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ABSTRACT

MAYA KAPOOR. Data Mining and Deep Learning Systems for Network Traffic
Classification and Characterization at Scale. (Under the direction of DR.

SIDDHARTH KRISHNAN and DR. THOMAS MOYER)

The real, complex network environment consists of an ever-increasingly diverse and

large amount of data encapsulated in packets. Surveillance and monitoring of this

traffic is a necessary task for law enforcement, cybersecurity, and intelligence agencies.

Intercepted network traffic must be classified into multiple categories, such as the

protocol encapsulation layers contained, application it originates from, user generating

the traffic, and the traffic’s malicious or benign nature. There is a lack of solutions

which are able to classify packets individually without flow-based features. In order to

address the gaps in current traffic classification and DPI techniques, we propose the

initial release of the Forager toolkit, a software consisting of tools to extract hidden

representations from individual packets and use these features in deep learning models

to perform traffic classification. It uses data mining techniques to perform automatic

generation of regular expression signatures, locality-sensitive hash fingerprints, and

matrix and point cloud representations of packets. These are used as input features

for corresponding deep learning models which can perform traffic classification on

single packets in a real system. The models are multi-modal to capture multiple

angles and dimensions of features for increased complexity of classification problems.

They can be run in parallel for optimal throughput and scalability. Our experiments

use these models in multiple configurations and scenarios to demonstrate superior

performance and classification capability to advance the state of the art in complex

network traffic surveillance and hidden representation learning.
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CHAPTER 1: INTRODUCTION

One of the most critical cybersecurity interfaces is the connection to the worldwide

Internet. Over a petabyte of data is sent over the Internet every second. The majority

of traffic is broken down into transportable, encapsulated units of data called packets.

These packets contain multiple layers of transport and infrastructure information in

headers which wrapper application and user data known as the payload. These layers

are defined by Internet protocols, which are standardized by the Internet community

in technical documentation. While payload data was originally assumed to be benign,

malicious software downloads, viruses, and spyware are just a few examples of what

may be hidden inside packet payloads. Attackers may also be trying to exfiltrate non-

malicious but sensitive information such as enterprise or government secrets, national

intelligence, or personally identifiable information. Futhermore, it is not just attackers

surveying this data, as lawful interception must be performed for Internet regulation,

network administration, counter-cyberterrorism, and criminal investigation.

In order to use deep learning and data mining techniques to perform network traffic

classification, features must be extracted from packets to use as input and define

classes. Techniques such as dynamic port allocation, encryption and compression of

payloads, spoofing, and tunneling have significant impact on the ability of systems

to extract meaningful features from packets. Furthermore, these features can be

of high dimensionality or heterogenous and must be normalized and reduced to a

processable, comparable format for machine learning algorithms. In this work, we

explore techniques in data extraction and transformation of packets to uncover hidden

representations for learning. We then develop and optimize models for processing

and classifying data based on these derived features. The primary contribution of
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this dissertation is the systemization of these techniques and models into a network

traffic classification toolkit (Forager 1) that has been released and made available

for public use.

1.1 Problem Statement

The unsolved challenges in deep packet inspection that we address with Forager

can be categorized into three sections: data complexity, network complexity, and

scalability.

1.1.1 Data Complexity

Packet classification is not one-dimensional; the data is complex and multi-faceted.

An individual packet may be accurately classified in multiple ways. For example, a

packet may be sent by user Bob containing email data characterized by the POP3

application-layer protocol. Depending on the intent of the classifier, the same packet

may be classified as email traffic, encrypted or compressed, benign traffic, traffic be-

longing to user Bob, or traffic containing POP3 data. Classification granularity could

also be reduced to traffic type such as email or chat. This can be a more difficult prob-

lem as the features become more diverse across the individual classes. One limitation

of existing research is that solutions tend to address only one classification problem

or a subset of issues without recognizing or expanding to others. In contrast, we show

in subsequent chapters how Forager considers the same datasets in multiple ways

and can generalize to new and interesting queries.

An additional layer of complexity to packet data itself is modern encryption and

compression of payloads. In order to properly process the data, one must first know

if data is encrypted, compressed, or plaintext. This is not always obvious through

header information or by port configuration, as it is possible to obfuscate these for

malicious purposes. Analysts may find plaintext traffic on port 443, for example,
1https://pypi.org/project/forager-toolkit/
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where they usually expect encrypted traffic. Similarly, they may be able to decom-

press traffic if they can distinguish it from similarly entropic encrypted traffic. Being

able to filter out and then further investigate this content could reveal important

information related to surveillance or forensic operations.

Finally, payloads or protocol standards themselves are not always strongly sig-

natured. Particularly data protocols such as FTP (file transfer protocol) Data or

RTP (realtime transfer protocol) can be highly entropic and therefore hard to iden-

tify even with state-of-the-art, regular expression scanning or by indicators in the

packet header. Forager uses hidden representation learning to better understand

and distinguish this data through generative features.

1.1.2 Network Complexity

Identifying traffic through a single packet can be difficult also because of network

complexity. Protocol and data exchanges in the modern Internet are complex over

the lifetime of the session exchange, particularly for large amounts of transferable

data. Routines like Voice-over-IP (VoIP) calls, file transfers and downloads, streaming

services, and peer-to-peer sharing can transmit hundreds of thousands of packets of

highly variable data over several minutes to hours. These exchanges are also not

guaranteed to be one-to-one; for example, content servers may be queried by hundreds

of thousands of users at once for mass streaming services.

Deep packet inspection for the purpose of identifying traffic type or protocol is

often performed for sessionization or reconstruction of whole data flows (for example,

reconstructing a video call). Individual packets from multiple protocols such as SIP

(session initiation protocol) and RTP must be correctly identified and associated

together in real time to capture and correctly decode the full message.

Another complication for DPI is obfuscated network or routing information due to

network architecture’s advances in anonimity. VPNs (virtual private networks) are

private network infrastructures configured on top of public Internet services. VPNs
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can be used for increased security, privacy, and anonimity. Furthermore, administra-

tors may control how data is transmitted and what data can be accessed by whom

according to the network configurations. Depending on the site configuration, layers

of tunneling, or dynamic mapping of networks, VPNs can add layers of Internet pro-

tocol (IP) encapsulation which obfuscates addresses. IP-over-IP encapsulation means

that the initial protocol stack of a stream can contain several layers of IP which may

change over time. In many intrusion detection systems, surveillance equipment, and

other middlebox technologies, 3-tuple or 5-tuple information made up of source and

destination addresses and port numbers are used to track streams. If layers are added

or changed, this can interrupt stream tracking and cause unintended breaks or loss

of streams. Attackers or covert operators may wish to avoid tracking by switching

tunnels, as well. Without the ability to track content streams regardless of network

layer changes, the data law enforcement and the intelligence community care about

will become lost and untraceable.

Tor ("The Onion Routing") [4] is an internet framework intended to combat finger-

printing to prevent third-party tracking and surveillance through multiple layers of

encryption. The Tor browser can be freely downloaded and used by anyone to achieve

virtual network anonymity and access to sites which may be otherwise blocked for

certain users or regions. It accomplishes multiple layers of encryption through a se-

ries of network hops where each server provides unique encryption keys which must

be wrapped on and then peeled off at each stop. Over two million people employ

Tor services as of 2022; The vast majority of Tor usage is benign but studies show

a significant portion of users do perform illegal activities on the network and dis-

proportionately so in countries which have less Internet regulation and government

surveillance [5]. Thus, it can be useful for surveillance and forensic operations to

identify Tor traffic and necessary for DPI systems employed to do so.

There are also active adversaries who work to confuse DPI and avoid tracking.
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In order to bypass firewalls or avoid detection, threat actors may choose to send

traffic over non-standard ports or attempt to spoof traffic as a particular content

type by sending it over a known port. There are many reasons to send non SSL/TLS-

encrypted traffic over port 443. One primary motivation is that most firewalls default-

allow traffic on ports 443 and 80. Thus, traffic may pass through alongside other data

without the need for additional configuration or permissions. Devices which may wish

to configure with a local network with minimal user or administrator overhead, such

as Internet of Things (IoT) devices, have been discovered to send cleartext traffic

alongside the encrypted traffic on these ports. Where security is not regulated or

enforced, encryption standards also may just be ignored for simplicity’s sake. Because

the traffic is typically encrypted, payload-based deep packet inspection is often left

unemployed on port 443 in favor of using compute resources on other traffic channels.

Thus, port 443 has the potential to be used as a covert data channel if left unscanned.

This has been realized in the wild; research has uncovered applications of foreign

origin on public university networks running traffic through port 443 in order to avoid

firewall detection. Threat actors may route data intended for other commonly scanned

ports, such as email traffic and file transfer data, through 443 to avoid content-based

inspection. Tunneling protocols like SSH may also be run using HTTPS to create

encrypted covert data channels. In this work, we discuss this exact threat scenario

and employ Forager to profile traffic on port 443, providing a clearer picture to

nefarious activity which may be occurring.

1.1.3 Scalability

Machine learning and deep learning based systems are plagued by computational

complexity and stream buffering requirements. In much of the existing research, entire

traffic flows or certain portions of flows are required before classification can begin.

In a system at scale processing terabits of data per second, it is not practical to buffer

this many streams in dynamic memory. Furthermore, classification speeds and models
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must be capable of accelerated computation through hardware or simple enough to

be run in parallel quickly to keep up with line rate. For real-time classification, it

may not be possible to wait for multiple packets in a single stream to identify a

particular flow. Even in offline forensic analysis, entire streams may not be available

or recoverable. Rather, the system must make a best effort guess without knowing the

state of the traffic as to what application layer protocol is being carried for immediate

parsing and processing. If possible, classifying the application layer traffic per packet

would provide the lowest latency and highest throughput possible in the system.

1.2 Proposed Solution

The process of network traffic classification can be broken down into steps: deep

packet inspection, representation learning, and machine learning-based classification.

The task of identifying or classifying network traffic can begin with shallow or deep

packet inspection. In these steps encapsulation layer and payload information of the

packet is analyzed for matching content or features indicative of a particular class.

This data may be further expanded through forms of representation learning or data

transformation, where hidden features may be uncovered and used as input to the

next step, machine learning. These algorithms such as neural networks or state vector

machines learn these representations as classes and use the embedded data for the

future testing phase in order to appropriately group incoming data. At runtime,

a result for classification is returned on the input data. In this work, we provide

novel contribution in applying several new forms of representation learning through

data mining and transformation steps, as well as appropriate deep learning classifiers

following the creation of the hidden features.

This work proposes Forager as a toolbox for network traffic classification using

data mining and deep learning methods. It is a culmination of lessons learned through

the development of these modules and appropriately addresses the problems discussed

in the scope of this dissertation. For scalability, Forager uses single-packet inspec-
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tion techniques which may also be run in parallel for ultimate optimization. We

demonstrate high success and negligible performance impact in protocol autodetec-

tion, traffic type and application profiling, and user fingerprinting. The system is also

able to adapt to port obfuscation, spoofing, and tunneling architecture and identify

VPN and Tor routing. Other types of data information such as compression, com-

pression type, and encryption are able to be profiled through the Forager models.

The scope of this work focuses on traditional network data. Specialized datasets

such as Internet of Things networks, mobile networks, and vehicular networks are

not considered here but would be future opportunities for expansion. We also in-

tentionally do not consider traffic flows or flow-based features. The data inputs and

classifications performed in this work are done on a per-packet basis for minimized

latency and buffering. Hardware optimization and acceleration has been proposed in

other literature but are outside this scope. The focus of this work is the software

implementations of data engineering, transformation, and analysis. Scalability is as-

sessed through runtime metrics such as testing speed, throughput of data through the

system (transformation plus classification), and dynamic memory usage. The models

are also guaged with performance metrics from machine learning such as precision,

recall, and F1-score.

1.3 Contributions

As part of this dissertation, PCAP sources containing twenty-six different appli-

cation layer protocols were processed by our Tapcap solution and combined into a

diverse collection of tabularized data. We provide this dataset as a public resource

for the community 2. As a deliverable, we also publish Forager 1.0 3 along with

support packages for Rexactor 1.0 4 and Tapcap 1.0 5. The goal of providing
2https://github.com/mayakapoor/protocol-dataset
3https://pypi.org/project/forager-toolkit/
4https://pypi.org/project/rexactor/
5https://pypi.org/project/tapcap/
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these software packages and corresponding user documentation is to encourage the

research community to use these tools in their own experiments in order to further

apply what we have learned in work accomplished in this research. Each of the data

engineering tools and deep learning tools provide intellectual contribution to the field

in the following ways.

Rexactor is our automatic regular expression generation solution, furthering

the state-of-the-art by encoding substrings through global sequence alignment and

mining frequent tokens in an original algorithm for more enriched, expressive regular

expressions than previous work. Palm (Payload Analysis using Locality-Sensitive

Measurements) and Alpine (A Locality-Sensitive Packet INspection Engine) are in-

novative methods for creating locality-sensitive hash embeddings from network traffic

which is a unique alternative to regular expression scanning previously used for deep

packet inspection. Compared to the previous method, the tree-based search scales

sublinearly and the fixed hash representations require a linear amount of storage

space. These methods accurately identify many classes such as traffic type, pro-

tocol type, application, and more. Our MAtrix PayLoad Encoder, Maple, and

Density-based Analysis Tensor Encoder, Date, explore applications of image-based

and density analysis-based embeddings to an unsolved problem of RTP detection and

profiling data protocols. The Date model is a unique approach to three-dimensional,

point cloud modeling of packets which is not covered in previous literature and proves

to have applications in our experiments.

Each model is assessed with measures of precision, recall, and F1-score in different

classification problems. We also provide comparison between models in order to bet-

ter understand which transformations work better for different network environments

and different traffic types or problems. In several of the experiments we also compare

against state-of-the-art work such as the Hyperscan regular expression scanning li-

brary or other machine learning profiling techniques and systems to show our system
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contribution. Our system provides an innovation also in its multi-modality, which

we demonstrate in a case study where we analyze traffic in multiple ways on port

443. For scalability, we also assess memory usage and throughput across scenarios to

propose the system at scale so that users may be able to design their classification

strategy to their own requirements and available resources.

1.4 Summarization

In the following chapters, we first explain the background work behind deep packet

inspection and the path toward deep-learning based traffic classification. Chap-

ter 3 introduces our work into automatic regular expression signature generation

(Rexactor), which learns commonalities between packet payloads, transforms them

into regular expressions, and performs text-based automata searching of the data. In

chapter 4, systems based on locality-sensitive hashing (Alpine and Palm) introduce

data compression and fixed storage space along with a decision-tree based forest clas-

sifier. We also introduce multimodality, a recurring enhancement to classification in

our system. chapters 5 and 6 introduce Maple and Date respectively, which per-

form two-dimensional and three-dimensional transformations of data. In the Maple

architecture, we further apply CNN classification. In Date, density-based clustering

analysis is performed and statistics used as input to a neural network classifier. Fi-

nally, the ensemble system introduced in chapter 7 is the culmination of the previous

models and the basis for Forager as a useable application for real cyber engineers

and surveillance specialists. In chapter 8 of this work, we present the Forager

software and documentation resources. Chapter 9 concludes with further research

opportunities and a summarization of issues discussed.



CHAPTER 2: BACKGROUND

This section will introduce previous work related to deep packet inspection and the

progression toward machine learning for network traffic classification. Related work

toward specific techniques will be further discussed in the “Previous Work” subsections

of subsequent chapters.

As a disclaimer to this section and a warning to researchers exposed to other works

in this problem area, we emphasize that not all network traffic classification systems

are comparable to one another. Systems can classify the same data using different

input features or into different classes. Choorod et al [6] and architects of DIDark-

net [7] classify the same ISCX Tor/non-Tor dataset in different ways. Choorod et al

focuses solely on darknet detection, whereas DIDarknet further explores traffic profil-

ing by application and traffic type. This dataset along with the ISCX VPN/non-VPN

dataset are used by many works, but different systems require certain input features.

Not all systems are applicable to all network environments due to classification capa-

bility and system requirements such as processing speed or memory usage. Depending

on the implementation, a trade-off to prioritize accuracy over resource utilization may

not always be the right choice (or vice versa). It may be essential to prioritize ac-

curacy if the system is capable of storing and processing the amount of data at an

acceptable rate. Having multiple systems capable of using different features is a more

practical approach to the network traffic classification problem because it is unlikely

one solution will work equally as well for multiple problems, and many real world

applications may not afford all the features that one system requires over another.
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2.1 Deep Packet Inspection

Deep packet inspection is the process of analyzing traffic data as it comes across the

network. Packet headers contain information which can tell what type of application

layer data is being transported in the packet. Furthermore, packet payload contents

may be inspected for signatures matching protocols, applications, users, or other

content related to a particular class. More recently, systems have explored data

transformation such as embeddings or statistical analysis on raw packet data in order

to generate hidden features for representation learning-based DPI.

2.1.1 Port-based Identification

IANA, the Internet Assign Number Authority, requires default ports for certain pro-

tocols in standard traffic [8]. Classifying traffic based on port number is increasingly

unreliable due to non-standard port usage and dynamic port translation. Applica-

tions or users may ignore protocol standards for both legitimate and illegal reasons.

For example, a network administrator may choose to load-balance traffic to a dif-

ferent port for resource allocation. On the other hand, criminal activities could be

conducted on a non-standard port for obfuscation purposes. Sometimes, benign IoT

traffic is sent over a port like 443 or 80, as well [9]. Some applications are also known

for not following standards. For example, Skype is not HTTP traffic but uses Web

TCP to listen on port 80 [10]. A web designer can also host HTTP content on port

8080 instead of 80. Peer-to-peer networks may also conduct their operations on any

range of ports including those intended for other types of traffic [11].

Some protocols or traffic sessions may dynamically configure their ports from a

given range; this also poses a problem to port-based identification in a single-packet

context. Network Address Port Translation (NAPT) allows multiple computers in a

subnet to use one global IP address between the original source and final destination.

The port translation occurs when a sender is listening over a specific port that is not
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available within the NAPT set. In this scenario, the port is translated to an unused

number and then mapped into a translation table. This way, the destination port will

match what the NAPT set on the destination side, not the port specified originally

by the sender [12].

2.1.2 Payload-based Identification

Because port-based identification became inaccurate in real world applications,

researchers moved toward inspecting other parts of the packet, particularly the pay-

load. In shallow packet inspection, we focus on what information can be extracted

from the physical, data link, network, and transport layers as described by the OSI

model [13]. This is then extended into deep packet inspection which analyzes the

session, presentation, and application layers of a packet.

DPI can be rendered ineffective by encryption protocols like TLS, but is still used

today for plaintext traffic [14]. While much of the Internet’s traffic today is encrypted,

there are still applications for plaintext analysis afforded by deep packet inspection.

Control, setup, and session management messages may be sent in the clear and may

provide contextual information or protocol type indication [15, 16, 17]. Public Wi-Fi

access points can also pass unencrypted traffic [18]. Internet of Things (IoT) devices

have rapidly permeated our society and introduced new protocols and formats, yet

their growth currently outpaces the security regulations for them. Popular market

devices like Google Home and Amazon Echo are so rapidly flooding the market that

they are not yet regulated by cybersecurity laws or encryption standards and privacy

policies put in place. Thus, they often send and store data messages in plaintext [19,

20, 21]. Factory SCADA and PLC networks and older legacy systems may also not

support encryption [22] and thus may be inspected in the clear.

Even in encrypted payloads, researchers have found that signatures can still exist.

For example, Skype signaling messages are end-to-end encrypted but still contain

a specific 15-byte sequence at the beginning of a Skype login server message [23].
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HeaderHunter [24] uses packet size, direction, and TCP information in order to per-

form DPI pattern matching. This and other systems [25, 26] are not single-packet

classification solutions, and rather require a full session capture in order to classify

packets. The focus of this work and strength of our solution is the ability to classify

packets per-packet, without the need for flow-based features.

2.1.3 Flow-based Identification

While we focus on packet-based features, there is an entire field of literature and re-

search devoted to flow-based identification which has yielded impressive results. There

are other heuristics from protocol flows which developers and researchers may derive

further information or hidden features from. These statistics-based identification

methods typically focus on mean, minimum, and maximum of packet sizes, the num-

ber of packets seen in a given exchange, burst rates, the time between packets, TCP

flags, IP/port numbers, flow duration, and so forth [25, 14, 27]. In the existing lit-

erature, most use machine-learning or statistics techniques that study time and flow-

based features of packet streams [28, 29, 30, 31, 32, 33, 34]. Some mechanisms require

flow-based or time-series features, which means capturing and analyzing several pack-

ets in a flow [35, 36], or in some cases the entire session [37, 38, 39, 40, 41, 42, 43, 44].

The need to capture or buffer entire flows for classification does not scale well to

large systems with memory or CPU constraints. Furthermore, it delays classification

in real-time applications which may be trying to dynamically process the data. There

is also no guarantee to receive the whole stream if capture begins in the middle of

the session or there is data corruption. In our work as in some others, we focus on

per-packet classification. In this scenario, we propose solutions which require only a

single packet at any point in the flow for classification. We do not feed forward any

information to the next classification or record any statistics about the packets over

time or between arrivals. While this reduces the number of possible features and in

some cases accuracy on public datasets, this is a constraint of the problem scenario
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we are considering in this work.

2.2 Network Traffic Classification

Common substrings [45] or features like packet statistics can be extracted and

used to train and make informed decisions in machine learning-based models. Qual-

ity of Service requirements and adaptive streaming features have been extracted to

classify video streams using a Naive Bayes algorithm [46] or state vector machine

(SVM) [31, 29]. These potentially have significant drawbacks such as high computa-

tional complexity, high-retraining time, and reduced performance compared to other

models like K-Nearest Neighbors [28]. C4.5 and other decision tree methods have

proven performant when used to classify traffic on large datasets, as well [47, 33].

Stateless applications of neural networks have also been able to achieve greater ac-

curacy than the C4.5 approach [38]. Similarly, word embeddings have also become

practical in the stateless context with Packet2Vec [48].



CHAPTER 3: REXACTOR - REGULAR EXPRESSION SIGNATURE

GENERATION FOR STATELESS PACKET INSPECTION

3.1 Introduction

Regular expressions, often referred to as regexes, are sequences of characters used

to specify search patterns in text for string-based searching algorithms. Stephen Cole

Kleene first developed regular expressions as a derivative of study in automata theory

and formal languages in theoretical computer science. Today, regular expressions are

powerful notations used in many tools including UNIX programs like grep, awk, sed,

and vi; search engines like Google, Yahoo, and Bing, and deep packet inspection

software like Snort, RE2, and TRE. Universal standards exist for defining regular

expressions, such as Perl, PCRE, and POSIX syntaxes.

Regexes specify a subset of possible strings derived from the alphabet based on

conditions described by the syntax of the expression. Operators exist which define

the patterns. For example, a vertical bar (gray|grey) would indicate alternatives and

match the string literals “gray” or “grey.” The regular expression gr(a|e)y would be

considered an equivalent regular expression and also match both these literals. Quan-

tifiers specify how many occurrences of a character will appear in the given string.

The question mark indicates zero or one occurrences of the preceding character. For

example, (too?) would match “to” or “too.” The Kleene star specifies zero or more

occurrences of the preceding character; the regex a∗ would thus match a string con-

taining zero up to an infinite number of as, versus the Kleene plus regex a+ which

would match strings containing one up to an infinite number of as. A specific number

of occurrences or a range may also be specified with curly brackets. These are just a

few examples of regular expression operators, not including POSIX groups or other
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such syntax-specific patterns.

Regular expression pattern matching is a text-based search solution which works

best with data which is strongly signatured. Specifically, the method names, key-

words, common return codes, and string tokens that frequently occur in packets

make it possible for network engineers to come up with regexes that can match spe-

cific protocols for application layer identification. One example of strongly signatured

packet data which can be matched with regular expressions is HTTP headers. The

regular expression, (GET|HEAD|POST). ∗ HTTP/1.(1|0)x0Dx0A, will match all HTTP

packets containing a method signature like “GET/ index.html HTTP/1.0”, or “HEAD

/index.html HTTP/1.1.”

Machine learning research has found that for protocols which have commonalities

across messages, unique features tend to be found in the first N bytes of packet pay-

load [49]. In many mainstream application protocols such as POP3, SMTP, HTTP,

SIP, XMPP, IRC, and others, the first line of payload data contains methods, com-

mands, version numbers, protocol names, and other potential features. Figure 3.1

shows this starting line in the SIP protocol. Various protocols call this feature by

different names; for example, HTTP calls this line “request-line” or “response-line”

[50]. FTP refers to this line as “request” or “response” command [51]. For consis-

tency, we refer to this portion across protocols as the starting line. In testing other

protocols which do not necessarily follow a request-response paradigm, we adapted

the framework to include other message type options. For example, XMPP utilizes

three kinds of stanzas which present unique features: IQ, message, and presence [52].

Creating regular expressions for content filtering or pattern matching is a complex

problem that often requires subject matter expertise and manual intervention. Cross-

examining multiple packet payloads and examining technical reference documents like

RFCs is a time-consuming but necessary process to derive accurate and effective reg-

ular expressions. Furthermore, these signatures must be regularly maintained, tested,
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Figure 3.1: Example SIP packet

and updated. Regular expressions become immediately ineffective for example if ver-

sion numbers are added or changed. In the cybersecurity domain, malware signatures

may be easily subverted through simple code or string manipulation so permutations

must also be considered. In order to expedite this process and increase signature

scope, researchers have leveraged knowledge discovery techniques and applied data

mining to extract common features from packet payloads and header contents as input

into regular expression signature generation algorithms.

We designed Rexactor, a Regular EXpression Apriori ConstrucTOR to extend

the state-of-the-art and create more expressive signatures than other solutions are

previously capable of generating. Rexactor uses techniques from bioinformatics and

natural language processing to encode signatures which use more regex characters and

capture more data than previous work while reducing the dynamic memory footprint

when employed in regular expression scanning solutions.

3.2 Previous Work

Applications for regular expression signature matching to packet payloads origi-

nate in content inspection for malware detection. Early work in automatic signature

generation for polymorphic worms such as Autograph [53] provided a foundation for

signature-based analysis. This expanded into detecting personally identifiable infor-

mation as well as policy violations such as copyright infringement, inappropriate or
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sensitive information on enterprise networks, and censorship. Additionally, Tang et

al [54] found multiple sequence alignment to be effective in rewarding consecutive

substring extractions and tolerating noise in traffic. SigBox [45] introduced the tech-

nique of generating substring tokens from packet payloads and applying Apriori data

mining to find the most frequent ones. The related CSP Algorithm [55] and works

by Wang et al [56], Szabo et al [57], LASER [58], and AutoSig [59] all include feature

extraction and sequence alignment. Wang et al describe their system as a four-stage

process; we generalize this concept to all these solutions and our own in order to

compare various approaches.

In the first step, data is pre-processed in order to prepare it for use at the next

stage. This typically involves extraction of certain fields or N number of bytes from the

packet payload. For all these systems, sessionization of packet flows and sometimes

defragmentation and reassembly based on TCP/IP header values is required [45, 56,

55, 57, 59, 58]. Once the data is collected and prepared, the second stage finds

common substrings across packet data and/or protocol flows. The systems examined

which perform feature extraction use either a subtree approach [56], a longest common

substring algorithm [59, 58], motifs [57], or sequential pattern mining [45, 55]. Third,

a method of alignment is used to align data based on commonalities between packets.

Wang et al, Szabo et al, Vinoth et al [60] and LASER use bioinformatics approaches

to perform these alignments. A substring tree can also be used for this purpose [59].

Some of these alignment strategies are additionally informed by a scoring matrix

influenced by the tokens derived in the previous step [56, 57, 58]. Once the sequences

are aligned in an optimal manner, in the fourth and final stage the systems convert

their results into regular expressions.

3.3 Methodology

We use a modified version of Apriori algorithm combined with frequency position

tables in order to calculate single byte-length tokens and frequently occurring sub-
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strings using choice operators and position constraints [56]. Rexactor also uses

genetic sequence alignment to find commonalities in payloads and encodes this align-

ment in order to create a regular expression from it. Our system performs better than

previous work in memory space allocation by additionally using position frequencies

to specify character classes and length constraints instead of generic wildcards. This

creates real-time performance optimization in the scanner. Furthermore, unlike pre-

vious solutions our system requires no packet buffering or traffic flow information to

do its identification.

Rexactor is made up of component modules which perform various stages of data

processing and analysis in order to create optimal regular expressions. The flow of the

system is shown in Figure 3.2. Rexactor takes in as input packet capture (PCAP)

files and extracts session payload strings for supported protocols. The input can be

of any mix of traffic types, and is therefore well-suited to learning in the wild from

real network captures. This extraction layer takes in parameters from the command

line interface to select a supported protocol and message type to specifically isolate

training data from the mixed input. It also offers an extraction option for the full

data layer for analysis. For our experiments, we selected HTTP, SIP, and RTSP as

protocols and extracted request and response session payloads for each of them.

3.3.1 TRex: Apriori Tokenization of Packet Payloads

Inside the starting lines, some substrings appear frequently across packets and thus

can be used as string literals in signatures. In the SIP protocol, the line “SIP/2.0”

appears at the end of all starting lines in all our training data SIP requests. In HTTP,

the protocol name and version “HTTP/1.1” appear consistently, as well. We use a

modified version of the Apriori Algorithm [61] in order to find frequently occurring

substrings, or tokens, in our packet strings. Shim et al also use Apriori in SigBox for

content strings [45].

Apriori is an algorithm used for finding frequent item sets and association rules
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Figure 3.2: High-level diagram of signature construction in Rexactor. The system
produces certain tokens and regular expressions which can be used with the HRex
Scanner or any external filtering/sniffing application.

from databases. The algorithm uses a bottom-up approach to combine items into

incrementally larger item sets, keeping only those sets which meet some minimum

threshold of support. The support of an itemset in the database is defined as the

number of instances of the itemset in the transactions over the total number of trans-

actions [61].

Support(X) =
Instances of X in transactions

Number of transactions

In the formal definition provided by Rakesh Agrawal [62], let I = {i1, i2, i3...in} be

a set of items of length n and D = {t1, t2, t3...tn} be the set of transactions known as

a database. Every transaction ti has a unique identifier in D and ∀ti : x ∈ ti → x ∈ I,

or every transaction is a subset of items in I. Apriori relies on the anti-monotonicity

of the support of itemsets which assumes that all subsets of a frequent itemset must
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also be frequent, and all supersets of an infrequent itemset must also be infrequent.

Algorithm 1: Modified Apriori Algorithm [62]
Result: Frequent Itemsets
k = 1, Ik = {frequent item sets of size 1};
while (Ik 6= ∅) do

Ck+1 = apriori_gen(Ik);
for t ∈ D do

Ct = subset(Ck+1, t);
for c ∈ Ct do

c.count++;
end
Ik+1 = c ∈ Ck+1 | c.count ≥ minsup;

end
k = k + 1;

end
tokens = ∪kIk;
return prune_substrings(tokens);

We mine tokens using a modified Apriori approach. Each packet string derived from

pre-processing is treated as an individual line in the database. TRex uses a sliding

window algorithm of length k to create substring items which are grouped into a

list treated as a single transaction. We initialize the window size to k = 2 in order

to prevent likely frequent but meaningless single-byte tokens and set the maximum

itemset length l = 1. The first iteration calculates the frequency of substrings of

length k = 2 and each subsequent loop increments k until no more frequent itemsets

(substrings) are found.

Because the order of substrings matters in regular expression matching, we limit

the maximum itemset length to 1. We increase item size instead by increasing the

window size, thereby preserving order of characters in the modified algorithm. At

each iteration, we also prune the resulting token set by replacing tokens i in the

current set S = {Ik0 , Ik1 , Ik2 ...Ikn} with any strings j in the result set Ikn+1 which

are superstrings of i and support(i) = support(j). This reduces redundancy of tokens

such as “SIP” and “SIP/” when the sets are unioned together.
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Figure 3.3: Modified Apriori Algorithm for string packet data using a sliding win-
dow algorithm. The sliding window process is repeated for all packet strings in the
database file to make the full set of transactions.

Certain tokens. Substrings with support equal to 1.0.

Frequent tokens. Substrings with support equal to a manually configured threshold.

For example, in SIP 2.0 the method words INVITE, ACK, and BYE frequently occur in

request packets.

In order to give positional context to tokens, we introduce position frequency tables

from natural language processing (NLP). This allows TRex to compute prefix and suf-

fix groups from frequent tokens. Given a list of tokens t1, t2, t3, ...tn, TRex constructs

a position frequency table for each token in each starting line in the database. The

resulting vector V = [{t1 : pos1, t2 : pos2, t3 : pos3, ...tn : posn}, {t1 : pos1, t2 : pos2, t3 :

pos3, ...tn : posn}...] is referenced for tokens which occur at pos = 0. If the sum of sup-

port for those tokens found at pos = 0 is approximately 1.0 with respect to a minimal

noise threshold, all tokens in this subset are captured in a prefix group. In the SIP
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request example, the methods INVITE, ACK, and BYE would be captured and separated

with regular expression choice operators and a beginning position constraint in the

following manner: ˆ(INVITE|ACK|BYE).

For suffixes, TRex uses string manipulation to reverse both the tokens and start-

ing lines, which intuitively reverses the position significance also so that pos =

len(starting_line) is now decides what goes into the capture group. Frequent tokens

are reversed back to their original order before being inserted into the suffix, and

choice operators and an end position constraint are appended. Example suffixes may

include response codes, status codes or messages, or version numbers of protocols. An

example output from TRex configured for HTTP requests and run on data containing

both v. 1.0 and v. 1.1 requests may derive a suffix such as (HTTP/1.0|HTTP/1.1)$.

In addition to forming prefixes and suffixes, position frequency tables also give

meaning to single-byte tokens which occur with freq = 1.0 at a fixed position. Wang

et al found that some protocols have distinctive features at fixed offsets. As an

example, they showed that the QQ messaging application always ends its packets with

the byte 0x03, indicating the end of a message [56]. We calculate position frequency

tables similar to their approach for each character in each starting line and repeat the

process in reverse in order to find single-byte tokens. These tokens are then added to

the certain tokens set for future regular expression insertion. The substring tokens

are then extracted from the relevant database lines and the remainder is preserved

for the alignment stage.

3.3.2 GRex: Genetic Sequence Alignment of Common Substrings

GRex uses principles from genetic sequencing algorithms in order to pairwise align

the remaining starting line data. Because we pre-process data into starting lines

and TRex removes the found prefixes and suffixes to concentrate on only data which

should be aligned, it is appropriate in our system to use a global alignment algorithm

which attempts to align the entire sequence pair. We also use progressive alignment
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to sequentially align pairwise sequences to derive a resulting optimal alignment.

We chose to utilize the Needleman-Wunsch Algorithm for scoring and global align-

ment [63]. As a dynamic programming algorithm, Needleman-Wunsch utilizes a 2D

scoring matrix which rewards matching characters and penalizes mismatches accord-

ing to predefined parameters. Furthermore, a gap penalty is introduced to account for

insertions/deletions (indels) in the string alignment. The principle of the algorithm

is to greedily maximize the score of alignment per cell. Each cell in the matrix also

contains a pointer value which points to the origin of the highest score and will aid

in the final trace-back stage [64]. The score function F with gap score g, sequence

A = {a1, a2, a3, ...an}, and sequence B = {b1, b2, b3, ...bk} is defined as follows:

F (i, j) = max


F (i− 1, j − 1) + score(ai, bj)

F (i− 1, j) + g

F (i, j − 1) + g

(3.1)

In the initialization phase, the first row and column are set as the gap score times

the distance from the origin, which is the upper left most corner of the matrix. From

here, the algorithm recursively computes the match score, horizontal gap score, and

vertical gap score for each cell in the matrix. The match score is calculated from

the preceding diagonal cell’s score and the score of alignment of the two characters

(match or mismatch). The horizontal gap score is the sum of the score to the left and

the and the gap score. Similarly, the vertical gap score is the sum of the cell above

and the gap score. The cell is set to the maximum of these values and the pointer to

the cell (left, vertical, or diagonal) where the maximum came from. Once the matrix

has been filled, the pointers are used to trace back through to find the highest-scoring

alignment [64]. Figure 3.4 demonstrates this scoring algorithm in a matrix.
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Figure 3.4: Scoring matrix example of the Needleman-Wunsch Algorithm. Traceback
follows from the right bottom corner to the top left cell. The alignment results in the
maximum possible score = 0.

GRex modifies the Needleman-Wunsch algorithm to encode Greek symbols into

our alignments which represent specific character classes, insertions and deletions,

and mismatches which will later be decoded in the final translation step and used

to generate regular expressions. Table 3.1 provides a key to GRex’s Greek symbol

encoding. Previous work used an encoding algorithm for indels and mismatches [56],

but we created our own encoding schema for GRex and expanded this to also incor-

porate defining character classes. Specifically, we encode symbols based on whether a

character in a given position is or is not a white space character, alphabet character,

or digit. Table 3.2 shows the regular expression operators GRex derives from these

encodings at the translation step.

The encoding process runs in a progressive manner, such that two strings are

aligned, compared, and encoded, and that return is then passed again and compared

against another string in the sequence. Once aligned using the Needleman-Wunsch

algorithm, the character types of each index are compared. Depending on the type of

character, the returned string from this process is appended with a representation of

either the character itself if the indexes are matching or a Greek character encoding
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Table 3.1: Greek Symbols For GRex Encoding

Φ insertion/deletion
∆ mismatch
ψ gap
Σ alphabet character
ω not alphabet character
Π digit
λ not digit
Ω white space character
σ not white space character

Table 3.2: Supported Regular Expression Operators

Type Symbol Definition
. matches any character
[] matches any character in brackets
[ˆ] matches any character not in brackets
\s white space character

character class \d digit
\w word character
\S not white space character
\D not digit
\W not word character
* matches zero or more times
? matches at most one time

quantifier + matches one or more times
{m,n} matches between m and n times
{m,} matches m or more times
{,n} matches at most n times

ˆ matches beginning of data
other $ matches end of data

() capture group
| OR operator
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otherwise. Once the new string is fully appended, it is returned to the loop. This

returned string is compared to the next entry within the data. This process loops

until every line from the packet data is aligned into the final encoding.

In order to create the regular expression, the replacement function is run against

the generated string. Each index is checked and replaced with the regular expression

counterpart with correct special character escaping. The final regular expression is

constructed from the symbolic string. Frequent tokens are combined with choice oper-

ators and positional constraints ˆ and $ for prefixes and suffixes, respectively. Prefixes

are appended to the beginning of the generated regular expression, and suffixes to

the end.

3.3.3 HRex: High Performance Regular Expression Scanning

The final component is a sniffing application written in C++ which reads in PCAP

files using libpcap and performs regular expression scanning with Intel’s Hyperscan

library [65]. Hyperscan provides significant performance improvement over other

commercial but popular tools like Snort due to its reduction of duplicate operations

in string and pattern matching and use of single-instruction, multiple data (SIMD)

operations. In their experimentation, creators of Hyperscan found it outperformed

Snort by a factor of 8.7 [66]. Our string literal tokens created by Rexactor’s TRex

can be applied in a pre-filter system like Snort, as well. Furthermore, Hyperscan does

additionally support string literal, or keyword, matching. We provide both solutions

for flexibility in real-world applications as the network capture environment is rarely

one-size-fits-all. As our tokens are learned via unsupervised learning, they do not

require manual analysis and thus scale well to larger, unknown data sets.

3.4 Experiments and Results

We performed two case studies using Rexactor regular expressions and tokens.

The first is a comparison-based analysis using our own HTTP signature and ones
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developed by related works. Additionally, we assessed Rexactor’s ability to develop

a signature and keywords for SIP and RTSP, two protocols found in VoIP traffic flows.

We use measures of precision, recall, and F1 score in order to assess signature efficacy.

We use measures of precision, recall, and F1 score in order to assess signature

efficacy. Our measure of recall is the number of packets n correctly identified as

protocol type P divided by the sum of the number of packets n correctly identified

by their protocol type plus the number of packets m incorrectly identified as not P

[17].

Recall =
n correctly labeled P

n correctly labeled P + m incorrectly labeled not P

Precision is defined as the number of packets n correctly identified as protocol type

P divided by the sum of the number of packets n correctly identified as protocol type

P plus the number of packets m incorrectly identified as P [17].

Precision =
n correctly labeled P

n correctly labeled P + m incorrectly labeled P

Finally, we also provide the F1 score for ours and other solutions.

F1 = 2× Precision × Recall
Precision + Recall

In addition to these data science measurements, we record, analyze, and compare

heap usage using valgrind. We also compare the heap allocation for our signatures
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and signatures from comparable works to show our solution’s improvements.

We use packet capture (PCAP) data from live network captures for both training

and testing scenarios. An interesting note on training data is that in our cases,

Rexactor did not require more than a few hundred starting lines in order to create

quality signatures. We found that as long as the starting lines were from a diverse set

of captures so that variable URLs, ports, and addresses were not over-represented, the

common features were both discovered and generalized enough for re-usability. This

demonstrates that Rexactor may be able to create specific signatures for protocols

which may not appear frequently in a data set.

To create HTTP signatures with Rexactor, we used a small data set of mixed

background traffic containing 213 HTTP request packets and 1000 HTTP responses.

The resulting signatures and tokens are provided in Table 3.3. For the VoIP protocol

tests, we used 252 SIP request packets and 230 responses for training signatures, and

638 RTSP responses and 562 RTSP requests. Our signatures and tokens for these are

provided in Table 3.6. We ran tests on data sets from a live capture environment of

background web traffic containing 1000 HTTP packets, 1000 SIP packets, 1000 RTSP

packets, and 1000 packets of other mixed protocol types, including FTP, SMTP,

ICMP, and others.

Rexactor is a Python tool library designed with Python 3.8. We use the efficient-

apriori library (v. 1.1.1) [67] for tokenization, PyShark for data pre-processing (v.

0.4.3) [68], and numpy (v. 1.21) [69] data structures for optimization. The scanning

framework used for testing regular expression matching is written in C++ using

Boost 1.63 [70] and Hyperscan 5.4.0 [65] libraries for regular expression creation and

matching, respectively. All experiments were performed on a single i9 Dell computer

with Ubuntu 20.04 installed.
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Table 3.3: HTTP Signatures and Tokens

Source Side Signatures Tokens

AutoSig
[59]

N/A N/A [HTTP/1.]; [GET\0x20/]
[HTTP/1.];

LASER
[58]

N/A N/A [HTTP/1.1]

Wang et
al [56]

Request ˆ(GET | HEAD |
POST).*HTTP/1.(1|0)
\x0D\x0A

N/A

Response ˆHTTP/1.(1|0)
[2|3|4|5]0.*\x0D\x0A

N/A

LCS Al-
gorithm
[60]

N/A ˆ(HTTP/1.1 | Host:.u |
Connection:keep-alive |
User-Agent:Mozilla/5.0
| Accept: | Accept-
Encoding:ga |
Accept-Language:en-
US.*en;q=0.8 | Accept-
Charset:ISO-8859-1)

[HTTP/1.1]; [Host:.u];
[Connection:keep-alive];
[User-Agent:Mozilla/5.0];
[Accept:]; [Accept-
Encoding:ga];
[Accept-Language:en-
US.*en;q=0.8]; [Accept-
Charset:ISO-8859-1]

Rexactor Request ˆ(GET / | POST / |
POST | POST /mail
| HEAD /).{0,2048}(
HTTP/1.1\r\n)$

[HTTP/1.]

Response ˆ(HTTP/1.1
|HTTP/1.).{0,3}.{0,24}
\\S(\r\n)$

[HTTP/1.]

3.4.1 Case Study A: HTTP Detection

The results of scanning related works’ regular expressions and our own on the

testing dataset showed comparable recall for Wang et al’s system and Rexactor.

The longest common substring algorithm (LCS) signature performed significantly

worse. For our dataset, all systems for both regular expression scanning and literal

token scanning had perfect precision, including Rexactor. Because precision in our

data set was ideal for all systems, the F1 Score results are comparable to the recall

results.

While precision and recall results were on par with the state-of-the art, Rexac-
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tor’s signature required significantly less heap space than either Wang et al’s solution

or LCS when performing regular expression scanning. This demonstrates Rexac-

tor’s superior performance in real embedded systems where memory optimization is

a critical factor.

Table 3.4: HTTP Case Study Results for Regular Expressions

Solution P R F1 Allocation

Wang et al 1.000 0.984 0.992 20,783,011 bytes

LCS 1.000 0.254 0.405 36,015,510 bytes

Rexactor 1.000 0.976 0.989 18,310,656 bytes

Table 3.5: HTTP Case Study Results for Tokens

Solution P R F1 Allocation

AutoSig 1.000 0.989 0.994 548,715 bytes

LASER 1.000 0.865 0.928 457,778 bytes

Rexactor 1.000 0.989 0.994 457,280 bytes

3.4.2 Case Study B: VoIP Detection

In addition to a comparison study using HTTP, we ran precision, recall, and mem-

ory allocation tests for Rexactor signatures for two VoIP protocols. In future work,

we could expand this to chat, email, and other text-based protocols with the goal of

targeting signatures for application-specific signature generation and protocol anal-

ysis. For example, we would want to target identifying and distinguishing between

Skype, Zoom, or Webex traffic flows [17]. Rexactor performed amicably with per-

fect recall and precision in our dataset. Heap allocation results were also comparable

to HTTP, showing that the good performance from the case study was not anomalous

but rather indicative of good signature construction by Rexactor.
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Table 3.6: VoIP Signatures and Tokens

Protocol Side Signatures Tokens

SIP Request ˆ(INVITE
sip:|ACK sip:|BYE
sip:|REGISTER
sip:).{0,74}( SIP/2.0)$

[ sip:];[ SIP/2.0]

Response ˆ(SIP/2.0 200
OK|SIP/2.0 40|SIP/2.0
100 Trying|SIP/2.0
180 Ringing|SIP/2.0
4|SIP/2.0 18|SIP/2.0
).{0,31}

[SIP/2.0 ]

RTSP Request ˆ(TEARDOWN
rtsp://|DESCRIBE
rtsp://|SETUP
rtsp://|PLAY
rtsp://).{0,85}(
RTSP/1.0\r\n)$

[rtsp://];[RTSP/1.0\r\n]

Response ˆ(RTSP/1.0 )\\d\\d\\d
.{0,6}[a-zA-Z](\r\n)$

[RTSP/1.0 ]

Table 3.7: VoIP Results for Regular Expressions

Protocol P R F1 Allocation

SIP 1.000 1.000 1.000 34,449,057 bytes

RTSP 1.000 1.000 1.000 14,972,715 bytes

Table 3.8: VoIP Results for Tokens

Protocol P R F1 Allocation

SIP 1.000 1.000 1.000 3,234,815 bytes

RTSP 1.000 1.000 1.000 3,624,176 bytes

3.5 Discussion and Limitations

Rexactor provides a classification solution for per-packet analysis and does not

require data to be read as or reconstructed into flows in order to achieve classification.
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The modular design of Rexactor also allows for components to be used as tool sets

so that engineers may adapt the knowledge discovery elements to their own scan-

ning systems or use the full system as a whole framework. For example, the module

TRex which derives tokens may be run individually in order to create keywords for

Snort filters. Additionally, regular expression signatures can be created and published

outside of the scanner in order to be plugged into any other DPI application. Rex-

actor also supports tokenization and alignment for raw data, allowing for analysis

and signature creation for unknown protocols. This high adaptability means Rexac-

tor can be applied in many network environments for knowledge discovery and DPI

usage. We have generated effective signatures using Rexactor for email (SMTP,

POP3, IMAP), file transfer (FTP), chat (XMP, IRC), VoIP (SIP, RTSP), and web

(HTTP) protocol analysis. Because Rexactor utilizes unsupervised learning and

derives features from training data, it could be applied to learning more application

specific signatures. One improvement for our solution and others discussed which use

unsupervised learning would be an attempt to learn an optimal threshold for feature

support rather than rely on manual configuration. In the comparison study, we found

that packets not identified by the signatures were HTTP continuation packets of just

data payload. Sessionization of protocol flows would allow a detection system to pick

up on the first HTTP packet of an exchange with identifying method information,

then record the 5-tuple flow information for further scanning. But this technique is

not usable in per-packet analysis, and is a limitation of the problem space rather than

our solution.

Regular expressions as a text-based approach also have limitations to their appli-

cability in the real, complex network environment. The current industry standard

for application layer DPI is to use regular expressions to match expected values in

payloads. Protocols or applications may have multiple signatures to match request,

response, or message types. Some protocols also do not have strong signatures. Fur-
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thermore, different versions of protocols or updated standards and RFCs often require

separate signature sets and the continual update of older patterns [71]. Some proto-

cols are also so non-standard that it is difficult to track them on a regular expression

signature alone; for example, the payload of an RTP packet is raw data and assigned

ports are dynamic [72]. Current state-of-the-art scanners suffer from variable and

data-dependent performance impact [73]. With the increasing size and complexity of

rulesets and the growing scale of the network environment, regular expression scan-

ning using the current systems is more and more impractical. Regex methods are

also limited by what classes they can be used for in network traffic. For example,

there is no real regular expression signature which can identify Tor-routed traffic from

non-Tor-routed traffic; the data is too diverse. Other desirable classes for traffic, such

as traffic type, application, and user or device type present similar issues to regular

expression scanners. Each possiblity must have its own, human-engineered regular

expression to match precisely which is both slow and prone to error. In addition

to scalability and machine performance, text-based regular expression matching no

longer meets the needs of the environment as over 90% of browsing data today is

encrypted [74].

Regular expression matching which relies on deterministic and non-deterministic

finite automata (DFA and NFA) is prone to the state explosion problem, where com-

putational complexity increases exponentially as regular expressions increase in num-

ber and become more complex. DFAs are fast to search, but are most prone to state

explosion as every possibility is explicitly constructed. NFAs provide linear storage

space to the size of the regular expression ruleset, but it is relatively easy to arrive at

worst-case search performance with rule complexity [75]. Hyperscan is one such tool

which constructs an NFA/DFA hybrid for searching. Table 3.9 shows the process-

ing complexity and storage costs of these structures where m is a number of regular

expressions of length n.
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Table 3.9: Worst-Case Space and Time Complexities for NFA and DFA [1]

Data Structure Complexity Storage Cost
NFA O(n2m) O(nm)
DFA O(1) O(Σnm)

Recently, hybrid NFA/DFA engines have been proposed to improve search per-

formance; however, improvements on computational complexity can still be prone to

memory issues in the case of large regular expression rulesets [65]. Parallel computing

may alleviate some of the computational stress, but is acknowledged as a brute force

approach [76]. Hyperscan is able to handle compiling and searching with incredible

efficiency; however, this becomes exponentially worse to the point of impracticality

when put at a test to scale, which we demonstrate in the next chapter of this work.



CHAPTER 4: ALPINE/PALM - SIMILARITY SEARCH THROUGH

LOCALITY-SENSITIVE HASH FINGERPRINTING

4.1 Introduction

The ineffectiveness of existing regular expression-based deep packet inspection

methods against encrypted payloads and weakly signatured data classes as well as the

computational and storage complexity of automata has evidenced the need for other

forms of traffic fingerprinting for identification. We propose using locality-sensitive

hashing in order to measure similarity of features between packets. Locality-sensitive

hashing uses a distance metric to preserve the similarity of original inputs when

they are converted to locality-sensitive hashes (LSH). The benefit of locality-sensitive

hashing here is that it is capable of reducing high-dimensionality data into a low-

dimensional, space-effective, computationally efficient representation of the same data

while still preserving similarity metrics between the data points [77]. Hash families

may be defined for many distance measures such as Hamming distance, L1 and L2

norm [78], and Jaccard similarity [79].

While cryptographic hashes attempt to minimize collisions, locality-sensitive hashes

preserve the similarity of data points by generating hashes closer to one another

depending on the input’s similarity. The following definition intuitively states that

data points which are locally nearby have a higher probability of collision than further

points.

Definition 1 [2] A family H of functions from a domain S to a range U is called

(r, ε, p1, p2)-sensitive, with r, ε > 0, p1 > 0, p2 > 0, if for any p, q ∈ S, the following

conditions hold:
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• if D(p, q) ≤ r then PrH [h(p) = h(q)] ≥ p1,

• if D(p, q) > r(1 + ε) then PrH [h(p) = h(q)] ≤ p2.

Alpine [75] is A Locality-Sensitive Packet Inspection Engine which performs

shallow packet inspection on selected features from the network and transport layer

encapsulation headers of packets. Palm performs Payload Analysis using Locality-

Sensitive Measurements. Both these models use locality-sensitive hashing as a means

for normalizing data into an embedding which can then be compared for similarity

and classified using distance metrics.

Locality-sensitive hashing has been used in user-level browser fingerprinting, where

web-based browser fingerprints are created by extracting multiple values from the

browser API and hashed using MinHash or some similar algorithm. This generates

signatures of high entropy, where the data is uniquely identifiable as a particular

device or host [80]. LSH clustering has also been used to make signatures for classi-

fying malware at scale [81]. In a similar fashion, we apply this technique to network

packet data by using features which should evidence values unique to a given class

and creating the locality-sensitive hash from those.

Similarity search approximation can be performed by linearly comparing the hashes

created from the packets. Similarity search is a generalized term in data mining which

refers to searching for objects where the available comparator is some common pat-

tern or set of similarities. This group of mechanisms includes tools such as Nearest

Neighbors searching, link-based similarity searches, duplicate detection, and object

representation [2]. This can be applied in cyber criminal investigation to find individ-

uals in the same criminal network, content similar to known evidence, images similar

to another, or known fingerprints across network data. Qualities of good similar-

ity search methods include efficient querying and storage mechanisms, a minimized

memory footprint, and minimal human interference [82].
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One data engineering challenge is constructing suitable, unique tokens which char-

acterize the data meaningfully. The sentence, “Palm trees are native to the Pacific”,

may be split on whitespace into the set of tokens T = {“palm”, “trees”, “are”, “na-

tive”, “to”, “the”, “pacific”}. It is obvious that tokens like “the” are far too generic in

the English language to be characteristic of this sentence, but a token like “palm” or

“pacific” will be much more unique and indicate a stronger similarity. Formally, this

idea is quantified as taking the inverse document frequency (IDF), where we minimize

the importance of terms which appear frequently in the document set, and combining

it with term frequency (TF) as the TF-IDF value [83]. This value describes tokens

which are both common and characteristically unique of the document set.

4.2 Previous Work

Jaccard similarity measures the intersection of two sets over their union. This value

is often used in recommender systems, and can also be used to detect plagiarism or

make predictions. In order to take the Jaccard similarity, data must be split up into

sets, which are made up of individual elements like the tokens or shingles of strings as

done in SigBox [45] and Rexactor [71] for regular expression signature generation.

Some limited work has been done in application fingerprinting through locality-

sensitive hashing. Tang et al proposed HSLF [84], an HTTP header sequence-based

LSH fingerprint generator for classifying applications in HTTP traffic. Their results

show the ability of their SimHash-based method to distinguish accurately among data

such as VMWare, Firefox, and WeChat. This work is limited as it only applies to

cleartext HTTP traffic. Furthermore, the scope of this traffic only makes up a fraction

of real-world data.

Jiang and Gokhale [85] use locality-sensitive hashing on packet-level features to ac-

curately classify network traffic statelessly. From a model perspective, their use of K-

Nearest Neighbors clustering scales sub-optimally. Their work also focused solely on

multimedia applications versus legacy web-browsing; there is no expansion into traffic
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type, application, protocol, or other needed classification in current DPI. Alpine and

Palm expand these works into a much more complex and diverse set of experiments

and applications.

4.3 Methodology

4.3.1 MinHash and Locality-Sensitive Hash Forest

In order to form the elements of a set, we shingle packets into items and reduce the

data to a set intersection problem. An object is w-shingled when a sub-sequence of

length w of contiguous tokens is cut from it. In Alpine, we use the port information,

transport layer protocol, flag values, and packet length to make up our shingles. In

Palm, word tokens are created by delimiting packet payloads by whitespace. Thus,

each original packet P is now associated with some set SP of shingles as depicted in

Figure 4.1.

J(PA, PB) =
|SA ∩ SB|
|SA ∪ SB|

(4.1)

Figure 4.1: Jaccard Similarity of Shingle Sets

Jaccard similarity can be approximated quickly through the MinHash algorithm.

The hash representation also fixates and potentially reduces the amount of space

packet data occupies, and furthermore normalizes the data in cases where the shingles

are heterogenous and of varying length and type. The MinHash of a given column is

the number of the first row in permuted order whose characteristic matrix value is 1.

The sequence is continued down the columns and repeated for k permutations. The

probability that the MinHash function for a random permutation of rows produces the

same value for two sets is a close approximation to their Jaccard similarity [86]. Bawa

et al [2] developed the LSHForest algorithm which indexes the locality-sensitve hashes

in a forest-based data structure in order to optimize the similarity search process. It

improves upon nearest-neighbor searches by both reducing complexity and eliminating
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the need to know the distance r from the query to the nearest neighbor of a given data

point. Optimization is achieved through the use of a specific set of hash functions

which ensures that any nearest neighbor query returns ε-approximate neighbors so

long as a suitable l number of trees is chosen. LSHForest scales much more efficiently

compared to previous work using nearest neighbor searches [85]. The build time of

a KNN model can have a complexity of O(n2), where n is the number of items. In

contrast, LSH construction is done in linear time [2]. The theoretical complexities of

operations on LSHForest are provided from the original paper in Table 4.1. When

compared with time and space complexities for the automata in regular expression

searching in Table 3.9, the logarithmic improvement and fixed storage space is clear.

We chose to use this data structure in the classification stage of Alpine and Palm

in order to utilize this optimization.

Table 4.1: Time Complexities for LSHForest [2]

Operation Complexity
Insertion O(l ∗ logBn)
Deletion O(l ∗ logBn)
Query O(l ∗ logBn) +O(l ∗ logB) +O(M/B)

In these equations, l represents the number of trees, n the number of data points in

the dataset, and B the branching factor of an internal node. Storage is optimized to

be linear, O(n), through the use of compressed PATRICIA tries [2]. The m nearest

neighbors for some point q is found by first performing a binary, longest matching

prefix search for a leaf node with the point si. Then some M points are collected

synchronously across all trees and ranked by similarity score, with the top m being

returned as an answer. The m number is used as votes to classify the sample by

majority once the query is complete. This majority vote approach also allows for

multiple classification results; for example, an adaptive system may be able to take

the second closest result if the first choice turns out to be incorrect.
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4.3.2 ALPINE: A Locality-Based Packet Inspection Engine

Alpine uses Jaccard similarity in order to determine likeness between sets of the

following packet header features: source and destination IP address, type of ser-

vice field, packet length, IP next protocol, IP flags, source and destination port (see

Figure 4.2). For indexing the computed MinHashes and performing lookup for clas-

sification, Alpine uses the previously discussed LSHForest [2]. A query is performed

by computing the MinHash of the input data and doing a binary search on the prefix

trees. The hash is then mapped back to its label index. A majority vote is taken

from the returned m nearest neighbors and the data is classified accordingly.

Figure 4.2: Example TCP/IPv4 header with extracted features for Alpine outlined

4.3.3 PALM: Payload Analysis Using Locality Sensitive Measurements

PALM employs a similar strategy to previous work in payload signature generation

like SigBox [45] and RExACtor [71]. Palm delimits packet payloads by whitespace in

order to create word-style tokens. In future work, other delimiters or a sliding-window

shingling technique may suit identification of certain data types such as binary ap-

plication layer protocols like HTTP2. In the experiments presented in this report,

whitespace proved to be the most effective delimiter. MinHash was used to generate

the locality-sensitive hashes for the data samples and test samples. We use the LSH-

Forest algorithm developed by Bawa et al [2] to index the locality-sensitive hashes

and optimize the search process.



42

4.4 Experiments and Results

Table 4.2: Description of Combined Dataset

Application Type Protocol # Samples
File Transfer FTP 10,015

FTP-DATA 4,000
BitTorrent 20,648

Voice-over-IP MGCP 1,568
SIP 1,112
H.225 1,300
RTP 15,552
RTCP 1,626

Mail SMTP 5,981
POP 1,675
IMAP 3,318

Authentication & Access LDAP 1,354
SMB 3,554
Telnet 1,888

Tunneling GPRS 9,981
PPTP 1,288
SSH 3,039

Web & Chat DNS 10,563
HTTP 21,298
XMPP 1,553
TLS 4000

Networking DHCP 1,444
NBNS 1,216
GQUIC 1,740
NTP 1,940
SSDP 8,504

Using only a single dataset or network environment can lead to bias in results [87].

Thus, we created a combined dataset from many available public datasets in order to

diversify the traffic and contents. Our sources include the CDX 2009 captures [88], the

Skynet Tor dataset [89], the Canadian Institute for Cybersecurity’s ISCX VPN/non-

VPN and Tor/non-Tor datasets [90, 91], and repositories fromWireshark, Cloudshark,

and IEEE Dataport. This repository contains PCAPs from twenty-six different, com-

mon application layer protocols. For experimental reproducibility and general use we
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have made this new dataset available publicly 1.

4.4.1 Protocol Auto Detection

It is crucial for lawful interception and DPI middleware boxes to be able to au-

todetect application-layer protocols in order to properly assess, parse, and process

seen traffic. The environment on any given signal can be wildly diverse; thus, clas-

sification systems must be capable of scaling to large, multiclass problems. Previous

systems [84, 85] have not attempted protocol detection to the scale of a 26-class prob-

lem, making this model a true and fresh pioneer in the DPI field. We first split our

data into training and test sets and extracted features from each of the protocols.

Next, we generated hash values for the training samples and indexed them into the

forest. For testing, we generate a hash of the input value and perform the similar-

ity search on the trained model. The results of the testing samples are provided in

Table 4.3. The evidence shows that the combined model has high accuracy and preci-

sion/recall for protocol identification. Cohen’s kappa also shows a strong agreement

among the ensemble voters. The method also performs equally well across application

types, indicating generalizability. Figure 4.3 shows the confusion matrix results of the

classifier’s ensemble voting system.

4.4.2 Traffic Type

Standardized documentation necessitates that there are some detectable similarities

between protocols. It is reasonable to think that detection of more abstract classes like

traffic type (i.e. email, file transfer, web data) would be more heterogeneous and thus

more difficult to detect by embedding and similarity search. We experimented with

classification by traffic type by amalgamating the dataset into classes as described in

Table 4.2 in the datasets section of this work. Results in Figure 4.4 show a confusion

matrix of the classification results which are also highly accurate.
1https://github.com/mayakapoor/protocol-dataset
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Table 4.3: Protocol Autodetection Results

Jaccard TF-
IDF

Accuracy 0.996 0.841
Cohen’s κ 0.997 0.841
Protocol P R F1 P R F1
BitTorrent 1.00 0.99 0.99 0.89 0.85 0.86
DHCP 1.00 1.00 1.00 0.91 1.00 0.95
DNS 1.00 0.99 1.00 0.95 0.97 0.96
FTP 0.99 1.00 0.99 0.83 0.90 0.86

FTP-DATA 1.00 1.00 1.00 0.93 0.96 0.94
GPRS 1.00 1.00 1.00 0.91 0.98 0.95
GQUIC 1.00 0.99 0.99 0.87 0.75 0.81
HTTP 1.00 0.99 0.99 0.82 0.48 0.61
H.225 1.00 1.00 1.00 0.83 0.97 0.90
IMAP 1.00 0.99 0.99 0.86 0.79 0.82
LDAP 1.00 0.99 0.99 0.87 1.00 0.93
MGCP 1.00 1.00 1.00 0.90 0.65 0.75
NBNS 0.99 1.00 0.99 0.94 1.00 0.97
NTP 1.00 1.00 1.00 0.91 1.00 0.95
POP 0.98 1.00 0.99 0.91 0.47 0.62
PPTP 0.95 1.00 0.98 0.84 0.90 0.87
RTCP 1.00 1.00 1.00 0.96 1.00 0.98
RTP 1.00 1.00 1.00 0.89 0.88 0.89
SIP 1.00 1.00 1.00 0.54 0.98 0.69
SMB 1.00 0.97 0.98 0.95 0.99 0.97
SMTP 1.00 0.99 0.99 0.92 0.93 0.93
SSDP 1.00 1.00 1.00 0.72 0.28 0.40
SSH 1.00 0.98 0.99 0.90 0.86 0.88
Telnet 0.99 1.00 0.99 0.86 0.99 0.92
TLS 1.00 1.00 1.00 1.00 1.00 1.00

XMPP 1.00 1.00 1.00 0.79 0.90 0.84
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Figure 4.3: Twenty-six Class Identification Problem using the Alpine-Palm Com-
bined Model

4.4.3 TF-IDF Score Evaluation

There are many complex ways to measure similarity between two items; Jaccard

similarity is considered relatively simple. In order to reason whether or not the sim-

ilarity metric was effective, we used the TF-IDF score of payload tokens in order

to filter out low-value tokens and generate hashes only from high-value ones. This

metric was chosen to address concern that large data payloads, for example HTML

documents or email messages, might introduce noise into hashes which would reduce

classification accuracy. Instead, isolating payload tokens to only the high value ones

could reduce spurious extra data. The TF-IDF measurement of tokens was imple-
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Figure 4.4: Confusion Matrix of Traffic Type Classification Results

mented in the training stage by modifying configurations of the Palm model to filter

the added tokens. Only those tokens with TF-IDF score above the minimum thresh-

old were kept and included in the actual LSH signature. The results in Table 4.3 show

that this actually had a negative impact on the classification accuracy, indicating the

basic Jaccard similarity was a better distance metric for this use case.

4.4.4 Multi-Embeddings

It has been shown that concatenating multiple classifiers and evaluating the agreeance

among voters yields a reduction in error and even correlation when there is a mis-

classification [92]. We hypothesized that enabling both Alpine and Palm to run

together would yield the most accurate and agreed-upon classification results. We

tested this theorem by running the 26-class protocol identification test against con-
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Table 4.4: Multi-Hash Embedding Classification Results

Alpine Palm Multi-
Model

Accuracy 0.988 0.717 0.996
Cohen’s κ 0.988 0.705 0.997
Protocol F1 P R F1 P R F1 P R
BitTorrent 0.98 0.97 1.00 0.74 0.75 0.73 0.99 1.00 0.99
DHCP 1.00 1.00 1.00 0.91 0.83 1.00 1.00 1.00 1.00
DNS 1.00 1.00 1.00 0.24 0.46 0.17 1.00 1.00 0.99
FTP 0.96 0.97 0.94 0.90 0.83 0.98 0.99 0.99 1.00
FTPDATA 1.00 1.00 1.00 0.20 0.37 0.13 1.00 1.00 1.00
GPRS 1.00 1.00 1.00 0.91 0.98 0.85 1.00 1.00 1.00
GQUIC 0.99 0.99 1.00 0.27 0.48 0.19 0.99 1.00 0.98
HTTP 0.99 1.00 1.00 0.61 0.65 0.55 1.00 1.00 0.99
H.225 1.00 1.00 1.00 0.63 0.68 0.95 1.00 1.00 0.99
IMAP 0.99 0.94 0.98 0.85 0.77 0.59 0.99 1.00 0.99
LDAP 0.96 1.00 0.98 0.66 0.75 0.59 0.99 1.00 0.99
MGCP 1.00 1.00 1.00 0.90 0.83 1.00 1.00 1.00 1.00
NBNS 0.99 0.98 1.00 0.87 0.82 0.92 0.99 0.99 1.00
NTP 1.00 1.00 1.00 0.90 0.82 0.99 1.00 1.00 1.00
POP 0.99 0.98 0.99 0.26 0.41 0.20 0.99 0.98 1.00
PPTP 0.99 0.98 0.99 0.49 0.33 1.00 0.98 0.95 1.00
RTCP 1.00 1.00 1.00 0.92 0.85 1.00 1.00 1.00 1.00
RTP 0.99 0.98 0.99 0.40 0.65 0.29 1.00 1.00 1.00
SIP 1.00 1.00 1.00 0.93 0.87 1.00 1.00 1.00 1.00
SMB 0.99 1.00 0.98 0.81 0.80 0.82 0.98 1.00 0.97
SMTP 0.98 0.99 0.98 0.81 0.80 0.82 0.99 1.00 0.99
SSDP 0.99 1.00 0.98 0.92 0.86 1.00 1.00 1.00 1.00
SSH 0.95 0.97 0.92 0.47 0.67 0.37 0.99 1.00 0.98
Telnet 0.99 0.98 1.00 0.80 0.75 0.85 0.99 0.99 1.00
TLS 0.99 0.99 1.00 0.61 0.51 0.75 1.00 1.00 1.00
XMPP 1.00 1.00 0.99 0.92 1.00 0.85 1.00 1.00 1.00
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figurations of the model with just Alpine embedding, only Palm embedding, and

a final combined run. Results as shown in Table 4.4 demonstrate that the combined

votes of both models were the most accurate in the final tests. Furthermore, the

agreeance among voters was also highest using multiple hash embeddings.

4.4.5 Model Performance and Throughput

Applied machine learning must keep up with signal processing at very high rates;

furthermore, any passive system must not interfere with legitimate traffic and service

and can thus not introduce additional latency or the potential for dropped packets.

The software must also be capable of performing the required processing for data

analysis on as much of the traffic as possible (ideally, all of it). Diverting or copying

traffic offline for analysis as well as parallelization strategies and traffic thinning and

load balancing are legitimate system design choices which can mitigate this. But

there is still room for improvement and optimization at the classification solution

level to achieve real-time rates. Thus, we perform experiments to see how the system

scales based on model sizes and number of classes. We measured the training time,

system throughput in millibits per second (Mbps) as well as memory usage during

the testing phase in megibytes (MiB) as we were running all performance tests on

the combined dataset consisting of 140,157 total packets. Random under-sampling

was used to even out the distribution of data and avoid bias, which caused our total

number of packets after sampling to be a fraction from the original set. For testing the

number of classes, we created experiments with binary RTP/non-RTP classification,

the traffic-type multiclass experiment with 8 classes/types, and the largest 26-class

experiment where we identify all possible data layer protocols. In Table 4.6, we detail

the results of the experiments for a varied number of classes and sample sizes.

In order to test system scalability in deployment and verify the theoretical com-

plexity discussed in the background section of this work, we performed a series of

experiments increasing the number of signatures for a model used to classify HTTP
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Table 4.5: Performance Results for Varied Number of Classes

Classes #
Hashes

# Sam-
ples

Training
Time

Test
Time

Memory
Usage

Throughput Accuracy

RTP/
non-
RTP

20,613 13,743 4.273s 1.21ms 470.8
MiB

2.596 Mbs 1.000

Binary
classifi-
cation

2,400 1,600 0.738s 0.866ms 283.7
MiB

3.139 Mbs 0.997

240 160 0.075s 1.093ms 353.4
MiB

2.317 Mbs 1.00

Traffic
Type

28,543 19,029 7.136s 1.015ms 584.6
MiB

3.728 Mbs 0.997

8-class
problem

12,600 8,400 3.31s 1.006ms 305.3
MiB

2.842 Mbs 0.997

240 160 0.683s 2.397ms 290.6
MiB

2.54 Mbs 0.998

Protocol 17,347 11,565 5.312s 1.138ms 352.4
MiB

3.041 Mbs 0.997

26-class
problem

15,600 10,400 3.13s 0.727ms 305.3
MiB

4.231 Mbs 0.998

1,560 1,040 0.492s 0.901ms 301.8
MiB

3.212 Mbs 0.994

traffic. For a comparitive baseline, we used the regular expression scanning tool built

in Rexactor [71] which uses the Hyperscan 5.4.0 regular expression matching li-

brary by Intel [65]. All experiments were performed on a single i9 Dell computer

with Ubuntu 18.04 installed. In the trials, the number of signatures represented the

number of LSH hashes our system or the number of regular expressions added to the

sniffer application. We used Rexactor [71] to generate HTTP signatures from the

HTTP traffic in our dataset. Both models performed the classification with 100%

accuracy on all trials.

4.5 Discussion and Limitations

The locality-sensitive hashing approach is an improvement upon the regular ex-

pression approach to DPI in several ways. First, the hash generation process reduces
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Table 4.6: Performance Results for Alpine and Palm as a Multi-embedding Versus
Hyperscan

System # Signatures Training Testing Memory
Alpine/Palm 1,000 1.21s 1.23s 392.4 MiB

10,000 2.75s 3.56s 419.9 MiB
100,000 52.75s 4.2s 1047.4 MiB
1,000,000 423.3s 4.52s 4717.9 MiB

Hyperscan 1,000 4.6s 156ms 70.7 MiB
10,000 81.8s 1.3s 529.3 MiB
100,000 39.9m 17.28s 4596.7 MiB
1,000,000 153m 63.1s -

the need for expert knowledge about a particular protocol. Previously, engineers

would have to employ unique signatures for different message types. It would not be

uncommon, for example, to have regular expression signatures for every method for

a given text-based protocol like FTP or IMAP. Furthermore, requests and response

messages often require unique signatures. Regexes are difficult for humans to read and

comprehend. The management of server-client side interactions is also a challenge to

know which versions to apply. Instead, hash embeddings using our forward-thinking

system create a unique value for each provided input and indexes those values into

one bucket. This even more generally captures the broad diversity of possible pay-

load and header contents while providing a new layer of abstraction and simplicity.

Flows may be examined bi-directionally, and all message types and methods consid-

ered. We are also not limited to traffic flows and protocol types. As demonstrated

by the experiments in this section, the system is capable of distinguishing more het-

erogenous or abstract class types like traffic type, mechanisms like encryption, and

traditionally weak-signatured traffic like RTP. Furthermore, a single bad bit can cause

a packet match on regular expression to fail. Network traffic and packets in the wild

are extremely diverse and can be prone to error, and thus are an ideal test set for

the multi-embedding hash technique which is both more informative and resilient. In

terms of performance, the LSHForest as implemented in our model further reduces
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Figure 4.5: Time and Space Complexity Results for Alpine/Palm versus Hyperscan

the storage and computational complexity when compared with a regular expression,

automata-searching approach.
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We posed the following research questions to assess the Alpine and Palm models

and report our findings here:

• R1. Can packets be classified by application-layer potocol through the creation

and index of locality-sensitive hashes?

Our model performed at a 99.6% accuracy rate in its identification of many

application layer protocols, indicating that locality sensitive hashes may be

constructed which are highly representative of the data and low-cost for search-

ing when indexed. This model may be expanded in real world implementations

of DPI for traffic surveillance, cybersecurity and intrusion detection, quality of

service managment and network management, content and copyright enforce-

ment, and traffic profiling. Detecting the application layer protocol remains

an important task for engineers. This hashing technique improves upon the

available state of the art in both accuracy and breadth of scope in application.

• R2. Does this model generalize to other kinds of network traffic classes besides

protocol? Could we also distinguish more variable data such as email or VoIP

traffic classes?

In addition to the application layer protocol, we also used traffic type labels on

the dataset for experimentation. In this problem also the hash embedding tech-

nique proved highly accurate, which further demonstrates the generalizability

of the models to new problems and real data.

• R3. Does a different word embedding technique such as using only high-value

tokens as characterized by TF-IDF score improve distance measure results?

Will this reduce noise in the data and isolate important features?

We used Jaccard similarity as a baseline for comparison, but found that this

distance metric was more effective than the TF-IDF score. This highlights a
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counterintuitive but significant point that challenges current network analysis

trends. Machine learning techniques have become more technically advanced

and often computationally intensive in order to improve model accuracy or

other desired metrics. While TF-IDF decently diminishes tokens such as “a”

and “the” from the English language, the fact that “HTTP\1.1” appears in

nearly every HTTP request in our dataset is actually relevant considering the

context. Especially in network traffic analysis where scalability and line-rate

capability is highly desirable, simple techniques can still be effective and should

not be disregarded. Our experiments evidence that a more complex model is not

always the appropriate direction. Even within subfields of machine learning like

natural language processing, there is not a silver bullet solution which triumphs

in every situtation. Rather, having multiple models to try or angles from which

to consider the data seems to provide better, more well-rounded results.

• R4. If we combined multiple hash embeddings, i.e. both Alpine and Palm,

and concatenate their results, will there be an improvement in classification

performance over a single hash embedding of the feature set?

Multi-embeddings are a proposed solution particularly for more heterogeneous

datasets. This captures multiple angles or representations of the data and com-

bines them for a more full-scope picture and analysis. In contrast, regular ex-

pressions provide only a one-dimensional viewpoint and are incapable of encod-

ing highly variable data without impractical complexity and data over-selection.

The modular design of our system enables using one or more embeddings, which

allows for a balance between performance impact and accuracy. Interestingly,

though the Palm model was overall poorer-performing than the Alpine model,

votes from the Palm model helped improve the combined result regardless.

• R5. Does the sample size, number of hashes, or number of classes significantly
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impact throughput or accuracy?

The performance impact of applied machine learning is a major concern for

traffic analysis and cybersecurity. We provide transparent numbers of system

performance to present the solution at scale. All experiments in this trial were

run on a 1.6 GHz Dual-Core Intel Core i5 processor with 16GB DDR3 memory.

In future work, leveraging an accelerated processor such as an FPGA would

greatly enhance performance and throughput due to the repetitive nature of

hash computations. The most impactful procedure based on system profiling

is the MinHash step, which is likely optimizable through an FPGA [85]. The

measure of acceptable throughput depends on the network environment; how-

ever, in terms of scalability it is valuable that our model is data independent in

that it does not seem to increase exponentially or vary in performance wildly

depending on the data. Our model also trains quickly, meaning that models

could be swapped or trained online or in the field if needed. Future research

could further optimize the process through batching and parallel processing.

For example, it would be possible and beneficial to run training computations

in parallel.Distance measures could also be taken in parallel for different models

on separate threads and then the results aggregated.

• R6. What is the rate of scalability of the system? Does it outperform state-

of-the-art regular expression scanning in terms of testing/training time and

memory usage?

We indicate in Table 4.6 that for small signature sets, Hyperscan initially out-

performed our model; however, when scaled to larger signature sets, our model

clearly is much more capable of handling the extra load. The comparative line

graphs in Figure 4.5 illustrate the exponential versus sublinear growth patterns

of each measure of performance, clearly demonstrating our systems’ scalability
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over the state of the art. In constructing models with 1 million signatures, our

model takes just over 7 minutes while the Hyperscan implementation takes over

2 hours. At scale, even our testing time is much smaller than the baseline. Fur-

thermore, at the 1 million signature scale our model uses just over 4GB of heap

space, while Hyperscan crashed our setup due to exceeding 8GB of dynamic

memory for 1 million signatures. This illustrates the point made earlier that

no single model is best suited for every situation; rather, multiple models and

strategies are needed for unique network environments. If the problem set or

data structure size is small, Hyperscan could be an optimal choice; however,

our model is more generalizable to larger data sets and adaptable to a variety

of problems. It would not be unreasonable to scale to several million signatures

in a real surveillance or DPI system which Alpine and Palm would be better

suited for than the current capability of regular expression matching.

One key takeaway from the research done in Alpine and Palm is that multi-

embeddings on packets in our given datasets and experiments were more effective

at classifying the data than any single form of analysis. Naturally, this comes at

the cost of generating more embeddings and thus increasing complexity and latency.

Thus, when designing a multi-embedding model, there is a balance to be achieved

between number of layers of representation and desired results. If storage space of

models and embeddings or CPU utilization is of more concern than acute accuracy of

classification, fewer or less complex representations may be required. The data may

also be aptly divided for input into different models; for example, Alpine considers

header features while Palm considers the payload.

Alpine and Palm show the potential for locality-sensitive measurements to con-

sider multiple layers of features and are resilient to non-standard implementation.

They normalize heterogeneous data into fixed-size, comparable space. These models

as part of a DPI system have potential to scale both in performance and storage ca-
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pacity. But, there are still problems in network classification that elude this method

of feature extraction. For example, encrypted or compressed payloads make the text-

based approach of Palm or regular expressions generated by Rexactor ineffective.

Distinguishing encrypted traffic payloads from plaintext or compressed payloads is

also a classification problem not appropriately dealt with through these methods. If

Alpine features of the header are not enough alone to distinguish the traffic type

or particular application the traffic represents, then the classification will be inac-

curate. If the header is encrypted, this also renders Alpine ineffective. In further

research, a method of understanding and profiling encrypted and compressed traffic

or obfuscated payloads would greatly enhance deep learning-based DPI systems.



CHAPTER 5: MAPLE - IMAGE REPRESENTATION AND RECOGNITION OF

INTERNET TRAFFIC

5.1 Introduction

In chapters 3 and 4, we discuss the difficulty of generating token-based or regu-

lar expression-based signatures for weakly signatured, variable data. This type of

data floods modern Internet traffic today; examples would be Voice-over-IP (VoIP),

streaming services, downloads and file transfers, and peer-to-peer sharing. Further-

more, encrypted traffic payloads or compressed data make generating signatures from

payload text ineffective. The tokenization strategy of Palm is defeated by these tech-

niques, and as Alpine focuses only on header features there is still the problem of

an unanalyzed payload with potentially useful, untapped information.

In 2021, it was projected that 3 billion people use VoIP technology as a regular

part of their daily lives. In 2021-2022, Zoom reported over 300 million users [93],

Webex reported over 600 million, and Microsoft Teams recorded 275 million partic-

ipants [94]. The widespread adaptation of VoIP technology has highlighted several

cybersecurity vulnerabilities which make this type of traffic even more important to

network intrusion detection systems. It is simple to spoof IP addresses or Session

Initiation Protocol (SIP) universal resource identifiers with VoIP technology and pro-

duce robocalls used in phishing/spam or in denial of service attacks [95]. VoIP packet

data is vulnerable to being the transport for backdoors, worms, trojans, and viruses

which can be embedded [96, 97]. Cybersecurity specialists designing intrusion detec-

tion systems need to be able to intercept and process VoIP streams in order to spot

these kinds of intrusions [98]. VoIP call analysis and reconstruction can also be used

in the forensic environment to provide critical evidence of criminal activity. Policy
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or content rights violations or copyright infringement may also be detected through

the analysis of the reconstructed calls [99, 100]. This process and search capability is

also useful to intelligence operations to find mission critical data from the enormous

amount of traffic flowing in mission networks [101].

A majority of mainstream VoIP protocols use the real-time transport protocol

(RTP) as their transport layer for encapsulation. The application layer protocol,

for example the Session Initiation Protocol (SIP), Media Gateway Control Protocol

(MGCP), or H.248, will establish the connection between endpoints and carry im-

portant session information such as codec encoding and metadata for the call. The

application then relies on RTP to manage the dataflow between the connected sys-

tems. In the complex, real network environment, the implementation of SIP and RTP

data flow is often sent de-coupled across physical signals and ports which presents

a challenge for cybersecurity specialists using middlebox technologies for packet in-

spection and call reconstruction. Because the RTP data is encoded, it is necessary to

know the signaling information in order to retrieve the codec information for proper

decoding. Furthermore, the metadata associated with signaling protocols such as

the SIP URI identifier provides necessary enrichment and context for the actual call.

Lastly, RTP data may arrive at the middlebox before the signaling information which

contains the port numbers associated with the RTP stream for that particular call;

thus, the middlebox must retrospectively identify data packets (RTP) which belong

to particular signaling information headers (SIP, for example).

Detecting the RTP stream itself from other types of traffic can be a difficult problem

because the protocol’s signature is weak and can be further obfuscated by encryption

(SRTP). The problem of accurately classifying network traffic has expanded beyond

the scope of capability of text-based solutions. Instead, we propose using higher di-

mensionality of network traffic in order to advance RTP detection capability. Maple

is a MAtrix-based PayLoad Encoder which transforms packets into grayscale images
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to unveil hidden representation which may be used as input into a convolutional neu-

ral network model. Using this approach, we are able to expand detection capability to

weakly signatured data, encrypted versus compressed traffic, and better traffic type

and application profiling.

5.2 Previous Work

Data in convolutional neural networks are organized into three aspects which de-

termine the spatial dimensionality of the input: the height, width, and depth. The

data engineering design processes pixelated data and discovers visual patterns in the

latent space.

Following the input layer, there are three layer types which make up the CNN

model. A pooling layer performs down-sampling along the spatial dimensionality of

the given input in order to reduce dimensions. For each feature map ali,j,k, pooling

can be calculated as follows:

yli,j,k = pool(alm,n,k), ∀(m,n) ∈ Rij (5.1)

where Rij represents the local neighborhood around point (i, j). Common pooling

functions include max pooling and average pooling [102]. A convolutional layer uses

a kernel filter in order to compute feature maps. The feature value of location (i, j)

in the kth feature map of the ith layer zli,j,k′ is calculated by:

zli,j,k = wlT

k x
l
i,j + blk (5.2)

where wl
k and blk are the weight vector and bias term of the kth filter at the lth

layer. The activation function, usually sigmoid, tanh, or rectified lineur unit (ReLU),

may then be calculated as:

ali,j,k = a(zli,j,k) (5.3)
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Finally, fully-connected layer takes input from the previous layer and connects them

to neurons of the output layer in order to perform high-level reasoning or learn some

global semantic information [103].

LeNet [104] consists of two sets of convolutional, activation, and pooling layers.

There is also a final set of consisting of fully-connected, activation, and fully-connected

layers which proceed to a softmax normalization and classification at the output layer.

Deep neural networks suffer from accuracy degradation due to how difficult it can

become to map intermediary or residual layer outputs to inputs. Thus, a residual

convolutional neural network (ResNet) is built up of blocks of stacked layers formed

from a series of convolutions and non-linear activation functions. Following the au-

thors who first introduced deep residual networks [105], we define a block as:

y = F (x, {Wi}) + x (5.4)

Where x and y are the input and output vectors, respectively, and F (x, {Wi}) is

the residual mapping with a set of weights Wi. If H(x) represents the ideal output

mapping that corresponds to the ground truth, residual networks hypothesize that

F (x) + x = H(x). The residual function is pushed to zero such that the equation

becomes an identity function H(x) = x. This identity mapping, or shortcut layer, is

what reduces the degradation problem and minimizes training error as the network

becomes deeper [105].

In previous work, CNNs have been employed to classify network traffic both for per-

packet and per-flow scenarios. Lim et al [106] also transform packets into grayscale

images and use CNN and ResNet architectures to label them by application (RDP,

Skype, BitTorrent, and others). When using payloads of 1024B and a ResNet archi-

tecture, they achieved a 0.97 F1 score for accurately classifying the packets as one of

eight types of applications.
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Yang et al [107] transform network packets in creative adversarial networks (CANs)

using quantile normalization which generate pixelated images for CNN processing.

They combine multiple packets into a single image for flow-based processing. For

example, they propose taking 27 packets with 9 features each and creating a 9×9×3

image, where three channels RGB (red, green, blue) are provided for a single pixel.

This is then used as input into their CNN architecture.

Gao [108] proposed a CNN-LSTM architecture which reduces false positive rates in

their network intrusion detection system for cloud computing environments. Numeri-

cal and character attributes from the KDD CUP 99 test data set are first pre-processed

into a 10 × 42 matrix, where window size w = 10 and the number of features in the

data set is 42. The data set is transposed to an image dataset where each matrix

W is mapped to a 10 × 42 grayscale image. If vij represents the value of a pixel in

matrix/image W at position i, j, the values vij ∈ [0, 255]. To reduce the data interval

and normalize values, the following formula is used:

x =
x− x
δ

(5.5)

where x is the current value of a certain data in the sequence, x is the mean value

of the data in the series, and δ is the standard deviation of the sequence. Finally,

this system adds an additional attention mechanism layer to improve classification

accuracy:

ut = tanh(WwPt + bw),

atsoftmax(uTt , uw),

v =
∑

atP − T,

(5.6)

where ut is the attribute representation of Pt, Ww is the context vector randomly

generated during training, at is the importance weight, and v is the high-level repre-
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sentation obtained through importance weight summation on Pt.

Jo et al [3] use a CNN-LSTM hybrid model to perform network intrusion detection,

but first pre-process packets into image representations. Namely, they adapt the NSL-

KDD dataset which has 41 fields into pixel representations. Continuous fields are

first normalized to a [0−255] range to create a grayscale image pixel value. Symbolic

fields such as “protocol type” are represented by the same kind of pixel value, but

normalized based on the number of possibilities. For example, a symbolic value with

three possibilities will be normalized as 0, 128, or 255 [3]. 28× 28 images are created

and processed with a 5× 5 kernel as shown in Figure 5.1.

Figure 5.1: Example application of kernel to pixelated packet data [3]

Deep Packet [38] is a well-cited work in deep learning for traffic classification. In

this system, a stacked auto-encoder and CNN are employed to classify traffic by type

and application as labeled in the VPN/non-VPN UNB ISCX dataset [90]. Their

solution achieves 94% accuracy in the traffic classification task per traffic type, and

97% accuracy in the application classification task. Incorporating the same dataset

as well as additional, more recent flows, we are able to achieve higher accuracy in
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RTP detection with a less computationally complex framework in Maple.

5.3 Methodology

We expect some level of standardization (i.e. method names or status codes) or

some commonalities such as user names, device details, semantic contexts, and other

conversation or implementation-specific indicators even in highly entropic or variable

packet data. Using this hypothesis, Maple transforms packets into grayscale images

which will appear similar to one another. Thus, machine learning algorithms designed

for image analysis may record the hidden features generated from the similarities

between the two images. We base this assumption on previous work [106] which has

shown similarities in grayscale images rendered from packet data in order to classify

traffic by application and protocol type which are detectable by CNNs. Figure 5.2

asserts the validity of this assumption by showing comparative images rendered from

packets in our combined dataset previously used and explained in detail in chapter 4

of this work.

Figure 5.2: Grayscale images generated from packets in our combined dataset used
in the following experiments

To shape packet payloads into an image, we extract the payloads and convert them

from byte encoding to a normalized decimal integer i ∈ [0, 255] [3]. For image size, we

chose a 28 × 28 representation, for a total of 784 input features. Padding is applied
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in the cases where the payload is shorter than 784 bytes, and is otherwise truncated.

5.3.1 LeNet Model Configuration

Figure 5.3: The architecture of our LeNet models

LeNet was one of the standard models we selected in order to test convolutional

neural networks against the RTP detection problem. LeNet has a low complexity, so

has higher potential for practical use in real-time, line-rate packet inspection systems

than deeper models which require more time. Figure 5.3 shows the set up of the model

which we use as a baseline. We designed two separate models where one employed 6

and 16 kernels per convolutional layer (A) and another that used a 16 and 32 kernels

(B). Each model contained two fully-connected, dense layers of size 1024 with a binary

softmax classifier at the output layer.

5.3.2 ResNet Model Configuration

Figure 5.4: The architecture of our ResNet models

If they are to be deployed at scale, artificial intelligence solutions must be capable

of line-rate processing while still being able to perform the classification task to the

required level of accuracy. This can be difficult to quantify as the definition of line-rate

varies per network environment. Still, we assert that the identity mappings of ResNet

do not introduce additional complexity [105]. Thus, residual mapping is introduced

as a potential solution to adding additional layers of representation and thus improve
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classification through more hidden features, while also minimizing overhead.

We developed three ResNet-based models for the Maple system’s experiments.

The first model (C) consists of three convolutional layers with 32, 32, and 64 kernels of

dimension 3×3, and three dense layers with output sizes of 64, 32, and 2 respectively.

The second model (D) follows a similar architecture except the values are halved.

Convolutional layers had 16, 16, and 32 kernels per layer and the three dense layers

had output sizes of 32, 16, and 2. Model (E) corresponds to the same number of

kernels and output sizes as (C), except it uses a kernel dimension of 7×7. The ReLU

activation function and adam optimizer was used in all the model configurations, and

a final layer used softmax for normalization and classification. The loss function used

for training was categorical cross-entropy, and we also employed a dropout layer to

reduce overfitting.

Table 5.1: Configurations of each model used in the experiments

Type Model # Kernels Kernel Size FC Dim
LeNet A 3× 3 6, 16 1024, 2

B 3× 3 16, 32 1024, 2
ResNet C 3× 3 32, 32, 64 64, 32, 2

D 3× 3 16, 16, 32 32, 16, 2
E 7× 7 32, 32, 64 64, 32, 2

5.4 Experiments and Results

We ran several experiments to test the model’s ability for binary RTP/non-RTP

detection as well as multi-class protocol identification. All tests were performed on a

single CPU of a 1.6 GHz dual-core Intel i5 processor with 16 GB DDR3 RAM. In the

binary confusion matrix, true positive (TP) indicates correct classification of data.

True negative (TN) is correct classification of data as non-RTP. false negative (FN)

implies incorrect identification of traffic as non-RTP, and false positive (FP) is the

incorrect classification of data as RTP. We use measurements of precision, recall, and

F1-score for model evaluation, defined as follows:



66

Recall =
TP

TP + FP
Precision =

TP

TP + FN

F1 Score =
2(P ×R)

P +R

(5.7)

5.4.1 RTP Detection

For the binary RTP/non-RTP classification, we merged SRTP and RTP traffic

into an RTP label and re-labeled all non-RTP and non-SRTP traffic as non-RTP. For

testing the different configurations of the Maple model, we first processed traffic

and transformed it into a matrix image, and then used it as input for each of the

models. We performed random under-sampling to avoid bias in the dataset, and then

split the data into 60%/40% for training and testing. We ran the multi-model using

Alpine and Palm with the same datasets with the results in Table 6.1 to establish a

baseline for comparison. Then we ran tests with training for 3 epochs for each CNN

model. As we plan to deploy this technology in a real RTP detection and deep packet

inspection system, we also measured classification throughput in order to determine

how much traffic the Maple system would be able to process given the detection

model configuration. Results are provided in Table 5.3.

Table 5.2: Classification results of RTP vs non-RTP detection for Alpine and Palm

Class P R F1
Non-RTP 0.73 0.77 0.75

RTP 0.76 0.71 0.73

Generally, the ResNet model performed exceedingly well at the RTP detection

task, exceeding ninety-nine percent accuracy across all the configurations. The LeNet

models performed marginally worse in terms of accuracy, but the smaller of the two

models had the highest throughput of any of the tested configurations. Another

configuration choice which may have significant impact on model accuracy is the
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Table 5.3: Classification results of RTP vs non-RTP detection for all Maple models

Model P R F1
A

Non-RTP 0.96 0.99 0.98
RTP 0.99 0.96 0.98

B
Non-RTP 0.97 0.99 0.98

RTP 0.99 0.97 0.98
C

Non-RTP 1.00 0.99 1.00
RTP 0.99 1.00 1.00

D
Non-RTP 1.00 1.00 1.00

RTP 1.00 1.00 1.00
E

Non-RTP 1.00 1.00 1.00
RTP 1.00 1.00 1.00

Table 5.4: Throughput results of RTP vs non-RTP detection for all Maple models

Model Accuracy Mb/s
A 0.975348 12.5
B 0.978258 9.28
C 0.996934 7.07
D 0.995908 10.41
E 0.996847 5.3

number of epochs trained. Real systems place an emphasis on minimizing down time

of a system, but in actual deployment many models may be trained offline and then

embedded. In systems where training time is not a factor of performance, we can thus

increase the number of epochs with little real impact. In order to test the efficacy

of such a design choice, we re-ran Maple models A and C with 10 epochs to see if

performance improved. Results in Tables 5.5 and 5.6 show that ResNet appears to

learn faster than LeNet, as it gained very little improvement with additional training

time. Interestingly, with additional training time LeNet approaches similar accuracy

to ResNet but still maintains higher throughput.
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Table 5.5: Classification results of RTP vs non-RTP detection for Maple models A
and C with additional training time

Model P R F1
A

Non-RTP 0.99 0.99 0.99
RTP 0.99 0.99 0.99

C
Non-RTP 1.00 1.00 1.00

RTP 1.00 1.00 1.00

Table 5.6: Throughput results of RTP vs non-RTP detection for Maple models A
and C with additional training time

Model Accuracy Mb/s
A 0.990499 14.99
C 0.998172 7.38

5.4.2 Protocol Auto Detection

As previously mentioned, many middlebox technologies are interested in multi-

classification problems where many different applications or protocols need to be

identified. Thus, we expand our experiments to a 26-protocol problem using the

combined dataset described in chapter 4. We again use models A and C, LeNet and

ResNet respectively, for this expansion. As this is a much harder problem, we expect

to need more training time. We ran each model with 10 epochs and 50 epochs, and

recorded the macro averages in Table 5.7.

Table 5.7: Results of multi-class detection for models A and C as macro averages

Model P R F1 Accuracy
A - 10 epochs 0.78 0.78 0.77 0.780920

50 epochs 0.83 0.83 0.83 0.832446
C - 10 epochs 0.84 0.84 0.83 0.835993

50 epochs 0.86 0.85 0.85 0.849528

Increasing the training time for the LeNet model showed significant improvement

in accuracy, but not likely to a level needed for deployed systems so there is a need

to build upon the baseline. The ResNet model approaches better accuracy with more
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training time.

5.4.3 User Fingerprinting

In order to test capability to track user streams, we isolated a source/destination

IP pair in the traffic and created a separate user label for it. In this way, we associate

a particular traffic stream with a person of interest. Then, we configured Maple and

a multimodal version of Alpine to use no network layer features, and instead rely

on packet length, flags, and analysis of payload contents and spatial features to make

the classification. Results in Figure 5.5 show this approach as a promising solution

for tracking user streams across changing network configurations.

Figure 5.5: A confusion matrix of tracking user Bob across traffic streams in a chang-
ing network environment

5.4.4 Model Performance and Throughput

Decreasing the number of kernels may have slightly impacted accuracy, but im-

proved overall throughput significantly and lessens memory footprint. In a real net-

work environment, it may be worth consideration to sacrifice some accuracy in order
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to be able to monitor more traffic or more effectively load-balance the received in-

put depending on hardware capability. Thus, the ideal model configuration is often

environment-dependent and inspired us to incorporate configuration capability in

Maple so that the deployed system may best suit the environment. We provide the

throughput of each model configuration in our experiments in Table 5.4.

5.5 Discussion and Limitations

Maple works well on input data such as a payload which may be distinct from one

data sample from another, but can be divided and matricized into units for comparison

(i.e. turned into a grayscale image of uniform dimension). For deep packet inspection,

this model is able to create latent representations of payload data which uniquely

identify traffic of different types at a higher dimension than is considered by current

signature-matching or filter-based solutions used in industry. Our implementation for

this initial deployment solves the RTP detection problem with high accuracy using

a minimal framework ideal for line-rate. The system could be further optimized

by running these models in parallel; as the solution relies on per-packet analysis,

throughput could be increased across models. One limitation of the proposed encoding

is that individual packets must be large enough to create a significant image. Thus,

this model would not work well on short packets or packets with no payload data.

In this case, we propose using a combination of header features and payload when

available would be a wiser strategy.



CHAPTER 6: DATE - POINT CLOUD REPRESENTATION AND DENSITY

CLUSTERING ANALYSIS OF PACKETS

6.1 Introduction

While image generation and matrix representation expand packet data to two-

dimensional space, we wanted to explore other geometric representations of data

and deepen the dimensionality. In geometric topology, point clouds are another way

to generate data shapes for anomaly detection and comparison. For this purpose,

we designed Date, a cluster Density Analysis-based Tensor Encoder model which

expands network packets into three dimensional point clouds, which we then extract

features of regarding cluster density in order to find commonalities and classify based

on data shape. This spatial expansion is a novel application of latent representation

learning to network traffic and the problem of RTP detection or detecting weakly

signatured traffic and could expand to other protocol problems.

6.2 Previous Work

There is little previously published work in generating three-dimensional point

cloud representations of packets, making Date a novel contribution to the field of

packet processing. LiDAR (light detection and radiation) systems generate packet

data which has been transformed into both two-dimensional matrices and point

clouds [109]. This work introduces the problem of spatial correlation in packet data,

namely that packets in their raw state are not usually uniform or in a state which

may be processed using the spatial or geometric strategies employed by image and

computer vision algorithms. Therefore, engineers must perform data compression or

pre-processing to create the necessary uniformity.
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Costeux et al [110] worked on the fast detection of Skype and other RTP-based

telephony traffic. They specify several fields from the RTP and encapsulation header

which can be used to filter out non-RTP traffic. We employ this technique in the

middlebox as an initial filtering step in our end-to-end data processing pipeline. Kmet

et al [99] build on Costeux by incorporating additional header features for per-packet

selection, and adding a flow-based solution to reduce the over-selection problem. They

were able to minimize mis-classification to nearly zero by buffering up to 10 packets of

the RTP stream. The synchronization source number from the header is used along

with timestamps to check for proper increment and stream correlation. We focus on

per-packet identification only.

Some early research [111] describes expanding NetFlow data generated by routers

into manifolds. We reference this as an intial introduction of spatial expansion of

traffic data in order to perform dimensionality reduction, which is a key theoretical

linkage to our work.

6.3 Methodology

Date describes the density-based clustering analysis which is a novel contribution

of this work. This process attempts to map data to a three-dimensional space, then

use spatial features to generate hidden features.

6.3.1 Point Cloud Creation

Point clouds are a set of Cartesian coordinates (x, y, z) which represent some points

in a three-dimensional space. Point clouds may be used in computer vision software

as a method for mapping high-dimensional shapes into lower-dimensional space [112].

As a latent representation, this method can be used temporally to express the move-

ment of objects in three-dimensional space. An airplane can be modeled as a three-

dimensional point cloud, and its movement described as a series of clouds c0, c1, ..., ct

where t represents a number of time intervals and cn the point cloud generated at
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a given time slice. Like the work of Quach et al [113], we do not combine multiple

representations in a time series but instead analyze the static representations much

analagous to manifolds in three-dimensional space. We use the geometrical represen-

tation captured here for cluster analysis.

Figure 6.1: 3D point cloud made out of a Session Initiation Protocol (SIP) packet

In the Date model, payload data is extracted from the packets and truncated to

1024 bytes. If the payload is shorter than this, we add padding for normalization.

Byte values v are converted to decimal values v′ ∈ [0, 255]. For example, the byte

string, ‘0x68’, ‘0x65’, ‘0x6c’, ‘0x6c’, ‘0x6f’, would first be transformed to decimal

values (104, 101, 108, 108, 111). Then, the sliding window would produce the points

corresponding to coordinates:

C = {(104, 101, 108),

(101, 108, 108),

(108, 108, 111)}.

(6.1)
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The coordinates are mapped to a three-dimensional space to form point clouds like

Figure 6.1. We expect that similar point clouds will be generated from packets with

similar data.

6.3.2 Density-Based Spatial Clustering of Applications With Noise (DBSCAN)

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) uses three

different point classifications. Core points make up the centers of clusters. Individual

core points are labeled based on the number of neighbors they have compared to

their neighbors, or their degree of importance. Border points are those which have

the least number of neighbors but are still comparatively relevant due to being within

the range of a core point. These comprise the edges of the point cloud. Outlier

points are neither borders nor cores, do not belong to a cluster, and are considered

noise [114]. The DBSCAN algorithm visits each point and classifies them as such in

order to paint a picture of where clusters of data are as in Figure 6.2.

Figure 6.2: Illustration of types of points in DBSCAN

We first create the point clouds and then process them using DBSCAN in order

to derive the natural clusters that exist in the data. DBSCAN groups points that

are close together utilizing a Euclidean distance for measurements. The value of the

Euclidean distance that determines proximity and the minimum number of points

needed to form a cluster are configurable parameters: ε and a minimum number of

samples. The ε value is the radius for each circle drawn around each point to query

density, and the minimum number of samples is the minimum number of points

required to be inside the drawn circle for it to be considered a Core point.
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Generally, the number of samples is twice the dimensions, but it must be at least

the number of dimensions. If it is set below this threshold, then singular points or

two points that are close together would constitute a cluster, which would not be an

accurate way of determining where data is clumped [115]. In our experiments, we

configured DBSCAN to perform with ε = 7 and min_samples = 7. This would be

enough to create more clusters in a less populated point cloud. An ε value of 7 also

allowed for a greater number of recognizable clusters [116].

Like many machine learning models, the parameters used to tune DBSCAN greatly

affect performance rates. It is possible to create more clearly defined point clouds

within the three-dimensional space through this parameter adjustments. The ε value

needs to be set based on general rules. If the value of ε chosen is too small then too

many clusters will be created which over-emphasize the importance of noisy points.

However, if set too large, then clusters will merge together and shapes become less

distinct. One way that a value of ε can be estimated is by examining the input data

and finding the average distance between each point and its K-nearest neighbors.

Choosing an exact value for ε is a difficult problem for packet data which is highly

variable. The ε value must be estimated from a conglomeration of the packet’s K-

nearest neighbors where K is equal to min_samples.

Because each packet is highly variable, choosing an exact value for ε is a difficult

problem. An estimation of ε must be taken from a conglomeration of the packet’s

k-nearest neighbors data where k is the value of min_samples chosen. As shown in

the figure above, the point of each line with the greatest curvature is considered the

ideal value for ε. A line has been illustrated in Figure 6.3 where an estimated average

is made for every sample. The variation in an ideal ε value could be a major factor

in why some packets are recognizable in their cloud state and others are not [116].

We extract the following features as the feature vector for classification from the

DBSCAN results:
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• clusterCount = number of clusters

• averageClusterSize = average cluster size

• standardDeviation = standard deviation

• noisePercent = percent of cloud containing noise

Figure 6.3: K-nearest neighbors graph generated for packets in the dataset using a
min_samples = 6

6.3.3 Packet Classification

For deep learning, we feed the extracted cluster features forward into a two-layer

multilayer perceptron unit (MLP) with a final softmax layer for classification. We

use binary cross entropy as the loss function.
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6.4 Experiments and Results

We experimented with the RTP detection problem that was previously attempted

with the Maple model in chapter 5 in order to assess the ability to detect weakly sig-

natured data. Then, we extend this to H.225 detection, which is another data transfer

protocol with a weak signature. Lastly, the model performance and throughput is

assessed for its application to deep packet inspection and deep learning at scale.

All tests were performed on a single CPU of a 1.6 GHz dual-core Intel i5 processor

with 16 GB DDR3 RAM. In the binary confusion matrix, true positive (TP) indicates

correct classification of data as RTP. True negative (TN) is correct classification of

data as non-RTP. false negative (FN) implies incorrect identification of traffic as

non-RTP, and false positive (FP) is the incorrect classification of data as RTP. We

use measurements of precision, recall, and F1-score for model evaluation, defined as

follows:

Recall =
TP

TP + FP
Precision =

TP

TP + FN

F1 Score =
2(P ×R)

P +R

(6.2)

All tests were performed with undersampling to appropriately balance the dataset,

and a 60%/40% training and test split. Epochs represent the number of passes made

over the training data in order for the neural network to fine tune itself under supervi-

sion. Although more epochs do not guarantee better performance, it is often the case

that a larger number of epochs within reason can improve metric results. However,

too many epochs can cause overfitting to the training data and hurt generalizability.

6.4.1 RTP Detection

Our primary goal in designing Date was to capture spatial hidden representaitons

which may be present in these geometric reinterpretations of packets. These features

may present advantage to our classifier as dynamic ports and weak signatures found in



78

these protocols make traditional signature-based and port-based methods ineffective.

The classification results of the Date model are provided in Table 6.2. Table 6.1

show the combined Alpine and Palm technique’s results for the RTP classification

task. There is clear improvement for the Date model.

Table 6.1: Classification results of RTP vs non-RTP detection for Alpine and Palm

Class P R F1
Non-RTP 0.73 0.77 0.75

RTP 0.76 0.71 0.73

Table 6.2: Classification results of RTP vs non-RTP detection for the Date model

Class P R F1
1 Epoch
Non-RTP 0.85 0.84 0.84

RTP 0.83 0.85 0.84
10 Epochs
Non-RTP 0.94 0.81 0.87

RTP 0.83 0.95 0.89
20 Epochs
Non-RTP 0.96 0.79 0.87

RTP 0.82 0.96 0.89

6.4.2 H.225 Detection

H.225 handles the registration and call setup for certain VoIP architectures using

the H.323 protocol suite. Similar to RTP, H.225 data can arrive at the endpoint first

before H.323 which it must be paired with. It also does not have a strong signature.

Thus, we additionally tested Date’s ability to detect H.225 traffic from non-H.225

traffic. Our setup of the dataset labels and the DBSCAN configuration was similar

to the RTP test and results are given in Table 6.4. The performance of Alpine and

Palm are provided in Table 6.3 for a baseline.

6.4.3 Model Performance and Throughput

In order to benchmark the system for real deployment, we recorded the time clas-

sification took. While this is heavily system dependent and showed some variance
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Table 6.3: Classification results of H.225 vs non-H.225 detection for Alpine and
Palm

Class P R F1
Non-H.225 0.62 0.64 0.63

H.225 0.63 0.61 0.62

Table 6.4: Classification results of H.225 vs non-H.225 detection for the Date model

Class P R F1
1 Epoch

Non-H.225 0.98 0.83 0.90
H.225 0.85 0.99 0.92

10 Epochs
Non-H.225 0.91 0.87 0.89

H.225 0.88 0.92 0.90
20 Epochs
Non-H.225 0.98 0.83 0.90

H.225 0.85 0.99 0.92

across parameter tuning or model configuration, the average classification time for a

single packet by DATE was 0.15823 seconds.

6.5 Discussion and Limitations

Of the models tested so far in this work, Date is the most computationally complex

with the lowest throughput. In future work, we propose implementing multi-threading

and multi-core processing as potential optimizations. We observed that point cloud

generation was a pain point for the system in terms of cycles, and consider offload-

ing such repetitive calculations to a specialized hardware such as FPGA [117] when

available in the deployed system. Because Date is able to normalize data and map

it into a three-dimensional cluster space, it would be well-suited to heterogeneous

data such as sensor data combined with packet data from an Internet of Things (IoT)

device. This would create a multi-embedding capable of correlating these data in-

puts for machine learning tasks. Simpler problems may be solved with less complex

approaches such as regular expression matching on plaintext SIP traffic, or using the

locality-sensitive hashing strategy toward device fingerprinting.
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We propose both Maple and Date as potential methods for generating hidden,

latent-space representations of traffic as their capabilities extend to different problem

areas. Maple works well on input data such as a payload which may be distinct

one data sample from another, but can be divided and matricized into units for

comparison (i.e. turned into a grayscale image of uniform dimension). On the other

hand, Date has the potential to expand to include other non-network features and

represent more heterogenous data. For example, input sensor data from IoT devices

or light detection and ranging (LiDAR) equipment have used DBSCAN for data

processing and normalization [118]; it could be combined with cloud/network data

inputs as an additional embedding model for classification problems. While for the

RTP problem Maple provides high accuracy with more efficiency than Date, there

is a trade-off within the embedding space as Date may be able to represent data of

higher complexity in other problems for future work.



CHAPTER 7: FORAGER - TOWARDS MULTI-EMBEDDINGS AND

ENSEMBLE CLASSIFICATION

7.1 Introduction

In the previous work with Alpine and Palm we hypothesized that enabling both

models to run together and combine their votes would yield the most accurate and

agreed-upon classification results. The results of the multi-embedding experiments

in this work proved this to be more accurate. Multiple classifier systems (MCS) are

ensembles and are widely used in pattern recognition applications and recognized as

more effective than any single embedding or classifier. There are at least three reasons

identified by Dietterich as to why multi-classifier approaches perform well [119]:

• Statistically, there is a set of H hypotheses for which the learning algorithm is

performing a search for the best hypothesis. The risk of choosing the wrong

classifier is reduced when using multiple for unseen data.

• Computationally, optimal training is an NP-hard problem. Because the opti-

mum depends on the starting point, the optimal learning algorithm may be

different. By using an ensemble, a better approximation of the unknown func-

tion may be obtained.

• Representationally, the weighted sums of hypotheses from H allows for the

expanding of space of representable functions. Simply put, the more embeddings

we have, the more features, and the more ways to represent and compare data.

In addition to multiple classifiers, in the workflow process using multiple types of

embeddings has proven more effective in several recent, real systems than any single

approach [120, 121, 122, 107, 123, 124, 125, 126, 127].
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As we have seen in previous chapters, each model unveils different hidden repre-

sentations which are appropriate for different classification problems and contexts.

In the real network environment, these classification problems are not isolated. Traf-

fic may need to be distinguished between encrypted and plaintext, for example, and

then protocols identified. Then, encrypted traffic may be profiled, or the plaintext

traffic characterized by embedding for user fingerprints. Thus, a combined approach

or toolkit is apt for the many kinds of problems real world network analysts face.

To meet this need, we propose Forager, a combination of data mining and hid-

den representation learning approaches to deep packet inspection and network traffic

classification. This highly configurable toolkit includes the ability to extract and

transform header features into locality-sensitive hashes indexed in an LSHForest us-

ing the Alpine technique. Payloads may be combinatorally analyzed using either the

Palm, Maple, or Date approaches, or a combination of votes from these models.

By considering the data from multiple angles, we achieve results of higher accuracy

and a much greater understanding of the network traffic than other state-of-the-art

systems.

To illustrate the capability of Forager and its diversity of traffic applications,

we performed a case study on profiling the traffic on port 443. Due to the rise of

encryption and its standard usage for Hypertext Transfer Protocol Secure (HTTPS)

encrypted traffic, port 443 is often left un-monitored by packet inspection on large-

scale surveillance systems or default-allowed by firewall software. While the majority

of Internet traffic is now safely secured behind transport layer security, there are

threat actors who have found ways to utilize port 443 as a covert data channel for

surveillance and firewall evasion, malware transport, data exfiltration, and nefarious

activity under the guise of Internet anonymity. For increased security and surveil-

lance, it is necessary to be able to filter legitimate, HTTPS traffic from illicit activity

on this port. We propose using Forager, our network traffic classification and
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profiling toolkit, to dissect this traffic stream for hidden content. Using Forager

and its individual models, we are able to extract plaintext and compressed traffic

from encrypted streams with high accuracy, profile Tor-based, VPN-based, and en-

crypted traffic streams by application and data type, and identify malicious instances

of particular protocols designated to run over HTTPS. Our models combine several

approaches to hidden feature extraction from packets via spatial representation learn-

ing to precisely and efficiently classify packets, fortifying network security while still

preserving user privacy through this crucial gateway.

7.2 Previous Work

In our threat model and in the works we compare against [6, 7, 38], we choose

to prioritize making classification using only a single packet from any point in the

overall traffic flow. This contrasts systems which require entire flows in order to

classify [37, 38, 39, 40, 41].

7.2.1 VPN Traffic Profiling

Deep Packet [38] uses a CNN to perform traffic classification into traffic types and

application types as labeled in the VPN/non-VPN UNB ISCX dataset [90]. Their

solution achieves 94% accuracy classifying traffic by type, and 97% accuracy in clas-

sifying by application. Like our work, they use a single packet in the classification

task, and do not rely on flow-based features. We note that their work does not per-

form as well in Tor traffic classification, leading us to conclude that Deep Packet may

not generalize as well as Forager. Cui et al use only header information from the

ISCX datasets to classify traffic over flows with 99% accuracy [35]. While a novel

solution with enhanced privacy as it considers only header features, it still requires

flow-based features of the header and therefore multiple packets. Zou et al use the

spatial features of the first packet of a flow extracted and applied to a CNN and ana-

lyze the time series features of the next three packets using a long short-term memory
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network (LSTM) [36]. This method shows high accuracy on the dataset but requires

flow-based information.

7.2.2 Darknet Detection and Profiling

Lotfollahi et al also study the ISCX dataset for Tor data and profile again by

application and traffic type using a single packet approach [38]. Tor traffic profiling

has been further explored by Lashkari et al [7] in their DIDarknet system using a

single packet, where they also proved accurate results using the ISCX Tor dataset.

Other works have used flow-based features for both detecting Darknet activity (binary

Tor/non-Tor classification) and profiling Tor traffic into specific applications or traffic

types (e.g. streaming, chat, web browsing). Iliadis et al [128] use an amalgamated

version of the ISCX Tor and VPN datasets, re-labeled CICDarknet2020, in order

to create a binary classification of Darknet and regular traffic, and a multi-class

problem of Tor, non-Tor, VPN, and non-VPN. We perform a similar analysis in our

experiments and results of the same data. The work uses all 85 features published

in the dataset, including flow-based features, and the full traffic information. Using

a set of machine learning algorithms, they are able to achieve up to 98% accuracy;

however, in comparison our system uses only a single packet and a minimal set of

features to achieve similar results. Ma et al [129] also achieved noted success in the

community classifying the same dataset using a CNN with Root Mean Square (RMS)

propagation. They also require flow-based features of the dataset, and would therefore

require multiple packets and flow information in a real system. They also only consider

Darknet detection without additional profiling and achieve 95% accuracy, lower than

ours in the same task. Sarkar et al [130] introduce a Generative Adversarial Network

(GAN) in order to stabilize their deep learning model across the same ISCX Tor

dataset, and achieve approximately 98% accuracy, as well. Using flow-based features,

they are able to provide a 95% accuracy in the profiling task across the eight described

traffic classes in the dataset; however, they do not provide the results broken down
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individually so it is difficult to conclude if the model performs evenly well across

classes or not. Choorod et al [6] use a statistical analysis solely of the extracted

features of the encrypted packet payload. They find that certain sizes are common

across traffic types, as well as certain regions of the encrypted payload. They use

Charcount from the Posit Text Profiling Toolset [131] as a ratio value for input to

their decision tree-based algorithm. They achieve highly accurate results we compare

against in the Experiments section of this work.

7.2.3 Filtering Compressed/Plaintext Traffic

Plaintext filtering can be done through statistical entropy tests [19] and has been

used to find private medical or geo-location data [19, 132], covert malware [133], and

general unencrypted traffic like file transfers or emails. Modern compression and

encryption algorithms present such similar high entropy that distinguishing between

them is a difficult problem. The HEDGE [134] system is able to parse encrypted

from compressed traffic with between 60-94% accuracy using the Chi Square and a

subset of the NIST SP 800-22 tests dependent upon the size of the packet used. They

compare against Hahn et al, who achieved a maximum of 66% accuracy using machine

learning models [135].

7.2.4 Intrusion Detection over HTTPS

Zain ul Abideen et al [136] consider the problem of detecting and profiling VPN

traffic on port 443, where their system uses non-encrypted, packet level features to

determine several VPN types in the traffic flow. They distinguish between VPN con-

figurations, including Tor. Furthermore, they employ a technique using DNS queries

to identify malicious or illegitimate VPN servers. This is an interesting notion which

may be challenged by the increased use of encrypted DNS and techniques like DNS-

over-HTTPS. Identification of SSH flows in encrypted traffic has been accomplished

with success when using flow data [?]. Detecting brute-force and dictionary attacks
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over SSH is also a research problem area from which our work on port 443 is in-

spired [137].

7.3 Methodology

Details of the network traffic classification systems used in Forager can be found

in previous chapters of this work. In addition to technical methods, we provide

practical application through analysis of threat models for which Forager is useful.

7.3.1 Threat Model

To bring the problem to life, we envision a criminal case in our threat model. Bob

is a member of an organization embezzling funds through an international shipping

company. There are several nefarious tasks which Bob needs to accomplish that he

could utilize port 443 exploitations to achieve:

• Create a covert data channel in order to pass along sensitive information like

receipts and records while avoiding detection,

• Communicate anonymously with criminal network colleagues to avoid trac-

ing of colleagues, his own geolocation data, and evidence,

• Establish remote access to a machine from endpoints configured to disallow

ports like 22,

• Exfiltrate data from a secure source.

Alice is an intelligence officer who is monitoring Bob’s network data with reason-

able suspicion that he is engaged in criminal acts. We will discuss vulnerabilities

in Alice’s current surveillance framework and how to use Forager to capture and

record evidence which can be used to thwart Bob’s plans and provide legal support

in the case against his embezzlement and fraudulent company.
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7.3.1.1 Real-Time Monitoring

In our scenario, Alice possesses a middlebox technology configured to monitor traffic

on port 443. It is common for routers or middleboxes to default-ignore traffic on port

443 as there is usually an overwhelming amount of encrypted traffic on this port that is

unprocessable [138]. Attackers who are aware of this strategy may send unencrypted

or sensitive information over port 443 in order to avoid surveillance and detection. In

criminal operations, these packets could contain significant data. Thus, it is important

for middlebox technologies to have a methodology for scanning traffic on port 443 to

determine if the data is truly encrypted. If the data is plaintext, it may be directly

processed. If it is highly entropic but only compressed, follow-on processing may

be capable of decompressing the data. Currently, Alice configures her middlebox to

default-ignore traffic on port 443, instead only monitoring port 143 for unencrypted

emails. In order to avoid detection by possible surveillance technology, Bob routes

his emails through port 443. The receiver is aware of this and listens for this traffic

with the IMAP server on the configured port so that it is received. Thus, Bob is

able to transmit content in a way that is receivable by the partner as email/IMAP at

no additional security overhead but is undetected as Alice’s middlebox does not scan

port 443.

7.3.1.2 Tunnel Tracking

Tor allows anonymous Internet space for pervasive action and may be used to access

content which is blocked by firewalls, whether it be censored or illegal activity. While

possibly encrypted and encapsulated with layers of addressing in order to anonymize

routing, traffic may be synchronized by timing and further analysis in order to de-

termine endpoints [139]. Thus, tracking Tor and being able to further profile Tor

usage and content is a useful operation for intelligence and law enforcement. Network

Address Translation (NAT) in VPNs prevents traditional ISP tracking. The ability to
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detect VPN traffic streams and profile their traffic and applications can be addition-

ally useful for network monitoring. In the scenario, Bob is using a VPN to connect to

a forum website. He wishes to remain anonymous during this communication. Alice

is following Bob’s messages, and sees that he regularly communicates using HTTP

and IRC protocols on this platform. She configures her middlebox device to promote

traffic on several five-tuple-based traffic flows which she knows to be currently associ-

ated with Bob’s devices. However, dynamic re-configuration of the tunneled network

layers causes Alice to lose the data stream and she is no longer able to monitor his

messages and record the activity.

Figure 7.1: A depiction of intelligence operations intercepting various types of traffic
Bob is transmitting in connection to his extended criminal network

7.3.1.3 Covert Data Channels In

Domain name security (DNS) has long been exploited by attackers due to many

security loopholes and its historical transmission in plaintext. Malicious actors may

embed malware or sensitive data into DNS records [140]. This becomes even harder to

detect when the tunnel is then encrypted, as is the case with DNS over HTTPS [141].
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Since its inception, DNS over HTTPS has been adopted by mainstream browsers

like Firefox and Chrome to prevent man-in-the-middle attacks and snooping on DNS

traffic. While enhancing user privacy, this has contraversely become a field of oppor-

tunity for cyber attackers as DNS traffic that is now encrypted may bypass traditional

DNS security systems. Thus, the DNS-over-HTTPS (DoH) pipeline can become both

a covert channel for malware entering systems as well as data being exfiltrated out.

For example, in 2020 the Iranian threat actor group APT34 used DNSExfiltrator2,

an open-source DoH tool, to laterally move data to their networks [142]. Malware

such as Godlua [143] and PsiXBot [144] have also been spotted in the wild along

DoH channels. As an example in our scenario, imagine Bob wants to track activity

or exfiltrate data from a server in a competitor’s private network. In order to record

this information, he needs to plant a trojan virus on this server. Using DNS-over-

HTTPS as a covert data channel, Bob hosts the trojan on a website and uses social

engineering to engage a user to click a link, querying the domain and returning the

data which contains the trojan. This malware remains undetected as port 443 traffic

is not scanned.

7.3.1.4 Covert Data Channels Out

Many enterprise network environments restrict outbound traffic to ports 80 and 443.

Users may re-reroute DNS from the standard port 53 to avoid defeat by firewalls, ISPs,

or government or enterprise networks [138]. Similarly, firewalls can also be bypassed

using SSH over port 443. SSH, or secure shell protocol, gives users a method of

accessing another computer over an insecure network. While typically transmitted

over port 22, many firewalls default to defeating traffic over this port. Instead, they

allow traffic over port 443. Packages exist such as stunnel which make SSH tunneling

over 443 simple for any Internet user [145]. Creating a covert data channel over SSH

can also be a gateway for cache attacks as it is necessary to transmit or exfiltrate the

data when accessed [146]. In our scenario, Alice’s middlebox technology is monitoring
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traffic on port 22 (SSH) for secure shell sessions. Bob needs to SSH into a machine

and copy over some documents. Instead of relying on traditional channels, Bob has

re-routed his SSH connection through port 443, creating a covert data channel. Thus,

Alice is missing the mission critical data of the file transfer.

7.3.2 System Design

The Forager system is a highly adaptable traffic profiling multi-tool capable of

representing packets in multi-dimensional space through configurable modules. Users

can enable up to four different methods of latent representation for the packets. Each

of these modules assesses different portions of the packet data with various hidden

representation learning approaches. Specifically, Alpine and Palm [147] generate

one-dimensional locality sensitive hashes which represents single sets of features from

the header and payload. Maple and Date generate two-dimensional images and

three-dimensional point clouds with clusters, respectively. Votes are provided to the

overall framework and used in lookup to generate a classification report. The whole

system is depicted in Figure 7.2.

Figure 7.2: System diagram of Forager

In the training phase, data is passed in with a label and indexed respective to
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class. This index is stored in a lookup table inside Forager. Models are enabled

or disabled and given a number of votes m per model. This allows the user to

more heavily weight one model’s opinion over another, further contributing to the

flexibility in real deployments. A few additional hyperparameters may be configured

for the neural network models such as epochs for training, and data is processed and

weights may be saved for later use. In the testing phase, test data is processed in

a similar manner and the input passed through the classifier. Date amalgamates

the votes across models and uses its lookup table to return a classification result.

In a real packet processing pipeline, we could add this result as part of metadata

or an encapsulation header for the packet for downstream processing. The current

implementation generates a report of classification results which may be returned

to an administrator for further review and possible identification of traffic on non-

standard or unexpected ports which could be malicious.

7.3.3 Datasets

To create a pipeline of data representative of a diverse capture on port 443, we

utilized several public datasets created by and widely used in the research community

for network traffic classification.

7.3.3.1 ISCX 2016 VPN-nonVPN Dataset

We used the UNB ISCX 2016 VPN-nonVPN dataset [90]. This dataset is a real-

world simulation capture created by the Canadian Institute for Cybersecurity (CIC)

specifically for encrypted VPN traffic classification [33]. The traffic was captured

using Wireshark and tcpdump and generated using OpenVPN; it contains 28GB of

traffic. The packets are a mixture of encrypted and compressed or plaintext traffic.

Because these are real-world captures, there are some packets such as ICMP and ARP

which are service-level and irrelevant for application and traffic type classification.

For this reason, we discard non-TCP/UDP packets as part of the process. Previous
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work [38, 148, 32] in machine learning-based traffic classification has made use of

this public dataset and made similar modifications. A breakdown of the dataset is

provided in Table 7.1. The data is divided into the following categories:

• Traffic Type - There are seven types of traffic: Browsing, File Transfer, Email,

Chat, Streaming, VoIP, and P2P.

• Application - Several of the PCAPs were associated specifically with one ap-

plication such as Skype or Google Hangouts. The applications we uniquely

identify are Pidgin (IAM and ICQ chat), BitTorrent (P2P), Facebook, Skype,

Google Hangouts, Spotify, Vimeo, Youtube, Netflix, Thunderbird (Email), and

Filezilla (FTP).

7.3.3.2 Tor Datasets

The Canadian Institute for Cybersecurity similarly created the UNB ISCX 2016

Tor-nonTor [91] dataset which captures data routed over Tor. The traffic was gen-

erated using Whonix 1 and captured using Wireshark and tcpdump; the Tor dataset

contains 22GB of traffic. The benign traffic used for comparison in their traffic profil-

ing work [34] is the same from the VPN dataset, establishing a good baseline for our

work in combining these two. A gateway was configured to convert non-encapsulated

traffic into Tor PCAPs which were then routed to the Tor network. Because Tor

is a circuit-oriented network, all traffic from the gateway to the entry node will be

routed through the same connection [34] which could cause over-fitting to a particu-

lar dataset. In order to better simulate the diversity of network routing methods, we

added as another Tor sample PCAPs from Skynet, a Tor-powered botnet with pub-

licly available datasets for research purposes [89]. For a botnet, the advantage of Tor

is hidden services. There is no way to trace the original IP address of a hidden server

which is published with its .onion pseudo-domain. All botnet traffic is encrypted.
1https://www.whonix.org
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Table 7.1: ISCX VPN/non-VPN and Tor/non-Tor Datasets

Traffic Content
Browsing Firefox and Chrome
Email SMTPS, POP3S and IMAPS
Chat ICQ, AIM, Skype, Facebook, Hangouts
Streaming Vimeo, Youtube, Spotify
File Transfer Skype, FTPS and SFTP using Filezilla
VoIP Facebook, Skype, Hangouts voice calls
P2P uTorrent, BitTorrent, Vuze

Application Benign VPN Tor
AIM chat 6K 1.4K 2K
Email 50K 25K 163K

Facebook 1837K 36K 88K
Filezilla (FTPS) 312K 315K 143K
Filezilla (SFTP) 629K 182K 176K

Gmail 15K – –
Chrome – – 356K
Hangouts 1871K 151K 1114K

Pidgin (ICQ) 4K 7K 2K
Netflix 455K 1433K –
SCP 777K – –
Skype 2261K 1069K 564K
Spotify 63K 193K 118K

Bittorrent – 133K –
VoipBuster 1017K 823K –

Vimeo 214K 591K 288K
Vuze – – 264K

Youtube 377K 333K 261K

The malware which infects the host opens a SOCKS proxy on port 55080 reachable

through the .onion domain, and can then run a number of bundled attacks and opera-

tions like bitcoin mining, data exfiltration, and DDoS attacks [89]. Thus, we leverage

evidence of this botnet implementation as an additional Tor data connection.

7.3.3.3 CIRA-CIC-DoHBrw-2020 Dataset

CIC has also made the CIRA-CIC-DoHBrw-2020 dataset containing DNS-over-

HTTPS (DoH) and non-DoH traffic on port 443, with a secondary layer of benign

versus malicious DoH traffic [140]. The traffic was generated by querying the top 10K
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Alexa websites. For non-DoH traffic, an HTTPS request is sent for the website with

regular, plaintext DNS. Firefox and Chrome browsers with the configured DNS-over-

HTTPS setting were used for benign DoH traffic. For each of the browsers, there

were four DNS services used: Cloudflare, AdGuard, Google, and Quad9. Finally,

for malicious DoH traffic, tunneling tools dns2tcp, DNSCat2 and Iodine were used

to created encrypted TCP covert data channels for transmission. A domain and

authoritative name server were established and the DoH tunneling tool used in the

client/server interaction. The packet pre-processing we performed on this data was

similar to the VPN and Tor dataset processing; a distribution of the data is provided

in Table 7.2.

7.3.3.4 EMews SoH Dataset

SSH is another exploitable protocol for both malware injection and data exfiltra-

tion over HTTPS. In 2018, Ricks et al [149] created an SSH over HTTPS (SoH)

simulation using the eMews framework and CORE to generate packet traces. The

network consists of 1022 nodes, 36 of which incorporate the SSH sessions and the

others perform various web-crawling activity for benign comparison. EMews 2 itself

is an open-source, large-scale network traffic data generation tool designed to emulate

networks employing protocols which require human interaction (ex: starting an SSH

connection). Sample counts for this dataset are provided in Table 7.3.

Table 7.2: Summary of CIRA-CIC-DoHBrw-2020 Dataset

Classification Application Sample Count
non-DoH Chrome 542K

Firefox 356K
Benign DoH Chrome 3.5K

Firefox 16.2K
Malicious DoH dns2tcp 168K

DNSCat2 36K
Iodine 47K

2https://mews.sv.cmu.edu/research/emews/
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Table 7.3: Summary of eMews SSH over HTTPS Dataset

Classification Sample Count
HTTPS 542K

SSH over HTTPS 3.5K

7.4 Experiments and Results

We use measures of precision, recall, and F1 score for classifier assessment. In the

binary confusion matrix, true positive (TP) indicates correct classification of data as

some protocol class C. True negative (TN) is correct classification of data as not

class C. false negative (FN) implies incorrect identification of traffic as not C, and

false positive (FP) is the incorrect classification of data as C.

R(C) =
TP

TP + FP
, P (C) =

TP

TP + FN
, F1(C) =

2(P ×R)

P +R
(7.1)

A high recall indicates that in the binary problem, much of the traffic is correctly

identified as the positive class. High precision in the model shows the quality of posi-

tive classifications, i.e. indicates how many were correctly classified out of everything

said to be in the positive class. A model with low recall and high precision will likely

mis-classify traffic which does belong in the positive class (high rate of false nega-

tives), whereas a model with high recall and low precision will produce more false

positives. In the following scenarios, we analyzed different potential traffic classifica-

tion problems for port 443 based on the described attacks or opportunities from the

threat models.

7.4.1 VPN Traffic Profiling

We analyzed the ISCX VPN/non-VPN dataset according to the applications and

traffic types identified by the researchers who generated the data and Lotfollahi et

al [38] who used the same data for per-packet classification in their Deep Packet

models. They used a convolutional neural network and stacked autencoder model for
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implementations. We used three different configurations of Forager for the traf-

fic and application classification tasks. For each problem, we ran a combination of

Alpine and one of the payload transformation models. For application classification,

DeepPacket’s CNN model achieved very high F1 scores for most of the applications.

Overall, each model is quite successful in distinguishing applications without inspect-

ing packet contents, preserving user privacy while still accomplishing the mission. In

the threat model, Alice could use our tool to better understand what kind of Internet

behavior Bob is engaging in over his VPN connection. We notice in both application

and traffic classification tasks, our Forager models achieve some improved results

in the VoIP categories. Our models also perform significantly better in profiling the

benign/non-VPN traffic types, up to 0.13 higher than the stacked auto encoder in

the VoIP category as well. When ICQ and AIM were combined under the Chat cat-

egory, Forager achieves much higher results than any other model. For all models,

distinguishing ICQ and AIM traffic was a difficult task. In further investigation into

the network environment, we found both of these traffic streams were generated from

the Pidgin messaging application, which makes sense that they were misclassified as

one another in all the models. We also note that apps which use similar protocol

stacks or likely similar APIs tend to be misclassified as one another. for example,

FTPS and SFTP (both using FTP) are more difficult to distinguish from one another

than either against SCP using SSH [38]. This is an important note for training and

defining classes for neural network models in general, as well-defined classes or clus-

ters make classification a clearer task. One significant difference in the experimental

setup of Deep Packet versus Forager is that DeepPacket’s CNN requires 300 epochs

to train the entire network. Maple achieves near comparable results at a mere 10

epochs of training on the same data and split. Date also achieves good results only

training with 10 epochs on its statistical model. We ran additional tests, increasing

the number of epochs in order to determine if this improved our models’ efficacy.
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In each case, 10 epochs proved to be sufficient for training Forager to maximum

performance capability.

Table 7.4: Results for classifying VPN data

Application DeepPacket-
CNN

DeepPacket-
SAE

Alpine +
Palm

Alpine +
Maple

Alpine +
Date

P R F1 P R F1 P R F1 P R F1 P R F1
AIM chat 0.87 0.76 0.81 0.76 0.64 0.70 0.80 0.55 0.65 0.80 0.57 0.67 0.67 0.69 0.68
Email 0.97 0.82 0.89 0.94 0.99 0.97 0.81 0.76 0.79 0.74 0.80 0.77 0.86 0.73 0.79
Facebook 0.96 0.95 0.96 0.94 0.95 0.95 0.96 0.90 0.93 0.97 0.91 0.94 0.98 0.90 0.94
FTPS 1.00 1.00 1.00 0.97 0.77 0.86 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Gmail 0.97 0.95 0.96 0.93 0.94 0.94 0.96 0.87 0.91 0.94 0.90 0.92 0.95 0.90 0.92
Hangouts 0.96 0.98 0.97 0.94 0.99 0.97 0.98 0.89 0.93 0.96 0.91 0.94 0.96 0.91 0.94
ICQ 0.72 0.80 0.76 0.69 0.69 0.69 0.47 0.93 0.63 0.59 0.89 0.71 0.60 0.89 0.72
Netflix 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
SCP 0.97 0.99 0.98 1.00 1.00 1.00 0.98 0.91 0.94 0.98 0.92 0.95 0.97 0.91 0.94
SFTP 1.00 1.00 1.00 0.70 0.96 0.81 0.99 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00
Skype 0.94 0.99 0.97 0.95 0.93 0.94 0.99 0.95 0.97 0.98 0.92 0.95 0.98 0.92 0.95
Spotify 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.92 0.95 0.99 0.95 0.97 0.99 0.95 0.97
Torrent 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.98 0.98 0.99 0.98 0.98 0.99 0.98
VoipBuster 0.99 1.00 0.99 0.99 0.99 0.99 1.00 0.98 0.99 1.00 0.98 0.99 1.00 0.99 0.99
Vimeo 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.97 0.98 0.99 0.98 0.98 0.98
Youtube 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.94 0.96 0.96 0.96 0.96 0.96 0.96 0.96
Traffic
Type

DeepPacket-
CNN

DeepPacket-
SAE

Alpine +
Palm

Alpine +
Maple

Alpine +
Date

P R F1 P R F1 P R F1 P R F1 P R F1
Chat 0.84 0.71 0.77 0.82 0.68 0.74 0.95 0.81 0.87 0.93 0.64 0.76 0.82 0.72 0.77
Email 0.96 0.87 0.91 0.97 0.93 0.95 0.76 0.99 0.86 0.71 0.74 0.73 0.75 0.67 0.71
File Trans-
fer

0.98 1.00 0.99 0.98 0.99 0.99 0.99 0.91 0.95 0.74 0.93 0.82 0.74 0.93 0.82

Stream 0.92 0.87 0.90 0.82 0.84 0.83 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99
VoIP 0.63 0.88 0.74 0.64 0.90 0.75 0.99 0.95 0.97 0.99 0.94 0.96 0.99 0.95 0.97
VPN:
Chat

0.98 0.98 0.98 0.95 0.94 0.94 0.96 0.95 0.96 0.96 0.98 0.97 0.96 0.97 0.97

VPN:
Transfer

0.99 0.99 0.99 0.98 0.95 0.97 1.00 0.98 0.99 1.00 0.98 0.99 1.00 0.98 0.99

VPN:
Email

0.99 0.98 0.99 0.97 0.93 0.95 1.00 0.98 0.99 0.99 0.98 0.99 0.97 0.99 0.98

VPN:
Stream

1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.80 0.89

VPN: Tor-
rent

1.00 1.00 1.00 0.99 0.97 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.83 1.00 0.91

VPN:
VoIP

0.99 1.00 1.00 0.99 1.00 0.99 1.00 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99

7.4.2 Tor Traffic Profiling

Another type of tunneled traffic we want to identify and profile on port 443 is

anything running over Tor. We again ran our three configurations of the Forager
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Table 7.5: Results for classifying Tor data by application

Application DeepPacket-
CNN

DeepPacket-
SAE

Alpine +
Palm

Alpine +
Maple

Alpine +
Date

P R F1 P R F1 P R F1 P R F1 P R F1
AIM chat – – – – – – 0.86 0.53 0.66 0.95 0.50 0.65 0.96 0.49 0.65
Chrome 0.00 0.00 0.00 0.03 0.44 0.06 0.93 0.68 0.78 0.91 0.74 0.81 0.91 0.75 0.82
Email – – – – – – 0.94 0.84 0.89 0.94 0.85 0.89 0.94 0.85 0.90
Facebook 0.10 0.24 0.14 0.06 0.28 0.09 0.97 0.88 0.92 0.97 0.89 0.93 0.97 0.89 0.93
FTPS – – – – – – 0.95 0.99 0.97 0.95 0.99 0.97 0.95 0.99 0.97
Gmail 0.97 0.95 0.96 0.93 0.94 0.94 0.94 0.85 0.89 0.89 0.90 0.89 0.94 0.86 0.90
Hangouts – – – – – – 0.91 0.93 0.95 0.95 0.92 0.93 0.93 0.94 0.94
ICQ – – – – – – 0.40 0.94 0.56 0.51 0.97 0.67 0.48 0.98 0.65
Netflix – – – – – – 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.99
SCP 0.97 0.99 0.98 1.00 1.00 1.00 0.99 0.90 0.94 0.96 0.92 0.93 0.96 0.92 0.94
SFTP – – – – – – 1.00 0.94 0.97 0.99 0.94 0.97 0.99 0.94 0.97
Skype – – – – – – 0.97 0.91 0.94 0.95 0.92 0.93 0.96 0.91 0.93
Spotify – – – – – – 0.79 0.91 0.85 0.75 0.95 0.84 0.74 0.95 0.83
VoipBuster – – – – – – 1.00 0.98 0.99 1.00 0.98 0.99 1.00 0.98 0.99
Vimeo 0.44 0.36 0.40 0.05 0.91 0.09 0.98 0.94 0.96 0.95 0.95 0.95 0.97 0.95 0.96
Vuze – – – – – – 0.98 0.72 0.83 0.97 0.73 0.83 0.97 0.71 0.82
Youtube – – – – – – 0.95 0.94 0.94 0.94 0.95 0.95 0.94 0.96 0.95

Table 7.6: Results for classifying Tor data by traffic type

Traffic
Type

DIDarknet J48 Alpine +
Palm

Alpine +
Maple

Alpine +
Date

P R F1 P R F1 P R F1 P R F1 P R F1
Audio 0.92 0.92 0.92 0.97 0.97 0.97 0.99 0.94 0.96 0.99 0.94 0.96 0.99 0.94 0.96
Browsing 0.55 0.47 0.51 0.99 0.99 0.99 0.97 0.94 0.95 0.95 0.97 0.96 0.95 0.97 0.96
Chat 0.90 0.86 0.88 0.93 0.93 0.93 0.92 0.74 0.82 0.84 0.80 0.82 0.93 0.70 0.80
Email 0.66 0.67 0.67 0.93 0.93 0.93 0.90 0.90 0.90 0.91 0.87 0.89 0.92 0.86 0.89
File Trans-
fer

0.74 0.75 0.75 0.98 0.98 0.98 0.99 0.92 0.96 0.99 0.92 0.96 0.99 0.92 0.96

P2P 0.90 0.95 0.93 0.99 0.99 0.99 0.96 0.98 0.97 0.95 1.00 0.97 0.96 0.99 0.97
Video 0.82 0.88 0.85 0.98 0.98 0.98 0.99 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
VOIP 0.58 0.61 0.59 0.99 0.99 0.99 0.72 0.97 0.83 0.82 0.96 0.89 0.71 0.99 0.82

toolkit against the Tor dataset. Deep Packet [38] also ran their SAE and CNN mod-

els against this data, but only report a portion of results. We provide a comparison

against what they do report for completeness, and note that the Forager models are

a dramatic improvement in terms of capability. Their model is unable to handle most

of the application classes, whereas Forager can adapt to all applications and returns

results as high as those in the VPN classification task. This result demonstrates the

versatility of Forager compared to the state-of-the-art and current existing frame-

works. Table 7.5 shows results of the application classification task. We also show
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comparative results of traffic type classification with work performed by Lashkari et

al [7] in their DIDarknet system which uses a two-dimensional convolutional neural

network to characterize VPN and Tor traffic. It is important to note that unlike Deep

Packet and Forager models, DIDarknet’s CNN relies on flow-based features. Both

we and Deep Packet prefer a stateless approach for best-effort, per-packet classifica-

tion and use features of the individual packets themselves. Choorod et al [6] provide

results of single packet classification of the Tor dataset using features extracted with

Charcount from the Posit toolkit along with a decision tree-based algorithm called

J48. This performed remarkably well on the traffic type classification task, and we

also compare against their results. They marginally outperform the Forager sys-

tem; but both identified Tor traffic with a much greater accuracy and F1 score than

the flow-based system. Choorod et al did not provide results for application-based

identification, and it is unclear if their method would generalize to any other problems

or has been attempted on any other data sets. The experiment results demonstrate

that the system could be used to isolate Tor traffic on port 443, or any traffic stream.

In the context of the threat model, Alice can determine if and when Bob is using Tor

routing, which is useful for further track and trace. She also has a much greater insight

into the traffic type and applications than other models previously gave, advancing

the state of the art. A summarization is provided in Table 7.7.

7.4.3 Plaintext Traffic over HTTPS

Our next experiment was to assess the ability of the model to determine if traffic

samples on port 443 are truly encrypted packets (TLS) or not. Many firewalls are

configured to default-allow port 443 traffic; an attacker may send any content or

malware over this port in order to attempt to bypass a firewall. Senders wishing

to bypass middlebox technology may send non-TLS data over port 443 to avoid

detection. It is thus significant for surveillance and law enforcement operations to

monitor traffic on port 443 for non-encrypted data which may be decipherable. IoT



100

Table 7.7: Results for VPN/Tor classification

Class Set Accuracy P R F1 κ
Tor 0.99 0.99 0.99 0.99 0.99
VPN 0.97 0.98 0.97 0.97 0.98
Standard 0.99 0.99 0.99 0.99 0.99
Class Set Accuracy P R F1 κ
VPN/nonVPN 0.97 0.98 0.97 0.97 0.97
Traffic Type 0.86 0.88 0.86 0.86 0.82
Application 0.92 0.93 0.92 0.92 0.82
Class Set Accuracy P R F1 κ
Tor/nonTor 0.99 0.99 0.99 0.99 0.99
Traffic Type 0.97 0.97 0.97 0.97 0.96
Application 0.89 0.91 0.89 0.89 0.88

devices also can send unencrypted traffic over port 443 [19] which may contain some

useful information. Alice finds it incredibly useful to capture all plaintext data where

possible as it can contribute to the legal summation of a case. We created two

classes of encrypted and non-encrypted traffic, performed random under-sampling,

and ran the model, generating results in Figures 7.3, 7.4, and 7.5. The model tends

to overselect traffic as encrypted, and underselect traffic which is plaintext. This is

not surprising due to the variety of features present in the single plaintext category,

versus the lack of common features generally found or uncovered in the encrypted

class. In this case, model design may not be well-suited to a binary classification

problem because the class plaintext is not well-defined. This tuning factor should be

considered by users of the Forager system during the configuration process.

7.4.4 Compressed Traffic over HTTPS

Compressed versus encrypted traffic both tend to exhibit highly entropic behav-

ior, with the data approaching uniform distribution in more advanced implementa-

tions [134]. An attacker may run compressed data over port 443 (or any port) and

middleware technology may assume it is encrypted if using statistical tests like Chi-

squared or Shannon entropy [150]. Instead, Alice could use our system to isolate
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compressed traffic from encrypted traffic, and thus be able to decompress and process

that information in follow-on applications. In order to run this experiment, we first

ran compression algorithms on the payloads of FTP_DATA packets. We chose this

traffic type as the payloads are largely text-based and often sent compressed over the

wire. We used three standard compression libraries - gzip, zlib, and bz2. The pack-

ets were randomly divided into groups, producing 10,519 sample compressed payloads

of each type. The encrypted traffic from the ISCX 2016 VPN-nonVPN dataset [33]

was used for the encrypted traffic type. Figure 7.4 shows Forager is capable of

identifying compressed from encrypted traffic on port 443 or out of any stream (using

Alpine and Maple). Furthermore, we can profile down to specific compression type

with great accuracy in Figure 7.5. We can also identify plaintext traffic in Figure 7.3.

Alice could use this technology to extract compressed data streams and decompress

them for further analysis.

Figure 7.3: Plaintext versus encrypted traffic results
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Figure 7.4: Compressed versus encrypted traffic results

Figure 7.5: Compression type classification results
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Table 7.8: Results for encryption and compression detection

Protocol P R F1
Encrypted 1.00 1.00 1.00
Compressed 1.00 1.00 1.00
Encrypted 0.85 0.95 0.90
Plaintext 0.95 0.83 0.88

TLS 1.00 1.00 1.00
BZ2 1.00 1.00 1.00
GZIP 1.00 1.00 1.00
ZLIB 1.00 1.00 1.00

7.4.5 SSH over HTTPS

We want to be able to identify particular instances of certain protocols over an

encrypted traffic network; One such protocol of interest is SSH. This is often used

to bypass firewall restrictions or create covert data channels. In our experiments,

we implemented the same model combinations as with the previous scenarios. The

Forager toolkit was highly successful in classifying SSH traffic from the SSH-over-

HTTPS dataset generated by the EMews simulator, achieving over 99% accuracy as

shown in Table 7.9. Identifying this traffic would allow inspectors to both mitigate

covert data channels or monitor them for possible illicit activity. For example, Alice

could detect any open covert data channels Bob might attempt to create over SSH.

7.4.6 DNS over HTTPS

Our final experiment was to detect DNS traffic running over HTTPS. A perpetual

challenge for security research in classification and anomaly detection is the notion

of intent; just because something is identified as belonging to a particular class or

marked as an outlier does not always correlate that it is malicious. For example, a new

instance of a running process can just be that - a user running a new program - and not

necessarily an executing malware. Or a malformed data packet may appear different

than others in the stream, but that could just be a bad transmission. For DNS

over HTTPS, mainstream browsers like Chrome and Firefox employ this technique
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without malicious intent. As such, being able to determine DNS tunneling as a

second layer to the DoH/non-DoH identification is of critical importance. The results

in Table 7.9 show that Forager rises to meet this challenge, and can distinguish

both DoH/non-DoH traffic and then malicious traffic from the identified DoH traffic

with high accuracy and few false positives. Thus, any attempt Bob makes at DoH

tunneling is now detectable using our toolkit.

Table 7.9: Results for classifying DoH/non-DoH and SoH/non-SoH data

Model A+P A+M A+D
Class P R F1 P R F1 P R F1
SSH 1.00 0.99 1.00 0.98 1.00 0.99 1.00 1.00 1.00
Non-SSH 0.99 1.00 1.00 1.00 0.98 0.99 1.00 1.00 1.00
DNS 1.00 0.97 0.98 0.96 0.99 0.98 0.95 0.99 0.97
Non-DNS 0.97 1.00 0.98 0.99 0.96 0.97 0.95 0.97 0.96
Malicous 1.00 0.95 0.97 1.00 0.95 0.97 0.99 0.95 0.97
Benign 0.96 1.00 0.98 0.95 1.00 0.97 0.96 0.99 0.97

7.4.7 Performance Metrics

The experiments were run on a 1.6 GHz Dual-Core Intel Core i5 processor with

16GB of RAM running MacOS Big Sur version 11.6.1. For each of our experiments,

we tracked system performance metrics for the models as they performed the classifi-

cation task and provide this data in Appendix A. This is important for real systems

to assess not only the expected tonnage of network traffic they can process, but also

to determine what models may be appropriate for deployment. For example, a model

whose strategy focuses on online training may not be suitable in an environment who

requires high throughput and low downtime, but has a high training time. Or, in

some scenarios it may be acceptable to have slightly lower accuracy but a higher

throughput rate.
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7.5 Discussion and Limitations

Using Forager, we are able to provide new insight into a previously under-

analyzed gateway into secure networks - port 443. These techniques enable profiling

of encrypted traffic streams while preserving user privacy of the content. We can also

use Forager to identify plaintext or compressed traffic from the encrypted streams

which may then be forwarded to decompression and DPI tools. Forager can profile

the same traffic stream multiple ways, which is an important recognition of the com-

plexity present even in an individual packet. Finally, we show the ability of the system

to identify not only particular protocols in the encrypted stream, but also distinguish

between benign and malicious instances of their utilization. This would be useful, for

example, applied in network intrusion detection (NIDS) and prevention systems. For

surveillance missions, we show Forager keeps up with the ever-changing, fast-paced

real and complex network environment and allows analysts to stay ahead of mission

communications and critical data. In seeing through encryption and tunneling, For-

ager proves to be a versatile solution for real network problems.

For plaintext analysis and keyword searching, using regular expression scanning can

still be an effective technique. Automatic generation techniques like Rexactor may

also reduce manual overhead required for signature creation and maintenance, and

provide useful insight to commonalities across traffic types and protocols. Additional

regular expression scanning and generation tools would be a useful addition to the

Forager toolkit.



CHAPTER 8: CONTRIBUTIONS AND DELIVERABLES

We designed the Forager toolkit as a usable software package for reproduca-

bility and further community research. This software is a command line interface

(CLI) application installed through PyPi with user documentation provided through

ReadTheDocs. The source code repositories are also available through GitHub with

open-source licensing. The following components are included in the initial 1.0 release:

TaPCAP: This option parses input PCAP and PCAPNG files, extracting header

features and/or payloads into CSV format. This module can be installed separately 1

or run from Forager.

RExACtor: The token option finds frequent tokens according to a provided

threshold from a CSV output from Tapcap. The regular expression mode performs

genetic sequencing alignment of payloads from a CSV output from Tapcap. Rex-

actor can be installed as a separate component 2 or run from Forager.

Alpine: In training mode, this model accepts as input the CSV obtained from

Tapcap, generates locality sensitive hashes from the header data, and finalizes and se-

rializes these to an LSHForest [2]. In testing mode, the trained LSHForest is reloaded

from the internal cache. Locality sensitive hashes of the input data are generated

and index lookup performed. The returned result is applied to the ensemble voting

system if other models are configured.

Palm: In training mode, this model accepts as input the CSV obtained from

Tapcap, generates locality sensitive hashes from the payload data, and finalizes

and serializes these to an LSHForest [2]. In testing mode, the trained LSHForest
1https://pypi.org/project/tapcap/
2https://pypi.org/project/rexactor/
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is reloaded from the internal cache. Locality sensitive hashes of the input data is

generated and index lookup performed. The returned result is applied to the ensemble

voting system if other models are configured.

Maple: In training mode, this model accepts as input the CSV obtained from

Tapcap, generates grayscale images from the payload data, and saves the generated

neural network model and trained weights to JSON and H5 files, respectively. In test-

ing mode, the trained neural network is reloaded from the internal cache. Grayscale

images of the input data are generated and used as input to the CNN classifier. The

returned result is then applied to the ensemble voting system if other models are

configured.

Date: In training mode, this model accepts as input the CSV obtained from

Tapcap, generates point clouds from the payload data and performs DBSCAN anal-

ysis. It then saves the generated neural network model and trained weights to JSON

and H5 files, respectively. In testing mode, the trained neural network and weights

are reloaded from the internal cache. Point clouds are generated from input data and

DBSCAN analysis performed, and this is used as input to the multi-layer perceptron

classifier. The returned result is applied to the ensemble voting system if other models

are configured.

Multi-modality: Forager supports training and using one or more of the

Alpine, Palm, Maple, and Date models together so that the packet may be ana-

lyzed from multiple representations. We use votes in a combined ensemble classifier

and return the class with the most votes as the final classification.



CHAPTER 9: CONCLUSIONS

9.1 Future Work

The scope of this dissertation includes the research and methods leading to the

initial release of the Forager toolkit. This work focuses on per packet inspection and

data transformation techniques which are viable for large-scale deployments. There

are a number of flow-based techniques referenced in this work which do have practical

applications. Netflow data is often used in recurrent neural network or long short-

term memory network analysis and can be extracted often with ease from routers,

switches, or other network devices. A future expansion of this toolkit would be the

ability to process netflow or other such stream-based data or cross-packet features

when available.

There are also many deep learning and data mining techniques which we have not

yet covered but have been explored in other works. Principle component analysis

(PCA) [151, 152] and eigenvectors [153] have been used in per packet classification

with success. These techniques are notably efficient and therefore would be excellent

candidates for additional features in a future release for processing at large scale.

While we found that adjusting for TF-IDF score in Palm did not improve classi-

fication accuracy in the experiments we ran, there are applications for other natural

language processing and word embedding techniques in the literature on traffic classifi-

cation. Word embeddings can be used to classify real versus fake domain names [154],

phishing emails [155, 156, 120] and other kinds of phishing attacks [157], and HTTP

traffic [158]. In the cybersecurity domain, Word2Vec has been used to identify cross-

site scripting [159, 160] and SQL injection attacks [161] across network packets. Tex-

tual analysis is rendered ineffective by encryption and compression in many cases,



109

but for plaintext analysis or malware detection could be a future approach.

The data itself we chose to work with in these experiments until Forager’s initial

release has largely been sourced from traditional network devices. Mobile traffic and

data gathered from IoT or medical/wearable devices could present unique challenges

and opportunities for classification problems. In future versions of this toolkit, we

could leverage the dimensionality reduction offered by our data engineering and min-

ing techniques in order to combine feature sets and further increase multimodality.

For example, we could embed both the processing power and CPU utilization of an

IoT device input along with network traffic embeddings to further inform a classi-

fication of IoT devices. There is also much opportunity for experimentation with

classifying streams of traffic in multiple ways. As mentioned in the introduction of

this work, traffic classification covers a broad scope of problems; importantly, these

classes are not distinct from one another and traffic may belong to multiple classes

and it may be necessary to classify something multiple times. For example, we may

want to determine the user who generated a traffic stream (Bob), what protocols are

in the traffic (SIP, RTP), what application Bob used to generate the traffic (Zoom),

and what device of Bob’s he used to make the call (MacBook Air). Determining

methods to perform multiple classifications like this without re-processing the data

each time would be a useful additional contribution.

9.2 Summarization

This work proposes a new system of data mining and deep learning for network

traffic classification at scale. The Forager system includes models which contribute

both novel application of data transformation techniques which unveil hidden repre-

sentations as well as machine learning models applied in real systems. We propose

a method for extracting data from PCAPs and converting them to tabular format,

then transforming them appropriately according to what we have learned from pre-

vious experiments. For example, plaintext, strongly signatured data which we are
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aiming to identify by protocol (SIP, HTTP, POP) may be aptly suited for regular

expression generation algorithms. Alternatively, weakly signatured data may be run

with the Maple model for payload analysis and Alpine model for header features

for identification. Similarly for profiling, encrypted data may also be well-suited for

the Alpine and Maple model combination. Our ensemble voting system allows for

this multimodal analysis and can finally be saved and returned through a tagging

system implemented in the original data. Thus, our toolkit will be a useful contribu-

tion to network analysts and cybersecurity and surveillance specialists for uniquely

identifying traffic on the Internet today.
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