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ABSTRACT

RAHEEM ARIWOOLA. An Integrated Hybrid Thermal Dynamics Model and
Energy Aware Optimization Framework for Grid-Interactive Residential Building

Management. (Under the direction of DR. KAMALASADAN S)

This dissertation focuses on developing an integrated hybrid model for studying the

thermal dynamic operations of passive buildings considering active power manage-

ment. For this, the following methodology is designed. First, the hybrid model,

including a procedure for identifying model parameters, is established. Second, the

model is simulated and results compared with EnergyPlusTM counterparts for valida-

tion using three different climatic zones. Third, the energy optimization framework

considering all the active energy sources in the building is illustrated. Fourth, the

model is utilized within Model Predictive Control (MPC) and optimization frame-

work to demonstrate its capability for extensive applications in complex demand

management programs and advanced transactive operations. For this, test cases were

implemented, including energy management with Time of Use rates, power refer-

ence tracking, and demand response with load scheduling capabilities. Finally, a

distributed energy resource aggregation framework that limits aggregate demand for

multiple homes was formulated, to enforce grid limits and simultaneously achieve

energy cost savings. The results show that the model has an average of 4% error

compared with EnergyPlusTM results, and the framework intuitively prioritizes nat-

ural ventilation operation while effectively coordinating building energy resources for

an average of 63% reduction in peak electricity usage during the time of use event,

an average of 1.2% error in power reference tracking, and a 49% to 56% gain on

incentives during a load scheduling strategy in the evaluated zones. The aggregator

framework proves efficient in reducing the aggregate demand of ten passive buildings

from 160 kW (without aggregator oversight) to 97.5 kW (with aggregator oversight).
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PREFACE

Hybrid ventilation is a key technology in modern passively-designed buildings for

significant energy reductions and prevention of catastrophic grid failures. The tech-

nology ensures the building operates efficiently by prioritizing natural ventilation in

efforts to simultaneously meet occupant’s thermal comfort and reduce its power de-

mands. But, due to its high sensitivity to climate, power use of hybrid ventilated

buildings is intermittent, and its resulting effects on effective grid coordination are

still lacking in research. Thus, this study proposed to develop efficient models, con-

trol, and optimization framework that confidently study the efficient operation of

hybrid ventilated buildings in different climate regions to promote their widespread

application globally.



CHAPTER 1: INTRODUCTION

The introduction to this dissertation starts with a general background about build-

ings and their distributed energy resources. It further illustrates the reasons why the

improvement in building thermal dynamics is essential. These are followed by the

motivation of the study, then the listing of the aim, objectives, and scope of the

dissertation. Finally, the specific tasks accomplished and their contributions to the

existing body of knowledge are provided.

1.1 Background

The current United States Energy Information Associationâs International Energy

Outlook data projects that global energy consumption in buildings will have an aver-

age annual increase of 1.3% from 2018 to 2050 [1,2]. With the alarming rate of fossil

fuels depletion, the unstable fuel prices for conventional energy generation, and grow-

ing consensus about climate change’s economic and social costs, US cities, institutions,

businesses, and homes are operating under tremendous economic and sustainability

pressures to decrease their energy consumption and set strict carbon reduction goals.

With buildings inclusive, the world’s energy consumption is projected to have a 50%

increase by 2050 [3], and the power demand is projected to increase steadily by 5

percent annually [4], indicating a huge gap that must be met by either additional

generation or energy reduction, or both. As for buildings, current developments in

technology in terms of efficiency improvement, controls, and opportunities for utility

microgrids integration have made them viable alternatives to accommodate such a

vast and growing demand and simultaneously provide energy reduction applications,

as small residences and commercial entities are continually incorporating the system
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to reduce the electricity they utilize from the commercial utility grid for domestic

consumption.

On another note, data has also revealed that renewable technology use in building is

advancing to significant levels, and the worldwide growth of the system has increased

rapidly from a niche market of diminutive applications to a mainstream power gen-

eration source [5]. This swift nearly-exponential growth has been attributed to the

cost-effectiveness of the developed systems, the resilience of the system for continuous

energy supply, the climate change mitigations, the innovations in renewable manu-

facturing such as solar PV, and the subsidies provided by the government [6]. As

such, there have been increasing advantages attributable to energy use reduction in

buildings, microgrid generation, and storage.

The building’s design, construction, and operation significantly impact its energy

use, air quality, and thermal comfort. The enthusiasm to combat the climate crisis and

reduce utility bills has driven consumers and concerned stakeholders to adopt different

rigorous energy efficiency strategies. Interestingly, for buildings, passive designs that

work with natural ventilation principles can be explored to achieve indoor air thermal

comfort. As the building sector remains responsible for the USA’s highest energy

utilization [7], consumers nowadays explore passive approaches to reduce or avoid the

power demands necessary to operate the buildings. Unsurprisingly, thermal comforts

and air quality in passive buildings rely heavily on outdoor climatic conditions, which

at times can be extreme. Occasionally, for comfort, occupants need additional heating

or cooling supplied by mechanical Heating, Ventilation, and Air Conditioning (HVAC)

loads in severe weather conditions.

Current additions of Photovoltaics (PV) systems, Batteries, Electric Water Heaters,

and other Distributed Energy Resources (DER) have driven the operation of passive

buildings to a new dimension and made it more complex. There is a strong need for

managing the resulting intermittent demands from such buildings for efficient and
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resilient grids. Thus, this work investigates an integrated hybrid model of buildings

in three different ASHRAE climate regions operating in passive, controlled-passive,

and active modes. The proposed model’s simulation results are then compared with

a benchmark model, EnergyPlusTM, developed by the U.S. Department of Energy

(USDOE) to establish significant accuracy levels.

Natural ventilation allows for building air circulation from the external and internal

environment by natural forces, unaided by mechanical systems resulting in less en-

ergy usage. Generally, recent, low-energy buildings have attracted significant research

attention, most of which focused on building designs, construction, energy-efficient

equipment, and the addition of alternative energy sources. Asides from natural venti-

lation, other building-science principles used by passive buildings to minimize or elim-

inate their building operational energy demand include super insulations, extremely

air-tight envelopes, and controlled internal and solar heat gains [8].

The designs for passive buildings differ across several climates, and indoor air ther-

mal comforts are generally challenging to achieve by natural means in severe regions.

In such a harsh environment, supplementary power from the utility grid or onsite

renewable is necessary to support additional heating or conditioning from efficient

mechanical HVAC systems. Such systems have nowadays become significant key ele-

ments in demand management activities due to their flexibility in operations, controls,

and energy uses. These inherent characteristics in the flexibility of building equip-

ment operation can be explored to balance power supply and demand and to support

the integration of onsite renewables with the utility grids [9], [10].

Buildings, primarily account for nearly 40% of all energy use in the USA [7]. Pas-

sive building requires less than 120 kWh/m2/yr of treated floor area in primary energy

demand [11]. Active buildings have unlimited demands and use mechanical systems

to supply conditioned air for occupants’ thermal comforts. Active buildings can share

some similar features to passive buildings including extremely tight envelopes, build-
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ing orientation, and thick insulations, but additionally, use automation systems or a

combination of controllers to minimize energy usage. As a host to the most flexible

loads and Distributed Energy Resources, the building requires an accurate and com-

putationally efficient thermal dynamic model that precisely estimates and accurately

predicts end-use electricity demands.

Contrary to the facilities operated by mechanical systems, detailed prediction of

energy performance in passive buildings is often complicated due to airflow dynamics,

sensitivity to weather conditions, and sensitivity to non-linear parameters originat-

ing from the controllable airflow openings in the building as windows and doors [12].

Prediction accuracy is highly essential in passive buildings because of the buildingâs

slow reactions to future energy inputs, such as passive solar gains, which could sub-

ject the building to an increased chance of overheating or overcooling periods. Such

occurrences bolster the requirement for sophisticated control schemes that accurately

anticipate the thermal behavior of buildings and their predictable energy gains needed

in the demand management analysis of energy markets.

1.2 Motivation

The residential building sector accounts for approximately 37% of the total U.S.

electricity consumption [13]. Another recent report from consumer surveys indicated

that approximately 90% of consumers have enthusiasm to either support or mate-

rialize advanced technologies for demand side management [14, 15]. This prioritizes

residential building sector as a leading candidate for Energy management targets and

Demand Response applications. As, such, to study the buildings for these services,

models are required.

The models representing building thermal dynamics can generally be categorized

into three distinct classes: the physics-based or white-box models, the data-driven

or black-box models, and the hybrid-based or grey-box models [16–20]. The hybrid-

based model is well proven as a simplified, flexible, detailed, and accurate model that
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captures the strengths of the physics-based and the data-driven models [19–22], and as

a result, is utilized extensively in this work. Recent studies have established that the

building HVAC system and controls model is heterogeneous and complex [18,23,24].

Thus, as we transition to the smart energy future, building operations and the controls

of its heterogeneous subsystems are correspondingly increasing in complexity.

The complexities are even more significant if the buildings are designed for residential-

specific applications (such as for natural ventilation) or if any critical grid applications

require clustering the buildings for an aggregated level control. As such, there are

gaps in the literature on the modeling procedure that would best balance the build-

ing model’s accuracy, data requirement, computational efficiency, and generalization

capability [20, 25]. Proposed recommendations from literature for future modeling

include breaking a comprehensive model into sub-models or using an integrated mod-

eling methodology that enables an intuitive representation of the building system with

a topology that considers the interaction between physical and intrinsic characteristics

of individual building components [20,24,26].

In addition, modeling consistency, and building energy resources unification have

been found essential in controls and grid-interactive energy management applica-

tions [27]. For a building to be treated as a single system, its thermostatically con-

trolled load (TCL) models often include time constant parameters (such as R and C

parameters) that need to be combined and represented similarly with other typical

resources such as batteries and electric vehicles. For flexible characterization and

coordination of these loads, the unification of the parameters using reduced-order

models in the form of a generalized battery model (GBM) is essential [27].

1.3 Problem Statement

It is often difficult to obtain the exact building thermal dynamics model or pa-

rameter values that reveal accurate performance and physical reality of the build-

ings [18], [28], [20]. Existing comprehensive building energy simulation tools, such



7

as EnergyPlusTM and TRNSYS are complex because they require vast amounts of

well-detailed data for simulations. They are also lacking in flexibility and compu-

tationally inefficiency because mostly, they focus on a single building, have a slow

run-time, and are unsuitable for simulations requiring fast-changing signals such as

frequency regulations. Such reasons have made them inadequate for predictive and

grid control applications, which raised the need for simplified hybrid models using dis-

cretized equations that accurately capture the building physics and simultaneously fill

the gaps of the existing models including fast runtime and simplicity [29]. Although

the hybrid models cannot match the details and accuracy of well-detailed simulation

engines like EnergyPlusTM, they, however, provide reasonably accurate results and

overcome the limitations of the existing software.

1.4 Research Aim

This study aims to develop an efficient integrated building thermal dynamics model,

control, and optimization framework for hybrid ventilated residential buildings that

confidently study their efficient operation in different climate regions.

1.5 Research Objectives

The main contributions of the proposed work compared to the state-of-the-art are

as follows:

• Identify the research gaps in parameter generation procedures, applicabilities,

and implementations of the building thermal models for special applications

such as hybrid ventilation operation and optimization.

• Present the current modeling challenges and requirements needed for advanced

models to interoperate with the ever-developing smart grid applications.

• Develop a simplified and generalized residential building thermal model that

incorporates the three distinct operational modes of passively designed buildings

that have not been designed in the state-of-the-art.
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• Propose a framework can use naturally ventilated building techniques as much

as possible and thoroughly analyzes their comfort potential across different US

ASHRAE climate zones.

• Develop a simplified functional hybrid controller using a logic-based rule to

maximize the use of natural ventilation for comfort in residential buildings while

simultaneously managing the building energy demands.

• Present the general performance, habitability, operability, and percentage de-

mand reduction attributable to naturally ventilated residential buildings in

three different American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE) specified climate regions.

• Present a simplified functional hybrid operation mode of operation usable on res-

idential building thermal dynamic models for aggregated level control of build-

ings designed to use natural ventilation.

• Present a scalable and extensible model predictive strategy that makes the

building energy aware (can manage the energy consumption) for real-time con-

trol of the intermittent operation of active systems in hybrid ventilated buildings

considering other large populations of building electrical loads.

1.6 Research Scope

This research focuses on residential hybrid ventilated buildings which are meant to

operate by prioritizing natural ventilation in efforts to meet occupants’ thermal com-

forts and reduce their power demands simultaneously. The process of generating their

thermal dynamics was developed, and the sequential control modes were analyzed.

The developed modeling techniques process was then applied to three buildings in

different ASHRAE climate regions. Based on the models of these regions, demand

side management through the respective distributed energy resources of one of the
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buildings along with the potential utility savings were analyzed to prepare the model

for more advanced studies and community-level aggregation.

1.7 Main Research Contributions

In order to achieve the aforementioned objectives, considering the scope of this

study, the work is sectioned into different key tasks. Each of the tasks and major

contributions accomplished with them is summarized in the next subsections.

1.7.1 Contribution 1: Develop a Hybrid Building Model Interoperable with

Future Smart Grid Architecture

The main contributions are:

• Created a novel integrated hybrid building thermal model for buildings with

special application requirements such as hybrid ventilation operation.

• Developed an extensible simulation framework using a Python library, consisting

of a detailed house thermal model and a large population of distributed energy

resource models.

• Developed a parametric identification methodological framework with Leven-

berg Marquardt Algorithm that accounts for a wide variation of nonlinear in-

puts, specifically from the weather parameters of hybrid ventilated buildings.

• Analytically Validated the developed integrated hybrid building thermal models

with standards from EnergyPlusTM.

1.7.2 Contribution 2: Develop Functional Hybrid Operation Modes for

Residential Buildings

The main contributions are:

• Developed three distinct functional operational modes of passively designed

buildings that have not been designed in the state-of-the-art.



10

• Developed a simplified functional hybrid ventilation controller using a logic-

based algorithm to prioritize the use of natural ventilation for comfort in resi-

dential buildings.

• Developed a complete framework for implementing mixed mode operation of

hybrid ventilated buildings, including load reduction potential such that zone

internal temperatures are maintained within occupant’s desired range.

• Analytically established percentage energy reduction attributable to the oper-

ation of naturally ventilated residential buildings in three different ASHRAE-

specified climate regions.

1.7.3 Contribution 3: Develop an Optimization Framework that Further makes

the Building Energy Aware

The main contributions are:

• Developed a scalable and extensible framework for implementing model predic-

tive strategy operation of hybrid ventilated buildings for real-time control of

the intermittent operation of their active systems.

• Used three distinct test cases of demand side management to gain insight into

the efficacy of the model predictive optimization framework in supporting grid

regulation and optimally providing reliability.

• The proposed optimization framework is validated for the correctness of oper-

ation through power balance analysis.

• Analytically established benefits such as incentives gain or percentage energy

reduction attributable to the participation of the hybrid buildings on three test

cases.

• The impacts of the various constraints and the operating response of DERs

during Energy management events are better understood.
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1.7.4 Contribution 4: Develop an Aggregator Framework using Virtual Battery

Model to Unify Resources and Quantify Flexibilities of Passive Buildings

The main contributions are:

• Proposed a simultaneous optimization-based flexibility characterization strategy

and aggregator oversight for a large population of passive buildings designed for

special applications such as hybrid ventilation.

• Developed an MPC-based dispatched algorithm for passive building energy re-

sources and a hierarchical coordination framework that allows aggregators for

effective grid compliance.

• Analytically quantified the benefit assessments of coordinating aggregated dis-

tributed loads for grid services rather than independently.

1.8 Summary and Organization of the Dissertation

In this chapter, the general background of residential buildings, their distributed

energy resources, and energy outlooks was provided. The motivation of the study, as

well as the reasons why improvements in building thermal dynamics are essential, were

stated. The research aim, objectives, and scope of the dissertation were highlighted.

Finally, the specific tasks accomplished and their contributions to the existing body

of knowledge were also provided.

The remainder of the dissertation has been structured as follows. Literature reviews

relating to the scope of this study are discussed in Chapter 2. The proposed hybrid

thermal model for the residential building is presented in Chapter 3, where the tested

residential buildings that verify the building models based on ASHRAE climate zones

were provided. Chapter 4 presents the functional hybrid operation modes for the

building and the results for load reduction capability are highlighted. Chapter 5

presents the model predictive optimization framework developed for this study and
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is followed by the results and discussions of the test case applications. Chapter 6

discusses aggregator formulations for grid requirements enforcement and quantifying

the flexibilities of Passive buildings for other grid services. This is also followed by

conclusions and future works in Chapter 7.



CHAPTER 2: LITERATURE REVIEW

The scheme of this study was discussed in the previous chapter. Working in accor-

dance with the plan, it is important to review the current state of the art in building

thermal dynamics, building energy management, smart grid architecture and services,

optimization and model predictive controllers, and the research gap that eventually

led us to novel ideas to accomplish the aim and objectives of this study.

2.1 Introduction

This chapter highlights comprehensive, relevant studies relating to building ther-

mal dynamics, distributed energy resources, and their integration with smart grids.

The first few sections provide relevant backgrounds on building energy use and the

architecture of modern-day buildings. This is accompanied by literature reports that

specifically targets the residential building sector. The later sections discussed the ex-

isting building model classifications, looking at parameters, modeling technique, and

their application for smart grids. The chapter concludes by reviewing prior research

works and identifying the knowledge gaps in realizing appropriate models compatible

with the evolving smart grid architecture.

2.2 The U.S. Electricity System

The electricity system in the United States consists of a complex network of power

generating plants, transmission lines, distribution lines, and consumers of electricity.

This complex network is often termed the electric power grid. Fig. 2.1 illustrates the

topology of the current state of a typical grid and how it has evolved [30].
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Fig. 2.1: The U.S. Electric Grid System [30]

One interesting thing about the electric power grid is that the generation by the

plants and the consumption by the end-users of electricity must be continuously

balanced at all times while minimizing the amount of loss in the lines. This has

always been a challenge considering the modern power grids with varying levels of

distributed generations. As such, both the power suppliers and end-users are key

stakeholders in ensuring the reliability of the power grid.

2.3 Buildings Energy Use

The energy end users are broadly categorized into various sectors; residential, com-

mercial, industrial, and transportation. Buildings are responsible for almost 40% of

the USA’s total energy consumption [7]. Residential and commercial buildings specif-

ically are the front runners of higher electricity consumption in the United States

when compared to other sectors such as industries and transportation [31]. Within

the residential buildings sector, space heating and cooling, and operations of other

Thermostatically Controlled Loads (TCLs) account for a significant fraction of the

total electric demand [32].



15

2.3.1 Residential vs Commercial Buildings Energy Use Components

Even though residential and commercial buildings consume a significant amount of

energy sources, what constitutes their energy uses are different. Fig. 2.3 compares the

commercial and residential energy use in ENERGY STAR’s building stock [33]. It can

be observed that residential buildings have major appliances including washers, water

heaters, refrigerators and freezers, dryers, and many more that are not prevalent in

commercial buildings.

Fig. 2.2: The U.S. Energy Usage by Sector [7]

Also, the difference in residential building thermal dynamics and the commercial

counterparts stem majorly from the schedule of operation and the insulating and op-

tical properties of their building envelope, which govern how heat is stored, reflected,

and radiated from the building. Table 2.2 shows the comparison between residential

and commercial building envelope component properties. About 50% of the resi-

dential heating loads result from flows through the building envelopes, while this is

around 60% in commercial buildings [33]. Infiltration also has a significant role in the

heat gain in residential buildings.

The heterogeneity in the sources of the building’s changing dynamics, including

the thermal, fluid, and control system actions of the Heating, Ventilation, and Air-

conditioning (HVAC) systems, has generated a requirement for a higher level of ab-

straction in building simulation and analysis [24]. Interestingly, buildings are becom-
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ing smarter due to the way we operate, control, and integrate their resources within

the developing smart grid architecture. The most recent advancement involves the

increasing trends in the smart use of buildings for special applications, including hy-

brid ventilation for significant energy reduction [35]. However, significant challenges

are limiting the development of simplified, accurate, and generalizable modeling tech-

niques for such sophisticated special applications. These challenges are due to the

complexity of the building dynamics attributable to variations in the paths and rates

of the mass airflow, the presence of numerous uncertainties in the models used for

performance prediction, the high sensitivity of the models to climate conditions, and

the presence of control systems that have far more inputs which are either stochastic,

Fig. 2.3: The U.S. Electricity Consumption by Sector Energy and their End-use Categories [34]
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discrete, nonlinear, and highly constrained parameters to process the models for grid

applications.

2.4 Modern Building Architecture

The architecture of modern-day residential buildings is illustrated in Fig. 5.3. An

increasing number of these buildings have integrated intelligence that uses Internet

of Things (IoT) devices such as sensors, software, web-app, and other intelligent

connectivity technology to monitor and optimize building operational activities [36–

38]. Smart devices can analyze building data and use algorithm learning to identify

usage patterns, trends, and potentials for operational optimizations.

Apart from the smart loads and devices, modern buildings contain other local power

sources, electric vehicle charging stations, and energy storage that needs management.

Through modeling, residential distributed energy resources can be aggregated to study

community impacts on grid networks, and how these resources can interact with ex-

ternal controllers for automation, prediction, and optimization capabilities. These

reasons and the supports of the transition to a smart energy future are the funda-

mental rationalities why building models are essential for building-grid simulation.

Significant advances have been made in the past decades in model developments that

can closely capture the thermal dynamic of buildings. As such simplified, accurate,

generalized, and well-defined building models are required to upgrade the level of the

research developments [20]. Apart from the previous reasons stated for the necessity

of advanced building thermal dynamics, modern buildings with natural ventilation

strategies are now in existence as many of them have been designed, constructed,

and are fully operational [8, 11]. These types of buildings use passive strategies in

conjunction with pressure and wind effects to supply fresh air to the internal building

environment and remove air from an indoor space without the aid of any mechanical

systems. According to [39] The listing of buildings in the U.S. and Canada, projects

completed and verified between 2016 and 2019 rose 53%, and projects that are in
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Fig. 2.4: Schematic of the Building with HVAC Equipment

planning or construction rose 79% [40]. These data confirm the idea that naturally

ventilated buildings will continue to grow and become a larger percentage of the build-

ing stock over time. While these buildings are ground-breaking and highly efficient,

for the most part, they rely on electricity supplied by the electrical grid, especially

during inclement weather periods. Thus, comes the study of how they interact with

the emerging smart grid architecture.

2.4.1 Passive Building with Hybrid Ventilation Technology in Comparison with

other Modern Technologies

Modern building technologies are generating numerous opportunities for energy

efficiency improvements. The use of smart devices has revolutionized the way we

manage energy in our homes, however, the impact of hybrid ventilation technology in

passively designed house construction cannot be overemphasized and how it compares

with other forms of modern technology is stated in the following subsections.
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Fig. 2.5: Building Thermal Dynamic Models at a Glance.

2.4.1.1 Thermally-Heavy Building Advantage

A key benefit of the design is being able to economically heat and cool buildings

without trading comfort. Most modern buildings still using smart technology alone

require integration with the building’s active systems, which are sometimes perceived

as invasive. Various studies and tracked metering data show that buildings have been

reported to consume 75% to 95% less energy than traditional counterparts when pas-

sively designed with hybrid ventilation technology [41–45]. An example of such a

study is illustrated in Fig. 2.6. Similarly, Fig. 2.7 shows the apparent improved

thermal quality from the surface temperature of a building after passive refurbish-

ment, thus, visibly reinforcing the significant efficiency improvement of the technology.
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Also, higher air quality and uniform indoor temperatures have also been reported to

be significant in passive-designed buildings.

Fig. 2.6: Passive House Energy Use Comparison with Traditional Building [41]

2.4.1.2 Nested Energy Efficiency

Designing or configuring buildings to maintain superliner energy efficiency critical

in advanced demand management. With basic controls, only passively designed build-

ings are able to achieve this level of efficiency. This is possible because, in addition to

their base design which has already incorporated a significant level of energy reduc-

tion solutions, like other smart controlled buildings, the technology has the option to
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Fig. 2.7: Infrared Thermographic image of a traditional building before(left) and after (right) the
passive refurbishment [46]

also accommodate the use of smart sensors, controllers, and optimization frameworks

for a higher level of optimal energy efficiency operation.

2.4.1.3 Economically Viable Operation under extenuating Circumstances.

(Covid-Ventilation)

Recent health and safety concerns have increased ventilation air usage. The recir-

culation of air is normally deployed to HVAC systems as energy saving strategy, how-

ever, this has resulted in increased infection risks, and ASHRAE proposed bringing

in 100% of fresh outside air for conditioning [47, 48]. Significant operational varia-

tions of the HVAC systems occur during the pandemic [49, 50]. Studies have found

that an average of 15% ventilation was increased across the board due to mechanical

overventilation of buildings - a protocol that should largely have been supplemented

with the use of hybrid ventilation technology.

The US EPA reports that an increased air rate from 2.5 L/(s.person) to 10 L/(s.person)

will almost proportionately increase the HVAC systems operation costs by 2 to

10% [51]. Authors of [52] also presented that the energy use intensity of buildings

would significantly increase by 150% if the ventilated air rate were to be raised from

0 to 200%.

The author of [53] quantifies the natural ventilation performance according to the

window opening conditions and the infection probability during that operation. It was
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reported that infection probability is less than 1% with the use of a mask and when

windows are more than 15% open. However, the power used by HVAC for ventilation

during the window openings increases by 10%. This reinforces the need for a con-

troller that delivers the natural ventilation necessary for comfort while simultaneously

keeping the HVAC demand very low.

2.4.1.4 Operational Generalization - Security/Optional Dependency on IoT

The hybrid ventilation technology is not exclusive to a certain building type. How-

ever, other smart technologies may be exclusive to operations in certain sectors due

to their vulnerability to security attacks thereby limiting their functionality in certain

applications. Examples include a targeted international hack at Penn State Univer-

sity through Wireless thermostats [54] and another international hack at an unnamed

University through Smart bulbs, metering, and other wireless devices [55]. Finally,

a similar hack from sophisticated foreign hackers gained significant remote access to

lighting controllers in the operations networks through the snatching of a California

universityâs housing files [56]. The aforementioned occurrences reinforced the ne-

cessity to keep our optimal energy efficiency operations out of smart devices from

networks vulnerable to attacks with the evolving smart building technology.

2.4.1.5 Challenges

The challenges facing the technology however include a lack of consumer knowledge

of how the financial works. Basically, these projects are designed with the main goal

of reducing energy bills and improving occupants’ comfort, even when this leads to

initial higher construction costs. Typically initial costs of a passive house project are

3-5% higher than those of traditional construction [57] but worthwhile considering

75% to 95% in annual energy reduction.
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2.5 Demand Side Management

The demand side management involves planning, monitoring, and controlling the

activities relating to the electricity usage of consumers to maintain grid reliability [58].

It is an alternative way that electric system planners and control operators uses to

balance the energy in the grid by altering load flexibility to suit available supply,

rather than providing additional generation to meet the demand.

Fig. 2.8: Demand Side Management Chart

2.5.1 Demand Response in Residential Buildings

Demand response is an element of demand-side management and in the residential

sector follows the retail level classification that can either be price-based or incentive-



24

based depending on the techniques being used to achieve or execute the program [59].

Demand response in the residential sector gives home owners a significant opportunity

to reduce or shift their loads during peak periods in response to specific time-based

rates or any other form of economic or incentive signal. Depending on the market

structure, the demand response task is overseen by either the utility or Independent

System Operators (ISOs) or Regional Transmission Operators (RTOs) that are clas-

sified as non-profit organizations. A report of electricity savings, and impacts specific

to demand response is monitored by FERC [60]. A sample snapshot from USEIA is

illustrated in Fig. 5.6.

Fig. 2.9: Demand Response Savings by Balancing Authorities [61]

Demand response activity is widely spread across multiple sectors as entities prior-

itize economic savings on utilities. Fig. 5.6 highlights the Demand Response Savings

by various Balancing Authorities in the United States. The PJM data in Fig. 5.7 il-

lustrates the significant contributions from the residential sector till 2018/2019. Both

charts of Fig. 5.7 compare the contribution of the residential sector from the PJM

Demand Response report. According to the charts, it can be observed that the res-

idential sector captured 18% of the total Demand Response market in 2018, while

the number has reduced significantly in 2021. While it is impossible to neglect the



25

effects of nationwide pandemics, among other factors, on the reduction. It, however

reinforces that other demand-side management can be prioritized for considerable

electricity savings. Future projections show favorable expectations that demand re-

sponse still continues to grow. Duke Energy expects the contribution from energy

efficiency and demand response initiatives to hit 2050MW by 2035 [62].

Fig. 2.10: Residential Load Management DR Registrations in 2018 [63] compared to 2021 [64]

In either the wholesale market or retail market, economic benefits and reliability

drive the participation of consumers in demand side management events. Several

previous works have studied wholesale DR, including; direct load control, emergency,

capacity markets, ancillary services market, interruptible/curtailable loads, and de-

mand bidding as listed by [38, 65–67], while in the retail market, efforts have been

directed towards majorly price-based strategies that provide energy reduction bene-

fits.

In price-based DR, allow consumers to exercise flexible consumption pattern through

variable pricing mechanism with the aim of saving on utility bills. The common forms

include Real-time Pricing (RTP), Time-Of-Use (TOU) Rates, and Critical Peak Pric-

ing (CPP) [68, 69]. On the other hand, with the incentive based DR consumers are

provided incentives for agreeing to participate in DR. The common forms include Di-

rect Load Control (DLC), Interruptible/Curtailable Load, Emergency, and network.

The differences between the pricing methodologies is explained in Table ??
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Table 2.1: Price-Based DR opportunities [70–76]

TOU CPP RTP

Program
price and time
periods are fixed
in advance

Exercised dur-
ing a few annual
critical hours

Neither the price
nor the time pe-
riod is fixed in
advance

Utility Benefits reduce system
costs

significantly re-
duce peaks

eliminates the
necessity for
expensive power
plants

Consumer Bene-
fits

flexible customer
bills

flexible bills
especially with
Base load pro-
gram

more control
over utility bills

Pricing Type Static Intermediate Dynamic

Practiced By PG&E, PSE
Gulf Power,
SDG&E, AEP
Ohio

CommEd, Geor-
gia Power, Duke
Power, TVA

2.6 Building Energy Simulations

Building simulation engines help users understand building energy use categories,

key performance indicators, generation and integration capabilities, and other anal-

ysis essential for research [77]. It takes multiple inputs such as building including

geometry, lighting, water heating, HVAC, refrigeration, and renewable generation

details. It integrates the aforementioned inputs with the local weather conditions,

and the system configurations, operation and occupancy schedules, building compo-

nent efficiencies, equipment setpoints, and control strategies to estimate the energy

requirements for comfortable building operations.

A well-established and accurate building simulation models are currently in ex-

istence. Examples include EnergyPlus, BEopt, TRACE, DesignBuilder, eQUEST,

TRNSYS, among others [78–82]. Yet, they are characterized by limitations inflexi-

bilities, computational efficiencies, aggregation development capabilities, and many

more [26]. These have made them unsuitable for most studies, including optimal
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control implementation and smart grid applications involving frequency regulations,

which require fast-changing dynamics. As adapted from [26]., Fig. 5.8a shows the

architecture of a well-detailed simulation engine. In comparison, this work provided

an architecture of a simplified building thermal dynamics model illustrated in Fig.

5.8b meant to perform similar functions as 5.8a

Table 2.2: Energy Flows in Building Envelopes (Quads) [33]

Residential Commercial
Building component Cooling Heating Cooling Heating
Roofs 1.00 0.49 0.88 0.05
Walls 1.54 0.34 1.48 −0.03
Foundation 1.17 −0.22 0.79 −0.21
Infiltration 2.26 0.59 1.29 −0.15
Windows (conduction) 2.06 0.03 1.60 −0.30
Windows (solar heat gain) −0.66 1.14 −0.97 1.38

It is important to acknowledge the insightful reviews that have been performed on

building thermal dynamic models [17–19, 23]. For the benefit of the broad research

audience, rather than discussing extensively the low-level classification of the models,

structures, equations, strengths, and weaknesses, this study prioritizes reviews based

on research gaps in parameter generation procedures, applicabilities, and implemen-

tations of the models for special applications such as hybrid ventilation operation and

Fig. 2.11: (a) Sample Detailed Simulation Engine Architecture [26] (b)Sample Simplified Building
Model Simulation Architecture
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optimization. This study also examines the current modeling challenges and require-

ments needed for advanced models to interoperate with the ever-developing smart

grid applications. Finally, this study investigates the necessity for further research

efforts in the models for building thermal dynamics

2.7 Building Thermal Dynamics Models

The models for representing building thermal dynamics are extensively classified

into physics (white box) models, data-driven (black box) models, and hybrid (grey

box) models [16–20]. Their categorization depends on input parameters, structure,

sophistication in computations, output details, and design purposes.

2.7.1 Physics Models

The Physics Models require a comprehensive knowledge of the various sub-systems

and energy balance of the buildings. Current gaps in physics models are present in

the subsections

2.7.1.1 Parameters

The physics model contains hundreds or thousands of input parameters usually ob-

tained from the physical design characteristics, building components, and equipment

nameplates. However, these parameters need to be obtained from onsite experiments

especially, for an older building, and when the parameters are not readily available.

The parameters such as the heat transmission coefficients and heat capacities have

physical significance in the modeling equations of the building. For example, in

EnergyPlus, the transmission heat transfer occurs between the building zone internal

space and the ambient environment is governed by the convective heat transfer rate

between the two regions. The rate also depends on the component heat transfer

coefficient, and the surface area of the building component, as represented in (1).

The building zone interior heat capacity in (2) indicates how much heat is stored in

a building and it is a function of the building zone volume.
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Qt,z =
Ns∑︂
i=1

hiAi(Tsi − Ti,z) (2.1)

Cin,z = V ρaircpcT (2.2)

The accuracy of the physics model depends on the accuracy of these parameters.

Building material deteriorates, and as a result, some of their parameters such as

thermal resistance values change. The degradation is usually due to environmental

conditions, active material deterioration, aging, building modifications, and usage

patterns. A report from the U.S. Department of Energy test results has verified

that thermal resistance (R) values of building components performance can decline

as much as 50% over time [83]. Fig. 5.9 corroborates that notion by illustrating

the degradation of the R-values of major insulation manufacturers when subjected to

American Society for Testing and Materials (ASTM) C1303 standards tests [84].

Fig. 2.12: Decline of Building Thermal Parameter Values Overtime [84]

On-site measurements using wall stratigraphy, Heat Flux Meters (HFM), and In-

frared Thermography (IRT) methods, which are viable options in estimating compo-

nent thermal parameters, require high expertise and are very expensive [28,85]. Data
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interpretations can also be challenging due to the influence of noise from climate con-

ditions, shading, random reflections, or any other disturbance or extenuating circum-

stances affecting the procedure. Furthermore, the thermal resistance/conductance

values are generally not consistent (homogeneous) throughout the area of a building

envelope component [86]. As such, experiments of an area won’t justify values for

other areas of the building component.

2.7.1.2 Modeling Procedure

Often, physics models are characterized by design oversimplifications in character-

izing human behaviours in buildings and deterministic scheduling, which eventually

might introduce some errors [87]. Another example is an implicit design strategy

Fig. 2.13: Physics-based Building Modeling Procedure

regularly used by the developers of building models. In such a design, a Window

to Wall Ratio (WWR) factor is often used to represent the glazed portion of the

Fig. 2.14: Data-Driven Building Modeling Procedure.
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building facade to reduce the set of larger windows in the designs [88]. Such implicit

designs might have significant impacts inaccurately characterizing buildings designed

for special applications such as natural ventilation.

Fig. 5.12 summarizes the major steps of the general physics method for building

system identification.

Fig. 2.15: Physics-based Building Modeling Procedure

2.7.1.3 Smart Grid Applications

The requirements for advanced controls include computational efficiency, fast-sensing,

and flexibility to aggregate the models for the community-level analysis of building-

grid interaction. Physics models fall short in any combination of the highlighted

application requirements. In physics models including EnergyPlus, HVACSim, and

TRANSYS, computations are performed on various detailed subsystems, thereby in-

creasing their complexity. Computational efficiencies are also lower due to these com-

prehensive energy calculations and estimations [26]. In another context, BEOPT,

BLAST, and DOE 2.1 currently do not aid high-resolution simulations lesser than

an hour. These characteristics negatively impact the use of these models for several
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applications involving fast-changing dynamics in power grid analysis.

Fig. 2.16: Common Building Management and Thermal Dynamics Framework

2.7.2 Data Driven Models

The data-driven require a vast amount of high-quality data to obtain an accurate

model for the building thermal dynamics [16]. The model considers the relationship

between any input and output signals without involving any physical prior knowl-

edge of the system. The most straightforward and most intuitive data-driven models

are categorized under statistical models [19]. Examples of these are Auto-Regressive

(AR), Auto-Regressive with eXogenous inputs (ARX), Auto-Regressive with Mov-

ing average (ARMA), Auto-Regressive with Moving Average and eXogenous inputs

(ARMAX), and so on. Other linear identification are done using the transfer func-

tion representation. The complex and non-linear system dynamics involve the use of

algorithms such as Artificial Neutral Network (ANN) and Support Vector Machine

(SVM) for system identification. Gaps in the data-driven models are further analyzed
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in the following subsections.

2.7.2.1 Modeling Process and Parameters

The parameters of the data-driven models have no meaningful significance, and

the model structure is usually inconsistent with the physical reality of the building

systems. Although they have high accuracy, [17,26], the non-significance of the output

parameters militates the properties of the models for aggregation development and

optimization analysis. A sample general representation of the system from statistical

models is in (3) with only input output, and noise identified [89]. Other parameters

have no physical interpretation.

α
(︁
q−1

)︁
y(t) =

β (q−1)

θ (q−1)
u(t) +

γ (q−1)

δ (q−1)
w(t) (2.3)

Another example of the model using the ARX structure in a linear parametric

approach and which has been used extensively to describe building thermodynamics

as in (4)

y(k) = a1y(k − 1) + a2y(k − 2) + · · ·+ b1u(k − 1) + · · ·+ bnbu (k − nb) + e(k)

2.7.2.2 Smart Grid Applications

Researchers feel skeptical about whether data-driven models can truly overperform

or replicate similar physical model’s counterparts satisfactorily. Recent studies have

used this approach satisfactorily for certain applications with Smart grids [90, 91].

For grid analysis, building thermostatically controlled load models often includes pa-

rameters that need to be combined. For flexible characterization and coordination of

these loads, unification of the parameters using reduced-order models in the form of a

generalized battery model (GBM) is essential [27]. The non-physically interpretable
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parameters from data-driven models generally made them unsuitable to design coor-

dination algorithms for the building loads and associated resources. The lack of such

capabilities further hinders the use of data-driven models for future smart buildings

to grid applications.

2.7.2.3 Data Collection Procedures

Building Model Designs: Quality building data collection and management are

challenging. In reality, most buildings are designed to collect data for metering pur-

poses only or performance-based controls. Disaggregating the data for system iden-

tification is demanding. Further exacerbating the data collection is the lack of data

for modern-day hybrid buildings, as they are still not being physically constructed in

several climates. So, researchers often rely on data established from the physics mod-

els as a real building. Since the model relies on high-quality data, this would mean

all the error-prone assumptions made with some of the physics models are re-ingested

to the data-driven models, thereby complicating modeling errors.

2.7.3 Hybrid Models

The hybrid models bridge the gaps between the physics models and the data-driven

models [92,93]. They rely on parameters of physical significance and predefined input-

output relationships to establish the buildingâs dynamics. For these reasons, the

hybrid models’ framework provides pathways that overcome the limitations of the

other two models. The implicit, oversimplification designs and onsite measurement

errors from physics models can be mitigated by introducing stochastic requirements

in the data to handle disturbances, constraints, and uncertainties. In simple terms,

within a hybrid framework, the physics we already know can rely on tuned data to

accurately unmask the physics that we do not yet know. Despite the extensive use of

hybrid models, the gaps that persist are discussed further in the following subsections
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2.7.3.1 Model Structure and Parameters

Hybrid building model parameters have physical significance and can exist in dif-

ferent forms [26]. The most challenging and important part of the model development

is identifying the model order and getting the optimum parameters that agree with

the physical reality of the building system [93].

2.7.3.2 Smart Grid application

The hybrid building thermal dynamics is prevalent across literature based on vary-

ing system identification methods. Generally, the widely used system identification

procedures often require data generation from experiments that seek to excite the

most dominant dynamics in the building being modeled [26,92–94]. Often, the pseudo-

random binary sequence (PRBS), also called persistent excitation signals, is used to

satisfy significant theoretical assumptions on the reliability of the generated data for

statistical identification. A previous work critically established that using the ex-

perimental procedure provided better identification and simulation performance [95].

However, in reality, comfort compromise is inevitable with such experiments; turning

the HVAC on and off for such experimental requirements would almost always cause

discomfort to the building occupants, who are essential parts of the building’s dy-

namics as they contribute to internal gains. Asides from that, such experiments often

miss the representation of buildings for special applications such as hybrid ventilated

buildings whose thermal dynamics may not necessarily depend on the operation of

the HVAC system for longer periods. It is conceivable that bounding building operat-

ing conditions and disregarding special application effects would result in inaccurate

predictions that are unsuitable for controllers since huge forecasting errors are un-

avoidable in the poorly identified model that does not represent the transient of the

specific application of the system.
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2.8 Gaps in Controls with Some Building Model Frameworks

The choice of the building modeling methodology have a significant impact on the

ease of integration with the control architecture of the smart grid. Previous work

in [96] discussed the method of hybrid ventilation with droop and optimized con-

trols using the data-driven methodology for MPC formulations; however, for research

advancements, the approach lacks the potential for the unification of all building

resource models to analyze grid flexibilities as explained in [27,97,98].

Similarly, other works have reported the use of artificial intelligence-based models

such as artificial neural networks (ANN), fuzzy systems, and hybridized methods in-

cluding adaptive neuro-fuzzy inference system (ANFIS) in forecasting and prediction

with high accuracy [99–101]. However, recent studies have found out that they trail

behind MPC technique in realizing better building energy management even though

they are computationally efficient [102]. Moreover, the intelligence-based models are

completely data-driven methods that correlate only inputs and outputs, and their

parameters lack significant meaning. These non-physically interpretable parameters

further made them unsuitable for designing flexible coordination algorithms for the

building loads and associated energy resources as explained in [27], [97]

Physics models and Data-driven morels have shortcomings that militate them

against smart grid applications. Hybrid models were developed from the idea of

overcoming the shortcomings of both the other two models. While the hybrid model

has been applied widely in research, a closer look at its modeling architecture and

procedure reveals that they are ill-suited to address modeling characteristics needed

for smart energy future analysis. Most of the current hybrid building models are

monolithic that intertwine data input, fundamental physics equations, closed-loop

logic, and data output without making provisions for models extensions or special

applications that were not initially envisioned in their framework. Rather than hav-

ing an unstreamlined hybrid modeling procedure, ongoing research would prioritize
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developing and performing identification on hybrid building models in an integration

fashion like any other physical system. The model would have a modular platform

and capture future control extensions. The advantages of such a framework would

include:

• Hierarchical and realistic topological interconnection capability: The frame-

work would allow models to be developed explicitly at individual nodes. Then

interconnections can be made as new components are built up topologically

and hierarchically, plugging and integrating each of the component models with

clearly defined inputs, controls, and outputs, in the same way, they would be

plugged and structured together in a real physical building sense.

• Interoperability and Generalization Capability: An important feature of the new

modeling framework is the ability to interconnect models, subsystems, and pro-

cesses causal to the main building system dynamics to exchange and access all

forms of data and information. This would also guarantee easy future extension

capabilities in mind where additional future functionalities would be handled as

class methods during programming. It would allow different simulation modes

to be enabled for standalone and co-simulation applications separately.

2.9 Summary

In this chapter, the research gaps and limitations in the current day models for

residential building simulation and controls were discussed. As buildings are getting

smarter, there is a corresponding increase in heterogeneous subsystems of buildings

that must be analyzed for smooth transition to a smart energy future. As such,

building models would require an advanced level of abstraction and modularization

to manage any resulting increased complexities not currently in the state of the art.

In the next chapters, this study will present frameworks that offer a path to compre-

hensive models, control, and optimization algorithms viable for extensive smart grid
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applications.



CHAPTER 3: PROPOSED BUILDING THERMAL DYNAMIC MODEL

The research gaps in the models for residential buildings have been discussed in

the literature review chapter. Next, is to present some novel ideas that help bridge

the identified research gaps. Such ideas are discussed in the next sections.

3.1 Introduction

Building thermal dynamics models are of paramount importance for several con-

troller applications in simultaneously reducing daily operational energy, and achiev-

ing indoor air quality, and thermal comfort. In this application context, controllers

are required to work with accurate models that are computationally efficient, non-

mathematically complex (reduced-order), and generalizable, especially considering

buildings with passive designs and configured with hybrid ventilation technology. For

this, an integrated and simplified model is proposed in the next subsections and ex-

tensive simulations are carried out and three out of the seven standard ASHRAE

climate zones in the United States and their results are validated against standards

from EnergyPlusTM. A significant portion of the passive building thermal dynamics

model development methodology in this chapter matches a previous publication by

the same author described in [103]

3.2 Main Contributions

The goal of this chapter is to develop an integrated Hybrid Building Model inter-

operable with evolving Smart grid architecture. As such, the following contributions

are achieved

• Created an integrated hybrid building thermal model for passive buildings us-

able for special application requirements such as hybrid ventilation operation.
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• Developed a parametric identification methodological framework with Leven-

berg Marquardt Algorithm that accounts for a wide variation of nonlinear in-

puts, specifically from the weather parameters of hybrid ventilated buildings.

• Analytically validated the proposed integrated hybrid building thermal models

in comparison with standards from EnergyPlusTM.

3.3 Modeling Methodology

The EnergyPlusTM heat balance equation presented in [104] provides the basic

framework for developing the integrated hybrid model. As shown in Fig. 5.14, the

interaction between the five basic heat transfer modes achieves the zone internal tem-

perature for passive building. The modified EnergyPlusTM heat balance equation

from [104] is represented in (3.1); where the building’s sensible heating and cool-

ing components have been removed to accurately depict the thermal dynamics of a

naturally ventilated building.

Fig. 3.1: Passive Building Representation.
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Cz
dTz

dt
=

Ns∑︂
i=1

hiAi(Tsi − Tz) +
Nz∑︂
i=1

cpmi(Tzi − Tz)

+cpminf (Ta − Tz) + cpmvent(Ta − Tz) +

Nsi∑︂
i=1

Qtotal

(3.1)

Cz = V ρaircpcT (3.2)

• Total Zonal Heat Gains are represented as the sum of the internal heat gains

from people, equipment, lighting from the zone, and the solar heat gains directly

from windows or indirectly via absorption in opaque building components

• Transmission heat transfer occurs between the zone internal space and the am-

bient environment governed by the convective heat transfer between the two

areas.

• Another transmission and ventilation heat transfer occur between adjacent

zones represented by the difference between the zone’s internal temperature

and the adjacent spaces’ internal temperature.

• Infiltration heat transfer is governed by the difference between the zone internal

temperature and the ambient air temperature through wall cracks and leaking

surfaces.

• Natural ventilation heat transfer is governed by the difference between the zone

internal temperature and the ambient air temperature

• Heat Storage modeled to include both the zone air thermal capacity and the

effective capacitance of zone internal thermal mass (e.g., furniture, books, and

partitions), which is assumed to be in thermal equilibrium with the zone air.

3.3.1 Building Model

The first step in realizing our hybrid model is to modify the convective heat transfer

term from the zone component surfaces of equation (3.1) to a heat transfer term with
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an equivalent resistance that constitutes a thermal barrier encompassing the zone

from the outdoor area.

Cz
dTz

dt
=

1

R
(Ta − Tz) +

Nz∑︂
i=1

cpmi(Tzi − Tz)

+cpminf (Ta − Tz) + cpmvent(Ta − Tz) +Qtotal

(3.3)

where R is the equivalent thermal resistance of all the building envelope components

and substituted for
∑︁Ns

i=1 1/hiAi

Fig. 3.2: Base Interconnection between the Building Model, HVAC, and their Controls

3.3.2 HVAC Equipment Model

The HVAC system used considers both heating and cooling and is presented as a

coupled RC model as represented in (3.4). This work considers an electric heating coil

and a direct expansion (DX) cooling coil to provide heating and cooling, respectively.

Ch
dTs

dt
=

1

Rh

(TA − Ts) +QHV AC (3.4)
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where QHV AC = sensible heating or cooling rate from the coils, Ch = Heat capac-

ity of the HVAC equipment, TA = Ambient HVAC equipment temperature, Rh =

Ambient HVAC equipment resistance, Ts = Zone air temperature supply, PHV AC is

electric power directly associated with the coils to provide sensible heating or cooling,

Tmix = mixed air temperature of the zone returned air and outdoor air, COP = Coef-

ficient of Performance of the cooling unit and η = efficiency of the heating element and

PHV AC =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

COP
× cpmz(Tmix − Tsp), for cooling,

1
η
× cpmz(Tsp − Tmix), for heating,

0, Otherwise

Tsp is the intended internal temperature Tz needed to be maintained for comfort in

the building zone.

3.3.3 Electric Water Heater Model

The adopted water heater model is based on a single node (1R-1C) thermal dy-

namics representation given in [29]. The control logic is based on the difference

between hot water temperature Tw and the defined hot water setpoint Tspt. Rw and

Cw parameters can are obtained from the water heater datasheet.

Cw
dTw

dt
=

1

Rw

[Ta − Tw]− ṁw Cp (Tw − Tin) + UQwh (3.5)

The control model for the water heater is either on or off given by

U =

⎧⎪⎨⎪⎩
0, if Tw ≥ Tspt + δT/2

1, if Tw ≤ Tspt − δT/2

where Ta = Water heater equipment ambient temperature, ṁw = mass flow rate of

water, Cp = specific heat capacity of water, Tin = Water heater inlet temperature,
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and Qwh is the rating of the water heating element.

3.3.4 Schedulable Electrical Loads

Users typically initiate schedulable loads in the building with an anticipated com-

pletion time. Examples include loads associated with cooking and wet cleaning appli-

ances, such as Ranges, clothes washers, dishwashers, and dryers. According to [29],

the power associated with schedulable loads can be expressed as

Psch(t) = PratedU(t) (3.6)

where Psch is the power of the schedulable loads, Prated is the rated power of the load,

and Ut is the binary variable representing the load status. 1 for ON and 0 for OFF.

Fig. 3.3: Building Microgrid Structure

3.3.5 Energy Sources

The considered primary energy sources for the buildings are the utility grid and

onsite generation. A simplified PV system model is considered according to equation

(3.8)

Ppv(t) = Amod(t)S(t)ηpv(1− Upv(t)) (3.7)
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where Upv = the power produced by the PV system of the building ηpv is the efficiency

of the module, Amod is the total module area, S Global Horizontal Solar Irradiance,

Upv is the percent curtailment of the PV system.

3.3.6 Energy Storage

The battery system model is adopted from [105] and it is used to establish the

energy state of the storage system

EB(t) = EB(t− 1) + (ηch,B × Pch,B(t)− Pdch,B(t)/ηdch,B)×∆t (3.8)

Emin,B ≤ EB(t) ≤ Emax,B (3.9)

PBatt(t) = Pch,B(t)− Pdch,B (3.10)

0 ≤ Pch,B(t) ≤ Pch,Bmax (3.11)

0 ≤ Pdch,B(t) ≤ Pdch,Bmax (3.12)

Pch,B(t)× Pdch,B(t) = 0 (3.13)

where EB = Energy State of the Battery, Pch and Pdch = charging and discharging

power of the battery, ηch and ηdch = charging and discharging efficiencies of the bat-

tery. The following constraints are imposed on the battery system. Constraint (3.15)

ensures the energy capacity limit is maintained, Constraint (3.17) ensures that the

battery charging rate is between the minimum and maximum charging limits. Con-

straint (3.12) regulates the discharging rate. Constraint (3.13) prohibits simultaneous

charging and discharging of the battery.

3.3.7 Electric Vehicle Charging Model

A unidirectional charging model of the battery is adopted for the EV. It is assumed

that the discharging of the EV has a regular daily pattern necessary not needed in
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this model, only the interaction the EV has with the building microgrid is when it is

charging.

EV(t) = EV(t− 1) + (ηch,V × Pch,V(t)×∆t (3.14)

Emin,V ≤ EV (t) ≤ Emax,V (3.15)

EV,t ≥ Eset (3.16)

0 ≤ Pch,V(t) ≤ Pch,Vmax (3.17)

3.3.8 Power Balance

Building loads are not always coincidental with onsite generation and thus, require

external power from the grid. As adopted from [105], the overall building load and

the total power balance from the grid, onsite generation, and storage are represented

in (3.3). Constraint (3.18) describes Plocal as the sum of onsite generation and storage

power available, and constraint in (3.20) ensures that this power is consumed locally

by the building. Constraint (3.21) gives the total power balance.

Ppv(t) = Plocal(t) + Pch(t)− Pdch(t) (3.18)

Pload (t) + Plocal(t) ≥ 0 (3.19)

Pload(t) = PHV AC(t) + Psch(t) + Ple(t) (3.20)

Pgrid(t) = Pload(t) + PBatt(t) + PEV (t)− Ppv(t) (3.21)

where Ple is the uncontrollable building electric loads

3.4 Description of the Tested Real Buildings

The tested buildings were chosen from three distinct ASHRAE climate zones to

examine the performance of varying modeling structures and procedures for comfort

in passive buildings. The climate variations ensure evaluations under varying terms
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of building consumption, loads, use patterns, etc. which eventually shows the perfor-

mance of the hybrid models under different scenarios. Each of the selected prototypes

is a single-family and two-story building with 2500 square feet. They are designed

with two zones; the living zone and an attic zone). The living zone is conditioned

while the attic is unconditioned. The attic zone accommodates the single-duct HVAC

system, but the results of the zone are not presented in this project. The building

prototypes are obtained from the Pacific Northwest National Laboratory (PNNL) list

of building stocks. This list gives a representation of energy-saving building design

and impacts according to the recently published residential international energy con-

servation codes - IECC, 2021 [106]. The schematic representation of the test building

is illustrated in Fig. 3.4. Before simulating to retrieve the temperature data necessary

Fig. 3.4: Structure of the Tested Real Building

for hybrid parameter estimation. Each of the components of the prototype buildings

was modified and configured for passive designs and is allowed to use natural ven-

tilation according to the building operation modes described in detail in Chapter

4. It can be assumed that EnergyPlusTM models of the building prototypes have

been calibrated and validated to depict physically constructed real buildings. This

results from the unavailability of salient temperature data and other significant pa-

rameters from physically constructed passive buildings in different climatic regions for
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experimental purposes. The selected buildings feature the San Fransisco region rep-

resenting ASHRAE Climate Zone 3C. Another location chosen is Cedar City, Utah,

representing ASHRAE climate Zone 5B, and the third selected building location is

in the Charlotte area, representing ASHRAE Climate Zone 3A. Before carrying out

Fig. 3.5: Working Principle of a Passive Trombe Wall [107]

any EnergyPlusTM simulations, the components, materials, and equipment configura-

tions of each of the building zones were modified for passive designs. As an example,

all buildings simulated in this project were configured with Passive Trombe external

Walls, eco-roof vegetation, and many other passive building designs. Fig. 3.5 gives

additional details on how a Passive Trombe wall works.

A strategically installed passive Trombe wall typically provides thermal storage and

delivery. It stores heat for building use during the winter and rejects heat gain to the

building during the summer. With the help of the eco-roof design, the passive walls
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Fig. 3.6: Effectiveness of Passive Trombe Wall vs Brick Wall

can assist to keep the building’s internal temperature lower during the summer. Fig.

3.6 gives a comparison of a building zone designed with Trombe walls and another

with brick walls in ensuring that the building zone is provided with a comfortable

temperature. A quantitative analysis of Fig. 3.6 shows that the passive Trombe wall

provided a 65% better thermal energy performance when compared to a brick wall

using a temperature reference of 19.5°C.

As illustrated in Fig. 3.6 for a winter simulation period, in contrast to a regu-

lar/brick wall, the Trombe wall can store heat and deliver it to the building over

time. What is considered a comfortable indoor air temperature range is specified in

ASHRAE 55-2017 Standard; Thermal Environmental Conditions for Human Occu-

pancy [108]. This is known to be between a temperature range of nearly 67°F and

82°F (19.44°C to 27.77°C) provided the occupants can adapt to other contingencies

such as humidity changes, wearing comfortable clothing, and other behavioral acts.
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3.5 Parametric Identification Methodology for the Building Model

The output of an initial building simulation in EnergyPlusTM gives the temperature

data required for the parameter identifications. The passive building base model in

equation (3.26) is discretized using the Euler technique given in (3.22).

Tz(t+ 1) = Tz(t) + ∆tṪ z(t) (3.22)

where ∆t is the simulation time step, and t is the discrete-time index. Next, param-

eter identification was performed using LevenbergâMarquardt algorithm (LM). LM

is one of the recognized standards for nonlinear curve-fitting and parameter iden-

tification methods. LM is used in this work due to its characteristic of fast and

stable convergence over other methods such as Gradient Descent and Gauss-Newton

solutions, considering some non-linearities in the passive building thermal dynamics

equation [109].

In the course of any parameter identification procedure, LM finds out the best

weights of the vector parameters that provide the best fit for the input measurement

data using the following procedure [110]. Let f be an implicit functional relation that

can map a parameter vector p to an estimated temperature vector measurements; that

is, Tẑ = f(p). p contains all the parameter inputs to the zone thermal dynamics.

An initial estimate of parameters from all variables p0 and a measured temperature

vector are furnished to the algorithm and LM desires to identify new series of the

vector that converges toward a local minimizer for the function f . Therefore, at

every timestep, the squared error values of ϵT ϵ is minimized with ϵ = Tz − Tẑ. A

Taylor series expansion of the parameter function can be expressed as

f (p+ δp) ≈ f(p) + Jδp (3.23)
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Fig. 3.7: Parameter Estimation Flow Chart

where J is the Jacobian matrix represented by ∂f(p)
∂p

and JTJ gives the Hessian Matrix.

Given numerous sets of inputs into the model, where T constitutes the number of the

input sets and W is the total value of parameters (weights + biases), the Jacobian
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matrix is expressed as

J =

⎡⎢⎢⎢⎢⎣
∂f(p1,w)

∂p1
· · · ∂f(p1,w)

∂pW

... . . . ...
∂f(pT ,w)

∂p1
· · · ∂f(pT ,w)

∂pW

⎤⎥⎥⎥⎥⎦ (3.24)

Thus, at each time step, the idea is to iteratively find δp that minimizes ∥Tz− f(p+

δp) ∥ ≈ ∥Tz − f(p) − Jδp∥ = ∥ϵ − Jδp∥ until JTJδp = JT ϵ. A damping term µ

can be introduced to adjust the Hessian Matrix for error reduction at each step.

LM terminates when ϵT ϵ or δp falls below a specified error threshold. The flowchart

describing the parameter identification procedure is illustrated in Fig. 3.7.

Fig. 3.8: Sample Test for LM Parameter Estimation

ASHRAE Guideline 14 criteria are utilized in this Thesis to validate the accuracy

of estimations and models developed. Specifically, The Coefficient of Variation of

the Root Mean Square Error (CVRMSE) values, which is a unitless percentage error

value that measures the variability between actual values and the simulated results.

The equation for CVRMSE is given in (3.25)
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CV RMSE =
1

m̄

√︄∑︁n
i=1 (mi − si)

2

n− p
× 100(%) (3.25)

ASHRAE Guideline specifies that for Hourly criteria the CVRMSE values must be

less than 30% [111, 112] A lower percentage value is desirable and would mean more

accurate estimations.

3.5.1 Generated Building Parameters

Table 3.1: Thermal Model Parameters for the Studied Zones

Zone Month R (◦C/kW) Cz (kWh/◦C) % RMSE

3A January 34.65 2.63 3.45
3A July 3.47 4.37 3.31
3C January 32.29 2.95 2.58
3C July 10.98 2.307 1.92
5B January 49.67 2.44 2.50
5B July 3.82 4.99 1.86

3.5.2 Other Distributed Energy Resource Parameters

The residential hybrid building have both the HVAC system, and water heating

system as thermostatically controlled loads. In addition to this, the hybrid building

is declared to have PV, battery, and act as a microgrid structure. The complete

parameter details of various resources attached to the building are presented below

3.6 Proposed Hybrid Model and Operation Modes Development

In the model of (3.3), a network of resistances and capacitance depicts the thermal

dynamics of each zone in a passive building. The network describes the evolvement of

zone temperatures with different heat disturbances. Each of the passive building zones
1ηch used generally as a square root of the Roundtrip efficiency
2Typical wide range setpoints of a thermostat
3Typical setpoint of an electric water heater
4Generally assumed value for uncontrollable loads in literature
5The battery limit are 15% and 85% of the battery energy capacity.
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Table 3.2: Details of other Parameters Used for Simulations

Parameter Value Units

Rw [29], [113] 0.27 h◦F/BTU
Cw [29], [113] 1664 BTU/◦F
Qwh [113] 12 kW

Pch,max,Pdh,max [114] 5 kW
Ppv [115] 5 kW
Amod [116] 35.5 m2

ηpv [117] 0.22
ηch, ηdch 1 0.95, 0.99

Tsp,min,Tsp,max 2 19.5, 24 ◦C
Tset

3 132 ◦F
Ple

4 3.5 kW
EB,min,EB,max 5 2.025, 11.475 kWh

is modeled in the form of an electrical circuit containing resistance and capacitance, as

shown in Fig. 3.9. Currents are represented by the heat gains entering the zones, and

Voltage represents temperature states. From the circuit diagram, Ta is the external

air temperature; Tz is the interior zone temperature. Qadj represents the total heat

gains from all adjacent zones, Qvent represents the ventilation heat transfer, Qinf is

the infiltration heat transfer due from the outside air, and Qtotal represents the sum

of all zonal heat gains from people, equipment, lighting system, and solar irradiation.

The newly modified model is presented in (3.26) and in comparison with (3.3)

replaced
∑︁Nz

i=1 cpmi with 1
Radj

thereby eliminating bilinear states for model simplifi-

cation. Cz is the effective coupled capacitance of the zone air and the total internal

thermal mass from various materials, including furniture, books, envelopes, parti-

tions, and all other interior contents. Section 8.8.2 of the ASHRAE 90.2 standard

indicated that real buildings typically have larger thermal mass from their interior

contents than their zone air [118]. In this study, zone air and the internal thermal
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Fig. 3.9: 1R-1C Model of a Passive Building.

mass capacitance are assumed to be in thermal equilibrium.

Cz
dTz

dt
=

1

R
(Ta − Tz) +Qtotal +Qadj +Qinf +Qvent (3.26)

where Qvent = cpmvent(Ta−Tz) - Ventilation Heat Gain Rate, Qinf = cpminf (Ta−Tz)

- Infiltration Heat Gain Rate, Qadj = 1
Radj

(Tadj − Tz) - Adjacent Zones Heat Gain

Rate

Considering that this newly developed model would be used for control applications

involving logic-based methods (as discussed in the next Chapter), Optimized based

methods using model predictive controls as discussed in Chapter 5, and Aggregate

operation as discussed in Chapter 6, where the building thermal dynamic models are

represented in a unified form along other resources of the building, it is important

to spell out some structure for consistency and easy understanding of the audience,
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where this work has categorized the modeling perspectives into three classifications.

• Analytical Model: a detailed model representing the thermal dynamics of the

passive building, including the corresponding HVAC model. This is the same

as the models defined in 3.26 without any relaxation or convexification and this

representation is suitable to be deployed on a test bed when evaluating the

response operations of the action of the building controllers.

• Open-loop model: this represents a model developed based on the analytical

model equations of 3.26 with some relaxations to achieve convexity. it also

involves some integer variables to capture some HVAC system operation logic

such that the operation of the system is able to work with other building energy

resources with binary controls. With the open loop model, the parameter of

interest is the total power consumption of the HVAC system and can be applied

to optimization controllers that tend to provide some hour-ahead predictions.

• Closed loop model: involves more simplifications for more efficient computation

within a control framework wherever the building thermal dynamics is deployed.

In the closed-loop models, all parameters of interest are building internal tem-

peratures and power consumption of the system. This allows our analytical

model (represented as a testbed) to respond to setpoint changes generated from

an optimization routine in some applications whose objective is to make the

building power consumption track a given reference. Such an example is given

as one of the test cases in the next chapter

3.7 Basic Control Modes

Fresh air is introduced into a building zone with the coordination of three key

elements; air, an opening, and pressure. These elements are controllable for thermal

stability and occupant’s comfort. Based on the nature of the forces driving air into

the building zones, three distinct building operation modes are formed. The following



57

highlights the modification to (3.26) to replicate each mode formation. The various

steps to take in integrating the model and the control modes are illustrated in the

flowchart of Fig. 3.10, while these next subsections further explain the modified

parameters at each step.

Fig. 3.10: Integrated Hybrid Building Model Development Flowchart
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3.7.1 Fully Passive Mode

In this mode, the ventilation term and any air systems term driven by HVAC in

(3.26) is null. Building airflows are due to random infiltration from leaks, cracks,

and people moving in and out of the building. This is also not the best mode for

the longer operation of the building without cycling any of the other two modes due

to poor air circulation resulting in pollution for occupants. Nevertheless, this is the

base model where the hybrid R and C parameters are determined through system

identification under natural occurrences without any control inputs.

3.7.2 Controlled Passive Mode

A major setback of the fully passive mode is that it usually fails to satisfy occupants’

comforts, particularly during the summer periods. As a result, a ventilation term that

can be automatically controlled through operable windows and doors is integrated

into the base model. The natural ventilation mass flow rate of the air is obtained

through the combined effects of wind and stack from building component openings

as described in [104]. This is represented in (3.27) - (3.29)

Vwind = CwAopenFsch V (3.27)

Vstack = CDAopenFsch

√︁
2g∆HNPL (|Tz − Ta| /Tz) (3.28)

mvent = ρair × (
√︂

V 2
stack + V 2

wind) (3.29)

where V is the windspeed, Vwind = Wind driven air flow rate [m3/s], Qstack = Stack

driven air flow rate [m3/s], mvent = Total ventilation mass air flow rate [kg/s], CD=

Discharge coefficient of the building component, Fsch = Open area fraction, Aopen =

Door/Window opening area [m2], ∆HNPL = ASHRAE-determined midpoint value of

the lower opening to the neutral pressure position [m], Cw= Opening effectiveness.

The controlled-passive mode is achieved through the windows and door’s automatic
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operations via simple temperature and setpoint-based logic. In this project, the values

for the operable factor are assigned to modulate between 0 and 1 based on the window

area to allow for necessary natural ventilation. Aopen signal in (3.27) and (3.28) is 1,

if Tz > Ta and Tz > Vsp, otherwise 0 if false. Vsp is the ventilation set-point.

3.7.3 Active Mode

The outdoor air temperature in many climate regions gets too high or too low

during the summer and wintertime, respectively. During such occurrences, the con-

trolled natural ventilation may not satisfy occupants’ comfort criteria. Accordingly,

mechanical systems are required to maintain occupants’ comfort. The HVAC equip-

ment model in (3.4) was then integrated into the base model by adding a mechanical

ventilation heat term, cpmz(Ts − Tz) to (3.26) to form an active operation mode.

In this mode, all the heat gains and heat supplies to the building, including those

from mechanical air systems, are fully operational. The control logic and simulation

procedure for the active mode operation is described in Algorithm 1. The result-

ing dynamics from this integration provide a standalone or non-optimized building

thermal simulation to maintain an internal comfortable temperature. The detailed

process for active building operation is explained in Algorithm 1.

The next section gives details about the simulation results of each of the modes

in three different ASHRAE climates and how they compared with similar simulation

results from EnergyPlusTM.

3.8 Results and Discussions

A sample comparison of test data and the hybrid modeling results with the LM

method can be observed in Fig. 3.8. A tight fit can be observed, and the percentage

RMSE is 2.5%, confirming the accuracy of the identified R and C parameters. Quanti-

tatively, the percentage error values of each of the estimations from the three different

ASHRAE climate buildings in this work were less than 5%. These R and C parameter
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Algorithm 1: Residential HVAC Active Control Operation
1 Initialize or at every iteration, obtain Tz(t− 1) where, t = 1, 2, 3, ..., T.

Where T is the last simulation timestep
2 Compute other parameters for the current simulation time step such as Ta(t),
minf (t), Qtotal(t), etc. in (3.26)

3 Compute the determinative temperature TD(t) for the time step - this
represents the zone internal temperature value at minimum supply
temperature such that TD(t) = Tz(t) in (3.26)

4 Input the thermostat setpoint Tsp(t) and the corresponding Deadband db (3.4)
5 for t = 1, 2, 3, ..., T do
6 if TD(t) < Tsp(t)− db then
7 Estimate Ts(t) with (3.4) for heating mode
8 end
9 else if TD(t) > Tsp(t)− db then

10 Estimate Ts(t) with (3.4) for cooling mode
11 end
12 else
13 Ts(t) = Ts(minimum) - No cooling or heating is needed
14 end
15 end
16 return Ts(t)

values are presented in Table 3.3. Next, graphical illustrations of the simulations for

the passive building control modes are presented. First, without any control input,

aside from random infiltrations from component leakages and cracks, then controlled

natural ventilation, followed by an active phase, and finally the mixed-mode. The

hybrid model simulation results show good predictions in the indoor air temperature

data compared to the EnergyPlusTM results. Sample results are shown for two com-

monly severe annual climate periods generally tested in the literature (January and

July representing the winter month and the summertime respectively). These dates

were also validated through an analysis of 30-Year national average climatic data of

the United States on the National Oceanic and Atmospheric Administration (NOAA)

site [119].

For a region depicted by ASHRAE zone 3C. Simulation results are illustrated in

Figs. 3.23 to 3.28. Identical outcomes were observed with ASHRAE climate Zone
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Table 3.3: Simulation Result and Error Metrics for Zone 3C

ASHRAE Zone Mode Simulation Period % CVRMSE

3C Passive January 5.28
3C Passive July 4.06
3C Controlled Passive January 4.41
3C Controlled Passive July 3.74
3C Active January 1.38
3C Active July 4.96

Fig. 3.11: Proposed Model vs. EnergyPlusTM(Actual) for 3C Passive (January)

3A and climate Zone 5B. The obtained error metrics for these climate zones are given

in Tables 3.4 and 3.5.

Table 3.4: Simulation Result and Error Metrics for Zone 3A

ASHRAE Zone Mode Simulation Period % CVRMSE

3A Passive January 6.52
3A Passive July 3.06
3A Controlled Passive January 6.17
3A Controlled Passive July 4.24
3A Active January 1.21
3A Active July 3.9
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Fig. 3.12: Proposed Model vs. EnergyPlusTM(Actual) for 3C Passive (July)

Fig. 3.13: Proposed Model vs. EnergyPlusTM for 3C Controlled Passive (January)

Generally, the identified R and C parameters for the integrated hybrid model pa-

rameters vary widely. The developed model gives satisfactory results when the tem-

perature plots are compared with the energy plus counterpart. For all three zones,
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Fig. 3.14: Proposed Model vs. EnergyPlusTM for 3C Controlled Passive (July)

Fig. 3.15: Proposed Model vs. EnergyPlusTM(Actual) for 3C Active (January)

the passive strategy and the controlled-passive strategy look almost similar for Jan-

uary. This is expected as the outside temperature condition is not harsh to trigger

the ventilation control modules to open the windows and doors. Also, for the active

buildings during the July period, the interior temperature of the integrated hybrid
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Fig. 3.16: Proposed Model vs. EnergyPlusTM(Actual) for 3C Active (July)

Fig. 3.17: Proposed Model vs. EnergyPlusTM(Actual) for 3A Passive (January)

model is not stable compare to energy plus. This could be because the results being

compared were generated directly from EnergyPlus simulations and not from actual
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Fig. 3.18: Proposed Model vs. EnergyPlusTM(Actual) for 3A Passive (July)

Fig. 3.19: Proposed Model vs. EnergyPlusTM for 3A Controlled Passive (January)

physical measurements from a real building. This project assumes that the typical

HVAC systems found in residential buildings are constant air volume and only the

temperature modulates to provide comfort. However, the mass flow rate of the energy
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Fig. 3.20: Proposed Model vs. EnergyPlusTM for 3A Controlled Passive (July)

Fig. 3.21: Proposed Model vs. EnergyPlusTM(Actual) for 3A Active (January)

plus model slightly vary at every timestep to maintain temperature stability. As a

result, temperature data from actual buildings might provide more accurate results

for comparison.
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Fig. 3.22: Proposed Model vs. EnergyPlusTM(Actual) for 3A Active (July)

Table 3.5: Simulation Result and Error Metrics for Zone 5B

ASHRAE Zone Mode Simulation Period % CVRMSE

5B Passive January 7.2
5B Passive July 5.42
5B Controlled Passive January 7.01
5B Controlled Passive July 5.37
5B Active January 0.65
5B Active July 3.84

3.9 Summary

In this chapter, passive building designs for three different climate zones were simu-

lated in EnergyPlus to get zone temperature information using the natural ventilation

principle. The Passive strategy was needed to establish the annual periods that cool-

ing or heating would be needed to supplement natural ventilation. Such action would

minimize or replace energy related to a conventional HVAC system. Next, a hybrid

model with a 1R-1C parameters network was formed for the passive buildings to

establish parameters that would accurately replicate energy plus simulated results.
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Fig. 3.23: Proposed Model vs. EnergyPlusTM(Actual) for 5B Passive (January)

Fig. 3.24: Proposed Model vs. EnergyPlusTM(Actual) for 5B Passive (July)

Parameter estimation was established through Levenberg Marquardt Algorithm

due to nonlinear inputs from the weather parameters needed for the estimations. LM

was used in this work because of its flexibility in reaching fast, stable, and guaranteed

convergence considering the wide variations of nonlinear inputs needed for the R and
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Fig. 3.25: Proposed Model vs. EnergyPlusTM for 5B Controlled Passive (January)

Fig. 3.26: Proposed Model vs. EnergyPlusTM for 5B Controlled Passive (July)

C parameter estimations. The fully passive mode is the base model of the hybrid

model and it was on this mode that parameters were generated. Then, the zone

ventilation system which is temperature-controlled and executed through openable

doors and windows is integrated into the base model for additional comfort.
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Fig. 3.27: Proposed Model vs. EnergyPlusTM(Actual) for 5B Active (January)

Fig. 3.28: Proposed Model vs. EnergyPlusTM(Actual) for 5B Active (July)

Finally, the HVAC input was added in the active mode to let the building op-

erates comfortably in extreme climate conditions. Results were presented for the

two extreme climate periods of the year (January for the wintertime, and July for

the summertime). Results showed that the fully passive buildings performed better
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in the mild climate regions, Zone 3C. However, in other climates, buildings’ active

heating and cooling may be required for some periods annually to keep the com-

fort temperature of occupants within the ASHRAE acceptable limits. The developed

hybrid models are good tools for future works in optimal control implementation

and advanced control strategies that anticipate accurate thermal building behavior

predictions considering expected energy gains in naturally ventilated buildings.

The temperature profiles of the simulated models reveal that the proposed ar-

chitecture shows accuracies with EnergyPlusTM at an average error of 4%. The next

chapter reveals how the three operation modes identified in this chapter are integrated

to deliver energy management benefits to hybrid residential buildings.



CHAPTER 4: PROPOSED FUNCTIONAL HYBRID CONTROLLER AND

OPERATIONS

It is important to simulate and verify the functionality of the three hybrid building

operation modes from the previous chapter when integrated together for load reduc-

tion. The methodology for such integration and its load reduction benefits associated

are discussed in the next sections.

4.1 Introduction

Space heating and cooling remain the top end-use energy categories within the res-

idential buildings sector. As such, any opportunity to reduce the operation of HVAC

systems is always significant. The use of hybrid ventilation is one such strategy

meant to reduce building operational demands and simultaneously satisfy occupants’

comfort. As a means of realizing the benefits of the strategy, different operation

modes, and control algorithms are developed and tested on three different ASHRAE

climate zones to demonstrate the effectiveness of the functionality of hybrid ventila-

tion for energy reduction. A significant part of the functional hybrid operation modes

development methodology in this chapter matches a previous publication described

in [120].

4.2 Main Contributions

The major goal of this chapter is to develop functional Hybrid modes of opera-

tion for Residential Buildings. This is essential to achieve energy efficiency and cost

savings by prioritizing natural solutions while simultaneously meeting heating and

cooling requirements considering a larger array of conditions. As such, the following

contributions are achieved
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• Developed three distinct functional operational modes of passively designed

buildings that have not been designed in the state-of-the-art.

• Developed a simplified functional hybrid ventilation controller using a logic-

based algorithm to prioritize the use of natural ventilation for comfort in resi-

dential buildings.

• Developed a complete framework for implementing mixed mode operation of

hybrid ventilated buildings, including load reduction potential such that zone

internal temperatures are maintained within occupants’ desired range.

• Analytically established percentage energy reduction attributable to the oper-

ation of naturally ventilated residential buildings in three different ASHRAE-

specified climate regions.

4.3 Functional Hybrid Operation Mode

A detailed and updated framework of the base modeling architecture of 3.2 is illus-

trated in 4.1 to include how the model connects with each other and controllers that

allow them for functional hybrid (mix of all control modes) operation for occupants’

comfort. Also, the results of the independent operation of the three basic operation

modes have been discussed in Chapter 1. The next process here discusses the model

and controllers’ interdependency that allow them for functional hybrid (mix of all

control modes) operation. This mixed operation mode is necessary as the passive

buildings can flexibly leverage the significant advantages of both mechanical and nat-

ural ventilation operation, to reduce energy costs and robustly meet high Indoor Air

Quality in a larger range of conditions. The controller selection of any of the three

basic modes is illustrated in Fig. 4.2.
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Fig. 4.1: Updated methodological framework of the study to capture interconnection of the models
and their corresponding controllers

4.3.1 Mixed Operation Mode

In the mixed mode of operation, the building automatically switches its operation

at any time between the fully passive mode, controlled-passive mode, and active mode

to better manage the building’s energy and improve indoor air quality. Comfortable

temperature or any user-defined setpoints can be used as an input to control the

mixed operation mode, but the control system must ensure that the HVAC system

and the natural ventilation are not working simultaneously. Extensive details about

the non-simultaneous working operation of both mechanical and natural ventilation

systems are described in Algorithm 2.

In the mixed mode of this project, a comfortable temperature range between

(19.5°C to 24°C) was used as an input, which falls between ASHRAE standard [108].

The comfortable indoor adaptive temperature range for natural ventilation as pub-

lished by ASHRAE is presented in Fig. 4.3. The building operates in sequence. First,

the building operates in the fully passive mode, and if comfortable indoor temper-
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Fig. 4.2: Functional hybrid controller selection flow chart

atures are unsatisfied, it switches to the controlled-passive mode, and finally to the

active mode. For best performances, the mixed-mode can be achieved and managed

with other building resources using optimization algorithms as explained in the next

chapter.

4.3.2 Controller Design

A simplified functional hybrid ventilation controller using a logic-based algorithm to

prioritize the use of natural ventilation for comfort in residential buildings is designed

according to Algorithm 2. The idea of a hybrid ventilation control system is the

ability to automatically switch between the mechanical ventilation controller of the

active mode, the natural ventilation controller of the controlled passive mode, and no

control action of the fully passive mode. A general strategy for integrating these sets



76

Algorithm 2: Hybrid Ventilation Controller
1 Initialize or get Ti,z(t− 1) where, t = 1,2, ..., T. and T is the last simulation

timestep
2 Get minf,z, Qtotal,z, and other parameters in (3.26)
3 Get the ventilation setpoints (Vsp), thermostat setpoints (Tsp) and the

deadbands
4 for t = 1, 2, ..., T do
5 Find Ti,z(t) without heating or cooling
6 if Ti,z(t) and Ta(t) ̸⊆ Tsp ± deadband then
7 0 ≤ PHV AC ≤ ∞, Aopen=0

8 compute the supply temperature Ts by using (3.4) and Algorithm 1
9 end

10 Ti,z(t) ̸⊆ Tsp ± deadband,
11 and Ti,z(t) > Vsp

12 and Ta(t) ⊆ Tsp ± deadband,
13 0 ≤ Aopen ≤ 1, PHV AC = 0, in(3.27), (3.28), (3.4)
14 Building is operating using natural ventilation else
15 Aopen = 0, PHV AC = 0
16 Building internal temperature is acceptable
17 end

end

18 return Aopen, Ts, PHV AC

19

of controllers which is a continuous type for the HVAC system and a discrete type

for the window operation is to first design them separately, and then integrate them

via a hierarchical logic control architecture that uses outside air temperature values

as a priority in switching actions. As illustrated in Fig. 4.1 the controllers act to

create decisions for the ventilation model by activating an open or shut position for

the windows and doors, or turning on/off the HVAC system. The independent control

action of the HVAC system without the natural ventilation piece has been discussed

in Algorithm 1. The switching action within a ten-minute simulations timesteps

used in this research allows for cycling of the HVAC system in a way that achieves

building ventilation that promotes indoor air quality and improves HVAC equipment

reliability.
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Fig. 4.3: ASHRAE Adaptive Thermal Comfort Range for Natural Ventilation [121]

4.4 Results and Discussions

The operation of the hybrid ventilation controller of Algorithm 2 is logic-based and

the results of mixing the HVAC operations with natural ventilation are presented

in this section. Fig. 4.4 illustrates the monthly indoor air temperature profile with

the mixed-mode operations in comparison to when the HVAC only is in operation.

Fig. 4.5 shows the corresponding HVAC power comparison between the mixed-mode

operation and the action-only mode. The difference between the areas under the

curves of Fig. 4.5 shows a significant power reduction of approximately 90% that can

be attributed to the mixed-mode operation.

For all the three ASHRAE climate zones considered, the result established a signifi-

cant reduction in HVAC energy consumption. Little requirement for HVAC operation

in the summertime and wintertime of the mild climate region depicted as zone 3C

made the region a potential territory for passive buildings. Results of the other two

zones established HVAC is needed at most times to maintain comfortable indoor

temperatures during the summertime.
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Fig. 4.4: Building 3A Functional Hybrid Operation (Winter)

Fig. 4.5: Building 3A Active and Functional Hybrid Mode Power (Winter)

Generally, the functional hybrid (mixed) operation mode results are satisfactory

in reducing building operational demands by switching between passive, controlled-

passive, and active modes of operation. However, the building zones’ interior temper-

ature is not stable compared with the results obtained when the HVAC is the only

mode of building operation. The simulated temperature results show that dynamics

with smaller time constants are also well represented as their operating modes are

able to switch based on their defined logics and setpoints during the mixed operation
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Fig. 4.6: Building 3C Functional Hybrid Operation (Winter)

Fig. 4.7: Building 3C Active and Functional Hybrid Mode Power (Winter)

mode.

January and July simulation data for ASHRAE zone 3C revealed no HVAC demand

is necessary for the mild climate region. These results also reinforced the effectiveness

and viability of this ASHRAE zone to accommodate passive buildings with hybrid
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Fig. 4.8: Building 5B Functional Hybrid Operation (Winter)

Fig. 4.9: Building 5B Active and Functional Hybrid Mode Power (Winter)

ventilation technology. The least HVAC demand reduction occurred in the Charlotte

region with a power decrease of only 5%. This is due to the significant operation

of the HVAC system in the ASHRAE 3A zone as hot summer weather (observed

from the outdoor temperature values) is not conducive enough to trigger the passive

and controlled passive mode more often except during a few night ventilation. Com-

prehensive optimal ventilation strategies are discussed in the next chapter and are
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Fig. 4.10: Building 3A Functional Hybrid Operation (Summer)

Fig. 4.11: Building 3A Active and Functional Hybrid Mode Power (Summer)

fundamental to achieving additional energy savings for the hot and humid ASHRAE

zones such as the one seen in Charlotte. The optimal framework for the mechanical

and natural ventilation systems aims to exploit precise cooling from the mixing of the

ambient air with the indoor counterpart as frequently as possible while eliminating

overcooling and overheating perods
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Fig. 4.12: Building 3C Functional Hybrid Operation (Summer)

Fig. 4.13: Building 3C Active and Functional Hybrid Mode Power (Summer)

For all three simulated zones, the fully passive building mode of operation occurs

more often during the winter times. This is expected because the outdoor temperature

values are not high to trigger the controlled-passive mode of the functional hybrid

controller to open the windows and doors often. The tolerable internal temperature

results obtained in the wintertime are due to the effects of using a passive Trombe
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Fig. 4.14: Building 5B Functional Hybrid Operation (Summer)

Fig. 4.15: Building 5B Active and Functional Hybrid Mode Power (Summer)

wall within the building’s initial designs.

4.5 Summary

Natural ventilation is the key technology in new residential buildings for substantial

energy reductions. In this chapter, a simplified functional hybrid model for residential

buildings using natural ventilation is presented to provide thermal comfort with a

reduced building operational demand. Passive residential building models for three



84

Table 4.1: Power comparison between the Active Mode and the Proposed Functional Hybrid Mode

ASHRAE Zone HVAC Consumption (kWh) % Difference in area
(Month) Active Proposed Hybrid under the power curve

3A (January) 2545 81 96

3A (July) 464 437 5

3C (January) 762 0 100

3C (July) 284 0 100

5B (January) 2384 183 92

5B (July) 435 270 38

different ASHRAE climate zones were used to demonstrate the effectiveness of the

functional hybrid mode. Like the previous chapter, Simulations were carried out for

two extreme months of the annual climate periods (January for winter and July for

summertime). Differences in the area under the power curves showed a significant

demand reduction in the mild climate region and a less reduction in the summer

of other climate regions. The results showed the capability of this framework to be

deployed for extensive applications which are discussed in the next chapter.

Also, three distinct functional hybrid operation modes of the developed model for

energy management not present in the state-of-the-art were presented in this chapter

and results revealed an average of 70% energy costs reduction impacts on consumers

in the evaluated ASHRAE climate zones.

Although the mixed operation mode proves effective in reducing the building oper-

ational demands of the simulated cases in this chapter, however for additional efficient

operation, it was observed that conventional HVAC control is not adequate enough

to control the thermal comfort level in the passive buildings. There is a need to

anticipate the heating and cooling effects and provide less temperature dynamics of

ventilation as passive buildings have a slow response to additional energy inputs, e.g.

passive solar gains, which increases the risk of overcooling and overheating periods.

Such circumstances raise the need for advanced control strategies that anticipates the
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thermal building behavior and the expected energy gains. Deploying an optimization

framework rather than logic based as discussed in the next chapter is meant to solve

the controlling problems while simultaneously providing better energy efficiency.



CHAPTER 5: MODEL PREDICTIVE CONTROL ALGORITHM

Formal problem definitions and how the hybrid building framework interacts with

the smart grid are presented in this section. First, the optimization framework for

maximum load control is presented, followed by the topology of how hybrid building

responds to different signals from the grid.

5.1 Introduction

Passive Building Energy Management Systems (PBEMS) can control, coordinate,

and schedule energy resource equipment based on certain functions and operations

as discussed in Chapter IV. However, these systems can provide improved efficiency,

better economic returns, and higher reliability services to smart grids if embedded

within optimization frameworks. To explore these benefits, a comprehensive method-

ological framework that applies model predictive control (MPC) is deployed for three

use cases of demand management and is evaluated in the future sections. A significant

part of the optimization methodology framework in this chapter matches a previous

publication described in [122].

5.2 Main Contributions

The goal of this chapter is to develop an Optimization Framework that also makes

the building energy aware - enabling the buildings to forecast, react, and adjust to

utility signals to address major challenges facing the evolving smart grid, all while

providing optimal cost savings, efficiency improvements, and comfort to consumers.

Here are the contributions:

• Developed a scalable and extensible framework for implementing model predic-

tive strategy operation of hybrid ventilated buildings for real-time control of
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the intermittent operation of their active systems.

• Used three distinct test cases of demand side management to gain insight into

the efficacy of the model predictive optimization framework in supporting grid

services and optimally providing reliability.

• Compared the effectiveness of using an optimization framework for better com-

fortable temperature stability in relative to the functional hybrid operation

modes discussed in the last chapter.

• The proposed optimization framework is validated for the correctness of oper-

ation through power balance analysis.

• Analytically established benefits such as incentives gain or percentage energy

reduction attributable to the participation of the hybrid buildings on three test

cases.

5.3 Model Predictive Optimization Strategy

The optimization problem is the core of the building operational modes to reduce

building energy demand while putting other loads into consideration. In simplified

terms, we want to minimize the use of HVAC systems in passive buildings, which are

needed in extreme weather conditions. If the building operating condition warrants

the HVAC system to be used, then we find the temperature setpoint predictions and

corresponding equipment operation that gives us the lowest cost when local energy

generations and storage have been exhausted. The objective function is formulated

as follows.

J (x0,u) =
H−1∑︂
t=0

(Jgrid(t)) (5.1)
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where H is the horizon, Jgrid is the cost of electricity consumption at every timestep

(t) determined by the power from the grid expressed as

Jgrid = πgridPgrid (5.2)

where πgrid is the unit price of electricity Similarly,

Jas,t = πasPas,t (5.3)

where Jas,t is the ancillary service payment received for building demand reduction,

πas is the unit price of ancillary service, and Pas,t is the power capacity that qualifies

for the ancillary payment. x0, represents various state variables of interests. and u

represents the matrix of core decision variables as expressed in (5.4)

u = [Tset, Tsp, U ]T (5.4)

The updated model that integrates the MPC optimization framework with other

model that have been discussed in the previous section is provided in Fig. 5.1

The discretization process through the Euler solution method for the building ther-

mal dynamics, water heater, and HVAC equipment model is explained in parametric

identification methodology section. Other building energy resource constraints have

been given earlier in this section. The problems are formulated and a Mixed Integer

Quadratic Programming and the optimization is carried out according to Fig. 5.2

using Gurobi as solver [123].

5.4 Validation of MPC Control Actions

While the mixed-mode can combine the functions of the fully passive, controlled-

passive, and active mode to save a significant amount of energy with reduced HVAC

system operations, there are other schedulable and thermostatically controlled loads
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Fig. 5.1: A comprehensive methodological framework of the study

consuming a considerable amount of energy in the building. This consumption can

suppress the successful impacts of the mixed-mode building if they are not operated

efficiently. The water heater is a perfect example of such an energy-consuming ap-

pliance. Therefore, proper coordination is essential. Unfortunately, it is difficult for

consumers to find out exactly how to adjust their energy usage under economic sig-

nals, especially when using a complicated Time-of-Use (TOU) rate. Applying MPC

control would integrate the mixed operational mode with forecasts and other equip-

ment constraints to give a result that helps decide on optimal building loads operation

setpoints for energy cost reduction. The results for the basic control modes of the

San-Francisco location (climate zone 3C) have been presented previously in this work,

the same building and location were used to demonstrate the MPC control applica-

tions. The TOU electricity rate used is available from PGE residential customers

in the area [124]. First, validation of the expected control signals of the building
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Fig. 5.2: Predictive Optimization Process

Fig. 5.3: Building 3A Active, Functional Hybrid, and Optimized Modes Temperature Comparison
(Winter)



91

Fig. 5.4: Building 3A Active, Functional Hybrid, and Optimized Modes Power Comparison (Winter)

Fig. 5.5: Building 3C Active, Functional Hybrid, and Optimized Modes Temperature Comparison
(Winter)

resource models was carried out to confirm the passive building, with the associated

HVAC model, electric water heater model, PV model, and battery model functioning

as expected. The baseline control for the HVAC is given in Fig. 5.4 for the whole

month and operates as expected. The temperature profiles using the baseline MPC

control (optimized mixed-mode), normal mixed-mode, and active mode operations

were compared and results are illustrated in Fig. 5.4 to Fig. 5.14. It can be observed
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Fig. 5.6: Building 3C Active, Functional Hybrid, and Optimized Modes Power Comparison (Winter)

Fig. 5.7: Building 5B Active, Functional Hybrid, and Optimized Modes Temperature Comparison
(Winter)

that without the use of the HVAC power for the entire month, the temperature results

of the baseline MPC control are better than the normal mixed-mode operation and

almost similar to the active mode operation. Similarly, the ON/OFF control signal

for the electric water heater was validated visually for the building using a 24 hours

prediction horizon as shown in Fig. 5.15, which also operates as expected. Finally,
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Fig. 5.8: Building 5B Active, Functional Hybrid, and Optimized Modes Power Comparison (Winter)

Fig. 5.9: Building 3A Active, Functional Hybrid, and Optimized Modes Temperature Comparison
(Summer)

other building resource model validation is represented in Fig. 5.15 and Fig. 5.16

with a 24-hour prediction horizon. It can be observed that the battery energy state

never exceeds the specified limits; the battery charging and discharging power never

exceeds 5kW, and simultaneously charging and discharging never occurred. Also, the

battery did not have to be fully discharged before charging could occur. The onsite

power generation from PV is curtailed to 5kW (maximum) and is being used when

available. Finally, the total building load and the rest of the power needed from the
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Fig. 5.10: Building 3A Active, Functional Hybrid, and Optimized Modes Power Comparison (Sum-
mer)

Fig. 5.11: Building 3C Active, Functional Hybrid, and Optimized Modes Temperature Comparison
(Summer)

grid demand are consistent with constraints specified in Chapter 3. As observed in

Fig. 5.16 and Fig 5.17, since this building has limited use of the HVAC system due to

the optimized mixed-mode operation, the major load which is operated and optimized

in the building according to Fig. 5.17a is the electric water heater.
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Fig. 5.12: Building 3C Active, Functional Hybrid, and Optimized Modes Power Comparison (Sum-
mer)

Fig. 5.13: Building 5B Active, Functional Hybrid, and Optimized Modes Temperature Comparison
(Summer)

5.5 Results and Discussions

Different applications were developed to demonstrate the efficacy of the hybrid

building thermal dynamic models and their control architecture. For this, first, a

comparative evaluation between the controller operating to perform the Energy Man-

agement function and the baseline case where the building is allowed to operate tra-
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Fig. 5.14: Building 5B Active, Functional Hybrid, and Optimized Modes Power Comparison (Sum-
mer)

Fig. 5.15: Power Balance Validation for the MPC

ditionally (using only deadband) controllers is presented. Then, another application

where the building is allowed to respond to certain signals (power-reference track-

ing) was examined. Finally, two demand response applications where the building is
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Table 5.1: Power comparison between the Active, Proposed Functional Hybrid, and Optimized
Modes

ASHRAE Zone HVAC Consumption (kWh) % Difference in power curve area
(Month) Active Hybrid Optimized Hybrid Optimized

3A (January) 2545 81 43 96 98.3

3A (July) 464 437 358 5 22.8

3C (January) 762 0 0 100 100

3C (July) 284 0 0 100 100

5B (January) 2384 183 102 92 95.7

5B (July) 435 270 128 38 70.5

Fig. 5.16: Battery Energy Capacity Status for the MPC

allowed to respond to load shed events or increase its loads use were analyzed and

compared against the traditional control performance and the Energy Management

mode. This work assumes that demand response events for load sheds typically occur

on cold winter days for the heating periods and hot summer afternoons for cooling

periods. On the contrary, the rare occasions of load increase would typically occur

during mild weather conditions and due to over-generation. As such, sets of full-day

simulations were implemented for the hybrid building to estimate the significance of
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Fig. 5.17: Controls Validation for the Electric Water Heater

the model to respond accurately to the load shifts.

5.5.1 Case 1: Energy Management Application

The energy management-based application of the controller advance towards find-

ing the most efficient and economical strategy for the reduction of the power consump-

tion from the building loads. In most cases, it involves prioritizing the reduction at

costly periods, such as certain peak hours. Controllable loads around peak hours

would have flexible consumption patterns. The Time-Of-Use (TOU) Rates are what

the utility providers set as opposed to a wholesale market to differentiate the peak

periods (evenings) and the off-peak hours. The unit cost of energy is higher dur-

ing peaks. These of rate structure is common with utilities, although prevalent for

commercial consumers rather than residential. Pacific Gas and Electric utility in Cal-

ifornia is a utility provider that uses the time-of-use residential rates schedule, and

customers can choose between a peak time of 4 pm to 9 pm or 3 pm to 8 pm on

weekdays except for holidays.

Therefore, proper coordination is essential. Unfortunately, it is difficult for con-
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sumers to find out exactly how to adjust their energy usage under economic signals,

especially when using a complicated Time-of-Use (TOU) rate. Applying MPC con-

trol would integrate the mixed operational mode with forecasts and other equipment

constraints to give a result that helps decide on optimal building loads operation

setpoints for energy cost reduction. Due to data availability from PGE [124], for the

Energy management application, this work prioritized residential customers in the

area. The TOU rate for Cedar City is obtained from [125] while for Duke Energy

Carolinas, residential time of use is not available for the Charlotte area [126]. How-

ever, answers to inquiry from the Duke Energy representative on the history of when

demand response was deployed into residential buildings allowed this work to utilize

6:00 am to 10:00 am for the peak residential period. Also, electric vehicle was used

as a distributed energy resource in Building 3A to show the variability of operation,

extensibility, and additional functionality of the optimization framework. The results

highlight the controller’s percentage energy and cost savings during both the peak

period and the entire day. It also presents the amount of reduction in carbon footprint

as compared to the baseline.

5.5.1.1 Results for Energy Management Application with Time-Of-Use Test Case

An MPC control was implemented in the whole building using the TOU utility

rate as the control signal, for a 24-hours prediction horizon; according to Fig. 5.21,

significant peaking was observed in the building loads before 4 pm, and after 9 pm.

The early peaking allowed for additional energy storage and provided an avenue for

the building to consume 65% less electricity from the grid during the peak pricing

period (4 pm - 9 pm) compared to the system operation in Fig. 3.7. Finally, in

comparison to studies from [127] and [102] where the MPC controls resulted in 22.2%

and 32.7% daily building energy savings respectively, the profile of Fig. 5.20 translated

to the consumption of 141 kWh/day from the grid which is 41% less than the total

estimated active consumption in building in 3C without MPC operation. Similarly,
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the results for building 3A and 5B are presented in Table 5.2 and Table 5.4.

Table 5.2: Building 3A Energy Usage Comparison for MPC Control Utilization during TOU rate
Event

Period Without MPC With MPC % Reduction
Peak (6 am - 10 am) 59.6 kWh 23.3 kWh 60.9

Day 268.7 kWh 154.2 kWh 42.6

Fig. 5.18: 3A Battery and Zone Temperature Response Profile to the TOU rate

Table 5.3: Building 3C Energy Usage Comparison for MPC Control Utilization during TOU rate
Event

Period Without MPC With MPC % Reduction
Peak (4 pm - 9 pm) 61.4 kWh 21.6 kWh 65

Day 237.6 kWh 141.2 kWh 40.6

Table 5.4: Building 5B Energy Usage Comparison for MPC Control Utilization during TOU rate
Event

Period Without MPC With MPC % Reduction
Peak (1 pm - 8 pm) 79.8 kWh 28.5 kWh 64.2

Day 259.5 kWh 138.6 kWh 46.6
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Fig. 5.19: 3C Battery and Zone Temperature Response Profile to the TOU rate

Fig. 5.20: Grid Profile During MPC Control

5.5.2 Case 2: Power Reference Tracking

The necessity for the controller to track a given power reference signal comes as

utility deemed to balance the small real-time imbalances in generation with the load
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Fig. 5.21: 5B Battery and Zone Temperature Response Profile to the TOU rate

being delivered to the consumer. For this, the objective of the hybrid building and its

end-use loads is to follow the power reference. The new objective is given in equation

5.5.

minimize
T∑︂
t=1

(Pgrid − Pref )
2 (5.5)

In this work, the demand-side controller allows the building to follow a given power

reference signal during a real-time operation at a resource level through a fast time-

scale control. In the presence of an aggregator that combines the operation of the

building in a supervisory level, individual end-use loads are managed by the same

load aggregator. The introduced power reference in this work is randomly selected;

it is expected that the controller will provide a tracking accuracy in results without

significant violation of the building comfort limits.
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5.5.2.1 Results for Power Reference Tracking Test Case

The power-constrained tracking of the model produced an interesting results as

revealed by the metrics in Table 5.7. Also, Fig. 5.28 graphically illustrates the

results. According to Fig. 5.28, the graph shows that the hybrid building model

has little discrepancies in perfectly tracking the power reference, especially in the

very early morning periods. This is expected because the power reference signals

were randomly generated, and significant violations of the comfortable temperature

limits are not entertained. As such, the controller prioritized comforts over tracking

accuracy.

Table 5.5: Differential and Power Reference Tracking Metrics for Building 3A

% RMSE % Energy Difference
RMSE (kW) Using Max Power Ref as Base for the Event Day

0.933 4.1 1.1

Fig. 5.22: Building 3A Power Reference Tracking Test Case
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Fig. 5.23: Building 3A Response of the Battery to the Power Reference Signal

Fig. 5.24: Response of Building 3A Thermostatic Control Loads to the Power Reference Signal

Table 5.6: Differential and Power Reference Tracking Metrics for Building 3C

% RMSE % Energy Difference
RMSE (kW) Using Max Power Ref as Base for the Event Day

0.759 3.5 1.1
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Fig. 5.25: Building 3C Power Reference Tracking Test Case

Fig. 5.26: Building 3C Response of the Battery to the Power Reference Signal

Fig.5.29 and 5.30 further show the behavior of the other distributed energy re-

sources as random power signals arrive from the grid. The interesting profiles reveal

that the hybrid building model can confidently respond to any power control reference

assigned to it by the grid comfortably.
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Fig. 5.27: Response of Building 3C Thermostatic Control Loads to the Power Reference Signal

Fig. 5.28: Building 5B Power Reference Tracking Test Case

5.5.3 Case 3: Demand Response

Under this application, the hybrid building is being evaluated to accurately predict

the operation of the distributed energy resources to reliably deliver any expected load
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Table 5.7: Differential and Power Reference Tracking Metrics for Building 5B

% RMSE % Energy Difference
RMSE (kW) Using Max Power Ref as Base for the Event Day

0.9283 3.9 1.5

Fig. 5.29: Building 5B Response of the Battery to the Power Reference Signal

Fig. 5.30: Response of Building 5B Thermostatic Control Loads to the Power Reference Signal
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shedding or load scheduling services upon the receipt of such action as a request from

the grid during any DR events. This approach helps utilities to create an avenue to

enable reliable and resilient distribution grids. The load shedding is somewhat similar

to demand shifts during Time of Use rates as discussed in the Energy Management

Application section. As such more attention is directed to other Load scheduling

events that may warrant the customer to increase their load use at certain times of

the day while receiving incentives for such actions.

In the load scheduling application, the controller in the hybrid building is expected

to coordinate the energy resources to use the maximum amount of energy upon receipt

of a such signal from the utility. This seems to be a rare case of application to

maintain reliable and resilient power grids. However, the events sometimes occur

in mild geographical locations and when generation exceeds consumption. As an

example, the load increase event occurrence was witnessed by the Bonneville Power

Administration in the first two weeks of June 2010, where the company was compelled

to market over 50,000MWh at $0/kWh to consumers [128]. The most common area

for the Load increase application is Pacific Northwest; as such, in this study, the

hybrid building of zone 3C (San Francisco is in close proximity to the pacific, and it

is deployed to analyze load increase DR events upon requests from the utility. Similar

to the load shed events with the TOU case, a 24-hour advance notification of potential

load increase is received by the controller to modulate and accommodate excessive

generation coming from the grid.

5.5.3.1 Results for Demand Response Application with Load Scheduling Test Case

The results of the load scheduling event are simulated for a 24-hour time period.

Events for load increase were scheduled for midnight and morning hours, 12:00 am

- 5:00 am and 9:00 pm and 12:00 am. During the course of these events, the MPC

controller provided the resource forecast for the increase in load the utility needs for

the building.
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Fig. 5.31: Building 3A Power Profiles During Load Scheduling Test Case

Fig. 5.32: Building 3A Response of the Battery to the Load Scheduling Event

As compared to the base case, load increases were recorded during the event time,

especially with the HVAC system as illustrated in Fig. 5.39, which typically would
1Includes 96.54 Customer does not have to pay for
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Fig. 5.33: Building 3A HVAC Power Profile During the Load Scheduling Event

Table 5.8: Building 3A Energy Usage Comparison for MPC Control Utilization during Load Schedul-
ing Event

Period Base Case With MPC % Gain on Incentives
Event hours 49.23 kWh 96.54 kWh 49

Day 268.65 kWh 302.891 kWh 23.2

not turn on due to the mild ambient condition. A similar profile was noticed with the

HVAC system, with most temperatures kept at the upper bands, while maintaining

all building thermal comfort conditions and meeting other preferences. The response

of the Battery Energy Storage System is also illustrated in Fig. 5.38 An interesting

observation is that the battery is able to maintain the charging operation using the

grid power during these events while still running normally at other times

Table 5.9: Building 3C Energy Usage Comparison for MPC Control Utilization during Load Schedul-
ing Event

Period Base Case With MPC % Gain on Incentives
Event hours 50.61 kWh 103.13 kWh 52.5

Day 237.6 kWh 280.92 kWh 25.2

2Includes 103.13 Customer does not have to pay for
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Fig. 5.34: Power Profiles During Load Scheduling Test Case

Fig. 5.35: Response of the Battery to the Load Scheduling Event

3Includes 112.56 Customer does not have to pay for
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Fig. 5.36: HVAC Power Profile During the Load Scheduling Event

Fig. 5.37: Building 5B Power Profiles During Load Scheduling Test Case

5.6 Summary

The proposed model and the control modes were suitable and validated for use

within an optimization framework for MPC control applications in grid energy man-

agement. The optimization was used to validate the mixed-mode operation of the
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Fig. 5.38: Building 5B Response of the Battery to the Load Scheduling Event

Table 5.10: Building 5B Energy Usage Comparison for MPC Control Utilization during Load
Scheduling Event

Period Base Case With MPC % Gain on Incentives
Event hours 49.12 kWh 112.56 kWh 56.3

Day 260 kWh 329.783 kWh 16.4

passive building in conjunction with the onsite generation, storage system, and other

populations of building loads. The novel framework for the advanced load control

for the building DERs performed much better than the legacy setpoint change-based

method described in Chapter 4 in improving temperature stability and reducing the

peak energy during a DR event. For the Time-of-Use application, It was observed

that the proposed controller successfully avoids excess consumption at peak demand

hours by providing a 60% to 65 % reduction in electricity consumption in the eval-

uated zone when compared with traditional un-optimized operational methods. The

MPC control also resulted in an average of 1.2% error in power reference tracking,

and 49% to 56% gain on incentives during a daily load scheduling strategy in the
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Fig. 5.39: Building 5B HVAC Power Profile During the Load Scheduling Event

evaluated zones.



CHAPTER 6: AGGREGATOR FORMULATION

The framework of how the comprehensive hybrid building optimization framework

presented in the last chapter interacts with the smart grid through an aggregator

is formulated in this section. First, the aggregator takes direct implemention of the

market information, then, characterizes the flexibility limits of the distributed energy

resources in its network, then through optimization, implements control strategies

to coordinate how the hybrid ventilated buildings respond to requirements from the

grid.

6.1 Introduction

The MPC formulation in the last chapter has objective functions formulated to

reduce energy costs and improve thermal comfort for hybrid ventilated buildings at

each building level. Typically, each building is unable to communicate directly with

the operators, as such, a centralized aggregator with the sole responsibility of main-

taining demand compliance imposed by the regional operators across multiple homes

at a feeder level is required. This is especially important to allow the homes that a ge-

ographically co-located to collectively bid on markets and allow any non-conforming

effects with the grid to average out after providing their flexibility limits. As such a

use case that allows building owners to reduce energy costs and be subjected to TOU

pricing while ensuring aggregate demand requirement is maintained is evaluated in

the future sections.

6.2 Main Contributions

Bearing in mind the intermittent power operations of hybrid ventilated buildings,

the goal of this chapter is to develop a model of the building loads in virtual bat-
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teries and characterize their flexibility for resource unification and efficient control

realization. As such, the following contributions are achieved

• Proposed a simultaneous optimization-based flexibility characterization strategy

and aggregator oversight for a large population of passive buildings designed for

special applications such as hybrid ventilation.

• Developed an MPC-based dispatched algorithm for passive building energy re-

sources and a hierarchical coordination framework that allows aggregators to

manage effective grid compliance.

• Analytically quantified the benefit assessments of coordinating aggregated dis-

tributed loads for grid services rather than independently.

The simulation model consists of a flexibility aggregator model and the comprehensive

Fig. 6.1: Aggregator integration with the comprehensive hybrid building methodological framework
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hybrid modeling framework that house the passive building model, the controller

model and their operation modes, and each of the other distributed energy resource

in the building. This architecture is represented in Fig. 6.1.

The schematic of how the aggregator receives requirement from the grid is rep-

resented in Fig. 6.3 and the functional interaction between the aggregator and the

building controllers. The framework also shows the virtual model of resources and

their interaction, as well as output at each state variable that impacts the building

energy use.

6.3 Flexibility Aggregation Methodology

Different flexible energy resources are essential to be coordinated uniformly for

efficient power grid operation. Such resources are often thermostatically controlled

including HVAC systems and electric water heaters which have the capacity to store

thermal energy and can be conceptualized as the state-of-charge, as power usage

coincides directly with the level of their thermal energy. In the subsequent subsections,

two examples of virtual battery formulations were presented for the HVAC system

and the electric water heater.

Fig. 6.2: Defined loop interactions between the aggregator and building controllers
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The virtual battery model is represented in equation 6.1

Ẋ t = −αXt +∆Pt (6.1)

where α is the self-discharge rate, ∆ the size of the discrete time-steps, Xt is the

energy state, and Pt is the power input referencing additional power consumed over

some base profiles

6.3.1 Virtual Battery Formulation for the HVAC

Considering the large population of passive residential buildings with N number

of HVAC equipment, such that N » 1, the virtual battery representation for the

building’s HVAC system is represented in equation 6.2. The occupants’ comfort re-

quirements are modeled as the virtual energy bounds (state-of-charge) of the battery.

ẊHV AC,t = −αHV ACXHV AC,t +∆PHV AC,t (6.2)

Recall the building thermal dynamic model, the three operational modes (passive,

controlled-passive, and active), the mixed operation mode, and the HVAC equipment

model represented in Chapter 3.

Cz
dTz

dt
=

1

R
(Ta − Tz) +

Nz∑︂
adj=1

1

Radj
(Tadj − Tz)

+cpminf (Ta − Tz) + cpmvent(Ta − Tz) +Qtotal +QHV AC

(6.3)

Pbase = QHV AC (6.4)

and QHV AC is electric power directly associated with the coils to provide sensible

heating or cooling rates.

As such, passive building thermal dynamics of equation 6.3 with the integration of



119

our proposed operation modes in mind as discussed in Chapter 4 needs to be presented

as equation 6.2. First, this begins by defining the virtual battery representation of

the energy state variable during the HVAC operation, which is given in equation 6.5.

XHV AC,t =
C(Tz,t − Tset)

COP
(6.5)

At steady state, it is assumed that Cz
dTz

dt
= 0 in equation 6.3, as a result, QHV AC,t

represents the base power from the active system Pbase,t, which is the nominal power

to keep the indoor temperature at its setpoint, considering the whole thermal dy-

namics representation, this is given in equation 6.6. The fundamental idea about the

formulation of equation 6.6 is presented in [129,130].

Pbase,t =
N∑︂
i=1

1

COP i
[
1

Ri

(︁
T i
set − T i

a,t

)︁
+

Nz∑︂
adj=1

1

Radj
(T i

set,t − T i
adj,t)

+cpṁ
i
inf (T

i
set,t − T i

a,t) + cpṁ
i
vent(T

i
set,t − T i

a,t)−Qi
total,t)]

(6.6)

The upper and lower bounds of the power are represented in equation 6.7 and

equation 6.8 where both equations are minimized and maximized respectively

P−
HV AC,t = −Pbase,t (6.7)

P+
HV AC,t =

N∑︂
i=1

P i
HV AC − Pbase,t (6.8)

Similarly, the upper and lower energy bounds of the HVAC system are given in

equation 6.9 and equation 6.10

X−
HV AC,t =

T∑︂
t=1

P−
HV AC,t (6.9)
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X+
HV AC,t =

T∑︂
t=1

P+
HV AC,t (6.10)

The self-discharge rate which depends on the building’s thermal parameters is given

in equation 6.11

α =
1

N

N∑︂
i=1

1

Ci
zR

i
(6.11)

6.3.2 Virtual Battery Formulation for the Electric Water Heater

The single-node Electric Water Heater model of equation 6.12, previously discussed

in Chapter 3 is adopted for the virtual battery representation. Consider a large

population of electric water heating loads N , such that N » 1

Cw
dTw

dt
=

1

Rw

[Ta − Tw]− ṁw Cp (Tw − Tin) + UQwh (6.12)

The virtual battery representation of the energy variable of the water heater is

given in equation 6.13,

Xw,t = C(Tw,t − Tw,set) (6.13)

where Xw,t represents the energy variable of the electric water heater at time t and

Tw,set represents the electric water heater temperature setpoint.

As stated earlier that power usage coincides directly with the level of their thermal

energy. Thus, in representing the water heater model in form of a virtual battery,

equation 6.14 is generated.

Ẋw,t = −αwXw,t +∆Qwh,t (6.14)

If Qwh,t represents the base power Pbase,t. The baseline power and other representa-

tions of the virtual battery are given in equation 6.15. Recall U is the water heater
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binary control signal for the heating element’s on and off.

Pbase,t =
N∑︂
i=1

[︃
1

Ri
w

(︁
T i
w,set − T i

a,t

)︁
+ ṁi

tCp

(︁
T i
w,set − T i

in,t

)︁]︃
(6.15)

The upper and lower bounds of the power are represented in equation 6.16 and equa-

tion 6.17.

P−
w,t = −Pbase,t (6.16)

P+
w,t =

N∑︂
i=1

P i
w − Pbase,t (6.17)

Similarly, the upper and lower energy bounds of the electric water heating system are

given in equation 6.18 and equation 6.19.

X−
w,t =

T∑︂
t=1

P−
w,t (6.18)

X+
w,t =

T∑︂
t=1

P+
w,t (6.19)

The self-discharge rate which depends on the Water Heater’s thermal parameters is

given in equation 6.20.

α =
1

N

N∑︂
i=1

1

Ci
w

(︃
ṁi

w,tC
i
p +

1

Ri
w

)︃
(6.20)

6.4 Aggregator Implementation for End User Services

The primary objective of optimal aggregator coordination is to minimize utility cost

at a certain time of the day using TOU energy rate. A resource allocation problem

is solved to dispatch the virtual battery power to each building controller while the

aggregator tracks the maximum power requirement from the grid and the building

controllers maintain all comfort constraints and operation requirements are not being
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violated. As such, the objective function of the optimization problem is represented

in equation 6.21.

Minimize

T∑︂
t=1

N∑︂
i=1

(
(︁
πtP

i
t∆t

)︁
) (6.21)

where πt is the time-of-use (TOU) electricity price at timestep t.

Moreover, the objective function is subjected to the following additional constraints

• Real battery constraint and EV constraint (if applicable) represented in equa-

tion 3.8 to equation 3.17

• Aggregate power constraint at every timestep given in equation 6.22

N∑︂
i=0

P i
t ≤ Amax,t (6.22)

where Ai
max,t represents the maximum power the aggregator must comply with.

• deterministic flexibility limits results obtained by solving power and virtual en-

ergy maximization and minimization problems using the expected base profiles

from equations 6.7 to 6.11 and equations 6.15 to 6.20.

• End-user comfort levels which are also virtual battery-related constraints as

depicted in equation 6.23 and equation 6.24.

X−
t ≤ Xt ≤ X+

t (6.23)

P−
t ,≤ Pt ≤ P+

t (6.24)

Xt = XHV AC +XWH +Xbatt +XEV +Xnon-flex (6.25)

Pt = PHV AC −PHV ACbase +PWH −PWHbase +PBatt +PEV −PEVbase +Pnon-flexible

(6.26)



123

Then, the characterized flexible loads results are added to other loads such as the

uncontrollable load values of each building, and at every time step to obtain the total

flexibility of the buildings.

The proposed flexibility aggregation methodology for the power grid and end-user

resources is demonstrated in the framework and logic problem definitions of Fig. 6.3.

This is represented using a REDIS client implementation platform with a population

of 10 passive buildings, each having a real battery storage system, solar PV system, an

electric water heater, an HVAC system, and uncontrollable electrical loads. The pas-

sive buildings’ flexibilities are characterized by individual homes but implementation

states are provided by the aggregator according to equations in 6.7to 6.20. Addi-

tionally, the TOU electricity price are from [131]. Additional information about the

REDIS platform and how aggregator functions in the platform are explained in [132].

The detailed process for aggregator controller operation when the request is en-

forced by the system operator is explained in Algorithm 3. Optimize each site flexi-

bility according to Output

To generate a large population of building resources, the passive building thermal

parameters and other building energy resource parameters obtained for 10 houses

in building zone 3C were randomized using a normal distribution with the mean

value represented in Table 3.2 and the standard deviation of 20% of the mean value.

Similarly, water heater profiles of the homes were randomly generated from a pool of

profiles presented in [133].

6.5 Results and Discussions

For the ten passive buildings, the peak demand attained for the day using the MPC

optimization framework of chapter 5 when all buildings were optimized independently

was 160 kW. In comparison with an aggregator, the maximum demand achieved

during the same period was 97.5 kW which is less than 100kW imposed by the grid

controller on the aggregator. Similarly, the total daily energy reduction percentage
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Algorithm 3: Aggregator Control Operation
1 Input Amax,t, Tset, Tw,set, Cw

2 Input R,Rw, Cw, Cz in 6.11, 6.20
3 At t, compute baseline power Pbase,t for each resources as in 6.6, 6.15
4 Output: α, Pbase,t

5 Aggregator receives baseline power and energy event notice
6 for t = 1, 2, 3, ..., T do
7 if

∑︁N
i=0 P

i
grid,t ≤ Amax,t then

8 Minimize energy costs 6.21,
9 Prioritize Amax,t 6.22

10 Send states X i
t to individual resources.

11 end
12 else if

∑︁N
i=0 P

i
grid,t > Amax,t then

13 Modify operator’s request or compute penalty
14 recompute baseline power Pbase,t using 6.6, 6.15
15 Minimize energy costs 6.21 with new price πn

16 Send states X i
t to individual resources.

17 end
18 else
19 Send states X i

t to individual resources
20 end
21 Hold for next event
22 end
23 return P i

t , X i
t

and the total percentage demand reduction during the TOU event are summarized

in 6.1.

Table 6.1: Building 3A Energy Usage Comparison for MPC Control Utilization during TOU rate
Event

Period No Aggregator Aggregator % Reduction
Partial Peak 106.57 kW 70.99 kW 33.3

Main Peak (12:00 pm - 6:00 pm) 65.05 kW 36.73 kW 43.5
Day 160 kW 97.5 kW 39
Day 1091.38 kWh 736.92 kWh 32.4

The aggregated power profile and individual building profile during the aggregator

optimization are presented in Fig. 6.4. The total flexibility characterization of each

building as determined by the aggregator is also depicted in Fig. 6.4. It is also
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Fig. 6.3: Framework for Aggregator Interaction with all Buildings and Resources

observed that real battery storage significantly prioritizes limiting the average demand

to ensure compliance by aggregator according to Fig. 6.8 while in contrast the virtual

energy, majorly from the HVAC power profile helps provide both cost savings and

demand through hybrid ventilation.
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Fig. 6.4: Grid Profile with Aggregator Oversight

Fig. 6.5: Grid Profile without Aggregator Oversight

The aggregated charge/discharge operations through the average energy states of

the battery is illustrated in Fig. 6.8 It can be observed that batteries charge to full
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Fig. 6.6: Buildings’ Internal Temperature Profile During Aggregator Oversight

capacity prior to the peak hours starting at 8:30 am to save energy and demand

during peaks. As such, two periodical peaks were recorded, the first peak prior to

the TOU pricing period and the second after the TOU event. Fig. 6.6 and Fig. 6.7

show the aggregated internal temperature profiles of the passive buildings and that of

the electric water heater respectively. It is observed that both temperatures are still

within the comfort limits, as such no temperature violations occurred as combined

energy was significantly reduced.

While the aggregator is able to enforce the limit requirements, either to provide

peak shaving or any reliability services that the grid needs, it is worth mentioning

that the residential end-users are usually not concerned about demand limits as that

is often not included in their rate structure. As a result, energy cost savings become a

priority as that is most impactful to residential end-users during the TOU events. As

such system operators can carefully craft out their priorities with consumers in mind

when examining the impacts of demand limit enforcement during the TOU pricing
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Fig. 6.7: Building Water Heating Profile During Aggregator Oversight

Fig. 6.8: Aggregated Response of charge/discharge operations of the battery

period.
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Fig. 6.9: Grid Power Comparison with and without Aggregator Oversight

6.6 Summary

In the presence of N residential building energy end-users geographically co-located

in an area and can collectively provide load reduction to influence the grid perfor-

mance, such service to the grid requires an aggregator that has the capability to

unify all the grid resources and enforce certain requirements. The previously dis-

cussed models, operation modes, and MPC optimization framework of Chapter 5

were used as a starting point for implementing this aggregator oversight while also

characterizing the flexibilities of distributed energy resources across 10 residential

passive buildings to reduce peak demand and achieve energy cost savings. A com-

parison was made to see the benefits of having an aggregator implement the control

of the flexible building loads centrally, or allow the building to act on the market

information and control their loads independently. It was observed that aggregated

control offers additional benefits in achieving 32.4% additional savings in energy costs

that impact the end-users while ensuring that no comfort limits violation is recorded
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throughout the demand management event period.



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

This dissertation presents an integrated modeling approach with sequential steps

in studying the thermal-dynamic operations of passively- designed hybrid ventilated

buildings considering their intermittent active power operation. First, the hybrid

model, including a procedure for identifying model parameters, was established, and

results were compared with EnergyPlusTM counterparts. For this, an average of 4%

in CVRMSE error was generated compared with EnergyPlusTM results which is a sig-

nificant improvement when benchmarking with ASHRAE 14 guidelines requirement

that specifies the error to be within 30%.

Second, three distinct functional hybrid operation modes of the developed model

for energy management not present in the state-of-the-art were presented and re-

sults revealed an average of 70% energy costs reduction impacts on consumers in the

evaluated ASHRAE climate zones.

Third, a scalable, generalizable, and extensible energy optimization framework con-

sidering all the active energy sources in the building was illustrated, and the results

showed that the formulated framework has an intuitive interpretation of prioritizing

natural ventilation operation while effectively coordinating building energy resources

for a 60% to 65% reduction in peak electricity usage and costs to consumers during the

time of use events. Similarly, the model is utilized within Model Predictive Control

(MPC) and optimization framework across multiple prediction horizons for evalu-

ating different demand side management events including power reference tracking,

and demand response activity with load scheduling capabilities. For this, the results

revealed an average of 1.2% error in power reference tracking demonstrating the high

accuracy of the developed model and framework in supporting grid services. Also,
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49% to 56% gains on incentives to consumers were recorded during load scheduling

events in the evaluated zones.

Finally, a distributed energy resource aggregation framework that limits aggregate

demand for multiple passive buildings was formulated, to enforce grid limits and

simultaneously achieve energy cost savings. The results show that the aggregator

framework proves efficient in reducing the aggregate demand of ten passive buildings

from 160 kW (without aggregator oversight) to 97.5 kW (with aggregator oversight)

while simultaneously providing 34% energy cost savings to end-users.

The future research directions in alignment with this research include:

• The model and controllers including the aggregator framework can be imple-

mented for additional testing of cases or integrated with the IEEE bus systems

to solve various grid stability, reliability, and demand-side management prob-

lems.

• The hybrid building models and resource clustering formulation of the aggre-

gator algorithms can be further extended for participation in wholesale energy

markets.

• The hybrid models can be extended for evaluating different building types, such

as commercial buildings and high-rises, considering the variations in dynamics

of ventilation across multiple building heights and building components.

• The model can be explored for other extensive applications with hybrid-ventilated

buildings, including demand management programs, frequency regulations, an-

cillary services, real-time resource controls, and other transactive operations.
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