratio is 

equal to or larger than 5.19 (corresponding to Dx  3.25 m for the desired wavelength 

range mentioned). In such cases, the complex rhombus lattice structure can be practically 

applied for “all-angle” self-collimation. 

FIGURE 5.4 shows the relative operating range of the virtual (|p|max=2) “all-

angle” self-collimation under different parameter settings. For chosen lattice aspect ratios, 
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locally a relatively large relative operating range is achieved when the ellipticity of the 

big rods is 2.55. And for a chosen ellipticity of the rods, the relative operating range is 

generally larger with a larger lattice aspect ratio. The largest relative operating range 

within the domain of study is 22.2% when the lattice aspect ratio is 6.6 and ellipticity of 

the bigger rods is 2.55. This range is comparable to the results from a recently published 

hybrid square lattice PC proposed by Hamam [2] based on the same criteria 

(|i|<90|p|max=2; /c= 22.2%). However, our Talbot crystal suffers more diffractive 

reflection [39] than Hamam’s structure, which should be considered with respect to 

practical applications. We did not continue to increase the lattice aspect ratio for this 

reason, as will be discussed in Section 5.4.3. 

 

FIGURE 5.5 displays an example of these “nearly flat” EFCs under the following 

conditions: the lattice aspect ratio is 5.66 and the ellipticity of the bigger rods is 2.55. The 

FIGURE 5.4: Relative operating range of the “nearly flat” (|p|max=2) EFCs in the fifth 

band for TM polarization within the domain of study. The dash circle indicates the 

conditions of a chosen example for EFCs presentation (this section) and transmission 

studies (Section 5.4.2). 

Lattice aspect ratio 
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reason for choosing this structure for further study will be explained later in Section 5.4.3. 

The parameters of the structure are described as follows: Dx=3.5425 m; Dy=0.6263 m; 

SaB=0.1755 m; SbB=0.0688 m; SaS=0.1238 m; and SbS=0.0574 m. These 

dimensions have been rescaled based on the scaling property of Maxwell’s equations [39], 

allowing the nearly flat EFCs to cover the desired wavelength band centered at 1550 nm. 

For this structure, the “nearly flat” EFCs are presented from /2c=0.59 m
-1 

~ 0.7 m
-1

 

(1429 nm~1695 nm). In other words, this structure supports virtual “all-angle” self-

collimation with /c=17.05% relative operating range. Within the wavelength range, 

the refractive index of Si ranges from 3.48 to 3.4644 [113]. Therefore, n=3.464 is a good 

approximation (within 0.46% percentage difference if material dispersion is considered) 

throughout the wavelength range mentioned. The operating wavelength range of our 

complex rhombus lattice Talbot crystal covers wavelengths in the optical communication 

S-band through the U/XL-band from 1429 nm to 1695 nm (centered at 1550 nm). Also 

the virtual “all-angle” self-collimation range can be scaled to cover the two most 

commonly used wavelengths in optical communication at 1310 nm and 1550 nm, if the 

central wavelength is chosen at 1430 nm.  

Structures with such small dimensions and features can be made using 

nanofabrication techniques (i.e., e-beam lithography with subsequent processing. 

However, it should be noted that fabrication of such structures is challenging especially if 

high aspect ratios are required. Further, if the desired operating wavelengths are shorter, 

the corresponding structure dimensions must also be smaller (according to Maxwell’s 

scaling properties [39]). These are concerns to be aware of if such PC structures are to be 

realized. 
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We also explored the EFCs for TE polarization in the same domain of study, but 

no similar phenomenon was found in this case. From an application point of view, a PC 

device supporting broadband “all-angle” self-collimation for both polarizations is highly 

desired. Unfortunately, no PC structure has been reported supporting such properties. 

This result is related to the mode concentration in the “waveguiding configuration” 

described in Section 2.6. Recall that broadband “all-angle” self-collimation is likely to be 

present if the propagating modes are more concentrated in a waveguiding configuration. 

For rod-type PCs (dielectric rods in an air background), the desired waveguiding 

configuration is formed by the dielectric rods (for example, the 1D waveguide in 

Hamam’s hybrid square lattice structure [2], the aligned elliptical scatterers in Liang’s 

square lattice structure [34], and the rectangular sublattice in the complex rhombus 

Talbot crystal presented here). In this case, the TM polarized mode is easier to 

concentrate in the dielectric waveguiding configuration [39] for broadband “all-angle” 

self-collimation. Similar principles applied to hole-type PCs (air cylinders in dielectric 

background), where the waveguiding configuration is formed by the aligned air holes 

(such as the aligned elliptical holes in Liang’s square [34]). Therefore, hole-type PCs 

more easily support broadband “all-angle” self-collimation with TE polarization. 
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5.4.1 Robustness of virtual “all-angle” self-collimation to fabrication tolerance 

In reality, any structure distortion during fabrication processes could affect the 

desired optical properties. Here the operating range of the virtual “all-angle” self-

collimation is studied in terms of fabrication tolerance. The structure under study is the 

complex rhombus Talbot crystal supporting broadband virtual “all-angle” self-

collimation mentioned earlier (Section 5.4), where the desired dimensions are Dx=3.5425 

m; Dy=0.6263 m; SaB=0.1755 m; SbB=0.0688 m; SaS=0.1238 m; and SbS=0.0574 

m. In this study, the lattice dimensions (i.e. Dx and Dy) are assumed to be the same, but 

all the elliptical rods are evenly scaled (enlarged or shrunk) from the desired dimensions 

by a scaling factor (s). The scaling factor can be described by the ratio of the scaled 

FIGURE 5.5: Fifth band EFCs of the described complex rhombus structure for TM 

polarization. Eigen-frequencies of the Maxwell’s equations are represented by /2c 

(=1/) with units of m
-1

. There are “nearly flat” EFCs from /2c=0.59 m
-1

~0.7 m
-1

 

(1429 nm~1695 nm). The dashed hexagon indicates the first BZ and some main k-points. 
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dimension in each direction to the desired values, i.e. the area of the scaled rod is s
2
 times 

the desired value. Scaling factors larger than one implies the structure is stretched; while 

values less than one indicate compression. FIGURE 5.6 shows the operating wavelength 

ranges of the “nearly flat” EFCs with respect to different scaling factors. 

The bars in the figure show the wavelength range of the “nearly flat” EFCs (; 

left axis) of each distorted structures while the dots represent their corresponding relative 

ranges (/c; right axis). As seen in the plot, the wavelength range shifts toward longer 

wavelengths as the elliptical rods are enlarged. This is because the increment of the 

dielectric material pulls down the frequencies of the modes [39]. This vague notion can 

be understood qualitatively by referring to the master equation (Eq. (3.3)). 

Mathematically, a larger (r) in Equation (3.3) corresponds to a smaller eigen-frequency 

/c. Therefore, the increment of the dielectric material can generally decrease the value 

of corresponding eigen-frequencies. According to FIGURE 5.6, if the size of the rods is 

changed (enlarged or shrunk) by 5%, the wavelengths supporting the “nearly flat” EFCs 

remain unaffected from 1471 nm to 1613 nm (/c=9.2%). Therefore, even if the size of 

the rods is changed (enlarged or shrunk) by 5% during the fabrication process, our 

complex rhombus Talbot crystal still presents acceptable broadband “all-angle” self-

collimation. 
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5.4.2 Study of transmission efficiency 

To use self-collimating PCs as optical devices, it is desirable that light can be 

efficiently coupled into and out of the PC. For potential beam combining and light 

collection purposes, high transmission efficiency is especially important. Here the 

transmission spectrum of a limited-sized PC using the proposed Si complex rhombus 

lattice structure is investigated. The PC discussed is shown in FIGURE 5.7(a). This PC 

consists of 8.5 longitudinal periods (8.5Dy=5.32 m) in the -K3 direction (y-direction), 

and 14 transverse periods (14Dx=49.6 m) in the -M1 direction (x-direction), where Dx 

and Dy have been defined in FIGURE 5.1. The primary collimating direction in the PC is 

chosen along the -K3 direction. The row with smaller rods along -M1 direction (x-

direction) is chosen as the air-PC interface to reduce diffractive reflection. Analysis will 

FIGURE 5.6: Wavelength range (; bars; left axis) and relative range (/c; dots; 
right axis) of “nearly flat” EFCs based on the best design by rescaling the elliptical 

rods proportionally. The results can be used to determine fabrication tolerance due to 

change of the scatterer size. 
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be given in Section 5.4.3. The longitudinal period of this PC was chosen so that relatively 

high transmission efficiency occurs around 1550 nm (as will be shown latter in FIGURE 

5.8(a)). 

 

FDTD with a PML was used to calculate the transmission spectrum using the 

Rsoft FullWAVE
TM

 software package. A Gaussian beam with a width (w02, w02=2w0, 

where w0 is the beam waist [114]) of 2.83 m (based on a 20 expansion angle [114] at 

1550 nm in air) was launched from air to one side of the structure at assigned incident 

angles. A monitor of the same width as the illuminated area was placed on the other side 

of the structure along the collimating direction to capture the transmitted power. FIGURE 

5.8(a) shows the normalized transmitted power spectrum of the PC from 1429 nm to 

1695 nm at several different incidence angles (0, 300, and 80. This wavelength 

range corresponds to the range of the nearly flat EFCs mentioned earlier. Without any 

modifications to the air-PC interfaces, this structure shows strong Fabry-Perot-like 

FIGURE 5.7: (a) PC structure for transmission study (b) Modified PC with additional 

anti-reflection rods. The dimension of the structures is listed as follows: Dx=3.5425 m; 

Dy=0.6263 m; SaB=0.1755 m; SbB=0.0688 m; SaS=0.1238 m; and SbS=0.0574 m, 
which has been mentioned in Section 5.4. The radii of the anti-reflection rods are 0.0803 

m (closer to the interface) and 0.0574 m (farther from the interface) 
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phenomenon. This result implies a mode mismatch at the air-PC interfaces so that a light 

mode cannot be coupled into and out of the PC smoothly (i.e. without strong reflection) 

[115]. As seen in the figure, transmission peaks are shown at specific wavelengths, and 

these peaks can be adjusted by choosing proper longitudinal length of the PC. 

 

In the example shown in FIGURE 5.8(a), locally high transmission efficiency 

occurs at 1495 nm, 1546 nm, and 1607 nm at 30 of incidence. The transmitted power at 

these wavelengths reaches 90% of the incident power. As a result, this design has a 

potential for coarse wavelength division multiplexing (CWDM) to combine wavelengths 

from optical communication S-band, C-band, and L-band. For example, FIGURE 5.9 

shows the beam combining effect generated by the FDTD method. The wavelengths of 

the two beams are assumed to be 1495 nm (i=-30) and 1607 nm (i=30), 

FIGURE 5.8: (a) Transmission spectrum of the power within the illuminated width at 

the exit side of the PC. The wavelength range shown corresponds to the virtual “all-

angle” self-collimation operating range discussed in Section 5.4. (b) Corresponding 

transmission spectrum of the PC with anti-reflection rods. 
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corresponding to the wavelengths presenting locally high transmission efficiency, as 

mentioned earlier. The specific peak wavelengths can be adjusted by rescaling the lattice 

structure and/or the longitudinal length of the PC, for example, to cover 1310 nm and 

1550 nm. On the other hand, at larger incident angles (|i| 0 and |i| 80 in FIGURE 

5.8(a)), the transmission efficiency of the PC drops notably. This could be related to the 

fact that when |i| > 37, diffractive reflection occurs in our current design (Section 5.4.3). 

 

In order to use this PC for broadband self-collimation purposes, the transmission 

is desired to be generally high across the frequency range of interest. It has been shown 

that a rod-type PC can achieve broadband 90% transmission efficiency (/c~15% for 

|i| 25) without any modification applied to the structure [21]. However, this result is 

achievable only if multiple diffracted orders do not exist when each layer of the rods is 

considered as a grating. Our current design does not fulfill this condition. Therefore, 

additional modification (such as anti-reflection features) is required to improve 

broadband transmission efficiency. 

In this study, additional rod layers are added to both of the air-PC interfaces. Such 

a design works similarly to anti-reflection layers with a channeled feature to match the 

FIGURE 5.9: Beam combining effect using 1495 nm and 1607 nm wavelengths at -30 

and 30 respectively. 
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propagating mode [116, 117]. The modified PC with anti-reflection features is shown in 

FIGURE 5.7(b). Each side of the air-PC interface contains two different sized circular 

rod-type layers. The distance between these layers, and the distance from the first layer to 

the interface are both Dy/2 (0.3132 m). The transverse period of both layers is Dx/4 

(0.0886 m). The radii of the rod-type layers are 0.0803 m (closer to the interface) and 

0.0574 m (farther from the interface), and the rod material is also Si. 

The resulting transmission spectrum of this modified PC is shown in FIGURE 5.8. 

This result has a relatively flat transmission spectrum across a broader wavelength range 

compared with the original PC without anti-reflection features. The transmission 

efficiency at an incident angle of 80 is also increased. Therefore, the modified PC works 

better for broadband, wide angle operation. It could be very helpful for WDM with more 

operating channels and smaller wavelength spacing. However, the transmitted power 

gradually drops as the incident angle is increased. For incident angles larger than 50, the 

transmission efficiency is generally less than 50%. This could be possibly improved by 

refining the anti-reflection configuration in a future study. 

5.4.3 Diffractive reflection 

Recall earlier in Section 5.4, we briefly mentioned the practical concern of 

diffractive reflection when using complex rhombus Talbot crystals as self-collimating 

devices. More discussion about diffractive reflection will be given in this sub-section. 

When a plane wave strikes an interface of a periodic dielectric structure (such as a 

PC), higher order reflected waves can exist depending upon the frequency, interface 

periodicity, and band structure. Such higher order reflection is due to the Bragg-

diffraction phenomenon, so it is referred to as diffractive reflection [39]. Diffractive 
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reflection is undesirable since it implies low coupling efficiency and energy losses at the 

air-PC interface. The latter case might cause interference and cross talk between devices 

especially in compact optical integrated circuits [21, 118]. 

Diffractive reflection can be avoided by fulfilling the following condition: 

as/2c  1/(1+sini) (5.1) 

where as is the surface parallel period at the PC interface [39, 62]. Therefore, for all 

incident angles within 90 degrees (|i| < 90), as/2C has to be less than 0.5 to ensure no 

diffractive reflection occurs. In the complex rhombus PC structure (FIGURE 5.1), if the 

row of bigger rods along the -M1 direction (x-direction) is chosen as the interface, 

as=Dx=3.5425 m. For =1429 nm~1695 nm, which corresponds to the wavelength range 

of nearly flat EFCs, as/=2.09~2.479. Based on the criteria mentioned in Eq. (5.1), 

diffractive reflection must occur for all incident angles within 90 degrees. However, if the 

row of smaller rods is chosen as the interface, as=Dx/4=3.5425/4=0.8856 m and 

as/=0.5225~0.6198. Diffractive reflection only occurs if |i| > 38. We have also 

performed similar analyses on the complex rhombus Talbot crystals with other lattice 

aspect ratios, and Hamam’s hybrid square lattice structure [2]. The results are listed in 

TABLE 5.1 for comparison. 

The only condition within the domain of study where the structure supports 

virtual broadband “all-angle” self-collimation with no diffractive reflection for all 

incident angles (as/ < 0.5) is when the lattice aspect ratio is 5.19. However, the 

wavelength range of this desired property is very narrow (/c=(1667-1624)/1645.5= 

2.6%). On the other hand, as the lattice aspect ratio increases (or as increases), the 
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maximum incident angle allowing no diffractive reflection to occur within the 

wavelength range decreases. Unfortunately, there is a tradeoff between the operating 

wavelength range supporting virtual “all-angle” self-collimation () and the angular 

range where no diffractive reflection occurs (|i|max). We chose the lattice aspect ratio 

of 5.66 and an ellipticity of the bigger rods of 2.55 for the transmission study because 

these parameters have broad operating wavelength range (/c=(1695-

1429)/1562=17.05%) with an acceptable angular range (|i|38) where no diffractive 

reflection occurs. 

 

Complex rhombus lattice 

Talbot crystals 
as (m)  (m) _NoDiffR (m) max 

Lattice aspect ratio=5.19 0.8118 1429~1667 1624~1667 49 

Lattice aspect ratio=5.66 0.8856 1429~1695 NA 38 

Lattice aspect ratio=6.13 0.9594 1429~1724 NA 29 

Lattice aspect ratio=6.6 1.0333 1429~1786 NA 23 

Hamam’s hybrid square lattice 

structure [2] 

0.786 1429~1786 1572~1786 55 

: Wavelength range showing virtual “all-angle” self-collimation 

_NoDiffR: Wavelength range showing no diffractive reflection for all incident 

angles within the wavelength range showing virtual “all-angle” self- collimation 

max: Maximum incident angle allowing no diffractive reflection occurs for all 
wavelengths within the wavelength range showing virtual “all-angle” self- collimation 

NA: Not applicable 

 

TABLE 5.1: Results of diffractive reflection analysis assuming the row with smaller rods 

is the air-PC interface. Talbot crystals under study have been described in Section 5.4, 

assuming the ellipticity of the bigger rods is 2.55 and the lattice aspect ratios are listed in 

the table. A reference result from a hybrid square lattice is also listed for comparison. 
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We also examined the total reflective power of the complex rhombus Talbot 

crystals with different lattice aspect ratios (5.66, 6.13, and 6.6) at 30 incident angle. 

FIGURE 5.10 shows the reflection spectrum of the Talbot crystals from 1429 nm to 1695 

nm. This wavelength range corresponds to the range of the “nearly flat” EFCs with a 

lattice aspect ratio of 5.66. The basic structure of the Talbot crystals for this study is 

assumed to be the same as described in FIGURE 5.7(a). A monitor with the same width 

as the PC (i.e. 14Dx, where Dx=49.6 m, 53.7 m, and 57.9 m for lattice aspect 

ratio=5.66, 6.13, and 6.6, respectively) was placed in front of the structure just behind the 

source to capture all the power reflected. As seen in FIGURE 5.10, the total reflected 

power is generally increased as the lattice aspect ratio increases as expected. For a lattice 

aspect ratio of 5.66, there is no diffractive reflection occurs and the normalized reflection 

power can be lower than 10%. For lattice aspect ratios of 6.16 and 6.6, since 30 of 

incident angle is larger than the maximum angular range for no diffractive reflection, 

diffractive reflection occurs. The total reflected power is noticeable larger with a larger 

lattice aspect ratio, especially at locally low reflection wavelengths (corresponding to the 

peak wavelengths, at 1495 nm, 1546 nm, and 1607 nm, in the transmission section shown 

in FIGURE 5.8(a)). For example, at 1495 nm, the total reflected power for a lattice aspect 

ratio of 6.6 is more than three times large than for a lattice aspect ratio of 5.66. Assuming 

we can treat the PC as a homogeneous material with an effective refractive index and 

apply Fresnel’s equations, a larger lattice aspect ratio corresponding to a smaller 

refractive index should result in a smaller reflectance at a chosen incident angle. However, 

this is not the trend shown in FIGURE 5.10. Therefore, this implies that diffractive 

reflection plays a part in the resulting reflective power. 
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As reflected power is a practical concern to be taken into account when designing 

a PC device, we did not further increase the lattice aspect ratio even though it may enable 

a broader wavelength operating range for broadband virtual “all-angle” self-collimation. 

 

 

FIGURE 5.10: Normalized reflection spectrum of the total power for PCs with different 

lattice aspect ratios at 30 incident angle. The power monitor is placed just behind the 

light source with width of 14Dx, where Dx=49.6 m, 53.7 m, and 57.9 m for lattice 
aspect ratios of 5.66, 6.13, and 6.6, respectively. The wavelength range shown 

corresponds to the virtual “all-angle” self-collimation operating range for a lattice 

aspect ratio of 5.66. 

Lattice aspect ratio 



CHAPTER 6: PHOTONIC CRYSTALS FOR THREE-DIMENSIONAL SELF-

COLLIMATION 

 

 

In the previous chapter, we have shown that 2D complex rhombus Talbot crystals 

are capable of supporting broadband virtual (|p|max=2) “all-angle” self-collimation for 

in-plane (kz=0) propagation. In this chapter, additional PC structures are investigated in 

order to achieve ideal broadband 3D omnidirectional self-collimation. Omnidirectional 

self-collimation has been introduced in Section 2.4 (|i|<=90 in FIGURE 2.5(b)). This 

property enables true 3D self-collimating beams with no limitation on incident angle. 

Broadband omnidirectional self-collimation provides more flexible usage of current 3D 

self-collimating devices and may benefit many potential applications, including 

multiplexers, solar light collection, and PC core fibers (Section 1.1). To realize 

broadband omnidirectional self-collimation, four PC structures are studied in 3D space, 

including tetragonal lattice structures, triangular lattice structures, complex hexagonal 

lattice structures, and kagome lattice structures. Design details and self-collimation 

performance of each case will be presented and compared in the following sections. 

The EFSs and EFCs presented in this chapter were calculated through the PWEM 

using the MPB software package [87] and the post plotting was done in MATLAB. The 

spatial resolution is 32 pixels per lattice unit in each direction and the dielectric constant 

is averaged over 5 mesh points at each grid point. The calculation tolerance (the 

fractional change of the two sequence eigenvalues) is set to 10
-7

 for convergence.
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6.1 3D tetragonal lattice structures 

As mentioned in Section 2.5.2 and Section 2.6, structures with lower geometrical 

symmetry tend to show a wider angular collimating range and/or a broader operating 

wavelength range. For example, 2D rectangular lattice structures developed from square 

lattice structures have realized “all-angle” self-collimation [6] and broadband (limited-

angled) self-collimation [3]. Here we applied this concept to sc lattice structures (i.e. to 

develop 3D tetragonal lattice structures) to extend 3D self-collimation performance. 

The tetragonal lattice structures studied consist of spherical air holes embedded in 

dielectric material (=12, unless otherwise specified). With the orientation indicated 

(FIGURE 6.1(a)), the lattice constants along the x-, y-, z- directions are defined as a, a, 

and z, respectively. The radius of the spherical holes equals 0.5z. Such structures are 

freestanding and can be fabricated using high precision micromachining [119] or inverse 

opal methods [109, 110]. The case of a=z corresponds to a sc lattice structure. This sc 

lattice structure shows cubic-like EFSs in the 3
rd

 band which mimics the shape of its 1
st
 

BZ. A similar sc structure with different structure parameters has been reported showing 

3D self-collimation [66]. 

In this study, a is stretched from 1 to 1.2 with 0.05 increments while z=1, 

assuming the desired collimating direction is the z-direction. As a increases, the dielectric 

regions in this hole-type tetragonal lattice structure gradually form the desired 

waveguiding configuration (Section 2.6) perpendicular to the stretching direction, 

suggesting broadband properties. FIGURE 6.1(b) shows the 3
rd

 band EFS of the 

tetragonal lattice structure with a=1.05 at a/2c=0.3. The EFS has a tetragonal-like 

shape, mimicking the shape of its 1
st
 BZ. Similar EFSs are observed across a broad 
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frequency range. The cross-sections of the 3
rd

 band EFSs are shown in FIGURE 6.1(c)~(f) 

at different values of ky. Within 8 of the incident angle (|i|8), the frequency range for 

flat EFSs with |p|max1 is 6.9% of a chosen central frequency (a/2c=0.28~0.3; 

/c=(0.3-0.28)/0.29=6.9%); by slightly compromising on the degree of self-

collimation with |p|max2, this range can be increased to 25.5% (a/2c=0.24~0.31; 

/c=(0.31-0.24)/0.275=25.5%). We applied a similar analysis to a previously reported 

sc lattice structure [66] based on the same criteria (|i|8 and |p|max2). The relative 

frequency range in this case is only 11.8% which is less than half of the range of our 3D 

tetragonal lattice structure. Applications and usefulness of the presented broadband 

virtual 3D self-collimation will be discussed in Section 6.5. 

 

FIGURE 6.1: (a) Hole-type tetragonal lattice structure under study. (b) 3
rd

 band EFS 

at a/2c=0.3 of the tetragonal lattice structure with a=1.05. (c)~(f) Cross-sections 

of the 3
rd

 band EFSs at ky=0, 0.05, 0.1, and 0.15, respectively. 

(

a) 

x y 

z 

(b) (a) (c) 

(d) (e) (f) 
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Although breaking the geometrical symmetry of a structure can achieve a wider 

angular collimating range [6], we do not observe such tendencies in the tetragonal lattice 

structures under study. As a increases, the frequencies showing the flattest EFSs 

generally decrease, corresponding to a smaller air contour surface. A smaller air contour 

surface usually helps to produce a larger acceptance angle. However, the flat EFSs of the 

tetragonal lattice structure also become smaller as a increases. There is a trade-off 

between these two effects regarding the size of the resultant acceptance angle. The largest 

resultant acceptance angle of the tetragonal lattice structures (for EFSs with 

|p|max1found within the domain of study is 17.5 when a=1.05 at a/2c=0.3, but 

this property is only present at single frequency in the domain of study. The acceptance 

angle can be increased by using high refractive index materials (for example, microwave 

material, HiK500F with =30 [82], which results in |i|28.3based on the same 

criterion). This is due to the fact that, with higher refractive index contrast, light modes 

are more easily trapped in the dielectric regions, thus resulting in an enhanced self-

collimation effect. Therefore, although high refractive index material is not necessary to 

open a PBG for self-collimation, it can help to improve self-collimation performance due 

to stronger mode concentration along the waveguiding features. Unfortunately, the 

acceptance angle of 3D self-collimation in the tetragonal lattice structures (air holes in Si 

background) is not as comparable to previously reported 3D self-collimating PCs 

(TABLE 2.1) unless using high refractive index materials (i.e. HiK500F or others with 

equivalent refractive index) as the background. 
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6.2 Out-of-plane self-collimation in 2D triangular lattice structures 

As mentioned in Section 2.5.3 and Section 2.6, some waveguiding configurations 

(for example, a 1D waveguide array) can help to realize broadband (in-plane) self-

collimation. Recall that in such waveguide arrays, light modes trapped in neighboring 

dielectric regions have very little overlap at high frequencies [39]. Thus the light modes 

mostly propagate along the waveguide and present a collimating effect. This result 

inspired us to consider out-of-plane propagation (kz0) in 2D PCs for 3D broadband self-

collimation. In this case, 2D PCs are treated as 2D waveguide arrays in 3D space (as an 

example given in FIGURE 6.2(a)), where the propagating direction of light (z-direction) 

is perpendicular to the plane with periodicity (x-y plane). Such orientation is similar to 

the orientation of a PC fiber. 

The PC under study is a hole-type (air cylinders in a dielectric background) 

triangular lattice structure (FIGURE 6.2). This structure was chosen because 2D hole-

type triangular lattice structures have been shown to be the most promising candidate for 

absolute (i.e. polarization-independent) PBG (also known as “complete PBG” [39]) in the 

plane of periodicity (x-y plane) [120]. An in-plane PBG implies EFSs open to the x-y 

plane. Intuitively, it can help to obtain the desired open flat EFSs needed for 3D 

omnidirectional self-collimation. Absolute PBGs arise when the radii of the hole-type 

cylinders are relatively close to half of the lattice constant (r=0.4a~0.5a) [39, 120, 121]. 

Therefore, the radius of the air cylinders was chosen within this range. 



71 

 

In the first part of this study, Si (=12) is assumed as the background material and 

the radius of the air cylinders were chosen to be r=0.4a, 0.45a, and 0.48a. Within the 

domain of study, it is found that open flat EFSs with |p|max0.5 are achievable, 

suggesting 3D omnidirectional self-collimation with comparable degree of self-

collimation (referred to TABLE 2.1 for degree of self-collimation in previously reported 

3D cases). Such omnidirectional (assuming |p|max0.5 in the rest of this chapter) self-

collimation has not been previously reported in any PC. 

For example, FIGURE 6.3(a)~(e) display cross-sections of the EFSs at the five 

lowest bands of the triangular lattice structure with r=0.48a. In the figure, the open flat 

EFCs at higher frequencies correspond to open flat EFSs (as an example given in 

FIGURE 6.4(a)), and indicate the presence of omnidirectional self-collimation. Such 

high-frequency omnidirectional self-collimation is observed when the normalized 

frequencies are higher than certain minimum values (a/2πc|min). Normalized and 

relative frequency ranges of such omnidirectional self-collimation for |kz|5 are listed in 

TABLE 6.1. Be aware that the triangular lattice structure under study is homogeneous in 

(a) 

x 

y 

z 

i 

 

(b) 

a x 

y 

Air hole 

Dielectric material 

FIGURE 6.2: (a) Orientation for out-of-plane propagation in 2D triangular lattice 

structures, where the dotted lines, dashed line, and i indicate the incident angle 

cone, the surface normal, and the incident angle, respectively. (b) Top view of the 

structure, where a is the lattice constant. 
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the z-direction (FIGURE 6.2(a)), therefore the light modes in this structure do not have 

restriction on kz (i.e. |kz| can be as large as infinity). For simplicity, we only consider and 

present results for |kz|5, but omnidirectional self-collimation may also be present at 

larger kz. 

 

(a) (b) 

FIGURE 6.4: (a) 1
st
 band EFSs of the triangular lattice structure (r=0.48a) at 

a/2πc=1.2 (b) Band diagram for in-plane propagation 

(a) 

FIGURE 6.3: Cross-sections of the EFSs at ky=0 for (a) 1
st
 (b) 2

nd
 (c) 3

rd
 (d) 4

th
 (e) 5

th
 

band of the triangular lattice structure (air cylinders in Si background, r=0.48a) 

(b) (c) (d) (e) 
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 1
st
 band 2

nd
 band 3

rd
 band 4

th
 band 5

th
 band 

r=0.4a 
1.5~1.51 

(0.7 %) 
NA NA NA NA 

r=0.45a 
1.25~1.58 

(23.3 %) 

1.22~1.58 

(25.7 %) 

1.38~1.58 

(13.5 %) 

1.36~1.58 

(15 %) 
NA 

r=0.48a 
1.08~1.66 

(42.3 %) 

1.01~1.66 

(48.7 %) 

1.16~1.67 

(36 %) 

1.14~1.67 

(37.7 %) 

1.82~1.85 

(1.6 %) 

 

TABLE 6.1: Normalized and relative frequency range of omnidirectional self-collimation 

(|p|max=0.5) for |kz|5 in the triangular lattice structures. NA: not applicable 

 

According to TABLE 6.1, structures with larger radius of the air cylinders present 

broader frequency range for omnidirectional self-collimation. This result can be 

explained as follows: because the dielectric regions in the hole-type triangular lattice 

structure become more isolated as the radius of the air cylinders increases, a stronger 

waveguiding feature is thus formed and increases the frequency range of the self-

collimation.  

In FIGURE 6.3, there are also open EFSs observed at lower frequencies 

(a/2πc=0.45~0.53, corresponding to the in-plane absolute PBG shown in FIGURE 

6.4(b)), but these EFSs are not flat to show self-collimation. 

In the second part of this study, addition dielectric materials are considered as the 

background material of the triangular lattice structure with r=0.48a. We investigated the 

EFSs and self-collimation performance assuming the following dielectric constants: 

=2.1316 (n=1.46), =4 (n=2), =6.26 (n=2.5), =9 (n=3), and =31.36 (n=5.6). These 

values correspond to many commonly used and/or recently popular dielectric materials 

for PCs and/or antireflection layers, for example, silicon dioxide (SiO2, =2.1~2.16 for 

404.656 nm~1082.97 nm [113]), silicon nitride (Si3N4, =3.992~4.268 for 413.3 
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nm~1240 nm [113]), titanium dioxide (TiO2, =7.5~7.84 (n//) and 6.15~6.35 (n) for 780 

nm~1100 nm [113]), TiO2 (=7.84~11.56 (n//) and 6.35~9 (n) for 400 nm~780 nm 

[113]), and beta-iron silicide (-FeSi2, ~31.36 for 1330 nm~1550 nm [122]). 

TABLE 6.2 shows the normalized and relative frequency ranges of the 

omnidirectional self-collimation for |kz|5 in each case. As seen in the table, the 

minimum normalized frequency supporting omnidirectional self-collimation decreases as 

the refractive index of the background material increases. This is because the larger the 

refractive index contrast between the two composing materials, the easier it is for light 

modes to concentrate in the dielectric regions to achieve self-collimation along z-

direction. It is preferred to have an optical property presented in relatively low 

frequencies to reduce (or eliminate) undesired diffraction, including the diffractive 

reflection discussed in Section 5.4.3. It is found that if -FeSi2 is used as the background 

material, there are frequencies supporting omnidirectional self-collimation satisfying the 

subwavelength condition (i.e. a/2πc=a/<1). Therefore, no diffraction occurs as the 

light beams propagate in such PCs under such conditions. However, since these operating 

frequencies are larger than 0.5, diffractive reflection (Section 5.4.3) cannot be avoided at 

the air-PC boundary when a light beam is incident to the PC. As a result, high refractive 

index materials are not necessary for omnidirectional self-collimation in the triangular 

lattice structure, but still a preferred option if available. 
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 1
st
 band 2

nd
 band 3

rd
 band 4

th
 band 5

th
 band 

SiO2 (~2.1316) 
3.02~3.83 

(23.6 %) 

2.95~3.83 

(26 %) 

3.09~3.83 

(21.4 %) 

3.1~3.83 

(21.1 %) 
NA 

Si3N4 (~4) 
1.98~2.85 

(36 %) 

1.87~2.85 

(41.5 %) 

2.09~2.85 

(30.8 %) 

2.07~2.85 

(31.7 %) 
NA 

TiO2 (~6.26) 
1.53~2.29 

(39.8 %) 

1.43~2.29 

(46.2 %) 

1.66~2.3 

(32.3 %) 

1.62~2.3 

(34.7 %) 
NA 

TiO2 (~9) 
1.26~1.92 

(41.5 %) 

1.17~1.92 

(48.5 %) 

1.37~1.92 

(33.4 %) 

1.33~1.92 

(36.3 %) 
2.12 

Si (~12) 
1.08~1.66 

(42.3 %) 

1.01~1.66 

(48.7 %) 

1.16~1.67 

(36 %) 

1.14~1.67 

(37.7 %) 

1.82~1.85 

(1.6 %) 

-FeSi2 

(~31.36) 

0.66~1.03 

(43.8 %) 

0.62~1.03 

(49.7 %) 

0.71~1.04 

(37.7 %) 

0.7~1.04 

(39.1 %) 

1.08~1.15 

(6.3%) 

 

TABLE 6.2: Normalized and relative frequency range of omnidirectional self-collimation 

for |kz|5 in the triangular lattice structures (r=0.48a) using different background 
materials. (Data for Si was shown in TABLE 6.1. and is relisted here for comparison.) 

 

6.3 3D complex hexagonal lattice structures 

In the previous section, we have shown that triangular lattice structures can 

realize broadband omnidirectional self-collimation caused by mode concentration in the 

dielectric regions. Such properties are only present at relatively high normalized 

frequencies. As briefly mentioned, optical properties at relatively high frequencies may 

suffer unwanted diffraction. Therefore, we intended to design additional structures to 

realize broadband omnidirectional self-collimation at relatively lower frequencies. 

In this section, a complex hexagonal lattice structure is proposed for the purpose 

mentioned. The complex hexagonal lattice structure can be described as a 2D hole-type 

triangular lattice array embedded in alternating dielectric layers (FIGURE 6.5(a)), where 

the 2D lattice array provides the waveguiding configuration for broadband properties 

while the periodicity along the z-direction fulfills the conventional requirement for self-
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collimation (i.e. the structure must have periodicity along the desired self-collimation 

direction as mentioned in Section 2.6). The design strategy of this structure is based on a 

2D hybrid square lattice structure proposed by Hamam [2] (as introduced in Section 

2.5.3), where the periodicity introduced by the square sub-lattice breaks the symmetry of 

the 1D waveguide array and lowers the frequencies supporting broadband (in-plane) “all-

angle” self-collimation. The proposed 3D complex hexagonal lattice structures can be 

fabricated utilizing current fabrication techniques by stacking alternating dielectric layers 

using the same techniques used for multi-layer thin films, then make the 2D array using 

lithography and etching processes. Therefore, it may be less challenging to fabricate this 

type of structure as compared with other 3D PC structures. 

 

FIGURE 6.5 defines the orientation and related structure parameters of this 

complex hexagonal lattice structure, which is very similar to what was described in the 

previous section (FIGURE 6.2). The two dielectric materials used in the dielectric stack 

x 

y 

z 

i 

 

(a) (b) 

a x 

y 

z 

x 

FIGURE 6.5: (a) 3D complex hexagonal lattice structure combing a 2D triangular 

lattice array with an alternative dielectric stack, where the dotted line, dashed line, 

and i indicate the incident angle cone, the surface normal, and the incident angle, 

respectively (b) top view and (c) side view of the structure 

z 

h SiO2 

Si 

(c) 

Air hole 

Dielectric material 
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are assumed to be Si (=12) and SiO2 (=2.1316), and the thickness of SiO2 is h. In this 

study, z is varied from a to 0.1a with 0.1a decrement, assuming h=0.1z and r=0.48a. By 

compressing the lattice constant z while a remains the same, the resulting 1
st
 BZ areas 

parallel to the x-y plane become smaller and thus help to realize the desired open flat 

EFSs for omnidirectional self-collimation along z-direction. This idea is based on a 

similar concept for in-plane “all-angle” self-collimation summarized in Section 2.6. 

It is found that omnidirectional self-collimation is present in this 3D complex 

hexagonal lattice structure when z=0.1a. FIGURE 6.6(a)~(e) display the cross-sections at 

ky=0 for EFSs at the lowest five bands. Normalized and relative frequency ranges of the 

omnidirectional self-collimation for |kz|5 are also listed in TABLE 6.3. 

 

 

 

(a) 

FIGURE 6.6: Cross-sections at ky=0 for (a) 1
st
 (b) 2

nd
 (c) 3

rd
 (d) 4

th
 (e) 5

th
 band EFSs 

of the 3D complex hexagonal lattice structure (air cylinders embedded in Si (=12)/ 

SiO2 (=2.1316) stack; z=0.1a; h=0.1z, r=0.48a) 

(b) (c) (d) (e) 
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 1
st
 band 2

nd
 band 3

rd
 band 4

th
 band 5

th
 band 

r=0.48a 
1.11~1.67 

(40.3%) 

1.03~1.67 

(47.4%) 

1.2~1.67 

(32.8%) 

1.17~1.67 

(35.2%) 
NA 

 

TABLE 6.3: Normalized and relative frequency range of omnidirectional self-collimation 

in the 3D complex hexagonal lattice structures (air cylinders embedded in Si (=12)/ SiO2 

(=2.1316) stack; z=0.1a; h=0.1z, r=0.48a). NA: not applicable 
 

According to FIGURE 6.6 and TABLE 6.3, the omnidirectional self-collimation 

presented in this structure also only occurs at relatively high frequencies. And such 

omnidirectional self-collimation is not shown in the cases where z0.2a. This result 

suggests that the omnidirectional self-collimation presented in this hexagonal lattice 

structure is also mainly caused by mode concentration at high frequencies. For larger z 

(i.e. z0.2a in this example), because kz is bounded by the periodicity within a smaller 

range, no high frequency mode can be included in the structure and thus no such high 

frequency omnidirectional self-collimation is present. Unfortunately, using alternative 

dielectric stack as the background material did not flatten the EFSs at lower frequencies 

as we hoped for. 

Compared to the triangular lattice structure discussed in Section 6.2, 

omnidirectional self-collimation in this 3D complex hexagonal lattice structure has 

slightly narrower operating range for all bands. Therefore, the triangular lattice structure 

presented in Section 6.2 is a better option for omnidirectional self-collimation due to its 

broader operating range and simpler structure design. 
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6.4 Out-of-plane self-collimation in 2D kagome lattice PCs 

Another structure we considered for 3D self-collimation is a rod-type kagome 

lattice structure (FIGURE 6.7(a) [123]). The kagome lattice structure under study was 

originally proposed by Takeda to show flat photonic bands for in-plane propagation 

(FIGURE 6.7(b) [123]), but such a structure has not been considered for 3D self-

collimation. The idea of using flat band PCs for 3D self-collimation can be explained by 

interpreting the quasi-flat bands (around a/2πc=0.22 and a/2πc=0.46) shown in 

FIGURE 6.7(b). For a given kz (kz=0 in this example), light modes of a flat band excited 

by all possible k// (kx and ky components) have very close angular frequencies, resulting in 

nearly flat EFSs parallel to the x-y plane in 3D k-space required for 3D self-collimation. 

The kagome lattice structure under study is made by high refractive index rods 

(Indium antimonide (InSb), =17.7) embedded in an air background. The radius of the 

rods is r=0.2a, where a in this particular case is the distance between the nearest-

neighboring rods. FIGURE 6.7(c) indicates the orientation of this structure for 3D self-

collimation. We note that there are practical limitations to fabricate this design with large 

height in the z direction due to the aspect ratio of the InSb structures; this issue is 

discussed in more detail later. 
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FIGURE 6.8(a)~(e) shows the cross-sections at ky=0 for EFSs of this kagome 

lattice structure at the lowest five bands. This structure shows omnidirectional self-

collimation at higher frequencies, similar to what was presented in Section 6.2 and 

Section 6.3. Such high frequency omnidirectional self-collimation is a general out-of-

plane property of 2D PCs. Normalized and relative frequency ranges of the 

omnidirectional self-collimation for |kz|5 in each band are listed in TABLE 6.4. 

FIGURE 6.7: (a) The 2D rod-type kagome lattice PC structure [123] under study. 

The shaded circle indicates the dielectric rods, where r is the radius of the rod, a is 

the distance between the nearest-neighboring rods, a1 and a2 are the primitive lattice 

vectors of this structure. (b) The band diagram of this kagome structure [123] (c) The 

orientation for 3D self-collimation. (d) The “embedded design” 

(a) (b) 

(c) 

i 

 

(d) 

i 
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 1
st
 band 2

nd
 band 3

rd
 band 4

th
 band 5

th
 band 

r=0.2a 
0.52~1.26 

(83.1 %) 

0.49~1.26 

(88 %) 

0.51~1.26 

(84.7 %) 

0.51~1.26 

(84.7 %) 

0.51~1.26 

(84.7 %) 

 

TABLE 6.4: Normalized and relative frequency range of omnidirectional self-collimation 

for |kz|5 in the kagome lattice structures (InSb (=17.7) rods (r=0.2a) embedded in an air 

background). 

 

Compared with the hole-type -FeSi2 triangular lattice structure discussed in 

Section 6.2 (TABLE 6.2), the minimum frequencies supporting omnidirectional self-

collimation are much lower in this kagome lattice structure. This is because rod-type 

lattice structures generally provide a more isolated waveguiding configuration than hole-

type structures, and thus present stronger mode concentration at lower frequencies. 

 

FIGURE 6.8: Cross-sections at ky=0 for (a) 1
st
 band (b) 2

nd
 band (c) 3

rd
 band (d) 4

th
 

band (e) 5
th

 band EFSs of the kagome lattice structure (InSb (=17.7) rods (r=0.2a) 

embedded in an air background) 

(a) (b) (c) (d) (e) 
a/2πc a/2πc a/2πc a/2πc a/2πc 
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It is interesting to notice that, in addition to the omnidirectional self-collimation at 

high frequencies, this kagome lattice structure also presents open visually flat EFSs at 

relatively lower frequencies (4
th

 band around a/2πc=0.3~0.4, FIGURE 6.9). This 

behavior at low frequencies has not been seen in the other PC structures discussed so far 

in this dissertation. The flattest EFS found within this range is at a/2πc=0.38 (FIGURE 

6.10(a)), which presents omnidirectional beam confinement with |p|max7. This property 

cannot be realized by isotropic materials. Similar omnidirectional beam confinement is 

also present at a/2πc=0.25, with a better beam confinement (|p|max5, FIGURE 

6.10(b)). Although the flat EFSs in this case are not open across the whole 1
st
 BZ, the flat 

EFS area is larger than the diameter of the corresponding air contour surface so that 

omnidirectional beam confinement occurs. 

We also applied similar analysis as discussed in Section 0, assuming the incident 

angle is within 8(|i|8) and the tolerable degree of self-collimation is |p|max2, the 

relative frequency range of the virtual 3D self-collimation at low frequencies 

(a/2c0.4) of the kagome lattice structure can be more than 60% (a/2c=0.22~0.41; 

/c=(0.41-0.22)/0.315= 60.3%). This range is more than two times the range shown in 

the 3D tetragonal lattice structure (25.5%, Section 0) based on the same criteria. 

It is desirable to realize omnidirectional self-collimation (|p|max0.5) at low 

frequencies not only to avoid unwanted diffraction but also because it is the key to 

accomplishing ideal whole-band (no restriction on operating frequency) omnidirectional 

self-collimation. Unfortunately, omnidirectional self-collimation (|p|max0.5has not 

been realized at relatively low frequencies, but the self-collimation performance at lower 

frequencies presented here (|i|8|p|max2/c=60.3%) has already shown a 
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broader wavelength operating range (based on the same criteria mentioned) compared 

with previously reported 3D self-collimating PCs (TABLE 2.1). 

 

 

FIGURE 6.10: 4
th

 band EFSs of the kagome lattice structure at (a) a/2πc=0.38 (b) 

a/2πc=0.25. Due to a smaller air contour sphere at a/2πc=0.25, a smaller area of 

flat EFSs is required to present omnidirectional beam confinement. 

(a) (b) 

FIGURE 6.9: (a) Cross-section of the 4
th

 band EFSs at ky=0 (b) close view for 

a/2πc=0.22~0.4.  

(a) (b) 
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Although the kagome lattice structure has shown omnidirectional self-collimation 

at the lowest frequency range among the structures presented so far, this structure is not 

practical due to the aspect ratio of the InSb rods. In reality, an alternative solution is using 

a high refractive index material embedded in a low refractive index material (the 

“embedded design,” FIGURE 6.7(d)). We considered a kagome lattice structure using -

FeSi2 (=31.36) embedded in SiO2 (=2.1316) and assume other structure parameters 

remain the same. -FeSi2 is chosen, because its refractive index is higher than InSb. It 

can retain relatively high refractive index contrast with the SiO2 background 

(31.36/2.1316=14.7) and might also reduce the minimum frequency showing 

omnidirectional self-collimation. This modified kagome lattice structure is all-solid and 

could potentially be fabricated by adopting fabrication techniques for semiconductors 

(such as Si and Germanium (Ge)) optical fibers [33, 124-127], including stack and draw 

techniques [128] and chemical deposition techniques [124, 126]. 

FIGURE 6.11(a)~(e) shows the cross-sections of the EFSs at ky=0 of the modified 

kagome lattice structure at the lowest five bands, and TABLE 6.5 lists the normalized and 

relative frequency ranges of the omnidirectional self-collimation for |kz|5 are. As shown 

in FIGURE 6.11 and TABLE 6.5, omnidirectional self-collimation can be realized in this 

design and is present at a lower minimum normalized frequency compared to the original 

design (InSb in air), which is better than our original expectation. There are also open 

visually flat EFSs at lower frequencies in the 4
th

 band (FIGURE 6.11(d) and close view 

in FIGURE 6.12). Omnidirectional beam confinement is present at a/2πc=0.2 with 

|p|max7, which is comparable to the result in the InSb kagome lattice structure. In 

addition, broadband 3D self-collimation (assuming |p|max2 is present in the range of 
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a/2c=0.17~0.25 (/c=(0.25-0.17)/0.21= 38%) with a slightly larger acceptance 

angle (|i|11). Although the embedded design loses about half of the relative frequency 

range for virtual limited-angled self-collimation at lower frequencies, the presented 

frequency range is close to 1.5 times broader than the corresponding range shown in the 

3D tetragonal lattice structure (25.5%, Section 6.1) based on the same criteria. 

 

 1
st
 band 2

nd
 band 3

rd
 band 4

th
 band 5

th
 band 

r=0.2a 
0.4~0.95 

(81.5 %) 

0.37~0.95 

(87.9 %) 

0.38~0.95 

(85.7 %) 

0.39~0.95 

(83.6 %) 

0.38~0.95 

(85.7 %) 

 

TABLE 6.5: Normalized and relative frequency range of omnidirectional self-collimation 

for |kz|5 in the embedded kagome lattice structures (-FeSi2 (=31.36) rods (r=0.2a) 

embedded in SiO2 (=2.1316) background). 
 

FIGURE 6.11: Cross-sections of the EFSs at ky=0 for (a) 1
st
 band (b) 2

nd
 band (c) 3

rd
 

band (d) 4
th

 band (e) 5
th

 band of the embedded kagome lattice structures (-FeSi2 

(=31.36) rods (r=0.2a) embedded in SiO2 (=2.1316) background). 

(a) (b) (c) (d) (e) 

a/2πc a/2πc a/2πc a/2πc a/2πc 



86 

 

6.5 Summary and discussion 

In this chapter, multiple PC structures have been studied for 3D self-collimation 

performance. All previously reported 3D self-collimation has only been shown at a 

particular operating frequency, and with limitations on incident angle (TABLE 2.1). As 

broadband 3D omnidirectional self-collimation has not been reported in any PC structure, 

our proposed PC structures have shown desired properties towards this ideal. 

It is found that 3D tetragonal lattice structures (air spheres in Si background, 

Section 6.1) can display broadband (a/2c=0.24~0.31; /c=25.5%) virtual self-

collimation (|p|max2) within the lowest 8 of incident angles (|i|8). In addition, 2D 

kagome lattice structures (-FeSi2 rods in SiO2 background, Section 6.4) can also present 

similar out-of-plane broadband virtual self-collimation at a/2c=0.17~0.25, with a 

larger operating frequency range (/c=38%) and acceptance angle (|i|11). The 

operating range in the latter case, for example, covers optical communication bands from 

FIGURE 6.12: (a) Cross-section of the 4
th

 band EFSs at ky=0 of the embedded 

kagome lattice structure (-FeSi2 (=31.36) rods (r=0.2a) embedded in SiO2 

(=2.1316) background) (b) close view for a/2πc=0.18~0.26.  

(a) (b) 
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1260 nm to 1675 nm for any central wavelength chosen between 1408 nm and 1555 nm. 

Such properties provide flexibility for applications needing a loose degree of self-

collimation that do not require a large angular collimating range, such as beam combiners. 

On the other hand, the desired broadband 3D omnidirectional self-collimation 

(|p|max0.5) can be realized using out-of-plane propagation in 2D triangular lattice 

structures (Section 6.2) and kagome lattice structures (Section 6.4), as well as proposed 

3D complex hexagonal lattice structures (Section 6.3). The 3D complex hexagonal lattice 

structures exhibit the desired properties at a/2πc=1.03~1.67; with a relative operating 

frequency range (/c=47.4%) even larger than ones in the previously mentioned 

broadband limited-angled 3D self-collimation. However, the 3D complex hexagonal 

lattice structure is not the structure found showing the broadest operating frequency range 

for omnidirectional self-collimation. Out-of-plane omnidirectional self-collimation in 2D 

triangular lattice and kagome lattice structures is present as the frequency reaches 

minimum values of a/2πc|min=0.62 and 0.49 respectively. Therefore, the reported 

properties show the potential for self-collimation to be applied to applications, such as 

multiplexers, solar light collection and PC core fibers. 
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PC structures Example self-collimation 

performance 

Notes 

3D tetragonal lattice 

structures 

(Section 6.1) 

|i|8 for |p|max2 

/c=25.5% 

(a/2πc=0.24~0.31) 

 

Out-of-plane propagation 

in 2D triangular lattice 

structures 

(Section 6.2) 

Omnidirectional self-collimation 

with |p|max0.5; a/2πc|min=1.01 

Air cylinders in Si 

background 

(r=0.48a) 

Omnidirectional self-collimation 

with |p|max0.5; a/2πc|min=0.62 

Air cylinders in -

FeSi2 background 

(r=0.48a) 

3D complex hexagonal 

lattice structures 

(Section 6.3) 

Omnidirectional self-collimation 

with |p|max0.5; /c=47.4% 

(a/2πc=1.03~1.67) 

 

 

Out-of-plane propagation 

in 2D kagome lattice 

structures 

(Section 6.4) 

 |i|8 for |p|max2 

    /c=60.3% 

    (a/2πc=0.22~0.41) 

 Omnidirectional beam 

   confinement with |p|max7 

   (a/2πc=0.38) 

 Omnidirectional beam 

   confinement with |p|max5 

   (a/2πc=0.25) 

 Omnidirectional self-collimation 

   with |p|max0.5 

   (a/2πc|min=0.49) 

Takeda’s design 

(InSb rods in air 

background) [123] 

 

 

 |i|11 for |p|max2 

   /c=38% 

   (a/2πc=0.17~0.25) 

 Omnidirectional beam 

   confinement with |p|max7 

   (a/2πc=0.2) 

 Omnidirectional self-collimation 

   with |p|max0.5 

   (a/2πc|min=0.37) 

Embedded design 

(-FeSi2 rods in 

SiO2 background) 

 

 

TABLE 6.6: Summary of PCs for 3D self-collimation and their performance. 

 

i 

 

i 

 

i 

 



CHAPTER 7:  CONCLUSIONS 

 

 

In this dissertation, several PC structures were proposed to improve and extend 

self-collimation performance. These structures include different features to combine 

multiple self-collimation properties in a single design. It is found that broadband virtual 

(i.e. |p|max2) (in-plane) “all-angle” self-collimation and several new 3D self-

collimation properties can be realized by different proposed PC structures. These results 

are summarized and discussed in this chapter. 

Virtual “all-angle” self-collimation is present in the 2D complex rhombus lattice 

Talbot crystals at 5
th

 band for TM polarization with /c=17.05% (CHAPTER 5). This 

range is comparable to two previously reported PC structures, including a 2D hybrid 

square lattice structure proposed by Hamam (/c=22.2%) [2] and a 2D square lattice 

structure (/c=10.9%) proposed by Liang [34]. Therefore, the proposed Talbot crystal 

can serve as an alternative option for broadband “all-angle” self-collimation with slightly 

compromised degree of self-collimation. Applications that do not require long-distance 

propagation can benefit from such a broad operating wavelength range for self-

collimation, such as collimating beam combiners and multiplexers. If a central 

wavelength is chosen at 1550 nm, the presented virtual “all-angle” self-collimation 

covers the optical communication S-band through the U/XL-band from 1429 nm to 1695 

nm. Although a larger operating frequency range is achievable by stretching the structure 

along a rhombus diagonal direction, the trade-off is higher reflected power at the air-PC 

interface (i.e. lower coupling efficiency). The robustness of such virtual “all-angle” self-

collimation was also evaluated. If the size of the rods is changed (enlarged or shrunk) by 

5%, the relative operating range is reduced to /c=9.2% but this range is still 
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comparable to the one in Liang’s 2D square lattice structure. Transmission spectra for 

two complex rhombus lattice PC configurations (with and without anti-reflection rods) 

were also presented and discussed. However, the transmission efficiency for large angles 

of incidence is currently a limitation that could be improved in future studies. 

To date, broadband “all-angle” self-collimation in a PC structure has been 

reported for only a single polarization state per structure (TM polarization with rod-type 

PC structures as in our work and Ref. [2, 34]; TE polarization with hole-type PC 

structures as in Ref. [34]). A possible solution for polarization-independent broadband 

“all-angle” self-collimating PC is to combine features supporting the individual 

properties. This would be an interesting topic for exploration in future work. 

In additional to broadband virtual “all-angle” self-collimation, several desired 3D 

self-collimation properties are realized for the first time, including broadband virtual 3D 

limited-angled self-collimation, 3D omnidirectional beam confinement, and broadband 

3D omnidirectional self-collimation (CHAPTER 6). As the presented properties have not 

been previously reported in any PC structure, the proposed PC structures can provide 3D 

collimated beams for current self-collimation applications with more flexible usages, and 

extend the usefulness of self-collimation to additional applications, including solar light 

collection and PC core fibers. 

Broadband 3D omnidirectional self-collimation (|p|max0.5) can be realized by 

3D complex hexagonal lattice structures and out-of-plane propagation in 2D triangular 

and kagome lattice structures. The presented omnidirectional self-collimation is only 

displayed at relatively high frequencies. In the case of 3D hexagonal lattice structures, 

there is an operating frequency range (a/2πc=1.03~1.67, /c=47.4%) for such 
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properties due to its periodicity in the propagation direction. But for the triangular and 

kagome lattice structures, omnidirectional self-collimation is shown as the frequency 

reaches some minimum values. For example, a/2πc|min=1.01, 0.62, 0.49, and 0.37 

respectively in a Si hole-type triangular lattice structure (r=0.48a), the -FeSi2 hole-type 

triangular lattice structure, the InSb rod-type kagome lattice structure, and the embedded 

(-FeSi2 in SiO2) kagome lattice structures. Generally, using rod type designs (isolated 

high refractive index material embedded in low refractive index material) and higher 

refractive index materials can reduce the minimum frequency, which helps to avoid 

unwanted diffraction (for example, diffractive reflection that may increase total reflected 

power and reduces coupling efficiency). 

In addition, broadband virtual 3D limited-angled self-collimation and 

omnidirectional bean confinement are presented at relatively lower frequencies in the 

kagome lattice structures. In the embedded (-FeSi2 in SiO2) kagome structure, the 

virtual (|p|max2) self-collimation is presented at a/2πc=0.17~0.25 (/c=38%) 

within |i|11. This range is more than 1.5 times larger than the one realized in 3D 

tetragonal lattice structures (a/2πc=0.24~0.31; /c=25.5 %) based on the same 

criteria. On the other hand, omnidirectional bean confinement is realized at a/2πc=0.2 

with |p|max7. Although omnidirectional self-collimation was not found at relatively 

lower frequencies, these two low-frequency properties can be the key to approaching 

whole-band 3D omnidirectional self-collimation in the future. In this work, such low-

frequency phenomena are only seen in the kagome lattice structures. Further study is 

necessary to determine if these low-frequency properties are related to the flat band 

properties of the kagome lattice structures. 



92 

For comparison, TABLE 7.1 summarizes all achieved self-collimation 

performance in this work with previously reported results (if applicable). To apply the 

proposed properties to actually applications, additional study is required for further 

optimization and to address practical concerns, including effects caused by the limited 

size of the PCs and fabrication issues. 
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Self-collimation type PC structures Performance details 

Broadband (in-plane) 

virtual “all-angle” self-

collimation (|p|max2) 

 

2D complex rhombus lattice 

Talbot crystals () 
/c=17.05 % 

2D hybrid square lattice 

structures [2]  
/c=22.2 % 

2D square lattice structures 

[34] 
/c=10.9 % 

Broadband 3D 

omnidirectional self-

collimation (|p|max0.5) 
() 

 

Out-of-plane propagation in 

2D triangular lattice structures 

(air cylinders in Si 

background, r=0.48a) 

 

/c  48.7 % 

(a/2πc|min=1.01) 

 

Out-of-plane propagation in 

2D triangular lattice structures 

(air cylinders in -FeSi2 

background, r=0.48a) 

 

/c  49.7 % 

(a/2πc|min=0.62) 

 

Out-of-plane propagation in 

2D kagome lattice structures 

(InSb rods in air background) 

 

/c  88 % 

(a/2πc|min=0.49) 

 

Out-of-plane propagation in 

2D kagome lattice structures 

(embedded design, -FeSi2 
rods in SiO2 background) 

 

/c  87.9 % 

(a/2πc|min=0.37) 

 

3D complex hexagonal lattice 

structures 
/c=47.4 % 

(a/2πc=1.03~1.67) 

 

TABLE 7.1: Summary of achieved self-collimation performance in this work with 

previously reported results if applicable (: new achievement) 
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Self-collimation type PC structures Performance details 

Broadband 3D virtual 

limited-angled self-

collimation (|p|max2) 
() 

 

3D sc lattice structures [66] |i|8/c=11.8 % 

(a/2πc=0.32~0.36) † 

 

3D tetragonal lattice 

structures 
|i|8; /c=25.5 % 

(a/2πc=0.24~0.31) 

Out-of-plane propagation in 

2D kagome lattice structures 

(InSb rods in air background) 

 

|i|8; /c=60.3 % 

(a/2πc=0.22~0.41) 

 

Out-of-plane propagation in 

2D kagome lattice structures 

(embedded design, -FeSi2 

rods in SiO2 background) 

 

|i|11; /c=38 % 

(a/2πc=0.17~0.25) 

 

3D omnidirectional beam 

confinement () 

 

Out-of-plane propagation in 

2D kagome lattice structures 

(InSb rods in air background) 

|p|max7 at a/2πc=0.38 

|p|max5 at a/2πc=0.25 

Out-of-plane propagation in 

2D kagome lattice structures 

(embedded design, -FeSi2 
rods in SiO2 background) 

 

|p|max7 at a/2πc=0.2 

 

TABLE 7.1 (continued): Summary of achieved self-collimation performance in this work 

with previously reported results if applicable (: new achievement) 

†Determined (calculated by us) using the previously reported structure, where self-

collimation was reported only at a single frequency 
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APPENDIX A: PWEM SOURCE CODE 

 

 

% 1.This is a program to calculate band structures of general 2D parallelogram lattice 

%   structures, including square, rectangular, triangular, rhombus lattice structures.  

% 2.Required user-defined functions: 

%   "unitcellMatrix.m","fftcoef.m","kpoints.m","SolveEigen.m" 

%   and "calculatek.m","generatek.m","generatesection.m","plotseg.m" 

% 3.Required to import the previously defined dielectric function ("int1") 

%   and primitive lattice vectors ("t1 t2 t3")  

% Copyright (c) 2008 Yi-Chen Chuang 

 
% ***** Form orthogonal unit cell from the original dielectric function 

    Nt1= 2^9+1; % required an odd number 

    Nt2= round(norm(t2)/norm(t1)*(Nt1-1)); 

    if rem(Nt2,2)==0 

        Nt2= Nt2+1; 

    end 

    originx=1;originz=1; 

    [int2]= unitcellMatrix(int1,t1,t2,t3,originx,originz,delx,delz,Nt1,Nt2); 

% ***** Calculate reciprocal lattice vectors ***** 

    denominator= dot(t1,cross(t2,t3)); 

    T1= 2*pi*cross(t2,t3)/denominator; 

    T2= 2*pi*cross(t3,t1)/denominator; 

% ***** FFT & construct convolution matrix ***** 

    minOrder= 4; %P or Q =minOrder 

    [ConvoMatrix,G,P,Q]= fftcoef(int2,Nt1,Nt2,minOrder,T1,T2); 

% ***** Define special k-points in the 1st BZ ***** 

    [kpath,Q1,Q2,Q3,Q4,Q5,Q6,tmpx,Nk]= kpoints(T1,T2); 

% ***** Define k points for EFC calculation ***** 

    kxmax= T1(1); 

    kymax= T2(2);     

    Nkx= 40; 

    Nky= 40; 

    delkx= T1(1)/(Nkx-1);   

    delky= T2(2)/(Nky-1);         

    [kx,ky]= meshgrid(0:delkx:kxmax,0:delky:kymax);   

    kall= zeros(numel(kx),2); 

    kall(:,1)= reshape(kx,numel(kx),1); 

    kall(:,2)= reshape(ky,numel(kx),1); 

% ***** Solve eigen function ***** 

    numBand=5; 

    [freq,Polarization]= SolveEigen(numBand,kall,G,ConvoMatrix); 

% ***** Plot EFCs *****   

    startband= 5; 

    endband= 5; 

for band= startband:endband 

    w= zeros(size(kx)); 

    for ii= 1:numel(kx) 

        w(ii)= freq(band,ii); 

    end 

    % Extend the data from the 1st quadrant to cover the whole 1st BZ (4 quadrants) 

        [rowqua1,colqua1]= size(w); %1st quadrant & kx- and ky- axises; 
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        freq_qua2= fliplr(w(:,2:colqua1)); %2nd quadrant  

        freq_up= [freq_qua2 w]; 

        freq_down= flipud(freq_up(2:rowqua1,:)); %3rd and 4th quadrants  

        freq_1stBZ= [freq_down;freq_up];    

    figure; 

    [k1stBZx,k1stBZy]= meshgrid(-T1(1):delkx:T1(1),-T2(2):delky:T2(2));            

    contour(k1stBZx,k1stBZy,freq_1stBZ); %correct 

    axis equal 

    h= colorbar; 

    h= get(h,'Title'); 

    set(h,'String','w/2\pic'); 

    xlabel('kx') 

    ylabel('ky') 

    text(0,0,'\Gamma'); 

    hold on; 

    if abs(Q1-Q2)<10^-3|abs(Q3-Q4)<10^-3|abs(Q2-Q3)<10^-3;  % rectangular                             

        % draw 1BZ              

        plotseg(50,Q3,Q5);% plotseg(50,kM1,kM2); %kM1=Q3;kM2=Q5; 

        plotseg(50,Q5,-Q3);% plotseg(50,kM2,kM3); %kM3=-kM1=-Q3 

        plotseg(50,-Q3,-Q5);% plotseg(50,kM3,kM4); %kM4=-kM2=-Q5 

        plotseg(50,-Q5,Q3);% plotseg(50,kM4,kM1); 

        text(Q3(1),Q3(2),'M1'); 

        kX1=(Q3-Q5)./2; %kX1=(kM1+kM4)./2=(Q3-Q5)./2 

        kX2=(Q3+Q5)./2; %kX2=(kM1+kM2)./2= (Q3+Q5)./2 

        text(kX1(1),kX1(2),'X1'); 

        text(kX2(1),kX2(2),'X2');   

    else 

        plotseg(50,Q3,Q4); 

        plotseg(50,Q4,Q5); 

        plotseg(50,Q5,Q6); 

        plotseg(50,Q6,-Q4); 

        plotseg(50,-Q4,-Q5); 

        plotseg(50,-Q5,Q3);  

        text(Q3(1),Q3(2),'K1');    

        text(Q4(1),Q4(2),'K2');           

        text(Q5(1),Q5(2),'K3'); 

        kM1=(Q3+Q4)./2; 

        kM2=(Q4+Q5)./2; 

        kM3=(Q5+Q6)./2; 

        text(kM1(1),kM1(2),'M1');   

        text(kM2(1),kM2(2),'M2');  

        text(kM3(1),kM3(2),'M3'); 

    end 

    if Polarization==1 

        title({['TM EFCs; P=',num2str(P),'; Q=',num2str(Q)];['# of plane waves:',num2str((2*P+1)*(2*Q+1)),'; 

er(scatterers)=',num2str(er_s),'; er(bg)=',num2str(er_bg),'; band ',num2str(band)]})              

        saveas(gcf,['EFCTMband',num2str(band)],'jpg');                                    

        save(['EFCDataTMband',num2str(band)]);                                    

    elseif Polarization==2 

        title({['TE EFCs; P=',num2str(P),'; Q=',num2str(Q)];['# of plane waves:',num2str((2*P+1)*(2*Q+1)),'; 

er(scatterers)=',num2str(er_s),'; er(bg)=',num2str(er_bg),'; band ',num2str(band)]})               

        saveas(gcf,['EFCTEband',num2str(band)],'jpg');    

        save(['EFCDataTEband',num2str(band)]);                             

    end 

end 
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Required user-defined MATLAB functions: 

"unitcellMatrix.m"------------------------------------------------------------------------------------- 
% This function form orthogonal unit cell from the original dielectric function; 2/9/10 Yi-Chen Chuang 

  

function [int2]=unitcellMatrix(int1,t1,t2,t3,originx,originz,delx,delz,Nt1,Nt2) 

% Define the number of the mesh grids of the converted unit cell 

% Nt1 must be an odd # since it corresponds to the Fourier Coefficients in different orders            

        if rem(Nt1,2)==0 || rem(Nt2,2)==0 %if Nt1 or Nt2 is an even number 

            display('Warning: Nt1 or Nt2 is an even number...the result will go wrong');             

        end 

    delt1=norm(t1)/(Nt1-1);      

    delt2=norm(t2)/(Nt2-1);  

% Form converted rectangular unit cell for FFT from the oblique indexes 

    int2=zeros(Nt2,Nt1); 

        for m=1:size(int2,2); 

            for n=1:size(int2,1);        

                xyzcord=[m-1,n-1,0]*[delt1/norm(t1) 0 0;0 delt2/norm(t2) 0;0 0 0]*[t1(1) t1(2) t1(3);t2(1) t2(2) 

t2(3);t3(1) t3(2) t3(3)]; 

                xyzindex=[round(xyzcord(1)/delz)+originz,round(xyzcord(2)/delx)+originx]; 

                int2(n,m)=int1(xyzindex(2),xyzindex(1)); 

            end 

        end 

    clear m n xyzindex 

 

"fftcoef.m"---------------------------------------------------------------------------------------------- 
% This function do FFT & build convolution matrix; 2/9/10 Yi-Chen Chuang 

 

function [ConvoMatrix,G,P,Q]=fftcoef(int2,Nt1,Nt2,minOrder,T1,T2) 

FourierCoeff=fftshift(1/(Nt2*Nt1)*fft2(int2)); % Shift zero-frequency component to center of spectrum      

% Note: size(int2)=[Nt2,Nt1]; % Note: (2P+1)/(2Q+1)=Nt1/Nt2=norm(t1)/norm(t2)=norm(T2)/norm(T1) 

if Nt1>=Nt2 

    Q=minOrder;  

    P=round((Nt1/Nt2*(2*Q+1)-1)/2); %so that P>Q (assigned)           

elseif Nt1<Nt2 

    P=minOrder;  

    Q=round((Nt2/Nt1*(2*P+1)-1)/2); %so that gurentee Q>=P(assigned)  

end   

ConvoMatrix=zeros((2*P+1)*(2*Q+1)); 

G=zeros((2*P+1)*(2*Q+1),2); 

for n=1:(2*Q+1);        

    for m=1:(2*P+1) 

        i=m+(n-1)*(2*P+1); % i-th row of the Convolution Matrix=i-th row of the Expansion vectors 

        G(i,:)=((m-1)-P)*[T2(1),T2(2)]+((n-1)-Q)*[T1(1),T1(2)]; %Expansion vectors     

            for rr=1:(2*Q+1) 

            for q=1:(2*P+1) 

                j=q+(rr-1)*(2*P+1); % j-th column of the Convolution Matrix 

                Nt1c=(Nt1+1)/2; 

                Nt2c=(Nt2+1)/2;                           

                ConvoMatrix(i,j)=FourierCoeff(Nt2c+m-q,Nt1c+n-rr); %follow (eq.6.27) 

            end 

            end 

    end 

end; clear n m i rr q j   



108 

 

"kpoints.m"--------------------------------------------------------------------------------------------- 
% This function obtains special k-points of the 1st BZ; 2/9/10 Yi-Chen Chuang 

 

function [kpoints,Q1,Q2,Q3,Q4,Q5,Q6,tmpx,Nk]=kpoints(T1,T2) 

% Define special k-points from the reciprocal lattice vectors 

% General lattice points in the k-space, assuming the vector a is aligned to horizontal axis 

    P1=T1;           

    P2=T1+T2; 

    P3=T2;           

    P4=-T1+T2; 

    P5=-P1; 

    P6=-P2; 

    P7=-P3; 

    P8=-P4; 

    P10=P1+P2; %=2*T1+T2 

    P12=P2+P3; %=T1+2*T2 

    P14=P3+P4; %=-T1+2*T2 

    P16=P4+P5; %-2*T1+T2 

    P18=-P10; 

    P20=-P12; 

    P22=-P14; 

    P24=-P16; 

   % In the very general 24 mesh points, only 16 points can be potential closest P points since some of the 

points are behind others even if their norm might be smaller 

    % Determine the closest 6 lattice points in the k-space 

    NearbyP=[P1;P2;P3;P4;P5;P6;P7;P8;P10;P12;P14;P16;P18;P20;P22;P24]; 

    NearbyPnorm=(NearbyP(:,1).^2+NearbyP(:,2).^2+NearbyP(:,3).^2).^0.5; 

    [NearbyPnormSort index]=sort(NearbyPnorm);                 

ClosestNearbyP=[NearbyP(index(1),:);NearbyP(index(2),:);NearbyP(index(3),:);NearbyP(index(4),:);Near

byP(index(5),:);NearbyP(index(6),:)]; 

    % Determine the sequence of these lattice points in the k-space 

    Pcpx=ClosestNearbyP(:,1)+1i*ClosestNearbyP(:,2); % convert to complex coordinates        

    ang=angle(Pcpx)/pi; %to determine the phase angle to "locate" these points 

    [ArrP index2]=sort(ang); 

    Q1=calculatek(ClosestNearbyP(index2(1),:),ClosestNearbyP(index2(2),:)); 

    Q2=calculatek(ClosestNearbyP(index2(2),:),ClosestNearbyP(index2(3),:)); 

    Q3=calculatek(ClosestNearbyP(index2(3),:),ClosestNearbyP(index2(4),:)); 

    Q4=calculatek(ClosestNearbyP(index2(4),:),ClosestNearbyP(index2(5),:)); 

    Q5=calculatek(ClosestNearbyP(index2(5),:),ClosestNearbyP(index2(6),:)); 

    Q6=calculatek(ClosestNearbyP(index2(6),:),ClosestNearbyP(index2(1),:)); 

    % Note: Q1~Q6 are defined in counter-clockwise order;  

    % Note: Q1, whoever the phase angle is smallest, is likely to be in the 3rd quadrant 

    % Define special k-points of the 1BZ chosen from the general points 

if abs(Q2-Q3)<10^-3|abs(Q3-Q4)<10^-3|abs(Q1-Q2)<10^-3 % rectangular   

  if abs(Q2-Q3)<10^-3 %Q2=Q3      

    kM2=Q4; %N-W corner 

  else %Q3=Q4 or Q1=Q2 

    kM2=Q5; %N-W corner     

  end     

    kX1=(Q3+(-kM2))./2; %E side; kX1=(kM1+kM4)./2; 

    kX2=(Q3+kM2)./2; %N side; kX2=(kM1+kM2)./2; 

    [k1,Nk1,absDelK1]=generatek(10,[0,0,0],kX1); % Gamma-X1(E side) 

    [k2,Nk2,absDelK2]=generatek(10,kX1,Q3);      % X1-M1(N-E corner); kM1=Q3  

    [k3,Nk3,absDelK3]=generatek(10,Q3,[0,0,0]);  % M1-Gamma 
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    [k4,Nk4,absDelK4]=generatek(10,[0,0,0],kX2); % Gamma-X2(N side) 

    [k5,Nk5,absDelK5]=generatek(10,kX2,Q3);      % X2-M1            

    kpoints=[zeros(1,2);k1;k2;k3;k4;k5];         % Gamma-X1-M1-Gamma-X2-M1 

    % for plotting purpose 

    Nk=[Nk1,Nk2,Nk3,Nk4,Nk5]; 

    absDelK=[absDelK1,absDelK2,absDelK3,absDelK4,absDelK5]; 

    tmpx=generatesection(Nk,absDelK);      

else % other general cases     

    % kK1=Q3; kK2=Q4; kK3=Q5; kK4=Q6; 

    kM1=(Q3+Q4)./2; %kM1=(kK1+kK2)./2 

    kM2=(Q4+Q5)./2; %kM2=(kK2+kK3)./2; 

    kM3=(Q5+Q6)./2; %kM3=(kK3+kK4)./2; 

    [k1,Nk1,absDelK1]=generatek(10,[0,0,0],Q3);  % Gamma-K1;          

    [k2,Nk2,absDelK2]=generatek(10,Q3,kM1);      % K1-M1;   

    [k3,Nk3,absDelK3]=generatek(10,kM1,[0,0,0]); % M1-Gamma;    

    [k4,Nk4,absDelK4]=generatek(10,[0,0,0],Q4);  % Gamma-K2   

    [k5,Nk5,absDelK5]=generatek(10,Q4,kM2);      % K2-M2;  

    [k6,Nk6,absDelK6]=generatek(10,kM2,[0,0,0]); % M2-Gamma 

    [k7,Nk7,absDelK7]=generatek(10,[0,0,0],Q5);  % Gamma-K3          

    [k8,Nk8,absDelK8]=generatek(10,Q5,kM3);      % K3-M3   

    [k9,Nk9,absDelK9]=generatek(10,kM3,[0,0,0]); % M3-Gamma           

    kpoints=[zeros(1,2);k1;k2;k3;k4;k5;k6;k7;k8;k9]; %Ga-K1-M1-Ga-K2-M2-Ga-K3-M3-Ga 

     % for plotting purpose 

    Nk=[Nk1,Nk2,Nk3,Nk4,Nk5,Nk6,Nk7,Nk8,Nk9]; 

absDelK=[absDelK1,absDelK2,absDelK3,absDelK4,absDelK5,absDelK6,absDelK7,absDelK8,absDelK9]; 

tmpx=generatesection(Nk,absDelK); 

end 

 

"SolveEigen.m"---------------------------------------------------------------------------------------- 
 

function [freq,Polarization]=SolveEigen(numBand,kpoints,G,ConvoMatrix) 

display('Type in 1 for TM mode; 2 for TE mode. (based on Joannopoulos definition)') 

Polarization=input('Polarization:'); 

freq=zeros(numBand,length(kpoints)); 

if Polarization==1; 

    % Guo's TM; Tipper's TE...(only Ha,Hb,Ec; Ea=Eb=Hc=0) 

    Beta=zeros(1,length(G));     

    for ii=1:length(kpoints);ii    

        for jj=1:length(G) 

            beta=kpoints(ii,:)+G(jj,:); %TM 

            Beta(jj)=(beta(1)^2+beta(2)^2)^0.5;  %TM 

        end 

        M=abs(Beta'*Beta).*inv(ConvoMatrix); %TM 

        d=sort(abs(eig(M))); 

        freq(:,ii)=sqrt(abs(d(1:numBand)))./(2*pi);  % select the number of eigen-values to shown by d(1:#) 

    end         

elseif Polarization==2; 

    % Guo's TE; Tipper's TM...(only Ea,Eb,Hc; Ha=Hb=Ec=0) 

    Beta=zeros(length(G),2);         

    for ii=1:length(kpoints);ii %for non-symmetric lattice, have to calculate the whole upper k-space   

        for jj=1:length(G) 

            beta=kpoints(ii,:)+G(jj,:); 

            Beta(jj,1)=beta(1); 

            Beta(jj,2)=beta(2); 

        end 
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        M=(Beta*Beta').*inv(ConvoMatrix); 

        d=sort(abs(eig(M))); 

        freq(:,ii)=sqrt(abs(d(1:numBand)))./(2*pi);  % select the number of eigen-values to shown by d(1:#) 

    end    

end 

clear ii jj Beta beta M 

 

"calculatek.m"------------------------------------------------------------------------------------------ 
% This program calculates the coordinates of special k point from the coordinates of two chosen adjacent 

"atoms" in the k-space 

 

function Kcoordinates=calculatek(Pstart,Pend) 

if round(Pstart(2)*1000)==0; % to make sure Pstart(2) is really small 

Kcoordinates=([1 0 0;Pend(1)/Pend(2) 1 0;0 0 1] \[Pstart(1);Pend(1)^2/Pend(2)+Pend(2);0]./2)'; 

elseif round(Pend(2)*1000)==0 % to make sure Pend(2) is really small 

Kcoordinates=([Pstart(1)/Pstart(2) 1 0;1 0 0;0 0 1] \[Pstart(1)^2/Pstart(2)+Pstart(2);Pend(1);0]./2)';     

else     

Kcoordinates=([Pstart(1)/Pstart(2) 1 0;Pend(1)/Pend(2) 1 0;0 0 1] 

\[Pstart(1)^2/Pstart(2)+Pstart(2);Pend(1)^2/Pend(2)+Pend(2);0]./2)'; 

end 

 

"generatek.m"------------------------------------------------------------------------------------------ 
 

function [k,Nk,absDelK]=generatek(Nk,Begink,Endk) 

k=zeros(Nk,2); 

DelK1=(Endk(1)-Begink(1))/Nk; 

DelK2=(Endk(2)-Begink(2))/Nk; 

if round(DelK1*1000)==0 % to make sure DelK1 is really small 

    k(:,1)=Begink(1); 

    k(:,2)=(Begink(2)+DelK2):DelK2:Endk(2); 

elseif round(DelK2*1000)==0 % to make sure DelK2 is really small 

    k(:,1)=(Begink(1)+DelK1):DelK1:Endk(1); 

    k(:,2)=Begink(2);     

else 

    k(:,1)=(Begink(1)+DelK1):DelK1:Endk(1); 

    k(:,2)=(Begink(2)+DelK2):DelK2:Endk(2);  

end 

absDelK=abs((DelK1^2+DelK2^2)^0.5); 

 

"generatesection.m"----------------------------------------------------------------------------------- 
 

function [tmpx]=generatesection(Nk,absDelK) 

section=0; 

for ii=1:length(Nk) 

section=[section,section(length(section))+absDelK(ii):absDelK(ii):section(length(section))+absDelK(ii

)*Nk(ii)]; 

end 

tmpx=section; 

 

"plotseg.m"--------------------------------------------------------------------------------------------- 
% This function plots a line segment from Pstart to Pend 

% ex. Pstart=[0,0]; Pend=[5,5]; 09/29/08 Yi-Chen Chuang 

 

function plotseg(Nseg,Pstart,Pend) 
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if round((Pend(1)-Pstart(1))*1000)~=0 % to make sure Pend(1)~=Pstart(1) 

x=Pstart(1):(Pend(1)-Pstart(1))/Nseg:Pend(1); 

y=(Pend(2)-Pstart(2))/(Pend(1)-Pstart(1))*(x-Pstart(1))+Pstart(2); 

else 

x=Pstart(1); 

y=Pstart(2):(Pend(2)-Pstart(2))/Nseg:Pend(2); 

end 

plot(x,y,':b','LineWidth',1);axis equal; xlim([-5,5]);ylim([-12,12]); 

hold on; 



APPENDIX B: CODE TO GENERATE IRRADIANCE DISTRIBUTIONS 

 

 

% This program generates the irradiance distribution from a 1D binary phase grating 

% Need to type-in/import the diffraction coefficients from GSolver to matrix (Am) 

% Copyright (c) 2007 by Yi-Chen Chuang. 
 

lambda=0.364; %[um] incident wavelength in the air 

 

%% Grating parameters 

tx=2*lambda; ty=tx; %length of unit cell (grating period); 

wx=[0.5*tx]; wy=[ty]; % [um] width of the (clear aperture)grating feature 

xi=[0]; yi=[0];  % [um] center of the aperture 

opx=wx./tx; opy=wy./ty; % opening ratio=w/t 

deltaphi=[pi/2]; % phase difference  

ds=100; %[um] assume substrate 100 um 

ns=1.5; %assume substrate fused silica (glass) 

Zt=lambda/(1-(1-(lambda/tx)^2)^0.5); % The Talbot distance, assuming tx=ty 

 

%% Generate the 3D meshgrids for the propagating space 

y=0; % selected y [um] 

xinmax=tx; % xin max [um] 

Nxin=500; % Sampling points of x-axis 

zinmax=Zt; % z max [um] 

Nzin=500; % Sampling points of z-axis 

 

%% Meshgrids for displaying x-y plane 

[zin,xin]=meshgrid(0:zinmax/Nzin:zinmax,-xinmax:(2*xinmax/Nxin):xinmax); 

 

%% Calculate the field amplitude by 2D Fourier series expansion 

feature=0; amp=0; 

Am=[0.0001  6.26E-22    0.949987    3.56E-22    0.0001]; % complex coefficient from GSolver 

[row,column]=size(Am); 

for k=1:length(xi);k; %In this case, length(xi) should=length(yi)=length(wx)=length(wy) 

    for p=1:row % i-th row in the matrix Am            

    for q=1:column; % j-th column 

        my=p-(row-1)/2-1; 

        mx=q-(column-1)/2-1; 

        feature=feature+Am(p,q)*exp(i*2*pi*(mx*xin./tx+my*y/ty)).*exp(-i*2*pi*(mx^2+my^2)*zin./Zt); 

    end 

    end  

amp=1+(exp(i*(deltaphi(k)))-1)*feature; %complex transmission function u(x,y;z) 

end 

int=abs(amp).^2; % field intensity (irradiance) 

phase=angle(amp); 

      

%% Display the irradiance distribution at selected x-z surfaces 

figure; 

imagesc(zin(1,:),xin(:,1),int) 

    title(['Irradiance colormap at selected x-z plane (y=',num2str(y)]) 

    set(gca,'Ylabel',text(0,0,['Grating Period (X); DutyCyc.=',mat2str(opx)])) 

    set(gca,'Xlabel',text(0,0,'Normalized Propagation Distance (Z)')) 

 

 



APPENDIX C: DERIVATION OF THE TALBOT DISTANCE 

 

 

The Talbot distance can be derived based on the diffraction theory described in 

Section 0. Recall Eq. (3.16) is the equation describing propagated field after an optical 

grating with normal incidence. In order to show self-imaging, the following condition 

must be satisfied [129]: 
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Letting m=0 and -1 in Eq.(C-3)):   
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Combine Eq. (C-4) and Eq. (C-5):  
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So we obtain 
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If the transmission medium is air, nt=1: 
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APPENDIX D: CODE TO GENERATE DIELECTRIC FUNCTIONS 

 

 

% This is a program to generate dielectric function of the 2D complex rhombus  

% lattice Talbot crystals and/or other lattice structures analytically  

% Required user-defined function: "SbyLayer.m", "primVect.m"   

% Copyright (c) 2008 Yi-Chen Chuang 

 
%***** Define unit cell and primitive lattice vectors ***** 

    % For complex rhombus Talbot crystals: 

    LRRz= 1.2; % lattice rescale ratio along z-direction 

    SR= 1.147; % scaling ratio to tune operating range 

    unitZ= (2.5738*SR)*LRRz; % period in z-direction (horizontal)  

    unitX= 0.546*SR; % period in x-direction (vertical) 

    thetaZX= 90; %[deg] angle between z- and x-direction 

        % For general simple lattice cases: 

        % unitZ, unitX: norms of the primitive lattice vectors  

        % thetaZX: angle between the two primitive lattice vectors 

     

%***** Define dielectric materials *****     

    er_s= 12;  % scatterers permittivity 

    er_bg= 1;  % background permittivity     

     

%***** Define simulation domain ***** 

% x-direction (vertical...usually the shorter side) 

    xinmax= 1.5*unitX*abs(sin(thetaZX/180*pi)); % [um]xin max  

    Nxin= 2^8; % Sampling points in x-direction 

    delx= unitX*abs(sin(thetaZX/180*pi)/Nxin); 

% z-direction (horizontal) 

    zinmax= 1.5*unitZ; % [um]zin max...little bug: zinmax must >= 1.5 unitZ  

    delz= delx;  

    Nzin= round(zinmax/delz); % Sampling points in z-direction    

     

    Z= 0:delz:zinmax; 

    Nz= length(Z); 

    X= 0:delx:xinmax; 

    Nx= length(X);  

    [zin,xin]= meshgrid(0:delz:zinmax,0:delx:xinmax);  

  

%***** Generate dielectric function ***** 

    ER= zeros(Nx,Nz); 

        % user-defined function: SbyLayer.m 

        % [ER]=SbyLayer(zin,xin,ER,thetaZX,zend,xend,periodZ,periodX,OriginZ,OriginX,sa,sb) 

        % in the case of circular scatterer: sa=sb 

    ARRz= 0.9; %atom rescale ratio along z-direction (double check=AtomStretch) 

    ARR= 1; %atom rescale ratio in all directions (double check=AtomRatio) 

    saBig= (0.17*SR)*ARRz*ARR; 

    sbBig= (0.06*SR)*ARR; 

    saSmall= (0.12*SR)*ARRz*ARR; 

    sbSmall= (0.05*SR)*ARR;   

  

% Rhombus sub-lattices 

    % at 0 

    ER= SbyLayer(zin,xin,ER,thetaZX,2,3,unitZ,unitX/2,0,unitX/4,saSmall,sbSmall); 
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    % at 1/4*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,2,3,unitZ,unitX/2,unitZ/4,unitX/4,saSmall,sbSmall); 

    % % at 2/4*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,8,3,unitZ/4,unitX/2,0,unitX/4,saSmall,sbSmall); 

    % at 3/4*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,2,3,unitZ,unitX/2,unitZ*3/4,unitX/4,saSmall,sbSmall); 

    % at unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,2,3,unitZ,unitX/2,unitZ,unitX/4,saSmall,sbSmall); 

  

% Rectangular sub-lattice 

    % at 1/8*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,1,3,unitZ,unitX,unitZ/8,unitX/2,saBig,sbBig); 

    % at 3/8*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,1,2,unitZ,unitX,unitZ*3/8,0,saBig,sbBig); 

    % at 5/8*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,1,2,unitZ,unitX,unitZ*5/8,0,saBig,sbBig); 

    % at 7/8*unitZ 

    ER= SbyLayer(zin,xin,ER,thetaZX,1,2,unitZ,unitX,unitZ*7/8,unitX/2,saBig,sbBig); 

  

% Convert Boolean to materials 

    ER= (er_s)*(ER) + (er_bg)*(~ER); 

    int1= ER; 

  

%***** Show dielectric function ***** 

    figure; 

    pcolor(Z,X,ER); 

    axis equal tight; 

    shading flat; 

    h= colorbar; 

    h= get(h,'Title'); 

    set(h,'String','\epsilon_r'); 

    title('Permittivity profile'); 

  

%***** Define the primitive lattice vectors ***** 

    % user-defined function: primVect.m 

    [t1,t2,t3]= primVect(unitZ,unitX); 
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Required user-defined MATLAB functions: 

 

"SbyLayer.m"------------------------------------------------------------------------------------------ 

 
% This is the routine function to generate periodic complex lattice 

% layer-by-layer analytically 

% 11/18/08 updated Yi-Chen Chuang 

function [ER]=SbyLayer(Zc,Xc,ER,thetaZX,zend,xend,periodZ,periodX,OriginZ,OriginX,sa,sb) 

    for ii=0:xend; 

        for jj=0:zend 

            R  = ((Zc-(ii*periodX*cos(thetaZX/180*pi)+jj*periodZ+OriginZ))/sa).^2 + ((Xc-

(ii*periodX*sin(thetaZX/180*pi)+OriginX))/sb).^2;                     

            ER = ER | (R<=1^2);                             

        end 

    end 

 

 

"primVect.m"------------------------------------------------------------------------------------------ 

 

function [t1,t2,t3]=primVect(unitZ,unitX) 

% Define the primitive lattice vectors 

    tA=[unitZ,0,0]; 

    tB=[unitZ/2,unitX/2,0]; 

    tC=[0,unitX,0]; 

    tD=[-unitZ/2,unitX/2,0]; 

    thetaab=atan(unitX/unitZ)/pi*180; %[deg]         

 

% primitive lattice vectors chosen from above lattice vectors  

    if (round(thetaab)>=60) && (round(thetaab)<=90) 

        t1=tA;  

        t2=tB;  

        t3=[0,0,1]; %2D 

    elseif (round(thetaab)<60) && (round(thetaab)>30) 

        t1=tB;  

        t2=tD;  

        t3=[0,0,1]; %2D 

    elseif (round(thetaab)<=30) && (round(thetaab)>0) 

        t1=tB;  

        t2=tC;  

        t3=[0,0,1]; %2D  

    else  

        display('Be aware: "thetaa" is out of range!') 

    end 


