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ABSTRACT

DAVID C. BROWN. Investigating Multidrug Resistance in Escherichia coli with
Phylogenetics and Machine Learning. (Under the direction of DR. DANIEL

JANIES)

The next pandemic is already underway in the proliferation of antimicrobial resistance

(AMR) genes that reduce the effectiveness of therapeutics. The lessened potency of

these current drugs results in increased economic costs, higher public health burdens,

and greater loss of life when attempting to manage these increasingly treatment-

resistant bacterial infections. Evolutionary principles guide this "silent pandemic",

ultimately resulting in the development of superbugs, more formally described as

multidrug resistant (MDR) bacteria. Such MDR phenotype bacteria resist three or

more classes of antimicrobial compounds, representing significant obstacles to infec-

tion clearance and patient recoveries. To understand the forces driving the AMR

pandemic, it is necessary to identify commonalities among bacterial genotypes with

MDR phenotypes.

This dissertation aims to uncover the genetic determinants of MDR bacteria through

a study of Escherichia coli. One hypothesis for the development of MDR phenotype

bacteria theorizes that resistance results from an increased number of mutations.

Researchers refer to these highly mutable strains as possessing hypermutator pheno-

types, often attributed to poorly functioning mismatch repair systems. One specific

example of flawed mismatch repair in hypermutator bacteria was identified by LeClerc

et al., 1996, defined as E. coli strains with a deficient Mutator S gene (gene mutS

encodes the protein MutS).

First, I analyzed the mutS genes from 817 high-quality E. coli isolates using phy-

logenetic comparative analyses. Although I observed 271 MDR isolates in this data

set, I found no evidence for the existence of a deficient mutS gene as defined by

LeClerc. Additionally, when modeling the coevolution of an MDR phenotype against
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all variant amino acid positions in the mutS gene, the evidence supports a largely

independent evolution between MDR and the mutS mismatch repair gene.

Next, to better understand this confounding result, I undertook a statistical anal-

ysis of the whole genome sequences (WGS) for all E. coli isolates. I used supervised

machine learning to identify the genetic annotations that best predict the develop-

ment of resistance to several classes of antimicrobial compounds: aminoglycosides,

folate pathway antagonists, macrolides, tetracyclines, and other. The five trained

random forest estimators achieved a mean ROC AUC of 0.87 ± 0.04 on 66 features,

engineered from 5,511 annotated genes in the calculated E. coli pangenome. I deter-

mined that the top performing features did not include the mutS mismatch repair

gene, further confirming the results of my first investigation. Instead, I found evi-

dence that genes associated with horizontal gene transfer (HGT) best predict MDR

phenotypes, an idea called into question by LeClerc et al., 1996.

Finally, I examined the component annotations which comprised the most im-

portant engineered features. Interestingly, I found that resistance to a given class

of antimicrobial treatments results from a unique and specific pattern of annotated

genes that does not include commonly understood genetic determinants of resistance.

MDR is best predicted, not by AMR genes themselves, but by accessory genes often

involved in the horizontal and lateral transfer of genetic information. My investi-

gation supports the current domain understanding, that horizontal gene inheritance

mechanisms drive the proliferation of antimicrobial resistance, by indicating gene sets

which predict resistance to specific categories of antimicrobial compounds.

This work demonstrates the importance of combining phylogenetic methods and

statistical modeling tools like machine learning to arrive at working hypotheses for

polygenic traits. Additionally, this investigation portrays the research value of survey

data. By identifying unique mechanisms for the continued proliferation of different re-

sistance classes, this dissertation addresses the root evolutionary drivers of the AMR
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pandemic. In future, further investigation of the evolutionary history of the spe-

cific genes responsible may lead to new therapeutic targets or improved prescription

strategies.
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CHAPTER 1: INTRODUCTION

1.1 The Silent Pandemic of Antimicrobial Resistance

In 2019, the Centers for Disease Control and Prevention (CDC) estimated there

were 2.8 million antibiotic-resistant infections in the United States, resulting in 35,000

domestic deaths [1]. Antibiotic resistant infections are not limited only to the United

States but instead represent a global healthcare concern. A recent report to the

Secretary-General of the United Nations (UN) estimates that at least 700,000 indi-

viduals die worldwide from drug-resistant diseases each year, predicting that total

could climb to 10 million deaths by 2050 [2]. The continuously increasing prevalence

of antibiotic resistance phenotypes among pathogenic, or disease-causing, bacterial

species drives these rising death tolls.

While antibiotic resistance is the common term for bacteria with drug-resistant

phenotypes, the general trend in both academic and medical literature broadens the

scope of the conversation to antimicrobial resistance (AMR). While some disagree

with conflating the two terms [3], AMR leads as the currently preferred term [3, 4, 5, 6,

2, 7]. Therefore, in this dissertation, I use the term AMR when referring to microbial

phenotypes that impart drug resistance. In bacteria, the presence of a specific AMR

gene imparts the associated resistance phenotype [8]. Given this context, use of the

term AMR throughout this manuscript relies on the above understanding, that simply

the presence of an AMR gene within a bacterial genome indicates an AMR phenotype.

Research has long associated AMR with pathogenic bacteria, but not exclusively

so. The existence of AMR genes among non-pathogenic bacteria is well-documented

[9, 10, 11, 12]. The problem of AMR is pervasive, not limited to health care or

geographic environments [10, 13, 14]. Many bacteria carry AMR genes, whether they
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remain benign or cause disease. Recently termed the “silent pandemic” [15], AMR

genes continue to occur with increasing abundance among global bacterial strains.

Simultaneously, AMR gene assortment also increases, as genetic variations continue

to develop in order to resist various classes of antimicrobial drugs [16, 17, 18, 19, 20].

In the past, terms like “classes of antimicrobial drugs” and “multidrug-resistance”

were variably defined [21]. For the purposes of this dissertation, I chose current defini-

tions for both terms from the CDC and National Antimicrobial Resistance Monitoring

System for Enteric Bacteria (NARMS). CDC NARMS categorizes antibiotics based

on the Clinical and Laboratory Standards Institute’s twelve (12) antibiotic drug class

definitions [22]. The CDC defines multidrug resistant (MDR) bacterial infections

as infections that resist three or more of the CLSI antibiotic classes [23]. For the

purposes of this dissertation, AMR refers to the quality of imparting resistance to

antimicrobial substances, while MDR refers to a specific threshold (three or greater

classes of resistance) within that broader definition of AMR.

1.2 Antimicrobial Resistant to Multidrug Resistant Phenotypes

MDR bacterial lineages preferentially gain AMR genes over time [5], a phenomenon

representing the logical end stage of the silent AMR pandemic. MDR bacterial infec-

tions, commonly referred to as superbugs [24], involve serious challenges for human

health in hospital settings [25]. Healthcare-associated infections, also known as noso-

comial infections [26] often involve MDR pathogenic phenotypes. Nosocomial infec-

tions link to elevated healthcare costs, morbidity, and mortality [27, 28], so surveil-

lance of the bacteria which cause nosocomial infections remains a top priority [26].

Two main propositions exist for the proliferation of MDR in healthcare conditions:

mutation accumulation and horizontal gene transfer (HGT). Either MDR developed

through rapid mutation within the highly competitive, antimicrobial-saturated envi-

ronment of a hospital [29, 30, 31], or the arrival of the patient allowed the acquisition

of groups of AMR genes which developed under external conditions [32, 33, 34, 35].
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1.2.1 Hypermutator Phenotypes and Deficient Mismatch Repair

While the presence of an AMR genotype indicates the presence of an AMR phe-

notype [8], other mutations have been documented that increase virulence [36] or

improve the mutational ability of a lineage [31]. A heightened rate of mutation to

adapt to environmental stressors is called hypermutation [29], a property associated

with a hypermutable phenotype [37]. The manuscript published in 1996 by LeClerc

et al. theorized that hypermutator phenotypes result in MDR phenotypes. LeClerc

suggested a mechanism for hypermutator phenotype E. coli : a defective Mutator S

(mutS ) gene. The mutS gene forms part of the DNA methyl-directed mismatch re-

pair (MMR) pathway, a system which proofreads mistakes and corrects errors in the

nucleic code following replication. LeClerc indicated that a deletion of 221 bp from

the 3’ end of the mutS gene results in a defective mutS gene, and asserted that such

a defect leads to the hypermutator phenotype observable in E. coli [37]. I examine

LeClerc’s specific definition of hypermutator in this dissertation.

1.2.2 Horizontal Gene Transfer and the Mobilome

Previous understanding of bacterial evolution assumed that, like most species, lin-

eages inherited genes vertically [38, 39]; however, researchers now acknowledge that

horizontal (or lateral) transmission of genetic information affects enteric bacterial

genomes, in addition to the vertical inheritance of genes [40, 41, 42]. These HGT

events allow species of enteric bacteria to pass genetic information among and be-

tween lineages through mobile genetic elements (MGEs). The term mobilome refers

to MGEs and their associated genes [43]. The existence of the mobilome indicates

that enteric bacteria readily acquire and transmit AMR genes through HGT, often

on MGEs such as plasmids [44, 45, 35].

With time and research, our domain understanding of HGT, MGEs, and plas-

mids continues to improve, but the fundamental concepts are not new. LeClerc et
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al. 1996, specifically proposed their theory of hypermutation in opposition to the

understanding of HGT from that era. This dissertation aims to examine LeClerc’s

definition of hypermutator phenotype as E. coli with defective mutS genes. Testing

LeClerc’s hypermutator hypothesis leads to one of two competing outcomes. First,

falsifying LeClerc’s definition calls into question the role of hypermutation in MDR,

and weakens hypermutation in favor of HGT for proliferating AMR genes into MDR

phenotypes. Conversely, an inability to falsify LeClerc’s definition emphasizes the

importance of monitoring hypermutable bacteria as a means to control MDR threats.

1.3 The Complex Problem of Multidrug Resistance

In Enterobacteriaceae research literature, both HGT and specific MGEs are strongly

associated with the proliferation of AMR genes and consequently the acquisition of

MDR phenotypes [46, 47]. Several additional mechanisms compound the uncertainty

resulting from these two competing theories.

1.3.1 Reticulate Evolution and AMR

Reticulate evolution, the term for the non-independent nature of the complex evo-

lutionary interactions between two distinct lineages, includes processes like HGT,

hybridization, and recombination [48]. The current threat of MDR superbugs exac-

erbates the difficulty in describing these reticulate evolutionary patterns, especially

among Enterobacteriaceae where acquired genes, originating from different species,

circulate contemporaneously [44, 49, 50].

The phenomenon of reticulate evolution is an acknowledged concern for Salmonella

genetics [8], and while a similar species, E. coli has not been investigated as thor-

oughly. Conservative estimates suggest that about a quarter of the Salmonella

genome was derived by reticulate evolutionary forces [41]. Estimates for E. coli

indicate a minimum of 12.8% of current protein-coding DNA is foreign, while not

accounting for any prior evolutionary history of the species’ genome [40]. Accord-
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ing to recent research, 64.5% of E. coli are third-generation cephalosporin-resistant

(3GCR) and 5.8% are carbapenem-resistant (CR); projections indicate that these

values increase to 77% for 3CGR and 11.8% for CR E. coli by 2030 [51]. Due to retic-

ulate evolutionary forces, these and other AMR genes are not exclusively available to

E. coli but to all Enterobacteriaceae.

1.3.2 AMR Genes, Xenogenetic Elements, and MDR

Xenogenetic elements are invasive, mobilized AMR genes with replication capabil-

ities [17]. Current evolutionary forces at work in E. coli accumulate AMR, accessory,

and virulence genes into broadly drug resistant phenotypes [52]. As such, MDR phe-

notypes also fit the criteria of xenogenetic elements, regardless of their horizontal or

vertical method of inheritance. Generally, MDR phenotypes resist multiple antimicro-

bial drug classes through several different AMR genes or mechanisms. Hypothetically,

certain MDR phenotypes could associate with specific, limited sets of accessory and

virulence genes, which I will refer to as gene sets. These gene sets would indicate spe-

cific genes or groups of genes that associate with MDR inform an understanding of

the stepwise progression towards a specific, multiply-resistant, bacterial phenotype. I

believe that this concept of gene sets indicates unique hereditary pathways for MDR

phenotypes. The increasingly commonplace occurrence of MDR bacterial lineages

threatens global food safety and public health [53]. A greater understanding of MDR

E. coli within this global context is needed to better protect human lives.

1.4 One Health Initiative

While both proliferation concepts aim to describe the process of AMR gene accu-

mulation, neither the clinical setting or external environment should be examined in

isolation. The Manhattan Principles developed by the Wildlife Conservation Society

encourage scientists to “take the complex interconnections among species into full ac-

count” [54]. These interconnections allow researchers to “[r]ecognize the essential link
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between human, domestic animal and wildlife health and the threat disease poses to

people, their food supplies and economies. . . ” [54].

The Manhattan Principles led to the subsequent development of One Health [54,

55]. One Health seeks to increase collaboration between various disciplines of academia,

human healthcare, veterinary medicine, and public health to “promote, improve, and

defend the health and well-being of all species” [55]. A main aim of One Health

seeks to establish “[j]oint cross-species disease surveillance and control efforts in pub-

lic health. . . ” [55]. This specific aim of One Health has proven useful for both

pandemics and microbial pathogen surveillance involving food safety [56].

1.4.1 GenomeTrakr

The U.S. Food and Drug Administration (FDA) established the GenomeTrakr lab-

oratory network in collaboration with public health groups and academic institutions

to further this One Health aim [57, 58]. Inspectors gather surveillance swabs and

send samples to network labs for sequencing. These WGS data are then made pub-

licly accessible in the National Center for Biotechnology Information’s (NCBI) online

databases. The web-based NCBI Pathogen Detection Isolates Browser (NCBI PDIB)

serves as the main interaction point for international collaborators to access the data.

These WGS data represent a valuable resource for food safety surveillance.

1.5 Food Safety and Escherichia coli

Many researchers and health organizations point to the misuse of antimicrobials in

agricultural practices as a fundamental driver for AMR proliferation [59, 53]. AMR

genes often impart a fitness advantage, for example lineages with AMR genes outcom-

pete other lineages in the presence of antimicrobial compounds [60, 61, 62]. Monitor-

ing livestock species for pathogenic bacteria is an important component of food safety

surveillance. Food-related illnesses are not uncommon globally, so current systems of

health surveillance sample food and identify pathogenic bacteria by WGS techniques.
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The WGS data gathered by these surveillance systems provide insights into the evo-

lutionary history of pathogens and the functionality of MDR traits. One group of

pathogens associated with both food and MDR is Enterobacteriaceae, a family of

Gram-negative bacilli [63].

1.5.1 Enterobacteriaceae

Specific pathogens within Enterobacteriaceae include Salmonella, Klebsiella, Shigella,

and Escherichia coli (E. coli). The organisms within the family Enterobacteriaceae,

often referred to as enteric bacteria, colonize the gastrointestinal tract of humans

and other mammals. Enteric bacteria are a special cause for concern regarding MDR

phenotypes due to their genetic flexibility, which allows them to survive in a broad

range of environments.

Enteric bacteria colonize many segments of the farm-to-fork continuum, where they

encounter substantially varying environmental conditions [64, 65]. Environmental

variation drives the selection of specific heritable mutations which impart a fitness

advantage. Gene transmission mechanisms improve the host range of enteric bacteria

[66]. Host shifting from livestock species to humans and back necessitates different

sets of genetic adaptations for survival.

Researchers often focus on Salmonella when addressing concerns of both food safety

and MDR [67, 68, 69, 70, 71]. However, despite the recognized importance of moni-

toring E. coli in food safety and healthcare, little to no understanding exists of the

broader, global MDR patterns for E. coli [72]. I chose to utilize E. coli data in order

to address this gap in current knowledge.

1.6 Problem Summary - Resistance and Food Safety

Antimicrobial resistance genes diversify and proliferate as a silent pandemic [7, 15].

As bacterial lineages amass multiple antimicrobial resistance genes, in some environ-

ments gain a fitness advantage and become multidrug resistant [73]. While antimicro-
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bial resistance may be examined under the separate lenses of laboratory, clinical, or

food safety contexts, a lack of research examines the broader, interconnected threat

MDR represents towards global public health. A One Health perspective focused on

pandemic control cannot ignore this interconnectedness.

The data gathered by One Health-focused initiatives, like GenomeTrakr, monitors

food for potential microbial pathogens [58]. Specifically within the area of food safety,

effort focuses on Salmonella, with E. coli less explored. The silent pandemic of

AMR, the usefulness of One Health concepts for pandemic control, and the relatively

underexplored niche of E. coli when taken together represent an opportunity for novel

research.

1.7 Purpose

The purpose of this research program aims to examine the evolutionary history

and proliferation of the multidrug-resistance pandemic in Escherichia coli from both

phylogenetic and correlational perspectives (i.e. machine learning). In Chapter 2, I

employ phylogenetic comparative methods to examine the role of hypermutation in

the evolutionary development of MDR through an analysis of the methyl-associated

mismatch repair (MMR) protein Mutator S described by LeClerc et al. 1996. In

Chapter 3, I use supervised machine learning to reveal the genetic annotations that

best predict an MDR phenotype, comparing those predictors against the two pre-

vailing theories of MDR development: hypermutation or HGT. With Chapter 4, I

describe the biological significance of the genetic annotations that best predict an

MDR phenotype.



CHAPTER 2: PHYLOGENETIC COMPARATIVE ANALYSIS OF

HYPERMUTATION AND MULTIDRUG RESISTANCE

2.1 Introduction

The phenomenon of increasing bacterial antimicrobial resistance (AMR) genes is

often described as a pandemic [3, 4]; this proliferation of AMR genes among bacterial

lineages logically results in multidrug resistance (MDR) phenotypes, with resistance

to three or more classes of antimicrobial drugs [74]. Understanding the epidemic and

pandemic trajectories of pathogens and the gain, loss, and spread of disease causing

genotypes and phenotypes requires such evolutionary histories displayed on phylo-

genies [5]. Phylogenies investigate and express hypotheses about the evolutionary

history of organisms [75, 76]. I chose to investigate the evolutionary history of MDR

through the lens of Escherichia coli food safety data due to 1) the amount of well

curated whole genome sequence (WGS) and phenotypic data, 2) the ubiquity of E.

coli, 3) the global nature of the survey data set, and 4) the common association of

pathogens with MDR phenotypes.

2.1.1 Hypermutation

MDR phenotypes have long been linked with the terms “hypermutable”, “hypermu-

tation", and “hypermutator” [77, 37, 78]. Hypermutable bacterial phenotypes possess

deficient methyl-directed mismatch repair (MMR) systems that generate significantly

more mutations than wild-type bacteria [79, 80, 37, 78, 81, 82, 83]. The widely

accepted concept became that highly mutable, MMR deficient bacteria more easily

adapt when challenged with antibiotics, allowing mutator strains to develop resistance

to more compounds [84, 77, 37, 78], eventually resulting in MDR. Some disagree about
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the role of hypermutation with MDR, pointing to research in uropathogenic E. coli

that could not link mutators with MDR [85], an investigation in enterococci that

MMR mutations do not associate with MDR [86], and other studies [87] that did

not provide experimental evidence linking the hypermutable, MMR-deficiency phe-

nomenon with MDR. The goal of my dissertation is to advance this conversation

about the cause or causes of MDR phenotypes. To begin, I chose to investigate an

early, well-defined example of hypermutable, MMR-deficiency noted by LeClerc et al.

1996 involving Mutator S (gene mutS encodes the protein MutS).

MutS is one protein component of the E. coli MMR system, initially associated

with hypermutation by LeClerc et al. 1996, who indicated a deletion of 212 bp in

the 3’ end of the MutS protein as responsible for causing a mismatch repair deficient,

hypermutable phenotype [37]. As noted above [84, 77, 78], the MutS deficient concept

introduced by LeClerc drove a substantial volume of research linking elevated muta-

tion rates with hypermutable mismatch repair deficient phenotypes and AMR genes.

The consequence, fully intended by LeClerc et al. 1996 [37], being that hypermuta-

tion is viewed in opposition to other mechanisms for MDR phenotype proliferation,

like another prominent hypothesis involving the horizontal gene transfer (HGT) of

AMR genes.

2.1.2 AMR, MDR, and Food Safety Data

Within the broader healthcare concerns about AMR progression towards MDR bac-

teria, attention focuses on maintaining the safety of the global food supply [88, 89].

Spearheaded by the FDA and assisted by other domestic and international organi-

zations, the GenomeTrakr program seeks to fulfill the mission of keeping food safe

[58]. GenomeTrakr laboratories monitor supply lines for the presence of bacterial

pathogens through routine sampling and genome sequencing. GenomeTrakr partners

collect and submit WGS data to the NCBI Pathogen Detection (NCBI PD) database

[90]. The NCBI PD separates sequences by species, organizing isolates in phyloge-
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netic trees to track and monitor foodborne bacteria for the presence of AMR and

virulence genes [91, 92]. Several species of Enterobacteriaceae are among the many

food associated bacteria monitored by the NCBI PD database.

In 2019, the CDC published an Antibiotic Resistance Threats (AR Threats) report,

listing both typhoidal and nontyphoidal subtypes of Salmonella as “serious threats”

[1] among the enteric bacteria. The data submitted by GenomeTrakr labs to the

NCBI PD is collected to understand the evolution and spread of AMR pathogenic

Salmonella [8]. Recent publications by the FDA indicate both the role of HGT and

reticulate evolution in the development of the Salmonella genome, while also pointing

to the broader usefulness of the NCBI PD data for monitoring and tracking pathogenic

AMR genes [88, 58, 8].

The AR Threats report separates microbes into three categories of decreasing sever-

ity: urgent, serious, and concerning. Serious threats, like Salmonella, “are public

health threats that require prompt and sustained action. . . ” [1]. Of higher concern

to human health, urgent threats “are public health threats that require urgent and

aggressive action. . . ” [1]. Urgent threats include the Carbapenem-resistant Enter-

obacteriaceae (CRE) group, which includes E. coli. Some lineages of enteric bacteria

produce a carbapenemase that imparts resistance to carbapenems, cephalosporins,

and penicillins, a multiply resistant phenotype termed the “nightmare bacteria” [93].

As such, the study of MDR E. coli is of utmost importance to public health.

2.1.3 Escherichia coli Data Source

The utility of E. coli as a well-understood laboratory model species for AMR

development [61, 12] continues into the present day via computational techniques

[94]. Research on E. coli has investigated AMR genes within the context of food

safety [95, 89]. Also of evolutionary and regulatory interest is the finding that lineages

of E. coli gain more AMR genes than they lose over time, a finding termed genetic

capitalism [96, 97, 98]. Our publication, Ford et al., 2020 [5], demonstrated that many



12

E. coli lineages evolve under genetic capitalism instead of stabilizing selection, where

isolates both gain and lose resistance over time. We extended the concept of genetic

capitalism to show that variation in the gain phenomenon depends on the functional

class of antimicrobial resistance. Our results indicated that positive selection for

resistance overcomes the potential fitness costs bacteria incur when carrying AMR

genotypes, allowing lineages under genetic capitalism to continue gaining AMR genes

[96, 98, 5]. E. coli is therefore a valuable and well-understood model species to study

the context dependent accumulation or regression of AMR phenotypes.

This study aims to understand the relationship between hypermutation and the

AMR pandemic, by investigating phylogenetic correlations between genotype and

phenotype through mutS and MDR phenotypes. To examine the relationship between

mutS and MDR, I test whether hypermutable, repair deficient MutS variants (as

defined by LeClerc et al., 1996 [37]) correlate with MDR phenotypes (as defined by

the CDC [1]), my null hypothesis stating no relationship between deficient mutS and

MDR.

2.2 Materials and Methods

2.2.1 Materials

2.2.1.1 Raw Data

For the Ford et al., 2020 study, we performed a search inclusive for both E. coli

and Shigella on October 08, 2018 in the NCBI PDIB [5]. The search returned

29,255 isolates, viewable as a table from the NCBI PDIB, which I downloaded as

a tab-separated value (.tsv) file. This file (hereafter, the metadata file) contains

the identifying information for each isolate, as well as many types of non-genomic

information associated with the uploaded sequences (region, source, sequencing plat-

form, etc.). At time of publication, an explanation of the file contents is found at

https://www.ncbi.nlm.nih.gov/pathogens/pathogens_help/#data-fields [Internet]. The

https://www.ncbi.nlm.nih.gov/pathogens/pathogens_help/#data-fields
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file contains a column of sequence accession numbers, which match GenBank and Ref-

Seq records.

In this manuscript, I use the sole term E. coli to identify these isolates, replicating

the organizational scheme employed by NCBI Pathogen Detection. To reduce the

total number of isolates and increase confidence in the conclusions of this dissertation,

I filtered the accession numbers from the .tsv metadata file using custom scripts

written in the Python language [99] distributed by Anaconda version 4.11.0 [100] to

identify E. coli isolates (NCBI:txid562 found in column species_taxid) assembled to

the Complete Genome or Chromosome designation levels defined by GenBank, thus

separating out contigs and scaffolds that represent incomplete or partial genomes.

This filtering resulted in 911 RefSeq accession numbers of E. coli with assembled

WGS (schema GCF_#########). I used the accession numbers to download

the WGS files in FASTA format from the NCBI FTP site via the UNC Charlotte Data

Transfer Node (DTN). While I indicated all 911 accessions for download, several server

requests failed for a variety of reasons, leaving 875 assembled, RefSeq-hosted, E. coli

WGS FASTA files. I stored these data files on the UNC Charlotte High-Performance

Computing (HPC) cluster. Further information on hardware specifications, Anaconda

environments, and detailed program versions may be found in the Appendices. Code

is available upon request.

2.2.1.2 Processed Data Set

In summary, I identified a subset of data from our earlier study, Ford et al., 2020

[5], involving about 29,255 isolates of Escherichia coli and Shigella accessed from the

NCBI PDIB on October 08, 2018. I subset that data for my investigation according

to the following selection criteria:

• Sequences of Escherichia coli marked by NCBI:txid562.

• Sequences assigned to the two highest levels of assembly (Complete Genome
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and Chromosome ) recognized by the NCBI.

• Sequences have a RefSeq identifier (schema: GCF_#########).

The application of these criteria resulted in 911 candidate RefSeq accession identifiers

within the Ford et al., 2020 [5] data set. I downloaded the available whole genome

sequences for the isolates to the UNC Charlotte high performance computing (HPC)

cluster via the NCBI FTP site using the RefSeq accession identifiers, resulting in 875

successfully completed downloads. I took the antimicrobial resistance properties of

these successfully downloaded isolates from the table we gathered in Ford et al., 2020

[5] from the NCBI PDIB.

2.2.2 Methods

2.2.2.1 Core Genome Calculation and Phylogenetic Tree

Comparison of WGS information requires annotated, quality-controlled, and aligned

data. I quality-controlled the 875 successfully downloaded sequences with the pro-

gram CheckM version 1.2.1 [101, 102, 103, 104] to reduce contamination of the data

set with non-E. coli genetic sequences. I used the program CheckM version 1.2.1

[101, 102, 81, 104] to quality control the downloaded whole genome sequences for

both completeness and contamination. I discarded sequences with less than 99.0%

(exclusive) completeness OR (logical) greater than 1.0% (exclusive) contamination, as

unlikely to represent high-quality E. coli whole genome sequences. Implementation

of CheckM led to a final data set of 817 E. coli whole genome sequences, which I

passed to the program Prokka version 1.12 [105] for de novo gene annotation.

After Prokka annotation, I employed the program Roary version 3.12.0 [106] to

identify the pangenome of the E. coli isolates. The Roary program calculates a core

genome, a set of genes where each gene is found in greater than or equal to 99%

of the sequences passed as input [106]. Roary creates an alignment file for the core

genome, based on a given set of annotations from Prokka [106, 105]. I passed the core
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genome alignment file created by Roary to the RAxML version 8.2.12 [107] program

to generate a maximum likelihood phylogenetic tree. Maximum likelihood meth-

ods produce unrooted phylogenies [107], so I used the program Gotree version 0.4.3

[108] to root the RAxML output. I rooted the RAxML tree on the RefSeq sequence

GCF_003287245 (NCBI PD accession number PDT000343334.1, also GenBank ac-

cession GCA_003287245.1) chosen by Ford et al., 2020 [5] as representative of an

ancestral E. coli.

2.2.2.2 Identifying MDR from AMR

The investigation proposed here requires the binning or characterization of AMR

phenotypes into a limited number of classes for both phylogenetic and machine learn-

ing analyses. I explain these analyses in more detail in their corresponding chapters.

The NCBI Pathogen Detection database records the AMR genes associated with an

isolate under the AMR_phenotype column in the .tsv metadata file. While many of

the isolates are not clinically tested to determine levels of resistance, the presence

of an AMR gene within Enterobacteriaceae genomes equates to the existence of a

resistance phenotype [8]. I used custom scripts in the Anaconda version 4.11.0 [100]

distribution of Python 3, versions 3.9 and 3.10, [99] to parse the metadata file and

identify families of AMR genes associated with each isolate, often employing code from

Biopython [109]. I grouped individual AMR genes by the three-letter prefix of each

gene name. I referenced the Comprehensive Antibiotic Resistance Database (CARD)

[110] to identify the antimicrobial compounds that a three-letter family group resists.

Upon further analysis, I noted the presence of the bla or beta-lactamase AMR

family genes in nearly every isolate. To maintain conservative estimates of both AMR

and MDR, I therefore excluded the bla family of AMR genes from considerations

of resistance. I then grouped these families into representative AMR phenotypes

commonly tested for by CDC NARMS under CLSI guidelines [23]. I assigned each

isolate binary labels for MDR (1 for resistant to three or more drug classes exclusive
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Table 2.1: Examples of the resistance categories and annotated resistance genes
present in the E. coli data set.

Resistance Category 3 Letter Resistance Gene Prefix
aminoglycosides aac, aad, ant, aph, arm, rmt
beta-lactam combination agents bla
cephems abc
folate pathway antagonists dfr, sul
macrolides ere, erm, mef, mph, msr
nucleosides sat
penicillins amp
phenicols cat, flo
quinolones qep
tetracyclines tet
others arr, ble, cml, fos, lnu, mcr, oqx, qac

of beta-lactam antibiotics, 0 for not resistant to three or more drug classes exclusive of

beta-lactam antibiotics) and AMR. In this data set of 817 E. coli , I found 546 isolates

(66.8%) without MDR (trait label 0) and 271 isolates (33.2%) with MDR (trait label

1). I used these MDR phenotype characters as input to map the progression of MDR

on a phylogenetic tree, here, in Chapter 2, and modified them into the predicted

labels for supervised machine learning analysis in Chapter 3.

2.2.2.3 Trait Characterization - MDR

I created a binary character matrix to represent presence or absence of the MDR

phenotype by employing the CDC definition of MDR as microbial resistance to three

or more antibiotic classes [74]. I identified families of antimicrobial resistance genes

by the 3-letter prefix for all gene names found in the AMR_phenotype column of

the NCBI PDIB table (see Table 2.1). I assigned gene families to a single, exclu-

sive antimicrobial class by manually cross-referencing the list of CLSI compounds

screened by NARMS [23] with information from the Comprehensive Antibiotic Re-

sistance Database (CARD) to arrive at these assignments. I assigned an isolate with

less than three (3) classes of antimicrobial compounds a 0 (absence) in the MDR

character matrix, while in the positive case (presence of MDR) I assigned a 1. The
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final MDR character matrix has dimensions 817 x 1, representing the binary state of

the MDR character for each isolate.

2.2.2.4 Trait Characterization - MutS

The question of mutS trait characterization is more complex. Roary can perform

context-dependent paralogous splits, but for this inquiry, I did not enable that func-

tionality [106]. I kept paralogous genes together in order to simplify the analysis:

focusing solely on the MutS sequences, instead of potential controller regions up- and

downstream of the annotated gene. I used helper scripts provided by the Microbial

Genomics Lab at the Center for Bioinformatics and Integrative Biology [111] to or-

ganize an SQLite database of annotated chromosome references and generate a MutS

multiFASTA file.

For clarity, I counted all three of the mutS, mutS_1, and mutS_2 gene annotations

from Prokka and Roary as potential variants of the mutS gene. This dissertation refers

to that collective grouping as mutS. To identify the type of data for the mutS trait, I

accessed the SQL database to extract the sequences of all annotated mutS genes into

a single aligned multiFASTA file. I observed a mutS gene in 816 of the 817 isolates,

so a binary character indicating deficient or functional mutS by LeClerc’s definition

was not be useful. To confirm if the observed incidence of hypermutators in my data

set matched the expected hypermutator prevalence of 1% [79, 37], I performed a

Chi-Square Goodness of Fit Test [112] at 0.05 p-value level of statistical significance.

To prepare for the possibility that the observed incidence of hypermutator mutS did

not match the theoretical distribution, I translated the mutS nucleic sequences into

protein space and aligned them again using MAFFT version 7.273 [113], resulting in

an aligned protein multiFASTA file. I identified variant positions in this MutS protein

multiFASTA file using the program snp-sites version 2.5.1 [114]. Out of 853 total

amino acid (AA) positions for E. coli MutS, I located 141 variant sites. I simplified

this categorical, protein space data to a binary state by developing a binary character
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matrix to represent an isolate’s agreement with the consensus residue at a given

sequence position. A 1 represents an exact match between the residue of an isolate

and the consensus AA residue, while a 0 represents the presence of any other residue

besides that found in the consensus sequence at the specified position. I allowed

the consensus sequence to include missing residues, to account for potential cases of

extended or truncated protein sequences in the variant positions. The final character

matrix has dimensions 816 x 141, representing agreement (1) or disagreement (0) with

the consensus sequence for each isolate at 141 positions with varying residues in the

MutS protein. Depending on the results of the Chi-Square Goodness of Fit Test, I

could remove a row from the MDR trait, resulting in a 816 x 1 matrix to match the

MutS trait.

2.2.2.5 Phylogenetic Comparative Methods

I imported the phylogenetic tree to Mesquite, version 3.70 (build 940), [115] and

mapped binary character matrices representing the MDR and mutS traits for each

isolate, resulting in a broad but shallow phylogeny that was difficult to adequately

visualize. To arrive at a more quantitative result, I also analyzed the independent evo-

lution between the binary MDR character and all 141 MutS characters using Pagel’s

1994 algorithm [116]. I chose Revell’s implementation of the algorithm included with

the package phytools version 1.2 [117] written in R version 4.2.2 [118]. This imple-

mentation enabled me to compare four models at each of the 141 positions: complete

independence, MutS dependent on MDR, MDR dependent on MutS, and interdepen-

dence. I assessed the relative strength of each of the four models at each position

using the Akaike information criterion (AIC).
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2.3 Results

2.3.1 No Evidence of mutS Sequences Described by LeClerc et al., 1996 as

Hypermutators

I found a mutS sequence in 816 of the 817 isolates in this data set, with the

exception of isolate GCF_002843685. Sequences uploaded to the NCBI are auto-

matically annotated using the Prokaryotic Genome Annotation Pipeline (PGAP)

[119, 120, 121], so I compared the online NCBI record for GCF_002846385 to the

Prokka and Roary results. Upon investigation of GCF_002843685 on the GenBank

website, the annotation of the MutS protein derives from the relative location of that

fragment of DNA [122]. The nucleic sequence data is incomplete (see Figure 2.1,

resulting in a DNA fragment too short for recognition by the program parameters I

passed to Prokka and Roary. The fragment was also much too short to match with

the criteria noted by LeClerc (significant large deletion of 212 nucleotide base pairs

at the 3’ end of the protein) [37].

The possibility existed for the GCF_001485455 isolate to represent a substantial

deletion of mutS, potentially similar to LeClerc’s definition of a defective MutS pro-

tein. I performed a Chi-Square Goodness of Fit Test to determine if the observed

incidence of hypermutators in my data set matched the expected hypermutator preva-

lence of 1% noted in literature by LeClerc et al., 1996 [37] and others [79]. The data

matches the assumptions (counts, exclusivity, independence) of the Chi-Square Test

[112], including the expected count of 8 hypermutator mutS ( 1% * 817 = 8.17). I

calculated the results of the test as a χ2 = 6.19, df = 1, p = 0.013. The result is sig-

nificant at p < .05 with 1 degree of freedom, leading me to reject the null hypothesis

of similar distributions. Instead, my observations of potential mutS hypermutator

phenotypes are not drawn from the expected distribution of 1% hypermutator inci-

dence.

The missing mutS annotation for GCF_002846385 could result from a combination
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Figure 2.1: Screen capture (Escherichia coli str. K-12 substr. MG...) of NCBI
Assembly record annotations for MutS protein in RefSeq isolate GCF_002846385
(GenBank: CP025268.1; Assembly: GCA_002846385; BioProject: PRJNA421841).

of many upstream potential error sources: collection methodology, sample contami-

nation, preparation techniques, or sequencing issues. All other isolates contained a

mutS sequence of roughly the correct length (8̃53 AA). Therefore to maintain con-

fidence in my analysis, I pruned the GCF_002846385 isolate from the phylogenetic

tree and excluded it from the binary MDR character matrix when mapping.

Another isolate, GCF_001485455, showed a large number of deletions, but I ob-

served that all the deletions occurred only in the previously noted 141 variant AA

sites. As such, I observed no evidence of the specific 221 bp deletion from the 3’

end of mutS described by LeClerc et al., 1996 [37]. I identified no long contiguous

deletions, as the remaining 816 isolates with annotated mutS sequences contained
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Table 2.2: Chi-square test for goodness of fit expressing the observed (Obs.), expected
(Exp.), Difference (Diff.), square of difference (Diff. Sq.), and square of difference
divided by the expected fraction (Diff. Sq. / Exp. Fr.) values rounded to two
decimal places for hypermutators and not hypermutators in this population of E.
coli.

Obs. Exp. Diff. Diff. Sq. Diff. Sq. /
Exp. Fr.

Hyper. 1 8 -7.00 49.00 6.12
Not Hyper. 816 809 7.00 49.00 0.06
Sum 817 817 6.19

relatively few gaps when compared to overall length. I concluded that none of the

mutS genes in this data set are hypermutators as defined by LeClerc et al., 1996

[37], hypermutator phenotype E. coli due to defective mutS genes caused by large

deletions.

2.3.2 Low Variation in Mutator S Component Amino Acids

As the hypermutator trait could not be represented by a deficient mutS binary

state, I made a choice to reconsider the hypermutation phenotype in light of MutS

protein sequence variants as opposed to the complete deficiency definition used by

LeClerc et al., 1996 [37]. The MutS AA sequences only varied at 141 of the 853

possible locations, with the most common sites of variance found at positions seen

in Figure 2.2. Figure 2.3 shows the number of amino acid polymorphisms per MutS

variant. Figure 2.4 and Figure 2.5 deomonstrate that MutS variants occur with

low prevalence, matching the expectation of a highly conserved sequence given the

important role of MutS in DNA mismatch repair. I found no deficient MutS sequences

matching LeClerc’s definition, nor did I identify any missing mutS annotations that

I could not attribute to potential sequencing error. All annotated MutS proteins

displayed little variation in terms of the protein product size, the location of variant

residues, or the prevalence of variant residues. Therefore, I chose to test each of the

141 variant AA sites of the MutS protein for correlation with the MDR binary trait.
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Figure 2.2: Displays the counts of disagreement from the consensus sequence residue
at each amino acid position (pos_###) in the MutS protein.

2.3.3 MDR Correlates with Only a Few Variant Amino Acid Positions

I implemented Pagel’s 1994 [116] algorithm using the fitPagel function available

from the package phytools version 1.2 [117] written in the R language version 4.2.2

[118]. With fitPagel, I calculated the phylogenetic correlation between each of the

141 variant MutS positions and the MDR trait according to four hypotheses: inde-

pendence, X dependent on Y, Y dependent on X, and interdependence. I ran 141

iterations of the four hypothesis tests, assigning X to for the variant position and Y al-

ways reserved solely for MDR. From the weighted Akaike information criterion (AIC)

values calculated for all 141 variant positions, the fitPagel results only support the

Y (MDR) dependent on X (variant positions) model at 3 positions (see Table 2.3).

At all other positions, the independent model of character evolution is supported (see

Supplementary Data in the Appendices).

I observed the first location at position 7, found in domain I (2-115) [123]. MutS
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Figure 2.3: Sorted bar chart (from least to greatest) of counts of disagreement from
the consensus MutS protein sequence for each E. coli isolate.

domain I, also referred to as the mismatch-binding domain, is globular in structure and

is responsible for DNA binding interactions [123, 124]. The weight of the dependent

model at position 7 is 0.69. Consensus from these isolates at position 7 indicates a

phenylalanine residue, with variants of either leucine or missing data.

The second is found at position 140, with consensus at 140 for serine and variants

composed of cysteine or missing data. Residue 140 is part of domain II (116-266),

or the connector domain, an internal, mixed region comprised of alpha helices and

beta sheets, linking the DNA binding domain I with the MutS core domain III (267-

443 and 504-567) [123, 124]. As calculated by fitPagel, the weighted AIC of the

dependent model at position 140 is 0.73.

Finally, the third location occurs at position 804, adjacent to the C-terminal side

of the helix-turn-helix (HTH) motif (from 766-800) where the MutS dimers interact

[123, 124]. The weight of the dependent model at position 804 is 0.46, with consensus

for residues of alanine, varying with aspartic acid, threonine or incomplete data. The
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Figure 2.4: Distribution of counted disagreements from the MutS protein consensus
sequence for each isolate.

support for the dependent model at the third location is noticeably weaker than at

the previous two positions (see Table 2.3).

Interestingly, these locations only disagreed with the consensus sequence 16, 11,

and 8 times respectively (compare against Figures 2.2, 2.3, 2.4, and 2.5). The median

value for disagreements per position is 10 with a mean of 10.4 and a standard deviation

of 2.8. Position 7 lies within two standard deviations of the mean, while positions

140 and 804 are within one standard deviation. Of the 3 positions correlated with

binary MDR, none differed significantly from the mean for total disagreements.

Table 2.3: Selected residues (Res.) with Independent (Ind.) and Dependent (Dep.)
model AIC values, both raw and weighted (Wt.), as calculated by fitPagel. Values
represent greatest weighted AIC support for the "Dependent Y" model of evolution,
where the MutS residue position depends on the MDR binary trait.

Res. Ind.
AIC (raw)

Ind.
AIC (%)

Dep. X
AIC (raw)

Dep. X
AIC (%)

Dep. Y
AIC (raw)

Dep. Y
AIC (%)

Dep. Both
AIC (raw)

Dep. Both
AIC (%)

Wt. AIC
(sum %)

7 983.221 0.153 998.104 0.000 980.193 0.695 983.233 0.152 1.000
140 1048.579 0.000 913.057 0.165 910.078 0.732 913.992 0.103 1.000
804 957.586 0.324 959.452 0.128 956.863 0.465 960.312 0.083 1.000
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Figure 2.5: Histogram representing number of isolates in binned (2) counts of dis-
agreement from the consensus sequence MutS residue.

2.4 Discussion

2.4.1 MDR Does not Require a LeClercian Hypermutator

I found no truncated mutS in this dataset, however I observed many examples of

MDR (271 isolates). As I found no evidence for the existence of a hypermutator as

defined by LeClerc et al., 1996 [37], therefore, the LeClercian hypermutator phenotype

mutS could not be associated with MDR. This high quality, high confidence, high

completeness E. coli data set consists of hundreds of isolates drawn from laboratory,

health care, and environmental settings. These isolates represent E. coli exposed to

a broader set of real world conditions than those bacteria kept in a laboratory.

As investigative techniques improved over the past 25 years, it is possible that

LeClerc was constrained by the tools of the time. LeClerc’s identification of the 221

bp deletion could be due to experimental methodology. They identified the deletion

with long polymerase chain reaction (PCR) analysis and sequencing in only a single
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one of the four (4) E. coli mutator strains [37]. The long PCR analysis failed to

amplify any mutS products in the other mutators [37]. To investigate the three (3)

remaining mutator strains, the investigators opted to employ low-stringency oligonu-

cleotide probes. “Because probe results that were positive with nonmutator O157:H7

and O55:H7 strains were negative with these [the remaining three] E. coli mutators,

we conclude that they carry extensive deletions, affecting not only mutS but also sur-

rounding genes.” [37]. This assumption and slight change in methodology might have

introduced errors into the analysis. Failed amplification of PCR products in three of

four attempts could result from any number of scenarios, including sequencing error,

primer failure, temperature controls, buffer inconsistencies, etc.

Tool choice and methodological technique influence experimental results. For my

investigation, I specifically set high thresholds for annotation confidence, sequence

completeness, sample contamination, and data quality. I used these parameters dur-

ing my annotation process, while verifying discrepancies against the NCBI PGAP

process. These thresholds identified mutS in all isolates with the single exception

of GCF_002843685 (see Figure 2.1). I found no evidence for significant deletions to

mutS that could not result from sequencing error. While E. coli hypermutation phe-

notypes are well-documented experimentally and in literature [60, 125, 37, 126, 127],

I could not observe LeClerc’s definition of a deficient mutS gene. As I could not verify

the presence of deficient mutS in my data, I have to rule out LeClerc’s definition of

hypermutation when determining the causes of the MDR phenotypes that do exist in

these isolates. Without any observed significant deletions in mutS matching LeClerc’s

definitions and given the significant, high-confidence results of the chi-square good-

ness of fit test, I was unable to observe the phenomena described by LeClerc and

therefore cannot reject my null hypothesis: there is no correlation between significant

mutS deletions and MDR phenotypes.
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2.4.2 Limited Variation in MutS Protein Does not Support LeClercian

Hypermutation

I compensated for the absence of deleterious mutS sequences by investigating all

observed MutS protein variants. The 816 MutS annotated in my dataset were highly

conserved. I found only 141 variant amino acid sites in the 853 residue protein; 712

positions or 83.5% of the total residues in the observed MutS protein are invariant (see

Figure 2.2). The variation in disagreement from the consensus sequence is normally

distributed (see Figure 2.4). Most isolates also differed from the consensus sequence

by at most roughly 11 residues from the possible 141 variant positions (see Figures 2.3,

and 2.5), meaning that across the entire length of the 853 sites, the observed MutS

differed from each other in 1.3% of total residues. This lack of variation is further

seen by the outcome of the models calculated by fitPagel [117], where evolution of

MDR depends on three positions in MutS.

For those three identified positions, 7, 140, and 804, I found no literature suggest-

ing that those residues are known to be associated with hypermutation. A literature

search noted substitution mutations at Val352Ile and Met628Leu [86] in E. coli MutS

or Val246Ala and Val421Phe [128] in Salmonella MutS (corresponding to E. coli

MutS Val244 and Val419) have been linked with hypermutation, although the au-

thors of those studies employed much broader definitions of hypermutation than the

strict sense used in this dissertation. Of those substitution mutations, I only observed

Val244Ala in my data, but the fitPagel results did not support a dependent evo-

lutionary relationship between position 244 and MDR. The AA at positions 7, 140,

and 804 in E. coli MutS are novel findings that link MutS and MDR, but not under

LeClerc’s definition of hypermutation as explored in this investigation. Instead, these

residues could indicate locations within protein MutS responsible for weak mutator

activity [129, 85, 87, 130].

In combination, the limited variation in MutS and the largely independent evo-
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lution between the binary characters of MDR and MutS variants suggest that the

structurally derived hypermutation put forward by LeClerc does not exist in these

data. By redefining the MutS character from the annotated gene space to the protein

space, I found little evidence that supports rejecting the null hypothesis of no corre-

lation. Only three specific variant MutS residues correlate with the MDR phenotype,

so in only those cases, could I reject the null hypothesis. Instead, the models support

a largely independent evolutionary relationship between the characters for deficient

mismatch repair and MDR.

2.4.3 A New Question - What Predicts MDR Phenotype Bacteria?

In light of my research, I find it unlikely that the specific hypermutable phenotype

E. coli defined by LeClerc (as isolates whose MutS protein contains large deletions)

exists in the global survey data set I collected from GenomeTrakr. I did not observe a

repair deficient hypermutable phenotype bacterium (defined as large deletions within

mutS by LeClerc et al., 1996 [37]) in my data, so any elevated mutation rates in

these samples cannot be the result of deficient MutS. Some confusion in research and

literature results from combining these two separate definitions for hypermutation: 1)

LeClerc’s deficient MutS, and 2) an observed increase in mutation rates. For example,

some researchers demonstrate that increased mutation rates result from inducible,

reversible phenotypes [79, 84, 131, 132, 133, 134], often referring to the phenomenon

as hypermutation. While a redefinition of the term, this inducible hypermutator

phenotype with increased rates of mutation is likely due in part to the increased

fitness burden carried by repair deficient mutator strains [80, 135, 136, 137, 138], as

an induced phenotype only experiences a temporarily reduced fitness.

Hypermutation in the broader, increased mutation sense drives the development

of novel mutations that impart AMR phenotypes, especially given the increasing evi-

dence for induced, transient hypermutable states [79, 84, 131, 132, 133, 134]. This in-

ducible, transient phenotype was also discussed by LeClerc, “. . . the ultimate pathogen
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would possess an elevated mutation rate that is transient (or conditional), providing

genetic variation during the first few hours when the pathogen must survive, invade,

and colonize its host.” [37]. While this conjecture is noteworthy, LeClerc’s published

definition of hypermutation was structural, explicitly focused on a significant deletion

resulting in deficient MutS, which I did not observe in my data.

In addition to the lack of an observed, truncated mutS to confer a persistent hy-

permutable phenotype, my models supported independent evolution between amino

acid variant positions in MutS and the MDR phenotype. This evidence suggests that

there is little to no correlation between the mutS gene and the MDR phenotype. Only

three positions (7, 140, 804) indicated support for a dependent model between those

residues and MDR. These three locations may indicate a MutS amino acid phenotype

that more readily enters a transient hypermutable state in the broader sense, or those

variant sites could suggest a genetic lineage that colonizes environments often exposed

to antimicrobial compounds. Future work could ascertain the evolutionary lineage of

those three sites and quantify the functional impact of amino acid base substitutions

at those locations.

The investigation of this chapter set out to verify the work done by LeClerc et

al., 1996. In 816 E. coli isolates, I could not identify a mutS sequence matching

the hypermutator defined by LeClerc. In addition, when I chose to more flexibly

define the hypermutator phenotype from significant mutS deletion to variable MutS

AA positions, I found strong support for independent models of binary character

evolution. I was unable to verify LeClerc’s claims, and therefore failed to reject the

null hypothesis of independent evolution between mutS and MDR. The phenomenon

of hypermutable phenotypes is best considered separate from the growing problem

of MDR. The results of my inquiry lead to the open question: what then are the

genetic predictors of MDR phenotype E. coli?, which I explore in a subsequent

chapter.



CHAPTER 3: CORRELATIONAL ASSESSMENT OF E. COLI PANGENOME

FOR PREDICTING MDR PHENOTYPES

3.1 Introduction

Within academia and industry, an ongoing push exists for the widespread adoption

of machine learning and artificially intelligent systems [139, 140, 141, 142, 143]. Ma-

chine learning in this context is broadly defined as the ability of computers to learn

information without explicit programming [144, 145]. The use cases for machine

learning involve problems without explicit solutions, that require large rule sets, or

that routinely encounter novel data [144]. Such problems are becoming commonplace

for computational biologists.

3.1.1 Supervised Machine Learning

Supervised machine learning, a subtype of artificial intelligence, approximates solu-

tions to intractable problems with an associated knowledge base [146]. For example a

potential problem could be: what combination of genetic markers and health history

data predispose an individual to developing cancer? Supervised machine learning

trains algorithms to predict the outputs for a given set of inputs [147]. When those

outputs represent exclusive label values, the outputs are referred to as classes and the

involved algorithms are called classifiers [147]. These classifiers learn a defined set of

inputs from a training data set to generate useful output labels [148, 146, 147]. The

two inputs required for training supervised machine learning classifiers take the form

of matrices: a feature matrix and a label matrix.

For the feature matrix, each row is a sample, and each column denotes a feature.

Features represent specific measurable properties. The simplest label matrix contains
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the same number of rows (samples) as the feature matrix, but only a single binary

column. This column notes the labeled class value for a given sample. Every sample

in the full data set has both measured features and a labeled class. Sampling of both

the feature matrix and the label matrix separates the initial data into training and

testing data sets. During training, the classifier associates certain sets of features

or specific feature values with known labels. Those features or values which most

influence the model towards correct labeling are the best predictors.

Once trained, the researcher assesses the classifier using the testing data subset

to determine accuracy, precision, and recall metrics [148, 149, 150, 146, 147]. The

researcher supplies the trained classifier with the test feature matrix and then tasks

the estimator to predict the correct labels for that data. The researcher compares

the predicted labels against the ground truth of the test label matrix. This iterative

process of training and testing, allows further tuning of the model. Following best

practices, I tested and tuned the model in order to make reproducible predictions

with statistical significance, based on several calculated metrics [149, 150, 151].

3.1.2 Supervised Machine Learning in Computational Biology

Supervised machine learning finds use within computational biology to predict

the shape of proteins, locate protein domains, anticipate molecular interactions, and

surveil food safety data [148, 152, 146, 147]. The label matrix in these examples

is often drug interaction information, protein characteristics, associated traits, or

labeled phenotypes. The feature matrices for biological data are generally genetic,

often containing nucleic acid, protein, and gene presence or absence information. At

their core, machine learning analyses are applied statistical measures of correlation.

3.1.3 Research Question and Hypothesis

Recent research shows promise for the application of these correlative machine

learning techniques to predict food, zoonotic source, location, and certain aspects
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of AMR from WGS data [152, 153]. These papers are contemporary with the US

FDA’s call for more research into improving predictive models based on WGS data

[57, 8]. Machine learning approaches are of special interest to the FDA for improving

genotype-to-phenotype hypotheses, clarifying outbreak investigations, and identifying

nonsynonymous changes that allow a given pathogenic lineage to contaminate food

[8].

Similar concerns exist for the silent pandemic of AMR proliferation which too

requires improved hypotheses, outbreak tracking, and identification of pathogenic

mutations. With such similarities, the machine learning methods may also inform our

understanding of the progression from individual AMR genes to MDR phenotypes.

The previous inquiry (Chapter 2) resulted in the rejection of deletion of the MutS

gene as correlated with an MDR phenotype, leading to the open question: what are

the genetic predictors of an MDR phenotype E. coli?

To better understand this open question, I selected data from the NCBI PD repos-

itories. I conceptualized the genetic sequence data and character matrices common

to phylogenetic analyses as analogous to the feature and label matrices required for

supervised machine learning. Given the uncertain evolutionary history of the bacte-

rial MDR phenotype, its polygenic cause, and the highly variable E. coli pangenome

exclusive of the core genes, this investigation aims to test an alternate hypothesis for

the MDR phenotype, that genetic patterns other than mutS better explain the devel-

opment of MDR. In keeping with the previous chapter’s focus on hypermutation and

the potential for paralogous variation in mutS to affect MDR, the null hypothesis of

this current investigation asserts that a random forest classifier trained on annotated

E. coli gene features will reveal mutS or its paralog as the best predictor of MDR.
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3.2 Materials and Methods

3.2.1 Materials

I used the same raw E. coli food safety data set analyzed in Chapter 2 and described

in Chapter 1 here. That data subset draws from our earlier study involving 29,255

isolates of Escherichia coli and Shigella accessed from the NCBI PDIB on October

08, 2018 by Ford et al., 2020 [5]. I again chose the following selection criteria:

• Sequences of Escherichia coli identified by NCBI:txid562.

• Sequences from the two highest levels of assembly (designated as Complete

Genome and Chromosome) .

• Sequences have a RefSeq identifier (schema: GCF_#########).

I downloaded available (875) whole genome sequences for the 911 isolates identified

by the criteria from the NCBI FTP site via their associated accession identifiers. I

took the antimicrobial resistance properties of these isolates from the NCBI PDIB

table we downloaded in Ford et al., 2020 [5]. I quality controlled the 875 successfully

downloaded isolates with CheckM [101, 102, 103, 104], to arrive at 817 remaining E.

coli WGS.

As described in Chapter 2, I transformed the data to arrive at the input feature

and label matrices, by engineering the annotated WGS of the isolates and their AMR

phenotypes respectively. I defined the feature matrix with annotations assigned via

Prokka version 1.12 [105]. I employed Roary version 3.12.0 [106] to develop the

pangenome of the 817 sequences to prepare input features. Notably, for the methods

in this third chapter I changed the parameter flags I input to Roary. In Chapter 2,

I simplified the core genome prior to phylogenetic analysis by instructing Roary to

keep paralogous genes together under a single annotation. The supervised machine

learning analysis in this third chapter benefits from an increased number of features
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by splitting paralogous genes, in an attempt to allow some phylogenetically derived

information about mutS paralogs to influence the random forest classifiers. Chapter 2

describes exact methods for arriving at the binary MDR phenotypes. I extended those

methods, as noted below, to create the appropriate label matrices, representing the

binary MDR phylogenetic character as predicted AMR labels for supervised machine

learning. I manually curated the AMR categories for the label matrix, based on

definitions provided by the CDC NARMS [1] and cross-referenced through CARD

[110].

3.2.2 Methods

3.2.2.1 Random Forest Classification

To model the supervised learning, multi label classification problem posed by my

hypothesis, I decided on the random forest classifier [149]. Zhang et al., 2019 [154]

used random forests trained on Salmonella data to successfully predict host species

using WGS data. Deng et al., 2021 [144] suggests the usefulness of random forests for

food safety applications. A random forest is an ensemble model that builds multiple

decision tree classifiers [155]. During the training stage, the decision pathways from

each decision tree are averaged and grouped to estimate the best overall prediction

for the input data [144, 155]. The resulting prediction is indicated by the largest

number of individual decision trees [144, 155].

Decision trees are easily interpreted, as only a single decision pathway exists from

the root node to the final leaf. Random forests represent complex meta estimators,

spreading the decision pathway across multiple decision trees [144, 155]. Despite this

added complexity in interpretation, the random forest has several advantages over the

decision tree. Random forests improve upon the tendency of decision trees to overfit

the data, allowing random forests to outperform decision trees [149, 155], while also

scaling well and handling high-dimensionality data [144, 155]. Given the large size

of my data set, the potential for variation in the number of data input features, and
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the importance of not overfitting, the random forest estimator seems to best fit these

constraints.

To implement my random forest classifier, I used Python 3, versions 3.9 and

3.10, [99] from Anaconda version 4.11.0 [100] and the scikit-learn version 1.1.2 pack-

age [151, 156] for machine learning and data processing by calling the function

sklearn.ensemble.RandomForestClassifier [157]. The code is available upon re-

quest. I tuned the number of decision trees, machine learning bootstraps, sampled

data subsets, and other parameters according to the documentation [156]). Random

forest classifiers require two input matrices, one representing the desired features (pre-

dictor values, derived in this case from annotated genetic sequence information) and

the second representing the predicted labels (in this case phenotypes, such as resis-

tance to aminoglycoside and tetracycline drugs). Detailed information on hardware

specifications, Anaconda environments, and supporting programs may be found in

the Appendices.

3.2.2.2 Feature Matrix

Other research indicated the usefulness of reference-free comparisons for machine

learning [158], so I took a similar approach. For this second inquiry, I chose the

gene_presence_absence.csv file generated by Roary and transformed it to a binary

matrix representation of the annotated genes. Each row in the matrix represents an

isolate, while each column notes the binary presence or absence of a given annotation

for each isolate. I generated Roary visualizations with suggested scripts provided by

Marco Galardini [159].

The Roary analysis process does not map sequences to a reference genome, but

instead aligns genetic sequences of identical annotation [106]. This process effectively

removes sequence context from the annotations, since I made the choice not to split

paralogs in Chapter 2. I was not concerned with this potential loss of information

for the phylogenetic investigation, and I made concessions for the sake of processing
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power and computational time when developing the RAxML tree of 817 highly similar

E. coli isolates with 2916 shared, core genes. For the purposes of this machine learning

inquiry however, I made the choice to allow Roary to split paralogs in order to recover

context dependent information (such as control sequences, accessory genes, or mutS

variation) that affects the development of MDR.

Additionally, I shifted focus from the core genome to genes with lower observed

prevalence in the data. Roary subdivides the pangenome into four sections based on

prevalence thresholds: core (99 - 100% prevalence inclusive both), soft-core (95 - 99%

inclusive left), shell (15 - 95% inclusive left), and cloud (0 - 15% inclusive left) (Page

et al., 2015), as shown in Figure 3.1. A binary input matrix derived from the core

genome is nearly uniform, containing a large majority of cells with a value of 1. In a

similar way, low prevalence data (see Figure 3.2 leads to a sparse matrix with mostly

values of 0. Both of these qualities prove challenging for machine learning analyses,

by causing the classifier to overfit the training data. To circumvent these challenges,

I took the input feature matrix from the central portion of annotations, the majority

of which encompasses the shell and a small portion of the region considered cloud. I

excluded any annotations of greater than 95% or less than 10% prevalence from the

machine learning input. These operations resulted in the creation of an 817 x 5700

binary matrix. Each row is an isolate, and each column represents an annotation

assigned by Prokka and Roary.

Collinearity, commonly found when considering genetic data, poses another chal-

lenge for machine learning. Groups of annotations in my 817 x 5700 data matrix vary

linearly with each other as seen in Figure 3.3. To address the challenge of collinearity,

I calculated Spearman’s rank order correlation coefficient for the matrix to perform

hierarchical clustering [160] using Ward’s method [161] as implemented in the Python

3 library SciPy version 1.9 [162]. Common practice selects a number of new features

from the hierarchical clusters, where both the number of clusters and the number of
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members per cluster are sufficiently large [160]. Based on exploration of the data see

Figure, I chose a value of 66 clusters shown in Figure 3.4 I chose the relative inter-

section of the two curves (at 66 clusters) to maximize both inter- and intra-cluster

information demonstrated in Figure 3.5. This transformation resulted in new fea-

tures, each representing a cluster of collinear annotations. The final input feature

matrix is 817 x 66. Each row is an isolate, while each column is a feature representing

a cluster of hierarchically grouped annotations. I performed all transformations in

such a way as to maximize the explainability of any identified best predictors for each

classifier.

3.2.2.3 Label Matrices

I created the label matrix from a modified version of the MDR binary character

from Chapter 2, basing the MDR binary character on the AMR_genotype column

downloaded in the earlier study, Ford et al., 2020 [5]. However, I made the decision

to modify the MDR binary character matrix from Chapter 2 in preparation for su-

pervised machine learning due to two main concerns. First, many varieties of MDR

phenotypes occur, each composed of different combinations of AMR genes arising

in different lineages in various ways over time [163]. Second, individual AMR genes

behave under genetic capitalism, allowing lineages to arrive at stable AMR genotypes

by gaining more AMR genes than they lose [5]. Both phenomena complicate the

question posed in this chapter, especially due to the first concern noted above. This

specific issue of uncertainty in AMR gene heredity causes significant disagreement

between proponents of hypermutation and HGT as to how a specific gene arrived in

a given lineage. To improve upon the ability of my models to demonstrate what are

the best predictors of MDR, I built upon our work in Ford et al., 2020 [5] and the

investigation of the previous chapter by creating labels more granular than binary

MDR, but less granular than individual genes. (See Figure 3.6.)

To account for these realities, this inquiry treats each category of drug resistance
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separately. With this strategy, the initial multilabel classification problem (i.e., how

to identify, rate, and explain predictors of MDR phenotypes consisting of multiple,

non-exclusive groupings of AMR genes?) is best formalized as a combination of

several binary classifiers. I selected five categories of drug resistance recognized by

CDC NARMS [23] and treated each one as a separate binary classification problem.

This approach improved the explainability of each individual classifier, as each model

identifies only a single type of resistance. I compared these individual models to

identify the genetic predictors of different types of MDR. Overlap between predictors

indicates that an isolate contains the necessary genetic hardware to build towards

multiple types of AMR, and eventually an MDR phenotype. I selected this approach

in order to better understand if multiple genetic (and therefore evolutionary) paths

towards MDR exist.

I designed the five separate binary classification problems to predict genes that

confer resistance to aminoglycosides, folate pathway antagonists, macrolides,

tetracyclines, and others. I reserved the category of others for genes not found

to confer resistance to aminoglycoside, beta-lactam combination agent, cephem, fo-

late pathway antagonist, macrolide, nucleoside, penicillin, phenicol, quinolone, or

tetracycline-based compounds (see Table 2.1). I chose not to train classifiers for

the following resistance categories: cephems, nucleosides, penicillins, phenicols, and

quinolones. Due to their low attributed prevalence (each excluded category is found

in less than 17 of the 817 isolates or < 2.1% of isolates), I excluded these categories

to prevent issues of overfitting when training on small sample sizes for the positive

class, a known problem in supervised machine learning [164, 165].

Notably absent from the list of five is the beta-lactam combination agent category.

Data exploration revealed the presence of at least one gene imparting beta-lactamase

drug resistance in nearly 100% of the isolates. As noted above, a uniform matrix

of nearly all 1 values poses a challenge for machine learning algorithms, so I chose
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to exclude the beta-lactam category. Additionally, the near universal prevalence of

beta-lactam resistance would modify the definition of MDR from >=3 classes of

resistance to >=2 classes of resistance, exclusive of beta-lactam resistance. I avoided

this modification of terms, by choosing only the above five categories of resistance.

The input label matrix for each of the five classification problems is a 817 x 1 matrix,

where each row is an isolate and the column represents the binary presence (1) or

absence (0) of resistance to that category of antimicrobial drug.

3.2.2.4 Subsetting and Sampling Data Matrices

I split the feature and label matrices into training, testing, and validation data

sets using a multilabel stratified shuffle split method [166]. The multilabel stratified

shuffle split ensured proportionate representation (without over or under fitting) from

all predictor variables while also accounting for the proportions of all five binary label

values. I kept the overall data splits consistent using a set seed for the multilabel

stratified splits during the tuning, training, validation, and testing processes.

For this inquiry, the training data set refers to 517 isolates (70% of the data)

used for training each binary classifier. Validation refers to 123 isolates (15% of the

data) used to check the trained classifiers. Testing refers to 123 isolates (15% of the

data) held out from the hyperparameter tuning, model training, and model validation

processes in order to reserve a blinded sample for final hypothesis testing.

I used the combined training and validation sets (640 isolates or 85% of total

data) to tune the hyperparameters of each classifier. When calculating errors during

the hyperparameter tuning stage, I only employed the validation set. During model

training, I supplied only the training set to the classifiers. To validate the models

produced by the training set, I compared the validation set without resampling, by

calculating the permutation importance of each input feature as scored by the Area

Under the Receiver Operating Characteristic Curve (ROC AUC). Finally, I used

the testing data (without resampling) to analyze the trained classifiers as to their
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predictor effectiveness.

Generally, machine learning classification inputs are referred to as balanced or im-

balanced data, with respect to the ratios between the positive and negative classes. In

my data, there are more instances of non-MDR (negative) than MDR (positive) iso-

lates, so my data is imbalanced. Base scikit-learn functions work best with balanced

data [167, 156], so I looked at the sampling strategies provided by the imbalanced-

learn library [167]. I selected a strategy of oversampling the minority class while train-

ing the random forest classifiers, by implementing the RandomOverSampler function

within imbalanced-learn [167]. I chose this oversampling strategy from a head-to-head

comparison of SMOTE [168], SMOTEENN [169], SMOTETomek [170], random over

sampling [171], and random under sampling methods by the metric of highest ROC

AUC score (see Figure 3.7).

3.2.2.5 Determining Feature Importance

I used permutation importance [149, 151] to identify the best predictor values for

each trained classifier. To measure permutation importance, the algorithm randomly

permuted every input feature to ascertain the difference in predictor score (ROC

AUC) from varying that feature [149]. Larger values for permutation importance

indicate decreased model score when disturbing a given feature [149]. The greater the

permutation importance, the more necessary a feature to the classifier when arriving

at a precise and accurate prediction score.

For comparison, I decided to compare the features on both correlation and impor-

tance. I calculated chi-square values for each feature to assess correlation, as well

as the impurity-based Gini feature importances [150] to approximate feature impor-

tance in an alternate manner from the explicit, expensive calculation of permutation

importance. In this way, I applied multiple metrics to distinguish between commonly

occurring features and features useful to the estimators. As each feature represents

a collection of hierarchically clustered, collinear, annotated genes, the resulting per-
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mutation importance values indicate groups of annotated genes whose presence or

absence best predict resistance to the five classes of antimicrobial drugs.

3.3 Results

To name the clusters of annotated genes, I selected one constituent annotation from

each cluster. Named clusters are shown with bold italics to remain consistent with

the representation of classifier models (bold) and gene annotations (italics) in this

manuscript. The component annotations within each cluster remain the same across

all five tested AMR resistance classes. As seen in Table 3.1, cluster yfjQ_4 is the

best predictor for the aminoglycosides, folate pathway antagonists, tetracy-

clines, and others machine learning classifiers. The cluster ydaM best predicts

resistance to macrolides.

Table 3.1: Demonstrates the top five ranked best predictors per classifier: amino-
glycosides (Amino.), folate pathway antagonists (Fol. Path. Antagonists),
macrolides (Macro.), tetracyclines (Tetra.), and others (Others). While a few
of the classifiers share some best predictors, the rank order of those predictors dif-
fers. Only twelve sets of genes are needed to describe the top five ranks for all five
resistance classifiers.

0-based
Rank Amino. Fol. Path.

Antagonists Macro. Tetra. Others

0 yfjQ_4 yfjQ_4 ydaM yfjQ_4 yfjQ_4
1 cbeA_1 yaiP ybhC mhpC gltJ
2 hybE group_6154 yfjQ_4 cbeA_1 ybhC
3 group_6154 cbeA_1 yihT ligB ydaM
4 yggT hybE cbeA_1 gltJ cbeA_1

Permutation importance demonstrates the relative usefulness of each cluster when

predicting each class of resistance. As seen in Figures 3.8, 3.9, 3.10, 3.11, and 3.12,

the training (upper) and validation (lower) show relatively similar rankings by per-

mutation importance for the feature clusters in each model. Both changes in rank

and the increased variation represented by the whiskers demonstrate the effect of

smaller sample sizes on the permutation calculations (517 samples in training and
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123 samples in validation sets). Further discussion of results focuses on the training

set, due to its larger size and lowered variation. While there are similarities in the

top twenty best predictive clusters across the models, Table 3.1 shows how the top

five best predictive clusters for each model differ from each another.

Figure 3.13 shows the prediction metrics. At left, observe the precision recall curves,

each model colored the same as the respective Figures 3.8, 3.9, 3.10, 3.11, and 3.12.

I report the average precisions, the highest of 0.80 for others, the lowest of 0.62 for

tetracyclines. The precision recall curve displays the change in precision between

precision (Y axis) and recall (X axis). At right, view the ROC AUC figure, where

again, estimator colors are kept consistent across the graphics. The highest AUC is

0.90 for both macrolides and others, with the lowest as 0.79 for tetracyclines.

The bold blue line represents the mean AUC across all classifiers as 0.87 +/- 0.04.

This value describes the ability of the five combined binary classifiers to predict a va-

riety of MDR phenotypes with high accuracy. The shaded gray region represents +/-

1 standard deviation from the mean. As seen in Figure 3.13, most of the ROC curves

remain within a single standard deviation of the mean, with the major exception of

tetracyclines.

When comparing the PR and ROC AUC, the best performing model is for predict-

ing the resistance category others, as indicated by the greatest AUC and AP values

(AUC = 0.90 & AP = 0.80). The next best performing models are aminoglycosides

(AUC = 0.87 & AP = 0.77), folate pathway antagonists (AUC = 0.87 & AP =

0.75), and macrolides (AUC = 0.90 & AP = 0.74). Tetracyclines stand out as the

most poorly performing model (AUC = 0.79 & AP = 0.62). Further evidence is seen

in the normalized confusion matrices of Figure 3.7.

Interestingly, when I compared features by their Gini importance and Chi-square

correlation values, when sorted by descending mean importance, features with high

mean importance did not exhibit a similar pattern in χ2 values (see Figure 3.14).



43

The trained models do not rely solely on correlation to achieve accurate predictions.

Table 3.2 displays the contents of the highly important feature cluster yfjQ_4 .

Table 3.2: Includes all component annotations from Roary found within cluster
yfjQ_4 , which ranked as most important for the aminoglycosides, folate path-
way antagonists, tetracyclines, and others models.

Gene (Roary) Annotation (Roary)
group_16177 hypothetical protein
group_10103 hypothetical protein
group_10424 hypothetical protein
group_12760 hypothetical protein
group_7878 hypothetical protein
group_19502 hypothetical protein
group_4098 hypothetical protein
group_24638 hypothetical protein
group_9019 hypothetical protein
group_11161 hypothetical protein
group_5897 hypothetical protein
group_4701 hypothetical protein
group_9337 hypothetical protein
group_17382 hypothetical protein
group_2543 hypothetical protein
group_4818 hypothetical protein
umuC_2 SOS mutagenesis and repair
traM Relaxosome protein TraM
traY Relaxosome protein TraY
group_2526 hypothetical protein
ccdB hypothetical protein
traA Pilin
yfjQ_4 CP4-57 prophage; predicted protein
group_5903 hypothetical protein

3.4 Discussion

After the results of Chapter 2, I saw little to no correlation between the evolution

of characters for mutS and the MDR phenotype. To further understand this result, I

investigated the question of MDR phenotype development from a supervised machine

learning standpoint. The results of this investigation falsify the null hypothesis that

a random forest classifier trained solely on the presence or absence of annotated E.
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coli gene features indicates mutS as the best predictor of MDR. Instead, I observed

other clusters of annotated genes that best predict multilabel MDR phenotypes with

accuracy.

In this analysis, I found no evidence that the presence of mutS paralogous genes

improves the models’ ability to predict MDR phenotypes. The most important fea-

ture, cluster yfjQ_4 , to the random forest estimator models did not contain mutS.

I found no mutS genes in clusters with high feature importance, by the calculated

metrics of chi square score, Gini impurity-based feature importance, or permutation

importance. In contrast to the phylogenetic analysis in Chapter 2, this analysis specif-

ically ignored the core genome, leading me to the conclusion that the core genome is

less useful than other portions of the pangenome when investigating the predictors of

the polygenic MDR phenotype.

Instead, as seen in Figure 3.14, the bars labeled ybaQ represent the two paralogous

mutS genes identified by Roary. Both genes occupy the same cluster, with a near 0

chi-square score and less than 0.01 mean importance (Gini impurity). The cluster

ybaQ is not found among the best predictors for any of the trained machine learning

classifiers. These results further support the conclusions of Chapter 2: there is no

evidence for a correlation between mutS and MDR.

In the 1996 paper, LeClerc suggested the theory of hypermutator phenotypes in

opposition (“as a counter to the current paradigm”) of HGT for the acquisition of

resistance genes [37]. Research over the past 30 years has emphasized the role of HGT

in the acquisition and proliferation of AMR genes [44, 172, 32, 173, 174, 175, 83],

often when considering MDR phenotypes [45, 71, 176]. My results are in contrast

with LeClerc, instead supporting the HGT hypothesis. The cluster labeled yfjQ_4

includes many genes associated with HGT (see Table 3.2), most notably the Pilin,

TraM, TraY, and prophage protein annotations. This evidence supports the HGT

hypothesis for the proliferation of AMR genes into MDR phenotypes.
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While both a literature search and this inquiry demonstrate support for the role

of HGT in MDR, inducible hypermutation defined in the broader, increased muta-

tion rate sense (occurring with or without mutS involvement) may play a role in

MDR phenotype development. As noted in Chapter 2, a temporary, induced hy-

permutator phenotype [79, 84, 131, 132, 133, 134] could reduce the fitness burden

of repair deficient hypermutators [80, 135, 136, 137, 138]. In contrast to the under-

standing of inducible hypermutation, my initial phylogenetic analysis, which relied

on the core genome and LeClerc’s definition, could not reject the null hypothesis that

MDR evolves independently from MutS. In addition, the highly similar sequences of

the E. coli core genome led to a broad, shallow phylogeny where the MDR character

occurred sporadically, never resolving to any isolated clades. To overcome these chal-

lenges, I decided to pursue supervised machine learning to investigate genes outside

of the core genome, allowing me to compare paralogous sequences for their ability to

predict MDR. This investigation revealed that the clusters of annotated genes which

best predict MDR phenotypes do not contain mutS, but instead HGT. However, while

I achieved high precision and accuracy, further work is necessary to examine if the

predictor features favored by the models indicate a biological context that improves

understanding of MDR. While this investigation and the previous chapter both pro-

vide evidence against the role of deficient mutS in MDR, the open question still

remains: what are the genetic predictors of an MDR phenotype E. coli?
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MDR

aminoglycosides macrolides tetracyclines

Ontology of MDR Definition as Derived from AMR Genotypes 

Character 
or Label

Class of Drug 
Resisted

AMR "family" prefix

AMR genotype

"tet"

tetA tetRereA ereD mphB mphL

"ere" "mph"

aacA aacC aphA aphD

"aac" "aph"

Figure 3.6: I defined binary MDR labels from annotated AMR genotypes. Red
indicates the level of granularity used for the binary character matrix in Chapter 2.
Pink represents the labels chosen for the machine learning investigation in Chapter
3. AMR prefixes in yellow for comparison against Table 2.1. In green are examples
of the original AMR gene annotations from the metadata file.
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Figure 3.8: Box and whisker plots of permutation importance values (sorted descend-
ing) on training and validation data, top and bottom respectively, for the amino-
glycosides classifier. Quartiles 2 and 3 are shaded with median indicated. Outlier
values are represented by empty circles.



54

Figure 3.9: Box and whisker plots of permutation importance values (sorted descend-
ing) on training and validation data, top and bottom respectively, for the folate
pathway antagonists classifier. Quartiles 2 and 3 are shaded with median indi-
cated. Outlier values are represented by empty circles.
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Figure 3.10: Box and whisker plots of permutation importance values (sorted descend-
ing) on training and validation data, top and bottom respectively, for the macrolides
classifier. Quartiles 2 and 3 are shaded with median indicated. Outlier values are
represented by empty circles.
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Figure 3.11: Box and whisker plots of permutation importance values (sorted descend-
ing) on training and validation data, top and bottom respectively, for the tetracy-
clines classifier. Quartiles 2 and 3 are shaded with median indicated. Outlier values
are represented by empty circles.
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Figure 3.12: Box and whisker plots of permutation importance values (sorted de-
scending) on training and validation data, top and bottom respectively, for the oth-
ers classifier. Quartiles 2 and 3 are shaded with median indicated. Outlier values are
represented by empty circles.
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CHAPTER 4: EXAMINING SELECT IMPORTANT GENETIC PREDICTORS

OF MDR IN E. COLI

4.1 Introduction

The ultimate goal of my dissertation is a more thorough understanding of the

mechanisms driving the progress of the silent pandemic, via the proxy of end-stage

AMR: MDR phenotypes. Initially in Chapter 2, I described the implementation of

phylogenetic trees for understanding MDR in the context of MMR. I used phyloge-

netic comparative methods in Chapter 2 to identify dependent evolution between an

MDR phenotype character and hypermutator genotype characters. I found those re-

sults unsatisfactory, supporting independent evolution between the traits, instead of

revealing more useful genotype-to-phenotype hypotheses. To identify a new genetic

explanation for MDR, I changed my methods.

In Chapter 3, I employed a supervised machine learning approach for uncovering

genetic patterns that predict MDR. That analysis did not develop specific genotype-

to-phenotype hypotheses of MDR, but instead corroborated the results of Chapter

2. The Chapter 3 results reveal that the clusters yfjQ_4 and ydaM of annotated

genes best predict MDR, as expressed by the five individual classifiers for different

categories of AMR. Neither cluster yfjQ_4 nor ydaM include the mutS gene

indicated by LeClerc et al., 1996 as necessary for hypermutation [37]. Although

of lower rank than cluster yfjQ_4 , the cluster cluster cbeA_1 also appears in

every the top five ranks of importance for all classifiers. I selected these three clusters

for further analysis, as representative of the predictive ability of my five trained

models. To improve interpretation of my results, I develop genotype-to-phenotype

hypotheses of MDR, by examining the top ranked feature clusters, yfjQ_4 , ydaM ,
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and cbeA_1 , from Chapter 3 in fuller detail (see Table 3.1).

Effective models contextualize or simplify intractable problems, without resorting

to self-evidence. On its own Chapter 3 contains two notable drawbacks: feature

explainability and the potential for self-evident labeling. A valid criticism of the pre-

vious chapters is that my approach, training classifiers based on clustered annotations

taken from a largely unshared subset of the pangenome, draws from overly complex

inputs and outputs. To improve analyses when interpreting results, machine learning

models should be examined by their inputs and outputs, instead of only by the logic

of the classifier [177]. In addition, further criticism could logically assert that the best

predictors of MDR phenotypes are highly likely to be known AMR gene determinants.

In this chapter, I aim to preemptively address both criticisms, by more thoroughly

investigating the contents of the select predictive features, yfjQ_4 , ydaM , and

cbeA_1 , from the classifiers. Current research indicates a consideration of the bio-

logical context improves interpretation of machine learning models [144, 158, 154]. For

the models trained in Chapter 3 to inform our understanding of the AMR pandemic,

the identified feature clusters must supply evidence to support the development of

MDR phenotypes. The features that best predict MDR phenotypes should 1) be

in concordance with experimental results, and 2) not reduce the question of MDR

phenotype to the simple presence or absence of specific AMR genes. Ideally, the

best predictive features should include genes that underlie the proliferation of AMR,

without expressly representing known AMR genes. The null hypothesis of this inves-

tigation asserts that select best predictors of MDR phenotypes identified in Chapter

3, specifically yfjQ_4 , ydaM , and cbeA_1 , are composed of known AMR genes.

My alternative hypothesis states that the most useful predictors of MDR phenotypes

are instead genes directly involved in transmitting AMR genes.
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4.2 Materials and Methods

When splitting paralogs, Roary assigns an internal identifier following the schema

group_##### [106]. For example, although Prokka annotated the mutS gene,

Roary identified a context dependent paralog of the mutS annotation, designated as

group_24522. Roary found mutS 680 times and group_24522 136 times, matching

the 816 identified sequences of mutS in Chapter 2 (missing only GCF_002843685 as

noted). I carried out this process for all annotated genes found in less than 95% and

greater than 10% of the pangenome, encompassing all of the shell and the top 5%

of the cloud sections. During these assignments, Roary also standardizes uncertain

language or annotations using the catchall term hypothetical protein [106]. Roary

recorded the results of this process in the output gene_presence_absence.csv, the

file which I then passed as input to the methods described in Chapter 3. While this

approach cleans the data, it might also lead to overly simplified downstream analyses.

To improve the explainability of the Chapter 3 models, I identify the annotation data

collectively grouped under the hypothetical protein definition by Roary.

At the end of the processes described in Chapter 3, I collected the top five ranked

feature clusters from each binary classifier (see Table 3.1). I recorded the annotated

contents of each cluster, examined the annotations, and gathered all hypothetical pro-

tein annotations from the top five ranked features. I queried the previously described

SQL database for the annotated gene name and added the first match to a large mul-

tiFASTA file in preparation for analysis via the Basic Local Alignment Search Tool

(BLAST) method using a nucleotide query against a protein database (BLASTX)

[178]. I separated the file into batches of 20 sequences and sent each batch to the

BLASTX program implemented on the UniProt website as “blastx” to be searched

against the “UniProtKB reference proteomes + Swiss-Prot” databases. I used the au-

tomatic settings (BLOSUM62, E-Threshold 10, gapped, no filtering) on the UniProt

website, only restricting the results by taxonomy for E. coli (NCBI:txid562), En-
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terobacterales (NCBI:txid91347), viruses (NCBI:txid10239), and unclassified viruses

(NCBI:txid12333) as found in the NCBI Taxonomy [179]. I included Enterobacterales

and both viral taxonomies to account for the hypothetical protein annotations that

Roary assigned, thinking at the time that closely related bacterial genes, lysogenic

viruses, or prophages may be found in the data. I then manually curated the out-

puts of the BLAST program, noting the best matches by e-value, length, and percent

identity. I took care to emphasize hits of similar length (both query and target),

preferring to maximize length and identity while minimizing e-value. I also recorded

sequences similar to the highest matches (of the same score). I performed the search

against the Uniprot/TREMBL data set, but I placed emphasis on human annotated

SwissProt sequences to maintain high confidence in my results. I then matched the

resolved uncertainties with the results of Roary. Due to the larger size of the training

data set, I derived my inferences about best predictors from the training and not the

validation data, although I observed similar patterns between the two subsets.

4.3 Results

To reiterate the results of Chapter 3, the mutS gene is not important for pre-

dicting an MDR phenotype. However, I noticed that although Roary identified two

mutS paralogs, the hierarchical clustering on Spearman’s rank correlation coefficient

grouped both paralogs into the same cluster (see Figure 3.14). I found this fact espe-

cially interesting, given that clustering placed paralogs of the umuC gene into several

different feature clusters. The umuC gene participates in E. coli SOS mutagenesis

and repair. The umuC annotation grouped with both mutS paralogs, while umuC_2

associated with the top ranked permutation importance feature for predicting MDR

(cluster yfjQ_4 ) as shown in Table 4.1. This observation indicates that 1) the

models do not immediately cluster closely-related proteins and 2) highly similar pro-

teins by function are not grouped together by default. The data processing and model

training emphasized the importance of specific proteins, purely from the annotation
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of high-quality WGS.

Nearly all of the genes in the top ranked cluster yfjQ_4 are from the protein

families Tra and Trb families, which are involved with the horizontal transfer of genetic

material. The potential exceptions are umuC_2, a pilin protein, and a putative CP4-

57 prophage gene. I observed no AMR genes, either as annotated by Prokka and

Roary nor matching the list of AMR gene families from Chapter 1 (see Table 2.1).

The theme of cluster yfjQ_4 is HGT, as shown by specific proteins in allowing for

the formation of conjugative structures.

Table 4.1: All component annotations found within cluster yfjQ_4 , which ranked
as most important for the aminoglycosides, folate pathway antagonists, tetra-
cyclines, and others models. The first (Gene) column of the Roary output file
gene_presence_absence.csv provides the identifying Gene name. The best annota-
tion, protein name, or gene identifier is taken from Roary or BLAST results.

Gene (Roary) Computationally Predicted Protein Name (BLAST // Roary)
group_16177 LPD25 domain-containing protein
group_10103 Protein TrbI
group_10424 TraK lipoprotein
group_12760 Protein TraQ
group_7878 Protein TraW
group_19502 Protein TraJ
group_4098 Protein TraB
group_24638 Terminase
group_9019 Protein TraE
group_11161 Protein TrbG
group_5897 Protein TraP
group_4701 Protein TrbJ
group_9337 Protein TraV
group_17382 Protein TraL
group_2543 Protein TrbB
group_4818 X polypeptide, ORF 19, ORF169, P19 protein
umuC_2 DUF4113 domain-containing protein // SOS mutagenesis and repair
traM Relaxosome protein TraM
traY Relaxosome protein TraY
group_2526 Protein TraC
ccdB Uncharacterized protein YuaT
traA Pilin, F-pilin
yfjQ_4 UPF0380 protein YubP
group_5903 Protein TrbD

Top ranked ydaM for the macrolides model is seen in Table 4.2. The presence
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of many prophage genes in this cluster is notable, again demonstrating a theme of

HGT. In addition, both ydaM and it’s paralog group_11293 were placed in the same

feature cluster.

Table 4.3: Cluster cbeA_1 and its zero-based rank across all five classes
of resistance: aminoglycosides (Amino.), folate pathway antagonists (Fol.
Path. Antagonists), macrolides (Macro.), tetracyclines (Tetra.), and others
(Others). Non-unique Gene name, the second column of the Roary output file
gene_presence_absence.csv, indicates Roary split paralogous genes into individual
annotations based on sequence context. Note yfjQ_1 and group_257 as well as
yeeP_1 and group_1508.

Gene (Roary) Non-unique
Gene name (Roary)

Amino.
Rank

Fol.
Rank

Macro.
Rank

Tetra.
Rank

Others
Rank

group_13421 1 3 4 2 4
group_4945 1 3 4 2 4
group_22310 1 3 4 2 4
group_7475 1 3 4 2 4
group_9598 1 3 4 2 4
yfjJ 1 3 4 2 4
group_7384 1 3 4 2 4
group_5273 1 3 4 2 4
group_6844 1 3 4 2 4
group_13325 1 3 4 2 4
group_4579 1 3 4 2 4
cbeA_1 1 3 4 2 4
yeeS_1 1 3 4 2 4
php_1 1 3 4 2 4
group_684 1 3 4 2 4
group_257 yfjQ_1 1 3 4 2 4
group_1508 yeeP_1 1 3 4 2 4

Within the commonly occurring cluster cbeA_1 , the composition of observed

genes changes as shown in Table 4.3. I observed many TA genes, along with several

prophage genes and chemotaxis proteins demonstrated in Table 4.4. Interestingly,

I also found a putative repair protein among the other annotated genes comprising

the prophage. The theme ofcluster cbeA_1 is also HGT, as indicated by specific

proteins that allow for the selection of plasmids or prophages belonging to exclusive

lineages (Inc regions).

Notably, while I found some specific AMR gene annotations in this data, those
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specific annotations are never in the top two ranked most important (best) predictors

for any estimator. Annotations from Prokka, Roary, and subsequent BLAST analysis

seem to agree on general themes via related annotations (genes with similar or related

functions are grouped together often, but not exclusively grouped together). As

demonstrated in Chapter 3, each model relies on different predictive features (see

Table 3.1), and the clustered gene features are not solely drawn from groups related

either by evolution or structure.

In the results and discussion of this fourth chapter, I focus on the highly ranked

feature clusters yfjQ_4 , ydaM , and cbeA_1 for the sake of brevity and space.

The full spreadsheet of joined Roary and BLAST annotations from the top five ranked

best predictors for the five trained classifiers is available upon reasonable request of

the author.

4.4 Discussion

First, the best predictors of each binary resistance class and therefore MDR pheno-

types are genes associated with HGT. Each resistance class possesses an identifying

set of clusters that best predicts resistance to aminoglycosides, folate pathway antag-

onists, macrolides, tetracyclines, and other antimicrobial compounds. The contents

of each cluster are unique, so that while some clusters contain a few known AMR

genes, I did not define the clusters seen in Tables 4.1, 4.2, or 4.4 as exclusively AMR.

For these unique clusters, the selected feature clusters yfjQ_4 , ydaM , and cbeA_1

all show evidence of HGT.

Of note in the cluster ydaM are the genes attributed to the Rac prophage. Rac

prophages are excisionable DNA regions [180] often associated with erythromycin

resistance [181]. Erythromycin falls under the category of macrolide antimicrobials.

This cluster ydaM ranks the highest for macrolide resistance and as rank 3 (0-

based) for others resistance (see Table 3.1). The only time another Rac prophage

gene appears among the top ranks is in cluster ligB which ranks 3 (0-based) for
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tetracycline resistance, where only a single gene “ydaV_2 Rac prophage; predicted

DNA replication protein” appears. Most of the Rac prophage genes clustered together

in cluster ydaM , with the exception of the single gene. The macrolides model

trained in this inquiry demonstrates that cluster ydaM is highly important for the

prediction of macrolide resistance. This result concurs with both scientific literature

and research, where the presence of the Rac prophage imparts resistance to macrolide

antibiotics like erythromycin and fosfomycin [180].

Notably, in the case of erythromycin resistance, researchers point to overexpression

of existing genes as contributing to AMR [181]. The models trained in Chapter 3

rely on the simple presence or absence of annotated genes within an E. coli sequence.

When a gene is present in an isolate, the potential exists for the dosage of that gene to

change, resulting in the overexpression or underexpression of that gene. Conversely, a

bacterium cannot express genes that its genome lacks. In the methods of this chapter,

I applied that concept to computationally identify MDR phenotypes without the need

for susceptibility testing. Sequencing and proper annotation techniques may suffice to

identify the capacity of bacteria for achieving MDR phenotypes. In this way, decision

makers may leverage survey data describing AMR genes that currently circulate in a

locale, to improve prescribing practices or food safety in a region [3].

The contents of each cluster are exclusive, so no single annotation occurs in more

than one cluster. The Roary function of context-dependent paralog splitting adds

granularity to the annotations initially assigned by Prokka. I engineered a binary

presence or absence transformation of the annotation data using the Spearman’s rank

correlation coefficient to arrive at clustered groups of features. As evidenced by the

selected feature clusters yfjQ_4 , ydaM , and cbeA_1 , these clustered groups of

features included highly similar genes by function or actual paralogs. However in some

cases, paralogs are not found together within the same feature cluster. The separate

grouping of paralogous genes opens an avenue for continuing research: to investigate
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sequence or context discrepancies between paralogs in order to better understand the

emergent phenotype of MDR. Further, the exclusive nature of the clusters leads to

an important conclusion: a binary representation of annotated accessory genes better

predicts MDR phenotypes than the AMR genes usually attributed to imparting a re-

sistance phenotype. Investigation of the annotations comprising these best predictors

reveals currently known virulence genes and genes associated with HGT. The models

developed in Chapter 3 and discussed in Chapter 4 explain the genetic determinants

of the AMR silent pandemic in a biological context.



CHAPTER 5: CONCLUSIONS

The continued proliferation of AMR genes among the global bacterial population

leads to MDR phenotypes. The problem of increasing MDR represents an opportunity

for further research to support public health. Polygenic traits like MDR result from

the complex interactions of multiple genes. Two main mechanistic hypotheses exist

for explaining the rise in MDR bacterial populations: the generation of novel AMR

genes through hypermutation or the population-scale proliferation of AMR genes

via horizontal gene transfer. The main conclusions drawn from the completion of

this research program are: 1) there is little to no observed support for a dependent

evolutionary correlation between mutS and an MDR phenotype in E. coli as shown

in these data, and 2) annotated genetic features associated with HGT best predict

the MDR phenotype over both mutation-associated and AMR-associated genes which

are traditionally understood to determine a bacterial resistance phenotype.

5.1 The mutS Gene and MDR Evolve Independently

In my first investigation, I used a data set of 817 high quality E. coli isolates to test

an alternative hypothesis of dependent evolution between MDR and hypermutable

phenotype mutS. I found insufficient evidence to invalidate the null hypothesis of

independent evolution when comparing the AIC scores of models calculated with the

fitPagel [117] implementation of Pagel’s 1994 algorithm [116]. These findings do

not agree with the paper by LeClerc et al., 1996 [37], as I was unable to observe the

existence of the defective mutS gene defined by them. My results support independent

evolution between variant amino acid positions in MutS and MDR phenotype E. coli.

Hypermutable phenotypes are not easily identifiable from WGS data if the tradi-
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tional, quantifiable definition of hypermutator mutS (defective gene with a 221bp 3’

deletion) [37] is unobservable. If instead, a more qualitative definition of hypermu-

tation is chosen (e.g., variant positions in protein or gene sequences, temporary or

induced hypermutable states, or overexpression of mismatch repair genes) it becomes

challenging to represent the development of novel AMR mutations. To improve our

understanding of the ongoing AMR pandemic, analyses of MDR must reconsider the

role and definition of hypermutation.

5.1.1 Re-examining Hypermutation as Inducible

An emphasis on hypermutation overshadows the role of horizontal gene transfer in

the proliferation of AMR genes into increasingly MDR phenotypes. As LeClerc et

al., 1996 notes in the closing argument, they brought the hypermutator hypothesis

to counter ideas around horizontal gene transfer.

“Although they are counter to the current paradigm that antibiotic re-

sistance is due to the acquisition of plasmids harboring multiple drug-

resistant determinants, our data show that chromosomal mutations might

explain at least some of the multiply drug-resistant organisms found clini-

cally. These same mutator phenotypes could help explain how the plasmid-

borne resistance determinants first became linked (relaxed recombination

between disparate species) and are now so readily inherited.” [37]

Thus, when I observe no evidence of a LeClercian hypermutator mutS, it is fair

to consider the role of horizontal gene transfer. Horizontal gene transfer has been

associated with AMR gene spread for decades, but as LeClerc noted HGT does not

supply a mechanism for the development of novel AMR genes [37]. Therefore, al-

though hypermutation (whether structural or induced) and horizontal gene transfer

are well-documented phenomena, neither hypothesis fully explains the development

and proliferation of AMR genes into MDR phenotypes. Hypermutation lacks a pro-



73

liferative mechanism, while HGT lacks a developmental mechanism.

LeClerc’s statements on hypermutation require nuance. I found no indication in my

research that LeClerc’s hypermutator mutS correlates with MDR, as originally sug-

gested in the LeClerc et al., 1996 publication [37]. However, some AMR genes could be

the result of increased mutation rates among bacteria, as LeClerc conjectured and as

others demonstrated [79, 84, 37, 131, 130, 132, 133, 134]. The broader, inducible def-

inition of hypermutation could drive AMR gene development [182, 84, 37, 133], while

HGT plays the central role for the acquisition and inheritance of many AMR genes

in E. coli [163, 5]. Expanding the definition of hypermutator to include inducible

hypermutation certainly allows increased mutation rates to be associated with AMR

genes, but as noted previously, overexpression of certain genes also imparts a resis-

tance phenotype [183, 181]. To avoid confusion and arrive at a falsifiable hypothesis, I

narrowly defined hypermutation in the original MutS deficient sense for the purposes

of this research.

Other definitions of hypermutation, like inducible hypermutation, remain candi-

date hypotheses for novel AMR phenotypes, but based on the research I present in

this manuscript, the traditional MutS deficient hypermutator phenotype does not

correlate with MDR phenotypes at the population scale. LeClerc’s original defini-

tion of hypermutator phenotype mutS is unobservable in my research data, so repair

deficient mutS cannot explain the presence of the MDR phenotype.

A more apt understanding of LeClerc’s paper should focus not only on the closing

argument, but on an earlier statement. “Because MMR limits recombination between

diverged sequences, inactivation of this system relaxes normal recombination barriers

among species, offering a potential pathogen the opportunity to inherit, by horizontal

transmission, useful genes from the reservoir of commensal and pathogenic bacteria

at large. Promiscuity, then, might drive selection of these kinds of mutators among

successful pathogens.” [37] Recombination and promiscuity could drive MDR, an idea
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which I investigated next.

5.1.2 What Does MDR Require?

Multiple environmental factors interact when initiating a temporary hypermutable

state in a bacterium [84, 80, 184] or when activating HGT processes [185, 72, 61, 186].

The food safety survey data investigated here does not include information about

potential antimicrobial exposure for each sample nor gene expression data. Given the

nature of the genomic surveillance data used, in silico modeling of these data will not

address variable levels of gene expression. Gene expression data may be necessary to

understand the mechanisms by which drug resistance develops in the short term and

is fixed in the long term [5].

I chose to consider as much of the E. coli genome as possible without focusing

only on select genes associated with the MMR system or from a notion of the core

genome. This approach takes into account not just hypermutation or HGT, but other

potentially novel hypotheses for understanding AMR proliferation. Future attempts

to understand the evolutionary history of MDR should begin de novo, by testing for

correlations between many annotated genes and MDR phenotypes, instead of focusing

only on those genes involved in the evolution and acquisition of traits (like MMR as-

sociated genes or conjugation associated genes). Once my Chapter 2 analysis showed

no support for dependent evolution between hypermutation and MDR, I attempted

to identify which genetic determinants best predict MDR phenotypes in E. coli.

5.2 Best Predictors of MDR are not Known AMR or MMR Genes

Using a trained random forest classifier, I identified genetic patterns that predict

MDR phenotypes from combinations of five unique, commonly screened antimicrobial

compound classes. The five trained classifiers exhibit high accuracy, precision, and

recall, standard metrics for benchmarking predictive models. In addition, structuring

the investigation as a multilabel supervised machine learning problem enables a more
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granular understanding of MDR phenotypes, in contrast to the single binary phylo-

genetic character I used in Chapter 2. The use of gene annotations from the shell

portion of the pangenome also expands on the previous analysis, by discovering useful

patterns in genetic information that is neither shared nor derived in a phylogenetic

sense.

5.2.1 Caveats of Predictive Features

Aside from the potential technical challenges in developing a kit, a major caveat

is self-evident: what if the best predictors of MDR phenotypes are simply

known AMR genes? Initial investigation of the best predictors revealed a large

number of genes involved in horizontal gene transfer, with little to no occurrence

of proteins involved in mismatch repair (specifically MutHLS) or genes involved in

hypermutation (uvrD). While the important clusters include known prophages and

transmissible genetic features, these clusters might best be described as virulence

genes, or potential pathogenicity islands. On their own these results agree with

current understandings of AMR proliferation. However, current food safety survey

practices already annotate known AMR genes and suspected virulence genes through

the PGAP [119, 120, 121]. If the genetic determinants of an MDR phenotype are

simply the component AMR genes, then this research demonstrates nothing besides

a previously understood correlation. With Chapter 4, I investigated and explained the

contents of important feature clusters identified in the Chapter 3 inquiry to further

understand the genetic predictors of MDR phenotypes.

5.3 HGT Mechanisms Best Predict MDR Phenotypes

To further validate the results of Chapter 3, I examined the hypothetical protein

annotation that Roary [106] applies when standardizing inputs. I queried each hy-

pothetical protein annotation using BLASTX to find the best matches and identify

all component annotations in the top performing predictors. In the top predictors,
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I did not identify the presence of any genes that explicitly imparted resistance to

an antimicrobial compound. Instead, nearly all annotated genes had some role in

horizontal gene transfer, further validating the initial assessment of the clusters from

Chapter 3. Explicit AMR genes are not as important for predicting AMR phenotypes

or by extension MDR. Other researchers have pointed to pathogenicity islands (PAIs)

as responsible for increasing the virulence of bacterial phenotypes [187, 188, 189]. My

results concur with those researchers, that horizontal transmission of virulence and

accessory genes drives acquisition of MDR phenotypes, not hypermutation or the

AMR genes themselves. The models of Chapter 4 support that when addressing

MDR, HGT mechanisms require more focus than hypermutation. HGT drives the

proliferation of AMR genes into MDR phenotypes, given the evidence gathered in

this study.

5.3.1 Potential Overlap with Pathogenicity Islands

If the clusters identified in Chapter 3 are pathogenicity islands, my research indi-

cates that E. coli achieve MDR phenotypes through a combination of pathogenicity

islands, each island targeted towards specific categories of antimicrobial compounds.

More research is needed to verify these clusters as pathogenicity islands, specifically

in regards to DNA segments flanking the clusters, the continuity and proximity of all

component cluster genes, and G/C counts from the annotations. For now, the main

conclusion of my research indicates that there is not a single genotype that results

in MDR, but instead multiple pathways to broadly drug resistant E. coli. However,

when examining resistance to specific categories of AMR compounds, I observed that

each category of AMR compound is predicted by a single set of genes. As such, I

interpret that E. coli strains appear to exhibit a modular, flexible genetic toolkit for

adapting to evolutionary pressures brought by antimicrobial compounds. This view

agrees with current understandings of bacterial evolution [80, 39], AMR spread via

HGT [185, 72, 61], and the mobilome [9, 190, 17, 43].
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5.3.2 High Importance of F Plasmid in AMR Proliferation and Resulting MDR

Phenotypes

I find it concerning that the feature which best predicts resistance in four of the five

categories is the same (cluster yfjQ_4 ). My concern increases when confronted by

the fact that this cluster includes transfer genes (tra) associated with the F plasmid.

The F plasmid enables bacterial conjugation, allowing an F plasmid positive bacterial

cell to convert an F plasmid negative bacterial cell. The relatively high rank of clus-

ter yfjQ_4 for predicting the category of macrolide resistance leads me to question

if there exists some selective pressure on E. coli to develop a single maximum fitness

MDR strain by leveraging the F plasmid. My models fail to indicate the existence

of that hypothetical maximum fitness E. coli strain. Each of the resistance cate-

gories varies from one another when comparing the most predictive clusters in second

through fifth place (0-based ranks 1-4). I attributed a unique pattern of clusters, a

gene set, to each resistance category. The specificity of each gene set drives the high

accuracy, precision, and recall of the models trained in Chapter 3. I interpret such

variation to mean that the combined genetic and resource burden to successfully resist

all categories of antimicrobial compounds is not yet manageable for E. coli. However,

if such a maximum fitness, pan-resistance genotype evolves, the predictive models

that I developed in this research program can detect that threatening genotype.

5.4 Weak Mutators, HGT, and MDR

As noted previously, variable definitions for hypermutation exist, often centered

around the relative strength of the mutator phenotype indicated by the number of

mutations. Strong mutators differ from weak mutators, although both may fall under

the broader definition of hypermutation that I acknowledge but do not use for this

research. In this dissertation, I investigated a very specific definition of hypermutation

that can be referred to as a strong mutator phenotype, the deficient MutS protein
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as described by LeClerc et al., 1996 [37]. My investigations 1) found no evidence

that LeClerc’s hypermutator phenotype existed in these data, 2) identified little to

no dependent correlation between the MDR trait and MutS variant residues, and 3)

noted that other features besides the mutS gene annotations best predict the MDR

trait.

However, while I demonstrate that the canonical strong mutator is not associated

with MDR, I did not rule out the effect of weak mutators, notably genes like umuC

involved in SOS mutagenesis and repair [191]. Instead, umuC is present in the feature

cluster yfjQ_4 , the top ranked best predictor in four of the five trained AMR

classifiers. The exception is for macrolides, where cluster yfjQ_4 ranks third (see

Table 3.1). My evidence agrees with and builds upon the work of previous researchers

who indicate the oppositional roles of the E. coli MMR and SOS systems in controlling

both rates of mutation and interspecies recombination [131, 81]. Given the results of

my research, weak mutator genes, HGT, and interspecies recombinant mechanisms

work together to arrive at MDR bacterial phenotypes in response to the environmental

stress caused by anthropogenic antimicrobials.

5.5 Intellectual Merit

My dissertation validates ML techniques to preprocess genetic data for explainable

results. The feature engineering techniques demonstrated here should apply when

supplementing phylogenetic analyses. This research shows that annotation of sim-

ple gene presence or absence predicts specific classes of AMR resulting in different

MDR phenotypes. The traits that drive MDR phenotypes are polygenic. To identify

the general principles behind the genetic mechanisms that proliferate resistance a

sufficiently large data set, like the global survey data used here, is required.

The main conclusion of this research program is that the subversion of the MDR

pandemic requires tracking and predicting the biological mechanisms of prolifera-

tion, instead of the capacity for hypermutation or the AMR genes themselves. When
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adapting into increasingly drug resistant phenotypes, E. coli bacteria prioritize a

genetic capacity for transmitting genes instead of evolving novel resistance. As I

demonstrate in Chapter 2, LeClerc’s traditionally accepted definition of a hypermu-

tator phenotype as a repair deficient mutS gene [37], shows little to no support for

a dependent evolutionary correlation between variant positions in the MutS protein

and the MDR trait. Further, in Chapter 3, when training random forests to classify

resistance, I found that neither mutS nor its paralog occur in the feature clusters

(cluster yfjQ_4 and ydaM ) that best predict resistance to five different types of

antimicrobial compounds. To ensure that the best predictors from Chapter 3 were bi-

ologically relevant, I investigated three select predictive features, clusters yfjQ_4 ,

ydaM , and cbeA_1 in Chapter 4. All three clusters contain HGT-associated genes,

not AMR genes or MMR genes like mutS. My research confirms that the mechanisms

for developing novel resistance traits and even the resistance genes themselves are

not as useful for predicting current AMR. Shifting focus from the mechanisms of re-

sistance to the mechanisms of transmission allows researchers to better address the

AMR pandemic [180].

Currently available data sets processed with machine learning techniques identify

the genetic determinants of MDR. Investigating these determinants shall lead to novel

drugs, new treatment strategies, and more efficient use of therapeutics. For example in

the Ford et al., 2020 paper, we noted that AMR genes of various classes evolved under

stabilizing selection (gained and lost resistance traits) or genetic capitalism (increasing

accumulation of resistance) over time [5]. This dissertation expands on those results

by identifying what I call gene sets, demonstrated in this manuscript as features of

clustered genes that best predict MDR phenotypes. Those gene sets describe specific

genetic annotations whose presence or absence indicates the mechanisms by which

the pattern of genetic capitalism operates. The feature cluster gene sets identified

by the models in Chapter 4 demonstrate how processed survey data predicts the
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characteristics of potentially epidemic MDR strains before they begin to dominate

local environmental niches. The research emphasis on the MDR pandemic, the end

stage of AMR proliferation, must focus on genetic mechanisms of transmission (like

HGT) and not mechanisms of development (like hypermutation).

5.6 Broader Impacts

As opposed to the results of Chapter 2, the findings from this investigation improve

public health in a survey context. Sequencing costs have decreased over time, but

sequencing technologies are not standard practice worldwide. A cost barrier to the

implementation of personalized medicine often exists at the local level. Even in the

United States, it is rare to sequence the resident microflora of a sick individual with

NGS techniques. Health care providers still employ methods like cell culture, staining,

microscopy techniques, and test kits when making diagnoses.

The ongoing COVID-19 pandemic demonstrated the effectiveness of over the counter

and take home rapid antigen testing for the purposes of public health and safety. In

this context, it becomes possible to theorize the development of kits for the detection

of the precursors of MDR. Kits could be developed using primers for the genetic se-

quences found within clusters of high importance identified by my research. While

PCR primer technology is not available for personal home use, the development of

such a kit may prove useful when targeted to primary care physicians, hospital sys-

tems, or local health departments. Before prescribing antimicrobial drugs, primary

healthcare providers could use a kit that incubates a sick patient’s microflora with

specific PCR primers. Those primers recognize the genetic sequences predictive of

individual classes of MDR phenotype. Such hypothetical kits should improve pa-

tient health outcomes and lower healthcare costs, by encouraging more efficacious

prescription practices.
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5.7 Outcomes

As the COVID-19 pandemic demonstrates, effective actions must be employed at

the national level [3]. To escape the silent pandemic of AMR, we should also develop

programs and tools to help physicians make intelligent, informed decisions about

antimicrobial prescribing [6]. Whole genome sequencing is a useful tool, but at the

same time, concessions must be made at the local level because of current costs. It

is not currently feasible to equip local clinics with full sequencing technologies. The

implementation of test kits and the subsequent rise in their use during the COVID-

19 pandemic demonstrates a potential appetite for local care. This inquiry did not

develop a kit or assess the financial feasibility of such an idea, but a test kit for MDR

is technologically possible. A nucleic acid amplification test (NAAT) of PCR primers

for genes from different categories of resistance would enable local health departments

or clinicians to make informed treatment decisions in response to the resistant strains

found in a geographic area, essentially an antibiogram for an entire region.

The methods described here represent a potential improvement over susceptibility

testing, in that the model-based method is predictive and not reactive. Modeling in-

dicates the capacity of a strain to develop resistance to more classes of antimicrobial

compounds. Phylogenetic investigation of high importance model features will yield

hypotheses describing the stepwise acquisition of mutations that accumulate AMR

genes into MDR phenotypes. By understanding the sets of genes that enable pro-

liferation, we will anticipate and subvert the characteristics of strains that drive the

silent pandemic.
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APPENDIX A: HARDWARE SPECIFICATIONS

Code development and testing took place on a desktop Mac provided by the UNC

Charlotte Department of Bioinformatics and Genomics.

• iMac (27-inch, Late 2012)

– Processor: 2.9 GHz Quad-Core Intel Core i5

– Memory: 16 GB 1600 MHz DDR3

Research computing resources provided by the UNC Charlotte Research Computing

group. I used the HPC cluster, which runs Red Hat Enterprise Linux and is managed

by SLURM (https://oneit.charlotte.edu/urc/our-environment) [Internet]. Resource

requests were for one or multiple of the following nodes:

• Dual 18-Core Intel Xeon Gold 6154 CPU @ 3.00GHz (36 cores / node)

• 388GB RAM (10.7GB / core)

• 100Gbit EDR Infiniband Interconnect

https://oneit.charlotte.edu/urc/our-environment
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APPENDIX B: ANACONDA ENVIRONMENTS

Fourteen files (suffix “.yml”) for creating the various Anaconda environments used

in this research. Both the full list of dependencies for the UNC Charlotte UPC

architecture and the historical requests (parameter --from-history) to create them

are included.

• For snp-sites

– 290B hpc_binf_snp-sites_environment_from_history.yml

– 5.7K hpc_binf_snp-sites_environment_full.yml

• For CheckM

– 213B hpc_checkm_environment_from_history.yml

– 4.4K hpc_checkm_environment_full.yml

• Base Python 3 bioinformatics environment for data exploration and manipula-

tion

– 1.3K hpc_galick_gun_environment_from_history.yml

– 2.6K hpc_galick_gun_environment_full.yml

• For Gotree

– 160B hpc_gotree_environment_from_history.yml

– 841B hpc_gotree_environment_full.yml

• For machine learning on imbalanced data with scikit-learn

– 229B hpc_ml_imba_environment_from_history.yml

– 5.2K hpc_ml_imba_environment_full.yml

• For Prokka and Roary
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– 18K hpc_prokka_environment_from_history.yml

– 11K hpc_prokka_environment_full.yml

• For R

– 300B hpc_r_for_vs_code_env_environment_from_history.yml

– 8.6K hpc_r_for_vs_code_env_environment_full.yml
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APPENDIX C: EXAMPLE RAxML SUBMISSION TO SLURM

Contains a single file (suffix “.slurm”) of a RAxML submission script to SLURM on

the UNC Charlotte HPC architecture. Includes settings for SLURM resource requests

and RAxML parameters.

• 5.1K hpc_raxml_settings.slurm
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APPENDIX D: SUPPLEMENTARY DATA

Contains three files from this investigation: a phylogenetic tree (suffix “.tree”) based

on the core genome of 817 E. coli isolates as determined by Roary (without splitting

paralogs) in Chapter 2, a spreadsheet (suffix “.csv”) of gene annotations created by

Roary (with split paralogs) in Chapter 3, and a spreadsheet (suffix “.tsv”) of outputs

from the fitPagel function in phytools.

• Phylogenetic tree from Chapter 2

– 27K RAxML_rootedTree.900_ns_core_opt.ROOTED.tree

• Roary annotations from Chapter 3

– 242M gene_presence_absence.csv

• fitPagel outputs from Chapter 2

– 29K hpc_output_pagel_full_adjusted.tsv
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