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ABSTRACT

ADIT MISAR. Insight into the aerodynamics of race and idealized road vehicles
using scale-resolved and scale-averaged cfd simulations. (Under the direction of DR.

MESBAH UDDIN)

Aerodynamics has long been perceived as the single most important aspect amongst

all factors that contribute to the on-track performance of a racecar. As such, in all

forms of motorsports, race teams dedicate a significant portion of their budget and

efforts to aerodynamic development. As track testing of racecars is cost prohibitive

and is mostly controlled by the sports sanctioning bodies, wind-tunnel testing and

Computational Fluid Dynamics (CFD) are the commonly used tools in racecar aero

development. However, in an effort to ensure level playing fields, race sanctioning

bodies introduced limits on how much wind tunnel time or CFD resources each team

can utilize in its aerodynamic development. For CFD, the implication of these caps

means that the solution turn around time, accuracy and reliability must be improved

to overcome the challenges caused by the imposed resource-utilization-restrictions. In

order to achieve the goal of finding a fast, yet reliable CFD methodology, this project

presents the development of a Reynolds-Averaged Navier Stokes (RANS) CFD frame-

work for NASCAR Cup stock-racecars using a Scale Averaged (SAS) approach based

on the SST k− ω turbulence model. The methodology development process involves

a thorough understanding of the effects of solver parameters, closure coefficients, and

boundary conditions on the prediction veracity. The prediction accuracy is validated

against test data obtained from a closed-return, open-jet rolling-road wind tunnel for

a range of racecar on-track operating conditions, such as the changes in ride-heights

and yaw. Results using the CFD framework presented in this dissertation achieved

a correlation of 98% with the wind-tunnel lift and drag measurements data over a

range of operating conditions. However, existing literature suggests that the scale

and time-resolved (or SRS) Detached Eddy Simulation (DES) approach produces a
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better overall flow field predictions for simplified road vehicles, such as the Ahmed

body. The aerodynamic characteristics of racecars are starkly different even from

the passenger vehicles, let alone the simplified vehicles. As a study comparing the

effectiveness of SAS and SRS approaches in flow-filed predictions is not available in

existing literature, this work also investigates the aerodynamics of a stock-racecar

using Improved Delayed DES (IDDES). This study finds that the IDDES resolved a

range of finer vortical structures that are almost entirely missed by the RANS ap-

proach. To better understand the roles of these vortices on the aero characteristics of

the race car, spectral analyses of the aerodynamic forces and moments are carried out.

The distribution of Power Spectral Density (PSD) is found to be largely independent

of the operating conditions. This implies that the dominant modes stemmed from the

racecar geometry with a ramification that an understanding on the contribution to

the dominant energy modes by different race-car geometry components would be very

beneficial for performance improvement. To identify the dominant modes, a more ad-

vanced and informative modal decomposition tool is required. The Dynamic Mode

Decomposition (DMD), which was seen in existing literature to be a very effective

tool for low Reynolds number flows around canonical geometries, is considered to be

an ideal candidate. However, due to the nonavailability of the volume of flow-field

data required to train a DMD algorithm for the flows past NASCAR race-cars, the

process is sought to develop using a simplified road vehicle, the Ahmed body. When

the DMD algorithm from the existing literature was applied to the high Reynolds

number, separation-dominated flow past an Ahmed body, the DMD reconstruction

of the flow field suffered nonphysical dampening of the medium-to-high frequency

modes. To circumvent this, a modified DMD algorithm is proposed in this work

which involves introduction of a mode filtration process. The proposed DMD algo-

rithm is found to be very effective in both flow-field reconstruction and predictions

of the future state.



v

DEDICATION

This work is dedicated to my parents, Medha Misar and Sunil Misar, and my

brother Anuj Misar, for providing me with constant support, motivation and encour-

agement.

Their continual inspiration to deliver my best at every task and selfless love provided

throughout my life builds the foundation that makes this dissertation possible.

Thank You



vi

ACKNOWLEDGEMENTS

I would like to thank my academic advisor, Dr. Mesbah Uddin, who provided me

with the opportunity to put together my passions of aerodynamics and engineering.

A career in aerodynamics has been my dream since I was first introduced to aerody-

namics back in high school. I am thankful for all the learning opportunities that he

has presented to me that includes research on various projects, as well as teaching

and mentoring opportunities. Mostly, I thank him for his patience and insights over

this long and challenging journey to complete a doctoral dissertation. I am grateful

to have him as a mentor.

I would like to thank my industry mentors, Ted Pandaleon, Josh Wilson, Dr.

Nathon Tison, and Dr. Vamshi Korivi for all their insights and support.

I would like to thank my data sponsor for providing the CAD model and all wind

tunnel experimental data of a Gen-6 NASCAR Cup Racecar. These are proprietary

data obtained through a Non-Disclosure Agreement (NDA) and thus to protect the

confidential data, all force and moment coefficients presented in this dissertation are

normalized by an arbitrary reference area.

I also thankfully acknowledge partial funding support from the Office of Naval Re-

search (ONR grant# N00014-19-1-2245) through which I was supported as a Research

Assistant to work on the development of CFD based application oriented Virtual En-

gineering tools.

I would like to thank my dissertation committee members I have had the honor to

work with, Dr. Chen Fu, Dr. Srinivas Pulugurtha, and Dr. Praveen Ramaprabhu,

for their feedback, support and commitment to high-level education.

I would like to thank UNC Charlotte University Research Computing and MOSAIC

Computing divisions for providing dependable and adequate computational resources

for my research.

I would also like to thank my peers in our research group, Clay Robinson, Chunhui



vii

Zhang, Sudhan Rajesakar, Patrick Bounds, Spencer Owen, Brett Peters, Ayushi Jain,

Hamed Ahani, and Vincent Lee, to name a few, for their companionship, support,

and correcting my English grammatical errors.

I also thank my family for their continued support and motivation, extending across

the physical distance of over 13450 km (8358 miles) from each other almost every day.

I am eager to host you when you come here to visit me.

I would like to extend my humble gratitude to everyone who has been part of my

journey since I arrived in this country. There are too many to name here but some

are, Amol Sathe, Anay Joshi, Anish Venkatraman, Anurag Doshi, Arjun Yeravdekar,

Jaydeep Kshirsagar, Manish Patil, Nagarjun Chandrashekar, and Pratik Kulkarni.

Our shared experiences and memories have helped sustain the push over the finish

line and make me excited for life beyond graduate school.

Beyond academics, I would like to acknowledge the facilities and activity groups at

UNC Charlotte that helped adopt healthier lifestyles. The friendly staff at the Stu-

dent Health Center, Counseling at Psychological Services (CAPS), Belk Gym, and

University Recreation Center (UREC) provided all necessary support. I resumed my

activities of swimming and table tennis. I also picked up several new activities of

racquetball, tennis, boxing, badminton, and resistance training. Walking and jogging

on the Mallard Creek Greenway also provided rejuvenation. These helped to signifi-

cantly improve my overall fitness. I would like to thank my friends Arjun Yeravdekar,

Jaydeep Kshirsagar, Manish Patil, Hamed Ahani, and Vincent Lee for their company

and motivation throughout these activities.

Finally, I would like to thank my extended family, both in India and overseas,

for their support and encouragement. Many in the United States have hosted me for

holidays and I look forward to visiting everyone. I am comforted in the knowledge that

my network of people are always available to help me navigate the various adventures

of life.



viii

TABLE OF CONTENTS

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xxi

LIST OF SYMBOLS xxiii

CHAPTER 1: INTRODUCTION 1

1.1. Computational Fluid Dynamics (CFD) 2

1.1.1. Governing Equations 3

1.1.2. Direct Numerical Simulation (DNS) 5

1.1.3. Improved Delayed Detached Eddy Simulation (ID-
DES)

6

1.1.4. Reynolds-Averaged Navier Stokes (RANS) 7

1.1.5. CFD Tools 9

1.2. Background 10

1.3. Motivation 13

1.4. Objectives 15

1.5. Dissertation Outline 17

CHAPTER 2: (ARTICLE 1) EFFECTS OF SOLVER PARAMETERS
AND BOUNDARY CONDITIONS ON RANS CFD FLOW PRE-
DICTIONS OVER A GEN-6 NASCAR RACECAR

18

2.1. Introduction 18

2.2. Computational Method & Simulation Setup 22

2.2.1. Turbulence Model 24

2.2.2. Geometry and Mesh 25



ix

2.2.3. Physics Setup 28

2.2.4. Wall Treatment 29

2.2.5. Solver and Convergence 30

2.3. Results and Discussion 30

2.3.1. Boundary Condition Effect 31

2.3.2. Validation 31

2.3.3. Tunnel Size 32

2.3.4. Realizability 33

2.3.5. Grid Independence Study 34

2.3.6. Compressibility 35

2.3.7. Under-Relaxation Factors (URF’s) 38

2.3.8. Delta Accumulated CDnd CLlots 39

2.4. Summary/Conclusions 42

CHAPTER 3: (ARTICLE 2) SCALE-RESOLVED AND TIME-
AVERAGED SIMULATIONS OF THE FLOW OVER A NASCAR
CUP SERIES RACECAR

52

3.1. Introduction 52

3.2. Governing Equations 58

3.2.1. The Improved Delayed Detached Eddy Simulation
Mode

60

3.3. Geometry and Mesh 62

3.4. Physics Setup 67

3.5. RESULTS AND DISCUSSION 68

3.6. Conclusions 87



x

CHAPTER 4: (ARTICLE 3) ON THE EFFECTIVENESS OF SCALE-
AVERAGED AND SCALE-RESOLVED TURBULENCE MOD-
ELLING APPROACHES IN PREDICTING THE PRESSURE
FIELD OVER A NASCAR RACECAR

90

4.1. Introduction 90

4.2. Methodology 96

4.2.1. Governing Equations 96

4.2.2. Geometry 102

4.2.3. Computational Domain and Boundary Conditions 102

4.2.4. Initialization 104

4.2.5. Discretization 104

4.2.6. Physics Setup 104

4.2.7. Stopping Criteria and Data Averaging 105

4.2.8. Computational Resources 105

4.3. Results and Discussion 106

4.3.1. Coefficient Plots 106

4.3.2. Accumulated forces 109

4.3.3. Pressure Probe Plots 115

4.4. Conclusions 133

CHAPTER 5: (ARTICLE 4) INSIGHT INTO THE TURBULENT
FLOW AROUND AN IDEALIZED ROAD VEHICLE USING THE
DYNAMIC MODE DECOMPOSITION APPROACH

136

5.1. Introduction 136

5.2. DMD Equations 140



xi

5.3. Methodology 143

5.3.1. Solver Settings 143

5.3.2. Geometry, Domain, and Boundary Conditions 145

5.3.3. Discretization Scheme 147

5.3.4. DMD Workflow 147

5.3.5. Data Collection Strategy 148

5.4. Results 149

5.4.1. CFD Validation 149

5.4.2. Application of DMD to a Canonical Flow Case 149

5.4.3. Ahmed Body Simulations 151

5.4.4. Future State Predictions using DMD 167

5.4.5. Computational Resources 169

5.5. Conclusion 170

CHAPTER 6: CONCLUSIONS 173

REFERENCES 176



xii

LIST OF TABLES

TABLE 2.1: Configurations of the racecar considered in this study. 31

TABLE 2.2: VWT sizes. 37

TABLE 3.1: Racecar ride-height and yaw configurations used in this study 69

TABLE 4.1: Configurations of the racecar that are considered in this
study.

95

TABLE 5.1: Mean of all aerodynamic coefficients and RMS of their fluc-
tuations as obtained from CFD simulation and DMD reconstruction.

168

TABLE 5.2: Mean of all aerodynamic coefficients and RMS of their fluc-
tuations as obtained from CFD simulation and a future prediction
by a DMD based ROM.

169

TABLE 5.3: Computational resources required by DMD and CFD 170



xiii

LIST OF FIGURES

FIGURE 1.1: Energy spectrum for a turbulent flow, where κ is the
wavenumber (inverse of length scale) and E(κ) is the turbulent ki-
netic energy.

5

FIGURE 1.2: Generations of the NASCAR Cup racecar (image source:
https://www.autoweek.com/racing/nascar/a36107106/nascar-
generations/

11

FIGURE 1.3: A journalists representation of the qualify-
ing results of the 2022 Singapore F1 GP (image source:
https://twitter.com/autosport/status/1576251439579598848

14

FIGURE 2.1: Gen-6 NASCAR with unique surfaces highlighted in orange. 21

FIGURE 2.2: Layout of Windshear Wind Tunnel; Image source: Winds-
hear website.

22

FIGURE 2.3: The two ride height configurations used in this study. 22

FIGURE 2.4: The two yaw conditions, 0◦ and −3◦ considered in this
study.

23

FIGURE 2.5: Computational domain. 27

FIGURE 2.6: Final mesh: Near car, @Y=Om center plane. 28

FIGURE 2.7: y+ Distribution over the surface of the vehicle. 29

FIGURE 2.8: Histogram plot of wall y+ distribution. 29

FIGURE 2.9: Streamwise velocity profiles on Z/SG =1 plane (a, top) with
right wall as velocity inlet, Left wall as pressure outlet (b, bottom)
Side walls as zero-gradient boundaries.

32

FIGURE 2.10: Cross-stream velocity profiles on Z/SG =1 plane (a, top)
with right wall as velocity inlet, left wall as pressure outlet (b, bot-
tom) Side walls as zero-gradient boundaries.

33

FIGURE 2.11: Headline CD for validation study. 34

FIGURE 2.12: Headline CL for validation study. 35



xiv

FIGURE 2.13: %Front for validation study. 36

FIGURE 2.14: Normalized streamwise velocity @ Z=SG plane. 36

FIGURE 2.15: Headline CD for Configuration I for different VWT sizes. 37

FIGURE 2.16: Headline CL for Configuration I for different VWT sizes. 38

FIGURE 2.17: Headline CD for Configuration II for different realizability
coefficient values.

39

FIGURE 2.18: Headline CL for Configuration II for different realizability
coefficient values.

40

FIGURE 2.19: Headline CLF for Configuration II for different realizability
coefficient values.

41

FIGURE 2.20: CD for different grid sizes. 42

FIGURE 2.21: CL for Configuration I at different grid sizes. 43

FIGURE 2.22: CL for Configuration II at different grid sizes. 44

FIGURE 2.23: CL for Configuration III at different grid sizes. 45

FIGURE 2.24: Headline CD for all three Configurations for incompressible
and compressible solvers.

46

FIGURE 2.25: Headline CL for all three configurations for incompressible
and compressible solvers.

47

FIGURE 2.26: Slower convergence before ramping up the URFs for Con-
figuration II.

47

FIGURE 2.27: Faster convergence after ramping up the URFs for Config-
uration II

48

FIGURE 2.28: Headline CD for all three configurations with default and
ramped URF’s.

48

FIGURE 2.29: Headline CL for all three Configurations with default and
ramped URF’s.

49



xv

FIGURE 2.30: Delta accumulated CD plot for Configuration II with dif-
ferent realizability coefficients.

49

FIGURE 2.31: Delta accumulated CL plot for Configuration II with dif-
ferent realizability coefficients.

50

FIGURE 2.32: Delta accumulated CL plot for Configuration I between
compressible and incompressible solvers.

50

FIGURE 2.33: Delta accumulated CL plot for Configuration III between
compressible and incompressible solvers.

51

FIGURE 3.1: Gen-6 NASCAR with unique surfaces highlighted in orange 56

FIGURE 3.2: Layout of the Windshear Wind Tunnel. Image Source:
Windshear website (https://www.windshearinc.com/; accessed on
18-Nov-2022)

57

FIGURE 3.4: Two yaw conditions, 0◦ and −3◦, as considered in this study 58

FIGURE 3.3: Two ride height configurations used in this study; note
that the splitter gap is expressed using a symbol ’SG’ in subsequent
analysis. (a) top: low SG, (b) bottom: high SG

58

FIGURE 3.5: Schematics of the computational domain 63

FIGURE 3.6: Mesh for the RANS case @ = 0 center plane 64

FIGURE 3.7: A histogram of wall y+ distribution over the surface of the
vehicle obtained from the RANS simulation at zero-yaw

65

FIGURE 3.8: Wall y+ Distribution Over the Surface of the Vehicle 65

FIGURE 3.9: Mean Turbulent Viscosity Ratio (TVR) @y = 0 plane 66

FIGURE 3.10: Mean Turbulent Viscosity Ratio (TVR) @z = SG plane 67

FIGURE 3.11: Comparison of drag force predictions against wind tunnel
measurements for all three configurations

69

FIGURE 3.12: Comparison of lift force predictions against wind tunnel
measurements for all three configurations

70

https://www.windshearinc.com/;


xvi

FIGURE 3.13: Comparison of %Front-Downforce predictions against wind
tunnel measurements

70

FIGURE 3.14: Comparison of Front-lift coefficient predictions against
wind tunnel measurements for all three configurations

71

FIGURE 3.15: Comparison of Rear-lift coefficient predictions against
wind tunnel measurements for all three configurations

72

FIGURE 3.16: Delta accumulated force coefficients for the IDDES cases
relative to the respective RANS cases for all three configurations;
Top: Drag, Middle: Lift, Bottom: Side-Force.

73

FIGURE 3.17: Accumulated CD for configuration I; Solid line: IDDES,
dotted line: RANS.

74

FIGURE 3.18: Predicted surface pressure distribution on the upper sur-
face as obtained from the IDDES solver relative to the predictions of
RANS solver.

75

FIGURE 3.19: Predicted surface pressure distribution as obtained from
the IDDES solver relative to the predictions of RANS solve (bottom
view).

75

FIGURE 3.20: Mean streamwise velocity normalized by the reference ve-
locity @ z = SG plane. Top: RANS; Middle: IDDES; bottom: Delta
between IDDES and RANS.

77

FIGURE 3.21: Underbody skin friction coefficient (Cf ) with Line Integral
Convolutions (LIC) of the wall shear stress along x-direction; Top:
RANS, bottom: IDDES.

78

FIGURE 3.22: Zoomed-in view (around the front splitter region) of un-
derbody skin friction coefficient (Cf ) with Line Integral Convolutions
(LIC) of the wall shear stress along x-direction; Top: RANS, bottom:
IDDES.

79

FIGURE 3.23: Upper body mean skin Friction coefficient (Cf ) with Line
Integral Convolutions (LIC) of the magnitude of wall shear stress;
Top: RANS, bottom: IDDES

80

FIGURE 3.24: Mean Turbulent Kinetic Energy (TKE) @ y=0 Plane 81

FIGURE 3.25: Mean Turbulent Kinetic Energy (TKE)@z=SG plane 82



xvii

FIGURE 3.26: Mean Specific Dissipation Rate (SDR) @ z=SG Plane 83

FIGURE 3.27: Streamlines in the near wake region; Top: RANS, Bottom:
IDDES.

84

FIGURE 3.28: Normalized vorticity distribution on the y = 0 plane. 85

FIGURE 3.29: Normalized vorticity distribution on the z = SG plane. 85

FIGURE 3.30: Power Spectral Density (PSD) of the force coefficients for
all three configurations. Top: drag; Middle: down-force (negative
lift); Bottom: Sideforce

89

FIGURE 4.1: %∆ of CD and CL between CFD and WT 107

FIGURE 4.2: %∆ of CLF and CLR between CFD and WT 108

FIGURE 4.3: %∆ of %_Front and L/D between CFD and WT 109

FIGURE 4.4: Plot of accumulated force coefficients from each configura-
tion from RAS-C and DES-C solvers. Top: (a) Accumulated CD,
middle: (b) Accumulated CL, and bottom: (c) Accumulated CS

111

FIGURE 4.5: Plot of differences in accumulated force coefficients from
DES-C solver w.r.t RAS-C solver from each configuration. Top: (a)
Delta accumulated CD, middle: (b) Delta accumulated CL, and bot-
tom: (c) Delta accumulated CS

114

FIGURE 4.6: Plot of Cp distribution at pressure probes on the splitter 116

FIGURE 4.7: Plot of Cp distribution at pressure probes on the splitter
extension panel

117

FIGURE 4.8: Plot of Cp distribution at pressure probes on the floor 118

FIGURE 4.9: Plot of Cp distribution at pressure probes on the LHS side
skirts

119

FIGURE 4.10: Plot of Cp distribution at pressure probes on the RHS side
skirts

120

FIGURE 4.11: Plot of Cp distribution at pressure probes on the fuel cell
and rear crash structures

121



xviii

FIGURE 4.12: Plot of Cp distribution at pressure probes on the rear
windshield

122

FIGURE 4.13: Plot of Cp distribution at pressure probes on the decklid 123

FIGURE 4.14: Plot of Cp distribution at pressure probes on the spoiler
(a) top row, (b) middle row, and (c) bottom row

125

FIGURE 4.15: Plot of Cp distribution at pressure probes on the front
fascia

127

FIGURE 4.16: Plot of Cp distribution at pressure probes on the hood 128

FIGURE 4.17: Plot of Mach number and mass flow rate distribution at
the splitter and front face geometry (a) top: RAS-C, (b) bottom:
DES-C

129

FIGURE 4.18: Plot of Cp distribution at pressure probes on the P1 (engine
filter,) P2 (roof front), P3 (cabin filter), and P4 (rear fascia)

130

FIGURE 4.19: Plot of Cp distribution at pressure probes on the upper
body centerline

131

FIGURE 4.20: Plot of Cp distribution at pressure probes on the vehicle’s
LHS

132

FIGURE 4.21: Plot of Cp distribution at pressure probes on the vehicle’s
RHS

133

FIGURE 5.1: Validation of the CFD simulation approach and methodol-
ogy

149

FIGURE 5.2: Instantaneous Normalized streamwise velocity for flow past
a 2D cylinder: (a) CFD prediction, (b) DMD re-construction and (c)
the difference between (b) and (a).

150

FIGURE 5.3: Mean streamwise velocity for flow past a 2D cylinder: (a)
CFD prediction, (b) DMD re-construction and (c) the difference be-
tween (b) and (a).

152

FIGURE 5.4: RMS of the streamwise velocity fluctuations for flow past
a 2D cylinder: (a) CFD prediction, (b) DMD reconstruction and (c)
the difference between (b) and (a).

153



xix

FIGURE 5.5: Mean of surface Cp as obtained using data sampled at 4
kHz: (a) from DMD; (b) from CFD; (c) difference between (a) and
(b); (d) same as (c) but bottom-right isometric view

154

FIGURE 5.6: RMS of surface Cp fluctuations obtained using data sampled
at 4 kHz: (a) from DMD; (b) from CFD; (c) difference between (a)
and (b); (d) same as (c) but bottom-right isometric view

155

FIGURE 5.7: Forces and moments obtained from CFD calculations and
DMD reconstructions, sampled at 4kHz; (a) drag, (b) lift, (c) side-
force, (d) pitching moment, (e) rolling moment, and (f) yawing mo-
ment

156

FIGURE 5.8: PSD of forces and moments obtained from CFD calculations
and DMD reconstructions, sampled at 4kHz; (a) drag, (b) lift, (c)
sideforce, (d) pitching moment, (e) rolling moment, and (f) yawing
moment

157

FIGURE 5.9: Mean of surface Cp as obtained using data sampled at 10
kHz. (a) Mean of DMD, (b) Mean of CFD, (c and d) difference
between mean of DMD and mean of CFD, where (d) bottom-right
isometric view

159

FIGURE 5.10: RMS of the fluctuating component of surface Cp as ob-
tained using data sampled at 10 kHz: (a) DMD; (b) CFD; (c) differ-
ence between (a) and (b); (d) same as (c), but bottom-right isometric
view

160

FIGURE 5.11: Forces and Moments of CFD vs DMD, sampled at 10 kHz;
coefficients of (a) drag, (b) lift, (c) sideforce, (d) pitching moment,
(e) rolling moment, and (f) yawing moment

161

FIGURE 5.12: PSD of Forces and Moments of CFD vs DMD, sampled
at 10 kHz; coefficients of (a) drag, (b) lift, (c) sideforce, (d) pitching
moment, (e) rolling moment, and (f) yawing moment

162

FIGURE 5.13: Mean surface Cp distribution, with 10kHz sampling and
custom filtering: (a) DMD; (b) CFD (c and d) difference between (a)
and (b)

164

FIGURE 5.14: RMS of fluctuating component of surface Cp with 10kHz
sampling and custom filtering: (a) DMD reconstruction, (b) CFD
simulation, (c & d) the difference between (b) and (a).

165



xx

FIGURE 5.15: Forces and moments of CFD simulation verses DMD re-
construction, sampled at 10kHz and obtained using custom filters

166

FIGURE 5.16: PSD of Forces and moments of CFD simulation verses
DMD reconstruction, sampled at 10kHz and obtained using custom
filters

167

FIGURE 5.17: Differences between future predictions of DMD and CFD
data: (a) delta of force coefficients, (b) delta of moment coefficients;
delta implies the difference between the DMD predictions and CFD
values

169

FIGURE 5.18: PSD of future predictions of DMD relative to known CFD
data; coefficients of (a) drag, (b) lift, (c) sideforce, (d) pitching mo-
ment, (e) rolling moment, and (f) yawing moment

170



xxi

LIST OF ABBREVIATIONS

CFD Computational Fluid Dynamics

CRFM Condenser, Refrigerator, and Fan Module

DDES Delayed Detached Eddy Simulation

DES Detached Eddy Simulation

DMD Dynamic Mode Decomposition

DNS Direct Numerical Simulation

GIS Grid Induced Separation

GV Ground Vehicle

GVSC Ground Vehicles Systems Center

IDDES Improved Delayed Detached Eddy Simulation

LES Large Eddy Simulation

NVH Noise, Vibration, and Harshness

OEM Original Equipment Manufacturer

PSD Power Spectral Density

RANS Reynolds-Averaged Navier-Stokes

SAS Scale Averaged Simulation

SDR Specific Dissipation Rate

SG Splitter Gap

SGS Sub Grid Scale



xxii

SRANS Steady Reynolds-Averaged Navier-Stokes

SRS Scale Resolved Simulation

SST Shear Stress Transport

SVD Singular Value Decomposition

TD Time Dynamics

TKE Turbulent Kinetic Energy

TVR Turbulent Viscosity Ratio

TVS Tangential Velocity Specification

VWT Virtual Wind Tunnel

WT Wind Tunnel



xxiii

LIST OF SYMBOLS

C(.) Coefficient of pressure, force and moment

dt time step

F X Force acting on the vehicle

f, g generic functions

H,L and W Height, Length, and the Width the vehicle geometry,

respectively

i, and j indexing variables

K Turbulence Kinetic Energy per unit mass

Re Reynolds number

X Collected data matrix

x, y, z, and t Stream-wise, lateral and vertical directions,

and time respectively

U Mean velocity

y+ Non-dimensional wall distance

Subscripts:

x, y, and z Components in x, y,, and z, respectively

p,D, L, and S Pressure, drag, lift, and side-force, respectively

PM, YM, and RM Pitch, yaw and roll moments, respectively



CHAPTER 1: INTRODUCTION

Willy Rampf, former Technical Director of BMW-Sauber Formula 1 (F1) Race

team, said that, “If you look at all the components that affect the performance of a

Formula One car, aerodynamics represent by far the single most important factor” [1].

James Allison, currently the Chief Technical Officer of the Mercedes AMG F1 team,

said that, “Aerodynamics is the start, middle and the end of whether a car is quick.

Generally the car with the best aerodynamics wins the championship.” [2]. These

assessments highlight the vital role aerodynamics play as a performance differentiator

between the race teams in competitive motorsports. Race teams thus spend significant

resources towards the racecars’ aerodynamic development and testing.

The three avenues exist for conducting aerodynamic development: (a) road tests,

(b) Wind Tunnel (WT) tests, and (c) numerical simulation using Computational

Fluid Dynamics (CFD). Each approach has its own pros and cons and race teams

deploy a mix of all three tools for aerodynamic development while balancing costs,

availability and dependability.

Road testing is seen as the ultimate litmus test of the racecars’ performance. As

said by Toto Wolff, the Team Principal of Mercedes AMG F1 team, “The stopwatch

never lies. We get our first understanding of the competitive truth on Saturday in

qualifying.” [3]. Road tests provide a direct and instant measure of the racecars’

performance. There are however certain challenges that are faced with road tests.

Uncontrollable parameters such as weather, driver error, and noise induced by the test

environment would cause significant unpredictability and non-repeatability of these

tests. Additionally, only a finite amount of sensors can be carried by the onboard

data acquisition system (DAQ). And finally, track time, and operation costs the test
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vehicle can be expensive.

Engineers thus resort to the use of simulated environments, such as Wind Tun-

nels and CFD, that are designed to replicate open-air conditions encountered by the

racecars on track. Both the methods, of Wind Tunnels and CFD, are significantly

more affordable to road tests and serve the added benefit of being available in the

early design stages when an actual vehicle can simply be unavailable for road testing.

Of these two approaches, Wind tunnel experiments are seen as a more realistic due

to their use of a tangible vehicle model and its interaction with controlled air flow.

The use of Wind Tunnels is restricted by their known deficiencies such as the need to

correct for blockage ratios, need to simulate moving ground and operation costs.

Complementary to wind tunnel tests, CFD simulations can provide a significantly

more detailed description of the flow field around the vehicle using non-intrusive

measurements in a virtual environment, making it a cost-effective companion tool in

the aerodynamic analysis. With proper discretization, use of appropriate boundary

conditions, and physics models, CFD simulations can now predict the flow field with

accuracy comparable to wind tunnel tests [4, 5, 6, 7]. CFD analyses are sometimes

used to explain and rationalize observations from the wind-tunnel tests [8, 9, 10, 11].

CFD is thus a reliable and indispensable tool for racecar aerodynamic development.

1.1 Computational Fluid Dynamics (CFD)

The CFD methodology and governing equations are described in sections 2.2.1, 3.2,

and 4.2.1. However, for benefit of the reader these are reproduced here.

In recent times, the rapid development of computational resources and enhanced

capabilities of numerical simulation methods have enabled CFD to be a practical

first-approximation tool. Additionally, professional race sanctioning bodies, like the

Federation Internationale de l’Automobile (FIA) or The National Association for

Stock Car Auto Racing (NASCAR), have restrictions on the number of wind-tunnel

hours a team can spend in their racecar development. As such, the racing industry
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requires the development of reliable CFD methods with faster turnaround times.

1.1.1 Governing Equations

The fundamental basis of CFD are the Navier-Stokes (N-S) equations that are the

governing equations for fluid flow. These equations are a mathematical representa-

tion of the principles of Conservation of Mass (also called the Continuity Equation),

Conservation of Momentum, and Conservation of Energy. As vehicle aerodynamics

are generally studied under isothermal flow conditions, with this assumption being

valid for this dissertation also, the energy equation can be excluded. For a Newtonian

flow these are given by equations 1.1, and 1.2 respectively, using Einstein notation

where repeating index variables (i) or (j) imply summation over all possible values,

e.g. (i = 1, 2, 3).

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (1.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

(1.2)

where, t represents time and the variables ui, p, ρ, and τij represent the time-

dependent values of the velocity in xi direction, pressure, fluid density, and fluid

viscous stress tensor, respectively. The viscous stress tensor, τij, is defined as:

τij = 2µsij (1.3)

where µ is the fluid kinematic viscosity and sij represents instantaneous rate of

strain tensor defined as:

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.4)

The N-S equations completely and entirely describe the turbulent flow field from
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the largest to the smallest scales of motion. The challenge faced by CFD comes from

turbulence. Turbulent flows contain a mix of different coherent flow structures that

span a range of length and time scales [12, 13, 14]. The largest structures are called

integral scales, represented by l, and the smallest scales are called the Kolmogorov

scales, represented by η. From dimensional analysis it can be shown that the largest

and smallest scales for length, time, and velocity are related to the Reynolds number

of the flow by the relationships shown in Equations 1.5, 1.6, and 1.7.

η

l
≈ Re

−3
4 (1.5)

τ

t
≈ Re

−1
2 (1.6)

υ

V
≈ Re

−1
4 (1.7)

where the Reynolds number is a non-dimensional ratio of viscous to inertial forces

given by Eq. 1.8

Re =
ρV D

µ
(1.8)

The computational cost increases with the need to resolve the range of length scales.

As an example, for a racecar application such as the one under consideration in this

dissertation, the Kolmogorov length scale can be the order of η = 0.01 mm where l is

taken as the vehicle length. Thus, turbulence models are broadly classified based upon

the scales resolved and modeled by each approach. The four (4) broad approaches are,

in the order of computational cost, Direct Numerical Simulation (DNS), Large Eddy

Simulation (LES), Detached Eddy Simulation (DES) and Reynolds-Averaged Navier-

Stokes (RANS) simulation. Figure 1.1 shows the energy spectrum of a turbulent flow
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and the ranges of length scales, represented by their wavenumber (κ), resolved by the

turbulence models.

Figure 1.1: Energy spectrum for a turbulent flow, where κ is the wavenumber (inverse
of length scale) and E(κ) is the turbulent kinetic energy.

1.1.2 Direct Numerical Simulation (DNS)

In DNS, the entire range of spatio-temporal scales are resolved. Such a numerical

solution requires that CFD resolve the spatial and temporal computational domain

to the Kolmogorv scales. The computational resources required for such a simulation

can be shown to scale with Re11/4, and is impractical for an engineering application

at high Reynolds number. For example, the flow field studied in this dissertation

has a Reynolds number of 2× 107 and would require about 110 exabytes of memory.

Therefore we need to model the turbulent flow.
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1.1.3 Improved Delayed Detached Eddy Simulation (IDDES)

LES simulations work by directly resolving the largest scales of motion and using

a spatial low-pass filter on the smaller scales of motion. It is believed that LES is

more accurate than RANS as fewer of the turbulent scales are modeled, however, the

implementation of the LES approach is computationally expensive for automotive

flows, and thus not discussed further here. A more practical hybrid RANS/LES

approach of DES was proposed by Spalart et al. [15, 16, 17]. DES approaches use

a switching function to use LES in the regions far from the wall and RANS in the

boundary layer regions. The switch between the LES solver and RANS solver is

achieved via the computation of two local parameters, a local turbulent length scale,

lT , and a local grid size, `LES.

`T ≡
√
k

ω
(1.9)

`LES ≡ CDES ∆DES (1.10)

A limitation of this hybrid approach is that when the numerical value of `T and `LES

reduces below a critical value, then the LES solver may be erroneously applied inside

a boundary layer region. The effect of this local grid size can then be observed as a

nonphysical separation being predicted and is thus known as Grid Induced Separation

(GIS). GIS is thus a negative consequence of the switching function and is mitigated

by modifying the switching function to include a delay based on the wall normal

distance and local eddy viscosity [15]. This new approach with the modification to the

switching function is called the Delayed DES or DDES. Another version of DES makes

a further modification to the switching function between LES and RANS regions with

the aim of providing further shielding to the boundary layer regions in high Reynolds

number flows [17, 18]. This second modification is called the Improved DDES or
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IDDES model which has been used for this dissertation. The IDDES model includes

a Sub-Grid Scale (SGS) dependence on the wall-distance that further prevents LES

modeling where the wall-distance is much smaller than the boundary-layer thickness.

ω̃ =

√
k

`Hybrid fβ∗β∗
(1.11)

where fβ∗ is the free-shear modification factor, β∗ is an SST k−ω model constant,

and the parameter `Hybrid is defined as:

lHybrid = f̃d (1 + fe) `RANS +
(

1− f̃d
)
CDES ∆IDDES (1.12)

1.1.4 Reynolds-Averaged Navier Stokes (RANS)

(Much of this section is reproduced from sections 4.2.1.1) The Reynolds Averaged

Navier-Stokes (RANS) approach is a commonly used method for solving an engi-

neering problem using CFD. In this approach Reynolds decomposition is used to

decompose the instantaneous velocity and pressure fields into mean and fluctuating

components, mathematically expressed in the form ai = Ai + a′i, and followed by

ensemble-averaging the original N-S equations. Thus, as an example, in this con-

vention, ui, Ui, and u′i represent the time-dependent instantaneous, time averaged,

and time-dependent fluctuating parts of the velocity component in i-direction respec-

tively. The RANS equations are then expressed by equations 1.13 and 1.14. Here,

we describe the turbulent flow statistically in terms of the mean velocity field Ui(x, t)

and mean rate of strain Sij(x, t) instead of the instantaneous velocity field ui(x, t)

and instantaneously rate of strain field sij(x, t), respectively. These equations are

commonly referred to as the Unsteady Reynolds Averaged Navier-Stokes (URANS)

equations.

∂Ui
∂xi

= 0 (1.13)
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∂Ui
∂t

+
∂UjUi
∂xj

= − 1

ρ

∂P

∂xi
+

∂

∂xj

(
2µSij − ρu′iu′j

)
(1.14)

where the terms, −ρu′iu′j, which is a symmetric tensor, are known as the Reynolds

stresses. These are six additional terms that are challenge introduced into the system

of equations as a consequence of the emerges from the Reynolds averaging process.

This presents the classical closure problem in fluid mechanics in the fact that the

six new independent terms now give us a total of 10 variables to determine using 4

equations. This is often resolved using the turbulent-viscosity hypothesis by Boussi-

nesq in 1877 (see equation 1.15). As per Boussinesq’s hypothesis, a relationship is

needed between the turbulent stresses and the mean rate of strain, similar to the vis-

cous stress relationship as shown in equation 1.3. However, in this case the constant

of proportionality is a fictitious flow variable, called the turbulent eddy viscosity, νt,

shown in equation 1.15.

u′iu
′
j =

2

3
kδij − νt

(
∂U i

∂xj
+
∂U j

∂xi

)
(1.15)

where k is turbulence kinetic energy per unit mass, k ≡ (1/2) u′iu
′
i, and δij is

Kronecker delta. The determination of this flow variable νt is the central element

of turbulence modeling approach. All the various eddy viscosity based turbulence

models found in literature differ primarily in the way they estimate νt. All of the

modern turbulence modelling approaches solve additional transport equation(s) to

determine νt; this type of modelling approaches are classified on the basis of the

number of transports equations involved, and what transport variables are used in

the modelled equations. For example, a one-equation turbulence model will involve

the solution of one additional transport equations, and a two-equation k−ω modelling

approach will involve transports of turbulence kinetic energy (k), and specific rate of

turbulence kinetic energy dissipation (ω).
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This dissertation uses the SST Menter k − ω (SST) [19, 20] turbulence model in

all four articles. An interested reader is referred to Zhang et al. [21] and the original

articles of Menter and coworkers [22, 20, 19] for all relevant details.

1.1.5 CFD Tools

A CFD pipeline typically consists of three (3) stages: (a) pre-processing, (b) pro-

cessing (i.e. running the iterative solver), and (c) post-processing. The initial pre-

processing step included cleaning the CAD model to obtain a valid “water-tight” sur-

face for CFD processing. This was achieved by using a commercial pre-processing

software ANSA version 20.1.2, by Beta CAE Systems. The CAD was manually

cleaned with care taken to ensure that all intricate geometry details were retained.

The cleaned CAD surface was then surface meshed, resulting in 13 million triangles,

to retain all the geometric features when exporting to Star-CCM+. The surface mesh

was exported to Star-CCM+ via NASTRAN format where further pre-processing was

performed. This included the surface re-meshing, volume meshing, and solver setup.

Then simulation was run using UNC Charlotte HPC and post-processing operations

were conducted using a combination of in-built tools of Star-CCM+ and custom

scripts written in MATLAB.

All the CFD simulations presented in this dissertation were performed using a com-

mercial finite volume based CFD code of Star-CCM+ version 2020.2.1. The commer-

cial FVM based CFD codes are capable of handling the complex CAD geometries en-

countered in automotive and motorsport applications. Using Star-CCM+, the conser-

vation laws were solved iteratively in their integral form using the Eulerian approach.

The continuity and momentum equations were solved using a segregated solver with

the pressure and velocity coupling attained by a predictor-corrector method of the

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) solver. An interested

reader is directed to the Star-CCM+ version 15.04 user manual for further details.

Given that the authors have previously experienced a significant variation in CFD
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predictions because of domain decomposition [23], care was taken to maintain the

same parallelization scheme throughout this study. All simulations were run on UNC

Charlotte High Performance Computing clusters using 144 processors across 3 nodes

having 48 processors each.

1.2 Background

NASCAR is the largest race sanctioning and operating body for auto racing in

North America, and the NASCAR Cup Series is the top-tier automotive competition

series within NASCAR. This dissertation is designed to gain further insights into the

aerodynamics of the NASCAR Cup racecar and idealized road vehicles using scale-

resolved and scale-averaged CFD simulations. The NASCAR Cup series is currently

on the 7th generation of the racecar evolution. The 7 generations of NASCAR Cup

racecar are shown in Figure 1.2 below.

The Generation 6 car, also called Gen-6, is the style that was used between

2013 − 2021. The vehicle model used in this dissertation is a detailed full-scale

NASCAR Gen-6 Cup car model. The model features most of the production parts

including the engine, drive-train, chassis, cabin interior, suspension, wheels, radiator,

and gear cooler. The characteristic aerodynamic features of this car include: a front

splitter with underbody splitter extension panel, a rear spoiler, very low ground-

clearance side-skirts, front by-pass ducts, a camera pod, radio communication and

GPS antennas, NACA ducts for cabin and driveline cooling, roof-rails and shark-

fin. These features make the aerodynamics of a NASCAR significantly different to

generic automotive flows. There are some CFD studies with a NASCAR geometry

available in literature and are summarized below. Very early numerical experiments

using CFD as a tool focused on understanding the car performance in different condi-

tions and were limited to simplified, and now outdated Gen-4 and Gen-5, NASCAR

geometries. Brzustowicz (2002) et al. of Daimler Chrysler presented an experimental

and numerical investigation of a Gen-4 car. With moving ground simulation they
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Figure 1.2: Generations of the NASCAR Cup racecar (image source:
https://www.autoweek.com/racing/nascar/a36107106/nascar-generations/

reported between 20 − 40% discrepancy between CFD and wind tunnel predictions

[24]. Duncan & Golsch (General Motors) (2004) presented a CFD investigation using

a Gen-4 car from another manufacturer. They studied the surface pressure patterns

and turbulent flow features over a range of air velocities. They however do not present

any validation data for their numerical simulations. [25]. Singh from General Mo-

tors (2008) presented a CFD investigation using a simplified Gen-5 geometry. They

studied the effects of moving ground, wing angle and splitter length. This study also

does not present any validation data [26]. All of these researchers were focused on
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the effects of various geometry changes to the aerodynamic characteristics.

While more recent work by Fu et al. [27, 28, 29, 30, 31, 32] used a detailed Gen-6

geometry. Their data is validated with AeroDyn data, a closed-jet, open-return wind

tunnel, at a single operating condition. Aerodyn also uses boundary layer suction

and tangentially blown jets for moving ground simulation. The work of Fu et al.

[27, 28, 29, 30, 31, 32] was focused on effects of the choice of RANS turbulence mod-

els, the sensitivity of the RANS model closure coefficients, and upstream turbulence

parameters of intensity and length scale on the flow predictions. The most recent

work by Jacuzzi et al. [10, 11] also used a detailed Gen-6 geometry and is validated

with AeroDyn data. Their work focused on the effects of passively blown ducts on

trailing vehicle drag and yaw moment stability.

The primary objective of most of these investigations was to use CFD as a tool

to study the racecar performance under various geometric configurations, such as

design changes to the various aerodynamic components, or different settings of ground

simulations and wind velocities. Only the publications of Fu et al. [27, 28, 29, 30, 31,

32] evaluated the performance of the CFD simulations themselves by focusing on the

effects of turbulence modeling. All these studies used a variant of a RANS turbulence

model.

Additionally in recent times, aerodynamic research is being conducted on adaptive

driving conditions such as vehicle platooning [33, 10]. Other adaptive conditions

encountered include changing sidewall proximity, crosswind changes, and ride height

changes [8, 28, 11]. It is thus desired to apply a control mechanism to a moving vehicle

to obtain desired aerodynamic characteristics [34]. To apply such a control signal to a

moving vehicle, we need the ability to predict the future state of aerodynamic forces

and moments. A Reduced Order Model (ROM) can be used to make future state

predictions of the aerodynamic flow field ([35]). For adaptive systems, the future state

predictions can then be coupled with a control input to obtain the desired performance
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characteristics ([36]). One such ROM, the Dynamic Mode Decomposition (DMD)

which is a data-driven linearization tool, has shown the ability to obtain the modal

decomposition and flow field reconstruction of low Reynolds number flows [37, 38, 39].

1.3 Motivation

Professional race sanctioning bodies, like the FIA and NASCAR, have recently

introduced restrictions on the amount of CPU hours and CFD items a team can

spend in their racecar development. In this new era of restricted CFD development,

Mattia Binotto (former Team Principal of Scuderia Ferrari F1 team) said, “Normally

a week of development is less than 0.1 seconds per lap” [40]. And similarly, Gary

Anderson (former Technical Director of both Lotus F1 and Jaguar F1 teams) said,

“1% more usable downforce is roughly one tenth of a second (per lap)” [41]. To provide

context to these numbers, one can go through the recent race results published on the

governing bodies’ websites and find that the difference in laptime between the fastest

and slowest cars is generally within 4%, which for a reference 90 second lap amounts

to 3.6 seconds. This means for a 20 (F1) to 40 (NASCAR) racecar field, the average

difference between consecutive racecars is about one to two tenths of a second per

lap. This is visualized by a journalists representation of the qualifying results of the

2022 Singapore F1 Grand Prix (GP) shown in Figure 1.3.

As such, the racing industry requires the development of accurate and information-

rich CFD methods to make the most of the limited CPU time allotted to them. While

the works of Fu et al. [27, 28, 29, 30, 31, 32] focused on turbulence modeling effects, a

study of the effects of boundary conditions and solver parameters on the aerodynamic

predictions of flow around a NASCAR Cup racecar was absent.

As seen in Figure 1.1, the DES approach requires lesser modelling of the energy

spectrum compared to a RANS based approach. Thus, the DES approach is believed

to be more accurate, containing a wider range of the resolved turbulent scales rel-

ative to the RANS based approach. Recent publications using generic automotive
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Figure 1.3: A journalists representation of the qualifying results of the 2022 Singapore
F1 GP (image source: https://twitter.com/autosport/status/1576251439579598848

geometries such as the Ahmed body geometry [42], the DrivAer geometry [5] and

a passenger car [21] have shown promising results using variants of the DES turbu-

lence modelling approach. A similar investigation using the NASCAR Cup racecar

geometry was absent.

Lastly, a race car is tuned to behave a certain way on track when in clean air

[11, 43, 44, 45, 46]. When the operating condition changes, such as ride height or

crosswind angle, the vehicle undergoes adaptive driving conditions. Our IDDES study

on the NASCAR Cup racecar identified spectral analysis of the aerodynamic forces
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and moments as a potential tool for racecar aerodynamic development [47]. We thus

evolved into the use of a more advanced modal decomposition tool, DMD, for the

prediction of the future state of aerodynamic forces and moments given a change in

input parameters.

1.4 Objectives

The main goal of this dissertation is to gain insight into the aerodynamics of race

and idealized road vehicles using scale-resolved and scale-averaged CFD simulations.

This dissertation consists of four technical articles. The first three articles center on

a Gen-6 NASCAR Cup racecar using scale-resolved and scale-averaged CFD simula-

tions. Each of these three articles assesses in detail the CFD performance using three

cases of the NASCAR Cup racecar that include two ride heights and two yaw angles.

Validation data for all three cases is available in the form of wind tunnel data from

Windshear, an open-jet closed-return type wind tunnel that has a rolling belt and

boundary layer suction for moving ground simulation. Thus, this wind tunnel con-

figuration resembles open-air conditions more closely than the AeroDyn wind tunnel.

The fourth article explores the development of a ROM using DMD for the prediction

of the future state of aerodynamic forces and moments.

The first article explores the effects of solver parameters and boundary conditions

on the RANS CFD flow prediction over a Gen-6 NASCAR racecar. The parameters

studied include the Virtual Wind Tunnel (VWT) size for open road simulation, the

effect of the Realizability coefficient as used in the SST turbulence modelling cal-

culations, the effect of the compressibility solver, the effect of the Under-Relaxation

Factors (URF’s) and boundary types for crosswind simulation.

The second article studies the feasibility and prediction veracity of transient SRS

approaches like IDDES for the aerodynamic characterization of stock racecar. This

article presents an in-depth analysis comparing and contrasting the CFD simulation

of the flow field around a Gen-6 NASCAR racecar as obtained using the popular
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and commonly used SAS RANS approach (c.f. [46]) and a potentially more accurate

transient IDDES approach. The primary objectives were to investigate the predictive

difference between these two methods and to understand the root causes of these

differences.

Significantly different flow field predictions were obtained from SAS and SRS ap-

proaches from the first two articles (Misar, A.S., and Uddin, M (2022) [46], Misar et

al. (2023) [47]). The third article sheds some light as to which flow features around the

vehicle may be contributing the most to those discrepancies, directing future studies

to those specific areas likely to produce improved simulation accuracy. This was done

by probing the correlation between the static pressure data obtained from surface-

mounted probes from the wind tunnel experiments of a racecar to the predictions

obtained from the different CFD simulations of the same geometry.

The objective of the fourth article was to study the performance of the DMD al-

gorithm when attempting to predict the future flow field of a moving Ground Vehicle

(GV) at a high Reynolds number. In this article, we applied the DMD algorithm to

a high Reynolds number, hugely separated bluff body flow. We had to modify the

DMD algorithm as the version as available in published literature failed to capture

the frequency response of the high Reynolds number flow. Our modified DMD al-

gorithm was validated using reconstructions and future predictions of aerodynamic

coefficients of forces and moments. An idealized road vehicle geometry was used for

this developmental work as experimental data for pressure and velocity profile of the

NASCAR Cup racecar is not available. Also, the analysis of the modal decomposition

of a complex geometry is complicated and the multiple simulations needed are pro-

hibitive when using a NASCAR Cup racecar. The extension of the developed ROM

to the NASCAR Cup racecar is left for a future study.
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1.5 Dissertation Outline

This dissertation is comprised of four articles and organized in the following manner,

Chapter 2 (Article 1) A. S. Misar and M. Uddin, “Effects of solver parameters and

boundary conditions on RANS CFD flow predictions over a Gen-6 NASCAR

racecar,” Tech. Rep. 2022-01-0372, SAE WCX Technical Paper, United States,

2022. (Published by SAE International [46])

Chapter 3 (Article 2) A. S. Misar, M. Uddin, T. Pandaleon, and J. Wilson, “Scale-

resolved and time-averaged simulations of the flow over a NASCAR cup series

racecar,” Tech. Rep. 2023-01-0735, SAE Technical Paper, United States, 2023.

(Published by SAE International [47])

Chapter 4 (Article 3) A. S. Misar, P. Davis, and M. Uddin, “On the Effectiveness

of Scale-Averaged and Scale-Resolved Turbulence Modelling Approaches in Pre-

dicting the Pressure Field over a NASCAR Racecar” (Submitted for publication

to Fluids, awaiting editorial response)

Chapter 5 (Article 4) A. S. Misar, N. Tison, V. Korivi, and M. Uddin “On the

Application of the DMD Approach to the High Reynolds Number Turbulent

Flow Around an Idealized Road Vehicle” (To be submitted for publication to

Vehicles)

The summarized conclusions of the dissertation are given in Chapter 6



CHAPTER 2: (ARTICLE 1) EFFECTS OF SOLVER PARAMETERS AND

BOUNDARY CONDITIONS ON RANS CFD FLOW PREDICTIONS OVER A

GEN-6 NASCAR RACECAR

2.1 Introduction

In the auto-racing, aerodynamics of the racecar is the single most important con-

tributor to the vehicle’s on-track performance [1]. Race teams allocate significant

resources towards the vehicle’s aerodynamic development and testing. Wind tunnel

testing and Computational Fluid Dynamics (CFD) are the two main avenues to per-

form aerodynamic development. Wind tunnel tests are often referenced due to their

use of a full-size physical model. CFD is a reliable and indispensable tool for racecar

aerodynamic development. Complementary to wind tunnel tests, CFD simulations

can provide a significantly more detailed description of the flow field around the vehicle

using non-intrusive measurements in a virtual environment, making it a cost-effective

companion tool in the aerodynamic analysis [25, 26, 24]. With proper discretization,

use of appropriate boundary conditions, and physics models, CFD simulations can

now predict the flow field with accuracy comparable to wind tunnel tests [4, 5, 6, 7].

CFD analyses are sometimes used to explain and rationalize observations from the

wind-tunnel tests [8, 9, 10, 11]. However, professional race sanctioning bodies, like

the Federation Internationale de l’Automobile (FIA) or The National Association for

Stock Car Auto Racing (NASCAR), have restrictions on the number of wind-tunnel

hours and on the maximum CPU clock time a team can spend in their racecar de-

velopment. As such, the racing industry requires the development of reliable CFD

methods with faster turnaround times.

With advances in available computing power, Large Eddy Simulation (LES) and
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Detached Eddy Simulation (DES) have shown greater accuracy in some industrial

CFD applications due to their ability to provide better predictions of the flow fields

[4, 5, 6, 7]. However, the Reynolds-averaged Navier-Stokes equation (RANS) approach

is still widely used as the first approximation tool in the racing industry because of

its relatively quick turnaround time [25, 26, 24, 10, 11, 27, 28, 29, 30, 31, 32]. A study

using Delayed Detached Eddy Simulation (DDES) took approximately 15 times longer

for a passenger car simulation than an equivalent RANS would require [48]. It has

been has shown that a suitably designed RANS CFD simulation is a cost-effective

approach for developing the external aerodynamics of a full-sized DrivAer model [49].

Thus, the successful implementation of a suitable RANS model can represent an order

of magnitude saving of computational efforts.

The accuracy of flow field prediction by RANS simulations is heavily influenced by

the chosen turbulence model [50, 51], with this effect holding true for vehicle external

aerodynamic predictions [4, 5, 27]. Turbulence modeling literature is plentiful for both

internal and external flows involving simple geometries, such as channel flows [52] and

flows past bluff bodies [53]. A more thorough review may be found in published books

and review articles [54, 13, 55, 56, 57]. In terms of automotive applications, a vast

majority of the published validation works for turbulence models are confined to

simple automotive models, like Ahmed body or DrivAer model [58, 59]. Based upon

prior experience with a NASCAR geometry [27, 28, 29, 30, 31, 32] this paper uses the

Shear Stress Transport (SST) k-w turbulence model developed by Menter [22, 20, 19].

Race vehicles are aerodynamically unique as these include many aerodynamic de-

vices specifically designed for high Downforce-to-drag ratio [48]. The Generation 6

NASCAR, a.k.a Gen-6, that is in use since 2013 has many such unique features.

As can be seen in Figure 2.1, the characteristic aerodynamic surfaces of this car

include a front splitter, a rear spoiler, very low ground-clearance side-skirts, front by-

pass ducts, a camera pod, communication antennae, NACA ducts for cabin cooling,
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roof-rails and a shark-fin. The front splitter usually operates at a very low-ground

clearance. Where a typical passenger vehicle normally produces a small lift with a

lift-to-drag ratio of about 0.3 [49, 59], a racecar must achieve high-speed cornering

performance, typically with down-force (or a negative lift) and having a lift to drag

ratio of 2.0 or larger [25, 26, 24, 10, 11, 27, 28, 29, 30, 31, 32]. Also, due to dynamic

on-track conditions experienced by a racecar on account of high operating speeds,

vehicle ride-height and orientation changes, the aerodynamic behaviors significantly

change between cornering and straight-line driving conditions. A racecar on corner

entry is subject to braking while on corner-exit is subjected to a high longitudinal

acceleration. This causes the pitch of the racecar to change in what are called as

dive-and-squat angles. The vehicle also experiences a yaw during corner entry, apex,

and exit. Thus, the vehicle’s aerodynamic characteristics must be analyzed under

an envelope of yaw and pitch orientations. Existing literature covers yaw and pitch

effects on generalized car shapes, such as the Ahmed body and DrivAer body, both

experimentally and numerically [60, 61, 62, 63, 64, 65, 66]. Some limited work is

also published for performance cars focusing on specific areas such as wings or using

simplified geometries [67, 68, 69]. Very early numerical experiments using CFD as a

tool focused on understanding the car performance in different conditions and were

limited to very simplified, and now outdated Gen-4 and Gen-5, NASCAR geometries

due to the computational limits at the time [25, 26, 24]. While more recent work by

Fu et al [27, 28, 29, 30, 31, 32] uses detailed Gen-6 geometry, their data is validated

with AeroDyn data, a closed-jet, open-return wind tunnel, at a single operating condi-

tion. Also, that wind tunnel used boundary layer suction for ground-plane emulation.

The work of Fu et al focusses more on effects of turbulence parameters on the flow

predictions [27, 28, 29, 30, 31, 32].
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Figure 2.1: Gen-6 NASCAR with unique surfaces highlighted in orange.

In this paper, all CFD simulations are validated against data from Windshear,

an open-jet closed-return type wind tunnel with a moving-belt for rolling road sim-

ulation that is particularly designed for road-ready motorsport vehicles [70]. Wind

tunnel data for 3 operating configurations are available covering high and low ride

height as well as zero and −3.0◦ yaw angles. This can be seen in Figures 2.2, 2.3,

and 2.4. This paper explores the effects of solver parameters, Virtual Wind Tunnel

(VWT) size for open road simulation, effect of the Realizability coefficient as used

in the SST turbulence modelling calculations, effect of the compressible solver and

boundary conditions for crosswind simulation on the RANS CFD flow prediction over

a Gen-6 NASCAR racecar. Further details of the simulation setup and computational

methodology will be addressed in subsequent sections.
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Figure 2.2: Layout of Windshear Wind Tunnel; Image source: Windshear website.

Figure 2.3: The two ride height configurations used in this study.

2.2 Computational Method & Simulation Setup

The Navier-Stokes (NS) equations for instantaneous velocity and pressure fields

can be decomposed into mean and fluctuating components using RANS equations

for an incompressible turbulent flow. The resulting mass and momentum equations,
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(a) (a) 0◦ (b) (a) −3◦

Figure 2.4: The two yaw conditions, 0◦ and −3◦ considered in this study.

together known as the Navier-Stokes equations for continuity and momentum, are

represented in Einstein indicial notation by Equations 2.1 and 2.2:

∂ūi
∂xi

= 0 (2.1)

ρūj
∂ūi
∂xj

= ρf̄i +
∂

∂xj

[
−p̄δij + µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j

]
(2.2)

These equations for the mean quantities are essentially identical to the original in-

stantaneous equations but have the additional term −ρu′iu′j in the momentum trans-

port equation. This term constitutes the Reynolds stress tensor. It has a total of

nine components, six of which are independent. These six additional stress terms

make the number of unknowns larger than the number of available mathematical

equations to solve them. This gives rise to what is known as the turbulence closure

problem. To account for this, fluid-dynamists resort to what is traditionally known as

turbulence modeling. Two approaches can be used to model the Reynolds stresses in

terms of mean flow quantities and to provide closure of the governing equations: (i)

eddy viscosity models, and (ii) the Reynolds stress transport models. Eddy viscosity

models use the concept of a turbulent viscosity µt, and model the turbulent stresses

in a way analogous to laminar flows. Most of the turbulence models currently used

by CFD engineers in engineering applications are based off the eddy viscosity models,
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of which, k− ε and k− ω variants are the most widely used ones.

2.2.1 Turbulence Model

The Shear-Stress Transport (SST) k− ω The k− ω model replaces the dissipation

rate ε in k − ε model with a specific dissipation rate ω which is defined as ω ≈ ε
k
.

Compared to the standard k - ω, the SST k - ω turbulence model, proposed by Menter

and his colleagues [22, 20, 19], has an additional non-conservative cross-diffusion term

containing ∆k · ∆ω in the ω transport equation. By using a blending function that

includes the cross-diffusion term far from the wall but not near the wall, the SST

model effectively blends a k − ε model in the far-field free stream while keeping the

k−ω boundary layer calculation advantages in the near wall region. The expressions

for the eddy viscosity µt, and the transport equations are given in Equations 2.3 to

2.10.

∂k

∂t
+ Uj

∂k

∂xi
= P̂k − β∗kω +

∂

∂xi

[(
v + σkvt

∂k

∂xi

)]
(2.3)

∂ω

∂t
+ Uj

∂ω

∂xi
= α

1

µt
P̂k − βω2 +

∂

∂xi

[(
v + σkvt

∂k

∂xi

)]
+ 2 (1− F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi

(2.4)

vt =
a1k

max (a1ω, SF2)
(2.5)

S =
√

2SijSij (2.6)

Pk = vt
∂Ui

∂xj

(
∂Ui

∂xj
+
∂Uj

∂xi

)
→ P̂k = min (Pk, 10β∗kω) (2.7)
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F1 = tanh


{
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[
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k
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,
500v
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)
,
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 (2.8)
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(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(2.10)

Where α, β, β∗, σk, σω and σω2 are closure coefficients that are computed by using

blending functions F1, F2 and corresponding constants of k− ε and k− ω models via

α = α1F1+ α2(1 − F1), etc. The a1, constant in νt is initially set to 0.31 per the

STAR-CCM+ version 2020.2.1 user manual. A production limiter is used in the SST

model to prevent the build-up of turbulence in stagnation regions.

2.2.2 Geometry and Mesh

The CAD geometry was imported into ANSA v15 and cleaned of all surface tes-

sellation errors. Sufficient care was taken to retain as much of the original surface

description as possible. Thus, the geometry consists of the external aerodynamic

surface, cabin interior flow, NACA cooling ducts, underhood flow with detailed pow-

ertrain and exhaust assemblies, and porous regions for the radiator and gear cooler.

The fully detailed and error-free final surface consisting of 13 million triangles was

imported into Star-CCM+ for CFD simulation.

The reader is reminded that wind tunnel experiments are also a type of simulation.

The open-jet configuration of the WindShear wind tunnel also attempts to simulate

openroad conditions [70]. Thus, a large computational domain is required to perform

an open-road CFD simulation for vehicle aerodynamics. At the start, the test model

was placed in a large VWT, shown in Figure 2.5, with dimensions of 51L × 50W ×

50H, where L,W , and H are the characteristic length, width, and height of the test
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geometry; the inlet and outlet were 10 L upstream and 40L downstream, respectively.

This large wind tunnel was used to avoid the influence of blockage ratio and numerical

pressure waves which can occur at boundaries. The dimensions were chosen from prior

experience and StarCCM+ version 2020.2.1 best-practices recommendations. After

the Tunnel Size Study, the dimensions were upped to 211 L × 200 W × 200H for all

remaining simulations; with the inlet and outlet placed 50 L upstream and 160 L

downstream, respectively. The inlet was given a velocity of 67.056 m/s(150 mph ),

a turbulence intensity of 1.0%, and a turbulent length scale of 0.01 m. A pressure

outlet was placed at the opposite end of the tunnel and the sides of the tunnel were

given a zero-gradient condition. For the crosswind simulations this configuration was

modified to change one side of the tunnel from a zero-gradient to a velocity inlet and

the other side to a pressure outlet. The velocity inlets then had their velocity specified

in x and y components to give the flow the proper angle to simulate the desired yaw,

or crosswind to be more precise. To correlate to the moving ground simulations,

the no-slip ground was given a tangential velocity corresponding to the given inlet

velocity. The wheel rotation was modelled using a Tangential Velocity Specification

(TVS) with a small vertical wall to simulate the tire-ground contact patch to retain

simplicity and cost-effectiveness of the model [29, 71]. The discretization scheme used

for porous media modelling includes porous baffles to simulate the front and inner

grilles of the radiator ducting. Thus, the radiator consists of 3 regions, the primary

cooling duct, the secondary cooling duct, and the radiator core itself. Porous media

modelling is tuned against the mass flow rate measurements from the wind tunnel.

To discretize the domain, an unstructured hexahedral cell mesh was created using

Star-CCM’s "trimmed cell" mesher. This meshing algorithm seeks to create cells

which are some multiple of 2n greater/smaller than the selected base-size. To properly

take advantage of this behavior and correctly resolve the near field flow, nine different

volume sources were used around the body to control cell refinement, each one being
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Figure 2.5: Computational domain.

half the size of the previous. Eight more volume sources were used near the vehicle

to capture the flow around special areas of interest such as the spoiler, splitter, gear

cooler duct, wheels, cabin interior, and the underhood regions. For example, the

narrow but expanding gap between the splitter and the ground boundaries is resolved

with 3 different volume controls having anisotropic cells. The vertical dimensions

have the finest mesh with ∆z = 1.5, and 3.0, respectively. Figure 2.6 shows the final

mesh around the body.

To properly resolve the high gradient boundary layer on the upper skin, 16 prism

layer cells with a total thickness of 15.6 mm were placed along the body surface. The

prism layer first node height was specified to be 0.01 mm. 18 more surface controls

were used to similarly define appropriate prism layer values to the various surfaces

around the car. For example, the rolling road boundary had 4 prism layer cells with a

total thickness of 2.4 mm and the prism layer first node height was specified to be 0.1
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Figure 2.6: Final mesh: Near car, @Y=Om center plane.

mm. The bottom surface of the splitter had 16 prism layer cells with a total thickness

of 3.6 mm and the prism layer first node height was specified to be 0.005 mm. This

gave a y+distribution as shown in Figures 2.7 and 2.8. Using these parameters, the

y+value for 86% of the body cells were seen to have a value less than 1.11% cells had

1 < y+ < 2, these were located at regions of locally accelerated flow such as around

the headlight edges and the A-pillar. The majority of cells with y+ > 2 were found at

areas of sharp corners where the prism layer mesher collapsed. The final mesh used

a base size of 24 mm and consisted of 128 million cells.

2.2.3 Physics Setup

The simulations performed in this study were done using a commercial finite volume

solver CFD package, Star-CCM+ version 2020.2.1. Each simulation unless specified

was performed using a segregated incompressible solver on an unstructured grid using

the SIMPLE solver.
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Figure 2.7: y+ Distribution over the surface of the vehicle.

Figure 2.8: Histogram plot of wall y+ distribution.

2.2.4 Wall Treatment

A two-layer all y+wall treatment was applied to the simulation to ensure reasonably

accurate boundary layer calculation even in some complex locations of the geometry
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where the y+was not sufficiently small.

The k−ω SST turbulence model was used along with its default closure coefficients.

This model has been shown to have good prediction capability for automotive based

flows. It has also been shown to respond well to closure coefficient tuning, which may

be explored for future investigations.

2.2.5 Solver and Convergence

Given that the authors have previously experienced a significant variation in CFD

predictions because of domain decomposition [23], care was taken to maintain the

same parallelization scheme throughout this study. All simulations were run on UNC

Charlotte High Performance Computing clusters using 144 processors across 3 nodes

having 48 processors each. The simulations were set to run for 10, 000 iterations, more

than enough to ensure convergence. The authors do note that the convergence was

monitored using the aerodynamic force coefficients and was seen to occur at roughly

6, 000 iterations. Subsequently, in this paper, all the results presented are from an

averaging window of 6, 000− 10, 000 iterations.

2.3 Results and Discussion

Table 2.1 lists the three configurations of the Gen-6 NASCAR considered in this

study. The authors extend thanks to Chip Ganassi Racing (CGR) for providing the

Gen-6 NASCAR Cup Racecar CAD Model and all relevant wind-tunnel experimental

data. These are CGR’s proprietary data obtained through an NDA. The reader must

note that for the sake of protecting CGR’s confidential data, all force and moment

coefficients presented in this paper are normalized by an arbitrary reference area.

The results for each CFD simulation have been validated against 14 data-points from

the wind tunnel data including all 6 force and moment coefficients, Front and Rear

downforce, % Front balance, L/D ratio, Front and Rear side force, radiator, and gear

cooler mass flow rates. However, for conciseness, only the relevant and interesting
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parameters are shown in subsequent sections. Also, a detailed flow field investigation

is a work in progress and will be published in a subsequent paper.

2.3.1 Boundary Condition Effect

First, we considered Case I to study the effect of boundary conditions of the side

walls of the VWT on the flow field predictions. Figure 2.9(b) and Figure 2.10(b) show

that the zero gradient boundaries on the side walls have an unphysical impact on the

flow predictions even though they are far away from the racecar geometry. Figure

2.9(a) and Figure 2.10(a) show expected flow field development far away from the

racecar geometry. Thus, henceforth this set of boundary conditions is used exclusively

for both crosswind angles.

2.3.2 Validation

All 3 configurations listed in Table 2.1 were simulated using the VWT of dim-

mensions 51 L × 50 W × 50H. The results are compared against wind tunnel data

below.

Table 2.1: Configurations of the racecar considered in this study.

Case Yaw (deg) Splitter Gap (SG)
I -3.0 Low
II -3.0 High
III 0.0 High

From Figures 2.11 and 2.12 we can see that the numerical predictions are well

correlated to the wind tunnel data for all three configurations of ride height and

crosswind angles. We can observe that the % delta between CFD and wind tunnel is

very small at < 2% and has within 1% variation. However, in Figure 2.13 we see that

CFD significantly overpredicts the % Front in configuration III. This could be due to

the limitation of RANS to fully capture the dissipation of the underbody splitter jet

seen Figure 2.14. This will be investigated further in a subsequent paper using DES
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Figure 2.9: Streamwise velocity profiles on Z/SG =1 plane (a, top) with right wall
as velocity inlet, Left wall as pressure outlet (b, bottom) Side walls as zero-gradient
boundaries.

modelling.

We also have surface pressure tap data from the wind tunnel test for all three

configurations. However, a detailed surface pressure distribution study is beyond the

scope of the present paper and will be published in a subsequent study.

2.3.3 Tunnel Size

Next, we explored 3 larger VWT sizes to validate open air simulation conditions.

All 3 configurations were run using larger tunnel sizes explained in Table 2.2 below.

From Figures 2.15 and 2.16 we observe a small dependence on the VWT size that

has a variation within 0.5% of the corresponding wind tunnel values. Thus, we chose
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Figure 2.10: Cross-stream velocity profiles on Z/SG =1 plane (a, top) with right wall
as velocity inlet, left wall as pressure outlet (b, bottom) Side walls as zero-gradient
boundaries.

the largest VWT size to minimize blockage ratio effects. With the discretization

scheme using very coarse cells near the VWT boundaries, the increment in cell count

is less than 0.5%.

2.3.4 Realizability

Next, we explored the effect of the Realizability coefficient using Configuration II.

The realizability coefficient was varied from 0.6 (default) to 0.9 in increments of 0.1

We see in Figure 2.17 that CD is barely affected by the change in Realizability

coefficient. However, Figures 2.18 and 2.19 show that CL, particularly CLF , is having

a very strong dependance on the reliability coefficient. Interestingly the 36 -count
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Figure 2.11: Headline CD for validation study.

increment between Re = 0.6 and Re = 0.9 is identical in CL and CLF plots. This

suggests that the splitter gap flow prediction is highly sensitive to the Realizability

coefficient. This will be explored more in subsequent delta plot sections.

2.3.5 Grid Independence Study

The results so far are well correlated to the wind tunnel data. However, we wanted

to cross-check the grid dependence of the predictions. Thus, all three configurations

were run on 3 mesh sizes using the largest VWT size and realizability coefficient as

0.9. The meshes were labelled as Coarse, Baseline and Fine. The Coarse and Fine

meshes were obtained by changing the base size of 24 mm by ±10%. Thus, the Coarse

mesh consisted of 96 million cells and the Fine mesh consisted of 165 million cells.

We can see in Figure 2.20 that the CD predictions barely change with the mesh.

Figures 2.21, 2.22, and 2.23 show that downforce is more sensitive to the grid size
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Figure 2.12: Headline CL for validation study.

than the drag. The variation in CL is observed to be < 1% and thus the baseline mesh

was deemed a sufficient compromise between reasonable accuracy and computational

cost.

2.3.6 Compressibility

Next, we studied the effect of compressibility. This is of interest as due to the

high-speed nature of the flow there are local spots such as near the splitter where

the local Mach number is greater than 0.3 and thus local compressibility effects are

expected. For this incompressible flow solutions are compared against compressible

solver with segregated temperature solver for the energy equation.

We can see in Figure 2.24 that CD prediction improves overall with the compressible

solver. However, in Figure 2.25 the downforce prediction improves for Configurations

II & III but underpredicts in Configuration I. The general downward (reduction in
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Figure 2.13: %Front for validation study.

Figure 2.14: Normalized streamwise velocity @ Z=SG plane.



37

Table 2.2: VWT sizes.

Last
Suffix

Tunnel
Extents Tunnel Dimmensions

A Baseline
Tunnel

51 L× 50 W × 50H(10 L upstream ×
40 L downstream )

B 2x Tunnel 101 L× 100 W × 100H(20 L upstream ×
80 L downstream )

C Long Tunnel 111 L× 50 W × 50H(10 L upstream ×
100 L downstream )

D 4x Tunnel 211 L× 200 W × 200H(50 L upstream
160 L downstream )

Figure 2.15: Headline CD for Configuration I for different VWT sizes.

downforce magnitude) trend remains the same for all three configurations. However,

these swings are large and will be investigated further in subsequent sections.
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Figure 2.16: Headline CL for Configuration I for different VWT sizes.

2.3.7 Under-Relaxation Factors (URF’s)

Finally, we began exploring the effect of URF’s. URFs for pressure, velocity and

turbulence were ramped for all configurations. A linear ramping algorithm was used,

and all URF’s attained a stable value by iteration 1000. In the Configuration II exam-

ple seen in Figures 2.26 and 2.27 we can see that this change in the URF’s has resulted

in early convergence from 2000 iterations. This indicates that while the lower values

of the URF’s are helping maintain numerical stability of the solver during the initial

iterations, they may be potential to reduce this relaxation to achieve convergence

faster. Star-CCM+ v15.04 User manual does state that "the default pressure and

velocity under-relaxation factors are conservative. They lead to converged solution

in most cases, including when the grid is poor...Optimal values of under-relaxation

parameters are problem dependent.". Given the effort taken in this study to ensure
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Figure 2.17: Headline CD for Configuration II for different realizability coefficient
values.

a high-quality grid and achieve a gridindependent solution, an optimization of the

URF’s is desirable to achieve faster convergence. There may be potential to reduce

computational time by 30%.

Additionally, we can also see from the CD and CL trends in Figures 2.28 and 2.29

that ramping up of the URF’s is generally improving accuracy. We hypothesize that

this may indicate inadequate convergence with the default URF values. The solver

may be trapped into a local minimum thus unable to reduce error. These phenomenon

will be explored in detain in subsequent publications.

2.3.8 Delta Accumulated CDnd CLlots

To identify regions where the force coefficients differences come from, we look at

accumulated CD and CL plots. In Figures 2.30 and 2.31 the reference simulation is
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Figure 2.18: Headline CL for Configuration II for different realizability coefficient
values.

Configuration II with a realizability coefficient of 0.9. This case was chosen as the

reference as it has highest accuracy w.r.t the wind tunnel data. We plotted the delta

between the simulations to highlight where along the streamwise length of the vehicle

we see major differences in force coefficient predictions.

We know that Re = 0.9 case slightly overpredicts CD. In Figure 2.30 we can see

that relative to the Re = 0.6 case, this overprediction of CD stems from the underhood

and decklid regions. This indicates that the higher realizability likely overpredicting

the separation and recirculation zones as the local flow velocity magnitude reduces.

However, we know that realizability coefficient of 0.9 gives the most accurate predic-

tion of CL. We can see in Figure 2.31 that as the realizability coefficient is increased,

the underprediction of downforce consistently reduces. Also, we see that the mag-

nitude of underprediction increases steadily from front of the car until the decklid
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Figure 2.19: Headline CLF for Configuration II for different realizability coefficient
values.

region. This suggests that the underhood and underbody flows are most affected by

this coefficient change.

Next, in Figures 2.32 and 2.33, we look at the effect of compressibility solver using

the incompressible simulations as the reference. We know that the compressible

solver predicts CL more accurately w.r.t the wind tunnel data. The overprediction of

downforce by the incompressible solver is seen to come from the entire length of the

vehicle. The largest contributors are the front splitter, roof, and rear spoiler regions.

This is expected as these regions experience the fastest local velocity flow fields. This

shows that the local compressibility effects are important for accurate resolution of

the underbody pressure field.
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Figure 2.20: CD for different grid sizes.

2.4 Summary/Conclusions

An investigation of effect of boundary conditions and solver parameters on the

flow predictions around a Gen-6 NASCAR using steady-state RANS simulations are

presented in this paper. Three configurations of the vehicle, including two ride heights

and two yaw angles, were considered. Zero-gradient boundaries were compared with

inlet and outlet type boundaries for the simulation side walls in crosswind simulation.

The effects of realizability coefficient in the SST k − ω turbulence model and the

effects of the compressibility solver were studied. Force and moment coefficients from

all three configurations were validated against wind tunnel data. Both CFD and wind

tunnel experiments were setup to simulate openroad conditions. Specific conclusions

of this study are:

• Sufficient care must be taken during CAD cleanup to retain the detailed surface
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Figure 2.21: CL for Configuration I at different grid sizes.

description and subsequently during mesh generation to resolve the surface.

This contributes towards achieving very high accuracy w.r.t wind tunnel data.

Thus, not only is the trend from the wind tunnel data captured, but also the

magnitude of the predicted changes is accurate.

• Even with a large computational domain with negligible blockage ratio (0.04%),

the side wall boundary conditions are critically important for crosswind simula-

tion. It is recommended to use inlet and outlet type boundary conditions. This

is because even for the small crosswind angles considered, the zero-gradient side

boundaries were causing an unphysical effect on the mean flow.

• Also, a much larger size (211 L× 200 W× 200H (50L upstream ×160 L down-

stream)) of the VWT is recommended for an open-air-simulation. Such a com-

putational domain has an even smaller blockage ratio of 0.0025%. Such a long
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Figure 2.22: CL for Configuration II at different grid sizes.

VWT, especially in the downstream direction, is required to ensure the far wake

region is resolved and thus subsequently improves the near wake and surface

pressure predictions.

• Significant influences of both the realizability coefficient and the compressibility

solver were found on the lift coefficient. Both, a smaller value of realizability

coefficient and the incompressible solver are seen to significantly overpredict the

suction pressure under the racecar, hence overpredicting the overall downforce

generated. It is recommended to use a higher value of the realizability coeffi-

cient (0.9) and use the compressibility solver to accurately capture the suction

pressure in the undercar flow field.

• Additional sources of lift discrepancy are ventilation drag, support struts, and

various boundary corrections used by the wind tunnel to report open-road co-
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Figure 2.23: CL for Configuration III at different grid sizes.

efficients. An interested reader is referred to the paper by Walter etal. (2012).

A more comprehensive study of the flow field prediction is required to fully un-

derstand the impact of these solver changes. However as mentioned earlier, these

investigations will be published in a subsequent paper. Future work includes an in-

depth study of the differences in predicted flow fields, surface pressure distributions

and higher resolution DES simulations to capture higher frequency motions and the

effects of a transient solver.
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Figure 2.24: Headline CD for all three Configurations for incompressible and com-
pressible solvers.
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Figure 2.25: Headline CL for all three configurations for incompressible and com-
pressible solvers.

Figure 2.26: Slower convergence before ramping up the URFs for Configuration II.
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Figure 2.27: Faster convergence after ramping up the URFs for Configuration II

Figure 2.28: Headline CD for all three configurations with default and ramped URF’s.
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Figure 2.29: Headline CL for all three Configurations with default and ramped URF’s.

Figure 2.30: Delta accumulated CD plot for Configuration II with different realizabil-
ity coefficients.
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Figure 2.31: Delta accumulated CL plot for Configuration II with different realizabil-
ity coefficients.

Figure 2.32: Delta accumulated CL plot for Configuration I between compressible
and incompressible solvers.
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Figure 2.33: Delta accumulated CL plot for Configuration III between compressible
and incompressible solvers.



CHAPTER 3: (ARTICLE 2) SCALE-RESOLVED AND TIME-AVERAGED

SIMULATIONS OF THE FLOW OVER A NASCAR CUP SERIES RACECAR

3.1 Introduction

Aerodynamics is considered as the single most important contributor to a racecar’s

on-track performance [1]. This led professional race teams to allocate a significant

portion of their resources to the aerodynamic testing and development of their race

vehicles. Race teams are making significant investments in advancing both of the two

tools of the trade: Wind Tunnel (WT) testing methodologies optimization and Com-

putational Fluid Dynamics (CFD) process improvement. Recent trends suggest that

while WT tests are often a desired approach as these involve testing of the full-size

physical model of the actual racecar, CFD has also evolved into a reliable and indis-

pensable supporting tool for racecar aerodynamic development. Complementary to

the WT tests, CFD simulations can provide a significantly more detailed description

of the flow field around the vehicle using non-intrusive data collection in a virtual

environment, making it a cost-effective companion tool in the aerodynamic analysis

[25, 26, 24]. With a proper discretization scheme, and applying appropriate boundary

conditions and physics models, CFD simulations can now predict the flow field with

an accuracy comparable to wind tunnel tests [4, 5, 6, 7]. Nevertheless, CFD analy-

ses are sometimes used to explain and rationalize observations from the wind-tunnel

tests [8, 9, 10, 11]. However, professional race sanctioning bodies, like the Federation

Internationale de l’Automobile (FIA) or the National Association for Stock Car Auto

Racing (NASCAR), have restrictions on the number of wind-tunnel hours. FIA also

has a yearly cap on the maximum CPU clock time a team can spend in their racecar

development, NASCAR has a similar monthly limit on the number of CFD runs a
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team may perform. As such, the racing industry requires the development of accurate

and reliable CFD methods yet with faster turnaround times. Because of its relatively

quicker turnaround time, time- and scale- averaged (SAS) Reynoldsaveraged Navier-

Stokes equation (RANS) approaches are widely used as the first tool in the design-

decision-making process in motorsports [25, 26, 24, 10, 11, 27, 28, 29, 30, 31, 32].

The flow over an automotive body, be it a passenger or race vehicle, is a complex,

inherently transient and turbulent one. In literature, time-resolved numerical solution

approaches like the Large Eddy Simulation (LES) and Detached Eddy Simulation

(DES) have shown greater accuracy in some industrial CFD applications due to their

ability to better capture the dynamic evolution of the transient flow fields [4, 5, 6, 7];

these approaches are commonly referred to as the Scale Resolving Simulations or

SRS for short. However, compared to SAS or RANS approaches, computational time

requirements for SRS approaches are significantly higher. For example, to run a

simulation using a variant of the DES, called the Delayed Detached Eddy Simulation

(DDES), takes approximately 15 times longer for a passenger car simulation than an

equivalent RANS would have required [48]. Nevertheless, it has been shown that a

suitably designed RANS CFD simulation is a cost-effective approach for developing

the external aerodynamics of a full-sized DrivAer model [49]. A similar conclusion

can be drawn for cases involving stock racecars based on the high-fidelity RANS

based CFD simulation of NASCAR Cup racecars previously presented by Uddin and

coworkers (see [30, 46]).

It is common knowledge that the accuracy of flow field prediction by RANS simu-

lations is heavily influenced by the chosen turbulence model [50, 51], with this effect

holding true for vehicle external aerodynamic predictions [4, 5, 27]. On the other

hand, recent literature shows that DES simulations involving various automotive ge-

ometries are providing encouraging results and better insight into the flow dynamics.

These include better correlation with WT experiments in terms of force and moment
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prediction, and realistic characterization of flow structures in both the near and far

wake regions [6, 5, 42, 72, 73, 21, 33] in terms of their dynamic evolution. Turbulence

modeling literature detailing the drawbacks of the RANS approach and highlighting

the superiority of the DES approaches in elucidating the vortical structures embedded

in the flow is plentiful for both internal and external flows. The studied cases include

both simple geometries, such as channel flows [52] and flows past bluff bodies [53],

and other complex shapes; a more thorough review may be found in published books

and review articles [54, 13, 55, 56, 57]. As a result, the general trend observed in

automotive OEM external aero CFD application is a shift towards the transient SRS

simulations, even though the racing industry still primarily relies on the SAS type

CFD.

However, a vast majority of the published turbulence modeling validation studies

pertaining to automotive external aerodynamics are based on either idealized auto-

motive models, like the Ahmed body or standardized passenger vehicle model like

the DrivAer model [21, 58, 59], and studies investigating the efficacy of DES type

SRS approaches in motorsports is simply non-existent. In this backdrop, and lever-

aging our prior experience with the flow around NASCAR Cup racecars [27, 28, 29,

30, 31, 32, 46], this paper explores the feasibility and efficacy of the SRS approaches

in the external aerodynamics investigations of a stockcar type racecar using a DES

approach, similar to the ones used in [22, 20, 19, 74]. The investigations presented in

this paper are carried out using a Delayed Detached Eddy Simulation (DDES) with

Improved wall-modeling capability; this approach, which is to be discussed later, is

commonly referred to as the IDDES approach.

Race vehicles are aerodynamically very different from road vehicles as these include

many aerodynamic devices specifically designed for high downforce-to-drag ratio [48].

The Generation 6 NASCAR, (called Gen-6 for short) Cup racecar, which had been in

use since 2013, has many such features. As can be seen in Figure 3.1, the characteris-
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tic aerodynamic features of this car include: a front splitter with underbody splitter

extension panel, a rear spoiler, very low ground-clearance side-skirts, front by-pass

ducts, a camera pod, radio communication and GPS antennas, NACA ducts for cabin

and driveline cooling, roof-rails and shark-fin. The front splitter usually operates at

a very low-ground clearance. Where a typical passenger vehicle normally produces

a small lift with a lift-to-drag ratio of about 0.3 [49, 59], a racecar must achieve

high-speed cornering performance, typically with down-force (or a negative lift) and

having a lift to drag ratio of −2.0 or larger [25, 26, 24, 10, 11, 27, 28, 29, 30, 31, 32].

Also, due to dynamic on-track conditions experienced by a racecar due to high oper-

ating speeds and vertical acceleration, vehicle ride-height and orientation changes, the

vehicle’s aerodynamic behavior significantly changes between cornering and straight-

line driving conditions. A racecar on corner entry is subject to braking while on

corner-exit is subjected to a high longitudinal acceleration. This causes the pitch

of the racecar to change in what are called dive-and-squat angles. The vehicle also

experiences a yaw during corner entry, apex, and exit. Thus, the vehicle’s aerody-

namic characteristics must be analyzed under an envelope of yaw and pitch orien-

tations. Existing literature covers yaw and pitch effects on generalized car shapes,

such as the Ahmed body and DrivAer body, both experimentally and numerically

[60, 61, 62, 63, 64, 65, 66]. Some limited work is also published for performance cars

focusing on specific areas such as wings or using simplified geometries [67, 68, 69].

Very early numerical experiments using CFD as a tool focused on understanding the

car performance in different conditions and were limited to very simplified, and now

outdated Gen-4 and Gen-5, NASCAR geometries. While more recent work by Fu

et al. [27, 28, 29, 30, 31, 32] uses detailed Gen-6 geometry, their data is validated

with AeroDyn data, a closed-jet, open-return wind tunnel, at a single operating condi-

tion. Also, that wind tunnel used boundary layer suction for ground-plane emulation.

Nevertheless, the work of Fu et al. focused more on effects of turbulence parameters,
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boundary conditions, solver parameters and the choice of turbulence models on the

flow predictions [27, 28, 29, 30, 31, 32]. In the absence of authentic studies on the

feasibility and prediction veracity of transient SRS approaches like IDDES for the

aerodynamic characterization of stock racecar, this paper presents an in-depth anal-

ysis comparing and contrasting the CFD simulation of the flow field around a Gen-6

NASCAR racecar as obtained using the popular and commonly used SAS RANS

approach (c.f. [46]) and a potentially more accurate transient IDDES approach.

The primary objectives are to investigate the predictive difference between these two

methods and to understand the root causes of these differences.

Figure 3.1: Gen-6 NASCAR with unique surfaces highlighted in orange

All CFD simulations presented in this paper are validated against data from Wind-

shear, an open-jet closed-return type wind tunnel with a moving-belt for rolling road

simulation that is particularly designed for road-ready motorsport vehicles [75]. The

layout for the windshear wind tunnel is shown in Figure 3.2. Wind tunnel data for the

three operating configurations made available to us include: high and low ride height

as well as zero and −3.0◦ yaw angles. The ride heights in terms of the splitter gap
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clearance as used in the study are shown in Figure 3.3, while the yaw configurations

are shown in Figure 3.4. Further details of the simulation setup and computational

methodology will be addressed in subsequent sections.

Figure 3.2: Layout of the Windshear Wind Tunnel. Image Source: Windshear website
(https://www.windshearinc.com/; accessed on 18-Nov-2022)

NOTE that in the subsequent discussions, the splitter gap, i.e. the vertical clear-

ance between the ground and the bottom-most part of the splitter, will be expressed

using a symbol ’SG’.

https://www.windshearinc.com/;
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(a) (a) 0◦ (b) (a) −3◦

Figure 3.4: Two yaw conditions, 0◦ and −3◦, as considered in this study

Figure 3.3: Two ride height configurations used in this study; note that the splitter
gap is expressed using a symbol ’SG’ in subsequent analysis. (a) top: low SG, (b)
bottom: high SG

3.2 Governing Equations

The Navier-Stokes (NS) mass, momentum and energy equations govern the dy-

namics of fluid flows. In case of a subsonic nonreacting flow, these are a set of four

transport equations in terms of instantaneous velocity and pressure gradients. How-

ever, a direct numerical solution (DNS) of these equations as applied to racecars is

way beyond the capacity of any computer in the world, hence, we resort to finding an
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approximate or modeled solution to this problem. The next coarse-grained approach

is called the Large Eddy Simulation (LES), which resolves the large energy-containing

scales of turbulence and models only the small-scale motions on the argument that

these small scales are often considered isotropic with an assumption that they can be

modeled without much loss of accuracy. And secondly, since the contribution of these

small scales to Reynolds stresses is much weaker when compared to the contributions

from the larger eddies, the induced error is expected to be minimal. In fine, the LES

approach segregates the wide turbulent scales into the resolved larger scales and the

modeled sub-grid scales (SGS).

However, LES is still too computationally costly for most of the automotive exter-

nal aerodynamics flows. A more practical approach is the Detached Eddy Simulation

(DES), proposed by Spalart and his coworkers [75, 76]. DES is a hybrid approach

that uses: (1) the next coarse-grained approach, the RANS, in the region close to

solid boundary that requires very fine mesh for LES-quality resolution, and (2) LES

in the wake and far from the wall regions. The RANS approach models all scales of

the flow in which the governing equations are obtained by first decomposing the in-

stantaneous velocity and pressure fields into mean and fluctuating components, using

what is known as the Reynolds decomposition, and then timeaveraging the resultant

equations. The RANS continuity (or mass conservation) and momentum equations

are shown in Equations 3.1 and 3.2, respectively, using the Einstein summation nota-

tion where a repeating index implies summation over all possible values, and in this

case i or j = 1, 2, 3.

∂ūi
∂xi

= 0 (3.1)

ρūj
∂ūi
∂xj

= ρf̄i +
∂

∂xj

[
−p̄δij + µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j

]
(3.2)
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In these above equations, the variable ui represents velocity in xi direction, u′i is the

fluctuating component of the instantaneous velocity ui, the overbar denotes a time-

averaged quantity (i.e. ui denotes the time-averaged value of ui ), and t, p, ρ, and µ

represent time, pressure, fluid density and fluid molecular viscosity, respectively; δij

is Kronecker delta, δij = 1 for (i = j), and δij = 0, for (i 6= j).

Note that these equations for the mean quantities are essentially identical to the

original instantaneous equations, but have the additional term −ρu′iu′j in the momen-

tum transport equations. This term constitutes the Reynolds stress tensor. It has a

total of nine components, six of which are independent. These six additional stress

terms make the number of unknowns larger than the number of available equations

to solve them. This gives rise to what is known as the turbulence closure problem,

which is solved using various turbulence modeling approaches. One of these popular

approaches involves expressing the Reynolds stresses in terms of the mean flow quan-

tities, such as the eddy viscosity model which uses the concept of a turbulent viscosity

µt, and model the turbulent stresses or Reynolds stresses in a way analogous to shear

stress in laminar flows. Turbulence models normally vary in terms of how the eddy

viscosity is defined, how the turbulence quantities are related to the eddy viscosity,

and what transport equations and constitutive relations are used in the determination

of vt. For this study we will be using the SST-Mentor k−ω modeling approach, SST

for short hereinafter. Literature on the use of the SST model is very rich, even for

the automotive applications, and hence, for brevity, the details of these equations are

omitted. An interested reader is referred to the original articles by Menter and his

coworkers [22, 20, 19] or an automotive external aerodynamics article by Zhang et al.

[21] for all relevant equations.

3.2.1 The Improved Delayed Detached Eddy Simulation Mode

The DES approach was proposed by Spalart as a more practical application of LES

[75, 76]. DES is a hybrid approach that combines LES in the regions away-from-the-



61

wall regions and RANS within the boundary layers. The switching between LES and

RANS is done by computing a local turbulent length scales, lT , and a local grid size,

lLES.

`T ≡
√
k

ω
(3.3)

`LES ≡ CDES ∆DES (3.4)

The weakness of DES is that LES may be applied inside the boundary layer when lT

and lLES drop below a critical value. This causes a prediction of unphysical separation

due to the local grid size and is thus known as Grid Induced Separation (GIS). This is

mitigated by introducing a delay in the switching function based on the wall normal

distance and local eddy viscosity [15]. This approach is called the Delayed DES or

DDES. In this paper we used the Improved DDES or IDDES model. This version

of DES further modifies the switching function between LES and RANS regions and

is aimed at application in high Reynolds number flows [17, 18]. The IDDES model

incorporates SGS dependence on the wall-distance that allows RANS modeling where

the wall-distance is much smaller than the boundary-layer thickness.

ω̃ =

√
k

`Hybrid fβ∗β∗
(3.5)

where fβ∗ is the free-shear modification factor, β∗ is an SST k−ω model constant,

and the parameter lhybrid is defined as:

lHybrid = f̃d (1 + fe) `RANS +
(

1− f̃d
)
CDES ∆IDDES (3.6)
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3.3 Geometry and Mesh

The racecar geometry used in this study is a fully detailed NASCAR Gen-6 Cup

racecar as used during the 2019 race reason. The CAD geometry was imported

into ANSA v15 and cleaned for all surface tessellation errors. Sufficient care was

taken to retain as much of the original surface description as possible. Thus, the

geometry consists of the external aerodynamic surface, cabin interior flow, NACA

cooling ducts, underhood flow with detailed powertrain and exhaust assemblies, and

porous regions for the radiator and gear cooler. The fully detailed and error-free final

surface consisting of 13 million triangles was imported into Star-CCM+ for CFD

simulation.

Wind tunnel experiments can also be viewed as a type of simulation. The open-

jet configuration of the WindShear wind tunnel also attempts to simulate open-road

conditions [70]. Thus, a large computational domain is required to perform an open-

road CFD simulation for vehicle aerodynamics. As shown in Figure 3.5, the test model

was placed in a large Virtual Wind Tunnel (VWT) with dimensions of 211L×200W×

200H, where L,W , and H are the length, width, and height of the test geometry; the

inlet and outlet were 50L upstream and 160L downstream, respectively. This large

wind tunnel was chosen on the basis of a previous study [46] to avoid the influence

of blockage ratio and numerical pressure waves which can occur at boundaries. The

inlet was given a velocity of 67.056 m/s (150 mph), a turbulence intensity of 1.0%,

and a turbulent length scale of 10 mm. A pressure outlet was placed at the opposite

end of the tunnel. For the crosswind simulations, one side of the tunnel was set to a

velocity inlet and the other side to a pressure outlet. The velocity inlets then had their

velocity specified in x and y components to give the flow the proper angle to simulate

the desired yaw, or crosswind to be more precise. To emulate a moving ground wind

tunnel test scenario, the no-slip floor was given a tangential velocity corresponding to

the given inlet velocity. The wheel rotation was modeled using a Tangential Velocity
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Specification (TVS) with a small vertical wall to simulate the tire-ground contact

patch; this was done for simplicity and cost-effectiveness [29, 72, 71].

Figure 3.5: Schematics of the computational domain

Proper discretization and modeling of the underhood airflow is crucial for accurate

mass flow and force predictions [77]. Thus, special care was taken to develop a model-

ing strategy for the condenser, radiator and fan module (CRFM). The discretization

scheme used for porous media modeling includes porous baffles to simulate the front

and inner grilles of the radiator ducting. Thus, the radiator consists of 3 regions, the

primary cooling duct, the secondary cooling duct, and the radiator core itself. These

three regions can be seen in Figure 3.6 colored with light green, dark green and blue

respectively. Porous media modeling is tuned to achieve mass flow rate that matches

almost accurately with the mass-flow measurements from the wind tunnel.

To discretize the domain, an unstructured predominantly hexahedral cell mesh was

created using Star-CCM’s “trimmed cell” mesher. This meshing algorithm seeks to

create cells which are some multiple of 2n greater/smaller than the selected base-

size. To correctly resolve flow around the racecar, nine different volume sources were
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used around the body to control cell refinement, each one being half the size of the

next coarser one. Eight more volume sources were used near the vehicle to capture

flows around the critical areas of interest, such as the spoiler, splitter, gear cooler

duct, wheels, cabin interior, and the underhood regions. For example, the narrow

but expanding gap between the splitter and the ground boundaries is resolved with 3

different volume controls having anisotropic cells. The vertical dimensions have the

finest mesh with ∆z = 0.75 mm and 1.5 mm respectively. Figure 3.6 shows the final

mesh around the body.

Figure 3.6: Mesh for the RANS case @ = 0 center plane

To properly resolve high gradient boundary layers on the wetted surfaces, 18 custom

surface controls were used to define appropriate prism layer settings. The objective

was to have a wall y+ < 1 and to ensure a smooth growth up to the core mesh. A

histogram for the all y+distribution thus obtained are shown in Figures 3.7 and a

y+scalar plot is shown in Figure 3.8 for the zero yaw RANS case. From Figures 3.7

and 3.8, it can be seen that y+value for 95% of the body cells have a value less than

1 , while 3% cells had 1 < y+ < 2. These higher y+value cells are located at regions

of locally accelerated flow, such as around the headlight edges and the A-pillar. The

majority of cells with y+ > 2 were found in areas of sharp corners where the prism
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layer mesher collapsed. The final RANS mesh consisted of 128 million cells

Figure 3.7: A histogram of wall y+ distribution over the surface of the vehicle obtained
from the RANS simulation at zero-yaw

Figure 3.8: Wall y+ Distribution Over the Surface of the Vehicle

There is a notable difference between the mesh requirements for the RANS and

IDDES type simulations. As noted earlier, for a good mesh for SST based RANS

simulation, it is desirable to have a wall y+value less than 1 . However, for the

IDDES cases, it is important to achieve a desirable value of the Turbulent Viscosity
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Ratio (TVR), vτ/v. TVR is essentially a measure of the ratio of the Sub-Grid Scale

(SGS) dissipation to the overall dissipation. It has been suggested in previous studies

with DES that, for a well-correlated prediction of the near wall velocity profile and the

length of the recirculation bubble, the associated TVR in regions of shear flow should

be maintained at approximately 10 [6, 78, 79, 80, 81]. Thus, the mesh refinement

volume sources in the target regions, such as the splitter, spoiler and near wake, were

adjusted, through several iterations, to obtain a desirable TVR. Figures 3.9 and 3.10

show the TVR distribution obtained from three simulations: (1) RANS, (2) IDDES

using the RANS grid, and (3) IDDES using the refined IDDES grid consisting of 200

million cells. It can be seen from these figures that for the refined IDDES grid, high

TVR regions are primarily confined to the near-body RANS region, and thus satisfies

the requirements of a good DES simulation as suggested by the previous studies.

Figure 3.9: Mean Turbulent Viscosity Ratio (TVR) @y = 0 plane
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Figure 3.10: Mean Turbulent Viscosity Ratio (TVR) @z = SG plane

3.4 Physics Setup

The simulations presented in this paper were carried out using a commercial finite

volume solver CFD package, Star-CCM+ version 2020.2.1. All simulations, unless

specified otherwise, were performed using a segregated flow, implicit-unsteady, com-

pressible solver on an unstructured grid using the SIMPLE solver. The k − ω SST

based IDDES turbulence model was used along with its default closure coefficients.

A two-layer all y+wall treatment was applied to the simulation to ensure reasonably

accurate boundary layer calculation in some complex locations of the geometry where

the y+was not sufficiently small.

A 2nd order discretization scheme was used for the diffusion terms and a 2nd order

upwind scheme was used for the convection terms of the momentum equations. The

time step was normalized by vehicle length (L) and freestream velocity (U∞). The



68

non-dimensionalized time step used was ∆t = (L/U∞) 1.2 × 10−3; this corresponds

to a nominal CFL (Courant-Friedrichs-Lewy) number of around unity for near-car

grids, and even smaller for the far wake regions. This ∆t has been reported as a

sufficiently small time-step size for automotive IDDES applications [73]; this was also

verified through our time-step independence verification study. Six inner iterations

were found to be sufficient for all residuals to drop by 3 orders of magnitude within

each time-step.

The authors have previously observed a significant variation in CFD predictions

of road vehicle external aerodynamic characteristics when simulations are carried out

using Message Passing Interface (MPI) as the parallelization tool if sufficient care was

not exercised to ensure consistent domain decomposition [23]. Thus, care was taken

to maintain the same parallelization schemes and hardware consistency throughout

this study. All simulations were run on UNC Charlotte’s High-Performance Com-

puting clusters using 144 processors across 3 nodes having 48 processors each. The

simulations were set to run for 90 LETOTs, where 1 Large Eddy Turn Over Time

(LETOT) = L/U∞. Note that LETOTs are often referred to as the flow through time

as well. Our preliminary exercise has shown that convergence of force and moment

coefficients start to occur at roughly 50 LETOTs. Based on this all results presented

in this paper are from an averaging window of the last 30 LETOTs, that is averaged

between 60− 90 LETOTs

3.5 RESULTS AND DISCUSSION

As mentioned earlier the three configurations of the Gen-6 NASCAR were consid-

ered in this study and are tabulated in Table 3.1 below. These proprietary CAD and

wind tunnel data were obtained through a Non-disclosure Agreement (NDA), and

in order to protect our sponsor’s confidential data, all force and moment coefficients

presented in this paper are normalized by an arbitrary reference area. The CFD pre-

dicted results are validated against 14 data-points from the wind tunnel data, which
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includes: all 6 force and moment coefficients, Front and Rear downforce, Lift to Drag

(L/D) ratio, Front and Rear side-force, Front-balance (in percent), and radiator and

gear cooler mass-flow-rates. However, for conciseness, only a selection of the relevant

parameters is presented here.

Table 3.1: Racecar ride-height and yaw configurations used in this study

Case ID Yaw (deg) Splitter Gap (SG)
I -3.0 Low
II -3.0 High
III 0.0 High

Drag and lift coefficients and %Front-balance (defined as the ratio of the front down-

force to total downforce) corresponding to all three configurations as obtained from

the RANS and IDDES simulations are compared against the wind tunnel measure-

ments in Figures 3.11, 3.12 and 3.13, respectively. Note that the quantity "%Front-

balance" is often referred to simply as "%Front" in racing community, and, hence,

this paper will use this terminology as well.

Figure 3.11: Comparison of drag force predictions against wind tunnel measurements
for all three configurations
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Figure 3.12: Comparison of lift force predictions against wind tunnel measurements
for all three configurations

Figure 3.13: Comparison of %Front-Downforce predictions against wind tunnel mea-
surements

From Figures 3.11 and 3.12, in comparison to the wind tunnel test data, IDDES

overpredicted both drag and lift forces for all three configurations. We can observe

that while, for drag, the % delta between RANS CFD and WT is very small at < 3%,
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the % delta between IDDES CFD and WT is larger at ∼ 10%. This is consistent

with the findings of Zhang et. al. [21] for a passenger vehicle. However, in Figure

3.13, we see that IDDES CFD predictions have a better agreement with the wind

tunnel data for % Front-downforce. This indicates that the better total down-force

prediction of RANS may result from the cancellation of positive and negative errors

in the prediction of front and rear downforces. Note that the over-prediction by the

IDDES is resulted from a consistent over-prediction of both front and rear downforce.

A comparison of front and rear down force predictions by the two approaches against

the wind tunnel test data presented in Figures 3.14 and 3.15, respectively supports

this conjecture. It is very interesting to observe that IDDES prediction of the front

downforce corresponding to configuration I shows a much better correlation with the

wind tunnel measurements. As this case involves a lower splitter Gap, it appears that

the IDDES approach is superior in capturing the small-gap flow interactions.

Figure 3.14: Comparison of Front-lift coefficient predictions against wind tunnel mea-
surements for all three configurations

These trends are further corroborated in Figure 3.16 where the delta accumulated

force coefficients for all 3 cases are shown; note that, in these figures, the accumu-
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Figure 3.15: Comparison of Rear-lift coefficient predictions against wind tunnel mea-
surements for all three configurations

lated forces from the IDDES are shown relative to the RANS case. This implies that

a positive delta indicates an overprediction by the IDDES approach. Generally, com-

pared to the RANS predictions, the accumulated forces at every streamwise location

are overpredicted by the IDDES approach. The exception is the accumulated CD at

x/L = −0.2, i.e., around the cowl region. The slight dip in the accumulated CD for

configuration I (see Figure 3.17), which has a longitudinal offset at the firewall region.

This and the abnormally large discrepancy between the two simulation approaches

for configuration I is currently under investigation. Of particular interests are also

the sharp rise and fall in delta accumulated CL in Figure 3.16 at x/L equal to −0.45

and +0.35 . These again suggest larger prediction discrepancies for the two methods

around the splitter, and decklid regions. Clearly, configuration III (the one with zero

crosswind at high splitter-gap) showed the largest prediction discrepancy between the

two solvers, and hence was subsequently selected as the case to investigate further.

Figures 3.18 and 3.19 show the pressure distribution on the upper surface as ob-

tained from the IDDES solver relative to the predictions of RANS solver for configu-
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Figure 3.16: Delta accumulated force coefficients for the IDDES cases relative to the
respective RANS cases for all three configurations; Top: Drag, Middle: Lift, Bottom:
Side-Force.
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Figure 3.17: Accumulated CD for configuration I; Solid line: IDDES, dotted line:
RANS.

ration III. This is symbolically expressed as ∆CP where positive and negative values

indicate overprediction and underprediction, respectively, by the IDDES solver rela-

tive to the RANS solver. The regions of slightly positive ∆CP over the front fascia,

hood, and windshield (in Figure 3.18, marked as A) coupled with the slightly nega-

tive ∆CP over the rear fascia (in Figure 3.19, marked as A) explains the higher drag

prediction by the IDDES solver. The significantly higher positive ∆CP on the decklid

and spoiler (marked as B) explain the rear downforce overprediction. This could be

due to a premature separation of the decklid airflow causing a stronger stagnation

region there. Figure 3.19 clearly shows (region C ) a significantly positive ∆CP on

the splitter surface as well as a significant negative ∆CP at the entrance to the front

diffuser. This could be due to a separation of the front diffuser airflow at the larger

Splitter Gap configurations, indicating a mini recirculation bubble region there. This

premature separation will cause an increase in lift, which is evident in the cumulative

lift plot in Figure 3.16 which shows a higher lift prediction by the IDDES solver up

to x/L approximately equal to −0.45. Additional analyses of these aspects will be
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presented in a subsequent paper.

Figure 3.18: Predicted surface pressure distribution on the upper surface as obtained
from the IDDES solver relative to the predictions of RANS solver.

Figure 3.19: Predicted surface pressure distribution as obtained from the IDDES
solver relative to the predictions of RANS solve (bottom view).
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For the category of stock racecars in general, an understanding of the flow in the

underbody region is critical to the aerodynamic development, in particular for pro-

ducing the downforce. Of particular importance to the NASCAR aero engineers is

the strong underbody jet that originates from the splitter region. However, as can be

seen from Zhang et al. [77], the prediction of the underhood flow is very challenging

for RANS which gets even more challenging due to the radiator flow modeling pro-

cess using a porous media approximation. This "porous media modeling" approach

makes the flow out of the radiator much smoother compared to the actual one that

comprises a superposition of several hundred small 3D irregular jets. In spite of the

limitation/uncertainty of our current CFD process in terms of predicting the radi-

ator out flow, the underbody jet predictions obtained from the RANS and IDDES

simulations corresponding to Configuration III are shown in Figure 3.20; this figure

also contains the prediction delta, i.e. the difference between streamwise velocities

as predicted by the two solvers. Again, a positive delta indicates overprediction by

the IDDES method. We can clearly see that this jet being diffused in the IDDES

case. This starts by what appears to be a flow separation near the front diffuser and

continuously larger dissipation in the near wake of this underbody jet.

Figures 3.21 and 3.22 show contours of the mean skin friction coefficient (Cf )

plotted using line integral convolutions (LIC) of the magnitude of wall shear stress;

Figure 3.22 is a zoomed-in view of Figure 3.21 around the splitter region to focus

on the region surrounding the front diffuser as marked by " A " in Figure 3.21.

From the LIC, it is clear that IDDES predicts a leading-edge separation, whereas

RANS approach shows a smooth unseparated flow. Additionally, IDDES predicted

a significantly lower Cf around the bottom of the fuel cell, but for flows past this,

IDDES is predicting higher Cf . The leading edge of the front diffuser (A) shows a

region of reverse flow (colored blue, indicating negative skin friction) in the IDDES

case. This flow separation would cause a loss of momentum. Additionally, upper body



77

Figure 3.20: Mean streamwise velocity normalized by the reference velocity @ z = SG
plane. Top: RANS; Middle: IDDES; bottom: Delta between IDDES and RANS.

skin friction coefficient (Cf ) with Line Integral Convolutions (LIC) of the wall shear

stress along x-direction, as shown in Figure 3.23, indicates that RANS prediction
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of the decklid flow is much smoother than the IDDES predictions. While IDDES

simulation reveals many vortical structure, indicating localized separation bubbles,

on the decklid, the RANS simulation picks up only a handful ones.

Figure 3.21: Underbody skin friction coefficient (Cf ) with Line Integral Convolutions
(LIC) of the wall shear stress along x-direction; Top: RANS, bottom: IDDES.

In order to probe factors (turbulence quantities) contributing to the predictive

differences between these two methods, we intend to look at the predictions by the

RANS and IDDES solvers for two turbulence quantities of interest: the mean Tur-

bulent Kinetic Energy (TKE) or k, and mean Specific Dissipation Rate (SDR) or ω.

The mean TKE contours shown in Figures 3.24 and 3.25 indicate that the RANS

solver is predicting significantly higher TKE over the decklid and in the wake re-
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Figure 3.22: Zoomed-in view (around the front splitter region) of underbody skin
friction coefficient (Cf ) with Line Integral Convolutions (LIC) of the wall shear stress
along x-direction; Top: RANS, bottom: IDDES.

gions. This contrasts with the observations of Ashton et. al., (2016) [5] wherein the

IDDES solver was seen to predict slightly higher TKE than the RANS solver. This

can be attributed to the different CFD setups in both the studies. Ashton et. al.,

(2016)[5] used a DrivAer model geometry, which is a simplified passenger car model,

and solved with an incompressible solver whereas this study uses a fully detailed

NASCAR racecar geometry, solved with a compressible solver. Additionally, Ashton
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Figure 3.23: Upper body mean skin Friction coefficient (Cf ) with Line Integral Con-
volutions (LIC) of the magnitude of wall shear stress; Top: RANS, bottom: IDDES
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et. al., (2016)[5] had a Reynolds number of 7×105 whereas this study has a Reynolds

number of 2 × 107. These differences mean that the CFD solvers are attempting to

resolve a significantly different flow field. To obtain a thorough comparison of the

near wake TKE predictions influenced by the effects of turbulence modelling and

Reynolds number will require a future study using a range of Reynolds numbers. In

this study, we conjecture that the higher TKE prediction by the RANS solver in the

decklid region prevents local flow separation by energizing the flow. This suppression

of the local separation bubble is the reason why we saw significantly fewer vortical

structures on the decklid. The same argument can be applied to the TKE of flow

around the underbody region. Additionally, the IDDES shows lower TKE prediction

over the side skirt region. This could be enough to energize and maintain flow at-

tachment in those near wall regions. In figure 3.26 we can see the SDR in the IDDES

case is significantly greater around the front diffuser, underbody, and near wake re-

gions. This combination of reduced TKE and increased SDR in the flow predictions

is causing the momentum loss and increased local surface pressure seen Figures 3.16

to 3.20.

Figure 3.24: Mean Turbulent Kinetic Energy (TKE) @ y=0 Plane

Clearly, the largest prediction discrepancy between the two solvers is observed
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Figure 3.25: Mean Turbulent Kinetic Energy (TKE)@z=SG plane

in the wake region making it necessary to investigate it further. For that matter,

Figure 3.27 shows zoomed-in views of the streamline patterns in the wake region as

obtained from the RANS and IDDES simulations. It can be seen in Figure 3.27 that

RANS detects a total of three recirculation regions (marked by the red arrow and

labeled as A): one near the decklid and spoiler interface, and the other two in the

near wake. On the contrary, the IDDES predicts additional recirculation regions. In

particular, the IDDES is picking up secondary recirculation bubbles on the decklid,
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Figure 3.26: Mean Specific Dissipation Rate (SDR) @ z=SG Plane

and four additional recirculation regions further down the wake. Furthermore, a small

recirculation region near the ground is also visible. All these additional recirculation

regions are encircled in Figure 3.27.

One of the most effective ways of investigating the wake dynamics is interpreting

this region dominated by vortical structure in terms of vorticity distribution. Vorticity

scalar field normalized by U∞ × L where U∞ and L are the freestream velocity and

vehicle length, respectively, are shown in Figures 3.28 and 3.29, on the y = 0 and z =
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Figure 3.27: Streamlines in the near wake region; Top: RANS, Bottom: IDDES.

SG planes, respectively. Clearly, the IDDES simulation is able to elucidate the finer

scales of motion whereas these are completely smudged out in the RANS case. We

have seen in the work of Fu et. al. (2016) [82], that upstream turbulence significantly

alters the force and moment predictions. This implies that if one is interested in

investigating racecar drafting or racing in proximity to other vehicles, then one must

be cognizant that RANS based simulations are significantly lacking in predicting the

finer scales of motion. It is our conjecture that this could adversely affect the force

and moment predictions of the drafting vehicle. However, additional investigations
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aimed at gaining insight into the evolution and dynamics of these structure are left

out for a future publication.

Figure 3.28: Normalized vorticity distribution on the y = 0 plane.

Figure 3.29: Normalized vorticity distribution on the z = SG plane.
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Finally, taking the advantage of the transient nature of the IDDES computations,

we intend to investigate the Power Spectral Density (PSD) of the force coefficients as

shown in Figure 3.30. We anticipate that this spectral decomposition will illustrate

the dominant modes of the flow in terms of frequency. We conjecture that, through

a Strouhal number analogy, the contributors to these dominant modes can be deter-

mined. With f as the frequency, and D as a length scale, the Strouhal number is

defined as St = f∗D
V

. Our first observation from Figure 3.30 is that the PSD distribu-

tion is largely independent of the configurations. The PSD distribution of the drag

coefficient has two major dominant modes, at 80 and 110 Hz, and several minor domi-

nant modes in the range 200−300 Hz. A drag reduction can be achieved through aero

modifications if one knows which component of the vehicle body is contributing to

these modes. Having said this, we would like to warn the readers that simplified tools

like PSD analysis may be good starting point but may not be a sophisticated and

informative enough tool to be used in effective modal identification, and that a more

advanced tool, like the Dynamic Mode Decomposition (DMD), may need to be used

(see [35]). However, although the authors are currently investigating this, the DMD

analyses of flow around the NASCAR body shapes is not only very complex, but also

requires huge computational resources. For example, the storage requirements for 1

case would be more than 5 Terabytes.

Reverting to Figure 3.30, it can be seen that a significantly larger number of domi-

nant modes, in the range 40−200 Hz, are contributing to the down-force production,

and there exist at least one mode around 55 Hz that negatively impacts the down-

force. In terms of the sideforce, all of the cases show a single dominant mode at

110 Hz, except for CASE-I (low ground clearance case) which shows an additional

low frequency dominant mode at 40 Hz. By comparing the PSD plots for lift and

side-force, we can intuitively argue that this mode is somewhat related to the splitter

gap. However, we have no explanation at this point how a smaller splitter gap can
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contribute to the side force production.

Despite cautions stated earlier on the limitations of the PSD based modal analysis,

data presented in Figure 3.30 brings out a few interesting points. As it was stated

earlier, there exists a dominant mode at 110 Hz for all three force components. Now

applying Strouhal analogy, and assuming that Strouhal number asymptotes to a value

of around 0.22 for large Reynolds number flows, and using the 80% of the free-stream

velocity as a characteristic velocity (this is essentially the convection velocity of the

energy containing eddies for a boundary layer flow, see [83]), we can calculate that the

associated length-scale of the mode at 110 Hz is 0.1013 meters (or 4 inches), which is

equal to the spoiler height of the racecar. This example simply illustrates the power

of the PSD based tools, and the authors are currently working on this. Note that in

addition to the PSD of the force components, the authors are also probing additional

quantities like front- and rear-downforce, force balance and three components of the

force-moment. The final word of caution is that although averaging over the last of

30 LETOT is sufficient for force and moment coefficient, this length of run-time is

not enough for the PSD analyses of modes associated with large scales which are on

the order of the whole racecar characteristic length-scales, and we need to calculate

the PSD over at least 300 LETOTS. This will eventually quadruple the simulation

run time and will significantly increase the computational cost.

3.6 Conclusions

In this paper we have investigated the flow prediction around a fullscale, fully

detailed, Gen-6 NASCAR Cup series racecar using RANS and IDDES turbulence

modeling approaches. The force and moment coefficients were validated against wind

tunnel data from an open-jet, closed-return wind tunnel with a rotating belt and

boundary layer suction for moving ground simulation. It was found that the drag

and lift predictions obtained from the IDDES are within 10% of the wind tunnel

predictions, which is worse than the prediction from a RANS model. However, the
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better result from the RANS method may be merely a coincidence, and probably

is consequence of cancellation of the positive and negative errors in predicting the

front and rear lift forces. This is evident from the inferior percent frontdownforce

prediction by the RANS method. The discrepancies in force predictions by these two

methods are explained using the predicted flow fields. Clearly, the superiority of the

IDDES approach is its capability to depict a more realistic picture of the vortical

structures embedded in the flow, in particular in the wake region. This phenomenon

is very important for race teams that intend to optimize aero characteristics of the

car based off the on-track behavior, especially when the racecar is to be optimized as

the trailing car in the pack.

Having said this, the over prediction by the IDDES approach requires additional

investigation. Considering the overprediction of drag and lift by IDDES, the big

question that remains unanswered is whether the IDDES is unintentionally shield-

ing a real separation in its prediction by wrongly assuming a true separation as a

grid-induced separation (GIS), and the switching function is improperly triggered

on. Probably, the best way to verify this conjecture is through comparing the CFD

predicted pressure fields against the experimental measurements, which is a topic of

future investigation by the authors.

Finally, spectral analysis of the forces showed some potentials of being used as a tool

in racecar aerodynamic optimization as it can discern modes which either positively

and negatively impacts the force coefficient(s) more dominant than the others, and

then identifying the body-component associated with that mode. However, this work

is still at its infancy and requires additional tuning before it becomes an applicable

tool.
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Figure 3.30: Power Spectral Density (PSD) of the force coefficients for all three
configurations. Top: drag; Middle: down-force (negative lift); Bottom: Sideforce



CHAPTER 4: (ARTICLE 3) ON THE EFFECTIVENESS OF SCALE-AVERAGED

AND SCALE-RESOLVED TURBULENCE MODELLING APPROACHES IN

PREDICTING THE PRESSURE FIELD OVER A NASCAR RACECAR

4.1 Introduction

Aerodynamics is a vital contributor to a racecar’s performance, thus race teams

invest significant resources into the aerodynamic development of their competition

vehicles. The three standard procedures for conducting aerodynamic development

are road tests, Wind Tunnel (WT) tests, and numerical simulation using Computa-

tional Fluid Dynamics (CFD). Advances in computing power and numerical simu-

lation methodologies have enabled CFD to be used as a reliable first-approximation

tool to obtain the flow fields around a racecar and to predict the aerodynamic forces

acting on it. The preference for CFD over traditional aerodynamic testing methods

is due to the advantages it offers such as cost-effectiveness, fast turn-around times,

a high degree of control over the test environment, and the ability to provide a sig-

nificantly more detailed flow field description using non-intrusive measurements. In

order to correlate the validity of these methodologies, WT tests are typically the pre-

ferred reference models for aerodynamic development. A CFD simulation framework

demonstrates flow field predictions that are very well correlated to WT tests when

implemented with appropriate discretization schemes, boundary conditions, physics

models, and data averaging strategies. However, with the aim of limiting costs and

encouraging closer competition, race-sanctioning bodies have introduced restrictions

on both the maximum number of wind-tunnel hours and the maximum CPU time a

team can spend on their racecar development. For example, the Federation Interna-

tionale de l’Automobile (FIA) caps the annual wind tunnel and CPU hours for each



91

team, while the National Association for Stock Car Auto Racing (NASCAR), has an

annual cap on wind tunnel hours and a monthly limit on the number of CFD runs

for each manufacturer. As such, the racing industry requires accurate, reliable, and

time-efficient CFD methods. [47, 46, 28, 84, 30, 27, 31, 32]

CFD methods may be classified into two broad classes, steady-state Scale-Averaged

Simulations (SAS) and time-resolved Scale-Resolved Simulations (SRS). SAS ap-

proaches such as Reynolds Averaged Navier Stokes (RANS) simulations have been

the preferred CFD methodology in the racing industry due to their relative simplicity

and quick turnaround times. Meanwhile, SRS approaches involving Large Eddy Sim-

ulation (LES) such as hybrid RANS/LES or variants of Detached Eddy Simulation

(DES) have gained popularity within the automotive industry due to their capac-

ity to capture the dynamic behavior of the flow field, thus giving higher confidence

in the aerodynamic coefficient predictions. However, SRS simulations of full-sized

automotive geometries require an order of magnitude more computational resources

than equivalent SAS simulations. Due to this computational cost penalty and the

aerodynamic testing restrictions posed by the race governing bodies, SRS approaches

are prohibitive for the competitive racing industry. As SAS approaches have shown

suitable prediction accuracy at much reduced computational cost, they remain a fa-

vored tool for the racing industry. [47, 71, 5, 21] It is therefore critically important

which turbulence model is selected, and that proper solver parameters are chosen

[28, 46, 85].

Examining the underlying physics, both SAS and SRS approaches contain a RANS

model. It has been seen in the literature that the predictions by RANS simulations are

highly dependent on the turbulence modeling approach chosen [50, 51, 4, 27]. In this

regard, there exists turbulence modeling literature for canonical flows, such as channel

flows and bluff body wakes, as well as automotive flows using generic geometries such

as the Ahmed body and the DrivAer model [52, 53, 58, 5, 42]. Substantial review
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papers are available in published literature and the interested reader is directed to

these references for further details [54, 13, 55, 56, 57]. Based upon the prior experience

of the authors with a NASCAR geometry, all the CFD cases presented in this paper

use the Shear Stress Transport (SST) k − ω turbulence model developed by Menter.

[47, 46, 23, 71, 8]

Previously the authors published a CFD framework (Misar, A.S., and Uddin, M

(2022) [46]), using an SAS approach with Menter’s k−ω turbulence model [22, 20, 19],

for predicting the aerodynamic behaviour of a race car. The aerodynamic drag and

lift coefficients predicted by this framework were within 2% of WT values. While

these predictions were well-correlated, the front downforce was overpredicted and

rear downforce was underpredicted. This resulted in significant error of front-to-

rear downforce balance, defined forward as %_Front. Automotive CFD literature

suggests that SRS approaches are seen to produce more accurate and detailed flow

field predictions, thus the authors, Misar et al. (2023) [47], developed another a

framework for an SRS approach using the IDDES model by Shur et al. [16], using

the previous SAS framework as a baseline. It was found that the IDDES framework

overpredicted both lift and drag relative to RANS and WT values but had a much

better correlation to WT prediction of %_Front balance. The IDDES flow field

also resolved many more vortical structures resulting in significant differences in the

macroscopic flow field, particularly in the underbody and decklid regions.

Zhang et al. (2019) [21] used automotive geometry to study the effect of various

RANS and DES variants on the aerodynamic force predictions of a hatchback-style

passenger car, utilizing four (4) variants of RANS models and two (2) variants of the

DES model. The largest discrepancy observed by Zhang in aerodynamic coefficients

was between the realizable k−ε (RKE) RANS model and the Detached DES (DDES)

model. Similar to Misar (2022, 2023), drag predictions from the RKE-based SAS were

well-correlated to WT values, but all SRS approaches were overpredicting drag. Only
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drag data from a wind tunnel was available to Zhang for validation. Ashton et al.

(2016) [5] studied a DrivAer geometry in both estateback and fastback configuration,

and Guilmineau et al. (2018) [42] studied an Ahmed body geometry at 25°and 35°slant

angles. Both Ashton and Guilmineau had similar observations, with the lift and drag

coefficients of the SRS approach being overpredicted. To better appreciate where

these flow prediction differences between SAS, SRS, and WT data occur, it is first

necessary to understand the particular geometric features of the racecar geometry

studied in this paper and the wind tunnel configuration from where the validation

data was collected.

Race vehicles have many aerodynamic devices that are specifically designed for

a high downforce-to-drag ratio, resulting in aerodynamic characteristics distinctly

different from the passenger vehicles they represent. The Generation 6 NASCAR

Cup racecar (called Gen-6 for short), which had been in use since 2013, has many

such aerodynamic features. These include: a rear spoiler, roof-rails, a shark-fin, a

front splitter with an underbody splitter extension panel, very low ground-clearance

side-skirts, front by-pass ducts, NACA ducts for cabin and driveline cooling, a camera

pod, and radio communication and GPS antennas. The front splitter is maintained

at a very low ground clearance. Where a typical passenger vehicle normally produces

a small lift with a lift-to-drag ratio of about 0.3, a racecar must achieve high-speed

cornering performance, typically with down-force (or a negative lift) and having a

lift-to-drag ratio of -2.0 or larger [49, 59, 47, 46, 28, 84, 30, 27, 31, 32]. Race cars

experience dynamic on-track conditions having significantly different aerodynamic

behaviors between cornering and straight-line driving conditions due to the effects

of high operating speeds, vertical acceleration, vehicle ride-height and orientation

changes. A racecar on corner entry is subject to braking, while on corner exit it is

subjected to a high longitudinal acceleration. This causes the pitch of the racecar

to change in what are called dive-and-squat angles. The race vehicle experiences
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a yaw during corner entry, apex, and exit. Therefore, the vehicle’s aerodynamic

characteristics must be analyzed under an envelope of yaw and pitch orientations.

Existing literature covers yaw and pitch effects on generalized car shapes, such as

the Ahmed body and DrivAer body, both experimentally and numerically [60, 61, 62,

63, 64, 65, 66]. Some limited work is also published for performance cars focusing

on specific areas such as wings or using simplified geometries [67, 68, 69]. Very

early numerical experiments using CFD as a tool focused on understanding the car

performance in different conditions and were limited to very simplified, and now

outdated, Gen-4 and Gen-5 NASCAR geometries [25, 26, 24]. Nevertheless, the work

of Fu et al. focused more on effects of turbulence parameters, boundary conditions,

solver parameters and the choice of turbulence models on the flow predictions [28, 84,

30, 27, 31, 32].

The reader must note that a wind tunnel is an experiment by itself and is therefore

susceptible to its own various sources of error. Each wind tunnel is unique and the

operators have to apply corrections in order to report open-air results. The work by

Fu et al. [28, 84, 30, 27, 31, 32] and Jacuzzi [86] uses detailed Gen-6 geometries with

their data validated using data collected at the AeroDyn wind tunnel. This full-scale

tunnel is a closed-jet, open-return design using boundary layer suction for ground-

plane simulation. A closed-jet wind tunnel, such as AeroDyn, has a high blockage

ratio, requiring the application of blockage correction ratio factors [32, 87]. All CFD

simulations presented in this paper are validated against data from Windshear, an

open-jet closed-return type wind tunnel with a moving-belt for rolling road simula-

tion, a design that is particularly well-suited for road-ready motorsport vehicles. All

aerodynamic forces and moments are non-dimensionalized using reference geometric

and wind velocity measurements. These non-dimensionalized forces and moments

are then presented as coefficients to 3 decimal places. Each 1/1000th place is com-

monly referred to as a “count”. The Computer-Aided Design (CAD) and WT data for
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the Gen-6 NASCAR geometry presented in this study was obtained from a sponsor

through a Non-Disclosure Agreement (NDA). Due to NDA constraints, all aerody-

namic coefficients presented in this paper are non-dimensionalized using arbitrary

reference values.

The challenge CFD methodologies present to racecar simulations, highlighted by

the authors in their previous studies, is that different turbulence modeling strategies

within the differing CFD simulations yield significantly different flow field predictions

[47, 46, 28, 84, 30, 27, 31, 32]. This raises some important issues requiring further

investigation. To better understand how to best apply a CFD framework to racecar

simulations, one must investigate which CFD prediction methodology will result in

more accurate representations of real-world conditions. Taking this further, an in-

vestigation into which regions in the flow field demonstrate the highest discrepancy

will be required. The investigation in the current paper sheds some light as to which

flow features around the vehicle may be contributing the most to those discrepancies,

directing future studies to those specific areas likely to produce improved simulation

accuracy.

To answer these questions, the current paper looks at the correlation between the

static pressure data obtained from surface-mounted probes from the wind tunnel

experiments of a racecar to the predictions obtained from different CFD simulations

of the same geometry. As mentioned earlier, WT data for a Gen-6 NASCAR racecar

in three operating conditions was obtained from a sponsor. The three configurations

representing the three operating conditions are listed in Table 4.1 below.

Table 4.1: Configurations of the racecar that are considered in this study.

Configuration Yaw (deg) Splitter Gap
C1 -3.0 Low
C2 -3.0 High
C3 0.0 High

RANS and IDDES CFD simulations of the above three configurations were run
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using both incompressible and compressible solvers. Simulations using the RANS and

IDDES solvers will be referred to as RAS and DES respectively, and incompressible

and compressible solvers will have postfixes of “-I” and “-C” , respectively; for example,

“RAS-C” will stand for a RANS simulation using a compressible solver.

4.2 Methodology

The current paper contains a further analysis of the CFD experiments published

earlier by the authors, with a brief description provided below. However, for further

details on the computational setup for the RAS-I and RAS-C setups, the interested

reader is directed to a paper by the authors, Misar, A.S., and Uddin, M (2022) [46].

This setup was then used as a baseline for developing the setup for the DES-I and

DES-C cases. Again, a brief description is provided in this section, with further

details on the computational setup for the IDDES cases available to the interested

reader in the following paper by the authors, Misar et al. (2023) [47].

4.2.1 Governing Equations

The Navier-Stokes (N-S) equations are the governing equations for fluid flow. These

equations are represent the principles of Conservation of Mass (also referred to as

the Continuity Equation) and Conservation of Momentum. For a Newtonian flow

these are given by equations 4.1, and 4.2 respectively, using Einstein notation where

repeating index variables (i) or (j) imply summation over all possible values, e.g.

(i = 1, 2, 3).

∂ρ

∂t
+
∂(ρui)

∂xi
= 0 (4.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

(4.2)

where, t represents time and the variables ui, p, ρ, T , e, K, and τij represent

the time-dependent values of the velocity in xi direction, pressure, fluid density,
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temperature, internal energy, thermal conductivity, and fluid viscous stress tensor,

respectively. The viscous stress tensor, τij, is defined as:

τij = 2µsij (4.3)

where µ is the fluid kinematic viscosity and sij represents instantaneous rate of

strain tensor defined as:

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.4)

The N-S equations completely and entirely describe the turbulent flow field from the

largest to the smallest scales of motion. Their numerical solution requires spatial and

temporal resolutions capable of resolving the so-called Kolmogorv scales. A Direct

Numerical Simulation (DNS) of the N-S equations can be shown to scale with Re11/4,

and is impractical for an engineering application at high Reynolds number. The flow

field studied in this paper has a Reynolds number of 2× 107 and would require about

110 exabytes of memory. Therefore we need to model the turbulent flow.

4.2.1.1 Reynolds Averaged Navier-Stokes (RANS) Approach

The Reynolds Averaged Navier-Stokes (RANS) approach is a commonly used method

for solving an engineering problem using CFD. In this approach Reynolds decompo-

sition is used to decompose the instantaneous velocity and pressure fields into mean

and fluctuating components, mathematically expressed in the form ai = Ai + a′i, and

followed by ensemble-averaging the original N-S equations. Thus, as an example, in

this convention, ui, Ui, and u′i represent the time-dependent instantaneous, time av-

eraged, and time-dependent fluctuating parts of the velocity component in i-direction

respectively. The RANS equations are then expressed by equations 4.5 and 4.6. Here,

we describe the turbulent flow statistically in terms of the mean velocity field Ui(x, t)

and mean rate of strain Sij(x, t) instead of the instantaneous velocity field ui(x, t)
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and instantaneously rate of strain field sij(x, t), respectively. These equations are

commonly referred to as the Unsteady Reynolds Averaged Navier-Stokes (URANS)

equations.

∂Ui
∂xi

= 0 (4.5)

∂Ui
∂t

+
∂UjUi
∂xj

= − 1

ρ

∂P

∂xi
+

∂

∂xj

(
2µSij − ρu′iu′j

)
(4.6)

Let us now consider the terms, −ρu′iu′j, which is a symmetric tensor known as the

Reynolds stresses. These are six additional terms that are challenge introduced into

the system of equations as a consequence of the emerges from the Reynolds averaging

process. This presents the classical closure problem in fluid mechanics in the fact

that the six new independent terms now give us a total of 10 variables to determine

using 4 equations. This is often resolved using the turbulent-viscosity hypothesis

introduced by Boussinesq in 1877 (see equation 4.7). As per Boussinesq’s hypothesis,

a relationship is needed between the turbulent stresses and the mean rate of strain,

similar to the viscous stress relationship as shown in equation 4.3. However, in this

case the constant of proportionality is a fictitious flow variable, called the turbulent

eddy viscosity, νt, shown in equation 4.7.

u′iu
′
j =

2

3
kδij − νt

(
∂U i

∂xj
+
∂U j

∂xi

)
(4.7)

where k is turbulence kinetic energy per unit mass, k ≡ (1/2) u′iu
′
i, and δij is

Kronecker delta. The determination of this flow variable νt is the central element

of turbulence modeling approach. All the various eddy viscosity based turbulence

models found in literature differ primarily in the way they estimate νt. All of the

modern turbulence modelling approaches solve additional transport equation(s) to

determine νt; this type of modelling approaches are classified on the basis of the
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number of transports equations involved, and what transport variables are used in

the modelled equations. For example, a one-equation turbulence model will involve

the solution of one additional transport equations, and a two-equation k−ω modelling

approach will involve transports of turbulence kinetic energy (k), and specific rate of

turbulence kinetic energy dissipation (ω).

The current study uses the SST Menter k − ω (SST) [19, 20] based IDDES turbu-

lence model. A short description is provided below; however, an interested reader is

referred to Zhang et al. (2019) [21] and the original articles of Menter and coworkers

[22, 20, 19] for all relevant details.

4.2.1.2 Shear Stress Transport (SST) k − ωurbulence Model

The k−ω model replaces the dissipation rate ε used in the k−ε model of developed

by Launder and coworkers (see [88, 89]) with another variable, specific dissipation rate

ω, which is defined as ω ≡ ε
k
. This model includes an additional non-conservative

cross-diffusion term containing ∆k · ∆ω in the ω transport equation. This cross-

diffusion term is used only in regions far from the wall by using a blending function.

Thus, the SST model retains the advantages of the k − ω boundary layer calculation

in the near wall region while also retaining the characteristics of the k−ε model in the

far-field freestream flow. The expressions for the eddy viscosity µt, and the transport

equations are given in Equations 4.8 to 4.15.

∂k

∂t
+ Uj

∂k

∂xi
= P̃k − β∗kω +

∂

∂xi

[(
v + σkvt

∂k

∂xi

)]
(4.8)
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∂k

∂xi

)]
+2 (1− F1)σω2

1

ω

∂k

∂xi

∂ω

∂xi

(4.9)

vt =
a1k

max (a1ω, SF2)
(4.10)
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S =
√

2SijSij (4.11)
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(4.15)

where α, β, β∗, σk, σω and σω2 are closure coefficients of the model. These are com-

puted by the blending functions F1, F2 and corresponding constants of k − ε and

k − ω models via the relationships like α = α1F1 + α2(1− F1), etc. The a1, constant

in Eq. 4.10 was set to 0.31 per the STAR-CCM+ version 2020.2.1 user manual. A

production limiter is used in the SST model to prevent the build-up of turbulence in

stagnation regions.

4.2.1.3 Improved Delayed Detached Eddy Simulation (IDDES) Model

As the implementation of the LES approach is computationally expensive for auto-

motive flows, a more practical hybrid RANS/LES approach of DES was proposed by

Spalart et al. [15, 16, 17]. Similar in concept to the k−ω model, a switching function

is also implemented by the DES approach to use LES in the regions far from the

wall and RANS in the boundary layer regions. The switch between the LES solver

and RANS solver is achieved via the computation of two local parameters, a local

turbulent length scale, lT , and a local grid size, `LES.
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`T ≡
√
k

ω
(4.16)

`LES ≡ CDES ∆DES (4.17)

A limitation of this hybrid approach is that when the numerical value of `T and `LES

reduces below a critical value, then the LES solver may be erroneously applied inside

a boundary layer region. The effect of this local grid size can then be observed as a

nonphysical separation being predicted and is thus known as Grid Induced Separation

(GIS). GIS is thus a negative consequence of the switching function and is mitigated

by modifying the switching function to include a delay based on the wall normal

distance and local eddy viscosity [15]. This new approach with the modification to the

switching function is called the Delayed DES or DDES. Another version of DES makes

a further modification to the switching function between LES and RANS regions with

the aim of providing further shielding to the boundary layer regions in high Reynolds

number flows [17, 18]. This second modification is called the Improved DDES or

IDDES model which has been used for this paper. The IDDES model includes a

Sub-Grid SCale (SGS) dependence on the wall-distance that further prevents LES

modeling where the wall-distance is much smaller than the boundary-layer thickness.

ω̃ =

√
k

`Hybrid fβ∗β∗
(4.18)

where fβ∗ is the free-shear modification factor, β∗ is an SST k−ω model constant,

and the parameter `Hybrid is defined as:

lHybrid = f̃d (1 + fe) `RANS +
(

1− f̃d
)
CDES ∆IDDES (4.19)
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4.2.2 Geometry

The geometry used in this study is a full scale Gen-6 NASCAR racecar, previously

used in the 2019 NASCAR Cup season. The CAD file consists of a fully-detailed

geometry having high resolution descriptions of the external aerodynamic surface, the

interior of the driver cabin, NACA cooling ducts, the underhood flow with detailed

powertrain and exhaust assemblies, and porous regions for the radiator and gear

cooler. This CAD assembly was imported into ANSA v15 and cleaned of all surface

tessellation errors. Care was taken to retain all the geometric details. The fully

detailed and error-free final surface consisted of 13 million triangles. This surface was

then imported into Star-CCM+ and surface-meshed for CFD simulation.

4.2.3 Computational Domain and Boundary Conditions

A sufficiently large computational domain is required to perform an open-road

CFD simulation for vehicle aerodynamics. This large domain mitigates the influence

of blockage ratio and numerical pressure waves which can occur at boundaries [90,

32, 46]. The test geometry was placed in a Virtual Wind Tunnel (VWT) having

dimensions of 211L× 200W × 200H, with the inlet and outlet boundaries being 50L

upstream and 160L downstream, where L,W , and H are the respective length, width,

and height of the test geometry.

The inlet was placed on the negative x-face of the computational domain and given

a velocity of 67.056 m/s (150 mph). A pressure outlet was placed at the positive x-face

of the computational domain with a zero-gauge pressure specification. Fu et al. (2019)

[29] studied the turbulence modeling effects on the aerodynamic characterizations of a

stock racecar subject to yaw. For the crosswind simulations, they used a zero-gradient

boundary condition for the side walls. A subsequent study the authors, Misar, A.S.,

and Uddin, M (2022) [46] shows that such a zero-gradient boundary condition poses

nonphysical pressure reflections on the virtual wind tunnel boundaries. Thus, for the
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crosswind simulations, the upstream side of the VWT was set to a velocity inlet and

the downstream side to a pressure outlet. The velocity inlets then had their velocities

specified in both x and y components to obtain the correct crosswind angle to simulate

the desired yaw, or crosswind conditions. The inlets were given a turbulence intensity

specification of 1.0%, and a turbulent length scale specification of 10 mm. In this

set of simulations, the inlet velocities were given a constant magnitude. However, a

synthetic velocity inlet with an oscillating magnitude, as used by Curley & Uddin [53],

has been suggested to more realistically represent open-air turbulence conditions. Due

to the computational expense of this approach, and a lack of relevant wind tunnel data

to correlate the results, the more simplified fixed magnitude approach was applied

throughout. Further discussions of the value of the Curley & Uddin approach will be

discussed later.

To cost-effectively emulate a moving ground wind tunnel test scenario, the no-slip

floor was given a tangential velocity corresponding to the given freestream velocity,

and the wheel rotation was modeled using a local rotation rate for each wheel. A small

vertical wall was used to simulate the tire-ground contact patch while maintaining

the numerical stability of the simulations [27, 72, 71].

A porous media strategy was developed for modeling the mass flow rates through

the condenser, radiator, and fan module (CRFM) to improve underhood flow predic-

tion accuracy. This detail is important because accurate prediction of the underhood

airflow was found to be crucial for well-correlated force predictions [77]. The porous

media modeling also includes porous baffles to simulate the front and inner grilles of

the radiator ducting. Using this approach, the radiator consists of 3 regions: the pri-

mary cooling duct, the secondary cooling duct, and the radiator core itself. Porous

media modeling was tuned using the RAS-I CFD solver and the C1 configuration

in order to achieve a mass flow rate matching with high accuracy to the mass-flow

measurements from the wind tunnel [46].
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4.2.4 Initialization

The flow field was initialized with the same velocity, pressure and turbulence pa-

rameters as the inlet and outlet boundaries, i.e., the freestream velocity, a gauge

pressure of zero, a turbulence intensity specification of 1.0%, and a turbulent length

scale specification of 10 mm.

4.2.5 Discretization

The computational domain was discretized using the unstructured, hex-dominant

“Trimmed cell” meshing algorithm of Star-CCM+. This algorithm takes a reference

cell size (“base size” within Star-CCM+), and creates cells whose size is a multiple

of 2n times larger/smaller than the reference cell size where n is an integer. Volume

sources were used to refine the cells in regions having high rates of change of the

flow field variables. Nine volume sources were placed around the car, and a further

eight were placed in regions of interest such as the splitter and spoiler. Prism layers

were used on the wetted surfaces to resolve the near wall boundary layers. Eighteen

different prism layers were used to ensure that the 1st node height corresponded to a

wall y+ < 1. The final RANS and IDDES meshes consisted of 130 and 200 million

cells respectively.

4.2.6 Physics Setup

The simulations presented in this paper were performed using the finite volume

solver Star-CCM+ version 2020.2.1. All simulations, unless specified otherwise, were

performed using segregated flow solver on an unstructured grid using the SIMPLE

method. The k − ω SST-based IDDES turbulence model was used along with its

default closure coefficients for all RANS simulations as well as the underlying RANS

model of the IDDES simulations. A two-layer all-y+ wall treatment was used to

ensure reasonably accurate boundary layer calculations in complex locations of the

geometry where the y+ was not sufficiently small.
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A 2nd order discretization scheme was used for the diffusion terms and a 2nd order

upwind scheme was used for the convection terms of the momentum equations. For

the IDDES cases, the time step was normalized by vehicle length (L) and freestream

velocity (U∞). The non-dimensionalized time step of ∆t = 0.00012(L/U∞) was used;

this corresponds to a nominal CFL (Courant–Friedrichs–Lewy) number of around

unity for near-car grids, and even smaller for the far wake regions. This ∆t has been

reported as a sufficiently small time-step size for automotive IDDES applications [73];

this was also verified through an earlier time-step independence verification study [47].

Six inner iterations were found to be sufficient for all residuals to drop by 3 orders of

magnitude within each time-step, see [47].

4.2.7 Stopping Criteria and Data Averaging

The RANS simulations were run for 10,000 iterations and convergence was seen

to begin after 4,000 iterations. The IDDES simulations were run for 90 LETOTs,

where 1 Large Eddy Turn Over Time (LETOT) = L/U∞, and convergence of force

and moment coefficients was seen to begin after roughly 50 LETOTs. Based on this,

all RANS results presented in this paper are from an averaging window of the last

4,000 iterations (i.e. averaged between iterations 6,000-10,000), and all IDDES results

presented in this paper are from an averaging window of the last 30 LETOTs (i.e.

averaged between 60-90 LETOTs).

4.2.8 Computational Resources

The authors have previously observed a significant variation in the aerodynamic

coefficient predictions from the CFD of a road vehicle when simulations were car-

ried out using Message Passing Interface (MPI) as the parallelization tool. Thus,

care was taken to maintain the same parallelization schemes and hardware consis-

tency throughout this study [23]. All simulations were run on UNC Charlotte’s

High-Performance Computing clusters using 144 processors across 3 nodes having
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48 processors each.

4.3 Results and Discussion

The three configurations, examined using the using the four solvers mentioned

earlier (RAS-I, RAS-C, DES-I, and DES-C), give a total of twelve simulation and

are presented in Table 4.1. Section 4.3.1 presents the percent difference between the

force coefficients obtained from the twelve CFD cases and the corresponding WT data.

Section 4.3.2 presents the comparison of the accumulated forces between the DES-C

and RAS-C solvers. The trends presented in sections 4.3.1 and 4.3.2 were hinted

at from the difference in CP prediction on the NASCAR surface from DES-C and

RAS-C for configuration C3 in the authors’ previous study [47]. The current paper

expands the discussion to include all three configurations. And lastly, in order to

ascertain which CFD prediction is closer to the WT flow field, section 4.3.3 examines

the CP predictions on the surface for C3 with data from DES-C, RAS-C, and WT.

4.3.1 Coefficient Plots

This section will look at the aerodynamic coefficients as predicted from the twelve

CFD cases in terms of their percent difference w.r.t the respective WT values. Figure

4.1 reveals the percent difference in CD and CL w.r.t WT values. It can be seen that

three general trends emerge. First, both DES solvers have a greater overprediction

of CD and CL than their RANS counterparts. This may indicate an increased pres-

sure prediction on the front and rear facing surfaces by the DES solvers as well as

an inability to capture the peak suction pressures on the underside of the racecar.

Second, both compressible solvers have a slightly reduced percent error as compared

to their respective incompressible counterparts. This may indicate a better prediction

correlation by the compressible solvers in the regions most susceptible to local com-

pressibility effects such as the splitter suction pressure region. And third, C3 seems to

have the largest variance in its predictions between DES-C and RAS-C cases. Thus,
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C3 is investigated further in section 4.3.3 of this paper. As a reminder of Table 4.1,

C3 is the higher splitter gap, zero yaw angle configuration of the racecar.

(a) (b)

Figure 4.1: %∆ of CD and CL between CFD and WT

Figure 4.2 shows the distribution of front and rear downforce (negative lift) of the

racecar. 4.2a shows that generally CLF is overpredicted for all cases. C1 DES-C

follows the same trend as all its neighbors but has a negligible difference w.r.t WT.

This overprediction in CLF hints at an overprediction in the splitter suction pressure

or an overprediction of Cp on the hood, cowl, and windshield surfaces. In 4.2b it is

seen that both RANS solvers underpredict CLR, while both DES solvers overpredict

CLR. This could indicate an overprediction of Cp on the decklid and spoiler by the

RANS solvers and an underprediction of Cp by the DES solvers. This change in trend

in the DES solvers w.r.t the RANS solvers may also be attributed to the diffusion of

the underbody jet seen in the authors’ previous study [47].
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(a) (b)

Figure 4.2: %∆ of CLF and CLR between CFD and WT

Figure 4.3 reports the longitudinal distribution of CL. Racing industry commonly

uses the colloquial term ”percent front balance” to define the front-to-rear downforce

balance of vehicles. As defined earlier, ”%_Front” defines this values and is shown in

Figure 4.3a. As expected from the previous graphs of 4.1b, and 4.2, the RANS solvers

overpredict %_Front. This again points to the Cp predictions on the splitter, hood,

decklid, and spoiler surfaces as the possible sources of error as these surfaces play a

major role in downforce production. The DES solvers slightly underpredict percent

difference in %_Front by less than -2%, except for C1 in DES-C, which is closer to

-4%. This supports the conjecture that the DES solvers are generally overpredicting

Cp in an equal proportion in the front and rear parts. In Figure 4.3b, all cases predict

L/D around negative 2-3% of WT value, except the two outliers of C3 in RAS-I and

C1 in DES-C. Looking specifically at Figure 4.3b, it can be observed that 10 of the

12 simulations report L/D results within a narrow range between -2 to -4%. The

specific physics likely producing the 2 outliers is not fully understood, and will be

discussed following additional future research pertaining to the effects of crosswind

and the effects of splitter gap height.
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(a) (b)

Figure 4.3: %∆ of %_Front and L/D between CFD and WT

4.3.2 Accumulated forces

Next, the accumulated aerodynamic force coefficients along the longitudinal dimen-

sion of the vehicle geometry are examined. This will provide a further insight into the

development of the pressure field on the vehicle surface. All DES cases are plotted

as solid lines and all RANS cases are dashed lines. C1, C2 and C3 are shown in red,

blue, and green respectively.

Figure 4.4 shows the accumulated force coefficients. In 4.4(a) it is observed that

all DES cases predict higher CD than the respective RANS cases. The differences

occur in between location ranges from 0.05 < x/L < 0.30 and 0.70 < x/L < 0.95,

corresponding to the hood and decklid regions respectively. Also, C3 has a significant

difference between DES-C and RAS-C from 0.30 < x/L < 0.85. This could be a

result of the diffused underbody splitter jet in the DES-C case. The diffusion of

that jet may indicate higher streamwise wall shear stress in DES-C w.r.t RAS-C and

these may contribute towards higher friction drag. In 4.4(b) all RAS-C cases are

overpredicting CL in the range 0.05 < x/L < 0.25 and underpredicting CL in the

range 0.5 < x/L < 1.0. This is consistent with the observations in Figure 4.2. The

front overprediction corresponds to the splitter and front diffuser geometries. The rear

underprediction seems to be an effect of the underbody flow. In 4.4(c) C1 and C2 are
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well matched for both DES-C and RAS-C solvers. The largest difference is observed

in the range 0.3 < x/L < 1.0 from C3, which is a zero degree yaw configuration. The

NASCAR geometry is inherently asymmetric along the longitudinal axis and this

asymmetry is the cause for a non-zero sideforce even in zero yaw configuration. The

significant prediction difference of CS between DES-C and RAS-C for C3 indicates a

pressure field difference on the side surfaces. The fact that the difference starts just

downstream of the front tires suggests an influence of the front wheel wakes.
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Figure 4.4: Plot of accumulated force coefficients from each configuration from RAS-
C and DES-C solvers. Top: (a) Accumulated CD, middle: (b) Accumulated CL, and
bottom: (c) Accumulated CS
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Further exploring the effect of both DES-C and RAS-C solvers, Figure 4.5 analyzes

the difference in the accumulated force coefficients between DES-C and RAS-C solvers

for all 3 configurations. For this, the RAS-C cases were taken as a baseline and

the DES-C predictions are reported w.r.t the RAS-C predictions. Thus, all positive

differences are overpredictions in the DES-C case and vice versa. C1, C2, and C3 are

shown in red, blue, and green respectively. In 4.5(a) C3 has the largest difference in

CD between DES-C and RAS-C relative to the differences seen for C1 and C2. This

is due to three factors: (i) higher CD contribution from the range 0 < x/L < 0.075

corresponding to the splitter and front fascia, (ii) a smaller drop near the cowl region

at X/L = 0.325, and (iii) a larger drag contribution from the spoiler located beyond

x/L = 0.95.

In 4.5(b) the highest overprediction is observed with DES-C in C1 at x/L = 0.05.

C1 is the low splitter gap case and is thus expected to have a higher splitter suction

compared to C2 and C3. 4.2a showed that, for C1, DES-C had a lower CLF prediction

compared to RAS-C and fig 4.5(b) further indicates that the splitter suction pressures

have different predictions. Also, the consistent downward slope of all three cases from

x/L = 0.1 to the rear indicates a strong correlation to the underbody splitter jet flow.

Thus, it will be important to inspect the static pressure data from the point probes

in the underbody region. C1 also seems to have an unphysical spike at x/L = 0.95

and may be coming from a numerically induced noise in post-processing the data.

This is left for a subsequent investigation.

In 4.5(c) C1 and C2 have differences of less than 10 counts. The difference coming

from C3, the zero yaw case, is very significant and highlights the need to study the

probes on the sides of the vehicle. It is interesting to note that, for all three cases,

the differences in CD appear downstream of x/L = 0.225. This indicates the wake

and outwash generated from the front tires may be playing a significant role on the

flow prediction over the doors and thus affecting the sideforce predictions.
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To enhance the understanding of such a phenomenon, more investigation of the

flow field in the near vicinity of the vehicle is required. Data of pressure and velocity

was collected from this region of the flow field, allowing a more in depth study.

This data was generated from a collection of fifty (50) CFD-generated point probes

placed in the flow field. From each point probe location five scalars, including the

static and total pressure coefficients and the three components of the velocity vector,

are collected. Because the corresponding WT data for these point probes is not

available, establishment of the overall veracity of the CFD simulations is required

prior to analysis of the flow field. The data will be analyzed and presented in a

subsequent paper.
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Figure 4.5: Plot of differences in accumulated force coefficients from DES-C solver
w.r.t RAS-C solver from each configuration. Top: (a) Delta accumulated CD, middle:
(b) Delta accumulated CL, and bottom: (c) Delta accumulated CS
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4.3.3 Pressure Probe Plots

Figures in this section compare the static pressure data on the vehicle surface for

C3 as obtained from DES-C, RAS-C, and WT. Each figure has a plot overlaid on the

vehicle geometry. The yellow/gold dots show the physical location of the pressure

probes on the vehicle. Each plot has it’s own grouping of pressure probes numbered

as [ P1, P2, ... ]. The green circles show the Cp values obtained from the WT. The

blue triangles show the CFD predicted Cp values from DES-C. And lastly, the red

squares show the CFD predicted Cp values from RAS-C. Examination will begin by

first looking at the splitter and underbody regions, then the spoiler region, the hood

region, and finally the sides.

4.3.3.1 Splitter and underbody region

Figure 4.6 is a plot of the surface Cp distribution on the splitter of the vehicle for C3.

This region of the vehicle has the lowest ground clearance and the strongest suction

pressures. Being the most upstream part of the vehicle geometry, this region has the

least impact on upstream flow predictions. Towards the sides at locations P1 and

P5, the predictions of WT, DES-C, and RAS-C are well correlated. RAS-C continues

this good correlation at all interior locations. However DES-C shows a significant

underprediction of the suction pressure and fails to capture the peak suction pressure

at the central P3 probe. This suggests that, in the DES-C flow field prediction, there

may be a local separation bubble slightly downstream of the P3 probe location. Such

a flow prediction was indicated in the observations of the authors’ previous work [47].

The impact of such a local separation bubble should be seen more clearly in the front

diffuser region (also called the splitter extension panel).
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Figure 4.6: Plot of Cp distribution at pressure probes on the splitter

Figure 4.7 is a plot of the surface Cp distribution on the trailing edge of the splitter

extension panel of the vehicle for C3. Immediately it is seen that the WT seems to be

predicting an outlier at P3 having significantly larger suction pressure as compared to

the other locations (by about 25%). This seems to be an unphysical phenomenon and

requires further flow field data from the WT experiment. Apart from this, a trend

similar to that observed in the splitter region is seen. Towards the sides at locations

P1 and P4, the values from WT, DES-C, and RAS-C are well correlated. At the

interior points of P2 and P3, both DES-C and RAS-C predictions are correlated to

each other, but both underpredict w.r.t the WT value. This seems to suggest that

neither CFD solver is able to predict the flow acceleration, based upon the divergence

from the WT values. Some additional WT pitot tube information from the trailing

edge of the splitter extension panel may be required. This would allow more robust

comparisons of the streamwise velocity from the different simulations.
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Figure 4.7: Plot of Cp distribution at pressure probes on the splitter extension panel

Figure 4.8 is a plot of the surface Cp distribution on the floor of the vehicle for C3.

Generally, the floor suction pressure is underpredicted except for RAS-C prediction

at P1. A basic understanding of Bernoulli’s Principle implies that an underprediction

of underbody suction pressure indicates an underprediction of streamwise velocity

in the underbody flow. This figure shows us that the RAS-C prediction is better

correlated to the WT data than the DES-C prediction. This is consistent with the

authors’ earlier observations from a scalar of ∆CP on the underbody surface [47]. It

is also wise to remember that the WT in itself is a simulation of open road conditions.

The rolling belt used to simulate a moving ground cannot be infinitely rigid and thus

may have an induced vertical oscillation due to the vehicle’s underbody suction. The

pressure and velocimetric data from a coastdown test may be required to ascertain

the true state of underbody suction conditions.
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Figure 4.8: Plot of Cp distribution at pressure probes on the floor

Figure 4.9 is a plot of the surface Cp distribution on the LHS floor of the vehicle

for C3. At these locations, DES-C predictions are closer to WT values, while RAS-

C is underpredicting the suction pressure at P1, P2, and P5, and overpredicting the

suction pressure at P3 and P4. This is a region of the flow field where air from outside

the vehicle’s footprint rolls over the edge of the side skirts and enters the underbody

flow [47]. Figure 4.9 suggests the transient solver of DES-C is better able to capture

the impact of the dynamic flow on the local pressure field.
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Figure 4.9: Plot of Cp distribution at pressure probes on the LHS side skirts

Figure 4.10 is a plot of the surface Cp distribution on the RHS floor of the vehicle

for C3. In the near wake of the front tires at P1 and P2, and in the region of the rear

tire squirt at P5 and P6, suction pressure is underpredicted with the exception of P1

for DES-C. Suction pressure is overpredicted slightly upstream of the exhaust pipes

at P3 and P4. Larger discrepancies exist between DES-C and RAS-C predictions at

P1, P2, P5, and P6, all of which are within the influence of the tires. The tire squirt

and the near wake region contain many flow structures that have a range of frequency

and length scales. Accurately predicting these regions is difficult, and the simulation

setup may have a significant effect on downstream flow structures, such as those that

are being captured in this examination. Different wheel rotation modeling strategies

may have a significant impact on these areas [71].
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Figure 4.10: Plot of Cp distribution at pressure probes on the RHS side skirts

Figure 4.11 is a plot of the surface Cp distribution on the fuel cell and rear crash

structures of the vehicle for C3. All CFD predictions are underpredicting the suction

pressures except for P5 in DES-C, which shows good correlation to the WT corre-

sponding value. At P2 and P3, RAS-C seems to be more aligned to WT values, but

both solvers have nearly identical predictions at P1 and P4.
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Figure 4.11: Plot of Cp distribution at pressure probes on the fuel cell and rear crash
structures

4.3.3.2 Spoiler region

Figure 4.12 is a plot of the surface Cp distribution on the rear windshield for the C3

vehicle. DES-C predicts a higher Cp at all three points w.r.t both WT and RAS-C.

At P2 and P3, RAS-C and DES-C predictions are very closely matched, but at P1

RAS-C significantly underpredicts compared to both WT and DES-C. It will help the

reader to know that P1 is located slightly inboard of the sharkfin. Thus, the RAS-C

solver seems to be predicting a much higher tangential velocity along the sharkfin.

These CFD predictions also help explain why the DES-C has a higher CS prediction

than RAS-C seen in Figures 4.4(c) and 4.5(c).
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Figure 4.12: Plot of Cp distribution at pressure probes on the rear windshield

Figure 4.13 is a plot of the surface Cp distribution on the decklid of the vehicle for

C3. The P3 value from RAS-C is is best correlated to WT, all other CFD predic-

tions are overpredicted with DES-C having a higher overprediction than RAS-C. The

authors have seen in their previous work [47] that RAS-C predicted a smoother flow

in this region, whereas DES-C flow field predictions indicated many more localized

separation bubbles. In this study RAS-C is better correlated the limited WT surface

pressure data available.
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Figure 4.13: Plot of Cp distribution at pressure probes on the decklid

Figure 4.14 is a plot of the surface Cp distribution on the Spoiler of the vehicle

for C3. The thirty-two (32) physical pressure probes used in the WT are organized

into three rows; (a) top, (b) middle, and (c) bottom. The viewpoint is from the rear

looking forward, i.e., RHS of the racecar is on RHS of the plot.

On the top row P1, P2, and P3 for both DES-C and RAS-C are well correlated to

WT values, and RAS-C has an additional well-correlated prediction at P8. DES-C

has a significant overprediction w.r.t WT from P4 to P11. RAS-C predictions share

this trend except for locations P6 and P9 which are underpredicted. Both DES-C

and RAS-C have similar predictions for the sharkfin side from P1 to P5. From P6 to

P11 DES-C significantly overpredicts relative to RAS-C. These locations are directly

downstream of the decklid discrepancies seen in Figure 4.13. Thus, it may be that

the flow features emerging from the C-Pillar region are being resolved differently in

the DES-C and RAS-C methods. As mentioned earlier, the flow field investigation is

left for a subsequent paper.
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On the middle and bottom rows, again see these general trends continue, particu-

larly the tendency of DES-C to overpredict Cp at locations P5-11 w.r.t both RAS-C

and WT values. This helps explain the higher CD and CLR prediction of DES-C seen

in Figures 4.1a and 4.2b respectively. However, RAS-C is also generally overpredict-

ing Cp w.r.t WT values in Figures 4.12, 4.13, and 4.14. RAS-C also underpredicts

Cp w.r.t WT values in Figure 4.11. These predictions by RAS-C would suggest an

overprediction of CLR similar to DES-C, but in fact it can be seen from 4.2b that

RAS-C underpredicts CLR. From Figures 4.4(b) and 4.5(b) the underprediction of

CLR by RAS-C is mostly from the range of 0.7 < x/L < 1.0. This suggests an

influence of the rear wheel wake on the underbody flow affecting CLR. Again, the

flow field investigation is left for a subsequent paper.
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Figure 4.14: Plot of Cp distribution at pressure probes on the spoiler (a) top row, (b)
middle row, and (c) bottom row
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4.3.3.3 Hood region

Figure 4.15 is a plot of the surface Cp distribution on the front fascia of the vehicle

for C3. Both CFD solvers are overpredicting the surface Cp at all three points w.r.t

WT values, with a greater overprediction seen in DES-C relative to RAS-C. These

overpredictions contribute towards the higher CD predictions seen in Figure 4.1a.

This suggests that CFD is overpredicting the stagnation region and overpredicting

mass flow rate through the front bypass ducts, the front grille, and the splitter region.

As a reminder, the front grille porosity was tuned using the anemometer data from

WT utilizing the RAS-I solver for all three configurations. For C3, the radiator mass

flow rate changes by less than 2% across all four CFD solvers. Further understanding

and refinement of this region would be possible with enhanced experimental data,

collected from additional WT pitot tubes and anemometers located in the front drag

ducts. Also, the DNS work of Curley & Uddin (2015) using a surface mounted cube

suggests that the use of a steady inlet velocity can result in wake prediction inaccura-

cies [53]. All the simulations presented in this paper use such a steady inlet velocity

and overpredict the drag. The authors thus recommend further investigation of the

Curley approach, using a perturbed inlet velocity for better turbulence simulation, to

improve the drag prediction of IDDES simulations.
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Figure 4.15: Plot of Cp distribution at pressure probes on the front fascia

Figure 4.16 is a plot of the surface Cp distribution on the Hood of the vehicle for

C3. At the central P2 location closer to the nose of the vehicle, both CFD solvers are

slightly underpredicted in suction pressure. This suggests a slower streamwise velocity

as the flow comes over the leading edge of the hood. This may be a consequence of

the mass flow redistribution suggested by the front fascia data seen in Figure 4.15.

The outward locations P1 and P3, located on the hood flaps near the cowl region,

have a significant overprediction of suction pressure. WT has a Cp value close to

zero at these locations; this implies a velocity magnitude close to freestream value

as the static pressure is very close to ambient air pressure. However, both CFD

solvers predict a significant suction pressure at these points. This suggests the cowl

stagnation bubble may be underpredicted in CFD.
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Figure 4.16: Plot of Cp distribution at pressure probes on the hood

Proper resolution of the mass flow rates through the CRFM module is crucial

for accurate and reliable force coefficient predictions [77, 47]. To develop a deeper

understanding of the mass flow trends suspected from the analysis of Figures 4.15 and

4.16, observe the mass flow rates through the front grille, the front drag ducts, and

underneath the splitter. Figure 4.17 is a scalar showing the Mach number distribution

and mass flow rates through these planes. Figure 4.17 indicates that DES-C has a

higher mass flow rate through the front grille and front drag ducts by 0.03 kg/s,

or 0.9% more than the RAS-C prediction. WT anemometer data reports that the

radiator mass flow is exactly in between the RAS-C and DES-C predictions. This

small difference, if considered in isolation, has the effect of reduced cooling drag

prediction in the DES-C case. Similarly, DES-C has a lesser mass flow rate through

the splitter entry region by 0.09 kg/s, 1.6% less than the RAS-C prediction. And

again at the splitter throat and exit, DES-C has a lesser mass flow rate prediction by

3.9% and 3.8% respectively. Taken in isolation this would imply a reduced CLF in
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DES-C. However, DES-C relative to RAS-C has more mass flow through the radiator

and front bypass ducts and reduced mass flow through the splitter region. Thus,

DES-C is forcing more air around the front fascia, causing the higher Cp prediction

on the front fascia and hood regions. This is consistent with observations in Figures

4.15 and 4.16 as well as in the surface Cp observed in authors’ earlier study [47].

Figure 4.17: Plot of Mach number and mass flow rate distribution at the splitter and
front face geometry (a) top: RAS-C, (b) bottom: DES-C

Figure 4.18 is a plot of the surface Cp distribution on the P1 (engine filter,) P2
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(roof front), P3 (cabin filter), and P4 (rear fascia). Consistent with the observations

so far, both CFD solvers are underpredicting the suction pressures at all points. The

underpredictions at locations P2 and P4 contribute towards a reduced CD prediction.

This underprediction of suction pressure at location P4 is an observation consistent

with those of Zhang et al. [21]. The most significant discrepancy are seen at P3,

suggesting the pipe flow through the cooling ducts may need further validation with

anemometer data. It also suggests that DES-C is predicting higher frictional losses

through the cooling ducts.

Figure 4.18: Plot of Cp distribution at pressure probes on the P1 (engine filter,) P2
(roof front), P3 (cabin filter), and P4 (rear fascia)

Figure 4.19 is a plot of the surface Cp distribution on the upperbody centerline of

the vehicle for C3. P1, P2, P4, and P5 have been seen in Figures 4.12, 4.13, 4.15,

and 4.16 respectively. P3, on the front windshield, shows the same trend as the other

four points. This suggests that the entire upperbody flow prediction in CFD may

have excessive skin friction or wall shear stress. Thus, the wall modeling in terms of
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both wall roughness as well as boundary layer growth needs to be studied in greater

depth. Also, as the locations shown here have a higher Cp prediction relative to WT,

they contribute to a higher CL prediction seen in Figure 4.1b, with the predicted CL

being higher for DES-C relative to RAS-C.

Figure 4.19: Plot of Cp distribution at pressure probes on the upper body centerline

4.3.3.4 LHS and RHS regions

Figure 4.20 is a plot of the surface Cp distribution on the LHS of the vehicle for C3.

DES-C is overpredicted at P1 and P6 but underpredicted at P3-5 and P7-9. RAS-C

is overpredicted at P1, P4, and P6 but underpredicted at P9. The P1 overprediction

of suction pressure in both CFD solvers again suggests more mass flow coming across

the front fascia. Verification of this hypotheses requires anemometer or pitot tube

data at appropriate locations. DES-C and RAS-C are in good correlation of each

other at P2, and P5-9. At points P3 and P4 the influence of flows over the hood

region, and the turbulent wake coming from the front left tire has to be considered.

This requires a further study of the effects of wheel rotation modeling and flow field
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validation data. In general, it was seen that DES-C predictions are further away from

WT values than RAS-C predictions. This indicates a greater CS discrepancy in the

DES-C solver.

Figure 4.20: Plot of Cp distribution at pressure probes on the vehicle’s LHS

Figure 4.21 is a plot of the surface Cp distribution on the RHS of the vehicle for C3.

DES-C is overpredicted at P6 and P8 but underpredicted at P2-5, and P9. RAS-C

is overpredicted at P4, P5, P7 and P8 but underpredicted at P1 and P9. The trends

and effects seen here are similar to those seen in Figure 4.20. In general, DES-C has

more positive Cp predictions than RAS-C for points P3-P9 in Figures 4.20 and 4.21.

These are contributing to the higher CS prediction of DES-C seen in Figure 4.4(c).
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Figure 4.21: Plot of Cp distribution at pressure probes on the vehicle’s RHS

4.4 Conclusions

In this paper, the pressure field predictions on the surface of a detailed, full-scale,

Gen-6 NASCAR racecar in three configurations using RANS and IDDES turbulence

modeling approaches in both incompressible and compressible modes were investi-

gated. The force and moment coefficients were validated against wind tunnel data

from WindShear. This facility utilizes an open-jet, closed-return configuration with

a rotating belt for moving ground simulation and boundary layer suction to mini-

mize any boundary layer buildup upstream of the rolling belt. It was found that all

RANS cases had the drag and lift predictions within 0-5% of wind tunnel predictions,

whereas the IDDES cases predicted the drag and lift between 3-13% of wind tunnel

predictions. Additionally, it was found that in both turbulence modeling approaches,

the compressible solver reduced the prediction discrepancies by up to 3% for both

drag and lift predictions relative to the incompressible solver predictions. Hence, in
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this paper, the CP predictions between the DES-C and RAS-C turbulence model-

ing approaches were investigated. A detailed comparison of the predictions between

compressible and incompressible solvers is left for a future study by the authors.

As it was found that configuration C3 had the highest discrepancy between the

RANS and IDDES turbulence modeling approaches in compressible mode, this config-

uration was chosen for further investigation. This was done by studying the CP distri-

bution on the surface of the racecar via data experimentally collected from ninety-five

(95) static pressure probes located on a full-scale wind tunnel model. It was found

that DES-C is unable to capture the peak suction pressure underneath the splitter.

DES-C also predicted higher CP relative to RAS-C on the front fasica, hood, decklid,

RHS of the spoiler, and fuel cell surfaces. These differences contribute to the DES-C

solver overpredicting both CD and CL. The uniform DES-C overpredictions of CP

around the racecar resulted in % Front predictions very well correlated to wind tunnel

values. In contrast, RAS-C produces a net CL predictions well correlated to wind

tunnel values. However, this correlation was a result of cancellation errors in CLF and

CLR predictions, with the Front/Rear balance being significantly in error by 4-6%.

Further, both DES-C, and RAS-C struggled to predict the correct suction pressure

values in the underbody flow. While this helps to explain the overprediction of CLF

and CLR by the DES-C solver, the underprediction of CLR by RAS-C is not fully

explained from this investigation. For RAS-C, the source of underprediction in CLR

may be influenced by the rear tire wakes and the inward flow across the side skirts.

Both solvers also had significant discrepancies in predicting the CP on the decklid

and spoiler surfaces; this points to the flow over the rear windshield and C-Pillars

being resolved differently. These predictions require a further investigation of the

associated flow structures.

Finally, it was found that in some regions both DES-C and RAS-C had CP pre-

dictions well-correlated relative to each other, but with both having discrepancies
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relative to wind tunnel predictions. These regions were the outer edges of the split-

ter, the trailing edge of the splitter extension plate, the RHS side skirts around the

exhaust manifold, fuel cell, rear windshield, sharkfin side of the spoiler, front fascia,

and rear fascia. This suggests that the CP predictions could benefit from further

tuning of the CFD framework such as the closure coefficients of the k−ω turbulence

model.



CHAPTER 5: (ARTICLE 4) INSIGHT INTO THE TURBULENT FLOW

AROUND AN IDEALIZED ROAD VEHICLE USING THE DYNAMIC MODE

DECOMPOSITION APPROACH

5.1 Introduction

The reduction of the aerodynamic drag force remains a core objective of vehicle

aerodynamic development, and is motivated by the desire to reduce fuel consumption

[35, 91]. Researchers have attempted to achieve aerodynamic drag reduction through

different types of passive flow control devices such as the front bypass ducts [86],

rear bypass ducts [92], and various deflector designs [93, 94, 95]. One of the major

limitations of passive flow control devices is that, once installed, they can be difficult

to remove or modify. Thus, researchers have turned to active flow control devices

to achieve flexibility in optimization [34]. Examples of active flow control include a

variety of synthetic jet and suction systems [34, 96, 97, 98, 99]; interested readers are

refereed to the review articles by [100, 101] for further details.

Recent technological advances in the automotive industry have shifted the focus of

transportation research from human-operated-and-controlled fossil-fuel-based vehicles

to electrified (EV) connected and automated vehicles (CAVs). As a results there is a

growing interest on the prediction of aerodynamic characteristics in adaptive driving

conditions. An example is platooning, where drag reduction is desired via vehicle-to-

vehicle interaction of aerodynamics where one or more trailing cars follow a lead car

in close proximity. Active control systems are believed to make platooning feasible for

all vehicles as autonomous vehicles allow for closer proximity due to reduced reaction

times [33, 102, 103]. Before a control signal can be applied to the moving vehicle,

predictions of the future state of aerodynamic forces and moments are required. A
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Reduced Order Model (ROM) can be used to make future state predictions of the

aerodynamic flow field [35]. For adaptive systems, the future state predictions can

then be coupled with a control input to obtain the desired performance characteristics

[36].

Previous studies on the adaptation of aero-devices largely relied upon time-averaged

wind tunnel experiments or Reynolds-Averaged Navier-Stokes (RANS) based numer-

ical methods. Fluid flows around road and race vehicles are highly turbulent and

consist of many dynamic coherent structures that are characterized by a wide range

of length and time scales. The evolution and convection of these structures gives rise

to macroscopic spatio-temporal patterns [12, 104, 35, 47]. Hybrid turbulence mod-

eling simulation approaches such as Improved Delayed Detached Eddy Simulation

(IDDES) have shown greater success at elucidating these finer vortical structures in

the flow field. The challenge with such Scale-Resolved Simulation (SRS) approaches

comes from the grid resolution requirements for the high Reynolds number flow field

that they try to resolve. It is seen that the spatio-temporal domain must be resolved to

the so-called Taylor scales [42, 5, 47]. Such SRS approaches are resource-prohibitive,

since the onboard controller on a moving vehicle would likely not have the processing

power and time needed to solve a transient flow field while attempting to implement

real-time control of the vehicle’s trajectory. Thus, there is a need for a Reduced Order

Model (ROM) that can provide fast, accurate, and reliable flow predictions utilizing

feasible computational resources; decompose the fluid flow into its constituent parts

can be very helpful in this regard. Researchers in this field have largely resorted to

methods of modal decomposition to analyze the flow field [39, 38, 35].

Proper Orthogonal Decomposition (POD) has been a popular method for the modal

decomposition of fluid flows [105, 106, 107, 108]. However, the POD modes are ar-

ranged by energy and not by dynamical importance, contain a mix of frequencies, and

have unclear truncation criteria [109]. In recent times researchers have used Dynamic
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Mode Decomposition (DMD) which is a data-driven linearization algorithm that can

decompose a set of data into its constituent modes and extract the associated oscil-

lation frequencies of each mode [37]. These constituent modes and their associated

oscillation frequencies can then be used to make future state predictions of the system

[110, 111]. DMD has shown success when applied to a variety of fluid dynamic prob-

lems including water jets [111], backward-facing step [112], circular cylinder wakes

[113, 114, 115], Poiseuille flow, supersonic jet [116], open cavity flows [117], boundary

layer flows [114], airfoil, and hydrofoil flows [118, 119]. DMD has been seen to be

adaptable and many variants exist. Interested readers are directed to Kutz’s book

[39] and Schmid’s review paper [38] for further details.

All of the studies cited above applied DMD to relatively simple flow fields at low

Reynolds numbers. A Ground Vehicle (GV) has an associated flow field that is much

more complex and at orders of magnitude higher Reynolds number which implies a

larger spread of length and time scales within the flow field [104, 47]. Fewer studies

have applied DMD to such separation-dominated flows, high Reynolds number flows.

[35] performed DMD on a DrivAer geometry at a Reynolds number of 4.8 × 106;

note that the DrivAer model, developed by [59], is a simplified rendering of a highly

complex vehicle geometry. Ahani’s work was primarily focused on comparing the

obtained mode shapes from DMD to those obtained from POD. Another study with

the DrivAer geometry by [120], performed a low-pass filtering with a cutoff frequency

of 10 Hz before the data was processed by the DMD algorithm, and thus, filtered out

all the complexities associated with a high Reynolds number flow.

As mentioned earlier, the development of a ROM capable of producing reliable

future state predictions will be very useful for the on-road adaptation of the CAVS.

However, we needed an engine for this ROM development. Based on the currently

available mathematical tools for fluid flow characterization, we anticipated that DMD

is a strong candidate. Thus, the objective of this study is to analyze the effectiveness
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of the DMD methodology in reconstructing the flow field round a moving GV at a high

Reynolds number using data generated from an IDDES based CFD simulation. [109]

states that the weaknesses of DMD include the requirement to obtain time-resolved

data with high resolution, and the metrics to identify dominant modes. In order

to obtain such a “reliable” DMD for the high Reynolds number fluid flows, certain

parameters pertaining to the DMD requirements must be determined: (a) length of

one data sampling window, (b) data sampling frequency, and (c) number of data

samles for converged ensemble averaging. Additionally, we need to know whether it

is necessary to go through the Singular Value Decomposition (SVD) step, as seen

in the existing DMD algorithm, and if so, the truncation criteria for the SVD need

to be defined. Also, it is important to know whether the inverse transformation, i.e

the reconstruction of the flow field from the DMD modes suffers from the artifacts of

spurious high-frequency modes or other noise. As well, we to know how much flow

energy is conserved when the flow field is reconstructed, and the minimum energy that

must be retained when performing a low-dimensional transformation of the system.

In this paper, we attempted to address these questions by applying DMD to a

high Reynolds number, separated flow past an idealized road vehicle, the Ahmed

body geometry [58] for which extensive experimental and CFD data are available for

correlation and validation. We chose to proceed with the 35◦ slant angle Ahmed body

model variant as the flow over this model shows all the salient features of the flow

over a Sport Utility Vehicle (SUV) -type of vehicle that is the subject of the next

phase of our work [121].

The work flow of this study involves first perming DMD on a canonical 2D cylinder

flow at a low Reynolds number to verify the accuracy of the DMD output. Next,

we performed the CFD simulation of the GV and validated the CFD results against

published experimental data [58, 122]. We then performed a DMD analysis using

the data collected from the CFD simulation. Modifications to both the CFD data
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generation strategy along with the creation of a filtering process for removing spurious

modes obtained from the model decomposition. The subsequent sections further

explain the methodology that was used and the results that were obtained. The

methodology developed in this paper can be applied to generic vehicle shapes, like

the DrivAer, and subsequently to more complex real-life road vehicles to develop

ROMs which can predict on-road characteristics of the vehicle subject to changes in

vehicle operating conditions, such as the CAVs in a platoon.

5.2 DMD Equations

The first step in the DMD process involves storing the data in a vector form,

XN
i = {x1i , x2i , ..., xNi }, where the subscript i represents the ith element of the grid

where the snapshots of the flow field were taken, and N is the total number of time

snapshots collected. Thus, each time snapshot xn, is a vector containing data from

all m grid elements at time instant n. If we expand the vectors for the grid elements,

we can build the complete dataset in matrix form as shown in equation 5.1

X =


x11 · · · xNi
... . . . ...

x1m · · · xNm

 (5.1)

In DMD approach, the collected data set from a dynamical system is represented as

a coupled system of ordinary differential equations, as given in equation 5.2, which

itself contains non-linear relations in spatial and temporal domains.

dx/dt = f(x, t) (5.2)

The idea is to represent data from the non-linear, complex system as a locally linear

regression such that xk+1 = Axk, where A is then chosen to minimize ‖xk+1 −Axk‖2

over k = 1, 2, 3, ..., N −1. Since we have collected the data from the system, xk+1 and
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xk are known, but the function relating them is unknown.

xk+1 = F (xk) (5.3)

The DMD approach then constructs a locally linear approximation of the dynamical

system:
dx

dt
= Ax (5.4)

This ordinary differential equation (ODE) form of the dynamical system is advanta-

geous as, with initial conditions, we have a well known solution

x(t) =
N∑
k=1

φk exp(ωkt)bk = Φ exp(Ωt) b (5.5)

where bk is the amplitude of each mode, φk are the DMD modes (mode shapes in-

volving the eigenvectors of A), and ωk are the continuous-time eigenvalues of A. The

matrix that results as a product of terms, exp(Ωt) b, is also referred to as the “time-

dynamics” of the system as it contains the information associated with the frequency,

amplitude, and growth rates for all of the modes. Now, when the dimensions of X are

large, A becomes impossibly large to mathematically work with. The DMD process

circumvents this through its eigen-decomposition of A by considering a rank–reduced

representation, Ã, which has the same non-zero eigenvalues as A, and is obtained by

performing SVD of X using the collected data.

X ≈ UΣV ∗ (5.6)

In equation 5.6, X is a rectangular data matrix of size m×n, U is a complex unitary

matrix of size m×n that contains the left singular vectors which are the POD modes,

Σ is a rectangular diagonal matrix of size m × n having positive real number as its

diagonal elements and V ∗ is a complex unitary matrix of size n×n and ∗ represents a

complex conjugate transform. The diagonal elements σi of Σij are the singular values

of X. Next, the matrix A may be obtained by using the pseudo-inverse of X, shown

in equation 5.7
A = X

′
V Σ−1U∗ (5.7)
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In practice, since A can be computationally prohibitive to calculate, Ã is computed

by way of a unitary transform of A as shown in equation 5.8

Ã = U∗AU = U∗X
′
V Σ−1 (5.8)

With Ã we can now create a low dimensional subspace of A

x̃k+1 = Ãx̃k (5.9)

an can compute the eigendecomposition of Ã

ÃW = WΛ (5.10)

where columns ofW are the eigenvectors of Ã and the diagonal elements, λk, of Λ are

the DMD eigenvalues. Now we can use the eigendecomposition of Ã to reconstruct

the high dimensional DMD modes. The eigenvalues of A, ωk, are expressed in terms

of the diagonal elements λk of Λ which are scaled logarithmically according to the

relation ωk = ln(λk)/∆t. The eigenvectors of A are given by equation 5.11

Φ = X
′
V Σ−1W (5.11)

The mode amplitudes may be calculated as

b = Φ†x1 (5.12)

where † denotes the adjoint operator, φk, ωk and bk may now be used in equation

5.5 to obtain system state predictions. The interested reader is again directed to the

original articles and review papers for a more detailed description of the DMD process

[123, 124, 38]. Lastly, equation 5.5 can be rewritten as equation 5.13 [125]

xi =
N−1∑
j=1

bijΦNorm,j(x, y) (5.13)

Kou and Zhang [125] then used this representation to extract a new parameter Ij

which denotes the influence of a mode on the entire sampling window as opposed to
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only at the initial condition. Ij is defined as

Ij =

∫
|bj(t)| ≈

∫ N

i=1

|bij|dt (5.14)

The parameter Ij was proposed as an improved method of mode selection. This

concept was further modified by Ahani and Uddin [35] and the integral term was

replaced with a Root Mean Squared(RMS) term. This new RMS method was used

for mode selection.

5.3 Methodology

We investigated three cases in this study. Case 1 (C1 here in after) involves a low

Reynolds number flow past a 2D circular cylinder which is a simplified and relatively

well known case, and was used for initial validation of the DMD process. The second

and third cases (C2 and C3, respectively) used the Ahmed body geometry in a high

Reynolds number flow. C2 and C3 differ in regards to the extents of the computational

domain and the associated boundary conditions. C2 used Ahmed’s (1984) [58] wind

tunnel dimensions as the computational domain. However, wind tunnel setup of

Ahmed results in a blockage ratio of 4% and necessitates blockage ratio corrections.

Since, most vehicles are run in an open-air (OA) configuration we considered it is

important to switch our Virtual Wind Tunnel (VWT) setup to an OA configuration

to be a better resemble real world driving environment. For C3, based upon the

authors prior experience, the extents of the computational domain were significantly

increased [46].

5.3.1 Solver Settings

All CFD simulations were carried out using a commercial finite volume code STAR-

CCM+ version 2020.2. For C1, a laminar, incompressible solver was used. The time

step size, ∆t, was set to 0.3× t∗, where t∗ represents one Large Eddy Turn Over Time

(LETOT). A LETOT is defined as the amount of time required for the freestream flow

to pass over the characteristic length of the geometry a single time, i.e t∗ = (t×U∞)/L,
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where U∞ is the freestream velocity and L is the characteristic length scale.

As flow case C2 and C3 represent turbulent flows, incompressible Improved Delayed

Detached Eddy (IDDES) solver was used [17, 18]. The IDDES approach represents

extensions of the original Detached Eddy Simulation (DES) approach proposed by

Spalart and coworkers [75, 76]. DES is a hybrid approach that combines, for computa-

tional efficiency, Large Eddy Simulation (LES) in the regions far away from the wall

and Reynolds Averaged Navier Stokes (RANS) in the boundary layer region. The

switching between LES and RANS is done by computing a local turbulent length

scales, lT , and a local grid size, lLES. However, existing literature reports that LES

may incorrectly be applied inside the boundary layer when lT and lLES drop below

a critical value. This can then cause a phenomenon called Grid Induced Separa-

tion (GIS), which is a prediction of nonphysical separation due to the local grid size.

In the Delayed DES (DDES) approach, GIS is prevented by introducing a delay in

the switching function based on the wall normal distance and local eddy viscosity

[15]. IDDES, proposed by [17], is the next extension of the DES which combines

DDES and and wall modeled LES (WMLE) [126]. In WMLES, RANS is limited to

a much thinner near-wall region where the wall distance y is very small compared

to the boundary layer thickness, but y+ ≡ yuτ/ν is significantly large; note that

uτ ≡
√
τw/ρ where τw, ρ, and ν represent the wall-shear stress, fluid density and

viscosity, respectively. IDDES was reported to resolve the issue of mismatch between

the modelled log layer and the resolved log layer and broadens the application area

by providing well-balanced simulation approach for high Reynolds number turbulent

flows.

The RANS region in the our IDDES is solved using Menter’s Shear Stress Transport

(SST) k − ω turbulence model [19, 20]. For brevity, mathematical equations related

to the RANS, IDDES and SST models are omitted from this paper as there are

plentiful of resources for these. Interested readers are referred to the original articles
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by Menter and his coworkers [22, 20, 19] for the development of the k−ω model, and

to automotive external aerodynamics article by [21] for all relevant equations.

In C1 and C2, a two-layer wall treatment was used to ensure accurate boundary

layer activities. The time step size of ∆t = 1 × 10−4 × t∗ was found to be sufficient

for this setup [42, 73]; this time-step is same order of magnitude as that within the

study of decomposition of flow by DMD relative to POD by [35] where they used

a DrivAer geometry, a flow with a Reynolds number of 4.8E6, and a time step size

of ∆t = 5.2 × 10−4 × t∗. To minimize the effects of domain decomposition in CFD

predictions, all simulations were run on UNC Charlotte High Performance Computing

(HPC) clusters using 144 processors across 3 nodes having 48 processors each [23].

5.3.2 Geometry, Domain, and Boundary Conditions

For case C1, the circular cylinder with a diameter D = 0.01m was placed in the

simulation domain. The longitudinal extents of the computational domain were 5D

upstream and 20D downstream of the object respectively. The cross-stream extents

were 5D on both sides. The upstream edge was specified as a velocity inlet having

a streamwise velocity set to .15m/s, the down-stream edge was specified as a zero

gauge pressure outlet, and the top and bottom edges were specified as zero-gradient

boundaries. This setup is found in the user guide of Star-CCM+ version 2020.2 and

references the work of Daily et al. [127]. This flow corresponded to a Reynolds number

of 75. The C1 case had 15 inner iterations and was run for 120 LETOTs, and the last

80 LETOTs of data were used for analyses.

For case C2, the Ahmed body geometry was placed in a VWT of 8L× 5H× 5W in

the stream-wise, vertical and lateral extents, respectively; here L,W andH represents

the length, width, and height of the Ahmed body. These dimensions are similar to

the physical wind tunnel used in Ahmed’s original experiment. The vehicle body

was placed at a distance of 2L from the upstream boundary. Boundary conditions

were applied to the computational domain to match the wind tunnel setup of [58]
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and [122]. These included a velocity inlet of 40 m/s applied to the upstream face

with turbulence intensity of 0.25% and a turbulence length scale of 10 mm, a 0 Pa

gauge pressure applied as an outlet condition to the downstream face, and all other

boundaries were specified as no-slip walls. This configuration results in a blockage

ratio of 4%.

For case C3, the domain extents were significantly increased to 31L× 35H × 31W

in the stream-wise, vertical and lateral extents, respectively, with the Ahmed body

placed at a distance of 10L from the upstream boundary. The side wall bound-

aries were changed to a velocity inlet and a pressure outlet to prepare for crosswind

simulations which will be the subject of a subsequent study. This setup for the side-

wall boundary conditions is different from the one used by [29] in their study the

turbulence modeling effects on the aerodynamic characterizations of a stock racecar

subject to yaw where in which a zero gradient boundary condition was used for the

side walls. However, later studies by [46] shows that zero-gradient boundary condi-

tion poses nonphysical pressure reflections unless the virtual tunnel in infinitely wide.

Additionally, to imitate a moving-ground simulation, the floor of the tunnel was given

a tangential velocity equal to the free-stream velocity, the ceiling of the VWT was

set as a zero-gradient boundary. This setup was taken from the authors’ experience

of performing CFD of crosswind simulations [46]. Both C2 and C3 had a Reynolds

number of 2.86×106 which is several orders of magnitude larger than the 2D cylinder

case.

For Cases C2 and C3, each time step was run for 10 inner iterations to ensure that

residuals had reduced by at least 3 orders of magnitude. Last 30 LETOTs of data

were used for analyses. C2 simulation was run for 160 LETOTs. It was found that

the initial transients subsided after 30 LETOTs. Thus, C3 was run for 130 LETOTs.

In both C2 and C3, the last 80 LETOTs were used for averaging and data collection.

The last 80 LETOTs correspond to about 2 s of physical time and thus provided the
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opportunity to capture a lowest possible frequency of 0.5 Hz.

5.3.3 Discretization Scheme

The flow case C1 was discretized using polyhedral cells. It has a near wall cell size

of 0.05D near the cylinder surface and grows to 0.1D elsewhere in the domain. It has

5 prism layers on the cylinder boundary resulting in a total cell count of 20,000.

For cases C2 and C3, the simulation domain was discretized using unstructured

hexahedral cells. To properly resolve the flow around the GV, five refinement volumes

were used around the geometry. The finest mesh was set to a size the order of

the expected Taylor length scale, λ [122, 42, 12]. Further, to properly resolve the

boundary layer flows on all the surfaces, a prism layer mesher was used to ensure

that the wall y+ values are less than unity. In the final mesh, more than 99% surfaces

had a y+ value less than unity. For C2, the mesh consisted of 15.24 million cells. For

C3, meshing parameters are kept the same as Case C2 resulting in a mesh of 21.94

million cells.

5.3.4 DMD Workflow

The step-by-step process required to perform a classical DMD is available in detail

in [39], however, a brief summary of these steps is provided below:

• Step 1: Collect multiple time snapshots of the system of interest,

• Step 2: Create a low-dimensional subspace using the SVD or Truncated SVD

(TSVD) methods,

• Step 3: Obtain an eigendecomposition of the low-dimensional subspace,

• Step 4: Using the eigendecomposed low-dimensional subspace, assemble the

mode shapes and their associated oscillation frequencies, called the ’Time Dy-

namics’ or TD for short,

• Step 5: Use the mode shapes and TD to assemble the DMD output equations,
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• Step 6: Use the DMD solution to predict (or reconstruct) the flow field.

5.3.5 Data Collection Strategy

Storing the entire 3D flow field data associated with all of the time-averaging win-

dow time steps would impractically require more than 3 petabytes of data. Therefore,

since we are more focused on the GV aerodynamic force and moment predictions, we

collected the static pressure field on the Ahmed body surface. Additionally, to cap-

ture the flow field around the GV, we chose eight 8 reference planes around the

Ahmed body. For some of these planes, experimental data are available and may be

used for future validation steps, such as the wake planes at x/L = 1.077, 1.192, 1.479

[122, 104]. The other chosen planes are anticipated to involve flow patterns in crit-

ical flow-regimes when crosswind and vehicle interaction simulations are later per-

formed, such as the planes at y/W = 0.5 (or Y=0 center-plane), 0.88, and 1.27 and

Z = 0.5×Ground Clearance, 0.5 × H, 1.15 × H, and 1.3 × H. Over each reference

plane, seven scalar quantities were collected: the pressure coefficient, three compo-

nents of velocity, turbulent kinetic energy (TKE) or k, vorticity, and the Q-criterion

[128]. Thus, instead of storing the entire 3D flow field, we stored only the data from

the Ahmed body surfaces and these eight reference planes. By using this strategy we

extract about 3.4 TB of data per GV simulation since STAR-CCM+ exports this data

in ASCII format with redundancies in the spatial locations. By converting the data

to binary format and removing the redundancies, resulting in about 400 GB of binary

data per case, which is deemed to be a feasible approach. This study is limited to the

analyses of vehicle surface static pressure data. The CFD simulation time-step size

implied that the data is sampled at a rate of 4 kHz, and thus, the Nyquist criterion

implies that flow structures having frequency of up to 2 kHz can be captured by the

DMD reconstruction.
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5.4 Results

5.4.1 CFD Validation

CFD predictions of the drag coefficient (CD) were validated against the wind tunnel

measurements of [58] and was also comapred to the IDDES CFD simulation of [42] as

can be seen in Table 5.1, which also contains predictions using the OA configuration.

Clearly, our CFD prediction of drag matches very well with the experimental result

when the vehicle is placed in a VWT. A 6% reduction in CD was observed for the

OA configuration which has a blockage ratio of < 0.25%; existing literature suggests

that up to 12% drop in CD prediction can be expected [32, 90].

Figure 5.1: Validation of the CFD simulation approach and methodology

5.4.2 Application of DMD to a Canonical Flow Case

As a first learning exercise, we performed the DMD of a canonical flow past a 2D

circular cylinder at a Reynolds number of 75, similar to a number of DMD research

found in the literature [113, 114, 115]. Figure 5.2 shows scalars of stream-wise ve-

locity normalized by the freestream velocity at the instant t∗ = 120. The very last

time instance was chosen for validation as a test case because the DMD predictions

from Eq. 5.5, which is in exponential form, are known and expected to diverge with

large values of time. We compared the flow field as obtained from the DMD recon-

struction to the CFD simulation. From Figures 5.2(a) and 5.2(b), we can see that
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the DMD reconstruction was qualitatively similar to the CFD prediction. This was

an encouraging sign for the ability of DMD to reconstruct the flow field. Further, in

Figure 5.2(c), we plotted the difference in the normalized streamwise velocity predic-

tion between the DMD reconstruction and CFD simulation at the time t∗ = 120. We

saw that the difference between DMD and CFD at this time instance is very small,

with the order of magnitude of the differences being 10−4. Thus, we inferred that the

DMD reconstruction is well correlated to the CFD prediction.

Figure 5.2: Instantaneous Normalized streamwise velocity for flow past a 2D cylinder:
(a) CFD prediction, (b) DMD re-construction and (c) the difference between (b) and
(a).
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We note that it is pointless to compare two instantaneous turbulent flows. Thus,

similar to the Reynolds decomposition approach used in turbulent flows, we will be

looking at the mean and fluctuating components of the flow field separately. As an

example, using the above 2D cylinder case, in Figure 5.3, we can see a comparison of

CFD and DMD results of the normalized mean stream-wise velocity. For both CFD

and DMD results, the flow field statistics are taken from the last 30 LETOTs of the

simulation data. Similar to the analysis of Figure 5.2, in Figures 5.3(a) and 5.3(b),

we saw that the mean of the DMD reconstructed flow-field is qualitatively similar to

one obtained from the CFD simulation. Furthermore, in Figure 5.3(c), we can also

see that the difference in the mean of the normalized streamwise velocity prediction

between DMD reconstruction and CFD simulation is very small, O(10−4).

In Figure 5.4, we see a comparison between the RMS of fluctuating components of

the normalized stream-wise velocity field as obtained from CFD and DMD. Similar to

the previous results, in Figures 5.4(a)-(c), we see a very negligible difference between

the RMS values from the CFD simulations and DMD reconstruction of the flow fields.

In Figure 5.4(c) we see that the difference is O(10−3), which is one order larger than

the difference seen for the mean component. This indicates that the DMD modes

associated with the higher frequencies may have more error relative to the modes

associated with the lower frequencies. This frequency-based bias in the error of the

DMD was explored further using the force and moment time-series data from the

Ahmed body CFD simulations.

5.4.3 Ahmed Body Simulations

The Ahmed body simulation of cases C2 and C3 were run with a time step of

∆t = 0.000t∗ which corresponds to a physical time-step of 2.5 × 10−4 s implying a

sampling frequency of 4 KHz when data was collected from every time step. As an

initial exploration of the question, “How much data is required to perform an effective

DMD?”, we took about 25% of the collected data for DMD analysis. The analysis
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Figure 5.3: Mean streamwise velocity for flow past a 2D cylinder: (a) CFD prediction,
(b) DMD re-construction and (c) the difference between (b) and (a).

is presented below. To address one of the other fundamental questions pertaining

to DMD - “What is the necessary sampling frequency for DMD of high Reynolds’s

number flows?” - the sampling frequency was increased to 10 kHz for the subsequent

sections.
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Figure 5.4: RMS of the streamwise velocity fluctuations for flow past a 2D cylinder:
(a) CFD prediction, (b) DMD reconstruction and (c) the difference between (b) and
(a).

5.4.3.1 Data Sampled at 4 kHz

Figures 5.5(a-d) show the distribution of mean pressure coefficient CP ≡ p/(0.5ρ(U∞)2

on the surface of the Ahmed body; here p, and U∞ represent pressure and reference

free-stream velocity respectively. Note that all sub-figures, unless stated otherwise,

are an iso-metric bottom-right view of the GV. The spatial extents of the coordinate

system are non-dimensionalized by the length of the Ahmed body, L. Similar to Fig-

ure 5.3, we see that the distribution of mean Cp on the GV surface is qualitatively

the same in both DMD and CFD. Figures 5.5(c) and (d) show the discrepancy in
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mean Cp prediction by the DMD relative to the CFD results; in Figure 5.5(d) we

changed the camera viewing angle to a bottom-right orientation to accommodate vi-

sualization of the hidden portions of Figure 5.5(c). In both Figures 5.5(c) and (d),

we noted that the discrepancies were O(10−3). In Figure 5.5(c) we observed that the

errors are mostly towards the rear of the GV and around the edges of the front face.

From Figure 5.5(d) we observed that the discrepancies are most pronounced on the

rear slant, rear fascia, and around the two downstream stilts which are regions with

recirculation and where smaller vortical structures can exist, see [121, 104]. We will

revisit this when analyzing Figure 5.6

Figure 5.5: Mean of surface Cp as obtained using data sampled at 4 kHz: (a) from
DMD; (b) from CFD; (c) difference between (a) and (b); (d) same as (c) but bottom-
right isometric view

Figures 5.6(a) and (b) show the RMS of surface Cp fluctuations from DMD recon-

struction and CFD calculations, respectively. We see a notable discrepancy in the

region immediately downstream of the stilts. Figures 5.6(c) and (d) show the discrep-

ancies between the DMD predicted and CFD simulated values of RMS surface Cp;
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note that in Figure 5.6(d) we changed the camera angle to a top-left orientation to

accommodate visualization of the hidden portions of Figure 5.6(c). In both Figures

5.6(c) and (d), we noted that the discrepancies were O(10−2) which is an order of

magnitude worse compared to the mean-flow DMD predictions in Figures 5.5. Also,

in Figure 5.6(d), we observed that the DMD result discrepancy (relative to the CFD

results) was due to an underprediction of the fluctuating components along the stilts,

rear edges, rear slant and rear face. These were the same regions observed in Figure

5.5(d).

Figure 5.6: RMS of surface Cp fluctuations obtained using data sampled at 4 kHz:
(a) from DMD; (b) from CFD; (c) difference between (a) and (b); (d) same as (c) but
bottom-right isometric view

To better quantify the implications of these flow field discrepancies, we integrated

the surface static pressure field to get the pressure component of force and moment

coefficients from both the CFD data and the DMD reconstruction. Figure 5.7(a-f)

shows the time-series data of coefficients of drag, lift, sideforce, and pitching, rolling,

and yawing moments, respectively. On each subplot, the CFD simulation data-series
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is shown in blue and the DMD reconstruction data-series shown in red. We can

see that DMD reconstruction was able to capture the mean of all the coefficients

reasonably well however, the fluctuating components were seen to exist only in the first

10% of the time-series and then dissipated rapidly thereafter. Even a low frequency

motion in the CFD data was seen to be initially captured by the DMD, but that

too dissipated 5 LETOTS. By investigating the time-dynamics component of Eq.

5.5, we found nonphysical growth rates that caused the eventual dissipation of the

higher frequency DMDmodes. This is further corroborated by the following frequency

analysis.

Figure 5.7: Forces and moments obtained from CFD calculations and DMD recon-
structions, sampled at 4kHz; (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e)
rolling moment, and (f) yawing moment

Power Spectral Density (PSD) of all the six force and moment coefficients signals

are shown Figure 5.8(a-f) where the CFD data are shown in blue and the DMD recon-

structions are shown in red. It can be seen that all of the DMD spectra were missing

many of the characteristic frequencies of the flow. The PSD obtained form DMD cal-
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culations is underpredicted in the frequencies from 30 Hz to 300Hz, and, except for

drag, many of the medium frequency motions from 100-400Hz are entirely missed for

all other components of force and moment in Figures 5.8(b-f). In Figures 5.8(a,b,d)

the characteristic PSD peaks around 200Hz and, amplitude wise, is significantly un-

derpredicted by the DMD. Thus, we inferred that the present implementation of the

DMD process is suffering energy loss due to the nonphysical dampening of medium-

to-high frequency motions.

Figure 5.8: PSD of forces and moments obtained from CFD calculations and DMD re-
constructions, sampled at 4kHz; (a) drag, (b) lift, (c) sideforce, (d) pitching moment,
(e) rolling moment, and (f) yawing moment

5.4.3.2 Data sampled at 10 kHz

To address one of the fundamental questions pertaining to DMD – “What is the

necessary sampling frequency for DMD of high Reynolds’s number flows?” and to

help resolve the issues highlighted in Figures 5.7 and 5.8, we increased our sampling

frequency to 10 kHz as used by [35] for a much higher Reynolds number flow. This

necessitated a reduction in our CFD time step size by 60% to ∆t = 4×10−5t∗, a re-run
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of the CFD simulation, and fresh data collection for DMD at the 10 kHz sampling

frequency. To facilitate a consistent comparison of DMD performance between the

two CFD runs, the size of the data matrix of Eq. 5.1 was kept constant. Thus,

the subsequent plots were generated using about 8 LETOTs of converged CFD data

which represents about 0.2s of physical time and a lowest resolved frequency of 4.8

Hz.

In Figure 5.9, we see the distribution of mean Cp on the surface of the Ahmed body.

Figures 5.9(a) and (b) show the mean Cp as predicted by DMD and CFD respectively.

We see that the distribution of mean Cp on the GV surface is qualitatively the same

in both DMD and CFD. Figures 5.9(c) and (d) show the discrepancies in mean Cp

prediction of DMD relative to CFD; in Figure 5.9(d) we changed the camera angle

to a bottom-right orientation to orientation to help a better visualization of the

hidden portions of Figure 5.9(c). In both Figures 5.9(c) and (d), we noted that the

discrepancies were O(10−4), which is an order of magnitude less than that associated

with Figures 5.5(c) and (d). In Figure 5.9(c) we observed that the errors are nearly

absent from the upper surface, which shows a marked improvement along the edges of

the front face, particularly relative to Figure 5.5(c). From Figure 5.9(d) we observed

that the discrepancies were still the most pronounced on the rear slant, rear fascia,

and around the two downstream stilts.

In Figure 5.10 we observed the distribution of RMS of Cp fluctuations on the

surface of the Ahmed body. Figures 5.10(a) and (b) show the RMS of Cp as predicted

by DMD and CFD respectively. In comparison to Figures 5.6(a) and (b), we see a

significant improvement in the region immediately downstream of the stilts. Figures

5.10(c) and (d) show the difference in RMS Cp prediction of DMD relative to CFD;

like before, in Figure 5.10(d) we changed the camera angle to a top-left orientation

to help visualization of the hidden portions of Figure 5.10(c). In both Figures 5.10(c)

and (d), we noted that the discrepancies were O(10−2), which was similar to the order
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Figure 5.9: Mean of surface Cp as obtained using data sampled at 10 kHz. (a) Mean
of DMD, (b) Mean of CFD, (c and d) difference between mean of DMD and mean of
CFD, where (d) bottom-right isometric view

of magnitude seen in Figures 5.6(c) and (d). In Figure 5.10(d) we observed that the

discrepancies in DMD are due to underpredictions of the fluctuating components

along the stilts, rear edges, rear slant and rear face. These were the same regions

highlighted in Figure 5.6(d). Thus, Figures 5.9 and 5.10 indicate that the low-to-

medium frequency response of DMD has improved, but that the high frequencies

may yet remain unresolved.

We again integrated the surface static pressure field to get the pressure compo-

nent of force and moment coefficients from both the CFD simulation and the DMD

reconstruction. Figures 5.11(a-f) show the time-series data for coefficients of drag,

lift, sideforce, and pitching, rolling, and yawing moments, respectively. We can see

in Figures 5.11(a-f) that the DMD reconstruction was now able to capture the mov-

ing mean of all the coefficients which is a notable improvement from Figures 5.7(a-f).

But in the DMD reconstruction, the higher-frequency fluctuating components are still
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Figure 5.10: RMS of the fluctuating component of surface Cp as obtained using data
sampled at 10 kHz: (a) DMD; (b) CFD; (c) difference between (a) and (b); (d) same
as (c), but bottom-right isometric view

seen to be dissipated. By investigating the time-dynamics component of Eq. 5.5, and

plotting the mode amplitudes obtained from Eq. 5.14 vss. their frequency, we found

non-physical energies amongst the higher frequency DMD modes. This suggested

that some of the time dynamics obtained by DMD reconstruction in Eq. 5.5 involves

aspects of frequency, amplitude, and growth rates that are non-physical, which may

be due to a consequence of noise in the algorithm. This is further investigated by the

following frequency space analysis.

We analyzed the Power Spectral Density (PSD) of all the six force and moment

coefficient signals in Figures 5.12(a–f), which shows that the PSD of the coefficients

of drag, lift, sideforce, pitching moment, rolling moment, and yawing moment re-

spectively. Each PSD is plotted on the ordinate and the frequency on the abscissa.

On each subplot, the CFD simulation data-series is shown in blue and the DMD

reconstruction data-series shown in red. Comparing Figures 5.8 and 5.12 we can al-
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Figure 5.11: Forces and Moments of CFD vs DMD, sampled at 10 kHz; coefficients
of (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment, and (f)
yawing moment

ready tell that the performance of DMD reconstruction when the data is sampled

at 10 kHz is better in the medium-frequency range than when the data is sampled

at 4 kHz. The high-frequency ranges from 1000 Hz and above are well correlated in

Figures 5.12(a,c,e,f), with a minor underprediction in Figures 5.12(b and d). In Fig-

ures 5.12(a,b,d,f), we saw that the DMD spectra manifested some underprediction

of the characteristic frequencies of the flow in the medium-range frequencies from

30 Hz to 700Hz. Within even these frequency ranges shown in Figures 5.12(c and

e), a good correlation between the DMD reconstruction and the CFD simulation re-

sult is evident. At a sampling rate of 10 kHz, flow structures involving a frequency

upto 1 kHz can be expected have reasonably good anti-aliasing. Thus, the medium-

frequency energies in the DMD reconstructed flow may still be adversely affected by

the noise from the decomposition algorithm. Thus, we next explored cleaning the

decomposed modes and time dynamics with certain filtering techniques described in
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the next section.

Figure 5.12: PSD of Forces and Moments of CFD vs DMD, sampled at 10 kHz;
coefficients of (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment,
and (f) yawing moment

5.4.3.3 Custom Filtering with Data Sampled at 10 kHz

To circumvent all of the issues discussed above, we made a modification to the com-

monly used DMD algorithm. Two changes were made. The first involves the removal

of the truncation step of the SVD; the second involves the introduction of our own

custom filtering of the DMD modes. We filtered the time dynamics based upon their

predicted amplitudes, frequencies and contribution towards the total energy using a

series of three sequential filters to identify and remove the nonphysical modes. We

acknowledge that both the design of the filtration process and the cutoff criteria each

require their own methodological optimization which is left for a subsequent investi-

gation. Here we briefly describe the filtration process. However, the objective here

is to is to show the concept of filtering out nonphysical modes and how it improved

the DMD predictions. After several trails with many strategies and alternatives, we
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have developed a custom filtering approach as described below:

• The first filter was a low-pass filter applied to the modes identified based upon

their maximum instantaneous amplitude in the time dynamics term from Eq.

5.5. The modes having a maximum instantaneous amplitude greater than 50%

of the zero-frequency mode were removed.

• The second filter was applied to the modes based upon their frequency and their

amplitude, given by the RMS version Eq. 5.14. The second filter was designed

to remove high-frequency modes having non-physically excessive energy. To

accomplish this, the modes were plotted in frequency space against the ampli-

tudes; among the high frequency-modes (f > 250 Hz), the spurious modes were

identified using a clustering-based anomaly detection algorithm. Outliers were

defined as modes having an amplitude greater than a moving mean of 10 sam-

ples by more than a single local standard deviation. The outliers thus identified

had their associated modes removed.

• The third filter was designed to remove modes which contribute negligible energy

to the system. The remaining modes were sorted based upon their contribution

towards the total cumulative energy in the system. In this example, modes

contributing collectively less than 5% to total energy were removed; we suspect

that these mode may arise from the numerical noise. However, this aspect and

the effects of the mode-cut-off energy limit need to be further investigated.

This modified DMD process was applied to the 10 kHz sampled data. In this example,

about 30% of the modes were removed by this filtration process.

Now, let us analyze the same 10 kHz sampled dataset, this time with custom

filtering, in the same manner as before. Figures 5.13(a) and (b) show the mean Cp

as predicted by DMD reconstruction and CFD prediction, respectively. We see that

the distribution of mean Cp on the GV surface is qualitatively the same for both the
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DMD and CFD results. Figures 5.9(c) and (d) show the discrepancy in the mean Cp

prediction of the DMD results relative to CFD results. In both Figures 5.13(c) and

(d), we noted that the discrepancies were O(10−4), which is the order of magnitude

as in Figures 5.9(c) and (d). But in Figure 5.13(d), we observed that the errors

are nearly absent from the rear slant face, reduced on the rear face of the GV, and

markedly improved along the edges of the front face - all of, which are are notable

improvements relative to Figure 5.9(d).

Figure 5.13: Mean surface Cp distribution, with 10kHz sampling and custom filtering:
(a) DMD; (b) CFD (c and d) difference between (a) and (b)

Figures 5.14(a) and (b) show the RMS of the fluctuating component of Cp as ob-

tained from the DMD reconstruction and CFD simulations, respectively. In contrast

to Figures 5.10(a) and (b), here the DMD results are virtually identical to the CFD

results. Figures 5.14(c) and (d) show the discrepancy in the RMS of the fluctuat-

ing component of Cp predicted by DMD reconstruction relative to those predicted

by the CFD results; like before in Figure 5.14(d) we changed the camera angle to a

top-left orientation to visualize the hidden portion of Figure 5.14(c). In both Figures
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5.14(c) and (d), we noted that the discrepancies were O(10−3) which was similar to

the order of magnitude seen in Figures 5.10(c) and (d). This indicates a significant

improvement in the prediction of the fluctuating component of the flow field. In

Figure 5.14(d), we observed that the discrepancies in the DMD reconstruction are

concentrated along the rear edges between the stilts. Thus, Figures 5.13 and 5.14

indicate that the medium frequency response of DMD reconstruction has improved

through the filtration process. We corroborate this with the subsequent analysis.

Figure 5.14: RMS of fluctuating component of surface Cp with 10kHz sampling and
custom filtering: (a) DMD reconstruction, (b) CFD simulation, (c & d) the difference
between (b) and (a).

We again integrated the surface static pressure field to get the pressure component

of force and moment coefficients from both the CFD simulation and the DMD recon-

struction. Figure 5.15 shows the timeseries data for coefficients of (a) drag, (b) lift, (c)

sideforce, (d) pitching moment, (e) rolling moment, and (f) yawing moment. On each

subplot, the CFD simulation data are shown in blue and the DMD reconstruction

data are shown in red. We can see in Figures 5.15(a-f) that the DMD reconstruction
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and CFD simulation predictions are very well correlated, which is a notable improve-

ment from Figures 5.11(a–f). But in the DMD reconstruction of Figures 5.15(b,c,e,

and f), some of the local peaks associated with the CFD simulation are not captured.

This could be due to excessive losses in the filtration process.

Figure 5.15: Forces and moments of CFD simulation verses DMD reconstruction,
sampled at 10kHz and obtained using custom filters

Figure 5.16(a-f) shows the PSD of coefficients of drag, lift, sideforce, and pitching,

rolling, and yawing moments, respectively. Comparing Figures 5.12 and 5.16, we can

see that the performance of DMD reconstruction using filtered modes, let’s call it

fmDMD, is better in the medium frequency range. While there remains some room

for improvement within the medium and high frequency ranges, we understand that

data collected from an IDDES simulation cannot resolve the very high frequency flow

characteristics; in other words, this imitation may be due more to the limitations of

the CFD approach and ess to the limitations of the DMD approach.
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Figure 5.16: PSD of Forces and moments of CFD simulation verses DMD reconstruc-
tion, sampled at 10kHz and obtained using custom filters

5.4.3.4 Coefficients of Aerodynamic Forces and Moments

In order to investigate the effectiveness of DMD to predict force and moment co-

efficients, a comparison of statistical quantities (mean and rms of the fluctuating

component) obtained from the DMD reconstructed reduced order flow field against

those from the CFD simulations are presented in Table 5.1. Clearly, the predictions

associated with this DMD method match very well to the CFD data. Note that the

CFD simulation of 2 seconds of physical time requires 14,400 central processing unit

(CPU) hours, where as the DMD averaging over the same period took 15 seconds of

CPU time.

5.4.4 Future State Predictions using DMD

We also investigated the effectiveness of DMD to make future state predictions of

the aerodynamic forces and moments. This was done by updating the initial condition

vector, b in Eq. 5.5, to represent the last time-step shown in Figure 5.15. Then the
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Table 5.1: Mean of all aerodynamic coefficients and RMS of their fluctuations as
obtained from CFD simulation and DMD reconstruction.

CD CL CS CPM CRM CYM
Mean (CFD) 0.220 -0.062 -0.002 0.019 0.000 0.000
Mean (DMD) 0.220 -0.062 -0.002 0.019 0.000 0.000
RMS (CFD) 0.003 0.012 0.006 0.004 0.002 0.001
RMS (DMD) 0.003 0.012 0.006 0.004 0.001 0.002

same coefficients of matrices Φ and Ω were used in Eq. 5.5 to generate a future state

predictions of static pressure distribution on the Ahmed body surface. This pressure

distribution was integrated to calculate the aerodynamic forces and moments. Figures

5.17(a-b) show the differences between future prediction by DMD relative to known

CFD data. The instantaneous future prediction by DMD has a small and oscillating

difference w.r.t known CFD data. This is expected as it is impractical to perfectly

recreate an instantaneous snapshot of stochastic processes like a turbulent flow tin

these case parameters of interest are the statistical quantities like mean and RMS of

fluctuations, and spectral distributions. We presented a comparison of these time-

averaged quantities in Table 5.2. Generally, the predictions from this DMD method

well matched to the CFD data. There is a small discrepancy in the mean CFD

and mean DMD coefficients of CD, CL and CPM of between 2 to 6 counts. This is

hypothesized to come from a low frequency oscillation within the flow field that was

not captured in the CFD data used to generate the ROM and is, thus, not predicted

by DMD. The RMS of the fluctuating components of DMD and CFD shown in Table

5.2 are very well matched. This suggests that the proposed ROM is successfully

predicting the medium and high frequency motions.

Figure 5.18 shows the PSD of future predictions of DMD relative to known CFD

data. Similar to Figures 5.16, spectra of the DMD future prediction is shown in blue

and spectra of the known CFD data is shown in red. Again, the future prediction

by DMD is able to capture the PSD of the flow field. Small discrepancies are seen in
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Figure 5.17: Differences between future predictions of DMD and CFD data: (a) delta
of force coefficients, (b) delta of moment coefficients; delta implies the difference
between the DMD predictions and CFD values

Table 5.2: Mean of all aerodynamic coefficients and RMS of their fluctuations as
obtained from CFD simulation and a future prediction by a DMD based ROM.

CD CL CS CPM CRM CYM
Mean (CFD) 0.220 -0.059 -0.001 0.022 0.000 -0.001
Mean (DMD) 0.218 -0.065 -0.001 0.018 0.000 -0.001
RMS (CFD) 0.002 0.011 0.005 0.003 0.001 0.001
RMS (DMD) 0.001 0.011 0.005 0.003 0.001 0.001

low-to-medium frequencies in Figure 5.16(e) which indicate that there remains scope

for improvemnet of the proposed ROM. A sensitivity analysis and optimization are

left for a future work.

5.4.5 Computational Resources

In Table 5.3 we compare the computational resources required to run the DMD

solution shown in Eq. 5.5 against the requirements to run a full blown CFD sim-

ulation. We can see that the DMD is able to reduce total CPU time and storage

requirements by two orders of magnitude. The resources required by DMD are thus

expected to be within the capability of an on-board controller on a moving vehicle.
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Figure 5.18: PSD of future predictions of DMD relative to known CFD data; coef-
ficients of (a) drag, (b) lift, (c) sideforce, (d) pitching moment, (e) rolling moment,
and (f) yawing moment

The modified DMD process proposed in this paper may thus have the potential to

be combined with a control modification, such as the DMD with Control (DMDc)

algorithm proposed by [36], and effect real-time control of a moving vehicle. This

is a very promising result as a full blown CFD for real-time control by an on-board

computer is not possible.

Table 5.3: Computational resources required by DMD and CFD

Parameter CFD DMD
Processors 144 1
CPU time for the entire timeseries 100 hrs < 15 s
CPU time for a single time snapshot 5 s < 0.01 s
Storage needed 20 GB < 0.20 GB

5.5 Conclusion

In this paper, we intended to apply the Dynamic Mode Decomposition (DMD)

approach to a high Reynolds number flow around an idealized ground vehicle with

an objective of using the DMD as the engine to develop a Reduced Order predictive
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Model (ROM). We observed that the standard DMD algorithm, as available from

the existing literature, can successfully reconstruct the low Reynolds number flow

fields past a 2D cylinder. However, when the same algorithm was applied to a high

Reynolds number Re, separation-dominated complex flow over an idealized ground

vehicle, the existing methods failed to accurately reconstruct the flow fields using

the derived DMD modes. This implies that a reduced order reconstruction of the

flow-field based on the DMD modes obtained using the existing algorithm would be

not very reliable for such flows.

It was found that even though a time-step which may be sufficiently small for a

CFD simulation to resolve the flow-field accurately, it may be inadequate to generate

a well resolved dataset for a well-resolved DMD. A larger than adequate time-step

caused nonphysical growth rates of the modes; this caused excessive energy dissipa-

tion of the medium to high frequency modes which eventually led to total decay of the

higher-frequency DMD modes. Thus, for a high Re flows, data sampling frequency

needs to be higher than what may be available on the basis of the time-step size

needed for a well resolved IDDES simulation; this implies that the CFD simulation

is needed to be run with a much smaller time-step than necessary for a well-resolved

IDDES. Though the higher sampling rate improves the observed discrepancies be-

tween the DMD reconstructed mean values and the ground truth (values from the

CFD simulation in this case) for the mean flow variables, the RMS of the fluctuating

quantities still show significant errors. Also, spectral analyses show that the medium

frequency motions reconstructed by DMD still show nonphysical dampening. This

was hypothesized to be due to the presence of dampening modes emanating from

the generation of spurious DMD modes due to the numerical noise present in the

CFD training data. Thus, the mode filtration process was developed to remove the

offending modes from the DMD reconstruction. This resulted in an order of magni-

tude improvement in the errors observed in the DMD predictions of the RMS of the
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fluctuating components when compared to the ground truth. The ROM synthesized

via the proposed mode filtration process was able to make a future state prediction

that had time averaged quantities and PSD well correlated to known CFD data.

The modified DMD reconstruction algorithm presented in this paper was able to

overcome the challenges in the medium-to-high frequency range DMD modes. Thus,

we demonstrated that the method, called mfDMD, is capable of flow-field reconstruc-

tion that is correct to the accuracy of the CFD modeling scheme used to generate the

training data. The computational resources required by the mfDMD algorithm look

feasible for the implementation alongside a DMD with Control modification to effect

real-time control of a moving vehicle by an on-board controller. Applications of the

modified DMD algorithm to aerodynamic interactions between vehicles in close prox-

imity, such as dynamic platooning conditions [121], and NASCAR racecar subject to

ride height and crosswind changes [46, 47] are the subjects of future research.



CHAPTER 6: CONCLUSIONS

The summarized conclusions of the four articles are presented here. This disserta-

tion thoroughly examines the aerodynamics of race and idealized road vehicles using

scale-resolved and scale-averaged CFD simulations. We have investigated the flow

prediction around a full-scale, fully detailed, Gen-6 NASCAR Cup series racecar us-

ing RANS and IDDES turbulence modeling approaches. Three configurations of the

vehicle, including two ride heights and two yaw angles, were considered. The force

and moment coefficients were validated against wind tunnel data from an open-jet,

closed-return wind tunnel with a rotating belt and boundary layer suction for moving

ground simulation. Both CFD and wind tunnel experiments were setup to simulate

open-road conditions.

The first article presented an investigation of the effect of boundary conditions and

solver parameters on the flow predictions around a Gen-6 NASCAR using steady-

state RANS simulations. Zero-gradient boundaries were compared with inlet and

outlet type boundaries for the simulation side walls in crosswind simulation. The

effects of realizability coefficient in the SST k−ω turbulence model and the effects of

the compressibility solver were studied. The impact of these changes were observed

throughout the racecar geometry using accumulated force coefficient plots. The pro-

posed framework significantly improved the correlation of the CFD predicted forces

and moments to within 0 − 4% of wind tunnel values for all three configurations of

the vehicle.

The second article investigated the predictive difference between the RANS and ID-

DES methods. The drag and lift predictions obtained from the IDDES were within

10% of the wind tunnel predictions. The discrepancy in % Front balance was re-
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duced from 3 − 6% in RANS to 0 − 3% in IDDES. The IDDES approach showed a

clear superiority of is its capability to depict a more realistic picture of the vortical

structures embedded in the flow, in particular in the wake region. This phenomenon

is very important for race teams that intend to optimize aero characteristics of the

racecar, especially when the racecar is to be optimized as the trailing car in the pack.

And a spectral analysis of the forces showed some potential of being used as a tool in

racecar aerodynamic optimization. For such a purpose, an advanced tool of Dynamic

Mode Decomposition (DMD) was investigated in Article 4.

The third article scrutinized the correlation, of the static pressure data obtained

from surface-mounted pressure probes, between CFD predictions from both RANS

and IDDES simulations using wind tunnel reference data. This article sheds some

light as to which flow features around the racecar may be contributing the most to

the discrepancies, directing future studies to those specific areas likely to produce

improved simulation accuracy. It was found that IDDES is unable to capture the

peak suction pressure underneath the splitter. IDDES also predicted higher Cp rel-

ative to RANS on the front fasica, hood, decklid, RHS of the spoiler, and fuel cell

surfaces. These differences contribute to the IDDES solver overpredicting both CD

and CL. Further, both IDDES, and RANS struggled to predict the correct suction

pressure values in the underbody flow. Both solvers also had significant discrepancies

in predicting the Cp on the decklid and spoiler surfaces; this points to the flow over

the rear windshield and C-Pillars being resolved differently. Lastly, it was found that

in some regions both IDDES and RANS had Cp predictions well-correlated relative

to each other, but with both having discrepancies relative to wind tunnel predictions.

These regions include the splitter extension plate, rear windshield, and front fascia.

This suggests that the Cp predictions could benefit from further improvement of the

CFD framework.

The fourth article applied the DMD algorithm to a high Reynolds number flow
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over an idealized ground vehicle. The challenge faced was the presence of nonphysical

growth rates that caused energy loss of the medium to high frequency modes that led

to the eventual dissipation of the higher frequency DMD modes. To address this issue,

the the data sampling frequency from the CFD simulation was increased and a pre-

liminary mode filtration process was developed to remove the offending nonphysical

modes from the DMD reconstruction. It was demonstrated that the modified DMD

reconstruction algorithm was able to overcome the challenges in medium-to-high fre-

quency ranges and thus is capable of the flow-field reconstruction that is correct to

the accuracy of the CFD modeling scheme used to generate the training data. The

computational resources required by modified DMD algorithm look feasible for the

implementation alongside a DMD with Control modification to effect the real-time

control of a moving vehicle by an on-board controller.
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