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ABSTRACT

THI THU THUY LE. Globally convergent numerical methods for several inverse
problems based on Carleman estimates. (Under the direction of DR. LOC

NGUYEN and DR. MICHAEL KLIBANOV)

This dissertation focuses on developing efficient numerical methods and theoretical

analysis for solving various inverse problems that arise in the fields of mathematics,

physics, engineering, and beyond. The goal of inverse problems is to explore inac-

cessible regions using external measurements, which is essential for non-destructive

testing, biomedical imaging, geophysical exploration, and radar applications, among

others. However, solving inverse problems is always challenging. This is because they

are severely ill-posed and highly nonlinear.

We propose in this dissertation a unified framework to solve severely ill-posed and

highly nonlinear inverse problems. The framework is split into two stages:

1. In the first stage, we derive a system of partial differential equations by intro-

ducing a new variable and truncating the Fourier series of the solution to the

governing equation. The obtained system has only one unknown.

2. In the second stage, we solve the system derived in the first stage using the

quasi-reversibility method, the Carleman contraction mapping method, and the

convexification method. The obtained solutions of this stage directly yield the

desired solutions to the inverse problems.

An important contribution of the dissertation is that we will rigorously and numer-

ically prove the efficiency of this framework, including its global convergence to the

true solution. The analytic proofs are based on some Carleman estimates, and the

numerical proofs are provided by successfully testing our methods with highly noisy

simulated data and experimental data provided by US Army Research Laboratory

engineers.
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CHAPTER 1: INTRODUCTION

The field of inverse problems is a diverse and interdisciplinary area of research that

has applications in mathematics, physics, engineering, and many other fields. The

goal of this field is to explore inaccessible regions through external measurements,

which is crucial for non-destructive testing, biomedical imaging, geophysical explo-

ration, and radar, among other applications. This dissertation contributes to this

field by developing effective numerical methods and theoretical analysis for various

inverse problems.

Specifically, the dissertation has developed methods for solving scattering inverse

problems in both the frequency and time domains, inverse source problems for nonlin-

ear parabolic equations, and a linearized kinematic inverse problem with incomplete

data. All of these problems are highly ill-posed and often nonlinear, making their

solutions challenging. Throughout this dissertation, a unified framework is developed

to solve inverse problems. This framework has two stages.

1. In stage 1, we truncate the Fourier series of the solution to the governing equa-

tion [1, 2, 3] or introduce a new change of variable [4]. By this step, we obtain

a system of partial equations.

2. In stage 2, we compute the solution to this system. As soon as this system is

solved, we directly obtain the desired solutions to the inverse problems under

consideration.

While stage 1 is straightforward, stage 2 is challenging, especially when the govern-

ing equation is nonlinear. There are three numerical methods that are proposed and

developed for stage 2 in this dissertation, named the quasi-reversibility method, the
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Carleman contraction mapping method, and the convexification method. All of them

are based on a sophisticated mathematical tool of Carleman estimates. This tool was

first introduced in the field of inverse problems in 1981 in the work of Bukhgeim and

Klibanov [5]. Since then, many works of many authors [6, 7, 8, 9, 10, 11, 12, 13, 2]

have explored the idea of [5]. See a survey about the Carleman estimates and their ap-

plications in [14]. Based on Carleman estimates, these numerical methods are proven

to provide reliable solutions even when the data is highly noisy. Importantly, they

are “globally” convergent, meaning that they do not require advanced knowledge of

the true solution before solving inverse problems. This global property distinguishes

this work from many other publications in the field, which often rely on local meth-

ods such as least squares optimization. Due to the nonlinear nature of the inverse

problems, the least squares functionals are non-convex. They might have multiple

local minima and ravines. Therefore, good initial guesses sufficiently close to the true

solution are important for optimization-based methods to deliver reliable numerical

solutions. However, we only consider the case when such good initial guesses are not

available. This is the main reason for us to develop the convexification and Carle-

man contraction mapping method. These two methods are globally convergent in the

following sense:

1. they deliver good numerical solutions to the inverse problem without knowing

any information of the true solutions,

2. the claim in #1 above is rigorously proved and numerically verified.

The developed numerical algorithms were successfully tested with highly noisy

simulated and experimental data provided by engineers at the US Army Research

Laboratory.

The dissertation is organized as follows.

Chapter 2 presents a novel numerical approach for solving the linearized version
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of the travel time tomography problem which is given with incomplete data. Our

method involves the truncation of Fourier series using a special basis introduced in

[15], leading to a boundary value problem for a system of first-order PDEs. We

solve this problem using the quasi-reversibility method, which helps to obtain the

Fourier coefficients of the solution to the linearized eikonal equation that is spatially

dependent. Our method is shown effective even with highly noisy data. We present

numerical results to demonstrate its effectiveness. The work in this chapter is adapted

from [1].

Chapter 3 proposes a new convergent numerical method for reconstructing the ini-

tial condition of a quasilinear parabolic equation from the Dirichlet and Neumann

data measured at the boundary of a bounded domain. Unlike previous methods, we

do not require any prior knowledge of the true solution, despite the high nonlinearity

of the problem. The key in our method is the derivation of a boundary value problem

for a system of coupled quasilinear elliptic equations, whose solution is the vector

function of the spatially dependent Fourier coefficients of the solution to the govern-

ing parabolic equation. We apply an iterative approach to solve this problem and

rigorously establish the global convergence of the system using a Carleman estimate.

The effectiveness of our method is illustrated through numerical examples. The work

in this chapter is adapted from [2]. This work is original and serves as the foundation

of one of our numerical methods, named the Carleman contraction mapping method.

There also exists a numerical method to solve this inverse problem without truncat-

ing the Fourier series of the solution to the governing equation, see [16, Chapter 5,

§5.8.2]. However, this method has been developed only theoretically so far and has

not been tried numerically yet.

Chapter 4, adapted from [4], develops the Carleman contraction mapping method

to solve a Coefficient Inverse Problem for a 1D hyperbolic equation. The numerical

method is based on the contraction mapping principle with the involvement of a Car-
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leman Weight Function. Using a Carleman estimate, the global convergence of the

corresponding numerical method is established. Numerical studies for both computa-

tionally simulated and experimentally collected data are presented. The experimental

part is concerned with the problem of computing dielectric constants of explosive-like

targets in the standoff mode using severely underdetermined data collected by engi-

neers at the US Army Research Laboratory.

Chapter 5, adapted from [3], focuses on analyzing the global convergence of the

gradient descent method for minimizing strictly convex functionals on an open and

bounded set of a Hilbert space. Unlike the case of the entire Hilbert space, such

results are currently unknown for this type of set. We then utilize our findings to

establish a comprehensive framework for numerically solving boundary value problems

for quasilinear partial differential equations using noisy Cauchy data. This procedure

involves using Carleman weight functions to convexify a cost functional from the given

boundary value problem, thereby ensuring the convergence of the aforementioned

gradient descent method. We prove the global convergence of this method as noise

approaches zero, and the convergence rate is Lipschitz. Finally, we apply this method

to solve a highly nonlinear and severely ill-posed coefficient inverse problem known

as the backscattering inverse problem, which has numerous real-world applications.

We present various numerical examples to support our approach.

The final chapter, chapter 6, is for the concluding remarks.



CHAPTER 2: NUMERICAL SOLUTION OF A LINEARIZED TRAVEL TIME

TOMOGRAPHY PROBLEM WITH INCOMPLETE DATA

2.1 Introduction

In this chapter, we develop a new numerical method for the linearized Travel Time

Tomography Problem (TTTP) for the d−D case. Our data are both non-redundant

and incomplete. Using results of [1], we establish the convergence of our method. In

addition, we provide results of numerical experiments in the 2D case. In particular,

we demonstrate that our method provides good accuracy of images of complicated

objects with 5% noise in the data. Furthermore, a satisfactory accuracy of images is

demonstrated even for very high levels of noise between 80% and 170%.

In fact, both the idea of our method and sources/detectors configuration are close

to those of our recent works [2, 1]. However, our case is substantially more difficult

one since the waves in our case propagate along geodesic lines, rather than a radiation

propagating along straight lines in [2, 1]. Still, although we formulate here results

related to the convergence of our method, we do not prove them. The reason is that,

as it turns out, proofs are very similar to those in [1]. In other words, surprisingly,

the analytical apparatus of the convergence theory developed in [1] works well for the

problem considered in this chapter.

In the isotropic case of acoustic/seismic wave propagation, the TTTP is the problem

of the recovery of the spatially distributed speed of propagation of acoustic/seismic

waves from the first times of arrival of those waves. In the electromagnetic case, this

is the problem of the recovery of the spatially distributed dielectric constant from

those times. Another name for the TTTP is an inverse kinematic problem (IKP).

Waves are originated from some sources located either at the boundary of the closed
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bounded domain of interest or outside of this domain. Times of the first arrival from

those sources are measured on the part of the boundary of that domain. The TTTP

has well-known applications in Geophysics, see, e.g. the book of Romanov [3, Chapter

3].

The pioneering chapters about the solution of the 1D TTTP were published by

Herglotz [4] (1905) and then by Wiechert and Zoeppritz [5] (1907). Their method

is described in the book of Romanov [3, Section 3 of Chapter 3]. It was recently

discovered that, in addition to Geophysics, the IKP has applications in the phaseless

inverse scattering problem [6, 7, 8].

The next natural question after the classical 1D case of [4, 5] was about 2 and 3

dimensional cases. The first uniqueness and Lipschitz stability result for the 2D case

was obtained by Mukhometov [9], also see [10, 11]. Next, these results were obtained

by Mukhometov and Romanov for the 3D case in [12, 3]. We also refer to the work

of Stefanov, Uhlmann and Vasy [13] for a more recent publication for the 3D case.

As to the numerical methods for the inverse kinematic problem, we refer to [14] for

the 2D case and to [15] for the 3D case.

In all past publications about the IKP, the data are redundant in the 3D case and

complete in both 2D and 3D cases. In two recent works, the first author [16, 17]

two globally convergent numerical methods for the 3D TTTP with non-redundant

incomplete data were developed.

Along with the full IKP, a significant applied interest is also in a linearized IKP,

see [3, Chapter 3]. Below d ≥ 2 is the dimension of the space Rd. Points of this

space are denoted as x ∈ Rd. Let c ≡ const. > 0 be the speed of sound in a certain

reference medium in Rd, which we do not specify, and c (x) > 0 be the variable speed

of sound. Then the refractive index is [3, Chapter 3]

n (x) = c/c (x) (2.1)
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To linearize, one should assume that n (x) = n0 (x) + n1 (x) , where n0 (x) is the

known background function and n1 (x) with |n1 (x)| � n0 (x) is its unknown per-

turbation, which is the subject of the solution of the linearized TTTP. Thus, one

assumes that the refractive index is basically known, whereas its small perturbation

n1 is unknown. This problem is also called the geodesic X-ray transform problem.

The Lipschitz stability and uniqueness theorem for this problem in the isotropic case

was first obtained in [18], see Theorem 3.2 in Section 4 of Chapter 3 of [3]. In the

nonisotropic case this problem was studied in [19]. In [20] numerical studies of this

problem in the isotropic case were performed.

In our derivation, we end up with an over-determined boundary value problem for

a system of coupled linear PDEs of the first order. It is well known that the quasi-

reversibility method is an effective tool for numerical solutions of over determined

boundary value problems for PDEs. Lattès and Lions [21] were the first ones who

propose the quasi-reversibility method. This technique was developed further in, e.g.

[22, 23, 24, 25, 2, 26, 1]. In particular, it was shown in [25] that while it is rather easy

to prove, using Riesz theorem, the existence, and uniqueness of the minimizer of a

certain functional related to this method, the proof of convergence of those minimizers

to the correct solution requires a stronger tool of Carleman estimates.

Another important feature of this chapter is a special orthonormal basis in the space

L2 (−α, α) , where α > 0 is a certain number. The functions of this basis depend only

on the position of the point source. This basis was first introduced in [27] and was

further used in [28, 16, 29, 17, 30, 2, 31, 1]. Just like in these previous publications,

we use here an approximate mathematical model. More precisely, we assume that

a certain function associated with the solution of the governing linearized Eikonal

equation can be represented via a truncated Fourier series with respect to this basis.

This assumption forms the first element of that model. The second element is that

we assume that the first derivatives with respect to all variables are written via finite
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differences, and the step size of these finite differences with respect to all variables,

except for one, is bounded from below by a positive number h0 > 0.

We do not prove convergence for the case when h0 → 0+ and the number N of terms

in that truncated series tends to infinity. Thus, we come up with a finite-dimensional

approximate mathematical model. We point out that similar approximate mathemat-

ical models are used quite often in studies of numerical methods for inverse problems,

and numerical results are usually encouraging, see, e.g., [32, 33, 34, 29, 1, 35]. Just

as ourselves, proofs of convergence results in such cases when e.g. N →∞, h0 → 0+

are usually not conducted since they are very challenging tasks due to the ill-posed

nature of inverse problems.

The chapter is organized as follows. In Section 2.2, we formulate the inverse prob-

lem. Next, in Section 2.3, we introduce the truncation technique and our numeri-

cal method. Then, in Section 2.4, we recall the quasi-reversibility method and its

convergence in the case of partial finite differences. In Section 2.5 we present the

implementation and numerical results. Finally, Section 2.6 is for concluding remarks.

2.2 The linearization

Consider numbers R, a, b such that R > 1 and 0 < a < b. Set

Ω = (−R,R)d−1 × (a, b) ⊂ Rd. (2.2)

Recall that by (2.1) n (x) = c/c(x), where c(x) is the speed of sound propagation

and n (x) is the refractive index. Let the function n0 (x) be the known refractive

index of the background. We assume that

n0,n ∈ C2
(
Rd
)

; n2
0 (x) ,n2 (x) ≥ 1 in Ω, (2.3)

n2
0 (x) = n2 (x) = 1 for x ∈ Rd \ Ω. (2.4)
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For any two points x1 and x2 in Rd, define the geodesic line generated by n0 con-

necting x1 and x2 as:

Γ0(x1,x2) = argmin
{∫

γ

n0(ξ)dσ(ξ) where γ : [0, 1]→ Rd

is a smooth map with γ(0) = x1, γ(1) = x2

}
. (2.5)

Here dσ(ξ) is the elementary arc length. Note that by (2.5) the geodesic line

Γ0(x1,x2) connects points x1 and x2. Let

a0(x) = n2
0(x) for all x ∈ Rd. (2.6)

The corresponding travel time between x1 and x2 is the integral

∫
Γ0(x1,x2)

n0(ξ)dσ(ξ) =

∫
Γ0(x1,x2)

√
a0(ξ)dσ(ξ).

Introduce the line of sources Ls located on the x1-axis as

Ls = [−α, α]× {(0, 0, . . . , 0)}, (2.7)

where α is a fixed positive number. It follows from (2.2) and (2.7) that

Ω ∩ Ls = ∅. (2.8)

For xα ∈ Ls, the travel time along Γ0(x,xα) of the wave from xα to x is

u0(x,xα) =

∫
Γ0(x,xα)

√
a0(ξ)dσ(ξ), x ∈ Rd. (2.9)

Assumption 2.2.1 (regularity of geodesic lines) We assume everywhere in this

chapter that the geodesic lines are regular in the following sense: for each point x of
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the closed domain Ω and for each point xα of the line of sources Ls there exists a

single geodesic line Γ0(x,xα) connecting them.

The inverse problem we consider arises from the highly nonlinear and severely ill-

posed inverse kinematic problem. We now present the formal linearization arguments

in exactly the same way as they are presented in the book of Romanov [3, Section

4 of Chapter 3]. Just as in this book, we avoid a setting via functional spaces for

brevity.

Assume that the function a(x) = n2(x) contains a perturbation term of the back-

ground function a0(x) = n2
0(x). In other words,

a(x) = a0(x) + 2ε
√

a0(x)p(x), x ∈ Rd, (2.10)

where ε > 0 is a sufficiently small number. Here, the function p ∈ C
(
Rd
)
and

p (x) = 0 for x /∈ Ω. Hence, by (2.8) p(x) = 0 for points x in a small neighborhood of

the line of sources Ls. Denote

un(x,xα) =

∫
Γn(x,xα)

n(ξ)dσ(ξ)

the travel time from the point xα ∈ Ls to the point x ∈ Ω, where Γn(x,xα) is the

geodesic line generated by the function n(x). It is well-known that un(x,xα) satisfies

the Eikonal equation [3, Chapter 3]

|∇xun(x,xα)|2 = a(x), x ∈ Ω,xα ∈ Ls. (2.11)

Let u0(x,xα) be the travel time function in (2.9) corresponding to the background

a0. Then

|∇xu0(x,xα)|2 = a0(x), x ∈ Ω,xα ∈ Ls. (2.12)
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Due to (2.10) we represent ∇xun(x,xα) as

∇xun(x,xα) = ∇xu0(x,xα) + ε∇xu
(1)(x,xα). (2.13)

Hence, ignoring the term with ε2, we obtain

|∇xun(x,xα)|2 ≈ |∇xu0(x,xα)|2 + 2ε∇xu0(x,xα)∇xu
(1)(x,xα). (2.14)

Denoting

u(1) := u (2.15)

and comparing (2.14) with (2.10) and (2.12), we obtain

∇xu0(x,xα)√
a0(x)

· ∇xu(x,xα) = p(x). (2.16)

Thus, equation (2.16) is the “linearization" of the nonlinear equation (2.11). By

(2.12) |∇xu0(x,xα)| /
√
a0(x) ≡ 1. Hence, this is a unit vector, which is tangent to

the curve Γ0(x,xα) at the point x [3, Chapter 3]. Hence, the left hand side of (2.16)

is the derivative of the function u(x,xα) along the curve Γ0(x,xα). Thus, integrating,

we obtain [3, Chapter 3]

u(x,xα) =

∫
Γ0(x,xα)

p(ξ)dσ(ξ). (2.17)

Let ∂Ωsm be the smooth part of the boundary ∂Ω of the domain Ω. For each

α ∈ (−α, α), define

∂Ω−α = {x ∈ ∂Ωsm : ∇xu0(x,xα) · ν(x) < 0},

∂Ω+
α = {x ∈ ∂Ωsm : ∇xu0(x,xα) · ν(x) > 0},
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where xα = (α, 0, . . . , 0) ∈ Ls and ν(x) is the outward looking unit normal vector at

the point x ∈ ∂Ωsm. If n0 ≡ 1, then Γ0(x1,x2) is the line segment connecting these

two points. Hence, it follows from (2.2), (2.7), (2.8), (2.13) and (2.15) that

u(x,xα) = 0,x ∈ ∂Ω−α . (2.18)

The aim of this chapter is to solve the following inverse problem:

Problem 2.2.1 (linearized travel time tomography problem) Let the function

u = u(x,xα) ∈ C1
(
Ω× [−α, α]

)
be the solution of boundary value problem (2.16),

(2.18). Given the data f(x,xα),

f(x,xα) =

 u(x,xα), x ∈ ∂Ω+
α ,xα ∈ Ls,

0, x ∈ ∂Ω−α ,xα ∈ Ls,
(2.19)

determine the function p(x), x ∈ Ω.

Note that the data (2.19) are non-redundant ones. Indeed, the source xα ∈ Ls

depends on one variable and the point x ∈ ∂Ω+
α depends on d − 1 variables. Hence

the function f(x,xα) depends on d variables, so as the target unknown function p(x).

From now on, to separate the coordinate number d of the point x, we write x =

(x1, . . . , xd−1, z). The transport equation in (2.16) is read as

∂zu0(x,xα)√
a0(x)

∂zu(x,xα) +
d−1∑
i=1

∂xiu0(x,xα)√
a0(x)

∂xiu(x,xα) = p(x), (2.20)

which is equivalent to

∂zu0(x,xα)∂zu(x,xα) +
d−1∑
i=1

∂xiu0(x,xα)∂xiu(x,xα) =
√

a0(x)p(x) (2.21)
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for all x ∈ Ω, xα ∈ Ls.

2.3 A boundary value problem for a system of coupled PDEs of the first order

This section aims to derive a system of partial differential equations, which can be

stably solved by the quasi-reversibility method in the semi-finite difference scheme.

The solution of this system yields the desired numerical solution to Problem 2.2.1.

Recall that Problem 2.2.1 is the linearized travel time tomography problem, and it is

labeled this way by its title.

We will employ a special basis of L2(−α, α) where 2α is the length of the line of

source Lsc, see (2.7). For each n = 1, 2, · · · , let φn(α) = αn−1 exp(α). The set {φn}∞n=1

is complete in L2(−α, α). Applying the Gram-Schmidt orthonormalization process to

this set, we obtain a basis of L2(−α, α), named as {Ψn}∞n=1. We have the proposition

Proposition 2.3.1 (see [27]) The basis {Ψn}∞n=1 satisfies the following properties:

1. Ψn is not identically zero for all n ≥ 1.

2. For all m,n ≥ 1

smn =

∫ α

−α
Ψ′n(α)Ψm(α)dα =

 1 if m = n,

0 if n < m.

Thus, the matrix SN = (smn)Nm,n=1, is invertible for all integers N ≥ 1.

We now derive a system of partial differential equations for the Fourier coefficients

of the function

w(x,xα) = u(x,xα)∂zu0(x,xα) x ∈ Ω,xα ∈ Ls (2.22)
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with respect to the basis {Ψn}∞n=1. Differentiate (2.21) with respect to α. We obtain

∂

∂α

[
∂zu0(x,xα)∂zu(x,xα) +

d−1∑
i=1

∂xiu0(x,xα)∂xiu(x,xα)
]

= 0 (2.23)

for all x ∈ Ω, xα ∈ Ls. From now on, we impose the following condition.

Assumption 2.3.1 (Monotonicity condition in the z-direction) The traveling

time function u0, defined in (2.9) with n replaced by n0, is strictly increasing with

respect to z. In other words, ∂zu0(x,xα) > 0 for all x = (x1, . . . , xd−1, z) ∈ Ω and for

all xα ∈ Ls.

Assumption 2.3.1 means that the higher in the z-direction, the longer the traveling

time is. A sufficient condition for Assumption 2.3.1 to be true is formulated in (2.24)

of Lemma 3.1. A similar monotonicity condition can be found in formulas (3.24) and

(3.24′) of section 2 of chapter 3 of the book [3]. Also, a similar condition was imposed

in originating works for the 1D problem of Herglotz andWiechert and Zoeppritz [4, 5]:

see section 3 of chapter 3 of [3]. Besides, figures 5 and 10 of [36] justify this condition

from the geophysical standpoint. Recall that by (2.6) and (2.3) a0 ∈ C2
(
Rd
)
and

a0(x) ≥ 1 in Rd. Therefore, the following lemma follows immediately from Lemma

4.1 of [17]:

Lemma 2.3.1 Let conditions (2.3) and (2.6) hold. Also, let

∂za0 (x) ≥ 0 for all x ∈ Ω. (2.24)

Then

∂zu0 (x,xα) ≥ a√
a2 + 2

for all x ∈ Ω, α ∈ [−α, α] .
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Although Lemma 2.3.1 is proven in [17] only in the 3D case, the proof in the d−D

case is very similar and is, therefore, avoided. Let w(x,xα) be the function defined

in (2.22). Then

∂zu0(x,xα)∂zu(x,xα) = ∂zw(x,xα)− u(x, α)∂zzu0(x,xα) (2.25)

= ∂zw(x,xα)− w(x, α)
∂zzu0(x,xα)

∂zu0(x,xα)
.

Also, for i = 1, . . . , d− 1

∂xiu(x,xα) =
∂

∂xi

(
w(x,xα)

∂zu0(x,xα)

)
(2.26)

=
∂xiw(x,xα)∂zu0(x,xα)− w(x,xα)∂zxiu0(x,xα)

(∂zu0(x,xα))2

for all x ∈ Ω,xα ∈ Lsc. Combining (2.23), (2.25) and (2.26), we obtain

∂

∂α

[
∂zw(x,xα)− w(x,xα)

∂zzu0(x,xα)

∂zu0(x,xα)

+
d−1∑
i=1

∂xiw(x,xα)∂zu0(x,xα)− w(x,xα)∂zxiu0(x,xα)

(∂zu0(x,xα))2
∂xiu0(x,xα)

]
= 0. (2.27)

This is equivalent to

∂αzw(x,xα)− ∂zzu0(x,xα)

∂zu0(x,xα)
∂αw(x,xα)− ∂

∂α

(
∂zzu0(x,xα)

∂zu0(x,xα)

)
w(x,xα)

+
d−1∑
i=1

[∂xiu0(x,xα)

∂zu0(x,xα)
∂αxiw(x,xα) +

∂

∂α

(
∂xiu0(x,xα)

∂zu0(x,xα)

)
∂xiw(x,xα)

− ∂zxiu0(x,xα)∂xiu0(x,xα)

(∂zu0(x,xα))2
∂αw(x,xα)

− ∂

∂α

(
∂zxiu0(x,xα)∂xiu0(x,xα)

(∂zu0(x,xα))2

)
w(x,xα)

]
= 0. (2.28)

We recall now the orthonormal basis {Ψn}∞n=1 constructed at the beginning of this



16

section. For each x ∈ Ω and for all xα ∈ Lsc, we write

w(x,xα) =
∞∑
n=1

wn(x)Ψn(α) ≈
N∑
n=1

wn(x)Ψn(α), (2.29)

wn(x) =

∫ α

−α
w(x,xα)Ψn(α)dα. (2.30)

The “cut-off" number N is chosen numerically. We discuss the choice of N in more

details in Section 2.5. Following our approximate mathematical model introduced in

Section 1, we assume that the approximation ≈ in (2.29) is an equality as well as

∂αw(x,xα) =
N∑
n=1

wn(x)Ψ′n(α). (2.31)

Plugging (2.29) and (2.31) into (2.28) gives

N∑
n=1

∂zwn(x)Ψ′n(α)− ∂zzu0(x,xα)

∂zu0(x,xα)

N∑
n=1

wn(x)Ψ′n(α)

− ∂

∂α

(
∂zzu0(x,xα)

∂zu0(x,xα)

) N∑
n=1

wn(x)Ψn(α) +

d−1∑
i=1

[∂xiu0(x,xα)

∂zu0(x,xα)

N∑
n=1

∂xiwn(x)Ψ′n(α)

+
∂

∂α

(
∂xiu0(x,xα)

∂zu0(x,xα)

) N∑
n=1

∂xiwn(x)Ψn(α)− ∂zxiu0(x,xα)∂xiu0(x,xα)

(∂zu0(x,xα))2

N∑
n=1

wn(x)Ψ′n(α)

− ∂

∂α

(
∂zxiu0(x,xα)∂xiu0(x,xα)

(∂zu0(x,xα))2

) N∑
n=1

wn(x)Ψn(α)
]

= 0.

For each m ∈ {1, . . . , N}, multiply the latter equation by Ψm(α) and then integrate

the resulting equation with respect to α. We get

N∑
n=1

smn∂zwn(x) +
N∑
n=1

amn(x)wn(x) +
N∑
n=1

d−1∑
i=1

bmn,i(x)∂xiwn(x) = 0 (2.32)
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for all x ∈ Ω where smn is defined as in Proposition 2.3.1,

amn(x) =

∫ α

−α

[
−∂zzu0(x,xα)

∂zu0(x,xα)
Ψ′n(α)− ∂

∂α

(
∂zzu0(x,xα)

∂zu0(x,xα)

)
Ψn(α)

−
d−1∑
i=1

∂

∂α

(
∂zxiu0(x,xα)∂xiu0(x,xα)

(∂zu0(x,xα))2

)
Ψ′n(α)

−
d−1∑
i=1

∂

∂α

(
∂zxiu0(x,xα)∂xiu0(x,xα)

(∂zu0(x,xα))2

)
Ψn(α)

]
Ψm(α)dα (2.33)

and for i = 1, . . . , d− 1

bmn,i(x) =

∫ α

−α

[∂xiu0(x,xα)

∂zu0(x,xα)
Ψ′n(α) +

∂

∂α

(
∂xiu0(x,xα)

∂zu0(x,xα)

)
Ψn(α)

]
Ψm(α)dα, (2.34)

for all x ∈ Ω. For each x ∈ Ω, let W (x) =(w1(x), . . . , wN(x))T , S= (smn)Nm,n=1, A(x)

=(amn(x))Nm,n=1 and Bi(x) = (bmn,i(x))Nm,n=1 for i = 1, . . . , d − 1. Since (2.32) holds

true for every m = 1, . . . , N , it can be rewritten as

SN∂zW (x) + A(x)W (x) +
d−1∑
i=1

Bi(x)∂xiW (x) = 0. (2.35)

Since S is invertible, see Proposition 2.3.1, then (2.35) implies the following system

of transport equations

∂zW (x) + S−1
N A(x)W (x) +

d−1∑
i=1

S−1
N Bi(x)∂xiW (x) = 0, x ∈ Ω. (2.36)

The boundary data for W are:

W |∂Ω = F (x) = (fn)Nn=1, fn(x) =

∫ α

−α
f(x,xα)∂zu0(x,xα)Ψn(α)dα (2.37)

where f is the given data, see (2.19).

Remark 2.3.1 (The approximation context) Due to the truncation in (2.29),
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equation (2.36) is within the framework of our approximate mathematical model men-

tioned in Introduction. Since this chapter is concerned with computational rather

than theoretical results, then this model is acceptable. Our approximation leads to

good numerical results in Section 2.5.

Remark 2.3.2 Problem 2.2.1 is reduced to the problem of finding the vector valued

function W satisfying the system (2.36) and the boundary condition (2.37). Assume

this vector function is computed and denote it as W comp = (wcomp
1 , . . . , wcomp

n ). Then,

we can compute the function wcomp(x,xα) and then the function ucomp(x,xα) sequen-

tially via (2.29) and (2.22). The computed target function pcomp(x) is given by (2.20).

We find an approximate solution of the boundary value problem (2.36)–(2.37) by

the quasi-reversibility method. This means that we minimize the functional

Jε(W ) =

∫
Ω

∣∣∣∂zW (x) +
d−1∑
i=1

S−1
N Bi(x)∂xiW (x) + S−1

N A(x)W (x)
∣∣∣2dx

+ ε‖W‖2
H1(Ω)N (2.38)

on the set of vector functionsW ∈ H1(Ω)N satisfying the boundary constraint (2.37).

Here the space H1(Ω)N = H1(Ω)× · · · ×H1(Ω)︸ ︷︷ ︸
N

with the commonly defined norm.

Similarly to [1], we analyze the functional Jε(W ) for the case when derivatives in

(2.38) are written in finite differences.

2.4 The quasi-reversibility method in the finite differences

For brevity, we describe and analyze here the quasi-reversibility method in the case

when d = 2. The arguments for higher dimensions can be done in the same manner.
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In 2D, Ω = (−R,R)× (a, b). We arrange an Nx ×Nz grid of points on Ω

G = {(xi, zj) : xi = −R + (i− 1)hx, zj = a+ (j − 1)hz,

i = 1, . . . , Nx, j = 1, . . . , Nz}, (2.39)

where hx ∈ [h0, βx) and hz ∈ (0, βz) are grid step sizes in the x and z directions

respectively and and h0, βx, βz > 0 are certain numbers. Here, Nx and Nz are two

positive integers. Let h = (hx, hz) . We define the discrete set Ωh as the set of those

points of the set (2.39) which are interior points of the rectangle Ω and ∂Ωh is the

set of those points of the set (2.39) which are located on the boundary of Ω,

Ωh = {(xi, zj) : xi = −R + (i− 1)hx, zj = a+ (j − 1)hz :

i = 2, . . . , Nx − 1; j = 2, . . . , Nz − 1}

∂Ωh = {(±R, zj) : j = 1, ..., Nz} ∪ {(xi, z) : i = 1, ..., Nx, z ∈ {a, b}} ,

Ω
h

= Ωh ∪ ∂Ωh.

For any continuous function v defined on Ω its finite difference version is vh = v|G.

Here, h denotes the pair (hx, hz). The partial derivatives of the function v are given

via forward finite differences as

∂hxx v
h(xi, zj) =

vh(xi+1, zj)− vh(xi, zj)

hx

∂hzz v
h(xi, zj) =

v(xi, zj+1)− v(xi, zj)

hz

(2.40)

for i = 0, . . . , Nx − 1 and j = 0, . . . , Nz − 1. We denote the finite difference analogs

of the spaces L2(Ω) and H1(Ω) as L2,h(Ω) and H1,h(Ω). Norms in these spaces are
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defined as

‖vh‖L2,h(Ωh) =
[
hxhz

Nx∑
i=0

Nz∑
j=0

[
vh(xi, zj)

]2 ]1/2

,

‖vh‖H1,h(Ωh) =
[
‖vh‖2

L2,h(Ωh) + hxhz

Nx−1∑
i=0

Nz−1∑
j=0

[
∂hxx v

h(xi, zj)
]2

+
[
∂hzz v

h(xi, zj)
]2 ]1/2

.

Let Fh = F |∂Ωh . The problem (2.36)–(2.37) becomes

Lh
(
Wh
)

= ∂hzz W
h(xi, zj) + S−1

N B1(xi, zj)∂
hx
x W

h(xi, zj)

+ S−1
N A(xi, zj)W

h(xi, zj) = 0 (2.41)

for i = 0, ..., Nx − 1; j = 0, ..., Nz − 1 and

Wh |∂Ωh= Fh. (2.42)

To solve problem (2.41)-(2.42) numerically, we introduce the finite difference version

of the functional Jε, defined in (2.38),

Jh
ε (Wh) = hxhz

Nx−1∑
i=0

Nz−1∑
j=0

∣∣∣∂hzz Wh(xi, zj) + S−1
N B1(xi, zj)∂

hx
x W

h(zi, zj)

+ S−1
N A(xi, zj)W

h(xi, zj)
∣∣∣2 + ε‖Wh‖2

H1,h
N (Ωh)

,

where H1,h
N (Ωh) =

[
H1,h(Ωh)

]N and similarly for L2,h
N (Ωh). We consider the following

problem:

Problem 2.4.1 (Minimization Problem ) Minimize the functional Jh
ε (Wh) on

the set of such vector functionsWh ∈ H1,h
N (Ωh) that satisfy boundary condition (2.42).

The convergence theory for this problem is formulated in Theorems 2.4.1 and 2.4.2.
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Proofs of these theorems follow closely the arguments of [1, Section 5] and are, there-

fore, not repeated in this chapter. Theorem 2.4.1 guarantees the existence and unique-

ness of the minimizer of Jh
ε (Wh), and this result can be proven on the basis of Riesz

theorem. The next natural although a more difficult question is about the conver-

gence of regularized solutions (i.e. minimizers) to the exact one when the level of

the noise in the data tends to zero, i.e. Theorem 2.4.2. As it is often the case in the

quasi-reversibility method (see, e.g. [25]), a close analog of Theorem 2.4.2 is proven in

[1, Section 5] via applying a new discrete Carleman estimate: recall that conventional

Carleman estimates are in the continuous form. In other words, these two theorems

confirm the effectiveness of our proposed numerical method for solving Problem 2.2.1.

Theorem 2.4.1 (existence and uniqueness of the minimizer) For any h = (hx, hz)

with hx ∈ [h0, βx) , hz ∈ (0, βz) ,any ε > 0 and for any matrix Fh of boundary con-

ditions there exists unique minimizer Wh
min,ε ∈ H

1,h
N (Ωh) of the functional satisfying

boundary condition (2.42).

As it is always the case in the regularization theory, assume now that there exists

an “ideal" solution Wh
∗ ∈ H

1,h
N (Ωh) of problem (2.41)-(2.42) satisfying the following

boundary condition:

Wh
∗ |∂Ωh= Fh

∗ , (2.43)

where Fh
∗ is the “ideal" noiseless boundary data. Since Wh

∗ exists, then (2.43) implies

that there exists an extension Gh
∗ ∈ H1,h

N (Ωh) with Gh
∗ |∂Ωh= Fh

∗ of the matrix Fh
∗

in Ωh. As to the data Fh in (2.42), we assume now that there exists an extension

Gh ∈ H1,h
N (Ωh) with Gh |∂Ωh= Fh of Fh in Ωh. Let δ > 0 be the level of the noise in

Gh, see Remark 5.1. We assume that

∥∥Gh −Gh
∗
∥∥
H1,h
N (Ωh)

< Bδ, (2.44)

where the constant B > 0 is indpendent on δ.
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It is convenient to replace the above notation of the minimizerWh
min,ε withWh

min,ε,δ,

thus, indicating its dependence on δ. In [1, Section 5], to prove a direct analog of

Theorem 2.4.2 (formulated below), a new Carleman estimate for the finite difference

operator ∂hzz v was proven first. The Carleman Weight Function of this estimate

depends only on the discrete variable z. The value of this function at the point

zj = a + (j − 1)hz is e2λ(j−1)hz , where λ > 0 is a parameter. This estimate is valid

only if λhz < 1 (Lemma 4.7 of [1, Section 5]). The latter explains the condition of

Theorem 2.4.2 imposed on the grid step size hz in the z−direction.

We now explain why do we impose the condition that the grid step size hx in the

x−direction must be bounded from below as hx ≥ h0 = const. > 0. Indeed, this bound

guarantees that with a constant C > 0 independent on h, we have
∥∥∂hxx Wh

∥∥
L2,h(Ωh)

≤

C
∥∥Wh

∥∥
L2,h(Ωh)

, which is exactly inequality (4.8) of [1, Section 4]. Note that proofs

of convergence results in [1, Section 5] use the latter inequality quite essentially.

Theorem 2.4.2 (convergence of regularized solutions) Let conditions (2.43) and

(2.44) be valid. Let Lh be the operator in (2.41). Let Wh
min,ε,δ ∈ H

1,h
N (Ωh) be the min-

imizer of the functional Jh
ε (Wh) with boundary condition (2.42). Then there exists a

sufficiently small number hz > 0 depending only on h0, a, b, R, N, L
h such that the

following estimate is valid for all (hx, hz) ∈ [h0, βx) ×
(
0, hz

)
and all ε, δ > 0 with a

constant C > 0 independent on ε, δ

∥∥Wh
min,ε,δ −Wh

∗
∥∥
L2,h
N (Ωh)

≤ C
(
δ +
√
ε
∥∥Wh

∗
∥∥
H1,h
N (Ωh)

)
.

We also note that Lipschitz stability estimate for problem (2.41)-(2.42) is valid as a

direct analog of Theorem 5.5 of [1, Section 5]. Therefore, uniqueness also takes place

for problem (2.41)-(2.42).
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2.5 Numerical Implementation

In this section, we solve Problem 2.2.1 in the 2D case. The domain Ω is

Ω = (−1, 1)× (1, 3). (2.45)

The line of sources Ls is set to be (−α, α) with α = 3.

We solve the forward problem to compute the simulated data as follows. Given

the background function n0, instead of solving the nonlinear Eikonal equation (2.12),

we find u0(x,xα) using (2.9). To do this, we first find the geodesic line Γ0(x,xα)

in (2.9) connecting points x ∈ Ω and xα ∈ Ls.We do the latter by using the 2D

Fast Marching toolbox which is built in Matlab. Fast Marching is very similar to

the Dijkstra algorithm to find the shortest paths on graphs. We refer the reader to

[37] for more details about Fast Marching. Next, with this geodesic line Γ0(x,xα) in

hand, we compute the function u(x,xα) via (2.17). It is clear that this function u

solves (2.16). The point xα above is chosen as (αi, 0) where αi = 2(i − 1)α/Nα. We

set in our computations Nα = 209.

Remark 2.5.1 Denote by f ∗(x,xα) the noiseless data u(x,xα), x ∈ ∂Ω, xα ∈ Ls.

The corresponding noisy data at the noise level δ > 0 are set as

f δ(x,xα) = f ∗(x,xα)(1 + δrand(x,xα)), x ∈ ∂Ω+
α ,xα ∈ Ls, (2.46)

where rand is the uniformly distributed function of random numbers taking values

in the range [−1, 1]. Recall that by (2.19) f ∗(x,xα) = 0 for x ∈ ∂Ω−α . This noise

generates noise in the boundary condition Fh in (2.42). Hence, using (2.43), we

obtain Fh = Fh
∗ + σh, where σh is generated by the noisy part of (2.46).

The choice of appropriate values of parameters is always a difficult task. We have

selected an appropriate cut-off number N in (2.29) by a trial and error procedure.
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More precisely, we took Test 4 in subsection 2.5.2 with the noise level 5% as a reference

test and have selected such a value of N, which gave us the best reconstruction result.

We have selected N = 35 this way. Then we used the same N = 35 for all other tests.

2.5.1 Computing W comp

We arrange the grid G in Ω as in (2.39). For simplicity, we choose Nx = Nx = Nz.

The step size h = hx = hz = 2R/(Nx − 1). We observe numerically that the matrix

S−1
N , present in the definition of Jε in (2.38), contains some large numbers. This

causes some unwanted errors in computations. Therefore, using (2.35), we slightly

modify the functional Jε of (2.38) as:

Iε(W ) =

∫
Ω

|SN∂zW (x) + A(x)W (x) +
d−1∑
i=1

Bi(x)∂xiW (x)|2dx

+ ε‖W‖2
H1(Ω)N + ε

(
‖Wxx‖2

L2(Ω)N + ‖Wzz‖2
L2(Ω)N

)
. (2.47)

We have numerically observed that the additional regularization term with the

second derivatives in (2.47) is crucial. If this term is absent, then our numerical

results do not meet our expectations; see, Figure 2.1g

Remark 2.5.2 The above Theorems 2.4.1 and 2.4.2 are valid only for the case when

the regularization term with the second derivatives is absent in (2.47). We also recall

that proofs of those theorems are presented in [1, Section 5]. We are not sure that

those theorems can be extended to the case when the second derivatives are present

in (2.47). Thus, we have a discrepancy between the theory and computations. It is

well known, however, that such discrepancies quite often occur in numerical studies

of truly hard problems, such as e.g. the one of this publication.

The procedure of computing p(x) is summarized in Algorithm 1.

In all tests with all noise levels in the data, we use ε = 10−8. This value was chosen

by a trial and error procedure. The finite difference version of the functional Iε for
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Algorithm 1 The procedure to solve Problem 2.2.1
1: Choose the cut-off number N = 35. Find {Ψn}Nn=1.
2: Compute the boundary data of the vector-valued function W (x).
3: Minimize the functional Iε(W ) subjected to the boundary condition (2.37) to

obtain W comp(x), x ∈ Ω.
4: Set wcomp(x,xα) =

∑N
n=1w

comp
n Ψn(α), x ∈ Ω, α ∈ [−α, α].

5: Set ucomp = wcomp/∂zu0. Compute pcomp by the average of the left hand side of
(2.21), namely

pcomp =
1

2α
√

a0(x)

∫ α

−α

[
∂zu0(x,xα)∂zu

comp(x,xα)

+
d−1∑
i=1

∂xiu0(x,xα)∂xiu
comp(x,xα)

]
dα. (2.48)

d = 2 is

Ihε (W ) = h2

N∑
m=1

Nx−1∑
i,j=1

∣∣∣ N∑
n=1

[smn[wn(xi, zj+1)− wn(xi, zj)]

h

+ amn(xi, zj)w(xi, yj) +
bmn(xi, zj)(w(xi+1, zj)− w(xi, zj))

h

]∣∣∣2
+ εh2

N∑
n=1

Nx∑
i,j=0

|wn(xi, zj)|2 + εh2

N∑
n=1

Nx−1∑
i,j=0

[
|∂hxwn(xi, zj)|2 + |∂hzwn(xi, zj)|2

]
+ εh2

N∑
n=1

Nx−1∑
i,j=1

|∂xxwn(xi, zj)|2 + εh2

N∑
n=1

Nx−1∑
i,j=1

|∂hzzwn(xi, zj)|2,

where amn and bmn = bmn,1 in (2.33) and (2.34) respectively. The partial derivatives

∂hx and ∂hz are as in (2.40). The second derivative in the finite difference method is

understood as usual. We next line up the discrete vector-valued function wn(xi, zj),

1 ≤ i, j ≤ Nx, 1 ≤ n ≤ N as the vector (wi)
N2

xN
i=1 with

wi = wn(xi, zj) (2.49)

where

i = (i− 1)NxN + (j − 1)N + n. (2.50)
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The functional Ihε in the “line up" version is

Ihε (w) = h2
[
|Lw|2 + ε|Dxw|2 + ε|Dyu|2 + ε|Lw|2

]
. (2.51)

In (2.51),

1. L is the N2
xN ×N2

xN matrix with entries given by

(a) (L)ij = −smn/h+amn(xi, zj)−bmn(xi, yj)/h for i = (i−1)NxN+(j−1)N+m

and j = (i− 1)NxN + (j − 1)N + n,

(b) (L)ij = bmn(xi, zj)/h for i = (i− 1)NxN + (j − 1)N + m and j = (i + 1−

1)NxN + (j − 1)N + n,

(c) (L)ij = smn/h for i = (i − 1)NxN + (j − 1)N + m and j = (i − 1)NxN +

(j + 1− 1)N + n,

(d) the other entries of L are 0

for 1 ≤ i, j ≤ Nx − 1 and 1 ≤ m,n ≤ N ;

2. Dx is the N2
xN ×N2

xN matrix with entries are given by

(a) (Dx)ii = −1/h for i = (i− 1)NxN + (j − 1)N +m,

(b) (Dx)ij = 1/h for i = (i− 1)NxN + (j − 1)N +m and j = (i+ 1− 1)NxN +

(j − 1)N +m,

(c) the other entries of L are 0

for 1 ≤ i, j ≤ Nx − 1 and 1 ≤ m ≤ N ;

3. Dy is the N2
xN ×N2

xN matrix with entries are given by

(a) (Dy)ii = −1/h for i = (i− 1)NxN + (j − 1)N +m,
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(b) (Dy)ij = 1/h for i = (i− 1)NxN + (j− 1)N +m and j = (i− 1)NxN + (j+

1− 1)N +m,

(c) the other entries of L are 0

for 1 ≤ i, j ≤ Nx − 1 and 1 ≤ m ≤ N ;

4. L is the N2
xN ×N2

xN matrix with entries are given by

(a) (L)ii = −4/h2 for i = (i− 1)NxN + (j − 1)N +m,

(b) (L)ij = −1/h2 for i = (i−1)NxN + (j−1)N +m and j = (i±1−1)NxN +

(j − 1)N +m,

(c) (L)ij = −1/h2 for i = (i − 1)NxN + (j − 1)N + m and j = (i − 1)NxN +

(j ± 1− 1)N +m,

(d) the other entries of L are 0

for 2 ≤ i, j ≤ Nx − 1 and 1 ≤ m ≤ N.

The minimizer w of Ihε satisfies the equation

LTL+ ε(Id +DT
xDx +DT

yDy + LTL)w = 0. (2.52)

On the other hand, due to the constraint (2.37)

Dw = f (2.53)

where D is a N2
xN ×N2

xN matrix and f is a N2
xN dimensional vector, both of which

are defined below

1. (D)ii = 1 for i = (i− 1)NxN + (j − 1)N +m;

2. (f)i = fm(xi, yj) for i = (i− 1)NxN + (j − 1)N +m;
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3. the other entries of L and f are 0

for i ∈ {1, Nx}, 1 ≤ j ≤ Nx or 2 ≤ i ≤ Nx − 1, j ∈ {1, Nx} and 1 ≤ m ≤ N. Here,

(fm)Nm=1 is in (2.37). Since the data might be noisy, we slightly modify the system

constituted by (2.52) and (2.53) to a more stable version


 L
D


T  L
D

+ ε(Id +DT
xDx +DT

yDy + LTL)

w =

 0

f

 . (2.54)

Solving the system (2.54), we obtain wcomp. The values of components of vector

valued function W comp (x) at grid points are computed as wn(xi, zj) = wi for i =

(i− 1)NxN + (j − 1)N +m, 1 ≤ i, j ≤ Nx, 1 ≤ m ≤ N, see (2.49).

We have presented the implementation of Step 3 in Algorithm 1. The other steps

are straight forward.

Remark 2.5.3 In Step 5 of Algorithm 1 when computing pcomp using (2.48), which

involves ∇ucomp, we smooth out ucomp by replacing the value of ucomp(x, y, α), α ∈

[−α, α] by the average of ucomp on the rectangle of 5 × 5 points around the point

(x, y). We also apply the same smoothing technique to the function pcomp.

2.5.2 Numerical Tests

We perform four (4) numerical tests in this chapter. When indicating dependence

of any function below on x, z, we assume that (x, z) ∈ Ω, where the domain Ω is

defined in (2.45). In all our tests, the noise level δ is as in (2.46).

Remark 2.5.4 In all our tests below the function a0 is far away from the constant

background function. Therefore, Problem 2.2.1 is not considered as a small pertur-

bation of the problem of the inverse Radon transform with incomplete data, see [2].

Some functions a0 in our tests might not be smooth in R2. Still, a0 ∈ C1(Ω) in Tests

2,3. Thus, the second derivatives of the corresponding function u0 are well-defined
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in these two tests. Even though a0 /∈ C1(Ω) in Test 1, numerically we have not

experienced problems with second derivatives of the function u0.

Test 1. The true source function p is given by

ptrue (x, z) =


8 (x− 0.5)2 + (z − 2)2 < 0.242,

5 (x+ 0.5)2 + (z − 2)2 < 0.222,

0 otherwise.

The background function a0 is

a0 (x, z) =

 1 + 0.3(1− x2)(z2 − 2) if z2 − 2 > 0,

1 otherwise.

The numerical results of this test are displayed in Figure 2.1.

The support of ptrue in Test 1 consists of two discs. The value of the function p

in the right disc is higher than the value in the left disc. Our method detects both

these inclusions very well, see Figures 2.1c–2.1f. There are some unwanted artifacts

near ∂Ω where we measure the noisy data. The higher level of noisy data, the more

artifacts are present. When the noise level δ = 5%, the computed maximal value

of pcomp in the left inclusion is 4.97 (relative error 0.6%) and the computed maximal

value of pcomp in the right inclusion is 7.79 (relative error 2.62%). When the noise level

δ = 170%, the computed maximal value of pcomp in the left inclusion is 4.327 (relative

error 13.46%) and the computed maximal value of pcomp in the right inclusion is 7.811

(relative error 2.36%).

To verify the necessity of the presence of the second derivatives in the regularization

term of (2.47), we also conduct computations for Test 2.1 in the case when only the

first derivatives are present in the regularization term of (2.47). The result for the

case of 5% noise in the data is depicted on Figure 2.1g. Comparison with Figure 2.1c
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(a) The function ppictrue (b) The function a0 and some
geodesic lines, generated by
the Fast Marching package in
Matlab

(c) The function pcomp com-
puted by Algorithm 1 with 5%
noise in the data

(d) The function ptrue and
pcomp with 5% noise in the
data on the set {z = 2}, in-
dicated by a dash-dot line in
(c)

(e) The function pcomp com-
puted by Algorithm 1 with
170% noise in the data

(f) The function ptrue and
pcomp with 170% noise in the
data on the set {z = 2}, in-
dicated by a dash-dot line in
(e)

(g) The function pcomp in the
case when second derivatives
are absent in the regulariza-
tion term of (2.47). 5% noise
in the data. The image qual-
ity has significantly deterio-
rated, compared with (c).

Figure 2.1: Test 1. The true and reconstructed source functions using Algorithm 1
from noisy data.

makes it evident that the presence of the second derivatives in the regularization term

of (2.47) is important.



31

Test 2. We test a complicated case when the support of ptrue looks like a ring. In

this test,

ptrue (x, z) =

 2 0.552 < r2 = x2 + (z − 2)2 < 0.752,

0 otherwise.

The background function a0 is given by

a0 (x, z) =

 1 + 0.25(x− 0.5)2 ln(z) z > 1,

1 otherwise.

The numerical results of this test are displayed in Figure 2.2.

(a) The function ptrue (b) The function a0 and some
geodesic line, generated by
the Fast Marching package in
Matlab

(c) The function pcomp com-
puted by Algorithm 1 with 5%
noise in the data

(d) The function ptrue and
pcomp with 5% noise in the
data on the set {z = 2}, in-
dicated by a dash-dot line in
(c)

(e) The function pcomp com-
puted by Algorithm 1 with
100% noise in the data

(f) The function ptrue and
pcomp with 100% noise in the
data on the set {z = 2}, in-
dicated by a dash-dot line in
(e)

Figure 2.2: Test 2. The true and reconstructed source functions using Algorithm 1
from noisy data.

In this test, it is evident that the reconstructed “ring" is acceptable, see Figures



32

2.2c and 2.2e. The position of the ring is detected quite well, see Figures 2.2d and

2.2f. When the noise level is 5%, the reconstructed maximal value of pcomp in the

ring is 2.078 (relative error 3.9%). When the noise level is 100%, the reconstructed

maximal value of pcomp in the ring is 2.329 (relative error 16.45%).

Test 3. We test an interesting and complicated case of the up-side-down letter Y

having both positive and negative values. In this test, the function ptrue is given by

ptrue (x, z) =



2.5 |x− (z − 2)| < 0.35,max{|x|, |z − 2|} < 0.7, z < 2, x < 0,

−2.5 |x+ (z − 2)| < 0.2,max{|x|, |z − 2|} < 0.7, z < 2, x > 0,

2.5 |x| < 0.2,max{|x|, |z − 2|} < 0.8, z > 2, x < 0,

−2.5 |x| < 0.2,max{|x|, |z − 2|} < 0.8, z > 2, x > 0.

The background function a0 is given by

a0 (x, z) =

 1 + 0.5(x+ 0.5)2 ln(z) z > 1,

1 otherwise.

The numerical results of this test are displayed in Figure 2.3.

It is clear from Figure 2.3 that both positive and negative parts of the function

p (x, z) are successfully identified. When the noise level δ = 5%, the reconstructed

maximal value of the positive part of pcomp is 2.186 (relative error 12.56%) and the

reconstructed minimal value of pcomp of the negative part is −2.482 (relative error

0.72%.) When the noise level is δ = 100%, the reconstructed maximal value of pcomp

of the positive part is 2.492 (relative error 0.32%) and the reconstructed minimal

value of pcomp of the negative part is −3.327 (relative error 33.08%.)
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(a) The function ptrue (b) The function a0 and some
geodesic line, generated by
the Fast Marching package in
Matlab

(c) The function pcomp com-
puted by Algorithm 1 with 5%
noise in the data

(d) The function ptrue and
pcomp with 5% noise in the
data on the set {z = 1.5}, in-
dicated by a dash-dot line in
(c)

(e) The function pcomp com-
puted by Algorithm 1 with
100% noise in the data

(f) The function ptrue and
pcomp with 100% noise in the
data on the set {z = 1.5}, in-
dicated by a dash-dot line in
(e)

Figure 2.3: Test 3. The true and reconstructed source functions using Algorithm 1
from noisy data.

Test 4. In this test, we reconstruct the letter λ. The function ptrue is given by

ptrue (x, z) =


2 |x− (z − 2)| < 0.325,max{|x|, |z − 2|} < 0.7 and x < −0.03,

2 |x+ (z − 2)| < 0.2 and max{|x|, |z − 2|} < 0.7,

0 otherwise.

In this test, we choose a0 as

a0 (x, z) =

 1 + x2 ln(z) z > 1,

1 otherwise.

The numerical results of this test are displayed in Figure 2.4.



34

(a) The function ptrue (b) The function a0 and some
geodesic line, generated by
the Fast Marching package in
Matlab

(c) The function pcomp by Al-
gorithm 1 with 5% noise in the
data

(d) The function ptrue and
pcomp with 5% noise in the
data on the set {z = 1.7}, in-
dicated by a dash-dot line in
(c)

(e) The function pcomp com-
puted by Algorithm 1 with
80% noise in the data

(f) The function ptrue and
pcomp with 80% noise in the
data on the set {z = 1.7}, in-
dicated by a dash-dot line in
(e)

Figure 2.4: Test 4. The true and reconstructed source functions using Algorithm 1
from noisy data.

The letter λ and the values of the function ptrue are successfully reconstructed.

The computed position of λ is a quite accurate one, see Figures 2.4d and 2.4f. When

the noise level δ = 5%, the computed maximal value of pcomp is 2.24 (relative error

12.0%). When the noise level δ = 80%, the computed maximal value of pcomp is 2.375

(relative error 18.75%).

2.6 Concluding Remarks

In this chapter, we have developed a convergent numerical method of the solution

of the linearized Travel Time Tomography Problem with non-redundant incomplete

data. A good accuracy of numerical results with 5% noise in the data is demonstrated

for rather complicated functions to be imaged. It is quite surprising that an acceptable
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accuracy of computational results is observed even for very high level of noise in the

data varying between 80% and 170%.
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CHAPTER 3: A CONVERGENT NUMERICAL METHOD TO RECOVER THE

INITIAL CONDITION OF NONLINEAR PARABOLIC EQUATIONS FROM

LATERAL CAUCHY DATA

3.1 Introduction

Let d ≥ 1 be the spatial dimension and T > 0. Let q : R → R and c : Rd → R

be two smooth functions in the class C1. Assume that c(x) ≥ c0 for some c0 > 0.

Consider the problem

 c(x)ut(x, t) = ∆u(x, t) + q(u(x, t)) x ∈ Rd, t ∈ (0, T )

u(x, 0) = p(x) x ∈ Rd,
(3.1)

where p is a source function compactly supported in an open and bounded domain Ω

of Rd with smooth boundary ∂Ω. We briefly discuss the unique solvability and some

regularity properties of (3.1). Assume that the initial condition of p is in H2+β(Rd)

for some β ∈ [0, 1 + 4/d] and has compact support. Assume further that

|q(s)| ≤ C(1 + |s|) for all s ∈ R (3.2)

for some constant C > 0. Then (3.1) has a unique solution with |u(x, t)| ≤ M and

u ∈ H2+β,1+β/2(Rd × [0, T ]) for some constant M > 0. These unique solvability and

regularity properties can be obtained by applying Theorem 6.1 in [1, Chapter 5, §6]

and Theorem 2.1 in [1, Chapter 5, §2].

We are interested in the following problem.

Problem 3.1.1 (Inverse Source Problem) Assume that there is a numberM > 0
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such that |u(x, t)| ≤M for all x ∈ Ω, t ∈ [0, T ]. Given the lateral Cauchy data

f(x, t) = u(x, t) and g(x, t) = ∂νu(x, t) (3.3)

for x ∈ ∂Ω, t ∈ [0, T ], determine the function u(x, 0) = p(x),x ∈ Ω.

Problem 3.1.1 arises from the problem of recovering the initial condition p(x) of

parabolic equation (3.1) from the lateral Cauchy data. It has many real-world ap-

plications, e.g., determination of the spatially distributed temperature inside a solid

from the boundary measurement of the heat and heat flux in the time domain [2];

identification the pollution on the surface of the rivers or lakes [3]; effective monitor-

ing the heat conduction processes in steel industries, glass and polymer-forming and

nuclear power station [4]. When the nonlinear term q(u) takes the form u(1− u) (or

q(u) = u(1− |u|α)) for some α > 0, the parabolic equation in (3.1) is called the high

dimensional version of the well-known Fisher (or Fisher-Kolmogorov) equation [5].

Although the nonlinearity q does not satisfy condition (3.2), we do not experience

any difficulty in numerical computations of the forward problem. It is worth mention-

ing that the Fisher equation occurs in ecology, physiology, combustion, crystallization,

plasma physics, and in general phase transition problems, see [5].

Due to its realistic applications, the problem of determining the initial conditions

of parabolic equations has been studied intensively. However, up to the knowledge of

the authors, numerical solutions are computed only in the case when the nonlinearity

is absent, see e.g., [6]. The uniqueness of Problem 3.1.1 is well-known assuming that

the nonlinearity q is in class C1, see [7]. On the other hand, the logarithmic stability

results were rigorously proved in [2, 4].

For completeness, we briefly recall the logarithmic stability of Problem 3.1.1 in

this chapter. The natural approach to solve this problem is the optimal control

method; that means, minimizing some mismatch functionals. However, since the
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known stability is logarithmic [2, 4], the optimal control approach might not give good

numerical results; especially, when the initial guess, if provided, is far away from the

true solution. A more important reason for us to not use the optimal control method

is that the cost functional is nonconvex and, therefore, might have multi-minima. We

draw the reader’s attention to the convexification methods, see [8, 9, 10, 11, 12, 13, 14,

15], which convexify the cost functional and therefore the difficulty about the lack of

the initial guess is avoided. Applying the convexification method to numerically solve

Problem 3.1.1 will be studied in the near future project. In this chapter, rather than

working on the convexification method, similarly to [16, 17], of which the authors

have successfully solved a coefficient inverse problem for a hyperbolic equation and

an inverse source problem for a parabolic equation by combining the contraction

principle and a new Carleman estimate, we propose a numerical method for Problem

3.1.1. The convergence of our method is proved based on the contraction principle

using a new Carleman estimate. The latter is similar to the idea of [16, 18, 17].

As mentioned, since a good initial guess of the true solution of Problem 3.1.1 is not

always available, the optimal control method, which is widely used in the scientific

community, might not be applicable. To overcome this difficulty, we propose to solve

Problem 3.1.1 in the Fourier domain. More precisely, we derive a system of elliptic

PDEs whose solution consists of a finite number of the Fourier coefficients of the

solution to the parabolic equation (3.1). The solution of this system directly yields

the knowledge of the function u(x, t), from which the solution to our inverse problem

follows. We numerically solve this nonlinear system by an iterative process. The initial

solution can be computed by solving the system obtained by removing the nonlinear

term. Then, we approximate the nonlinear system by replacing the nonlinearity with

the one acting on the initial solution obtained in the previous step. Solving this

approximation system, we find an updated solution. Continuing this process, we get

a fast convergent sequence reaching to the desired function. The convergence of this
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iterative procedure is rigorously proved by using a new Carleman estimate and the

standard arguments of the contraction principle. The fast convergence will be shown

in both analytic and numerical senses.

Two papers closely related to the current one are [17] and [6]. In [17], a source

term for a nonlinear parabolic equation is computed, and in [6], the second author

and his collaborator computed the initial condition of the linear parabolic equation

from the lateral Cauchy data. On the other hand, the coefficient inverse problem

for parabolic equations is also very interesting and studied intensively. We draw the

reader’s attention to [19, 20, 21, 22, 23, 24, 25] for important numerical methods and

good numerical results. Besides, the problem of recovering the initial conditions for

the hyperbolic equation is very interesting since it arises in many real-world appli-

cations. For instance, the problems of thermo- and photo-acoustic tomography play

key roles in biomedical imaging. We refer the reader to some important works in

this field [26, 27, 28]. Applying the Fourier transform, one can reduce the problem of

reconstructing the initial conditions for hyperbolic equations to some inverse source

problems for the Helmholtz equation, see [29, 30, 31, 32, 33] for some recent results.

The chapter is organized as follows. In Section 3.2, we derive a nonlinear system

of elliptic PDEs, which leads to a numerical method to solve Problem 3.1.1.

This nonlinear system is solved by an iterative scheme. The proof of the conver-

gence of this iteration is based on the contraction principle.

In Section 3.3, we establish and prove a Carleman estimate. This estimate plays an

important role in the proof Theorem 3.2.1 that guarantees the existence and unique-

ness of the least-squares solution to over-determined elliptic systems. In Section 3.4,

we prove the convergence of the iterative sequence. In Section 3.5, we discuss the

implementation of our method and show several numerical results. Section 3.6 is for

concluding remarks.
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3.2 A numerical method to solve Problem 3.1.1

The main aims of this section are to derive a system of nonlinear elliptic equations

whose solutions directly yield the solutions to Problem 3.1.1 and then propose a

method to solve it.

3.2.1 A system of nonlinear elliptic equations

Let {Ψn}n≥1 be an orthonormal basis of L2(0, T ). For each point x ∈ Ω, we can

approximate u(x, t), t ∈ [0, T ], as

u(x, t) =
∞∑
n=1

un(x)Ψn(t) '
N∑
n=1

un(x)Ψn(t) (3.4)

where

un(x) =

∫ T

0

u(x, t)Ψn(t)dt n ≥ 1. (3.5)

Remark 3.2.1 Replacing ' in (3.4) by “ = ” forms our approximate mathematical

model. We cannot prove the convergence of the model as N → ∞. Indeed, such

a result is very hard to prove due to both the nonlinearity and the ill-posedness of

our inverse problem. Therefore, our goal below is to find spatially dependent Fourier

coefficients un defined in (3.5). The number N should be chosen numerically. In fact,

in Section 3.5, we verify that with appropriate values of N , the error causing from

(3.4) is small, see also Figure 3.1

Due to (3.4), the function ut(x, t) is approximated by

ut(x, t) '
N∑
n=1

un(x)Ψ′n(t) x ∈ Ω, t ∈ [0, T ]. (3.6)

From now on, we replace the approximation “'" by equality. This obstacle will be

considered numerically in Remark 3.5.1 and Figure 3.1. Plugging (3.4) and (3.6) into
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the governing equation in (3.1), we obtain

c(x)
N∑
n=1

un(x)Ψ′n(t) =
N∑
n=1

∆un(x)Ψn(t) + q
( N∑
n=1

un(x)Ψn(t)
)

(3.7)

for all x ∈ Ω. For each m = 1, . . . , N , multiply Ψm(t) to both sides of (3.7) and then

integrate the resulting equation with respect to t on [0, T ]. For all x ∈ Ω, we have

c(x)
N∑
n=1

un(x)

∫ T

0

Ψ′n(t)Ψm(t)dt

=
N∑
n=1

∆un(x)

∫ T

0

Ψn(t)Ψm(t)dt+

∫ T

0

q
( N∑
n=1

un(x)Ψn(t)
)

Ψm(t)dt. (3.8)

The system (3.8) with m = 1, . . . , N can be rewritten as

c(x)
N∑
n=1

smnun(x) = ∆um(x) + qm(u1(x), u2(x), . . . , uN(x)) (3.9)

where

smn =

∫ T

0

Ψ′n(t)Ψm(t)dt

and

qm(u1(x), u2(x), . . . , uN(x)) =

∫ T

0

q
( N∑
n=1

un(x)Ψn(t)
)

Ψm(t)dt. (3.10)

Due to (3.5), each function um, m = 1, . . . , N , satisfies the Cauchy boundary

conditions


um(x) = fm(x) =

∫ T

0

f(x, t)Ψm(t)dt

∂νum(x) = gm(x) =

∫ T

0

g(x, t)Ψm(t)dt

(3.11)

for all x ∈ ∂Ω, m = 1, . . . , N. Here, f(x, t) and g(x, t) are the given data.
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Remark 3.2.2 Problem 3.1.1 becomes the problem of finding all functions um(x),

x ∈ Ω, m = 1, . . . , N , satisfying (3.9) and the Cauchy boundary conditions (3.11). In

fact, if all of those functions are known, we can compute the function u(x, t), x ∈ Ω,

t ∈ [0, T ] via (3.4). Then, the initial condition p(x) is given by the function u(x, 0).

Remark 3.2.3 From now on, we consider the values of fm(x) and gm(x) on ∂Ω,

m = 1, . . . , N , as the “indirect data", see (3.11). Denote by f ∗m(x) and g∗m(x) the

noiseless data. In numerical study, we set the noisy data as

f δm = f ∗m(1 + δ(−1 + 2rand)) gδm = g∗m(1 + δ(−1 + 2rand))

on ∂Ω, 1 ≤ m ≤ N where δ > 0 is the noise level and rand is the function taking

uniformly distributed random numbers in the range [0, 1]. In our numerical study,

δ = 20%.

3.2.2 An iterative procedure to solve the system (3.9)– (3.11)

We propose a procedure to compute u1(x), . . . , uN(x). We first approximate (3.9)–

(3.11) by solving the following over-determined problem


c(x)

∑N
n=1 smnu

(0)
n (x) = ∆u

(0)
m (x) x ∈ Ω,

u
(0)
m (x) = fm(x) x ∈ ∂Ω,

∂νu
0
m(x) = gm(x) x ∈ ∂Ω

m = 1, 2, . . . , N (3.12)

for a vector value function (u
(0)
1 , . . . , u

(0)
N ). Then, assume by induction that we know

(u
(k−1)
1 , . . . , u

(k−1)
N ), k ≥ 1, we find (u

(k)
1 , . . . , u

(k)
N ) by solving



c(x)
∑N

n=1 smnu
(k)
n (x) = ∆u

(k)
m (x)

+qm[P (u
(k−1)
1 (x)), . . . , P (u

(k−1)
N (x))] x ∈ Ω,

u
(k)
m (x) = fm(x) x ∈ ∂Ω,

∂νu
(k)
m (x) = gm(x) x ∈ ∂Ω

(3.13)
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where qm is defined in (3.10) for m = 1, 2, . . . , N. Here,

P (s) =


M
√
T s ∈ (M

√
T ,∞),

s s ∈ [−M
√
T ,M

√
T ],

−M
√
T s ∈ (−∞,−M

√
T ]

for all s ∈ R. (3.14)

serves as a cut-off function. where M > ‖u∗‖L∞(Ω×[0,T ]) is a fixed constant.

In practice since both Dirichlet and Neumann conditions are imposed, problem

(3.12) and problem (3.13) might have no solution. However, since these two problems

are linear, we can use the linear least-squares method to find the “best fit" solutions.

In order to guarantee the convergence of the method, we include a Carleman weight

function in the linear least-squares functional. Define the set of admissible solution

H = {(um)Nm=1 ∈ H2(Ω)N : um|∂Ω = fm and ∂νum|∂Ω = gm, 1 ≤ m ≤ N}.

Throughout the chapter, we assume that the set H is nonempty. In the analysis, we

will need the following subspace of H2(Ω)N

H0 =
{

(v1, . . . , vN) ∈ H2(Ω) : vm(x) = ∂νvm(x) = 0
}
. (3.15)

Let x0 be a point in Rd \ Ω with min{r(x) : x ∈ Ω} > 1 and b > max{r(x) : x ∈ Ω}

where

r(x) = |x− x0| for all x ∈ Rd.

We choose x0 such that min{r(x) : x ∈ Ω} > 1. To find u(0), we minimize the

functional J (0) : H → R with

J (0)(u1, . . . , uN) =
N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣∆um − c(x)

N∑
n=1

smnun

∣∣∣2dx (3.16)
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where λ and β are the numbers as in Corollary 3.3.1. The obtained minimizer

(u
(0)
m )Nm=1 ∈ H is called the regularized solution to (3.12). Next, assume, by induction,

that we know (u
(k−1)
m )Nm=1, k ≥ 1, we set (u

(k)
m )Nm=1 as the minimizer of J (k) : H → R

defined as

J (k)(u1, . . . , uN) =
N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣∆um − c(x)

N∑
n=1

smnun

+ qm(P (u
(k−1)
1 ), . . . , P (u

(k−1)
N ))

∣∣∣2dx. (3.17)

Remark 3.2.4 The function e2λb−βrβ(x) in (3.16) and (3.17) is called the Carleman

weight function. Its presence is very helpful to prove the existence and uniqueness of

the minimizers for the functionals J (k), k ≥ 0, see Theorem 3.2.1. On the other hand,

this Carleman weight function and the Carleman estimate (see Theorem 3.3.1) play

important roles for us to prove the convergence of our method, see Theorem 3.4.1.

The following result guarantees the existence and uniqueness of the minimizer of

(3.12) and the one of (3.13), k ≥ 1.

Theorem 3.2.1 Assume that fm and gm are in L2(∂Ω), m = 1, 2, . . . , N and assume

that H is nonempty. Then, each functional J (k), k ≥ 0, has a unique minimizer

provided that both λ and β are sufficiently large.

Proof 3.2.1 We only prove Theorem 3.2.1 when k ≥ 1. Since H is nonempty, we

can find a vector-valued function (ϕm)Nm=1 ∈ H. Define

vm(x) = um(x)− ϕm(x) x ∈ Ω,m = 1, . . . , N. (3.18)

We minimize

I(k)(v1, . . . , vN) = J (k)(u1 − ϕ1, . . . , uN − ϕN)

where (vm)Nm=1 varies in H0, defined in (3.15). If (vm)Nm=1 minimizes I(k), then by the
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variational principle,

N∑
m=1

〈
e2λb−βrβ(x)

(
∆vm − c(x)

N∑
n=1

smnvn + ∆ϕm − c(x)
N∑
n=1

smnϕn

+qm(P (u
(k−1)
1 ), . . . , P (u

(k−1)
N ))

)
,∆hm − c(x)

N∑
n=1

smnhn

〉
L2(Ω)

= 0 (3.19)

for all (hm)Nm=1 ∈ H0. The identity (3.19) is equivalent to

N∑
m=1

〈
e2λb−βrβ(x)∆vm − c(x)

N∑
n=1

smnvn,∆hm − c(x)
N∑
n=1

smnhn

〉
L2(Ω)

= −
N∑
m=1

〈
e2λb−βrβ(x)

(
∆ϕm − c(x)

N∑
n=1

smnϕn + qm(P (u
(k−1)
1 ), . . . , P (u

(k−1)
N ))

)
,

∆hm − c(x)
N∑
n=1

smnhn

〉
L2(Ω)

. (3.20)

The left hand side of (3.20) defines a bilinear form {·, ·} of a pair ((vm)Nm=1, (hm)Nm=1)

in H0.

We claim that {·, ·} is coercive; that means,

{(vm)Nm=1, (vm)Nm=1} ≥ C‖(vm)Nm=1‖2
H2(Ω)N

for some constant C. In fact, using the inequality (x− y)2 ≥ x2/2− y2, we have

N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣∆vm − c(x)

N∑
n=1

smnvn

∣∣∣2dx ≥ N∑
m=1

∫
Ω

e2λb−βrβ(x)|∆vm|2dx

−
N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣c(x)

N∑
n=1

smnvn

∣∣∣2dx.
Applying the Carleman estimate (3.42), which will be proved in Section 3.3, for the
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function vm for each m ∈ {1, . . . , N}, we have

N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣∆vm − c(x)

N∑
n=1

smnvn

∣∣∣2dx
≥

N∑
m=1

∫
Ω

e2λb−βrβ(x)
[C∑d

i,j=1 |∂2
xixj

vm|2

λ
+ Cλ|∇vm|2 + Cλ3|vm|2

]
dx

−
N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣c(x)

N∑
n=1

smnvn

∣∣∣2dx.
Since c(x) and smn are finite, we can choose λ sufficiently large such that

N∑
m=1

∫
Ω

e2λb−βrβ(x)
∣∣∣∆vm − c(x)

N∑
n=1

smnvn

∣∣∣2dx
≥ C max

x∈Ω
{e2λb−βrβ(x)}λ−1

N∑
m=1

‖(vm)l‖2
H2(Ω).

Applying the Lax-Milgram theorem, we can find a unique vector-valued function (vm)Nm=1

satisfying (3.20). The vector-valued function (um)Nm=1 can be found via (3.18).

Denote by {(u(k)
1 , . . . , u

(k)
N )} the sequence of the minimize of J (k), k ≥ 0 . We

claim that this sequence converges to the true solution of (3.9) and (3.11) in L2(Ω)N

as k → ∞. The proof of this fact is based on the contraction principle and the

Carleman estimate in Section 3.3 plays an important role.

3.3 A new Carleman estimate

In this section, we establish a new Carleman estimate, which has been used to

prove Theorem 3.2.1 that guarantees the unique existence of the functional J (k) in

(3.17), k ≥ 1. This estimate and its corollary, Corollary 3.3.1, play a crucial role in

the proof of our main result, see Theorem 3.4.1 which guarantees the convergence of

our numerical method.

Theorem 3.3.1 (Carleman estimate) Let x0 be a point in Rd\Ω such that r(x) =
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|x − x0| > 1 for all x ∈ Ω. Let b > maxx∈Ω r(x) be a fixed constant. There exist

positive constants β0 depending only on b, x0, Ω and d such that for all function

v ∈ C2(Ω) satisfying

v(x) = ∂νv(x) = 0 for all x ∈ ∂Ω,

the following estimate holds true

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx ≥ C

λβ7/4b−β

d∑
i,j=1

∫
Ω

e2λb−βrβ(x)r2β(x)|∂2
xixj

v(x)|2dx

+ Cλ3β4b−3β

∫
Ω

r2β(x)e2λb−βrβ |v(x)|2dx

+ Cλβ1/2b−β
∫

Ω

e2λb−βrβ(x)|∇v(x)|2dx (3.21)

for β ≥ β0 and λ ≥ λ0. Here, λ0 = λ0(b,Ω, d,x0) > 1 is a positive number with

λ0b
−β � 1 and C = C(b,Ω, d,x0) > 1 is a constant. These numbers depend only on

the listed parameters.

Remark 3.3.1 The Carleman estimate in Theorem 3.3.1 is more complicated than

the version in [29]. The reason for us to establish this new estimate is that the

Carleman weight function in [29] decays fast when λ � 1, causing poor numerical

results. Unlike this, the Carleman estimate in Theorem 3.3.1 allows us to choose large

λ in implementation, making the theory and the computational codes more consistent.

Remark 3.3.2 A new feature in Theorem 3.3.1 is the presence of all second deriva-

tives of the function v on the right-hand side of (3.21). This makes it more convenient

for us to prove the existence and uniqueness of the regularized solutions to a system

of nonlinear elliptic equations appearing in our analysis in Section 3.2, see Theorem

3.2.1.

We split the proof of Theorem 3.3.1 into four lemmas, Lemma 3.3.1–Lemma 3.3.4.
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Lemma 3.3.1 Let v be the function as in Theorem 3.3.1. There exists a positive

constant β0 depending only on b, x0, Ω and d such that

∫
Ω

e2λb−βrβ(x)|∆v(x)|2

4λβb−βrβ−2(x)
dx ≥ Cλ2β3b−2β

∫
Ω

r2β(x)e2λb−βrβ(x)|v(x)|2dx

− C
∫

Ω

e2λb−βrβ(x)|∇v(x)|2dx (3.22)

for all β ≥ β0 and λ ≥ λ0. Here, λ0 is a constant such that λ0b
−β � 1.

Proof 3.3.1 By changing variables, if necessary, we can assume that x0 = 0. Define

the function

w(x) = eλb
−βrβ(x)v(x) or v(x) = e−λb

−βrβ(x)w(x) (3.23)

for all x ∈ Ω. Since v vanishes on ∂Ω, so does w. On the other hand, by the product

rule in differentiation, for all x ∈ Ω,

∇v(x) = e−λb
−βrβ(x)∇w(x)− βλb−βrβ−2(x)e−λb

−βrβ(x)w(x)x (3.24)

It follows that

e−λb
−βrβ(x)∇w(x) · ν = ∇v(x) · ν + βλb−βrβ−2(x)e−λb

−βrβ(x)w(x)x = 0.

for all x ∈ ∂Ω. We thus obtain w(x) = ∂νw(x) = 0 for all x ∈ ∂Ω. Hence, from now

on, whenever we apply the integration by parts formula on v and w, the integrals on

∂Ω vanishes. We next compute the Laplacian of v in terms of w. For all x ∈ Ω,

∆v(x) = e−λb
−βrβ(x)∆w(x) + 2∇e−λb−βrβ(x) · ∇w(x) + w(x)∆(e−λb

−βrβ(x))

= e−λb
−βrβ(x)

[
∆w(x)− 2λβb−βrβ−2(x)∇w(x) · x

+ eλb
−βrβ(x)∆(e−λb

−βrβ(x))w(x)
]
.



52

Using the inequality (a− b+ c)2 ≥ −2ab− 2bc, we have

|∆v(x)|2 ≥ −4λβb−βrβ−2(x)e−2λb−βrβ(x)
[
∆w(x)∇w(x) · x

+ eλb
−βrβ(x)∆(e−λb

−βrβ(x))w(x)∇w(x) · x
]

(3.25)

for all x ∈ Ω. By a straight forward computation, for x ∈ Ω,

∆(e−λb
−βrβ(x)) = −λβb−βe−λb−βrβ(x)rβ−2(x)

[
(β − 2 + d)− λb−ββrβ(x)

]
.

Plugging this into (3.25) gives

|∆v(x)|2 ≥ −4λβb−βrβ−2(x)e−2λb−βrβ(x)
[
∆w(x)∇w(x) · x

− λβb−βrβ−2(x)
[
(β − 2 + d)− λβb−βrβ(x)

]
w(x)∇w(x) · x

]

for all x ∈ Ω. Hence,

∫
Ω

e2λb−βrβ(x)|∆v(x)|2

4λβb−βrβ−2(x)
dx ≥ I1 + I2 + I3 (3.26)

where

I1 = −
∫

Ω

∆w(x)∇w(x) · xdx, (3.27)

I2 = λβb−β(β − 2 + d)

∫
Ω

rβ−2(x)w(x)∇w(x) · xdx, (3.28)

I3 = −λ2b−2ββ2

∫
Ω

r2β−2(x)w(x)∇w(x) · xdx. (3.29)

Estimate I1. Write x = (x1, . . . , xd) and integrating I1 by parts. It follows from
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(3.27) that I1 is equal to

∫
Ω

∇w(x) · ∇[∇w(x) · x]dx

=
d∑

i,j=1

∫
Ω

∂xiw(x)∂xixj∂xjw(x))dx

=
d∑

i,j=1

∫
Ω

∂xiw(x)[∂xjw(x)δij + xj∂xixjw(x)]dx

=
d∑
i=1

∫
Ω

|∂xiw(x)|2dx +
d∑

i,j=1

∫
Ω

xj∂xiw(x)∂xjxiw(x)dx.

Using the identity φ(x)∂xjφ(x) = 1
2
∂xj(φ(x)2) with Φ(x) = ∂xiw(x) gives

I1 =

∫
Ω

|∇w(x)|2dx +
1

2

d∑
i,j=1

∫
Ω

xj∂xj(∂xiw(x))2dx

=

∫
Ω

|∇w(x)|2dx− 1

2

d∑
i,j=1

∫
Ω

(∂xiw(x))2∂xjxjdx.

Hence,

I1 =
(

1− d

2

)∫
Ω

|∇w(x)|2dx. (3.30)

Estimate I2. We apply the identity w∇w = 1
2
∇|w|2 to get from (3.28)

I2 =
λβb−β(β − 2 + d)

2

∫
Ω

rβ−2(x)∇|w(x)|2 · xdx

= −λβb
−β(β − 2 + d)

2

∫
Ω

|w(x)|2div(rβ−2(x)x)dx.

Here, the integration by parts formula was used. We; therefore, obtain

I2 = −λβb
−β(β − 2 + d)2

2

∫
Ω

|w(x)|2dx. (3.31)
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Estimate I3. Using integration by parts formula again, by (3.29),

I3 = −λ
2β2b−2β

2

∫
Ω

r2β−2(x)∇|w(x)|2 · xdx

=
λ2β2b−2β

2

∫
Ω

|w(x)|2div[r2β−2(x)x]dx.

Hence,

I3 =
λ2β2(2β − 2 + d)b−2β

2

∫
Ω

|w(x)|2r2β−2(x)dx

≥ Cλ2β3b−2β

∫
Ω

r2β(x)|w(x)|2dx. (3.32)

Combining (3.26), (3.30), (3.31) and (3.32) and using the fact that λ0b
−β � 1

(which implies λb−β � 1), we get

∫
Ω

e2λb−βrβ(x)|∆v(x)|2

4λβb−βrβ−2(x)
dx

≥ Cλ2β3b−2β

∫
Ω

r2β(x)|w(x)|2dx− C
∫

Ω

|∇w(x)|2dx. (3.33)

Recall (3.23) that w = eλb
−βrβv. We have for all x ∈ Ω,

∇w(x) = eλb
−βrβ(x)[∇v(x) + λb−ββrβ−2(x)v(x)x]. (3.34)

It follows from (3.23), (3.33), (3.34), the triangle inequality and the fact β3 � β2

that

∫
Ω

e2λb−βrβ(x)|∆v(x)|2

4λβb−βrβ−2(x)
dx ≥ Cλ2β3b−2β

∫
Ω

r2β(x)e2λb−βrβ(x)|v(x)|2dx

− C
∫

Ω

e2λb−βrβ(x)|∇v(x)|2dx.

Recall that ρ = maxx∈Ω r(x). We have obtained the desired inequality (3.22).
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Lemma 3.3.2 Let v be the function that satisfies all hypotheses of Theorem 3.3.1.

There exist positive constants β0 and λ0 depending only on b, x0, Ω and d such that

−
∫

Ω

e2λb−βrβ(x)v(x)∆v(x)dx ≥ C

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx

− Cλ2β2b−2β

∫
Ω

e2λb−βr2β(x)r2β(x)|v(x)|2dx (3.35)

for all β ≥ β0 and λ ≥ λ0.

Proof 3.3.2 By integrating by parts, we have

∫
Ω

e2λb−βrβ(x)v(x)∆v(x)dx

=

∫
Ω

∇v(x) · ∇
(
e2λb−βrβ(x)v(x)

)
dx

=

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx +

∫
Ω

v(x)∇v(x) · ∇
(
e2λb−βrβ(x)

)
dx. (3.36)

The absolute value of the second integral in the right-hand side of (3.36) can be esti-

mated as

∣∣∣ ∫
Ω

v(x)∇v(x) · ∇
(
e2λb−βrβ(x)

)
dx
∣∣∣

≤ 2λβb−β
∫

Ω

rβ−1(x)e2λb−βrβ(x)|v(x)||∇v(x)|dx

≤ Cλ2β2b−2β

∫
Ω

e2λb−βrβ(x)r2β(x)|v(x)|2dx

+
1

2

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx. (3.37)

This, (3.36) and (3.37) imply

−
∫

Ω

e2λb−βrβ(x)v(x)∆v(x)dx ≥ C

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx

− Cλ2β2b−2β

∫
Ω

e2λb−βr2β(x)r2β(x)|v(x)|2dx.
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The lemma is proved.

Lemma 3.3.3 Let v be the function satisfying all hypotheses of Theorem 3.3.1. There

exist positive constants β0 depending only on b, x0, Ω and d such that

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx ≥ Cλ3β4b−3β

∫
Ω

r2β(x)e2λb−βrβ |v(x)|2dx

+ Cλβ1/2b−β
∫

Ω

e2λb−βrβ(x)|∇v(x)|2dx (3.38)

for all β ≥ β0 and λ ≥ λ0. Here λ0 is a constant satisfying λ0b
−β > 1.

Proof 3.3.3 Multiplying β1/4 to (3.35) and then applying the inequality −ab ≤ a2/2+

b2/2, we have

∫
Ω

λβ3/2b−βe2λb−βrβ(x)rβ−2(x)|v(x)|2dx +

∫
Ω

e2λb−βrβ(x)

4λb−ββrβ−2(x)
|∆v(x)|2dx

≥ Cβ1/2

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx

− Cλ2β5/2b−2β

∫
Ω

r2β(x)e2λb−βrβ(x)|v(x)|2dx.

Since r(x) > 1, β3/2rβ−2(x)� r2β(x), we have

∫
Ω

e2λb−βrβ(x)

4λβb−βrβ−2(x)
|∆v(x)|2dx ≥ Cβ1/2

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx

− Cλ2β5/2b−2β

∫
Ω

r2β(x)e2λb−βrβ(x)|v(x)|2dx. (3.39)

Here, we have used the fact that λb−β � 1. Adding (3.39) and (3.22) together, we
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obtain

∫
Ω

e2λb−βrβ(x)

λβb−βrβ−2(x)
|∆v(x)|2dx ≥ Cλ2β3b−2β

∫
Ω

r2β(x)e2λb−βrβ |v(x)|2dx

+ Cβ1/2

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx,

which implies (3.38).

Lemma 3.3.4 Let v be the function satisfying all hypotheses of Theorem 3.3.1. There

exist positive constants β0 and λ0 depending only on b, x0, Ω and d such that

1

λβ7/4b−β

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx

≥ C

λβ7/4b−β

d∑
i,j=1

∫
Ω

e2λb−βrβ(x)r2β(x)|∂2
xixj

v(x)|2dx

− Cλβ1/4b−β
∫

Ω

e2λb−βrβ(x)|∇v(x)|2dx (3.40)

for all β ≥ β0 and λ ≥ λ0.

Proof 3.3.4 By the density arguments, we can assume that v ∈ C3(Ω). Write x =

(x1, . . . , xd). We have

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx =
d∑

i,j=1

∫
Ω

e2λb−βrβ(x)∂2
xixi

v(x)∂2
xjxj

v(x)dx

=
d∑

i,j=1

∫
Ω

∂xj

[
e2λb−βrβ(x)∂2

xixi
v(x)∂xjv(x)

]
dx

−
d∑

i,j=1

∫
Ω

∂xjv(x)∂xj

[
e2λb−βrβ(x)∂2

xixi
v(x)

]
dx.

The first integral on the right-hand side above vanishes due to the divergence theorem.
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Hence

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx = −
d∑

i,j=1

∫
Ω

e2λb−βrβ(x)∂xjv(x)∂3
xixixj

v(x)dx

−
d∑

i,j=1

∫
Ω

∂xj(e
2λb−βrβ(x))∂xjv(x)∂2

xixi
v(x)dx. (3.41)

The first term on the right-hand side of (3.41) is rewritten as

−
d∑

i,j=1

∫
Ω

e2λb−βrβ(x)∂xjv(x)∂3
xixixj

v(x)dx

=
d∑

i,j=1

∫
Ω

∂xi(e
2λb−βrβ(x)∂xjv(x))∂2

xixj
v(x)dx

=
d∑

i,j=1

∫
Ω

e2λb−βrβ(x)|∂2
xixj

v(x)|2dx

+
d∑

i,j=1

∫
Ω

∂xjv(x)∂xi(e
2λb−βrβ(x))∂2

xixj
v(x)dx.

Combining this and (3.41), we have

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx =
d∑

i,j=1

∫
Ω

e2λb−βrβ(x)|∂2
xixj

v(x)|2dx

+
d∑

i,j=1

∫
Ω

[
∂xjv(x)∂xi(e

2λb−βrβ(x))∂2
xixj

v(x)

− ∂xj(e2λb−βrβ(x))∂xjv(x)∂2
xixi

v(x)dx
]
.

Hence,

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx ≥
d∑

i,j=1

∫
Ω

e2λb−βrβ(x)|∂2
xixj

v(x)|2dx

− 2
d∑

i,j=1

∫
Ω

|∂xjv(x)||∂xi(e2λb−βrβ(x))|∂2
xixj

v(x)|dx.
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Note that for all i = 1, . . . , d,

∂xi(e
2λb−βrβ(x)) = 2λb−ββrβ−2e2λb−βrβ(x)xi for all x ∈ Ω.

Using the inequality ab ≤ a2/2 + b2/2, we obtain (3.40).

We now prove Theorem 3.3.1.

Proof 3.3.5 (Proof of Theorem 3.3.1) Adding (3.38) and (3.40) together, we ob-

tain

(1 +
1

λ2β7/4b−2β
)

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx

≥ C

λβ7/4b−β

d∑
i,j=1

∫
Ω

e2λb−βrβ(x)r2β(x)|∂2
xixj

v(x)|2dx

+ Cλ3β4b−3β

∫
Ω

r2β(x)e2λb−βrβ |v(x)|2dx

+ Cλβ1/2b−β
∫

Ω

e2λb−βrβ(x)|∇v(x)|2dx.

Corollary 3.3.1 Recall β0 and λ0 as in Theorem 3.3.1. Fix β = β0 and let the

constant C depend on x0, Ω, d and β. There exists a constant λ0 depending only on

x0, Ω, d and β such that for all function v ∈ H2(Ω) with

v(x) = ∂νv(x) = 0 on ∂Ω,

we have

∫
Ω

e2λb−βrβ(x)|∆v(x)|2dx ≥ Cλ−1

d∑
i,j=1

∫
Ω

e2λb−βrβ(x)|∂2
xixj

v(x)|2dx

+ Cλ3

∫
Ω

e2λb−βrβ |v(x)|2dx + Cλ

∫
Ω

e2λb−βrβ(x)|∇v(x)|2dx (3.42)

for all λ ≥ λ0.
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Remark 3.3.3 Although there are many versions of the Carleman estimate available,

those versions are either too complicated, not suitable for us to prove Theorem 3.2.1

and Theorem 3.4.1, or do not work in computations. The main ideas of the proof

follow from [34, 35, 36, 37, 38].

Remark 3.3.4 The presence of the second derivatives on the right-hand side of

(3.42) is a new feature of our Carleman estimate. The presence of those second

derivatives allows us to prove the existence and uniqueness of the minimizers of the

cost functionals in Section 3.2.2.

3.4 The convergence analysis

In this section, we prove a theorem that guarantees that the sequence of vector-

valued functions, proposed in Section 3.2.2, converges to the true solution to (3.9)–

(3.11). This convergence implies that Algorithm 2 rigorously provides good numerical

solutions to Problem 3.1.1.

Theorem 3.4.1 Assume that problem (3.9)–(3.11) has a unique solution (u∗m)Nm=1.

Then, there is a constant λ depending only on Ω, T , d and N such that

N∑
m=1

∥∥∥eλb−βrβ(x)(u(k)
m − u∗m)

∥∥∥2

L2(Ω)

≤
[C
λ3

]k−1
N∑
m=1

∥∥∥eλb−βrβ(x)(u(1)
m − u∗m)

∥∥∥2

L2(Ω)
(3.43)

for k = 1, 2, . . . where C is a constant depending only on Ω, T , M , d, N and ‖q‖C1(Ω).

In particular, if λ is large enough such that 0 < C/λ3 < 1, {u(k)
m }Nm=1 converges to u∗m

exponentially. Moreover, with such a λ, the sequence (p(k))k≥1 obtained in Step 8 of

Algorithm 2 converges to the true function p∗ = u∗(x, 0) given by (3.4) with t = 0.

Proof 3.4.1 In the proof, C is a generous constant that might change from estimate

to estimate.
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Step 1. Establish a priori bound. Recall H0 as in (3.15). Since (u
(k)
1 , . . . , u

(k)
N ) is the

minimizer of J (k), by the variational principle, for all h ∈ H0

N∑
m=1

〈
eλb
−βrβ(x)

[
∆u(k) − c(x)

N∑
n=1

smnu
(k) + qm(P (u

(k−1)
1 ), . . . , P (u

(k−1)
N ))

]
,

eλb
−βrβ(x)

[
∆hm − c(x)

N∑
n=1

smnhm

]〉
L2(Ω)

= 0. (3.44)

On the other hand, since (u∗1, . . . , u
∗
N) solves (3.9)–(3.11),

N∑
m=1

〈
eλb
−βrβ(x)

[
∆u∗ − c(x)

N∑
n=1

smnu
∗ + qm(u∗1, . . . , u

∗
N)
]
,

eλb
−βrβ(x)

[
∆hm − c(x)

N∑
n=1

smnhm

]〉
L2(Ω)

= 0. (3.45)

It follows from (3.44) and (3.45) that

N∑
m=1

〈
eλb
−βrβ(x)

[
∆(u(k) − u∗)− c(x)

N∑
n=1

smn(u(k) − u∗)

+ qm(P (u
(k−1)
1 ), . . . , P (u

(k−1)
N )))− qm(u∗1, . . . , u

∗
N)
]
,

eλb
−βrβ(x)

[
∆hm − c(x)

N∑
n=1

smnhm

]〉
L2(Ω)

= 0. (3.46)

Using the test function hm = u
(k)
m − u∗m, m = 1, . . . , N , in (3.46) and using Hölder’s

inequality, we have

N∑
m=1

∥∥∥eλb−βrβ(x)
[
∆(u(k) − u∗)− c(x)

N∑
n=1

smn(u(k) − u∗)
]∥∥∥2

L2(Ω)

≤
N∑
m=1

∥∥∥eλb−βrβ(x)
[
qm(P (u

(k−1)
1 ), . . . , P (u

(k−1)
N )))− qm(u∗1, . . . , u

∗
N)
]∥∥∥

L2(Ω)

×
∥∥∥eλb−βrβ(x)

[
∆(u(k)

m − u∗m)− c(x)
N∑
n=1

smn(u(k)
m − u∗m)

]∥∥∥
L2(Ω)

. (3.47)
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Using the inequality
∑N

m=1 ambm ≤ (
∑N

m=1 a
2
m)1/2(

∑N
m=1 b

2
m)1/2 for the right hand side

of (3.47) and simplying the resulting, we get

N∑
m=1

∥∥∥eλb−βrβ(x)
[
∆(u(k)

m − u∗m)− c(x)
N∑
n=1

smn(u(k)
m − u∗m)

]∥∥∥2

L2(Ω)

≤
N∑
m=1

∥∥∥eλb−βrβ(x)
[
qm(P (u

(k−1)
1 ), . . . , P (u

(k−1)
N )))

− qm(u∗1, . . . , u
∗
N)
]∥∥∥2

L2(Ω)
. (3.48)

Step 2. Estimate the right hand side of (3.48). Since ‖u∗(x, t)‖L∞ ≤M , we have

|u∗m(x)| =
∣∣∣ ∫ T

0

u∗(x, t)Ψm(t)dt
∣∣∣ ≤ ‖u∗(x, t)‖L2(0,T )‖‖Ψm(t)‖L2(0,T )

=
(∫ T

0

|u∗(x, t)|2dx
)1/2

≤M
√
T

for m = 1, . . . , N. Therefore,

∣∣∣qm(P (u
(k−1)
1 ), . . . , P (u

(k−1)
N ))− qm(u∗1, . . . , u

∗
N)
∣∣∣ ≤ Am

N∑
n=1

∣∣u(k−1)
n − u∗n

∣∣
where

Am = max
{
|∇qm(s1, . . . , sN)| : |si| ≤M

√
T , i = 1, . . . , N

}
m = 1, . . . , N.

Set A =
∑N

m=1Am. The right hand side of (3.48) is bounded from above by

N∑
m=1

∥∥∥eλb−βrβ(x)
[
qm(P (u

(k−1)
1 ), . . . , P (u

(k−1)
N )))− qm(u∗1, . . . , u

∗
N)
]∥∥∥2

L2(Ω)

≤ A
N∑
m=1

∥∥∥eλb−βrβ(x)
∣∣P (u(k−1)

m )− u∗m
∣∣∥∥∥2

L2(Ω)

≤ A

N∑
m=1

∥∥∥eλb−βrβ(x)
∣∣u(k−1)
m − u∗m

∣∣∥∥∥2

L2(Ω)
. (3.49)
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Combining (3.48) and (3.49) gives

N∑
m=1

∥∥∥eλb−βrβ(x)
[
∆(u(k)

m − u∗m)− c(x)
N∑
n=1

smn(u(k)
m − u∗m)

]∥∥∥2

L2(Ω)

≤ A

N∑
m=1

∥∥∥eλb−βrβ(x)
∣∣u(k−1)
m − u∗m

∣∣∥∥∥2

L2(Ω)
. (3.50)

Step 3. Estimate the left hand side of (3.50). Using the inequality (a − b)2 ≥

a2/2− 2b2, we have

N∑
m=1

∥∥∥eλb−βrβ(x)
[
∆(u(k)

m − u∗m)− c(x)
N∑
n=1

smn(u(k)
n − u∗n)

]∥∥∥2

L2(Ω)

≥
N∑
m=1

1

2

∥∥∥eλb−βrβ(x)∆(u(k)
m − u∗m)

∥∥∥2

L2(Ω)

− 2
N∑
m=1

∥∥∥eλb−βrβ(x)c(x)
N∑
n=1

smn(u(k)
n − u∗n)

∥∥∥2

L2(Ω)
. (3.51)

Applying Carleman estimate in Corollary 3.3.1, for the function u
(k)
m − u∗, m =

1, . . . , N , we estimate

N∑
m=1

1

2

∥∥∥eλb−βrβ(x)∆(u(k)
m − u∗m)

∥∥∥2

L2(Ω)

≥ Cλ3

N∑
m=1

∥∥∥eλb−βrβ(x)(u(k)
m − u∗m)

∥∥∥2

L2(Ω)
. (3.52)
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Fix λ ≥ λ0 where λ0 is as in Corollary 3.3.1. It follows from (3.51) and (3.52) that

N∑
m=1

1

2

∥∥∥eλb−βrβ(x)∆(u(k)
m − u∗m)

∥∥∥2

L2(Ω)

− 2
N∑
m=1

∥∥∥eλb−βrβ(x)

N∑
n=1

smn(u(k)
n − u∗n)

∥∥∥2

L2(Ω)

≥ Cλ3

N∑
m=1

∥∥∥eλb−βrβ(x)(u(k)
m − u∗m)

∥∥∥2

L2(Ω)
. (3.53)

Combining (3.48), (3.49) and (3.53) gives

N∑
m=1

∥∥∥eλb−βrβ(x)(u(k)
m − u∗m)

∥∥∥2

L2(Ω)
≤ A

Cλ3

N∑
m=1

∥∥∥eλb−βrβ(x)(u(k−1)
m − u∗m)

∣∣∥∥∥2

L2(Ω)
.

By induction, we have

N∑
m=1

∥∥∥eλb−βrβ(x)(u(k)
m − u∗m)

∥∥∥2

L2(Ω)

≤
[ A

Cλ3

]k−1
N∑
m=1

∥∥∥eλb−βrβ(x)(u(1)
m − u∗m)

∣∣∥∥∥2

L2(Ω)
.

Replacing A/C by the generous constant C, we have proved the estimate (3.43). The

convergence of p(k) to p∗ as k →∞ is obvious.

Remark 3.4.1 The technique of using the Carleman estimate to prove Theorem 3.4.1

is similar to the one in [16] in which a coefficient inverse problem for hyperbolic

equations was considered. We also find that this technique is applicable to solve an

inverse source problem for nonlinear parabolic equations [17] from the boundary and

additional internal measurements.

Remark 3.4.2 The convergence of {p(k)}k≥1 to the true solution to the inverse prob-

lem in Theorem 3.4.1 is numerically confirmed in Section 3.5. See also Figures 3.2e–

3.5e.
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3.5 Numerical implementation

For simplicity, we solve the inverse problem in the case d = 2.

3.5.1 The forward problem

We solve the forward problem of Problem 3.1.1 as follows. Let R1 > R > 0 be two

positive numbers. Define the domains

Ω1 = (−R1, R1)2 and Ω = (−R,R)2.

We approximate (3.1)defined on Rd × (0, T ) by the following problem defined on

Ω1 × (0, T )


c(x)ut(x, t) = ∆u(x, t) + q(u(x, t)) x ∈ Ω1, t ∈ (0, T ),

u(x, 0) = p(x) x ∈ Ω1,

u(x, t) = 0 x ∈ ∂Ω1, t ∈ [0, T ].

(3.54)

In our numerical tests, the function c is given by

c(x, y) = 1 + 1/30
[
3(1− 3x)2e−9x2−(3y+1)2

− 10(3x/5− 27x3 − 243y5)e−9x2−9y2 − 1/3e−(3x+1)2−9y2
]

for x = (x, y) ∈ Ω.

The range of c is [0.8, 1.25], which is not a perturbation of the constant function 1.

We solve (3.54) by the finite difference method using the explicit scheme. The data

f(x, t) = u(x, t) and g(x, t) = ∂νu(x, t) on ∂Ω× [0, T ] can be extracted easily.

In the next subsection, we discuss our choice of {Ψn}n≥1 and the number N in

Section 3.2.1 and the truncation in (3.4).
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3.5.2 A special orthonormal basis {Ψn}n≥1 of L2(0, T ) and the choice of the

cut-off number N

We will employ a special basis of L2(0, T ). For each n = 1, 2, . . . , set φn(t) =

(t − T/2)n−1 exp(t − T/2). The set {φn}∞n=1 is complete in L2(0, T ). Applying the

Gram-Schmidt orthonormalization process to this set, we obtain a basis of L2(0, T ),

named as {Ψn}∞n=1.

This basis was originally introduced to solve the electrical impedance tomography

problem with partial data in [39]. Since then, this basis was widely used to solve a

variety of inverse problems. For instance, in [24], we employ this basis to solve an

inverse source problem and a coefficient inverse problem for linear parabolic equations;

in [29], this special basis was used to solve an inverse source problem for elliptic

equations; in [40], we solve the problem of finding the Radon inverse with incomplete

data; in [41], we solve an inverse source problem for the full transport radiative

equation. The most related paper to the current one is [6], in which the second

author and his collaborator employed this basis to recover the initial condition for

linear parabolic equations.

We next discuss the choice of N in (3.4). Fix a positive integer Nx. On Ω =

[−R,R]2, we arrange an Nx ×Nx uniform grid

G =
{

(xi, yj) : xi = −R + (i− 1)h, yj = −R + (j − 1)h, 1 ≤ i, j ≤ Nx

}

where h = 2R/(Nx − 1) is the step size. In our computations, we set R1 = 6, R = 1,

T = 1.5 and Nx = 80. To solve Problem 3.1.1, we need to compute the discrete values

of the function u on the grid G.

The first step in our method is to find an appropriate cut-off number N . We do

so as follows. Take the data on {(x, y = R) ∈ ∂Ω}, which is the top part of ∂Ω,

f(x, y = R, t) = utrue(x, y = R, t) in Test 1 in Section 3.5.4. Then, we compare the
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(a) N = 15 (b) N = 25 (c) N = 35

(d) N = 15 (e) N = 25 (f) N = 35

Figure 3.1: The comparison of f(x,R, t) and its partial Fourier sum
∑N

n=1 fm(x, y =
R, t) on {(x, y = R) ∈ ∂Ω}. The first row displays the graphs of the absolute differ-
ences of f(x,R, t) and

∑N
n=1 fn(x,R)Ψn(t). The horizontal axis indicates x and the

vertical axis indicates t. It is evident that the bigger N , the smaller the difference is.
The second row shows the true data f(x, y = R, T ) (solid line) and its approximation∑N

n=1 fn(x, y = R)Ψn(T ) (dash–dot line). We observe that when N = 35, the two
curves coincide.

function f(x,R, t) and the function
∑N

n=1 fn(x, y = R)Ψn(t) where fn(x, y = R) is

computed by (3.11). Choose N such that the function

eN(x, t) =
∣∣∣f(x, y = R, t)−

N∑
n=1

fn(x, y = R)Ψn(t)
∣∣∣

is small enough. We use the same number N for all numerical tests. In this chapter,

N = 35, see Figure 3.1 for an illustration.

Remark 3.5.1 In our computations, when the cut-off number N is 15 or 25, the

quality of the numerical results is poor. When N = 35, we obtain good numerical

results. Increasing N > 35 does not improve the computed quality.

Remark 3.5.2 In this numerical section, we choose the Carleman weight function
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eλb
−β |x−x0|β when defining J (k), k ≥ 0, where λ = 40 and β = 10. The point x0 is

(0, 1.5) and b = 5. This and the condition λb−β large conflict. However, in practice,

the Carleman weight function with these values of λ and β already helps provide

good numerical solutions to Problem 3.1.1. We numerically observe that the weight

function blow-up when λb−β � 1, causing some unnecessary numerical difficulties.

We next present the key step in the implementation of the inverse problem.

3.5.3 Computing the vector-valued function (um)Nm=1

Recall that (u
(0)
m (x, y))Nm=1 minimizes J (0) on H. Similarly to the argument in the

first step of the proof of Theorem 3.4.1, for all h ∈ H0, see the definition of H0 in

(3.15), by the variational principle, we have

N∑
m=1

〈
eλb
−βrβ(x)

[
∆u(0)

m − c(x)
N∑
n=1

smnu
(0)
m

]
,

eλb
−βrβ(x)

[
∆hm − c(x)

N∑
n=1

smnhm

]〉
L2(Ω)

= 0. (3.55)

For any u ∈ H, we next associate the values of um {um(xi, yj) : 1 ≤ m ≤ N, 1 ≤

i, j ≤ Nx} with an N2
xN dimensional vector ui with

ui = um(xi, yj) (3.56)

where

i = (i− 1)NxN + (j − 1)N +m for all 1 ≤ i, j ≤ Nx, 1 ≤ m ≤ N. (3.57)

The range of the index i is {1, . . . , N2
xN}. The “line-up" finite difference form of (3.55)

is

〈(L − S)u(0), (L − S)h〉 = 0 (3.58)
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where W2
λ, u(0) and h are the line-up versions of (W 2

λ )Nm=1, (u0
m)Nm=1 and (hm)Nm=1

respectively. Here, 〈·, ·〉 is the classical Euclidian inner product. In (3.58)

1. the N2
xN ×N2

xN matrix L is defined as

(a) (L)ii = −4eλb
−βrβ(xi,yj)

d2
x

for i as in (3.57) for 2 ≤ i, j ≤ Nx − 1, 1 ≤ m ≤ N ;

(b) (L)ij = eλb
−βrβ(xi,yj)

d2
x

for j = (i ± 1 − 1)NxN + (j − 1)N + m and j =

(i− 1)NxN + (j ± 1− 1)N +m; for 2 ≤ i, j ≤ Nx − 1, 1 ≤ m ≤ N ;

(c) the other entries are 0.

2. the N2
xN × N2

xN matrix S is defined as (S)ij = eλb
−βrβ(xi,yj)c(xi, yj)smn for i

as in (3.57) and j = (i − 1)NxN + (j ± 1 − 1)N + n for 2 ≤ i, j ≤ Nx − 1,

1 ≤ m,n ≤ N . The other entries are 0.

On the other hand, since (u0
m)Nm=1 satisfies the boundary constraints (3.11), we have

Du(0) = f and Nu(0) = g (3.59)

where

1. The N2
xN ×N2

xN matrix D is defined as Dii = 1 for i as in (3.57), i ∈ {1, Nx},

1 ≤ j ≤ Nx or 2 ≤ i ≤ Nx − 1, j ∈ {1, Nx}. The other entries are 0.

2. The N2
xN ×N2

xN matrix N is defined as

(a) Nii = 1
dx

for i as in (3.57), i ∈ {1, Nx}, 1 ≤ j ≤ Nx or 2 ≤ i ≤ Nx − 1,

j ∈ {1, Nx}, 1 ≤ m ≤ N ;

(b) Nij = − 1
dx

for i as in (3.57) and j = (i+ 1− 1)NxN + (j − 1)N +m, i = 1,

1 ≤ j ≤ Nx, 1 ≤ m ≤ N ;

(c) Nij = − 1
dx

for i as in (3.57) and j = (i−1−1)NxN+(j−1)N+m, i = Nx,

1 ≤ j ≤ Nx, 1 ≤ m ≤ N ;
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(d) Nij = − 1
dx

for i as in (3.57) and j = (i − 1)NxN + (j + 1 − 1)N + m,

1 ≤ i ≤ Nx, j = 1, 1 ≤ m ≤ N ;

(e) Nij = − 1
dx

for i as in (3.57) and j = (i − 1)NxN + (j − 1 − 1)N + m,

2 ≤ i ≤ Nx − 1, j = Nx, 1 ≤ m ≤ N ;

(f) The other entries are 0.

3. The N2
xN dimensional vector f is defined as fi = fm(xi, yj) for i as in (3.57),

i ∈ {1, Nx}, 1 ≤ j ≤ Nx, 1 ≤ m ≤ N or 2 ≤ i ≤ Nx − 1, j ∈ {1, Nx}.

4. The N2
xN dimensional vector g is defined as gi = gm(xi, yj) for i as in (3.57),

i ∈ {1, Nx}, 1 ≤ j ≤ Nx, 1 ≤ m ≤ N or 2 ≤ i ≤ Nx − 1, j ∈ {1, Nx}.

Solving (3.58)–(3.59) by the least square method with the command “lsqlin" built in

Matlab, we obtain the vector u(0) and hence the initial solution (u
(0)
m (xi, yj))

N
m=1 for

1 ≤ i, j ≤ Nx.

Remark 3.5.3 In computation, defining the matrices above is ineffective due to their

large size, N2
xN × N2

xN where Nx = 80 and N = 35. We note that most of those

matrices’ entries are 0. So, instead of defining dense matrices, we use the invention

of sparse matrices. Moreover, using sparse matrices significantly reduces the compu-

tational time.

We next compute the vector valued function (u
(k)
m )Nm=1, k ≥ 1, assuming by in-

duction that (u
(k−1)
m )Nm=1 is known. Applying a very similar argument when deriving

(3.58)–(3.59), the vector u(k) the line up version of (u
(k)
m (xi, yj))

N
m=1 with 1 ≤ i, j ≤ Nx

satisfies the equations

(L − S)T (L − S)u(k) = −(L − S)Tq(k−1). (3.60)

and

Du(k) = f and Nu(k) = g (3.61)
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where q(k−1) is the line up version of (qm(u
(k−1)
1 (x, y), . . . , u

(k−1)
N (x, y)))Nm=1. To find

u(k), we solve (3.60)–(3.61) by the least square method with the command “lsqlin" of

Matlab. The value of the function (um(xi, yj))
N
m=1 follows. We next find u(x, y, t) via

(3.4). The desired solution to Problem 3.1.1 p(x, y) is set to be u(x, y, 0).

Remark 3.5.4 In theory, we need to apply the cut-off function P , see (3.14). This

is only for our convenience to prove Theorem 3.4.1. However, in computation, we

can obtain good numerical results without applying the cut-off technique. This can be

explained by setting M sufficiently large.

We summarize the procedure to find p in Algorithm 2.

Algorithm 2 The procedure to solve Problem 3.1.1
1: Compute {Ψn}Nn=1 as in Section 3.5.2. Choose N = 35, see Figure 3.1 and

Remark 3.5.1.
2: Compute matrices L,S,D and N . Find the line up versions f and g of the data
fm(xi, yj) and gm(xi, yj) for (xi, yj) ∈ G ∩ ∂Ω, 1 ≤ m ≤ N .

3: Solve (3.58)–(3.59) by the least square method. The solution is denoted by u(0).
Compute u(0)

m (xi, yj), 1 ≤ i, j ≤ Nx, 1 ≤ m ≤ N using u(0)
m (xi, yj) = (u(0))i with i

as in (3.57).
4: Set the initial solution p(0) =

∑N
n=1 u

(0)
n (xi, yj)Ψn(0).

5: for k = 1 to 5 do
6: Find q(k−1), the line up version of q(P (u

(k−1)
1 (xi, yj)), . . . , u

(k−1)
N (xi, yj))), 1 ≤

i, j ≤ Nx, 1 ≤ m ≤ N in the same manner of (3.56) and (3.57).
7: Solve (3.60)–(3.61) by the least square method. The solution is denoted by

u(k). Compute u(k)
m (xi, yj), 1 ≤ i, j ≤ Nx, 1 ≤ m ≤ N using u(k)

m (xi, yj) = (u(k))i
with i as in (3.57).

8: Set the initial solution p(k) =
∑N

n=1 u
(k)
n (xi, yj)Ψn(0).

9: Define the recursive error at step k as ‖p(k) − p(k−1)‖L∞(Ω).
10: end for

Remark 3.5.5 We numerically observe that ‖p(5)− p(4)‖∞ is sufficiently small in all

tests in Section 3.5.4; i.e., our iterative scheme converges fast. Iterating the loop in

Algorithm 2 five (5) times is enough to obtain good numerical results. Therefore, we

stop the iterative process when k = 5.
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3.5.4 Numerical examples

In this section, we show four (4) numerical results.

Test 1. The true source function is given by

ptrue =

 8 x2 + (y − 0.3)2 < 0.452,

0 otherwise.

The nonlinearity q is given by

q(s) = s(1− s) s ∈ R.

In this case, the parabolic equation in (3.1) is the Fisher equation. The true and

computed source functions p are displayed in Figure 3.2. It appears in the graph of

this source function a big inclusion with contrast 8.

Our method to find the initial solution works very well in this case. One can see in

Figure 3.2b that by solving the system (3.58)–(3.59), we obtain the initial solution that

clearly indicates the position of the inclusion. The value of the reconstructed function

inside the inclusion is somewhat acceptable and will improve after several iterations,

see Figure 3.2d. The reconstructed function pcomp = p(5) is a good approximation of

the true function ptrue, see Figures 3.2c and 3.2d. It is evident from Figure 3.2e that

our method converges fast. The reconstructed maximal value inside the inclusion is

7.202 (relative error 9.98%).

Test 2. We test the case of multiple inclusions, each of which has a different value.
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(a) (b)

(c) (d) (e)

Figure 3.2: Test 1. The reconstruction of the source function. (a) The function ptrue

(b) The initial solution p(0) obtained by Step 3 in Algorithm 2. (c) The function p(5)

obtained by Step 8 in Algorithm 2. (d) The true (solid), the initial source function
(dot) in (b), and the computed source function (dash-dot) on the vertical line in (c).
(e) The curve ‖p(k) − p(k−1)‖L∞(Ω), k = 1, . . . , 5. The noise level of the data in this
test is 20%.

The true source function ptrue is given by

ptrue(x, y) =



12 (x− 0.5)2 + (y − 0.5)2 < 0.352,

10 (x+ 0.5)2 + (y + 0.5)2 < 0.352,

14 (x− 0.5)2 + (y + 0.5)2 < 0.352,

9 (x+ 0.5)2 + (y − 0.5)2 < 0.352,

0 otherwise.

In this test, the nonlinearity q is given by

q(s) = −s(1−
√
|s|) s ∈ R.

The true and computed source functions p are displayed in Figure 3.3.
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(a) (b)

(c) (d) (e)

Figure 3.3: Test 2. The reconstruction of the source function. (a) The function ptrue

(b) The initial solution p(0) obtained by Step 3 in Algorithm 2. (c) The function p(5)

obtained by Step 8 in Algorithm 2. (d) The true (solid), the initial solution (dot),
and computed source function (dash-dot) on the diagonal line in (c). (e) The curve
‖p(k) − p(k−1)‖L∞(Ω), k = 1, . . . , 5. The noise level of the data in this test is 20%.

In this test, we successfully recover all four inclusions. On the other hand, the

value of p in each inclusion is high, making the true solution far away from the

constant background p0 = 0. Hence, p0 = 0 might not serve as the initial guess. Our

method to find the initial solution in Step 3 in Algorithm 2 is somewhat effective,

see Figure 3.3b. The computed images of the initial solution do not completely

separate the inclusions. Both computed values and images of the inclusions improve

with iterations. The computed source function pcomp = p(5) is acceptable, see Figure

3.3c. Figure 3.3d shows that the constructed values in the inclusions are good. The

procedure converges very fast, see Figure 3.3e.

The true maximal value of the upper left inclusion is 9 and the computed one is

8.992 (relative error 0.0%). The true maximal value of the upper right inclusion is 12

and the computed one is 13.4 (relative error 11.67%). The true maximal value of the
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lower left inclusion is 10 and the computed one is 10.13 (relative error 1.3%). The

true maximal value of the lower right inclusion is 14 and the computed one is 14.86

(relative error 6.14%).

Test 3. The true source function is given by

ptrue =

 1 0.22 < x2 + y2 < 0.82,

0 otherwise.

The nonlinearity is given by

q(s) = s2 s ∈ R.

The support of the function ptrue is ring-like. This test is interesting due to the

presence of the void and the nonlinearity grows fast. The true and computed source

functions p are displayed in Figure 3.4.

(a) (b)

(c) (d) (e)

Figure 3.4: Test 3. The reconstruction of the source function. (a) The function
ptrue (b) The initial solution p(0) obtained by Step 3 in Algorithm 2. (c) The function
p(5) obtained by Step 8 in Algorithm 2. (d) The true (solid), initial solution (dot)
and computed source function (dash-dot) on horizontal line in (c). (e) The curve
‖p(k) − p(k−1)‖L∞(Ω), k = 1, . . . , 5. The noise level of the data in this test is 20%.
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In this test, our method to find the initial solution in Step 3 in Algorithm 2 is

somewhat acceptable. The void in the initial solution p(0) cannot be seen very well,

see Figure 3.4b. The contrast and the void are improved with iteration. The final

reconstructed source function p(5) is satisfactory, see Figures 3.4c and 3.4d. The

computed maximal value inside the ring is 1.094 (relative error = 9.4%).

Test 4. In this test, we identify two high contrast “lines". The true source function

is given by

ptrue =


10 max{|x|/4, 4|y − 0.6| < 0.9}and |x| < 0.8,

8 max{|x|/4, 4|y + 0.6| < 0.9}and |x| < 0.8,

0 otherwise.

The nonlinearity is given by

q(s) = −s2 s ∈ R.

The true and computed source functions p are displayed in Figure 3.5.

It is evident that Algorithm 2 provides a good computed source function. The

initial solution by Step 3 in Algorithm 2 is quite good although there is a “negative"

artifact between the two detected lines, see Figure 3.5b. This artifact is reduced

significantly with iteration. We observe that the shape and contrasts of two lines are

reconstructed very well, see Figures 3.5c and 3.5d. Our method converges fast, see

Figure 3.5e.

The true maximal value of the source function in the upper line is 10 and the

computed one is 9.714 (relative error 2.8%). The true maximal value of the source

function in the lower line is 8 and the computed one is 8.041 (relative error 0.51%).
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(a) (b)

(c) (d) (e)

Figure 3.5: Test 3. The reconstruction of the source function. (a) The function ptrue

(b) The initial solution p(0) obtained by Step 3 in Algorithm 2. (c) The function p(5)

obtained by Step 8 in Algorithm 2. (d) The true and computed source function on
the line (dash-dot) in (c). (e) The curve ‖p(k) − p(k−1)‖L∞(Ω), k = 1, . . . , 5. The noise
level of the data in this test is 20%.

3.6 Concluding remarks

In this chapter, we analytically and numerically solve the problem of recovering the

initial condition of nonlinear parabolic equations. The first step in our method is to

derive a system of nonlinear elliptic PDEs whose solutions are the Fourier coefficients

of the solution to the governing nonlinear parabolic equation. We propose an iterative

scheme to solve the system above. Finding the initial solution for this iterative process

is a part of our algorithm. The convergence of this iterative method was proved. We

show several numerical results to confirm the theoretical part.



REFERENCES

[1] O. A. Ladyzhenskaya, V. Solonnikov, and N. N. Ural’tseva, Linear and quasilin-
ear equations of Parabolic Type, vol. 23. Providence, RI: American Mathematical
Society, 1968.

[2] M. V. Klibanov, “Estimates of initial conditions of parabolic equations and in-
equalities via lateral Cauchy data,” Inverse Problems, vol. 22, pp. 495–514, 2006.

[3] A. El Badia and T. Ha-Duong, “On an inverse source problem for the heat
equation. application to a pollution detection problem,” Journal of Inverse and
Ill-posed Problems, vol. 10, pp. 585–599, 2002.

[4] J. Li, M. Yamamoto, and J. Zou, “Conditional stability and numerical recon-
struction of initial temperature,” Communications on Pure and Applied Analysis,
vol. 8, pp. 361–382, 2009.

[5] R. A. Fisher, “The wave of advance of advantageous genes,” Annals of Eugenics,
vol. 7, no. 4, pp. 355–369, 1937.

[6] Q. Li and L. H. Nguyen, “Recovering the initial condition of parabolic equations
from lateral Cauchy data via the quasi-reversibility method,” Inverse Problems
in Science and Engineering, vol. 28, pp. 580–598, 2020.

[7] M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishat·skĭi, Ill-Posed Problems of
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CHAPTER 4: CARLEMAN CONTRACTION MAPPING FOR A 1D INVERSE

SCATTERING PROBLEM WITH EXPERIMENTAL TIME-DEPENDENT DATA

4.1 Introduction

The phenomenon of multiple local minima and ravines of conventional least squares

cost functionals for Coefficient Inverse Problems (CIPs) is well known; see, e.g., [38]

for a numerical example. Some cost functionals for various CIPs can be found in, e.g.,

[10, 13, 14]. Due to this phenomenon, the convergence of a numerical method of the

minimization of that functional to the true solution of the corresponding CIP can be

guaranteed only if its starting point is located in a sufficiently small neighborhood of

this solution. To avoid the latter, the so-called convexification method was initially

proposed theoretically in [20, 17] and more recently this method was tested on a

variety of CIPs. The corresponding results for multidimensional CIPs are summarized

in the recently published book [25]. As to the various versions of the convexification

method for the 1D CIP of this publication, we refer to publications [22, 23, 24, 40],

where the same experimental data as ones discussed in this chapter were treated.

In [39] the same CIP, although without experimental data was treated by another

version of the convexification method

In the convexification, a weighted Tikhonov-like functional Jλ,β is constructed first,

where λ, β > 0 are two parameters. The weight is the Carleman Weight Function

(CWF). This is the function, which is used as the weight in the Carleman estimate

for the corresponding Partial Differential Operator, see, e.g., [5, 6, 18, 25, 30, 42]

for some publications on Carleman estimates. That functional Jλ,β is defined on a

bounded convex set S ⊂ H, where H is an appropriate Hilbert space. Next, it is

proven that, for an appropriate choice of the parameters λ, β, the functional Jλ,β is
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strictly convex on S, has a unique minimizer on S and minimizers generate a sequence,

which converges to the true solution of the original CIP as long as the level of noise

in the data tends to zero. Let d (S) be the diameter of the set S. An important

point here is that a smallness condition is not imposed on d (S) . This means that

convexification is a globally convergent numerical method in terms of the Definition

given below. We call the method outlined in this paragraph the “the first generation

of the convexification method".

Definition. We call a numerical method for a CIP globally convergent if there is

a theorem claiming that this method delivers at least one point in a sufficiently small

neighborhood of the true solution of that CIP without advanced knowledge of a small

neighborhood of this solution.

The above functional Jλ,β is not a quadratic one. The main new element of this

chapter is that we minimize a sequence of quadratic functionals. More precisely,

unlike the above, we construct a sequence of linear boundary value problems (BVPs)

for certain PDEs with overdetermined boundary conditions and non-local terms. To

solve each of these BVPs, we apply a weighted version of the Quasi-Reversibility

Method (QRM). The weight is again the CWF. This is the reason why we call this

method “Carleman Quasi-Reversibility Method" (CQRM). For each BVP, CQRM

minimizes a quadratic weighted functional on a bounded set S ′, which is an analog of

the above-mentioned set S. We analytically establish the key convergence estimate

for the sequence of minimizers of these functionals. Our convergence estimate implies

the global convergence of that sequence to the true solution of our CIP. We call the

technique of this chapter “the second generation of the convexification method".

Remark 1.1. The convergence estimate mentioned in the previous paragraph is

similar to the estimate of the classical contraction mapping principle; see the first

item of Remarks 8.1 in section 8. This explains the title of our chapter.

Furthermore, due to its connection with the contraction mapping, that convergence



84

estimate implies a rapid convergence of our technique. As a result, computations for

our experimental data are performed in real time here; also, see Remark 11.1 in section

11 as well as section 12. On the other hand, real-time computations are not claimed in

the previous works of this research group on the first generation of the convexification

method applied to the same CIP and with the same experimental data as ones used

in this chapter [22, 23, 24, 40]. The real-time computations are obviously important

for our described Real World application described below in this section. Thus, the

real-time computations for experimental data present an important advantage of the

technique of this chapter over the first generation of the convexification method.

The QRM was first proposed in [29], also, see, e.g. [7, 8, 19, 25] and references

cited therein for some follow up publications. Even though Carleman estimates were

used in [7, 8, 19, 25] to establish convergence rates, the CWFs were not involved in

numerical schemes.

For the first time, the second generation of the convexification method involving

CQRM was published in [2]. We also refer to works [3, 4] of the same research

group for their later publications. In these papers, globally convergent numerical

methods for CIPs for hyperbolic PDEs in Rn were developed. It is assumed in [2, 3, 4]

that one of the initial conditions is not vanishing everywhere in the closed domain

of one’s interest. In other words, papers [2, 3, 4] work in the framework of the

Bukhgeim-Klibanov method, see [9] for the originating work on this method as well

as, e.g., [5, 6, 16, 18, 25, 42] for some follow-up publications. The major difference

between works [2, 3, 4] and all above-cited publications of our research group on the

convexification, including the current one, is that in our works either one of the initial

conditions is the δ−function and another one is zero, or a similar requirement holds

for the Helmholtz equation. The only exception is the paper [26], which works within

the framework of the method of [9], also, see chapter 9 of [25] for the same result as the

one in [26]. In [31] the second generation of the convexification was applied to solve an
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inverse problem of the determination of the initial condition of a quasilinear parabolic

equation. We refer to papers [12, 27] for some globally convergent numerical methods

for CIPs with the Dirichlet-to-Neumann map data. In these works, the number m

of free variables in the data exceeds the number n of free variables in the unknown

coefficient, m > n. In our chapter m = n = 1. Also, m = n in all other above-cited

works on the convexification.

We consider in this chapter a CIP for a 1D hyperbolic PDE. We show that our CIP

has a direct application in the problem of the standoff detection and identification

of antipersonnel land mines and improvised explosive devices (IEDs). Thus, in the

computational part of this chapter, we present results of the numerical performance of

our technique for both computationally simulated and experimentally collected data

for targets mimicking antipersonnel land mines and IEDs. The experimental data of

this chapter were collected by the forward-looking radar of the US Army Research

Laboratory [35]. Since these data were described in some previous publications of our

research group [15, 22, 23, 24, 28, 40], then we do not describe them here.

From the applied standpoint, our goal is to compute approximate values of dielectric

constants of the above-mentioned targets. We point out that our experimental data

are severely under-determined. Indeed, any target is a 3D object. On the other

hand, we have only one experimentally measured time-resolved curve for each target.

Therefore, we can compute only a sort of an average value of the dielectric constant

of each target. This is the reason of the mathematical modeling of our experimental

data by a 1D hyperbolic PDE rather than by its 3D analog. We believe that our

results for experimental data might potentially help to decrease the false alarm rate

in the problem of the standoff detection and identification of antipersonnel land mines

and IEDs.

There is a classical Gelfand-Levitan method [32] for solutions of 1D CIPs for some

hyperbolic PDEs. This method does not rely on optimization and, therefore, avoids
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the phenomenon of local minima. It reduces the original CIP to a linear integral

equation of the second kind. This is the so-called “Gelfand-Levitan equation" (GL).

However, the questions of uniqueness and stability of the solution of GL for the case

of noisy data are open; see, e.g., Lemma 2.4 in the book [36, Chapter 2]. This lemma

is valid only in the case of noiseless data. However, realistic data are always noisy.

In addition, it was demonstrated numerically in [15] that GL cannot work well for

exactly the same experimental data as the ones we use in the current chapter. On

the other hand, it was demonstrated in [22, 23, 24, 40] that the first generation of the

convexification method works well with these data. The same is true for the second

generation of the convexification method of this chapter.

Uniqueness and Lipschitz stability theorems of the CIP considered here are well

known. Indeed, it was shown in, e.g. [40, 39] that, using a change of variables,

one can reduce our CIP to a similar CIP for the equation vtt = vyy + r (y) v, y ∈ R

with the unknown coefficient r (y) . We refer to [36, Theorem 2.6 of Chapter 2] for

the Lipschitz stability estimate for the latter CIP. In addition, both uniqueness and

Lipschitz stability results for our CIP actually follow from Theorem 8.1 below as well

as from the convergence analysis of [24] for the first generation of the convexification

method for this CIP.

This chapter is arranged as follows. In section 2 we state both forward and inverse

problems. In section 3 we derive a nonlinear boundary value problem (BVP) with

nonlocal terms. In section 4 we describe our iterative solution of this BVP. In section

5 we formulate the Carleman estimate for the principal part of the PDE operator of

that BVP. In section 6 we prove the strong convexity of a functional of section 5 on an

appropriate bounded set in a Hilbert space. In section 7 we formulate two methods

for finding the unique minimizer of that functional: the gradient descent method and

the gradient projection method and prove the global convergence to the minimizer

for each of them. In section 8 we establish the contraction mapping property and
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prove the global convergence of the method of section 4. In section 9 we formulate

two more global convergence theorems, which follow from the results of sections 7 and

8. Numerical results with simulated and experimental data are presented in Section

10 and 11 respectively. Concluding remarks are given in section 12.

4.2 Statements of Forward and Inverse Problems

Below all functions are real-valued ones. Let b > 1 be a known number, x ∈ R be

the spatial variable and the function c(x) ∈ C3(R), represents the spatially distributed

dielectric constant. We assume that

c(x) ∈ [1, b], x ∈ R, (4.1)

c(x) = 1 if x ∈ (−∞, ε] ∪ [1,∞), (4.2)

where ε ∈ (0, 1) is a small number. Let T be a positive number. We consider the

following Cauchy problem for a 1D hyperbolic PDE with a variable coefficient in the

principal part of the operator:

c(x)utt = uxx, x ∈ R, t ∈ (0, T ) , (4.3)

u (x, 0) = 0, ut (x, 0) = δ (x) . (4.4)

The problem of finding the function u(x, t) from conditions (4.3), (4.4) is our forward

problem.

Let τ (x) be the travel time needed for the wave to travel from the point source at

{0} to the point x,

τ (x) =

∫ x

0

√
c(s)ds (4.5)

By (4.5) the following 1D analog of the eikonal equation is valid:

τ ′ (x) =
√
c (x). (4.6)
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Let H(z), z ∈ R be the Heaviside function,

H(z) =

 1, z > 0,

0, z < 0.

Lemma 2.1 [24, Lemma 2.1]. For x ≥ 0, the function u (x, t) has the form:

u (x, t) = H (t− τ (x))

[
1

2c1/4 (x)
+ û (x, t)

]
, (4.7)

where the function û ∈ C2 (t ≥ τ (x)) and û (x, τ (x)) = 0. In particular,

lim
t→τ+(x)

u (x, t) =
1

2c1/4 (x)
. (4.8)

We also refer to books of Romanov [36, formulas (2.50), (2.51)], [37, Lemma 1.2.1]

for results, which are similar with the one of Lemma 2.1. Far more challenging similar

results in the 3D case can also be found in these books, see [36, Theorem 4.1], [37,

Lemma 2.2.1].

Lemma 2.2 (absorbing boundary conditions [24, 40]). Let b > ε be the number

in (4.1). Let x1 ≥ b and x2 ≤ ε be two arbitrary numbers. Then the solution u (x, t)

of forward problem (4.3), (4.4) satisfies the absorbing boundary conditions at x = x1

and x = x2, i.e.

ux (x1, t) + ut (x1, t) = 0, t ∈ (0, T ) , (4.9)

ux (x2, t)− ut (x2, t) = 0, t ∈ (0, T ) . (4.10)

We are interested in the following inverse problem:

Coefficient Inverse Problem (CIP). Suppose that the following two functions

g0(t), g1(t) are known:

u (ε, t) = g0 (t) , ux (ε, t) = g1 (t) , t ∈ (0, T ) . (4.11)
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Determine the function c(x) for x ∈ (ε, 1), assuming that the number b > ε in (4.1)

is known.

Remark 2.1. Note that only the function g0 (t) can be measured. As to the function

g1 (t) , it follows from (4.10) that

g1 (t) = g′0 (t) . (4.12)

We differentiate noisy functions using the Tikhonov regularization method [41]. Since

this method is well known, we do not describe it here.

4.3 A Boundary Value Problem for a Nonlinear PDE With Non-Local Terms

We now introduce a change of variable

q(x, t) = u(x, t+ τ(x)). (4.13)

We will consider the function q(x, t) only for t ≥ 0. Using (4.6) and (2.22), we obtain

qxx − 2qxtτ
′ − qtτ ′′ = 0. (4.14)

Furthermore, it follows from (4.8)

q(x, 0) =
1

2c1/4(x)
6= 0. (4.15)

By (4.5) and (4.15)

τ ′′(x) = − qx(x, 0)

2q3(x, 0)
. (4.16)

Substituting (4.6), (4.15) and (4.16) in (4.14), we obtain

L(q) = qxx − qxt
1

2q2(x, 0)
+ qt

qx(x, 0)

2q3(x, 0)
= 0. (4.17)
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Equation, (4.17) is a nonlinear PDE with respect to the function q(x, t) with nonlo-

cal terms qx(x, 0) and q(x, 0). We now need to obtain boundary conditions for the

function q. By (4.2) and (4.5) τ (x) = x for x ∈ [0, ε] . Hence, (4.11), (4.12) and (4.13)

lead to

q (ε, t) = g0 (t+ ε) , qx (ε, t) = 2g′0 (t+ ε) , t ∈ (0, T ) , (4.18)

We will solve equation (4.17) in the rectangle

Ω = {(x, t) : x ∈ (ε, b), t ∈ (0, T )} . (4.19)

By (4.13)

qx(x, t) = ux(x, t+ τ(x)) + ut(x, t+ τ(x))τ ′(x) (4.20)

By (4.1), (4.2) and (4.5) τ ′(b) = 1. Hence, using (4.9) and (4.20), we obtain

qx(b, t) = 0. (4.21)

It follows from (4.1) and (4.15) that

1

2b1/4
≤ q(x, 0) ≤ 1

2
, x ∈ [ε, b]. (4.22)

In addition, we need q ∈ C2(Ω) and we also need to bound the norm ‖q‖C2(Ω) from

the above. Let R > 0 be an arbitrary number. We define the set B(R, g0) as

B(R, g0) =



q ∈ H4(Ω) : ‖q‖H4(Ω) < R,

q(ε, t+ ε) = g0(t+ ε), qx(ε, t) = 2g′0 (t+ ε) ,

qx(b, t) = 0,

1
2b1/4

≤ q (x, 0) ≤ 1/2, x ∈ [ε, b].

(4.23)
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We assume below that

B(R, g0) 6= ∅. (4.24)

By embedding theorem B(R, g0) ⊂ C2(Ω) and

‖q‖C2(Ω) ≤ KR, ∀q ∈ B(R, g0). (4.25)

where the constant K = K (Ω) > 0 depends only on the domain Ω. Using (4.22), we

define the function q0 (x, 0) as:

q0 (x, 0) =


q (x, 0) if q (x, 0) ∈

[
1/
(
2b1/4

)
, 1/2

]
,

1/
(
2b1/4

)
, if q (x, 0) < 1/

(
2b1/4

)
,

1/2 if q (x, 0) > 1/2.

∀q ∈ B(R, g0), (4.26)

∀x ∈ [ε, b] .

Then the function q0 (x, 0) is piecewise continuously differentiable in [ε, b] and by

(4.25) and (4.26)

∥∥q0 (x, 0)
∥∥
C[ε,b]

,max
[ε,b]

∣∣q0
x (x, 0)

∣∣ ≤ KR, ∀q ∈ B(R, g0), (4.27)

1

2b1/4
≤ q0(x, 0) ≤ 1

2
, x ∈ [ε, b]. (4.28)

Thus, (4.17), (4.18), (4.21), (4.26) and (4.28) result in the following BVP for a

nonlinear PDE with non-local terms:

qxx(x, t)− qxt(x, t)
1

2 (q0(x, 0))2 + qt(x, t)
qx(x, 0)

2 (q0(x, 0))3 = 0 in Ω, (4.29)

q(ε, t) = g0(t+ ε), qx(ε, t) = 2g′0(t+ ε), qx(b, t) = 0. (4.30)

Thus, we focus below on the numerical solution of the following problem:
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Problem 3.1. Find a function q ∈ B(R, g0) satisfying conditions (4.29), (4.30),

where the function q0(x, 0) is defined in (4.26).

Suppose that we have solved Problem 3.1. Then, using (4.15) and (4.26), we set

c (x) =
1

(2q0 (x, 0))4 . (4.31)

4.4 Numerical Method for Problem 3.1

4.4.1 The function q0 (x, t)

We now find the first approximation q0(x, t) for the function q(x, t). Using (4.2),

we choose c (x) ≡ 1 as the first guess for the function c (x) . Hence, by (4.15),

q0(x, 0) ≡ 1

2
. (4.32)

We now need to find the function q0(x, t). To do this, drop the nonlinear third term in

the left hand side of equation (4.29) and, using (4.32) and (4.26), set 1/ (2q0(x, 0))
2

:=

2. Then (4.29), (4.30) become:

q0xx(x, t)− 2q0xt(x, t) = 0 in Ω, (4.33)

q0(ε, t) = g0(t+ ε), q0x(ε, t) = 2g′0(t+ ε), q0x(b, t) = 0. (4.34)

BVP (4.33), (4.34) has overdetermined boundary conditions (4.34). Typically,

QRM works well for BVPs for PDEs with overdetermined boundary conditions [19,

25]. Therefore, we solve BVP (4.33), (4.34) via CQRM. This means that we consider

the following minimization problem:

Minimization Problem Number 0. Assuming (4.24), minimize the functional
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J
(0)
λ,β : B(R, g0)→ R on the set ,

J
(0)
λ,β(q0) =

∫
Ω

(q0xx − 2q0xt)
2 e2λϕdxdt+ β‖q0‖2

H4(Ω), (4.35)

where e2λϕ is the Carleman Weight Function for the operator ∂x − 2∂t [39, 40]

e2λϕ = e−2λ(x+αt), (4.36)

where α ∈ (0, 1/2) is the parameter, and β ∈ (0, 1) is the regularization parameter.

Both parameters will be chosen later.

Theorem 6.1 guarantees that for appropriate values of parameters λ, β, there exists

unique minimizer q0,min B(R, g0) of the functional J (0)
λ,β(q0).

4.4.2 The function qn (x, t) for n ≥ 1

Assume that functionals J (m)
λ,β (qm) : B(R, g0)→ R are defined for m = 0, ..., n− 1,

and their minimizers functions {qm,min}n−1
m=0 ⊂ B(R, g0) are constructed already, all for

the same values of parameters λ, α, β. Replace in (4.29) q (x, t) with qn (x, t) , q0(x, 0)

with q0
n−1,min(x, 0), qx (x, t) with ∂xq(n−1),min (x, t) and qt (x, t) with ∂tq(n−1),min (x, t) .

Then problem (4.29), (4.30) becomes a linear one with respect to the function qn (x, t) ,

qnxx(x, t)−
qnxt(x, t)

2
(
q0
n−1,min(x, 0)

)2 +
∂tq(n−1),min (x, t) ∂xq(n−1) min(x, 0)

2
(
q0
n−1,min(x, 0)

)3 = 0 in Ω, (4.37)

qn(ε, t) = g0(t+ ε), qnx(ε, t) = 2g′0(t+ ε), qnx(b, t) = 0. (4.38)

To solve problem (4.37), (4.38), we consider the following minimization problem:

Minimization Problem Number n. Assuming (4.24), minimize the functional

J
(n)
λ,β : H4 (Ω)→ R on the set B(R, g0),

J
(n)
λ,β(qn) =

∫
Ω

(
qnxx(x, t)−

qnxt(x, t)

2
(
q0
n−1,min(x, 0)

)2 +
∂tq(n−1),min (x, t) ∂xq(n−1),min(x, 0)

2
(
q0
n−1,min(x, 0)

)3

)2

e2λϕdxdt
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+β ‖qn‖2
H4(Ω) . (4.39)

Suppose that there exists unique minimizer qn,min ∈ B(R, g0) of the functional

J
(n)
λ,β(qn). Then, following (4.31), (4.26) and (4.31), we set

cn (x) =
1(

2q0
n,min (x, 0)

)4 . (4.40)

The rest of the analytical part of this chapter is devoted to the convergence analysis

of the iterative numerical method presented in this section.

4.5 The Carleman Estimate

In this section, we formulate the Carleman estimate, which is the main tool of our

construction. This estimate follows from Theorem 3.1 of [24] as well as from (4.27)

and (4.28). Let q (x, t) ∈ B(R, g0) be an arbitrary function and let the function

q0 (x, 0) be constructed from the function q (x, t) as in (4.26). Consider the operator

L0 : H2(Ω)→ L2(Ω),

L0u = uxx(x, t)− uxt(x, t)
1

2 (q0(x, 0))2 , for all (x, t) ∈ Ω.

Theorem 5.1 (Carleman estimate [24]). There exists a number α0 = α0 (R,Ω) > 0

depending only on R,Ω such that for any α ∈ (0, α0) there exists a sufficiently large

number λ0 = λ0 (R,Ω, α) > 1 depending only on R,Ω, α such that for all λ ≥ λ0 and

for all functions v ∈ H2(Ω) the following Carleman estimate holds:

∫
Ω

(L0v)2 e2λϕdxdt

≥ C

∫
Ω

(
λ
(
v2
x + v2

t

)
+ λ3v2

)
e2λϕdxdt+ C

∫ b

ε

(
λv2

x(x, 0) + λ3v2(x, 0)
)
e−2λxdx

−C
∫ T

0

(
λ
(
v2
x(ε, t) + v2

t (ε, t)
)

+ λ3v2(ε, t)
)
e−2λ(ε+αt)dt (4.41)
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−C
∫ b

ε

(
λv2

x(x, T ) + λ3v2(x, T )
)
e−2λ(x+αT )dx.

Remark 5.1. Here and everywhere below C = C (R,Ω, α) > 0 denotes different

constants depending only on listed parameters.

4.6 Strict Convexity of Functional (4.39) on the Set B(R, g0), Existence and

Uniqueness of Its Minimizer

Functional (4.39) is quadratic. We prove in this section that it is strictly convex on

the set B(R, g0). In addition, we prove existence and uniqueness of its minimizer on

this set. Although similar results were proven in many of the above-cited publications

on the convexification, see, e.g. [24] for the closest one, there are some peculiarities

here, which are important for our convergence analysis, see Remarks 6.1, and 6.2

below.

Introduce the subspace H4
0 (Ω) ⊂ H4 (Ω) as:

H4
0 (Ω) =

{
v ∈ H4 (Ω) : v (ε, t) = vx (ε, t) = vx (b, t) = 0

}
. (4.42)

Denote [, ] the scalar product in the space H4 (Ω) . Also, denote

An (q) (x, t) = qxx(x, t)− qxt(x, t)
1

2
(
q0
n−1,min(x, 0)

)2 , (4.43)

Bn (x, t) = ∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0
n−1,min(x, 0)

)3 . (4.44)

Theorem 6.1. Let J (n)
λ,β be the functional defined in (4.39). Then:

1. For any set of parameters λ, β and for any q ∈ B(R, g0) this functional has the

Frechet derivative
(
J

(n)
λ,β(q)

)′
∈ H4

0 (Ω) . The formula for
(
J

(n)
λ,β(q)

)′
is:

(
J

(n)
λ,β(q)

)′
(h)
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= 2

∫
Ω

(An (q) (x, t) +Bn (x, t))An (h) (x, t) e2λϕdxdt+ 2β [q, h] , ∀h ∈ H4
0 (Ω) .

(4.45)

2. This derivative is Lipschitz continuous in B(R, g0), i.e. there exists a constant

D > 0 such that

∥∥∥∥(J (n)
λ,β(q2)

)′
−
(
J

(n)
λ,β(q1)

)′∥∥∥∥
H4(Ω)

≤ D ‖q2 − q1‖H4(Ω) , for all q1, q2 ∈ B(R, g0).

(4.46)

3. Let α0 = α0 (R,Ω) > 0, α ∈ (0, α0) and λ0 = λ0 (R,Ω, α) ≥ 1 be the numbers of

Theorem 5.1 . Then there exists a sufficiently large constant

λ1 = λ1 (R,Ω, α) ≥ λ0 > 1 (4.47)

depending only on listed parameters such that for all λ ≥ λ1 and for all β ∈
[
2e−λαT , 1

)
the functional J (n)

λ,β(q) is strictly convex on the set B (R, g). More precisely, let q ∈

B(R, g) be an arbitrary function and also let the function q + h ∈ B(R, g). Then the

following inequality holds:

J
(n)
λ,β(q + h)− J (n)

λ,β(q)−
(
J

(n)
λ,β(q)

)′
(h) ≥ C

∫
Ω

[
λ
(
h2
x + h2

t

)
+ λ3h2

]
e2λϕdxdt

+C

∫ b

ε

(
λh2

x(x, 0) + λ3h2(x, 0)
)
e−2λxdx+

β

2
‖h‖2

H4(Ω) , ∀λ ≥ λ1. (4.48)

4. For any λ ≥ λ1 there exists unique minimizer

qn,min ∈ B(R, g0) (4.49)

of the functional J (n)
λ,β(q) on the set B(R, g0). Furthermore, the following inequality

holds: [(
J

(n)
λ,β(q)

)′
, q − qn,min

]
≥ 0, ∀q ∈ B(R, g0). (4.50)
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Remark 6.1. Even though the expression on the right-hand side of (4.45) is linear

with respect to the function q, we cannot use Riesz theorem here to prove the existence

and uniqueness of the minimizer qn,min, at which
(
J

(n)
λ,β(qn,min)

)′
= 0. Rather, all

what we can prove is (4.50). This is because we need to ensure that the function

qn,min ∈ B(R, g0).

Proof of Theorem 6.1. Since both function q, q + h ∈ B(R, g) satisfy the same

boundary conditions, then

h ∈ H4
0 (Ω) . (4.51)

By (4.39) and (4.51)

J
(n)
λ,β(q + h)− J (n)

λ,β(q) = 2

∫
Ω

(An (q) (x, t) +Bn (x, t))An (h) (x, t) e2λϕdxdt+ 2β [q, h]

+

∫
Ω

[An (h) (x, t)]2 e2λϕdxdt+ β ‖h‖2
H4(Ω) , ∀h ∈ H

4
0 (Ω) . (4.52)

The expression in the first line of (4.52) coincides with the expression in the right-

hand side of (4.45). In fact, this is a bounded linear functional mapping H4
0 (Ω) in

R. Therefore, by Riesz theorem, there exists a unique function J̃n (q) ∈ H4
0 (Ω) such

that [
J̃n (q) , h

]
=

= 2

∫
Ω

(An (q) (x, t) +Bn (x, t))An (h) (x, t) e2λϕdxdt+ 2β [q, h] , ∀h ∈ H4
0 (Ω) .

(4.53)

In addition, it is clear from (4.52) and (4.53) that

lim
‖h‖H4(Ω)→0

{
1

‖h‖H4(Ω)

[
J

(n)
λ,β(q + h)− J (n)

λ,β(q)−
[
J̃n (q) , h

]]}
= 0.

Therefore,

J̃n (q) =
(
J

(n)
λ,β(q)

)′
∈ H4

0 (Ω) (4.54)
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is the Frechet derivative of the functional J (n)
λ,β(q) : B(R, g0) → R at the point q ∈

B(R, g0), and the right hand side of (4.45) indeed represents
(
J

(n)
λ,β(q)

)′
(h) . Estimate

(4.46) obviously follows from (4.45).

We now prove a strict convexity estimate (4.48). To do this, we apply Carleman

estimate (4.41) to the third line of (4.52). We obtain

J
(n)
λ,β(q + h)− J (n)

λ,β(q)−
(
J

(n)
λ,β(q)

)′
(h)

≥ C

∫
Ω

(
λ
(
h2
x + h2

t

)
+ λ3h2

)
e2λϕdxdt+ C

∫ b

ε

(
λh2

x(x, 0) + λ3h2(x, 0)
)
e−2λxdx

− C
∫ b

ε

(
λh2

x(x, T ) + λ3h2(x, T )
)
e−2λ(x+αT )dx+ β ‖h‖2

H4(Ω) , ∀h ∈ H
4
0 (Ω) . (4.55)

By trace theorem there exists a constant C1 = C1 (Ω) > 0 depending only on the

domain Ω such that

‖v‖2
H4(Ω) ≥ C1 ‖v (x, T )‖2

H1(Ω) , ∀v ∈ H
4 (Ω) .

Since the regularization parameter β ∈
[
2e−λαT , 1

)
, then we can choose λ1 so large

that
β

2
C1 ≥ C1e

−λαT > Ce−2λ(x+αT ), ∀λ ≥ λ1,∀x ∈ [ε, b] .

Hence, for these values of λ, the expression in the last line of (4.55) can be estimated

from the below as:

−C
∫ b

ε

(
λh2

x(x, T ) + λ3h2(x, T )
)
e−2λ(x+αT )dx+β ‖h‖2

H4(Ω) ≥
β

2
‖h‖2

H4(Ω) , ∀h ∈ H
4
0 (Ω) .

(4.56)



99

Hence, (4.55) and (4.56) imply

J
(n)
λ,β(q + h)− J (n)

λ,β(q)−
(
J

(n)
λ,β(q)

)′
(h) ≥ C

∫
Ω

(
λ
(
h2
x + h2

t

)
+ λ3h2

)
e2λϕdxdt

+ C

∫ b

ε

(
λh2

x(x, 0) + λ3h2(x, 0)
)
e−2λxdx+

β

2
‖h‖2

H4(Ω) ,∀λ ≥ λ1.

This proves (4.48). The existence and uniqueness of the minimizer qmin,n ∈ B(R, g0)

and inequality (4.50) follow from (4.48) as well as from a combination of Lemma 2.1

and Theorem 2.1 of [1], also see [33, Chapter 10, section 3]. �

Remark 6.2. Since the functional J (n)
λ,β(q) is quadratic, then its strict convexity on

the whole space H4 (Ω) follows immediately from the presence of the regularization

term β ‖qn‖2
H4(Ω) in it. However, in addition to the claim of its strict convexity, we

actually need it in our convergence analysis below those terms on the right-hand side of

the strict convexity estimate (4.48), which are different from the term β ‖h‖2
H4(Ω) /2.

These terms are provided by Carleman estimate (4.48). The condition β ∈
[
2e−λαT , 1

)
of Theorem 6.1 is imposed to dominate the negative term in the last line of (4.55):

see (4.56).

4.7 How to Find the Minimizer

Since we search for the minimizer qn,min of functional (4.39) on the bounded set

B(R, g0) rather than on the whole space H4 (Ω) , then we cannot just use Riesz

theorem to find this minimizer, also see [1] and [33, Chapter 10, section 3] for the

case of finding a minimizer of a strictly convex functional on a bounded set. Two

ways of finding the minimizer qn,min ∈ B(R, g0) are described in this section.
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4.7.1 Gradient descent method

Keeping in mind (4.24), choose an arbitrary function q0,n ∈ B(R, g0). We arrange

the gradient descent method for the minimization of functional (4.39) as follows:

qk,n = q(k−1),n − η
(
J

(n)
λ,β(q(k−1),n)

)′
, k = 1, 2, ..., (4.57)

where η ∈ (0, 1) is a small number, which is chosen later. It is important to note that

since functions J (n)
λ,β(q(k−1),n) ∈ H4

0 (Ω) , then boundary conditions (4.38) are kept the

same for all functions qk,n (x, t) . Also, using (4.26) and (4.40), we set

ck,n (x) =
1(

2q0
k,n (x, 0)

)4 , x ∈ [ε, b] , (4.58)

cn,min (x) =
1(

2q0
n,min (x, 0)

)4 , x ∈ [ε, b] . (4.59)

Theorem 7.1 claims the global convergence of the gradient descent method (4.57)

to the pair (qn,min, cn,min) in the case when qmin,n ∈ B(R/3, g0), see Remark 7.2.

Theorem 7.1. Let the number λ1 = λ1 (R,Ω, α) ≥ λ0 > 1 be the one defined in

(4.47). Let λ ≥ λ1. For this value of λ, let qn,min ∈ B (R, g0) be the unique minimizer

of the functional J (n)
λ,β(qn) on the set B (R, g0) with the regularization parameter β ∈[

2e−λαT , 1
)
(Theorem 6.1). Assume that the function qn,min ∈ B(R/3, g0). For each n,

choose the starting point of the gradient descent method (4.57) as q0,n ∈ B(R/3, g0).

Then, there exists a number η0 ∈ (0, 1) such that for any η ∈ (0, η0) all functions

qk,n ∈ B(R, g0). Furthermore, there exists a number θ = θ (η) ∈ (0, 1) such that the

following convergence estimates are valid:

‖qk,n − qn,min‖H4(Ω) ≤ θk ‖q0,n − qn,min‖H4(Ω) , k = 1, ..., (4.60)

‖ck,n − cn,min‖H3(ε,b) ≤ Cθk ‖q0,n − qn,min‖H4(Ω) , k = 1, ... (4.61)
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Proof. Estimate (4.60) follows immediately from [21, Theorem 4.6] combined with

“corrections" of functions qk,n (x, 0) , qn,min (x, 0) via (4.26). Estimate (4.61) follows

immediately from trace theorem, (4.26) and (4.58)-(4.60). �

4.7.2 Gradient projection method

Suppose now that there is no information on whether or not the function qn,min ∈

B(R/3, g0). In this case we construct the gradient projection method. We introduce

the function F (x, t) below since it is easy to construct the projection operator on a

ball with the center at {0} .

Consider the function χ (x) such that

χ (x) ∈ C4 [ε, b] , χ (x) =


1, x ∈ [ε, b/4] ,

0, x ∈ [b/2, b] ,

between 0 and 1 for x ∈ (b/4, b/2) .

The existence of such functions χ (x) is well known from the Real Analysis course.

Suppose that the function g0(t) ∈ H5 (0, T + ε) . Define the function F ∈ H4 (Ω) as

F (x, t) = χ (x) (g0(t+ ε) + 2xg′0(t+ ε)) .

Then

F (ε, t) = g0(t+ ε), Fx(ε, t) = 2g′0(t+ ε), Fx(b, t) = 0. (4.62)

Denote

pn (x, t) = qn (x, t)− F (x, t). (4.63)

Then (4.37), (4.38) become:

pnxx(x, t)− pnxt(x, t)
1

2
(
q0
n−1,min(x, 0)

)2 (4.64)
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+Fxx(x, t)−Fxt(x, t)
1

2
(
q0
n−1,min(x, 0)

)2 +∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0
n−1,min(x, 0)

)3 = 0 in Ω,

pn(ε, t) = 0, pnx(ε, t) = 0, pnx(b, t) = 0. (4.65)

Assume that

‖F‖H4(Ω) < R. (4.66)

By (4.62), (4.63), (4.65), (4.66) and triangle inequality

pn ∈ B0 (2R) =
{
p ∈ H4

0 (Ω) : ‖p‖H4
0 (Ω) < 2R

}
. (4.67)

To find the function pn ∈ B0 (2R) satisfying conditions (4.64), (4.65), we minimize

the following functional I(n)
λ,β(pn) : B0 (2R)→ R

I
(n)
λ,β(pn) = J

(n)
λ,β(pn + F ), pn ∈ B0 (2R) . (4.68)

Remark 7.1. An obvious analog of Theorem 6.1 is valid of course for the functional

I
(n)
λ,β(pn) defined in (4.68). But in this case, we should have instead of (4.47) λ ≥ λ̃1 =

λ1 (2R,Ω, α) ≥ λ0 > 1. In particular, there exists unique minimizer pn,min ∈ B0 (2R)

of this functional on the closed ball B0 (2R). We omit the formulation of this theorem

since it is an obvious reformulation of Theorem 6.1.

Let PB0(2R) : H4
0 (Ω)→ B0 (2R) be the projection operator of the space H4

0 (Ω) on

the closed ball B0 (2R) ⊂ H4
0 (Ω) . Then this operator can be easily constructed:

PB0(2R) (p) =

 p if p ∈ B0 (2R),

2R
‖p‖H4(Ω)

p if p /∈ B0 (2R).

We now construct the gradient projection method of the minimization of the func-

tional I(n)
λ,β(pn) on the set B0 (2R). Let p0,n ∈ B0 (2R) be an arbitrary function. Then
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the sequence of the gradient projection method is:

pk,n = PB0(2R)

(
p(k−1),n − η

(
I

(n)
λ,β(p(k−1),n)

)′)
, k = 1, 2, ..., (4.69)

where η ∈ (0, 1) is a small number, which is chosen later. Using (4.58), (4.59) and

(4.63), we set

c̃k,n (x) =
1(

2q̃0
k,n (x, 0)

)4 , x ∈ [ε, b] , (4.70)

c̃n,min (x) =
1(

2q̃0
n,min (x, 0)

)4 , x ∈ [ε, b] . (4.71)

Here the function q̃0
n,k (x, 0) is obtained as follows: First, we consider the function

(pn,k + F ) (x, 0) . Next, we apply procedure (4.26) to this function. Similarly for

q̃0
n,min (x, 0) .

Denote pn,min ∈ B0 (2R) the unique minimizer of functional (4.68) on the set

B0 (2R) (Remark 7.1). Following (4.63), denote

q̃n,min = pn,min + F, q̃k,n = pk,n + F. (4.72)

We omit the proof of Theorem 7.2 since it is very similar to the proof of Theorem 7.1.

The only difference is that instead of Theorem 4.6 of [21] one should use Theorem 4.1

of [24].

Theorem 7.2. Let (4.62), (4.66) hold. Let the number λ1 = λ1 (R,Ω, α) ≥ λ0 > 1

be the one defined in (4.47) and let

λ ≥ λ̃1 = λ1 (2R,Ω, α) ≥ λ1 (R,Ω, α) .

For this value of λ and for β ∈
[
2e−λαT , 1

)
let pn,min ∈ B0 (2R) be the unique

minimizer of functional (4.68) on the set B0 (2R) (Remark 7.1). Let notations (4.70)

hold. For each n, choose the starting point of the gradient projection method (4.57)
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as p0,n ∈ B0(2R). Then there exists a number η0 ∈ (0, 1) such that for any η ∈ (0, η0)

there exists a number θ = θ (η) ∈ (0, 1) such that the following convergence estimates

are valid for the iterative process (4.69):

‖q̃k,n − q̃n,min‖H4(Ω) ≤ θk ‖q̃0,n − q̃n,min‖H4(Ω) ,

‖c̃k,n − c̃n,min‖H4(Ω) ≤ Cθk ‖q̃0,n − q̃n,min‖H4(Ω) ,

where functions c̃k,n, c̃n,min, q̃k,n, q̃n,min are defined in (4.70)-(4.72).

Remark 7.2. Both Theorems 7.1 and 7.2 claim the global convergence of corre-

sponding versions of the gradient method to pairs (qn,min, cn,min) and (q̃n,min, c̃n,min) .

This is because the starting function in both cases is an arbitrary one either in

B (R/3, g0) or in B0 (2R) and a smallness condition is not imposed on the num-

ber R. Also, see the second item of Remarks 8.1 and our definition of the global

convergence in Introduction.

4.8 Contraction Mapping and Global Convergence

In this section, we prove the global convergence of the numerical method of section

4 for solving Problem 3.1. To do this, we first introduce the exact solution of our

CIP. Recall that the concept of the existence of the exact solution is one of the main

concepts of the theory of ill-posed problems [5, 41]. In particular, an estimate in our

global convergence theorem is very similar to the one in contraction mapping.

Suppose that there exists a function c∗ (x) satisfying conditions (4.1), (4.2). Let

u∗ (x, t) be the solution of problem (4.3), (4.4) with c := c∗. We assume that the

corresponding data g∗0 (t) , ∂tg
∗
0 (t) for the CIP are noiseless, see (4.11), (4.12). Let

q∗ (x, t) be the function q∗ (x, t) which is constructed from the function u∗ (x, t) as in

(4.13). Following (4.23), we assume that

q∗ ∈ B(R, g∗0), (4.73)
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B(R, g∗0) =



q ∈ H4(Ω) : ‖q‖H4(Ω) < R,

q(ε, t+ ε) = g∗0(t+ ε), qx(ε, t) = 2 (g∗0)′ (t+ ε) ,

qx(b, t) = 0,

1
2b1/4

≤ q (x, 0) ≤ 1/2, x ∈ [ε, b]


. (4.74)

By (4.29)-(4.30)

q∗xx(x, t)− q∗xt(x, t)
1

2 (q∗(x, 0))2 + q∗t (x, t)
q∗x(x, 0)

2 (q∗(x, 0))3 = 0 in Ω, (4.75)

q∗(ε, t) = g∗0(t+ ε), q∗x(ε, t) = 2∂tg
∗
0 (t+ ε) , q∗x(b, t) = 0. (4.76)

By (4.15)

c∗ (x) =
1

(2q∗ (x, 0))4 . (4.77)

It is important in the formulation of Theorem 6.1 that both functions q and q + h

should have the same boundary conditions as prescribed in B(R, g0). However, bound-

ary conditions for functions qn and q∗ are different. Hence, similarly to subsection

7.2, we consider a function F ∗ ∈ H4 (Ω) such that (see (4.62))

F ∗(ε, t) = g∗0(t+ ε), F ∗x (ε, t) = 2∂tg
∗
0(t+ ε), F ∗x (b, t) = 0. (4.78)

We assume similarly to (4.66) that

‖F ∗‖H4(Ω) < R. (4.79)

Also, similarly to (4.63), we introduce the function p∗ (x, t) as:

p∗ (x, t) = q∗ (x, t)− F ∗(x, t). (4.80)

Let λ1 be the number defined in (4.47), let λ ≥ λ1 and the function qn,min ∈ B (R, g0)
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(see (4.49)) be the unique minimizer of the functional J (n)
λ,β(qn) on the set B (R, g0),

the existence of which is established in Theorem 6.1. Following (4.63), denote

pn,min (x, t) = qn,min (x, t)− F (x, t) . (4.81)

By (4.49), (4.67), (4.73), (4.74) and (4.79)-(4.81)

pn,min, p
∗ ∈ B0 (2R). (4.82)

Also, it follows from embedding theorem, (4.25), (4.49), (4.66), (4.79) and (4.82) that

‖q∗‖C2(Ω) , ‖p
∗‖C2(Ω) , ‖qn,min‖

C2(Ω)
, ‖pn,min‖

C2(Ω)
≤ C. (4.83)

We assume that the data g0, g
′
0 for our CIP are given with noise of the level δ,

where the number δ > 0 is sufficiently small. More precisely, we assume that

‖F − F ∗‖H4(Ω) < δ. (4.84)

Observe that (4.26), (4.73) and (4.74) imply that

∣∣q0
n−1,min (x, 0)− q∗ (x, 0)

∣∣ ≤ |qn−1,min (x, 0)− q∗ (x, 0)| , x ∈ [ε, b] . (4.85)

By (4.75), (4.76), (4.78) and (4.80)

p∗xx(x, t)−p∗xt(x, t)
1

2 (q∗(x, 0))2 +q∗t (x, t)
q∗x(x, 0)

2 (q∗(x, 0))3 +F ∗xx−F ∗xt(x, t)
1

2 (q∗(x, 0))2 = 0

(4.86)

in Ω× [0, T ] and

p∗(ε, t) = p∗x(ε, t) = p∗x(b, t) = 0. (4.87)

Theorem 8.1 (contraction mapping and the global convergence of the method of



107

section 3). Let functions F ,F ∗ ∈ H4 (Ω) satisfy conditions (4.62), (4.66), (4.78),

(4.79) and (4.84). Let a sufficiently large number λ1 = λ1 (R,Ω, α) ≥ λ0 > 1 be the

one defined in (4.47). Let

λ ≥ λ̃1 = λ1 (2R,Ω, α) ≥ λ1 (R,Ω, α) . (4.88)

For this value of λ, let qn,min ∈ B (R, g0) be the unique minimizer of the functional

J
(n)
λ,β(qn) on the set B (R, g0) with the regularization parameter β ∈

[
2e−λαT , 1

)
(The-

orem 6.1). Let

qn = qn,min − q∗, cn = cn,min − c∗, (4.89)

where cn,min is defined in (4.59). Then the following convergence estimate holds

∫
Ω

(
q2
nx + q2

nt + q2
n

)
(x, t) e2λϕdxdt+

∫ b

ε

(
q2
nx + q2

n

)
(x, 0) e−2λxdx

≤ C

λ

∫
Ω

(
q2

(n−1)x + q2
(n−1)t + q2

n−1

)
(x, t) e2λϕdxdt (4.90)

+
C

λ

∫ b

ε

(
q2

(n−1)x (x, 0) + q2
n−1

)
(x, 0) e−2λxdx+ C

(
δ2 + β

)
,

which leads to: ∫
Ω

(
q2
nx + q2

nt + q2
n

)
(x, t) e2λϕdxdt (4.91)

≤ Cn

λn

∫
Ω

(
q2

0x + q2
0t + q2

0

)
(x, t) e2λϕdxdt+ C

(
δ2 + β

)
.

In addition,

‖cn‖2
H1(ε,b) ≤

Cn

λn

∫
Ω

(
q2

0x + q2
0t + q2

0

)
(x, t) e2λϕdxdt+ C

(
δ2 + β

)
. (4.92)

Remarks 8.1:

1. Due to the presence of the term C/λ with a sufficiently large λ, estimate (4.90)
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is similar to the one in the classical contraction mapping principle, although we do

not claim here the existence of the fixed point.

2. When computing the unique minimizer q0,min of functional (4.35) on the set

B(R, g0), we do not impose a smallness condition on the number R. Therefore, The-

orem 8.1 claims the global convergence of the method of section 4: see our definition

of the global convergence in Introduction. The same is true for Theorems 9.1 and 9.2

in section 9.

Proof Theorem 8.1. Denote hn = p∗ − pn,min. By (4.81) hn = −qn + (F − F ∗) .

Hence, (4.84) and embedding theorem imply:

h2
n ≥

1

2
q2
n − Cδ2, h2

nx ≥
1

2
q2
nx − Cδ2, h2

nt ≥
1

2
q2
nt − Cδ2 in Ω, (4.93)

h2
n + h2

nx + h2
nt ≤ C

(
q2
n + q2

nx + q2
nt + δ2

)
in Ω. (4.94)

Consider the functional I(n)
λ,β(p∗) = J

(n)
λ,β(p∗ + F ). Since both functions pn,min and

p∗ have the same zero boundary conditions (4.65) and since by (4.82) both of them

belong to the set B0 (2R), then the analog of Theorem 6.1, which is mentioned in

Remark 7.1, implies (see (4.48))

I
(n)
λ,β(p∗)− I(n)

λ,β(pn,min)−
(
I

(n)
λ,β(pn,min)

)′
(hn)

≥ C

∫
Ω

[
λ
(
h2
nx + h2

nt

)
+ λ3h2

n

]
e2λϕdxdt (4.95)

+C

∫ b

ε

(
λh2

nx(x, 0) + λ3h2
n(x, 0)

)
e−2λxdx+

β

2
‖hn‖2

H4(Ω) , ∀λ ≥ λ̃1.

By (4.50)

−
(
I

(n)
λ,β(pn,min)

)′
(hn) ≤ 0.
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Hence, the left hand side of (4.95) can be estimated as:

I
(n)
λ,β(p∗)− I(n)

λ,β(pn,min)−
(
I

(n)
λ,β(pn,min)

)′
(h) ≤ I

(n)
λ,β(p∗). (4.96)

We now estimate the right-hand side of (4.96) from the above. It follows from

(4.39), (4.68) and (4.75) that

I
(n)
λ,β(p∗) =

∫
Ω

G2
ne

2λϕdxdt+ β ‖p∗ + F‖2
H4(Ω) , (4.97)

where

Gn = p∗xx(x, t)− p∗xt(x, t)
1

2
(
q0

(n−1),min(x, 0)
)2 + ∂tq(n−1),min (x, t)

∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3

+Fxx − Fxt(x, t)
1

2
(
q0

(n−1),min(x, 0)
)2

= q∗xx(x, t)− q∗xt(x, t)
1

2 (q∗(x, 0))2 + q∗t (x, t)
q∗x(x, 0)

2 (q∗(x, 0))3 (4.98)

+ (F − F ∗)xx − (F − F ∗)xt
1

2
(
q0

(n−1),min(x, 0)
)2

−q∗xt

 1

2
(
q0

(n−1),min(x, 0)
)2 −

1

2 (q∗(x, 0))2



+

∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3 − q

∗
t (x, t)

q∗x(x, 0)

2 (q∗(x, 0))3

 .

By (4.75), the third line of (4.98) equals zero. Hence, (4.98) becomes

Gn = (F − F ∗)xx + (F − F ∗)xt
1

2
(
q0

(n−1),min(x, 0)
)2
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−q∗xt

 1

2
(
q0

(n−1),min(x, 0)
)2 −

1

2 (q∗(x, 0))2



+

∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3 − q

∗
t (x, t)

q∗x(x, 0)

2 (q∗(x, 0))3

 .

Hence, by (4.26), (4.84) and embedding theorem

|Gn| ≤ Cδ + C

∣∣∣∣∣∣∣
1

2
(
q0

(n−1),min(x, 0)
)2 −

1

2 (q∗(x, 0))2

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3 − q

∗
t (x, t)

q∗x(x, 0)

2 (q∗(x, 0))3

∣∣∣∣∣∣∣ . (4.99)

Using (4.84) and (4.85), we obtain

∣∣∣∣∣∣∣
1

2
(
q0

(n−1),min(x, 0)
)2 −

1

2 (q∗(x, 0))2

∣∣∣∣∣∣∣
=

∣∣∣(q0
(n−1),min (x, 0)− q∗(x, 0)

)
− (F − F ∗) (x, 0)

∣∣∣ ∣∣∣q0
(n−1),min(x, 0) + q∗(x, 0)

∣∣∣
2
(
q0

(n−1),min(x, 0)
)2

(q∗(x, 0))2 .

≤ Cδ + C |hn−1 (x, 0)| .

Combining this with (4.99), we obtain

|Gn| ≤ Cδ + C |hn−1 (x, 0)|

+

∣∣∣∣∣∣∣∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3 − q

∗
t (x, t)

q∗x(x, 0)

2 (q∗(x, 0))3

∣∣∣∣∣∣∣ . (4.100)
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Next,
1

2
(
q0

(n−1),min(x, 0)
)3 =

1

2 (q∗(x, 0))3

+

 1

2
(
q0

(n−1),min (x, 0)
)3 −

1

2 (q∗(x, 0))3


=

1

2 (q∗(x, 0))3 + Sn−1 (x, 0)
[(
q0

(n−1),min (x, 0)− q∗(x, 0)
)
− (F − F ∗) (x, 0)

]
,

where the function Sn−1 (x, 0) can be estimated as

|Sn−1 (x, 0)| ≤ C. (4.101)

Hence,

∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3 =

∂tq(n−1),min (x, t) ∂xq(n−1),min(x, 0)

2 (q∗(x, 0))3 +

+
[
∂tq(n−1),min (x, t) ∂xq(n−1),min(x, 0)

]
×

×Sn−1 (x, 0)
[(
q0

(n−1),min (x, 0)− q∗(x, 0)
)
− (F − F ∗) (x, 0)

]
.

Hence, using (4.23), (4.26), (4.73), (4.85) and (4.101), we obtain

∣∣∣∣∣∣∣∂tq(n−1),min (x, t)
∂xq(n−1),min(x, 0)

2
(
q0

(n−1),min(x, 0)
)3 − q

∗
t (x, t)

q∗x(x, 0)

2 (q∗(x, 0))3

∣∣∣∣∣∣∣
≤ 1

2 (q∗(x, 0))3

∣∣∂tq(n−1),min (x, t) ∂xq(n−1),min(x, 0)− q∗t (x, t)q∗x(x, 0)
∣∣ (4.102)

+C (δ + |hn−1 (x, 0)|)

≤ C (δ + |hn−1 (x, 0)|+ |∂xhn−1,x (x, 0)|+ |hn−1,t (x, t)|) .
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Combining (4.100) with (4.102), we obtain

|Gn (x, t)| ≤ C (δ + |hn−1 (x, 0)|+ |hn−1,x (x, 0)|+ |hn−1,t (x, t)|) .

Hence, by (4.97)

I
(n)
λ,β(p∗) ≤ C

∫
Ω

(
δ2 + h2

n−1 (x, 0) + h2
n−1,x (x, 0) + h2

n−1,t (x, t)
)
e2λϕdxdt+ Cβ.

Substituting this in (4.96) and then using (4.95), we obtain

∫
Ω

(
h2
nx + h2

nt + h2
n

)
e2λϕdxdt+

∫ b

ε

(
h2
nx(x, 0) + h2

n(x, 0)
)
e−2λxdx

≤ C

λ

∫
Ω

(
δ2 + h2

n−1 (x, 0) + h2
n−1,x (x, 0) + h2

n−1,t (x, t)
)
e2λϕdxdt+ Cβ. (4.103)

Obviously

∫
Ω

(
h2
n−1 (x, 0) + h2

n−1,x (x, 0)
)
e2λϕdxdt ≤ 1

2λα

∫ b

ε

(
h2

(n−1)x(x, 0) + h2
n−1(x, 0)

)
e−2λxdx,

(4.104)∫
Ω

δ2e2λϕdxdt ≤ C
δ2

λ2
. (4.105)

Denote

yn =

∫
Ω

(
h2
nx + h2

nt + h2
n

)
e2λϕdxdt+

∫ b

ε

(
h2
nx(x, 0) + h2

n(x, 0)
)
e−2λxdx. (4.106)

Then (4.103)-(4.105) imply

yn ≤
C

λ
yn−1 + C

(
δ2

λ2
+ β

)
. (4.107)
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Iterating (4.107) with respect to n, we obtain

∫
Ω

(
h2
nx + h2

nt + h2
n

)
e2λϕdxdt+

∫ b

ε

(
h2
nx(x, 0) + h2

n(x, 0)
)
e−2λxdx

≤ C

λn

[∫
Ω

(
h2

0x + h2
0t + h2

0

)
e2λϕdxdt+

∫ b

ε

(
h2

0x(x, 0) + h2
0(x, 0)

)
e−2λxdx

]
(4.108)

+C

(
δ2

λ2
+ β

)
.

Apply (4.93) to the left-hand side of the estimate (4.108). Also, apply (4.94) at n = 0

to the right-hand side of (4.108). We obtain (4.91). Estimate (4.92) follows from an

obvious combination of (4.91) with (4.59), (4.77), (4.85) and (4.89). Finally, estimate

(4.90) follows immediately from (4.93), (4.94) and (4.103). �

4.9 Global Convergence of the Gradient and Gradient Projection Methods to the

Exact Solution

First, we consider the gradient method of the minimization of functionals J (n)
λ,β(q(k−1),n)

on the set B(R, g0), see (4.57). The proof of Theorem 9.1 follows immediately from

the triangle inequality combined with Theorems 7.1 and 8.1.

Theorem 9.1. Let α0 and λ0 be the numbers of Theorem 5.1. Let the sufficiently

large number λ1 = λ1 (R,Ω, α) ≥ λ0 > 1 be the one defined in (4.47). Let the number

λ̃1 be the same as in (4.88),

λ̃1 = λ1 (2R,Ω, α) ≥ λ1 (R,Ω, α) .

Let λ ≥ λ1 and let the regularization parameter β ∈
[
2e−λαT , 1

)
. Assume that the

functions qmin,n ∈ B(R/3, g0) for all n. For each n, choose the starting point of the

gradient method (4.57) as q0,n ∈ B(R/3, g0). Then there exists a number η0 ∈ (0, 1)

such that for any η ∈ (0, η0) functions qk,n ∈ B(R, g0),∀k, n = 1, ... Furthermore,

there exists a number θ = θ (η) ∈ (0, 1) such that the following convergence estimate
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is valid:

‖ck,n − c∗‖H1(ε,b) ≤ Cθk ‖q0,n − qn,min‖H4(Ω)

+
Cn/2

λn/2

(∫
Ω

(
q2

0x + q2
0t + q2

0

)
(x, t) e2λϕdxdt

)1/2

+ C
(
δ +

√
β
)
,

where the function q0 is defined in (4.89).

Consider now the gradient projection method of the minimization of the functionals

I
(n)
λ,β(pn) = J

(n)
λ,β(pn + F ) in (4.68) on the set B0 (2R), see (4.69). We use notations

(4.70). Theorem 9.2 follows immediately from the triangle inequality combined with

Theorems 7.2 and 8.1.

Theorem 9.2. Let the number λ1 = λ1 (R,Ω, α) ≥ λ0 > 1 be the one defined in

(4.47). Let the number λ̃1 be the same as in (4.88),

λ̃1 = λ1 (2R,Ω, α) ≥ λ1 (R,Ω, α) .

Let λ ≥ λ1 and let the regularization parameter β ∈
[
2e−λαT , 1

)
. Consider the gradi-

ent projection method (4.69). For each n, choose the starting point p0,n of this method

as an arbitrary point of the ball B0(2R). Then there exists a number η0 ∈ (0, 1) such

that for any η ∈ (0, η0) there exists a number θ = θ (η) ∈ (0, 1) such that the following

convergence estimate is valid:

‖c̃k,n − c∗‖H1(ε,b) ≤ Cθk ‖q̃0,n − q̃n,min‖H4(Ω)

+
Cn/2

λn/2

(∫
Ω

(
q2

0x + q2
0t + q2

0

)
(x, t) e2λϕdxdt

)1/2

+ C
(
δ +

√
β
)
,

where functions c̃k,n, q̃0,n, q̃n,min and q0 are defined in (4.70), (4.72) and (4.89) re-

spectively.
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4.10 Numerical Studies

4.10.1 Numerical implementation

To generate the simulated data, we use Lemma 2.2. This means that we solve

problem (4.3), (4.4) for the case when the whole real line is replaced by a large

interval (−a, a) with the absorbing boundary conditions (4.9)–(4.10). More precisely,

just as in Section 6.1 of [24], we use the implicit scheme to numerically solve



c(x)utt(x, t) = uxx(x, t) (x, t) ∈ (−a, a)× (0, T ),

u(−a, t)− ux(−a, t) = 0 t ∈ (0, T ),

u(a, t) + ux(a, t) = 0 t ∈ (0, T ),

u(x, 0) = 0 x ∈ R,

ut(x, 0) = δ̃(x) x ∈ R,

(4.109)

where a = 5, T = 6 and

δ̃(x) =
30√
2π
e−

(30x)2

2

is a smooth approximation of the function δ (x). We solve the problem (4.109) by

the implicit finite difference method. In the finite difference scheme, we arrange a

uniform partition for the interval [−a, a] as {y0 = −a, y1, . . . , yN = a} ⊂ [−a, a] with

yi = a+ 2ia/Nx, i = 0, . . . , Nx, where Nx is a large number. In the time domain, we

split the interval [0, T ] into Nt + 1 uniform sub-intervals [tj, tj+1], j = 0, . . . , Nt, with

tj = jT/Nt, where Nt is a large number. In our computational setting, Nx = 3001

and Nt = 301. These numbers are the same as in [24].

We observe a computational error for the function u near (x = 0, t = 0). This is

due to the fact that the function δ̃ (x) is not exactly equal to the Dirac function. We

correct the error as follows. It follows from (4.2), (4.7) and (4.8) that u(x, t) = 1/2

in a neighborhood of the point (x, t) = (0, 0) . We, therefore, replace the data u(ε, t)

by 1/2 when |t| is small. In our computation, we set u(x, t) = 1/2 for (x, t) ∈
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[0, 0.0067]× [0, 0.26]. This data correction step is exactly the same as in Section 6.1

of [24] and is illustrated by Figure 2 in that publication. Then, we can extract the

noiseless data g∗0 easily. We next add the noise into the data via the formula

g0 = g∗0(1 + δ · rand) (4.110)

where δ is the noise level, and "rand" is the function that generates uniformly dis-

tributed random numbers in the range [−1, 1]. In all numerical tests with simulated

data below, the noise level δ = 0.05,, i.e., 5%. Due to (4.12), the function g1 = g′0.

Due to the presence of noise, see (4.110), we cannot compute g1 = g′0 by the finite

difference method. Hence, the function g′0 is computed by the Tikhonov regulariza-

tion method. The version of the Tikhonov regularization method for this problem is

well-known. Hence, we do not describe this step here.

Having the data for the function q in hand, we proceed as in Algorithm 1. In step

Algorithm 3 A numerical method to solve Problem 3.1
1: Choose a set of parameters λ, α and β.
2: Compute the function q0 by minimizing the functional J (0)

λ,β defined in (4.35). Due
to (4.15), the initial reconstruction is given by

cinit(x) =
1

(2q0(x, 0))4
for all x ∈ [ε, b].

3: Assume that the function qn−1 is known. We compute the function qn by mini-
mizing the function J (n)

λ,β defined in (4.39).
4: Set qcomp = qn when n = n∗ is large enough.
5: Due to (4.15), the function ccomp is set to be

ccomp(x) =
1

(2qcomp(x, 0))4
for all x ∈ [ε, b].

1 of Algorithm 3, we choose λ = 2, α = 0.3 and β = 10−11. These parameters were

chosen by a trial-error process that is similar to the one in [39]. Just as in [39], we

choose a reference numerical test in which we know the true solution. In fact, test
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1 of section 10.2 was our reference test. We have tried several values of λ, α, and

β until the numerical solution to that reference test became acceptable. Then, we

have used the same values of these parameters for all other tests, including all five

(5) available cases of experimental data.

We next implement Steps 2 and 3 of Algorithm 1. We write differential operators

in the functionals J (0)
λ,β and J

(n)
λ,β in the finite differences with the step size in space

∆x = 0.0033 and the step size in time ∆t = 0.02 and minimize resulting functionals

with respect to values of corresponding functions at grid points. Since the integrand

in the definitions of the functional J (n)
λ,β , n = 0, 1, ... is the square of linear functions,

then its minimizer is its critical point. In finite differences, we can write a linear

system whose solution is the desired critical point. We solve this system by the

command “lsqlin" of Matlab. The details in implementation by the finite difference

method including the discretization, the derivation of the linear system for the critical

point, and the use of “lsqlin" are very similar to the scheme in [34]. Recall that

in our theory, in the definition of the functional J (n)
λ,β acting on qn, see (4.39), we

replaced qn−1 with its analog qn−1,min which belongs to the bounded set B(R, g0), and

also replaced qn−1,min(x, 0) with q0
n−1,min(x, 0). These replacements are only for the

theoretical purpose to avoid the case when qn−1 blows up. However, in the numerical

studies, these steps can be relaxed. This means that in Step 3, we have minimized

the finite difference analog of the functional

qn 7→
∫

Ω

(
qnxx(x, t)−

qnxt(x, t)

2
(
qn−1(x, 0)

)2 +
∂tqn−1 (x, t) ∂xqn−1(x, 0)

2
(
qn−1(x, 0)

)3

)2

e2λϕdxdt+β ‖qn‖2
H2(Ω) ,

(4.111)

subject to the boundary conditions in lines 2 and 3 of (4.23). Another numerical

simplification is that rather than using the H4−norm in the regularization term,

we use the H2− norm in (4.111). Although the theoretical analysis supporting the

above simplifications is missing, we did not experience any difficulties in computing
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the numerical solutions to Problem 3.1. All of our numerical results are satisfactory.

4.10.2 Numerical results for computationally simulated data

To test Algorithm 3, we present four (4) numerical examples.

Test 1 (the reference test). We first test the case of one inclusion with a high

inclusion/background contrast. The true dielectric constant function c(x) has the

following form

ctrue(x) =

 1 + 14e
(x−1)2

(x−1)2−0.22 if |x− 1| < 0.2,

1 otherwise.
(4.112)

(a) (b)

Figure 4.1: Test 1. True and reconstructed functions c(x), where ctrue is given in
(4.112). (a) Functions cinit and ccomp are obtained by Step 2 and Step 5 of Algorithm
3 respectively. (b) The consecutive relative error is ‖cn − cn−1‖L∞(ε,M)/‖cn‖L∞(ε,M),
n = 1, . . . , 10. The data is with δ = 5% noise.

Thus, the inclusion/background contrast is 15:1. It is evident from Figure 4.1

that we can successfully detect an object. The diameter of this object is 0.4 and

the distance between this object and the source is 1. The true inclusion/background

contrast is 15/1. The maximal value of the computed dielectric constant is 15.28.

The relative error in this maximal value is 1.89% while the noise level in the data is

5%. Although the contrast is high, our method provides a good numerical solution
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without requiring any knowledge of the true solution. Our method converges fast.

Although the initial reconstruction cinit computed in Step 2 of Algorithm 3 is not very

good, see Figure 5.1, one can see in Figure 4.1b, that the convergence occurs after

only five (5) iterations. This fact verifies numerically the “contraction property" of

Theorem 8.1 including the key estimate (4.92).

Test 2. The true function c in this test has two “inclusions",

ctrue(x) =


1 + 5e

(x−0.6)2

(x−0.6)2−0.22 if |x− 0.6| < 0.2,

1 + 8e
(x−1.4)2

(x−1.4)2−0.32 if |x− 1.4| < 0.3,

1 otherwise.

(4.113)

The numerical results of this test are displayed in Figure 4.2.

(a) (b)

Figure 4.2: Test 2. True and reconstructed functions c(x), where ctrue is given in
(4.113). (a) Functions cinit and ccomp are obtained by Step 2 and Step 5 of Algorithm
3 respectively. (b) The consecutive relative error is ‖cn − cn−1‖L∞(ε,M)/‖cn‖L∞(ε,M),
n = 1, . . . , 10. The data is with δ = 5% noise.

Test 2 is more complicated than Test 1. However, we still obtain good numerical

results. It is evident from Figure 4.2a that we can precisely detect the two inclusions

without any initial guess. The true maximal values of the dielectric constant of

the inclusions on the left and the right are 6 and 9 respectively. The reconstructed

maximal values in those inclusions are acceptable. They are 5.31 (relative error 11.5%)
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and 7.8 (relative error 13.3%). As in Test 1, the initial reconstruction cinit computed

in Step 2 of Algorithm 3 is far from ctrue(x). Still, our iterative procedure converges

after 7 iterations, see Figure 4.2b.

Test 3We test the case when the function ctrue(x) is discontinuous. It is a piecewise

constant function given by

ctrue(x) =

 10 if |x− 1| < 0.15,

1 otherwise.
(4.114)

The numerical solution for this test is presented in Figure 4.3.

(a) (b)

Figure 4.3: Test 3. True and reconstructed functions c(x), where ctrue is given in
(4.114). (a) Functions cinit and ccomp are obtained by Step 2 and Step 5 of Algorithm
3 respectively. (b) The consecutive relative error is ‖cn − cn−1‖L∞(ε,M)/‖cn‖L∞(ε,M),
n = 1, . . . , 10. The data is with δ = 5% noise.

Although the function ctrue is not smooth and actually not even continuous, Al-

gorithm 3 works and provides a reliable numerical solution. The computed maximal

value of the dielectric constant of the object is 9.25 (relative error 7.5%), which is

acceptable. The location of the object is detected precisely; see Figure 4.3a. As in

the previous two tests, Algorithm 3 converges fast. After the fifth iteration, the re-

constructed function cn becomes unchanged. Again, this fact numerically confirms

both Theorem 8.1 and the robustness of our method.
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Test 4 In this test, the function ctrue(x) has the following form:

ctrue(x) =


3.5 + 0.3 · sin(π(x− 1.35)) if |x− 0.9| < 0.5,

8 if |x− 2| < 0.37,

1 otherwise.

(4.115)

This test is interesting since the graph of the function (4.115) consists of a curve and

an inclusion. The numerical solution for this case is presented in Figure 4.4.

(a) (b)

Figure 4.4: Test 4. The true and reconstructed functions c(x), where ctrue is given in
(4.115). (a) The functions cinit and ccomp are obtained by Step 2 and Step 5 of Algo-
rithm 3 respectively. (b) The consecutive relative error ‖cn−cn−1‖L∞(ε,M)/‖cn‖L∞(ε,M),
n = 1, . . . , 10. The data is with δ = 5% noise.

One can observe from Figure 4.4a that our method to compute the initial re-

construction in Step 2 of Algorithm 3 is not very effective. However, after only 6

iterations, good numerical results are obtained. The curve in the first inclusion lo-

cally coincides with the true one and the maximal value of the computed dielectric

constant within inclusion is quite accurate: it is 7.83 (relative error 2.12%). Our

method converges at iteration number 6.

Remark 4.10.1 It follows from all the above tests that Algorithm 3 is robust in

solving a highly nonlinear and severely ill-posed Problem 3.1. It provides satisfactory

numerical results with fast convergence. For each test, the computational time to
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compute the numerical solution is about 29 seconds on a MacBook Pro 2019 with a

2.6 GHz processor and 6 Intel i7 cores. This is almost a real-time computation.

4.11 Numerical Results for Experimental Data

We now test Algorithm 3 on experimental data mentioned in Introduction. These

data were collected by the US Army Research Laboratory to detect and identify

targets mimicking shallow anti-personnel land mines and IEDs. Five tested targets

were: a bush, a wood stake, a metal box, a metal cylinder, and a plastic cylinder. The

bush and the wood stake were placed in the air, while the other three objects were

buried at a few centimeters depth in the ground. Since the locations of targets can be

accurately detected by the Ground Position System (GPS), we are only interested in

computing the values of their dielectric constants. We are doing so using Algorithm

3.

Just as in our earlier works [15, 22, 23, 24, 28, 40], where these experimental data

were used, we compute here the function crel(x) defined as:

crel(x) =


ctarget

cbckgr
(x) if max ctarget

cbckgr
(x) > 1 and x ∈ D,

1 otherwise,
(4.116)

crel(x) =

 min ctarget

cbckgr
(x) if max ctarget

cbckgr
(x) ≤ 1 and x ∈ D,

1 otherwise,
(4.117)

where D is a sub-interval of the interval [ε,M ], which is occupied by the target. Next,

we define the computed value of ctarget as [24]:

ccomp = cbckgr ×

 max crel(x) if max crel(x) > 1,

min crel(x) if max crel(x) < 1.
(4.118)

As in the above cited publications, we have to preprocess the raw data of [35]
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before importing them into our solver. The data preprocessing procedure is exactly

the same as the one in [24, Section 7.1]. First, we observe that the L∞−norm of the

experimental data far exceeds the L∞−norm of the computationally simulated data.

Therefore, we need to scale the experimental data by dividing it by a calibration factor

µ > 0, i.e. we replace the raw experimental data fraw (t) with fscale (t) = fraw (t) /µ.

Then we work only with fscale (t) . To find the calibration factor, we use a trial-

and-error process. First, we select a reference target. We then try many values

of µ such that the reconstruction of the reference target is satisfactory, i.e. the

computed dielectric constant is in its published range, see below in this section about

the published range. Then this calibration factor is used is all other tests. When the

object is in the air, our reference target is bush. In this case, the calibration factor

µair = 534, 592. When the object is buried under the ground, our reference target is

the metal box and the calibration factor was µground = 265, 223.

Next, we preprocess the data fscale (t) as follows. First, we first use a lower envelop

(built in Matlab) to bound the data. We then truncate the data that is not in a small

interval centered at the global minimizer of the data, see [24, Section 7.1] for the

choice of this small interval. But in the case of the plastic cylinder we use the upper

envelop. The choice of the upper or lower envelopes is as follows. We look at the

function fscale (t) and find the three extrema with largest absolute values. If the middle

extremal value among these three is a minimum, then we bound the data by a lower

envelop. Otherwise, we use an upper envelop. See [24, Section 7.1] for more details

and the reason of this choice. In particular, Figures 4a, 4b, 4d, 5a, 5b, 5d, 5e, 5g,

5h of [24] provide illustrations. Likewise, our Figures 5 displays computed functions

ctarget (x) for our five targets. The computed dielectric constants ccomp defined in

(4.118) by Algorithm 3 are listed in Table 4.1.

The true values of dielectric constants of our targets were not measured in the

experiments. Therefore, we compare our computed values with the published ones.
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(a) ctarget for bush (b) ctarget for wood stake

(c) ctarget for metal box (d) ctarget for metal cylinder (e) ctarget for plastic cylinder

Figure 4.5: Computed functions ctarget(x, y) for our five targets, also see (4.116)-
(4.118) and Table 4.1.

Table 4.1: Computed dielectric constants of five targets

Target cbckgr computed crel cbckgr computed ctarget True ctarget

Bush 1 7.62 1 10.99 [3, 20]
Wood stake 1 2.01 1 2.26 [2, 6]
Metal box 4 4.00 [3, 5] [12.00, 20.00] [10, 30]

Metal cylinder 4 4.01 [3, 5] [12.3, 20.5] [10, 30]
Plastic cylinder 4 0.59 [3, 5] [1.6, 2.95] [1.1, 3.2]

The published values of the dielectric constants of our targets are listed in the last

column of Table 4.1. They can be found on the website of Honeywell (Table of

dielectric constants, https://goo.gl/kAxtzB). Also, see [11] for the experimentally

measured range of the dielectric constants of vegetation samples, which we assume

have the same range as the dielectric constant of bush. In the table of dielectric

constants of Honeywell as well as in [11], any dielectric constant is not a number.

Rather, each dielectric constant of these references is given within a certain interval.

As to the metallic targets, it was established in [28] that they have the so-called

“apparent" dielectric constant whose values are in the interval [10, 30] .
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Conclusion. It is clear from Table 4.1 that our computed dielectric constants are

consistent with the intervals of published ones. Therefore, our results for experimental

data are satisfactory.

Remark 4.11.1 (Speed of computations) Our experimental data are sparse. The

size of the data in time is Nt = 80, which is a lot smaller than that in the dense sim-

ulated data (Nt = 300). Therefore, the speed of computations is much faster than for

the case of simulated data of section 10. All results of this section were computed in

real time on the same computer (MacBook Pro 2019 with 2.6 GHz processor and 6

Intel i7 cores).

4.12 Concluding Remarks

We have developed a new globally convergent numerical method for a 1-D Coef-

ficient Inverse Problem with backscattering data for the wave-like PDE (4.3). This

is the second generation of the above cited convexification method of our research

group. The main novelty here is that, rather than minimizing a globally strictly con-

vex weighted cost functional arising in the convexification, we solve on each iterative

step a linear boundary value problem. This is done using the so-called Carleman

Quasi-Reversibility Method. Just like in the convexification, the key element of the

convergence analysis of this chapter is the presence of the Carleman Weight Function

in each quadratic functional, which we minimize. The convergence estimate is similar

to the well known estimate of the classical contraction mapping principle. The latter

explains the title of this chapter. We have proven a global convergence theorem of

our method. Our numerical results for computationally simulated data demonstrate

high reconstruction accuracies in the presence of 5% random noise in the data.

Furthermore, our numerical results for experimentally collected data have satisfac-

tory accuracy via providing values of computed dielectric constants of explosive-like

targets within their published ranges.
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A practically important observation here is that our computations for experimental

data were performed in real time. This observation did not take place for various ver-

sions of the first generation of the convexification method of our previous publications

[22, 23, 24, 40], which were working with the same experimental data. The latter indi-

cates an important advantage of the second generation of the convexification method

of this chapter.
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CHAPTER 5: THE GRADIENT DESCENT METHOD FOR THE

CONVEXIFICATION TO SOLVE BOUNDARY VALUE PROBLEMS OF

QUASI-LINEAR PDES AND A COEFFICIENT INVERSE PROBLEM

5.1 Introduction

Numerical solutions of ill-posed Cauchy problems for quasi-linear partial differen-

tial equations (PDEs) is an important topic that arises in many real-world applica-

tions. For example, in the case of parabolic PDEs such problems are common in

heat conduction [1, 2]. A natural approach to solve such a problem is to minimize

the functional defined by the least-squares method. However, due to the presence of

nonlinearity, this functional is non-convex. It might have multiple local minima and

ravines. Therefore, a good initial guess, which is located sufficiently close to the true

solution, plays an important role in the minimization process. Since such a good ini-

tial guess is not always available, we, in this chapter, use the convexification method,

in which it is not necessary to have a small distance between the starting point of

iterations and the true solution. The main content of the convexification method is

to construct a weighted cost functional, which is strictly convex on an a priori chosen

bounded set. It is important that smallness condition is not imposed on the diameter

of this set. The unique minimizer of that functional on that set is close to the true

solution of the given ill-posed Cauchy problem. The key element of that functional is

the Carleman Weight Function (CWF), which is involved as weight in the Carleman

estimate for the corresponding PDE operator.

An important question arises immediately on how to efficiently find the global

minimizer of such a convex functional on that bounded set. It is well known that if

a functional is strictly convex on the whole Hilbert space, then the gradient descent
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method converges to its unique minimizer if starting from an arbitrary point of that

space. However, it is not clear what to do in our case when the strict convexity takes

place only on a bounded set. To address this question, it was proposed in [3] to use

the gradient projection method. However, this method is a complicated one and is

hard to implement numerically. On the other hand, it was heuristically observed in

all numerical studies of the convexification conducted so far that a simpler gradient

descent method works well; see e.g., [3, 8, 9, 10, 18]. This motivates us to analytically

study the question of the global convergence of the gradient descent method.

More precisely, we prove that the gradient descent method delivers a sequence

converging to the minimizer of that functional on that bounded set if starting from

an arbitrary point of that set. Since smallness conditions are not imposed on the

diameter of this set, this is global convergence, see, e.g. [3] where the notion of global

convergence is defined. Some numerical results by gradient descent method will be

presented.

Another important part of this chapter is to apply this result to solve a highly

nonlinear and severely ill-posed coefficient inverse problem with a single measurement

of back scattering data in the frequency domain.

As mentioned above, the main idea of the convexification method is to construct

a strictly convex functional. To do this, one uses the Carleman weight function to

convexify the mismatch functional derived from the given boundary value problem.

Several versions of the convexification method have been developed since it was first

introduced in [16]. We cite here [14, 12, 3, 19, 10, 20] for some important works in

this area and their applications to solve a variety kinds of inverse problems. A com-

prehensive study of the convexification method is presented in the recent published

book [18]. The crucial mathematical results that guarantee the above mentioned

properties of the convexification, are the Carleman estimates. The original idea of

applying Carleman estimates to coefficient inverse problems was first published in
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[5] back in 1981 to prove uniqueness theorems for a wide class of coefficient inverse

problems. Some follow up publications can be found in, e.g. [22, 11, 7, 27, 24, 30].

Surveys on the method in [5] can be found in [13, 33], see also [4, Chapter 1] and [18].

It was discovered later in [16], that the idea of [5] can be successfully modified to

develop globally convergent numerical methods for coefficient inverse problems using

the convexification.

For the convenience of the reader, we will recall in this chapter the convexifica-

tion method , to solve ill-posed Cauchy problems for quasi-linear PDEs with both

Dirichlet and Neumann boundary data [14]. Then, we will prove that if the noise

in the boundary data tends to zero, then the convexification method combined with

the gradient descent method delivers a close approximation to the solution of that

Cauchy problem if starting from an arbitrary point of a selected bounded set. The

rate of convergence is Lipschitz. We next apply the above results to solve a highly

nonlinear and severely ill-posed coefficient inverse problem, described below. At a

point far away from the region of interest, we send out an incident electric wave. The

incident wave propagates in the 3D space and scatters when hitting the targets. We

measure the back scattering wave on a surface. The aim of the inverse problem is

to reconstruct the spatially distributed dielectric constants from this measurement.

This coefficient inverse problem is the so-called inverse back scattering problem. It

has many real-world applications, including the detection and identification of explo-

sives, nondestructive testing and material characterization, see [9, 8, 29, 32]. We also

refer the reader to [6] for the applications of this coefficient inverse problem in sonar

imaging, geographical exploration, medical imaging, near-field optical microscopy,

nano-optics.

The widely-used method to solve nonlinear coefficient inverse problem is the least

squares optimization. This approach requires a good initial guess of the true solution.

Unlike this, we assume that the target to be detected is completely unknown. This
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means that a good initial guess of its dielectric constant is unavailable. Our numerical

procedure is as follows. We first eliminate the unknown dielectric constant from the

governing Helmholtz equation. The obtained equation is not a standard PDE. Then,

we approximate the solution of the latter PDE via a truncated Fourier series with

respect to a special orthonormal basis. Then we obtain an ill-posed Cauchy problem

for a coupled system of elliptic of PDEs wih respect to corresponding spatially depen-

dent Fourier coefficients. That special orthonormal basis was originally introduced

in [15]. Solving this system by the convexification method and the gradient descent

method, we obtain the solution to the above non standard PDE above. Then the

solution to the originating coefficient inverse problem follows. We refer the reader to

[8, 10, 31] and the references therein for some related versions of this method.

The chapter is organized as follows. In Section 5.2, we prove the convergence of the

gradient descent method to the minimizer of a strictly convex functional. In Section

5.3, we present the above mentioned ill-posed Cauchy problem for a quasilinear elliptic

PDE with both Dirichlet and Neumann boundary conditions. Also, in this section

we present the corresponding functional with the Carleman Weight Function in it.

In section 5.4, we recall the convexification method. In this section, we also prove

the Lipschitz-like convergence of the minimizers due to the convexification method

to the true solution as the noise tends to zero. In section 5.5, we introduce our

coefficient inverse problem. In section 5.6, we derive an approximate model to solve

this coefficient inverse problem. We present some numerical examples in section 5.7.

Section 5.8 is for concluding remarks.

5.2 The gradient descent method to minimize a convex functional

Let X be a Hilbert space and let J : X → R be a functional. Assume that J is

Fréchet differentiable. Its derivative at the point v ∈ X is denoted byDJ(v) : X → R.

By the Riesz representation theorem, for each v ∈ X, we can identify DJ(v) with an
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element of X, named as J ′(v), in the following sense

DJ(v)(h) = 〈J ′(v), h〉X for all h ∈ X.

Let M > 0 be an arbitrary number. Consider the ball B (M) ,

B (M) = {v ∈ X : ‖v‖X < M} .

We assume that the Fréchet derivative J ′ is Lipschitz continuous in B (M), i.e.

‖J ′(v2)− J ′(v1)‖X ≤ L ‖v2 − v1‖X , ∀v1, v2 ∈ B (M), (5.1)

where L is a certain number. Assume that J is strictly convex on B (M). This means

that there exists a constant Λ > 0 such that

〈J ′(v1)− J ′(v2), v1 − v2〉X ≥ Λ‖v1 − v2‖2
X for all v1, v2 ∈ B (M). (5.2)

Theorem 5.2.1 follows from a combination of Lemma 2.1 and Theorem 2.1 of [3].

Theorem 5.2.1 Assume that the functional J : X → R is Fréchet differentiable

on X and its Fréchet derivative is Lipschitz continuous on B(M) as in (5.1). Also,

assume that J (v) is strictly convex in B(M); i.e., inequality (5.2) is true. Then there

exists unique minimizer vmin ∈ B (M) of the functional J (v) on the set B (M),

min
B(M)

J (v) = J (vmin) .

Furthermore, the following inequality holds

〈J ′ (vmin) , vmin − y〉X ≤ 0, for all y ∈ B (M).
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The fact that the minimizer guaranteed by Theorem 5.2.1 can be located on the

boundary of the ball B(M) prevents us from the proof of the global convergence of the

gradient descent method. Hence, we assume in the next theorem that the minimizer

is an interior point of B(M).

Theorem 5.2.2 Assume that the functional J : X → R satisfies conditions of The-

orem 5.2.1. Let vmin be its minimizer on the set B (M), the uniqueness and existence

of which is guaranteed by Theorem 5.2.1. Suppose that vmin belongs to the inte-

rior of B (M) . Fix v(0) ∈ B. Assume that the ball centered at vmin with the radius

‖v(0) − vmin‖X is contained in B (M) ; i.e.,

B0 = B(vmin, ‖v(0) − vmin‖X) ⊂ B (M) . (5.3)

Denote η0 = min (2Λ/L2, 1) and fix η ∈ (0, η0). For each m ≥ 0, define

v(m+1) = v(m) − ηJ ′
(
v(m)

)
, m ≥ 1 (5.4)

Then, there exists a number q ∈ (0, 1) such that

v(m) ∈ B(M) and
∥∥vm − vmin

∥∥
X
≤ qm−1

∥∥v(0) − vmin

∥∥
X
, m ≥ 1. (5.5)

As a result, the sequence v(m) converges to vmin as m tends to ∞.

The sequence {v(m)}m≥1 defined in (5.4) is generated by the well-known gradient

descent method. Although the gradient descent method is widely used in the scientific

community, its convergence for a nonconvex functional can be proven only if the

starting point of iterations is sufficiently close to the minimizer. Unlike this, Theorem

5.2.2 provides an affirmative answer about the convergence when the starting point is
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not necessary located in a sufficiently small neighborhood of the minimizer. Theorem

5.2.2 justifies recent numerical results of our research group where we have used the

gradient descent method to minimize globally strictly convex cost functionals arising

in convexification even though our past theory said that a more complicated gradient

projection method should be used, see e.g., [3, 8, 9, 10, 18, 20].

Proof 5.2.1 (Proof of Theorem 5.2.2) Let L and Λ be the constants in (5.1) and

(5.2) respectively and let q = 1 + η2L2 − 2ηΛ. Since η ∈ (0, η0), q ∈ (0, 1). We prove

(5.5) by induction. Assume, by induction, that (5.5) is true for some m ≥ 1. Due to

assumption (5.3), vmin ∈ B (M) . Thus, J ′(vmin) = 0. Hence, vmin = vmin − J ′ (vmin) .

By (5.4), we have

‖v(m+1) − vmin‖2
X = ‖v(m) − vmin − η(J ′

(
v(m)

)
− J ′(vmin))‖2

X

= ‖v(m) − vmin‖2
X + η2‖J ′

(
v(m)

)
− J ′(vmin)‖2

X

− 2η〈J ′(m))− J ′(vmin), v(m) − vmin〉X .

Using this, together with (5.1), (5.2) and the induction assumption for (5.5), we

obtain

‖v(m+1) − vmin‖2
X ≤ q‖v(m) − vmin‖2

X ≤ qm‖v(0) − vmin‖2
X . (5.6)

The last inequality in (5.6) is deduced from the induction hypothesis. It follows from

(5.6) that v(m+1) ∈ B0 ⊂ B. The assertion (5.5) is proved.

Remark 5.2.1 1. The hypothesis that the starting point of iterations v(0) is such

that the ball centered at vmin with the radius ‖vmin−v0‖X is contained in B (M)

does not weaken Theorem 5.2.2. In fact, if this hypothesis is not satisfied, we

can replace B (M) by a larger ball B (M ′) where M ′ > M. Note that in the

convexification method, B (M) is the ball with an arbitrary chosen radius.

2. The assumption that vmin is inside B (M) is the main reason that helps us to
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replace the gradient projection method in [9, 10, 8, 3] with the gradient descent

method in Theorem 5.2.2. Without this assumption, elements of the sequence

produced by the gradient descent method might be outside of B (M), thus making

this sequence diverge.

3. We refer the reader to [17, Theorem 6], in which the authors proved a less

general case of Theorem 5.2.2.

5.3 A boundary value problem for quasi-linear PDEs

Let n ≥ 2 be the spatial dimension. Let Ω be an open and bounded domain in

Rn and Γ be a part of ∂Ω. Let G : Ω × R × Rn → R be a real value function in the

class C2(Ω× R× Rn,R). Consider the following boundary value problem with both

Dirichlet and Neumann boundary conditions


∆v(x) = G(x, v(x),∇v(x)) x ∈ Ω,

∂νv(x) = g0(x) x ∈ Γ,

v(x) = g1(x) x ∈ ∂Ω

(5.7)

where g0 and g1 are two functions in the class Hp(Ω) where p is a positive integer

with p > dn/2e + 2. In fact, we can say that (5.7) is the Cauchy problem for a

quasilinear elliptic equation with the additional Dirichlet boundary data at ∂Ω�Γ.

Here, dn/2e is the smallest integer that is greater than n/2. This regularity condition

guarantees the embedding Hp(Ω) ↪→ C2(Ω). This embedding will be used for the

regularization purpose. In practice, the functions g0 and g1 represent the flux and the

value information of v on ∂Ω and Γ respectively. We first recall the convexification

method to compute an approximation of the solution, if it exists, to (5.7). Suppose
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that

H = {φ ∈ Hp(Ω) : ∂νφ(x) = g0(x)

for all x ∈ Γ and φ(x) = g1(x) for all x ∈ ∂Ω} (5.8)

is non-empty. Let v0 be a function in H. Define

u(x) = v(x)− v0(x) for all x ∈ Ω. (5.9)

Then, solving (5.7) is equivalent to solving


∆u(x) = F (x, u(x),∇u(x)) x ∈ Ω,

∂νu(x) = 0 x ∈ Γ,

u(x) = 0 x ∈ ∂Ω

(5.10)

where

F (x, s, ξ) = ∆v0(x) +G(x, s+ v0(x), ξ +∇v0(x)) (5.11)

for all x ∈ Ω, s ∈ R, ξ ∈ Rn. Let

H0 =
{
φ ∈ Hp(Ω) : ∂νφ(x) = 0

for all x ∈ Γ and φ(x) = 0 for all x ∈ ∂Ω
}
. (5.12)

It is obvious that H0 is a closed subspace of Hp(Ω). We consider H0 a Hilbert space

endowed with the usual norm of Hp(Ω). A widely-used approach to solve (5.10) is to

minimize the following least squares functional

∫
Ω

∣∣∆u(x)− F
(
x, u(x),∇u(x)

)∣∣2dx + a regularization term. (5.13)
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for u ∈ H0. Due to the nonlinearity of F , and hence L, the functional in (5.13) is

nonconvex. It might have multiple local minima and ravines, making the direct opti-

mization approach unpractical. Motivated by this fact, we “convexify" this functional

using the idea in [15]. Let Ψ : Ω→ R be a C∞ function with ∇Ψ 6= 0 for all x ∈ Ω.

Introduce the Carleman weight function

µλ(x) = exp(2λΨ(x)) for all x ∈ Ω (5.14)

where λ > 1. A Carleman estimate is an inequality of the form below.

Assumption 5.3.1 (Carleman estimate) There exists λ0 > 1 depending only on

Ω and n such that for all φ ∈ H2(Ω) with φ|∂Ω = 0 and ∂νφ|Γ = 0, we have

∫
Ω

µλ(x)|∆φ|2dx ≥ C

λ

n∑
i,j=1

∫
Ω

µλ(x)|∂xixjφ(x)|2dx

+ Cλ

∫
Ω

µλ(x)[|∇φ|2 + λ2|φ|2]dx (5.15)

for all λ ≥ λ0 for some positive constant C depending only on Ω.

Assumption 5.3.1 holds true for some functions Ψ and µλ. For example, Klibanov

and his collaborators have established a Carleman estimate in [19, Theorem 4.1], in

which Ω = (−R,R)3 ⊂ R3 for some R > 0 and Ψ(x, y, z) = (z − r)2 where r is

any number that is greater than R. On the other hand, following the arguments in

[19, Theorem 4.1], one can prove a Carleman estimate with Ψ(x, y, z) = (z + r)2, see

[10, Theorem 3.1]. This estimate plays an important role in developing a numerical

method to solve the backscattering inverse problem with moving point source in [10].

On the other hand, the reader can find another Carleman estimate in [24, Theorem

3.1] when the second derivatives of the test function φ are absent in the right-hand

side of (5.15). We also cite to [4, 18] for some important versions of the Carleman

estimate for other kinds of partial differential operators. Especially, we draw the
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reader’s attention to [5] for the original idea of using the Carleman estimate to prove

the uniqueness of a variety kinds of inverse problems.

Without loss of the generality, we assume that the true solution to (5.10) has a

finite Hp(Ω)-norm, which is bounded from above by a known number M . We seek

this solution in the set

B(M) =
{
φ ∈ H0 : ‖φ‖Hp(Ω) < M

}
. (5.16)

More precisely, in order to find a numerical solution to (5.10), we solve the problem

below.

Problem 5.3.1 Fix a regularization parameter ε > 0. Minimize the following func-

tional

Jε,λ(u) =

∫
Ω

µλ(x)
∣∣∆u(x)− F

(
x, u(x),∇u(x)

)∣∣2dx + ε‖u‖2
Hp(Ω) (5.17)

for all u ∈ B(M).

In the next section, we will recall the convexification principle to solve Problem

5.3.1. The main content of the convexification principle is that if the Carleman

estimate (5.15) holds true then for any arbitrarily large number M , there exists

λ1 > λ0 such that for all λ > λ1 and ε > 0, Jε,λ is strictly convex in B(M) where

B(M) is the ball in H0 with center 0 and radius M , see (5.16).

5.4 The convexification method and the convergence of the minimizer to the true

solution as the noise tends to zero

In this section, we recall a theorem (Theorem 5.4.1) that guarantees the convexity

of the objective functional Jε,λ in B(M). We write F = F (x, s, ξ) and the par-

tial derivatives of F (x, s, ξ) with respect to its variables are written as ∇xF (x, s, ξ),

∂sF (x, s, ξ) and ∇ξF (x, s, ξ). The following theorem, Theorem 5.4.1, guarantees that
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Jε,λ has Lipschitz continuous Fréchet derivative and, more importantly, that Jε,λ is

strictly convex if the Carleman weight function µλ is such that Assumption 5.3.1

holds true.

Theorem 5.4.1 (Convexification) 1. Let M be an arbitrary positive number and

define the ball B(M) as in (5.16). Then, for all ε > 0 and λ > 1, Jε,λ : B(M) ⊂

H0 → R is Fréchet differentiable. The derivative of Jε,λ is given by

DJε,λ(u)h = 2

∫
Ω

µλ(x)
(
∆u(x)− F (x, u(x),∇u(x))

)
(
∆h(x)−DF (u)h(x)

)
dx + 2ε〈u, h〉Hp(Ω) (5.18)

for all u ∈ B(M) and h ∈ H0 where

DF (u)h(x) = ∂sF (x, u(x),∇u(x))h(x) +∇ξF (x, u(x),∇u(x)) · ∇h(x)

for all x ∈ Ω. Moreover, the Fréchet derivative DJε,λ is Lipschitz continuous in B(M).

That means, there exists a constant L = L(Ω,M, F ), depending only on the listed

parameters, such that

‖DJε,λ(u2)−DJε,λ(u1)‖L(H0) ≤ L‖u2 − u1‖Hp(Ω) (5.19)

for all u1, u2 ∈ B(M), where L(H0) is the set of all bounded linear maps sending

functions in H0 into R.

2. Assume further that the Carleman estimate (5.15) holds true. Then, there exist

λ1 = λ(M,Ω, F ) > λ0 and C = C(M,Ω, F ) > 0, both of which depend only on the



143

listed parameters, such that for all ε > 0, λ > λ1, u1 and u2 in B(M), we have

Jε,λ(u2)− Jε,λ(u1)−DJε,λ(u1)(u2 − u1)

≥ C‖u2 − u1‖2
H2(Ω) + ε‖u2 − u1‖2

Hp(Ω). (5.20)

As a result,

(
DJε,λ(u2)−DJε,λ(u1)

)
(u2 − u1) ≥ 2C‖u2 − u1‖2

H2(Ω) + 2ε‖u2 − u1‖2
Hp(Ω) (5.21)

for all u1 and u2 in B(M).

3. Jε,λ has a unique minimizer in B(M).

We do not present the proof of Theorem 5.4.1 here. The reason is below. One

can prove the first part of this theorem with straightforward computations. The

proof is similar to that of [3, Theorem 3.1]. The second part of this theorem is a

generalization of [3, Theorem 3.2] in the sense that the “convexification" inequalities

(5.20) and (5.21) are tighter than the ones in [3, Theorem 3.2]. In fact, in those

inequalities, we replace the H1 norm in [3, Theorem 3.2] by the H2 norm in the right

hand side of (5.20) and (5.21). This is because the right-hand side of the Carleman

estimate, see (5.15), contains the second derivatives. The existence of the unique

minimizer of Jε,λ in part 3 of Theorem 5.4.1 can be proved using the same technique

in [10, Theorem 5.3], see also Lemma 2.1 and Theorem 2.1 of [3] and Theorem 5.2.1.

On the other hand, we refer the reader to [3, Section 2] for some important facts in

convex analysis that are related to the convexification in Theorem 5.4.1.

By using the gradient descent method, we can compute the minimizer of Jε,λ in

B(M), see Theorem 5.2.2. We are now in the position of solving problem (5.7) with

noisy boundary data g0 and g1 given. The corresponding noiseless data are denoted

by g∗0 and g∗1 respectively. Let δ > 0 be the noise level and assume that there exists
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an “error function" E such that
‖E‖Hp(Ω) < δ,

g0 = g∗0 + ∂νE on ∂Ω,

g1 = g∗1 + E in Γ.

(5.22)

Recall in Section 5.3, we assume that there is a function v0 satisfying ∂νg = g0 on ∂Ω

and v0 = g1 on Γ. Let

vε,δ(x) = umin(x) + v0(x) for all x ∈ Ω (5.23)

where umin is the minimizer of Jε,λ obtained in Theorem 5.4.1. The function vε,δ is

named as the regularized solution to (5.7). Let v∗ be the solution to (5.7) with g0 and

g1 replaced by the corresponding noiseless data g∗0 and g∗1 respectively. The following

theorem confirms that the minimizer of Jε,λ can be used to approximate the solution

to (5.7) via (5.23). It is a generalization of Theorem 4.5 in [10] and Theorem 5.4 in

[10]. In fact, in those theorems, the function F has some specific form and does not

depend on the first and the second variables x and u(x).

Theorem 5.4.2 Assume that problem (5.7) with g0 and g1 replaced by g∗0 and g∗1

respectively has a solution v∗. Recall v0 the function we used to change the variable

in (5.9). Without loss of the generality, assume that

max
{
‖v∗‖Hp(Ω), ‖v0‖Hp(Ω)

}
<
M

2
− δ. (5.24)

Let vε,δ = umin + v0 where umin is the minimizer of the strictly convex functional Jε,λ.

Then

‖vε,δ − v∗‖H2(Ω) ≤ C(
√
ε‖v∗ − v0‖Hp(Ω) + δ) (5.25)

for some constant C depending on Ω,M and F .
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Proof. For x ∈ Ω, define

u∗(x) = v∗(x)− v0(x). (5.26)

It is obvious that ∂νu
∗(x) = g∗0(x)− g0(x) = −∂νE(x) for all x ∈ ∂Ω,

u∗(x) = g∗1(x)− g1(x) = −E(x) for all x ∈ Γ

Thus, u∗+ E ∈ H0. Using the triangle inequality, (5.22) and (5.24), we have u∗+ E ∈

B(M). Using (5.20) with u1 and u2 replaced by umin and u∗+E respectively, we have

Jε,λ(u
∗ + E)− Jε,λ(umin)−DJε,λ(umin)(u∗ + E − umin)

≥ C‖u∗ + E − umin‖2
H2(Ω) + ε‖u∗ + E − umin‖2

Hp(Ω). (5.27)

Since umin is the minimizer of Jε,λ in B(M), DJε,λ(umin) = 0. This, together with

(5.27) and the fact that −Jε,λ(umin) ≤ 0, implies

Jε,λ(u
∗ + E) ≥ C‖u∗ + E − umin‖2

H2(Ω) + ε‖u∗ + E − umin‖2
Hp(Ω). (5.28)

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we next estimate

Jε,λ(u
∗ + E)

=

∫
Ω

µλ(x)|∆(u∗ + E)− F (x, u∗ + E ,∇u∗ +∇E)|2dx + ε‖u∗ + E‖2
Hp(Ω)

≤ 2

∫
Ω

µλ(x)|∆u∗ − F (x, u∗,∇u∗)|2dx

+ 2

∫
Ω

µλ(x)|∆E + F (x, u∗,∇u∗)− F (x, u∗ + E ,∇u∗ +∇E)|2dx

+ ε‖u∗ + E‖2
Hp(Ω). (5.29)
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Since v∗ is the true solution to (5.7), by (5.10), (5.11) and (5.26), we have

∆u∗ − F (x, u∗,∇u∗) = 0 for all x ∈ Ω.

Using (5.22) and (5.29) and the fact that F is in C1 and hence, Lipschitz, we have

Jε,λ(u
∗ + E) ≤ Cδ2 + ε‖u∗ + E‖2

Hp(Ω). (5.30)

Combining (5.28) and (5.30) and using the inequality (a+ b)2 ≤ 2(a2 + b2), we have

‖u∗ − umin‖2
H2(Ω) ≤ C(δ2 + ε‖u∗‖2

Hp(Ω)).

Estimate (5.25) is proved. �

The procedure to compute v∗ is described in Algorithm 4.

Algorithm 4 A numerical method to solve (5.7)
1: Choose M large enough and choose a threshold error ε > 0.
2: Set m = 0 and take a function u0 in B(M).
3: Compute um+1 using the gradient descent method, see (5.4) for some 0 < η � 1.
4: If ‖um+1 − um‖H2(Ω) < ε, go to Step 5. Otherwise, set m = m + 1 and go back

to Step 3.
5: Set vcomp = um+1 + g.

Remark 5.4.1 The choices of M and ε in Step 1 are based on some trial and error

processes.

Remark 5.4.2 Theorems 5.4.1 and 5.4.2 hold true even when the functions v, u, G,

F , g0 and g1 take complex values. By splitting (5.7) and (5.10) into real part and

imaginary part, we obtain a system of quasi-linear PDEs on the field of real numbers.

Then, we can apply the whole analysis for the case of a single equation to the case of

a system of PDEs.
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5.5 A coefficient inverse problem in the frequency domain with back scattering

data in R3

In this section, we introduce a method to solve the backscattering inverse problem

with multi-frequency data. This inverse problem has uncountable real-world applica-

tions. Solving a system like (5.7) plays an important role in our method. Let Ω be

the cube (−R,R)3 ⊂ R3 where R is a positive number. Let c ∈ C1(R3) represent the

dielectric constant of R3. Assume that c(x) = 1 if x ∈ R3 \ Ω,

c(x) ≥ 1 if x ∈ Ω.
(5.31)

Assumption (5.31) can be understood as the dielectric constant of the air (or vacuum)

is scaled to be 1. Let [k, k] be an interval of wave number and let x0 = (0, 0,−d),

with d > R, be a point located outside Ω. Let u = u(x, k), (x, k) ∈ R3 × [k, k],

represent the frequency-dependent wave. The function u(x, k) is governed by the

following problem

 ∆u(x, k) + k2c(x)u(x, k) = −δ(x− x0) x ∈ R3,

∂|x|u(x, k)− iku(x, k) = o(|x|−1) |x| → ∞
(5.32)

where δ is the Dirac function. The partial differential differential equation in (5.32) is

called the Helmholtz equation and the asymptotic behavior of u as |x| → ∞ is called

the Sommerfeld radiation condition. The Sommerfeld radiation condition guarantees

the existence and uniqueness of problem (5.32), see [6, Chapter 8]. We are interested

in the following problem.

Problem 5.5.1 (Coefficient inverse problem from backscattering data) Let

Γ = {x = (x, y,−R) : −R ≤ x, y ≤ R} ⊂ ∂Ω (5.33)
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be the measurement site. Given the measurements of

f(x, k) = u(x, k) and g(x, k) = −∂zu(x, k) (5.34)

for (x, k) ∈ Γ× [k, k], determine the function c(x), x ∈ Ω.

Remark 5.5.1 We refer the reader to our recent works [9, 10, 8] in which we study

a similar inverse problem in which the data are generated by a source moving along

a straight line, and only a single frequency was used. Unlike this, the data for the

inverse problem under consideration, Problem 5.5.1, are generated by a single source

and by multi-frequencies.

Problem 5.5.1 arises from the following well-known experiment, illustrated in Figure

5.1. Let an optical source illuminate objects inside Ω. The wave generated by the

optical source is called the incident wave. The incident wave hits the objects and

scatters in all directions. We collect the scattering wave on the part of ∂Ω, named

as Γ, that receives the wave coming back from the objects. Solving Problem 5.5.1,

with these data, we obtain the dielectric constant of the medium. This information is

important in identifying the objects. The forward problem corresponding to Problem

5.5.1 is the problem of computing the function u(x, k), (x, k) ∈ Γ × [k, k]. To solve

the forward problem, we first model the incident wave by the point source

u0(x, k) =
exp(ik|x− x0|)

4π|x− x0|
(x, k) ∈ R3 × [k, k]. (5.35)

It is well-known that

∆u0(x, k) + k2u0(x, k) = −δ(x− x0) x ∈ R3, k ∈ [k, k]. (5.36)

Let

usc(x, k) = u(x, k)− u0(x, k) x ∈ R3, k ∈ [k, k] (5.37)
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Ω

Γ

unknown object

back scattering wave

source

Figure 5.1: A diagram for the experiment that leads to Problem 5.5.1. The unknown
object is located inside a box Ω. An emitter (the red dot), located outside Ω, emits
the incident wave. The incident wave scatters when hitting an unknown object. The
back-scattering waves are represented by blue arrows and collected on an array of
detectors located on the part Γ of ∂Ω.

denote the scattering wave. It follows from (5.37) that u(x, k) is the sum of the

scattering wave and the incident wave. We call the function u(x, k) the total wave.

Subtracting the differential equation in (5.32) from (5.36), we obtain

∆usc(x, k) + k2usc(x, k) = −k2(c(x)− 1)u(x, k) x ∈ R3, k ∈ [k, k].

Hence, see [6, Chapter 8],

usc(x, k) = k2

∫
R3

exp(ik|x− ξ|)
4π|x− ξ|

(c(ξ)− 1)u(ξ, k)dξ x ∈ R3, k ∈ [k, k]. (5.38)

Combining (5.37) and (5.38), we arrive at the Lippmann-Schwinger equation

u(x, k) = u0(x, k) + k2

∫
R3

exp(ik|x− ξ|)
4π|x− ξ|

(c(ξ)− 1)u(ξ, k)dξ (5.39)

for all x ∈ R3, k ∈ [k, k]. We solve the integral equation (5.39) by the method in

[25, 26]. In order to solve the inverse problem, we need to impose the following

condition.
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Assumption 5.5.1 The total wave u(x, k) is nonzero for all x ∈ Ω and k ∈ [k, k].

We provide here an example when Assumption 5.5.1 holds true. In this example,

we assume that c is in the class C15(R3). Consider the Riemannian metric generated

by c

dτ =
√
c(x)dx, |dx| =

√
dx2

1 + dx2
2 + dx2

3. (5.40)

Assume that for each point x ∈ R3, the geodesic line with respect to the Riemannian

metric defined (5.40) connecting x0 and x is unique, where x0 is the location of the

emitter that emits the point source. Then, it was shown in [21] that

u(x, k) = A(x)eikτ(x) +O
(1

k

)
as k →∞ (5.41)

for x ∈ Ω where A is a function taking positive value and τ is the travel time of

the wave from x0 to x. Hence, Assumption 5.5.1 holds true when the wave number

k is sufficiently large. In the next section, we derive a system of nonlinear partial

differential equations. Solution of this system directly yields the solution to Problem

5.5.1.

5.6 A method to solve Problem 5.5.1

Recall that u = u(x, k), x ∈ Ω, k ∈ [k, k] is the solution to (5.32). Assume that

Assumption 5.5.1 holds true. Define

v(x, k) =
1

k2
log

u(x, k)

u0(x, k)
for all x ∈ Ω, k ∈ [k, k]. (5.42)
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Although u/u0 takes complex values, the function v can be defined. Employing (5.41)

and assuming that both k and k are large, we define the function v as

v(x, k) =
1

k2

[
log u(x, k)− log u0(x, k)

]
=

1

k2

[
lnA(x)− ln

1

4π|x− x0|
+ ik(τ(x)− |x− x0|) +O(1/k)

]

for all x ∈ Ω, k ∈ [k, k]. We now derive a differential equation for the function v. It

follows from (5.42) that

∇v(x, k) =
1

k2

(∇u(x, k)

u(x, k)
− ∇u0(x, k)

u0(x, k)

)
for all x ∈ Ω, k ∈ [k, k]. (5.43)

Taking the divergence of (5.43) gives

∆v(x, k) =
1

k2

(∆u(x, k)

u(x, k)
−
(∇u(x, k)

u(x, k)

)2

− ∆u0(x, k)

u0(x, k)
+
(∇u0(x, k)

u0(x, k)

)2)
(5.44)

for all x ∈ Ω, k ∈ [k, k]. Since u(x, k) satisfies the differential equation in (5.32) and

u0(x, k) satisfies the differential equation in (3.1) with c(x) replaced by 1, we have

∆u(x, k)

u(x, k)
= −k2c(x) and

∆u0(x, k)

u0(x, k)
= −k2 (5.45)

for all x ∈ Ω, k ∈ [k, k]. It follows from (5.43), (5.44) and (5.45) that

∆v(x, k) =
1

k2

[
− k2(c(x)− 1)−

(
k2∇v(x, k) +

∇u0(x, k)

u0(x, k)

)2

+
(∇u0(x, k)

u0(x, k)

)2]
= −(c(x)− 1)− k2(∇v(x, k))2 − 2∇v(x, k) · ∇u0(x, k)

u0(x, k)

for all x ∈ Ω, k ∈ [k, k]. We obtain

∆v(x, k) + k2(∇v(x, k))2 +
2∇v(x, k) · ∇u0(x, k)

u0(x, k)
= −c(x) + 1 (5.46)
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for all x ∈ Ω, k ∈ [k, k]. Differentiate (5.46) with respect to k. We have

∆∂kv(x, k) + 2k2∇v(x, k) · ∇∂kv(x, k) + 2k(∇v(x, k))2

+ 2∇∂kv(x, k) · ∇u0(x, k)

u0(x, k)
+ 2∇v(x, k)∂k

∇u0(x, k)

u0(x, k)
= 0 (5.47)

for all x ∈ Ω, k ∈ [k, k].

Let {Ψm}m≥1 be the orthonormal basis of L2(Ω) defined in [15]. This basis is

constructed as follows. For each m ≥ 1, define the function φm(k) = km−1ek−(k+k)/2

for all k ∈ [k, k]. It is clear that the set {φm}m≥1 is complete in [k, k]. We then

apply the Gram-Schmidt orthonormalization process to this set to obtain the basis

{Ψm}m≥1.

We derive an approximation model for the solution v to (5.47) as follows. For each

x ∈ Ω and k ∈ [k, k], we write

v(x, k) =
∞∑
i=1

vi(x)Ψi(k) '
N∑
i=1

vi(x)Ψi(k) (5.48)

for some cut-off number N , determined later in section 5.7, where

vi(x) =

∫ k

k

v(x, κ)Ψi(κ)dκ i ∈ {1, . . . , N}. (5.49)

In this approximation context,

vk(x, k) =
N∑
i=1

vi(x)Ψ′i(k) for all x ∈ Ω, k ∈ [k, k]. (5.50)
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Plugging (5.48) and (5.50) into (5.47) gives

N∑
i=1

∆vi(x)Ψ′i(k) + 2
N∑

i,j=1

∇vi(x) · ∇vj(x)
(
k2Ψi(k)Ψ′j(k) + kΨi(k)Ψj(k)

)
+ 2

N∑
i=1

∇vi(x) ·
(

Ψ′i(k)
∇u0(x, k)

u0(x, k)
+ Ψi(k)∂k

∇u0(x, k)

u0(x, k)

)
= 0 (5.51)

for all x ∈ Ω. For each l ∈ {1, . . . , N}, multiplying Ψl(k) to both sides of (5.51), we

have

N∑
i=1

sli∆vi(x) +
N∑

i,j=1

alij∇vi(x) · ∇vj(x) +
N∑
i=1

Bli(x) · ∇vi(x) = 0 (5.52)

where 

sli =

∫ k

k

Ψ′i(k)Ψl(k)dk,

alij = 2

∫ k

k

(
k2Ψi(k)Ψ′j(k) + kΨi(k)Ψj(k)

)
Ψl(k)dk,

Bli(x) = 2

∫ k

k

(
Ψ′i(k)

∇u0(x, k)

u0(x, k)
+ Ψi(k)∂k

∇u0(x, k)

u0(x, k)

)
Ψl(k)dk

(5.53)

for all i, j, l ∈ {1, . . . , N} and x ∈ Ω.

We next compute the boundary information for V . For all x ∈ Γ and k ∈ [k, k],

since u(x, k) = f(x, k) where f is the data for the inverse problem under consideration

(see (5.34)), it follows from (5.42) that v(x, k) = 1
k2 log f(x,k)

u0(x,k)
. Hence, by (5.49), we

have

vi(x) =

∫ k

k

v(x, κ)Ψi(κ)dκ =

∫ k

k

1

κ2
log

f(x, κ)

u0(x, κ)
Ψi(κ)dκ i ∈ {1, . . . , N}

for all x ∈ Γ. Since we only measure the wave u on Γ, we complement vi(x) = 0 for

all i ∈ {1, · · · , N} and x ∈ ∂Ω \ Γ. The boundary value of VN = (v1, v2, . . . , vN)T is
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given by

VN(x) = g1(x) =


[∫ k

k

1

κ2
log

f(x, κ)

u0(x, κ)
Ψi(κ)dκ

]N
i=1

x ∈ Γ,

0 x ∈ ∂Ω \ Γ

(5.54)

On the other hand, by (5.49), for all x ∈ Γ and k ∈ [k, k],

∂νv(x, k) =
1

k2

(∂νu(x, k)

u(x, k)
− ∂νu0(x, k)

u0(x, k)

)
=

1

k2

( g(x, k)

f(x, k)
− ∂νu0(x, k)

u0(x, k)

)
.

Therefore, by (5.49),

∂νvi(x) =

∫ k

k

∂νv(x, κ)Ψi(κ)dκ

=

∫ k

k

1

κ2

( g(x, κ)

f(x, κ)
− ∂νu0(x, κ)

u0(x, κ)

)
Ψi(κ)dκ (5.55)

for all i ∈ {1, . . . , N} and x ∈ Γ. By setting

g0(x) =

[∫ k

k

1

κ2

( g(x, κ)

f(x, κ)
− ∂νu0(x, κ)

u0(x, κ)

)
Ψi(κ)dκ

]N
i=1

, (5.56)

we have

∂νV (x) = g0(x) for all x ∈ Γ. (5.57)

In summary, the vector VN = (v1, v2, . . . , vN)T satisfies a Cauchy like boundary value
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problem



N∑
i=1

sli∆vi(x) +
N∑

i,j=1

alij∇vi(x) · ∇vj(x)

+
N∑
i=1

Bli(x) · ∇vi(x) = 0, x ∈ Ω,

VN(x) = g1(x) x ∈ ∂Ω,

∂νVN(x) = g0(x) x ∈ Γ.

(5.58)

where sij, alij, Bli, 1 ≤ i, j, l ≤ N are given in (5.53), g1 and g0, are respectively

defined in (5.54) and (5.56).

Remark 5.6.1 Let (s̃li)
N
l,i=1 denote S−1. Problem (5.58) can be rewritten as a par-

ticular form of (5.7) as



N∑
i=1

∆vi(x) +
N∑

i,j=1

s̃lialij∇vi(x) · ∇vj(x)

+
N∑
i=1

s̃liBli(x) · ∇vi(x) = 0, x ∈ Ω,

VN(x) = g1(x) x ∈ ∂Ω,

∂νVN(x) = g0(x) x ∈ Γ.

However, we numerically observe that solving (5.58) provides better numerical solu-

tions.

Let µλ(x, y, z) = eλ(z+r)2 for a number r > 1 be a Carleman weight function. We

refer the reader to [10, Theorem 3.1] for the proof of Carleman estimate (5.15) with

this Carleman weight function in 3D. Thus, we can find the solution to the system of

quasi-linear equations (5.58) by the convexification method, see Algorithm 4.

5.7 Numerical tests

In this section, we numerically study Problem 5.3.1 and Problem 5.5.1.
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5.7.1 Numerical study for Problem 5.3.1

We present an example in which we apply convexification method to compute the

solution to problem of the form (5.7). For simplicity, we consider the case n = 2

and the computational domain Ω is chosen to be (−1, 1)2. We choose the set Γ to

be {(x, y = −1) : |x| ≤ 1} ⊂ ∂Ω, on which we impose the Neumann boundary

condition for the solution v. We numerically test the convexification method in the

finite difference scheme. That means we compute the values of the solution on the

grid

G =
{

(xi = −1 + (i− 1)dx, yj = −1 + (j − 1)dx) : 1 ≤ i, j ≤ Nx

}
where dx = 2

Nx−1
and Nx is an integer. In our numerical study, Nx = 41.

In computation, we use the Carleman weight function e−λ(R+1.5)2
eλ(y−1.5)2 where

λ = 1.1. This Carleman weight function is the 2D version of the one used in Section

5.7.2. The regularization term is chosen to be ε = 10−6. The details in implementation

including the discretizing the cost functional Jε,λ and the choice of the initial guess are

similar to the ones in Section 5.7.2. We do not present in details here. To illustrate

the efficiency of Algorithm 4, we compute solution to (5.7) when the nonlineariry G

is given by

G(x, s, p) = −
√
|p|2 + 1− sin

(
x+ π (y − 0.5)2)+ 2 π cos

(
x+ π (y − 0.5)2)

− 4π2 (y − 0.5)2 sin
(
x+ π (y − 0.5)2)+

[ (
1 + cos

(
x+ π (y − 0.5)2))2

+ 4 π2 (y − 0.5)2 (cos
(
x+ π (y − 0.5)2))2

+ 1
]1/2

(5.59)

for all x = (x, y) ∈ Ω, s ∈ R and p ∈ Rd. The exact boundary data are given by

 g∗1(x, y) = x+ sin
(
x+ π(y − 0.5)2

)
(x, y) ∈ ∂Ω,

g∗0(x, y) = −2π(y − 0.5) cos
(
x+ π(y − 0.5)2

)
(x, y) ∈ Γ.

(5.60)
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We add noise into the boundary data by the following formulas

g1 = g∗1(1 + δrand) and g0 = g∗0(1 + δrand)

where rand is a function taking uniformly distributed random numbers in the range

[−1, 1]. The noise level δ is set to be 5%, 10% and 20%. The exact solution to (5.7)

in this test is v∗(x, y) = x + sin
(
x + π(y − 0.5)2

)
for all x = (x, y) ∈ Ω. The error

in computation is given in Table 5.1. The graphs of the exact solution v∗, computed

Table 5.1: The relative error in our computation agaist the noise level δ contained in
the boundary data.

δ relative error ‖v
∗−vcomp‖L∞(Ω)

‖v∗‖L∞(Ω)

5% 4.14%
10% 9.21%
20% 19.40%

solution vcomp and their relative differences |v
∗−vcomp|
‖v∗‖L∞(Ω)

, when δ = 5%, 10% and 20% are

displayed in Figure 5.2.

It is evident from Table 5.1 and Figure 5.2 that the convexification method delivers

reliable solutions to quasi-linear elliptic equations. The errors in computation are

compatible with the noise level and they occur on ∂Ω where the noise takes place.

5.7.2 Numerical study for Problem 5.5.1

In this section, we present some numerical solutions to Problem 5.5.1. The numeri-

cal examples we present in this section illustrate the efficiency of the gradient descent

method for the convexification described in section 5.4.

Especially, we will show that the presence of the Carleman weight function in the

objective function is crucial. That means, without involving the Carleman estimate,

the descent gradient method does not deliver good numerical solutions to the problem

of minimizing our nonconvex objective functional.
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(a) The function v∗

(b) The function vcomp. δ =
5%.

(c) The function vcomp. δ =
10%.

(d) The function vcomp. δ =
20%.

(e) The relative difference
|v∗−vcomp|
‖v∗‖L∞(Ω)

. δ = 5%

(f) The relative difference
|v∗−vcomp|
‖v∗‖L∞(Ω)

. δ = 10%

(g) The relative difference
|v∗−vcomp|
‖v∗‖L∞(Ω)

. δ = 20%

Figure 5.2: Solutions to (5.7) when G and f ∗ and g∗ are given in (5.59) and (5.60)
respectively.

5.7.2.1 The forward problem

The experimental setting for Problem 5.5.1 is as follows. Let R = 1 and Ω =

(−R,R)3. The source location is placed at (0, 0,−4). The interval of wavenumbers is

[π, 2π], which correspond to the interval of wavelengths [0.5, 1]. In order to generate

the simulated data, we use the finite difference method in which we decompose Ω as
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the uniform partition with grid points

G = {(xi = −R + (i− 1)h, yj = −R + (j − 1)h, zl = −R + (l − 1)h) :

1 ≤ i, j, k ≤ Nx}

where Nx = 41 and h = 2R/(Nx − 1). We also split the interval of wavenumbers to

the uniform partition

K = {k1 = k, k2, . . . , kNk = k}

where ki = k+(i−1)(k−k)/(Nk−1) and Nk = 121. The forward problem is solved via

solving the Lippmann-Schwinger equation (5.39) by the method in [25, 26]. Denote

by u∗(x, k), x ∈ G, k ∈ K the obtained solution. The noisy data for Problem 5.5.1 is

given by

f(x, k) = u(x, k)(1 + δrand) g(x, k) = −∂zu∗(x, k)(1 + δrand)

for all x ∈ Γ ∩ G and k ∈ K where Γ is the measurement site defined in (5.33),

δ = 10% and rand is the function taking uniformly distributed random numbers in

[−1, 1]. The truncation number N is 7, which is chosen by a trial-error process.

5.7.2.2 The first approximation of the function V

The first step of our method is to compute a vector-valued function that satisfies

∂νV0|Γ = g0 and V0|∂Ω = g1. (5.61)

This vector-valued function V0 is used in the change of variable U = V − V0 as in

(5.9). Moreover, to guarantee fast convergence, we will find V0 such that it is close

to the solution V . We call this function V0 the initial solution.

Since our target is to solve the nonlinear system (5.58), it is natural to find V0 =
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(v0
1, v

0
2, . . . , v

0
N) as the solution to a linear system obtained by removing from (5.58)

the nonlinear term, which is



N∑
i=1

sli∆v
0
i (x) +

N∑
i=1

Bli(x) · ∇v0
i (x) = 0, x ∈ Ω,

V0(x) = g1(x) x ∈ ∂Ω,

∂νV0(x) = g0(x) x ∈ Γ.

(5.62)

Since (5.62) is a system of linear partial differential equations, we can solve it directly

by the quasi-reversibility method involving a Carleman weight function in the finite

difference scheme. That means, we minimize the following functional

W 7→
∫

Ω

µ2
λ

∣∣∣ N∑
i=1

sli∆w(x) +
N∑
i=1

Bli(x) · ∇W (x)
∣∣∣2 + ε‖W‖2

H2(Ω) (5.63)

where W = (w1, w2, . . . , wN) is subject to the boundary conditions W |∂Ω = g1 and

∂νW |Γ = g0. In (5.63) and also in this section, the used Carleman weight function is

µλ = e−λ(R+r)2
eλ(z−r)2 where λ = 1.1 and r = 1.5 and the regularization parameter

ε = 10−6. Even though in theory, the value of λ is large. However, we have discovered

computationally that a reasonable value λ = 1.1 works well. So, we use this λ. These

observations coincide with those of our previous works on the numerical studies of

the convexification [19, 10]. This Carleman weight function is used for all numerical

tests in this section.

We refer the reader to [24, 28] for details in the implementation of the quasi-

reversibility method to solve a system of linear partial differential equations with

Cauchy boundary data.

5.7.2.3 The minimizing sequence

For the simplification in implementation, we skip the step of changing the variable

U = V − V0 as in (5.9). Let U = V − V0 where V0 = (v0
1, . . . , v

0
N) is the vector valued
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function found in section 5.7.2.2. Then, due to (5.52), we set the cost functional as

J(U) =
N∑
l=1

∫
Ω

µ2
λ

∣∣∣ N∑
i=1

sli∆vi −
N∑

i,j=1

alij∇vi · ∇vj −
N∑
i=1

Bli∇vi
)∣∣∣2dx + ε‖V ‖2

H2(Ω)N .

The finite difference version of J is

J(V ) = h3

Nx∑
i,j,l=1

N∑
l=1

µ2
λ(xi, yj, zl)

∣∣∣ N∑
i=1

sli∆vi(xi, yj, zl)

−
N∑

i,j=1

alij∇vi(xi, yj, zl) · ∇vj(xi, yj, zl)−
N∑
i=1

Bli(xi, yj, zl)∇vi(xi, yj, zl)
∣∣∣2dx

+ εh3

Nx∑
i,j,l=1

N∑
l=1

(
|vl(xi, yj, zl)|2 + |∇vl(xi, yj, zl)|2 + |∆vl(xi, yj, zl)|2

)
. (5.64)

Remark 5.7.1 In our computation, ε = 10−6 for all tests. Also, in (5.64), the

regularity term is set to be ε‖U‖H2(Ω)N instead of Hp(Ω)N . We observe numerically

that using the norm ‖U‖H2(Ω)N already provides satisfactory numerical solutions. So,

it is not necessary for us to choose norm in Hp(Ω)N . This observation significantly

reduces the expensive efforts in implementation.

We now mention that to speed up the minimization procedure, we need to compute

the gradient DJ1 of the discrete functional J1 in (5.64) above. Having the expression

for the gradient via an explicit formula significantly reduces the computational time.

We have derived such a formula using the technique of Kronecker deltas, which has

been outlined in [23]. For brevity we do not provide this formula here.

5.7.2.4 Numerical examples

We perform three (3) tests.

Test 1. We first consider the case of detecting one target with high dielectric
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constant. The dielectric constant of the medium is given by

ctrue =

 5 if 0.6x2 + y2 + (z + 0.7)2 ≤ 0.22,

1 otherwise.

(a) The true 3D image (b) The reconstructed 3D im-
age

(c) The cross sections {z = −0.7}
and {y = 0} of ctrue

(d) The cross sections {z = −0.7}
and {y = 0} of ccomp

Figure 5.3: Test 1. The function ctrue and its reconstruction ccomp from noisy data
with noise level of 10%.

The true and computed dielectric constants are displayed in Figure 5.3. It is obvious

that the location of the target is detected accurately. The reconstructed shape is

somewhat acceptable. The computed maximal value of the dielectric constant is 4.26

(relative error 14.8%)).

Test 2. We test our method when the true dielectric constant is given by

ctrue =

 3 if 0.352 ≤ x2 + y2 ≤ 0.52 and − 0.8 ≤ z ≤ −0.65

1 otherwise.
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The shape of the dielectric constant is a ring.

(a) The true 3D image of the
ring

(b) The reconstructed 3D im-
age of the ring

(c) The cross sections {z = −0.7}
and {y = 0} of ctrue

(d) The cross sections {z = −0.7}
and {y = 0} of ccomp

Figure 5.4: Test 2. The function ctrue and its reconstruction ccomp from noisy data
with noise level of 10%.

The true and computed dielectric constants are displayed in Figure 5.4. It is

evident that the dielectric constant is computed successfully. The “ring" shape is

clearly detected. The computed maximal value of the dielectric constant is 2.7809

(relative error 7.3%)).

We now consider the direct optimization without using the Carleman weight func-

tion. That means we apply the same procedure to compute the dielectric constant

except taking λ = 0. The numerical result in Figure 5.5 show that without the Car-

leman weight function involving, we reconstruction is poor.

Test 3. We consider dielectric constant with a more complicate geometry. The

graph of the dielectric constant is a letter Y located on the plane z = −.7 The true

and constructed dielectric constants are displayed in Figure 5.6. We observe that our

method can detect the shape of the letter Y clearly. Moreover, the reconstructed
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(a) The 3D image computed
without using the convexifica-
tion method

(b) The cross sections {z =
−0.75} and {y = 0} of ccomp

Figure 5.5: Test 2. The function ctrue and its reconstruction ccomp from noisy data
with noise level of 10% without using Carleman weight function. It is evident that,
in this case, the “ring" shape cannot be reconstructed well.

(a) The true 3D image of the
letter Y

(b) The reconstructed 3D im-
age of the letter Y

(c) The cross sections {z = −0.7}
and {y = 0} of ctrue

(d) The cross sections {z = −0.7}
and {y = 0} of ccomp

Figure 5.6: Test 3. The function ctrue and its reconstruction ccomp from noisy data
with noise level of 10%.

value of the dielectric constant is acceptable. The computed maximal value of the

function c is 1.8116 (relative error 9.4%).
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5.8 Concluding remarks

In the first part of this chapter, we proved the convergence of the gradient descent

method to find the minimizer of a functional which is strictly convex on a ball in a

Hilbert space rather than on the whole space. This is a new result compared with

previously obtained ones by our research team for the case of a more complicated

gradient projection method. Then we used the convexification method and gradient

descent method to solve a boundary value problem of quasi-linear PDE with both

Dirichlet and Neumann data. We proved that this approach provides reasonable

numerical solutions as the noise tends to zero. In the second part of the chapter, we

applied the theoretical results of the first part to solve an inverse scattering problem.

To solve this inverse problem, we derive an approximate mathematical model, which

is the Cauchy problem for a coupled system of quasi-linear elliptic partial differential

equations. Then, we apply the convexification and the gradient descent method to

solve this system. Numerical results for the inverse scattering problem demonstrate

a good reconstruction quality.
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CHAPTER 6: CONCLUSIONS

In this dissertation, we have made significant contributions to this field by develop-

ing effective numerical methods and theoretical analysis for several inverse problems.

Our research is motivated by the need to explore inaccessible regions through exter-

nal measurements, which is crucial for non-destructive testing, biomedical imaging,

geophysical exploration, and radar, among other applications.

We have addressed the highly ill-posed and often nonlinear nature of the inverse

problems by proposing a unified framework for solving inverse problems. This frame-

work comprises two stages. In stage 1, we truncate the Fourier series of the solution

to the governing equation or introduce a new change of variable. By this step, we

obtain a system of partial equations. In stage 2, we compute the solution to this

system, which directly provides us with the desired solutions to the inverse problems

under consideration.

To tackle challenging stage 2, we have proposed and developed three numerical

methods based on a sophisticated mathematical tool of Carleman estimates. Based

on Carleman estimates, our numerical methods have been proven to provide reliable

solutions even when the data is highly noisy. Importantly, they are "globally" con-

vergent, meaning they do not require advanced knowledge of the true solution before

solving inverse problems. The numerical algorithms were successfully tested with

highly noisy simulated and experimental data provided by engineers at the US Army

Research Laboratory. This demonstrates the practicality and efficacy of our proposed

methods for real-world applications.

The dissertation has addressed several inverse problems, including scattering in-

verse problems in both the frequency and time domains, inverse source problems
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for nonlinear parabolic equations, and a linearized kinematic inverse problem with

incomplete data. Each problem has its unique set of challenges, and our proposed

methods have effectively addressed them.

In Chapter 2, we presented a numerical method for solving the linearized travel

time tomography problem with incomplete data. The proposed method is based on

the truncation of the Fourier series and the quasi-reversibility method. The method

is shown to be effective for highly noisy data.

Chapter 3 proposed a numerical method for recovering the initial condition of a

quasilinear parabolic equation from lateral Cauchy data. The method is based on the

derivation of a boundary value problem for a system of coupled quasilinear elliptic

equations and an iterative numerical method named Carleman contraction mapping.

The global convergence of the method is rigorously established using a Carleman

estimate.

Chapter 4 introduced the Carleman contraction mapping method for solving a

coefficient inverse problem for a 1D hyperbolic equation. The method is shown to

be effective for both computationally simulated and experimentally collected data

provided by engineers at US Army Research Laboratory.

Finally, Chapter 5 studied the global convergence of the gradient descent method

for the minimization of strictly convex functionals on a Hilbert space. We apply the

numerical method developed in this chapter to solve a challenging inverse backscat-

tering problem with highly noisy simulated data.

In conclusion, the effective algorithms and theoretical analysis in this dissertation

provide an essential foundation for future research in the field of inverse problems.

We believe that our proposed methods can be applied to numerous real-world appli-

cations.
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Figure A.2: Republication License - De Gruyter
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Figure A.3: Republication License - IOP Publishing
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Figure A.4: Republication License - Springer New York


