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ABSTRACT

MADHUMITA PAUL. Spectral Theory of Schrödinger Type Operator On Spider
Type Quantum Graphs.

(Under the direction of DR. STANISLAV MOLCHANOV)

The dissertation consists of chapter-1: Introduction, this chapter contains some de�-

nitions and examples of quantum graphs, symplectic analysis and its representation

on spider graph. Chapter 2-Brownian motion on the spider like quantum graph, this

chapter contains the de�nition of Brownian motion on the N -legged spider graph

with in�nite legs and Kirchho�'s gluing conditions at the origin and calculation of

the transition probability of this process. In addition we study several important

Markov moments, for instance the �rst exit time τL from the spider with the length L

of all legs. The calculations give not only the moments of τL but also the distribution

density for τL. All results of this section are new ones. Chapter 3- A brief review

on the classical spectral theory. This chapter contains the elements of the spectral

theory on spider graph. We start from the classical Strum-Liouville theory on the

full line R1 (for the case of the bounded from below potential) and explain how this

theory can be generalized to the case of canonical system in R2d:

J
−→
ψ ′ = (V + λQ)

−→
ψ

−→
ψ =

ψ
ψ′


The spectral measure for the canonical system is constructed (like in the Strum-

Liouville case) by passing to the limit from the discrete spectral measure on the

spider with the �nite length of all legs and (say) Dirichlet boundary condition at

the outer end points of the legs. The corresponding results (expecting the particular

details related to speci�c case of the spider graphs) are not new. Chapter 4- spectral

theory of the Schrödinger operator on the spider like quantum graph, this chapter

contains the main results of the dissertation. We start by constructing the spectral
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analysis on the �nite interval of a three-legged spider graph and then pass it to

in�nity. Spectral analysis is performed for three di�erent types of potentials. The fast-

decreasing potentials, the fast-increasing potentials, mixed potentials, and its spectral

theory. The details contain, the absolute continuous spectrum of multiplicity 3 and

its construction using the re�ection-transmission coe�cients on each leg for the fast

decreasing potential, Bohr's asymptotic formula for N(λ) (the negative eigenvalues),

instability of the discrete spectrum for the mixed potential on each leg of the spider

graph.
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CHAPTER 1: INTRODUCTION TO THE QUANTUM GRAPH

1.1 Introduction

This dissertation is devoted to the spectral theory of the Schrödinger operators on

the special class of the quantum graphs, so called spider graphs. This is the natural

generalization usual one dimensional theory, which is widely presented in mathemati-

cal literature under the name "Spectral theory of Strum-Liouville operators". We will

use for references the monograph [11]. The extension of the theory on the quantum

graph is closely related to the transition from the group of 2× 2 unimodular matrices

SL(2,R) which is behind all the constructions in the Strum-Liouville theory to the

symplectic group SP (2d,R).

In the Introduction we will give the de�nitions of the basic concepts (quantum

graph, Kirchho�'s gluing conditions, symplectic group, functional spaces on the spider

graphs, Schrödinger operator on such graphs etc.) In the end of introduction, will

give the brief review of the results.

1.2 Quantum graphs and spider graphs as the particular case

In this section we will introduce the concept of the quantum graphs, their special

case, the spider graph and the Schrödinger type operators on such graphs. Together

with usual continuous potentials we will systematically use the generalized (singular)

potentials v(x) =
∑N

i=1 σiδ(x− xi), which we will understand as the "limit" as ϵ→ 0

of the regular potentials vϵ(x) (See �gure 1.1 for single δ-function).
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Figure 1.1: Single δ function approximation

vϵ(x) =

0 |x− x0| > ϵ

(ϵ−|x−x0|)σ
ϵ2

|x− x0| ≤ ϵ
(1.1)

vϵ(x) → σδ(x − x0), weakly in C(R1) as ϵ → 0 or in the distribution sense. The

solution of

Hϵψ = −d
2ψ

dx2
+ vϵ(x)ψ = λψ (1.2)

for ϵ → 0, converges to the continuous function ψ̃(x) on R, which has left and right

derivatives at x = x0, satisfying the gluing condition

dψ̃

dx
(x−0 )−

dψ̃

dx
(x+0 ) = σψ̃(x0) (1.3)

This is the simplest example of quantum graph. It consists of the �nitely (or countably

many) �nite or in�nite interval, which are gluing together at the branching points.

Outside the branching points they have the standard 1-D structure(including the

Lebesgue measure).At the branching points we have the Kirchho� conditions similar

to 1.3. We will discuss in the future several particular examples in details.

De�nition 1.2.1. Quantum (or metric) graph is the system of vertices connected by

one-dimensional intervals(edges) with euclidean metric (and corresponding Lebesgue

measure).

Example 1. Spider - This graph contains the single vertex O ∈ R2 and �nitely many
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in�nite legs. It is denoted by sp(d) and on the �gure below d = 3.

Figure 1.2: A spider quantum graph with three legs.

Example 2. Tree - This is a graph with the index of branching (d+1). (see the �gure

below with d = 2).

All intervals between vertices have length 1.

Figure 1.3: A quantum tree

Example 3. Compact Neumann star graph(truncated spider graph) - This is the

simplest non-trivial graph, Star graph, with Neumann boundary condition imposed at

the outer vertices, Laplacian de�ned along the edges and Kirchho�'s gluing condition

at the origin (branching point).

The application of quantum graphs started appearing since at least the 1930s in

various areas of chemistry, physics, and mathematics. However,it started picking the

growth in the last couple of decades. Quantum graphs appear as simpli�ed models in

mathematics, physics, chemistry, and engineering where propagation of waves of var-

ious nature can be considered through a quasi-one-dimensional system that looks like
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Figure 1.4: A compact star graph

a thin optical channel. For example, free-electron theory of quantum wires, photonic

crystals, carbon nano-structures. Quantum graph also appears in some problems of

dynamical systems theory. It plays important role in the study of Anderson localiza-

tion and quantum chaos. Quantum graphs are related to the older spectral theory of

standard or combinatorial graphs and uses tools from graph theory, combinatorics,

mathematical physics, PDE and spectral theory (See [4] for detailed discussion on

quantum graphs).What makes them interesting to study, is their interdisciplinary ap-

plications.

1.3 Functions on the quantum graph

On the quantum graphs Γ one can consider the standard functional spaces, L2(Γ, dx)

with respect to Lebesgue measure on the edges, C∞
0 : Class of compactly supported

smooth functions whose supports do not contain vertices. C(Γ) usual space of contin-

uous function with the norm

∥f∥∞ = supx∈Γ|f(x)|,f ∈ C(Γ)

We call f(x) ∈ C1(Γ) if f(x) is continuous at any vertex v and for edges li, i =

1, 2, . . . , directed from v, there exist limits (may be di�erent) of �rst order derivatives

δf
δli

for i = 1, 2, . . . ,at v together with a linear condition on such derivatives.

Simplest example: Spider graph with origin at 0.If f ∈ C1 and
∑

i
δf
δli
(0) = 0 (Kirch-

ho� condition) Due to continuity of f, fl1(0
+) = fl2(0

+), . . .
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Let us recall that,

L2(Γ) = {f :
∑
f∈l

∫
|f |2 = ∥f∥2 <∞} summation over the edges l ∈ Γ

Now we will introduce the transfer matrix (monodromy operator) on the quantum

graph. Let us start from the simple examples. Consider the scalar equation

Hψ = −ψ′′
+ v(x)ψ = λψ x ∈ R1 (1.4)

where v(x) is the real continuous and bounded from below potential. λ is the real or

complex number. Let us present the second order equation by the equivalent system

of two �rst order equation for the vector.

−→
Ψ(x) =

ψ
ψ′


⇒ −J

−→
Ψ′ = (V + λQ)

−→
Ψ

where

J =

0 −1

1 0

 , V =

v 0

0 −1

 , Q =

λ 0

0 0


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In-fact :

−J
−→
Ψ′ =

0 −1

1 0


ψ′

ψ′′


=

 ψ′′

−ψ′


(V + λQ)

−→
Ψ =

 vψ
−ψ′

+

λψ
0


The transfer matrix T[a,b](λ) between any two points a < b on R transform

ψ
ψ′

 (a)
T[a,b](λ)−→

ψ
ψ′

 (b)

It has the form

T[a,b](λ) =

ψ1(b) ψ2(b)

ψ′
1(b) ψ′

2(b)


where, ψ1, ψ2 are the solution of equation 1.4 with condition ψ1(a) = 1, ψ′

1(a) = 0,

ψ2(a) = 1, ψ′
2(a) = 1.

Let us now illustrate the continuous theory related to the symplectic group SP (2d) by

the di�erential equation on sp(3) (The spider graph with three legs). The continuous

operators along each leg are:

− d2

dx2
+ v2(x)

along x axis;

− d2

dy2
+ v2(y)

along y axis;

− d2

dz2
+ v3(z)
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along z axis.

At point 0 one can de�ne gluing condition:

ψ1(0) = ψ2(0) = ψ3(0) = ψ(0)

dψ

dx
+
dψ

dy
+
dψ

dz
= βψ(0)

This is called generalized Kirchho� condition.This system of 3 second order equations

can be presented(as above) as the system of 6 �rst order ODE's with gluing condition

at the origin. We will present the details of this construction in section 6.

1.4 Symplectic group and self-adjointness

The symplectic group appears in the classical mechanic as essential part of the

Hamiltonian formalism [see [2]]. In the spectral theory this concept has the similar

origin: the boundary (or gluing) conditions for the linear self-adjoint operator of

the second order (Hamiltonian), acting in the space of the vector functions have a

symplectic structure. We start from the review of several facts from symplectic analysis

and general spectral theory. Let us consider the Hamiltonian de�ned in (1.4) acting

on the compactly supported smooth vector functions
−−→
ψ(x) with values from Rd, d ≥ 0.

Potential v(x) is a (d× d) matrix valued function.

Note that,

H
−→
ψ = −

−→
ψ′′ + v(x)

−→
ψ = λ

−→
ψ , x ∈ Rd

can be represented (for real λ) as a canonical system

−J
−→
Ψ

′
= (v + λQ)

−→
Ψ

−→
Ψ = [

−→
ψ ,

−→
ψ

′
]
′

(1.5)
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where

J =

 0 −Id

Id 0

 , v =

vd 0

0 −Id

 , Q =

Id 0

0 0


All blocks are d× d and corresponding quadratic form is de�ned on the Hilbert space

of the vector functions
−→
ψ , with the dot product

(H
−→
ψ ,

−→
ϕ ) =

∫
R1

(−
−→
ψ

′′
+ v

−→
ψ ,

−→
ϕ ) (1.6)

=

∫
R1

(−
−→
ψ

′′
,
−→
ϕ )dx+

∫
R1

(v
−→
ψ ,

−→
ϕ )dx

=

∫
R1

−

(
d∑
i=1

−→
ψ′′
i

−→
ϕi

)
dx+

∫
R1

(v
−→
ψ .

−→
ϕ )dx

The functions here, in general, are complex valued. The condition of the symmetry

of H on the compactly supported smooth functions
−→
ψ ,

−→
ϕ : (H

−→
ψ ,

−→
ϕ ) = (

−→
ψ ,H

−→
ϕ ) has

the form,

(H
−→
ψ ,

−→
ϕ ) =

∫
R1

(−→
ψ

′
,
−→
ϕ

′
)
dx+

∫
R1

(
−→
ψ , v

−→
ϕ )dx =

∫
R1

(−→
ψ

′
,
−→
ϕ

′
)
dx+

∫
R1

(v∗
−→
ψ ,

−→
ϕ )dx

To prove that (Hψ, ϕ) = (ψ,Hψ) is we need the symmetry of the matrix potential

v(x) = v∗(x). recall,

v∗ = [vij]
∗ = [v̄ij]

If v is a real valued matrix potential then v = v∗ that means v = vT where v ∈ Cloc.

We also need the homogeneous boundary condition at x = 0. It can be, for instance,

the Neumann's boundary condition
−→
ψ

′
(0) = 0. Now we consider the same problem of

self-adjointness for the operator H on the "Spider Graph" and its boundedness from

below in the Hilbert space. On this quantum(metric)graph we have a single vertex O

and d half-axes, parameterized by the length parameters sj ≥ 0, j = 1, 2..., d
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Figure 1.5: A quantum spider graph with d legs

Put ,

−→
Ψ(s) =



−→
ψ1(s1)

−→
ψ2(s2)

.....

−→
ψd(sd)


∈ Rd

let us assume that Hamiltonian H for s > 0 acts on
−→
Ψ(.) as: H

−→
Ψ = −

−→
ψ

′′
+ V (s)

−→
ψ

We assume that the following limits exist:
−→
Ψ(0) = lim

s→0

−→
ψ (s);

−→
Ψ

′
(0) = lim

s→0
[
−→
dψi

dsi
].

One can put,

−→
Ψ(0) =

−→ψ (0)

−→
ψ

′
(0)

 ∈ R2d

after integration by the parts the condition (H
−→
Ψ ,

−→
Φ) = (

−→
Ψ , H

−→
Φ) gives two restric-

tions on
−→
Ψ ,

−→
Φ and v:

a) v(s) = v∗(s), symmetry of the potential as before.

b)

−→
ψ (0)

−→
ϕ

′
(0)−

−→
ψ

′
(0)

−→
ϕ (0) = 0

for the vectors from R2d

−→
Ψ =

−→ψ (0)

−→
ψ

′
(0)

 ,−→Φ =

−→ϕ (0)

−→
ϕ

′
(0)


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This relation can be presented as :

(J
−→
Ψ ,

−→
Φ) = −(

−→
Ψ , J

−→
Φ) = 0

where,

J =

 0 −Id

Id 0


1.5 Elements of symplectic analysis

Properties of the fundamental solution of system 1.5(propagator) and related objects

will be described in terms of symplectic group SP (2d,R). We can now consider the

R2d with vectors: ξ =

−→ξ−→η
 ,

−→
ξ , −→η ∈ Rd equipped with the usual dot-product

(
−→
ξ1 ,

−→
ξ2 ) =

−→ξ1−→η1
 .
−→ξ2−→η2

 =
−→
ξ1 .

−→
ξ2 +

−→η1−→η2

and the skew-product

[−→
ξ1 .

−→
ξ2

]
= (J

−→
ξ1 ,

−→
ξ2 ) = −(

−→
ξ1 ,

−→η2) + (−→η1 ,
−→
ξ2 )

We call such space the symplectic space SR2d

De�nition 1.5.1. We call d-dimensional linear subspace L ⊂ SR2d the Lagrangian

plane if [L,L] = 0, that is ∀
−→
ξ1 ,

−→
ξ2 ∈ L,

[
−→
ξ1 ,

−→
ξ2 ] = (J

−→
ξ1 ,

−→
ξ2 ) = 0

The condition of the symmetry of H can be presented now in the following form: all

functions
−→
Ψ ,

−→
Φ , . . . from the domain of de�nition of H belong to the �xed Lagrangian

plane L ∈ R2d.



11

Examples of Lagrangian planes and corresponding "gluing conditions" (G.C.)

Example 4. a)
−→
ψ (0) = 0,

−→
ψ

′
(0) is arbitrary . It is the classical Dirichlet G.C.

b)
−→
ψ

′
(0) = 0,

−→
ψ (0) is arbitrary. It is the Neumann's G.C.

c)
−→
ψ (s) is continuous at s = 0 that is,

−→
ψ1(0) =

−→
ψ2(0) = · · · =

−→
ψd(0), ((d-1) equations)

and
∑d

i=1

−→
ψi

′
(0) = (

−→
ψ

′
.−→1 ) = 0 (one equation). This is called Kirchho�'s G.C.

The most general equation of the Lagrangian plane, that is corresponding gluing con-

dition has a form

A
−→
ψ (0) +B

−→
ψ

′
(0) = 0

Where A, B are (d× d) matrices and rank[A,B] = d. Assume that detB ̸= 0.

That is we can present this condition in the simpler form,

−→
ψ

′
(0) = c

−→
ψ (0) (1.7)

Proposition 1.5.2. The relation (1.7) de�nes the Lagrangian i� c = c∗.

That is,

J
−→
ψ (0)

c
−→
ψ (0)

 ,
−→
ϕ (0)

c
−→
ϕ (0)


 = 0

⇒
(−→
ψ (0), c

−→
ϕ (0)

)
=
(−→
ϕ (0), c

−→
ψ (0)

)
⇒ c = c∗

We will now give the most general equation for L.

De�nition 1.5.3. The group of the non-degenerated linear transformation S : R2d −→

R2d preserving the skew product,[S−→x , S−→y ] = [−→x ,−→y ] ∀ (−→x ,−→y ) is the symplectic group
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SP (2d).

Proposition 1.5.4. Each symplectic matrix S ∈ SP (2d) maps Lagrangian plane into

Lagrangian plane. In fact, dim(SL) = d since detS ̸= 0 and

[SL, SL] = [L,L] = 0

Proposition 1.5.5. The symplectic matrices satisfy the equation

S∗JS = J (1.8)

or taking into account that J2 = −I2d =

−Id 0

0 −Id


S−1 = −JS∗J

Proof. The condition [S
−→
ξ , S−→η ] = [

−→
ξ ,−→η ] gives (since

−→
ξ ,−→η are arbitrary)

(
JS

−→
ξ , S−→η

)
=
(
S∗JS

−→
ξ ,−→η

)
=
(
J
−→
ξ ,−→η

)
⇒ S∗JS = J

Proposition 1.5.6. SP (2d) forms a group.

Proof. 1) symplectic matrices are closed under multiplication.

let, s1, s2 ∈ SP (2d) then (s1.s2) ∈ SP (2d) as

(s1.s2)
∗J(s1.s2) = (s∗2.s

∗
1)J(s1.s2) = s∗2(s

∗
1Js1)s2 = s∗2Js2 = 2 = J
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2) Associativity holds as well. let s1, s2, s3 ∈ SP (2d) then

{s1.(s2.s3)}∗J{s1(s2.s3)} = (s2.s3)
∗s∗1Js1.(s2.s3) = s∗3.s

∗
2s

∗
1Js1.s2.s3

= s∗3s
∗
2(s

∗
1Js1)(s2.s3) = s∗3(s

∗
2Js2).s3 = s∗3Js3 = J

also,

{(s1.s2).s3}∗J{(s1.s2).s3} = (s3)
∗(s1.s2)

∗J{(s1.s2).s3} = s∗3{(s1.s2)∗J(s1.s2)}s3

= s∗3Js3 = J

3) Identity exists. That is, s.e = e.s = s where e is the identity element.

(s.e)∗J(s.e) = e∗.s∗.J.s.e = e∗.(s∗Js).e = e∗Je = J

also,

(e.s)∗J(e.s) = s∗.e∗.J.e.s = s∗.(e∗Je).s = s∗Js = J

4) Inverse exist with respect to matrix multiplication. since, s∗Js = J and det(s) = 1

then

s∗Js = J

s∗J = Js−1

J−1s∗J = s−1

but J−1 = J∗, this means

s−1 = J∗s∗J ⇒ (s−1)∗ = J∗SJ
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hence,

(s−1)∗J(s−1) = (J∗.s.J).J.(J∗.s∗.J) = (J∗.s.J)(JJ∗).s∗.J

= (J∗.s.J)(JJ−1).s∗.J

= J∗.s.Js∗.J = J∗(s.Js∗)J

= J∗JJ = J

Note that the class of all matrices O preserving the dot-product

(O−→x ,O−→y ) = (−→x ,−→y )

is the usual orthogonal group.

Corollary 1.5.7. Note that, det(s∗Js) = (dets)2.1 = 1

⇒ (dets)2 = 1

We will consider in future only that connected component of SP (2d) where det(S) = 1

Corollary 1.5.8. If d = 1 then SP (2) is simply the group of 2 × 2 uni-modular

matrices. We consider here only the case of real matrices.

In-fact,

a c

b −d

 .
0 −1

1 0

 .
a b

c d

 =

c −a

d −b

 .
a b

c d

 =

ac− ac bc− ad

ad− bc bd− bd


=

0 −1

1 0

 = J
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⇒ detA.J = J ⇔ detA = 1

Let us now consider the general symplectic system of �rst order and its fundamental

solution (monodromy operator)

J
dY

dt
= AY (1.9)

Y (0) = I

where A = A∗ is Lipschitz class in t ∈ [0, T ], A = A(t, λ, µ, ...), this 2d × 2d matrix

can depend analytically over some parameters (say spectral parameter λ ).

Theorem 1.5.9. Let Y(t)(2d×2d matrix) be the fundamental solution of the boundary

problem (1.9). Then Y (t) :∈ R2d → R2d is symplectic.

Proof. Since Y (t) is the solution of (1.9) then

dY

dt
= J−1AY = J∗AY = −JAY (1.10)

and
dY ∗

dt
= Y ∗AJ

Now

dY

dt
(Y ∗JY ) =

dY ∗

dt
JY + Y ∗J

dY

dt

= (Y ∗AJ)JY + Y ∗J(−JAY )

= Y ∗AJJY − Y ∗JJAY

= −Y ∗AY + Y ∗AY by using
dY ∗

dt
,
dY ∗

dt
and J2 = −I

= 0
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⇒ Y ∗JY is constant in t ≥ 0.

since, Y (0) = I ⇒ Y ∗JY = J that is Y (t) ∈ SP (2d)

Each symplectic matrix S is by the de�nition Skew-orthogonal [Sy1, Sy2] ≡ [y1, y1].

This is the fundamental identity, it implies that detS = ±1. We will study only

connected component of unity, detS = 1.

If S =

A C

B D

 (all blocks are d× d) then equation (1.8) implies the relations

a)A′B −B′A = 0; (1.11)

b)C ′D −D′C = 0; (1.12)

c)A′D −B′C = I; (1.13)

d)D′A− C ′B = I (1.14)

the transpose of (1.8) and vice-versa. For real valued matrices we will use A
′
instead

of A∗.

For any two (2d×d) matrices E=

A
B

, F=
C
D

. One can de�ne the correspond-

ing skew-product(which will appear later as the Wronskian of two (2d× d) solutions

of equation(2). W=

[
E F

]
=

A
B


′

J

C
D

 = A′D −B′C.

If now E and F are two "halfs" of the symplectic matrix S, then (1.8) can be
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presented in the form

[
E E

]
=

[
F F

]
= 0 (1.15)[

E F

]
= A′D −B′C = I

Each (2d×d) matrix E=

A
B

 of the maximal rank r = d which is skew orthogonal to

itself:

[
E E

]
= 0, we will call Lagrangian vector and the linear subspace, generated

by its columns, will be the Lagrangian plane π = πE. Dimension π = d. Any basis B

in π has a form B = EC, where C is non-singular d× d matrix.

Remark. If E =

A
B

 is a Lagrangian vector then the vector E⊥ =

−B
A

 is also

Lagrangian and (E,E⊥) = 0, that is, E, E⊥ are orthogonal in the Euclidean sense.

1.6 Symplectic representation on the spider quantum graph

We concentrate on the spectral theory related to the symplectic group SP (2d), for

the case d = 3 (see section 3). Let us repeat our de�nitions in a bit di�erent form.

Consider R6, with vectors which we present in the form: X⃗ =



x1

x2

x3

x′1

x′2

x′3


and Y⃗ =



y1

y2

y3

y′1

y′2

y′3


where x⃗, x⃗′, y⃗, y⃗′ ∈ R3 (here "primes" in the second half of each vector are only

indices, not derivatives). In the space R6 we have the usual Euclidean dot-product

(X⃗, Y⃗ ) = (x⃗, y⃗) + (x⃗′, y⃗′)
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let us introduce the new skew-product

[X⃗, Y⃗ ] = (JX⃗, Y⃗ ) = −(x⃗, y⃗′) + (x⃗′, y⃗)

where, J =

0 −I

I 0

 and I is a d× d unit matrix

Let us consider matrix Schrödinger equation on sp(3):

Hψ = −ψ′′ + vψ = λψ (1.16)

Together with G.C. at x = 0 this operator can be represented by 6 equations of �rst

order:

JY ′ = λAY + V Y (1.17)

where in particular case of sp(3)

Y =



ψ1

ψ2

ψ3

ψ′
1

ψ′
2

ψ′
3


=

 ψ⃗
ψ⃗′


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and J is a skew Hermitian matrix of order 6 given by

J =



0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


=

0 −I

I 0



and,

A =

I 0

0 0



V =



v1 0 0

0 v2 0

0 0 v3

0

0 I


In fact,

0 −I

I 0

×

 ψ⃗

ψ⃗′


′

=

0 −I

I 0

×

 ψ⃗′

ψ⃗′′

 =

 −⃗ψ′′

ψ⃗′


=

λI + V 0

0 I

×

 ψ⃗

ψ⃗′


=

λψ⃗ + vψ⃗

ψ⃗′



That is

−ψ⃗′′ = λψ⃗ + vψ⃗
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It is our vector Strum-Liouville system.

We will assume that matrix potential V is bounded from below in the sense of eigen-

values (min λi(V ) ≥ c0 > −∞)In our diagonal from, it means that vi(x) ≥ c0 for

i = 1, 2, 3

1.7 Boundary condition associated with the symplectic representation

In the case of scalar Strum-Liouville equation:

−y′′ + v(x)y = λy

where x ∈ [0,∞) , λ ∈ R

the boundary condition at the end point x = 0 de�ne the solution up to a constant,

say y(0) = 0 (Dirichlet condition) and also normalization constant y′(0) = 1 gives

unique solution y(λ, x). Using this solution one can introduce the generalized Fourier

transform:

f̂(λ) =

∫ ∞

0

y(λ, x)f(x)dx = lim
N→0

∫ N

0

y(λ, x)f(x)dx

(For details see [11]).

For the system of Strum-Liouville equation (1.16) or equivalent symplectic system of

order 1, the B.C. at x = 0 (say, Dirichlet or Neumann condition) de�ne the family of

the solutions, that is, the linear subspace in the functional space.Consider the system

(1.17), equivalent to (1.16)

JY ′ = V (x)Y + λAY, x ∈ R2d

or, more general system in R2d:

JY ′ = [B(x) + λA(x)]Y (1.18)
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with appropriate assumptions on 2d × 2d matrix functions B(x),A(x)(For details,

see [3]).

Here, Y = [ψ1, ......, ψd, ψ
′
1, ....ψ

′
d]

∗(x) , x ∈ [0,∞) and λ ∈ R

If for instance ψ1(0) = .... = ψd(0) (Dirichlet B.C.) then ψ(λ, x) is the d-dimensional

family of solutions with arbitrary values of ψ′
1(0),...ψ

′
d(0).

It means that the B.C. at x = 0 is given if we �x the d-dimensional manifold π0 in

R2d but we will assume more: this manifold is the Lagrangian plane, that is Jπ0⊥π0.

We can introduce such π0 as : {π0 ∈M(v⃗) : v⃗ ∈ R2d }

Here, 2d× 2d matrix M satis�es the equation M∗JM = 0 , and rank M = d. Under

such condition π0 is a Lagrangian plane (i.e. π0⊥Jπ0)

It means that for all v1, v2 ∈ R2d : (JMv1,Mv2) = (M∗JMv1, v2) = 0

Example 1:

M =

Id 0

0 0


gives the Neumann condition at x = 0. and,

M =

0 0

0 Id


gives Dirichlet B.C.

Example 2: for d = 3

M =

 E 0

βE M1


where,

M1 =


1 −1 0

0 1 −1

−1 0 1


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and,

E =


1 1 1

1 1 1

1 1 1


given the G.C.: ψ1(0) = ψ2(0) = ψ3(0); (ψ′

1 + ψ′
2 + ψ′

3) = βψ(0)

Fundamental solution Y (λ, x) of the systems (1.16) and (1.17) that is, solutions

with condition Y (λ, 0) = I2d belongs to SP (2d,R).

Solution with initial value ψ(λ, 0) =Mv where v ∈ R2d is given by

ψ(λ, x) = Y (λ, x)Mv



CHAPTER 2: BROWNIAN MOTION ON THE SPIDER GRAPH

2.1 Review on Brownian motion on R1

We will start by giving some reviews on the standard Brownian motion. Consider

the space C of continuous functions c : t → xt = x(t) from [0,+∞) → R1. Let us

now consider the class of subsets S such that ,

S = x−1
t (B) = x−1

t1,t2,....tn
(B) algebra of cylindric set

where t = (t1, t2, ...tn) such that, 0 < t1 < t2 < ... < tn and B ∈ B(Rn), n ≥ 1 of C.

B(Rn) is the Borel algebra of subsets of Rn. x−1
t is the map inverse to

xt : c→ (xt1(c), xt2(c), ...., xtn(c)) ∈ Rn

S is an algebra. Also,

C = x−1
t (Rn)

C− x−1
t (B) = x−1

t (Rn −B)

x−1
t (B1) ∪ x−1

t (B2) = x−1
t (B1 ∪B2)

i.e. x−1
t B(R1) is an algebra. Now consider, the Gauss kernel

g(t, a, b) =
e−

(b−a)2

2t

√
2πt

t > 0, a, b ∈ R1
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where,

Pa[x(t) ∈ db] = g(t, a, b)db (t, a, b) ∈ (0,+∞)× R2

is the 1-dimensional Brownian motion starting from a ∈ R1 at time t = 0

and

Pt(C) =

∫
B

· · ·
∫
g(t1, 0, b1)db1g(t2 − t1, b1, b2)db2 . . . g(tn − tn−1, bn−1, bn)dbn

where

C = x−1
t (B) for B ∈ B(R1)

Pt is a probability measure on x−1
t B(Rn), which is the Markovian nature of Brownian

motion.Pt is well de�ned.g is the source (Green) function of the problem

δu

δt
=

1

2

δ2u

δa2
t > 0

Since,

∫ ∞

−∞
g(t, a, b) = 2

∫ +∞

0

e−
−b2

2

√
2π

=

(
2

π

∫ +∞

0

da

∫ +∞

0

dbe−
a2

2 e−
b2

2

) 1
2

=

(
2

π

∫ π
2

0

dθ

∫ +∞

0

e−
r2

2 rdr

) 1
2

= 1

This implies

Pt(R1) = 1
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Also, the so-called Chapman- Kolmogorov equation,

∫ ∞

−∞
g(t− s, a, c)g(s, c, b)dc =

∫ ∞

−∞

e−
(a−c)2

2(t−s)√
2π(t− s)

e−
(c−b)2

2s

√
2πs

dc

=
e−

(b−a)2

2t

√
2πt

= g(t, a, b) t > s > 0, a, b ∈ R1

implies that, P is the probability measure of S, which can be extended to a Borel prob-

ability measure on the Borel extension of S. With that extension the triple [C,BP ]

is called standard Brownian motion starting at 0. We used here the Kolmogorov's

criterion of continuity of the random process x(t), if there exist (α, δ, c > 0) such that

for any t ∈ [0, T ], h > 0 then,

E|x(t+ h)− x(t)|α ≤ ch1+δ

then there exists the continuous modi�cation of x(t). In our case we use this criterion

in the form

E|(x(t+ h)− x(t)|2 = ch2

(but E|x(t + h) − x(t)|2 = h is not enough for the continuity). P is called Wiener

measure. Since, g(t, a, b) = g(t, 0, |b− a|), then for given a ∈ R1

Pa(B) = P0(c+ a ∈ B) , Pa(−c ∈ B) = P−a(B) for B ∈ B

where c+ a is the translated path x(t, c+ a) = x(t) + a and −c is the re�ected path

x(t,−c) = −x(t). (For more details on Brownian motion see [9]



26

2.2 Brownian motion on the spider quantum graph with N legs

We consider the following spider graph with N legs, denoted by ΓN in �gure2.1.

Each leg of this graph is half axis (0,∞).

Figure 2.1: ΓN , the N-legged �nite spider graph

We de�ne the Markov generator on each �nite leg of length Li by

Hf(x) =
1

2

d2

dx2i
f(x) xi > 0 for i = 1, 2, . . . , N

and f(x) ∈ C2(0,∞) on any half axis for xi ∈ (0,∞). f(x) is continuous at x = 0,

that is,

lim
xi→0

f(xi) = f(0)

The limits dt
dxi

(0+) exists for any i and the Kirchho� boundary condition is satis�ed:

N∑
i=1

df

dxi
(0) = 0

Let us consider the Parabolic problem

δp

δt
=

1

2

δ2p

δy2
t > 0

p(0+, .) = f
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on each leg of ΓN , plus Kirchho�'s gluing condition at the origin. Here −→y is the

parameter on each leg given by −→y = (y1, y2, ...yn). For the Brownian motion on R1

the most important Markov times (for more discussion on the Markov process and

waiting time see [5]) are passage times, given by

my = min(t : xt = y) y ∈ R1

P.Levy [12] has shown [my,≥ 0, P0] is the one sided stable process with exponent 1
2

and rate
√
2 satisfying

P0[mx −my ≤ t] = P0[mx−y ≤ t] =

∫ t

0

x− y√
2πs3

e−
(x−y)2

2s ds x ≥ y t ≥ 0

The re�ection principle, proven by D.Andre,

P0(my ≤ t) = 2P0(yt ≥ y) = 2

∫ +∞

y

e−
x2

2t

√
2πt

dy t, y ≥ 0

helps prove that

P0(my ≤ t) = 2

∫ +∞

y

e−
x2

2t

√
2πt

dx =

∫ t

0

y√
2πs3

e−
y2

2s ds (2.1)

that is, distribution density of my is equal to

Py(t) =
y√
2πt

e−
y2

2t

Due to re�ection principle the (1-D) Brownian motion on R1
+ = [0,∞] with re�ec-

tion BC at x = 0 has the following transition probability

P+(t, x, y) =
1√
2πt

[
e−

(x−y)2

2t + e−
(x+y)2

2t

]
(2.2)
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Here x, y ∈ R1
+ and −y < 0 is symmetric to y over the origin. In particular if x = 0

then

Pt(t, 0, y) = 2e−
y2

2t

Also (1-D) Brownian motion on R1
+ with Dirichlet boundary condition at x = 0 (the

process disappears at the moment of the �rst passage time of x = 0) has the transition

density

P−(t, x, y) =
1√
2πt

[
e−

(x−y)2

2t − e−
(x+y)2

2t

]
(2.3)

Note that,

P−(t, 0, y) ≡ 0

Figure 2.2: Re�ection principle on the full real line

Lemma 2.2.1. Transition density on the N legged spider is given by formulas (2.4),

(2.7) below. It can be considered as re�ection principle for the Brownian motion on

spN

Proof. We de�ne now the Brownian motion x(t) of the spider graph as follows, assume

that we start from xi ∈ Legi and want to �nd transition density P (t, xi, yj) where

xi ∈ Legi, yj ∈ Legj, i ̸= j. Note that due to the fact that from the starting point 0

process can reach any point yj = a ∈ Legj with the same probability as yj1 = a. It

gives,

P (t, 0, yj) =
1

N
P+(t, 0, yj) =

2

N

e−
y2

2t

√
2πt

(2.4)

If xi ∈ Legi, yj ∈ Legj, i ̸= j then the process starting from xi, must �rst reach point

0 at some Markove moment τ < t and in the remaining time (t− τ) from τ , it must

enter yj. Due to (2.1)
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Px{τ0 ∈ (s+ ds)} =

∫ t

0

x√
2πs3

e−
x2

2s ds

and due to (2.4)

P0{xt−s ∈ (y, y + dy)} =
2

N

e−
y2

2(t−s)√
2π(t− s)

Using strong Markov property we can conclude that

P (t, xi, yj) =

∫ t

0

xi√
2πs3

e−
x2i
2s × 2

N

e−
y2j

2(t−s)√
2π(t− s)

ds (2.5)

The case when the �nal point y belongs to the same leg as x that is xi, yi ∈ Legi, is

di�erent. Here there are two options. Either process starting at xi enters to yi before

passing to 0. Corresponding density given by (2.3):

P−(t, xi, yi) =
1√
2πt

[
e−

(xi−yi)
2

2t − e−
(xi+yi)

2

2t

]
or τ0 < t then using (2.5) we will get additional probability.

P̃+ =

∫ t

0

xi√
2πs3

e−
x2i
2s × 2

N

e−
y2i

2(t−s)√
2π(t− s)

ds (2.6)
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�nally,

P (t, xi, yi) = P−(t, xi, yi) + P̃+(t, xi, yi)

= P−(t, xi, yi) +

∫ t

0

xi√
2πs3

e−
x2i
2s × 2

N

e−
y2i

2(t−s)√
2π(t− s)

ds

=
1√
2πt

[
e−

(xi−x̃i)
2

2t − e−
(xi+x̃i)

2

2t

]
+

2

N

∫ t

0

xi√
2πs3

e−
x2i
2s × e−

x̃i
2

2(t−s)√
2π(t− s)

ds

(2.7)

Using result (2.5) we get,

P (t, xi, yi) =
1√
2πt

[
e−

(xi−yi)
2

2t −
(
1− 2

N

)
e−

(xi+yi)
2

2t

]

This completes the lemma.

Figure 2.3: The Brownian motion reaching point xi from 0

Let τx be the �rst entry moment from x to 0 for 1-D Brownian motion. It is clear,

due to symmetry that τx has the same law as the moment it enters x from 0, that is,

P0{τxi ∈ (s, s+ ds)} = − x√
2πs3

e−
x2

2s

See �gure 2.4
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Figure 2.4: The �rst moment Brownian motion enters to one of the two end points ±L for

N = 2

Similar picture for N = 3 (very rough similarity, see �gure 2.5), since x(t) visits all

three planes in�nitely many times.

Figure 2.5: First moment of Brownian motion for N = 3

Let τL be the �rst exit time from the L-neighbourhood of the origin of N -legged

spider, that is,

τL = min(t : xi(t) = L) for some i = 1, 2, 3, ..., N
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then,

Exie
−λτL = ψ(xi) = ψ(xi, 1)

ψi(L) = 1

satis�es the parabolic problem

1

2
ψ

′′

i − λψi = 0 i = 1, 2, , ...N with Kirchho�'s gluing condition (2.8)

then,

ψi(xi) =
cosh

√
2λxi

cosh
√
2λL

Infact, since

cosh′(0) = sinh(0) = 0

we have the Kirchho�'s gluing condition condition at 0.

Let us note that

maxψ(xi) = ψ(0)

and we also have the x(t)'s self similarity property, which gives,

ψi(0) = E0e
−λτL =

1

cosh
√
2λL

Infact,

E0e
−λτL = E0e

−λ τL
L2 = E0

1

cosh
√

2 λ
L2L

=
1

cosh
√
2λ
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where
τL
L2

∼ τ1

One can calculate all moments of τL:

E0τL = −dψL
dλ

/λ=0 = L2
0Eτ1 (2.9)

E0τ1 = −
(

1

cosh
√
2λ

)′

/λ=0 =
sinh

√
2λ

√
2

2
√
λ

cosh2
√
2λ

= 1

In general,

E0e
−λτ1 = (1− λE0τ1 +

λ2

2!
Eτ 21 + . . . )

=
1

cosh
√
2λ

=
1

1 + (
√
2λ)2

2!
+ (

√
2λ)4

4!
+ . . .

=
1

1 + λ+ λ2

6
+ . . .

= 1− (λ+
λ2

6
+ . . . ) + (λ+

λ2

6
+ . . . )2 + . . .

= 1− λ+
5

6
λ2 + . . .

E0τ = 1, E0τ
2 = 5

3
,. . .

Now we calculate the densities for τ1.

Roots of cosh
√
2λ is given by the equation,

cosh
√
2λ = 0

⇒
√
2λ = i(

π

2
+ πn)

⇒ λn = −π
2(2n+ 1)2

8
n ≥ 0
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It gives the in�nite product,

cosh
√
2λ =

(
1 +

8λ

π2

)
.

(
1 +

8λ

(3π)2

)
.

(
1 +

8λ

(5π)2

)
. . .

(
1 +

8λ

((2n+ 1)π)2

)
. . .

(2.10)

Hence for the Brownian motion to visit the end point and come back to 0 on one

of the legs of spider, we get

E0e
−λ(τ1+τ̃1) ∼ E0e

−λ( τL
L2+

τ̃L
L2 ) =

1

cosh2
√
2λ

(2.11)

where τ̃1 is the time Brownian motion takes to come back to point 0 after visiting

end point L on one of the legs.

Then,

Exi τ̃1 = ψ(x)

where ψ(xi) satis�es:

1

2

dψ

dxi
= −1

with ψ(xi)/xi=L = 0

that is,

ψ(xi) = L2 − x2i i = 1, 2, ..N

and

P0{xτL = Li} =
1

N

Let us �nd the expansion of Laplace transform of 1
cosh

√
2λ

into simple form. It is
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known that,( [7])

1

cos πx
2

=
4

π

∞∑
k=1

(−1)k+1 2k − 1

(2k − 1)2 − x2

Using the substitution

πx

2
= z ⇒ x =

2z

π

and formula

1

cosh
√
2λ

=
1

cos i
√
2λ

we will get,

1

cosh
√
2λ

=
∞∑
k=1

(−1)k
4(2k − 1)π

π2(2k − 1)2 + 8λ

=
∞∑
k=1

(−1)k+1 (2k − 1)π2

λ+ π2(2k−1)2

8

Now applying inverse Laplace transform, we have

Pτ (s) =
∞∑
k=1

(−1)k
(2k − 1)π

2
e−s

π2(2k − 1)2

8

This series converges extremely fast.

Let us now consider

TN = ξ1 + ξ2 + · · ·+ ξN where ξ1 = (τ1 + τ̃1), . . . , ξN = (τn + τ̃N)

ξ1, ξ2,. . . ,ξN generate complete Brownian motion cycles on the corresponding spider

legs.
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Then,

E0e
−λTN ∼ E0e

−λTN
L2 = (

1

cosh2
√
2λ

)N (2.12)



CHAPTER 3: A BRIEF REVIEW ON THE CLASSICAL SPECTRAL THEORY

In this chapter I will give some review on the classical spectral theory in the spirit

of Strum-Liouville theory.

3.1 Spectral theory on the �nite interval

Let's consider the spectral problem (1.4).on L2(0, L) with the boundary conditions

Y (0) ∈ π0, Y (L) ∈ πL where π0, πL are �xed Lagrangian planes. If π0, πL are given

by the basis E0 =

A
B

 (for π0) and EL =

C
D

 (for πL) then we can specify two

particular (2d×d)matrix solutions Y ±(x),x ∈ [0, L] for (2) by conditions Y +(0) = E0,

Y −(L) = EL. It is equivalent to the system (1) with conditions,

y+(0) = A, ẏ+(0) = B, Y +(x) =

y+(x)
ẏ+(x)

 (3.1)

y−(L) = C, ẏ−(L) = D, Y −(x) =

y−(x)
ẏ−(x)



let Mλ(x) be the propagator for the canonical system (1.5), that is,

−JṀλ = (v + λQ)Mλ;x ≥ 0,Mλ(0) = I2n =

I 0

0 I


and the fundamental fact is Mλ(0, x) ∈ SP (2d,R):to prove it just di�erentiate

M
′

λ(x)JMλ(x) = s(x)
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and check that ṡ(x) = 0, s(0) = J

It gives for any two matrix 2d× d solutions v1, v2 of(2), the important relation

[v1(x), v2(x)] = [Mλ(0, x)v1(0), [Mλ(0, x)v2(0)] = [v1(0), v2(0)]

In particular it means

[Y +
λ (x), Y −

λ (x)] = y+λ (x)ẏ
−
λ (x)− ẏ+λ (x)y

−
λ (x) = W (λ)

where W (λ) is d × d matrix (Wronskian). According to classical result from the

linear system of ODE, the propagator Mλ(L) is analytical function of λ.

It gives the discreteness of the spectrum of problem (1.5) with boundary condition

this spectrum is real due to standard symmetry of the Hamiltonian H and corre-

sponding eigenfunctions are orthogonal. The orthogonality of the eigenfunctions is

corresponding to the di�erent real eigenvalues (but for multiple eigenvalues it can be

selected).

The spectral problem (1) with boundary Lagrangian planes π0, πL is equivalent to

the integral equation

(λ− λ0)

∫ L

0

Gλ0(x1, x2)y(x2)dx2 = y(x1) (3.2)

with symmetric Green's kernel

Gλ0(x1, x2) =

y
+
λ0
(x1)W

−1(λ0)ẏ
−
λ0
(x2)0, x1 < x2

y−λ0(x1)W
−1(λ0)ẏ

+
λ0
(x2)0, x1 ≥ x2

(3.3)
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To prove (3.3) we can consider the matrix

s(x) =

y+λ0(x) y−λ0(x) W−1(λ0)

ẏ+λ0(x) ẏ−λ0(x) W−1(λ0)


it is easy to see (by using 1.11-1.14 ) that s(x) ∈ SP (2d,R) that is s′(x) ∈

SP (2d,R). It implies that

 ẏ+λ0(x)

W−1ẏ−λ0(x)

 is a Lagrangian vector. This implies also

the continuity relation for Green's Kernel Gλ0(x1, x2) on the diagonal x1 = x2.

also,

I =

 y+λ ẏ+λ

W−1y−λ ẏ−λW
−1


that is,

y+λW
−1ẏ−λ − ẏ+λW

−1y−λ = I

and it is the condition for the jump of derivative of the kernel on the diagonal.

Classical result on the compact symmetric operators gives us now the completeness

of the eigenbasis for (3.2).

3.2 Spectral theory on the �nite interval for the spider graph

Let x ∈ [0, L] that is, on the graph γ3(L), we must introduce two B.C. at the end

points x = 0 and x = L.

They will have the form :

y(0) =Mv; y(L) = Nv (3.4)

for v ∈ R2d

matrix N satis�es the same condition as M : N∗JN = 0 rank N = 3

If Y (λ, x) is the fundamental solution of our system for �xed (real) spectral parameter

λ then,

det[N − Y (λ, L)M ] = 0 (3.5)
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This is the characteristic equation for λ. It follows from our boundary condition

(3.4). Since, for �xed L the fundamental solution Y (λ, L) is the matrix valued ana-

lytic function of λ, the spectrum of our system on the �nite interval is discrete and

corresponding system of eigenfunctions is complete in Γ3(L). We can then construct

the spectral measure in L2(Γ3, dx) using passing to the limit approach.

3.3 General spectral theory

For simplicity let us consider Neumann's boundary condition ẏ(0) = 0 and consider

for any λ the (d × d) matrix solution y+λ of the problem Hy = λy with initial data

y+λ (0) = I, y+λ (0) = 0

For any compactly supported function ϕ(x) = [ϕ1,ϕ2, ..., ϕn]
′ ⊂ C2(R+) we can

de�ne its generalized Fourier transform

ϕ̂(λ) =

∫ L

0

y+λ (x)ϕ(x)dx

which is independent of L i� support(ϕ) ⊂ [0, L].

If y1(x), y2(x), .... are the eigenfunctions of the problem Hy = λy (with ẏ(0) = 0

and some boundary condition [y(L), ẏ(L)]
′ ∈ πL) and λ1, λ2, ... are corresponding

eigenvalues then we can de�ne the matrix-valued spectral measure µλ(dλ).

by the formula,

µL(dλ) =
∞∑
i=1

dλδ(λ− λi(L))
yλ(0)y

′

λ(0)∫ L
0
y2λ(x)dx

(3.6)

Tr (µL(dλ)) =
∞∑
i=1

(yλ(0))
2 δ(λ− λi(L))dλ∫ L
0
y2λ(x)dx

(3.7)
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Now we can present ϕ(x) using the expansion over eigenfunctions yi(x, L).

ϕ(x) =
∞∑
i=1

yλi(x)∫ L
0
y+λi(x)ϕ(x)dx

(3.8)

=

∫ L

0

y+λ (x)µL(dλ)ϕ̂(λ)

Due to completeness we have the Parseval identity

∫ L

0

ϕ2(x)dx =

∫
R
ϕ̂

′

λ(λ)µL(dλ)ϕ̂(λ) (3.9)

Lemma 3.3.1. If
∫ x+1

x
∥v(z)∥dz = L0 ≤ supx+1(

∫ x
0
∥v(z)∥2dz) 1

2 then

E0 = min
∑

(H) ≥ −L0(L0 + 1)

This is Birman's type estimation (see [6])

Proof. To prove this, we can say, due to Neumann-Dirichlet condition, it is su�cient

to show that for the unit interval we have estimation λ0 ≥ −L0(L0 + 1) for principle

eigenvalue of the Hamiltonian Hy = λy with ẏ(0) = ẏ(1) = 0.

but,

λ0 = miny:∥y∥2=1

∫ 1

0

[ẏ2 + vy.y]dx

Now one can �nd point x0 ∈ [0, 1] such that |y(x0)| = 1

then

y2(x)− y2(x0) = 2

∫ x

x0

(y, ẏ)dz
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That is for any x ∈ [0, 1]

|y2(x)| ≤ 1 +
1

ϵ

∫ 1

0

y2dz + ϵ

∫ 1

0

ẏ2dz

now,

λ0 ≥ miny:∥y∥2=1

[∫ 1

0

ẏ2dz − L0(1 +
1

ϵ
)− ϵL0

∫ 1

0

ẏ2dz

]

If, ϵ = 1
L0

then λ0 ≥ −L0(1 + L0)

Lemma 3.3.2. (Uniform Bound of the Spectral Measure)

For the Hamiltonian in (1.4) with Neumann's boundary condition [0, L] and for any

∧ ≥ 0 and appropriate constant c0 > 0

TrµL(−L0,∧) ≤ c0(1 +
√
∧)

Proof. Solution yλ(x) for λ ∈ [−L0,∧] satis�es the integral equation

yλ(x) = cos
√
λIx+

∫ x

0

sin
√
λI(x− z)√
λI

v(z)yλ(z)dz

If x
√
∧ ≤ 1 then Bellman-Gronwall estimation gives,

yλ(x) = cos
√
λIx(1 +Rλ) ∥Rλ∥ ≤ 1

2
(3.10)

Now let us select test function ψn(x) such that ∥ψ2
n∥2 = 1, Support(ψn) ∈ [0, h],

h
√
∧ ≤ 1.

Standard application of the Parseval identity to the functions ϕn(x), ψ̂n(λ) provides

the desirable estimation (we can compare this result with [11]).
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Now we can pass to the limit L→ ∞ using Hallie's lemma and prove that µL(dλ) →

µ(dλ) in weak limit (on C0(R1
+)). The limiting matrix spectral measure µ(dλ) is

unique which does not depend on Ln → ∞ and boundary conditions. It satis�es

the estimations of the previous lemmas.. For any ϕ(x) ∈ L2(R+) we can de�ne the

generalized Fourier transform in the Parseval sense, that is, if

ϕ̂L(λ) =

∫ L

0

y+λ (x)ϕ(x)dx⇒ lim ϕ̂L(λ) = ϕ̂(λ)

with respect to spectral measure µ(dλ)

We can reconstruct ϕ(x) using the inverse Fourier transform:

ϕ(x) =

∫ ∞

−E0

y+λ (x)µ(dλ)ϕ̂(λ)

(again, in the Parseval sense) together with Parseval identity

∫ ∞

0

ϕ2(x)dx =

∫ ∞

−E0

ϕ̂
′
(λ)µ(dλ)ϕ̂(λ)

3.4 Construction of the spectral measure on the spider graph

Construction of the spectral measure is based on the transition from the spectral

measure on Γ3(L) to its weak limit if L → ∞. Consider the spectral problem:

Hψ = Jψ′ + (λA+ V )ψ = 0

with the B.C. ψ(0) =Mv, ψ(L) = Nv

Let, λn be eigenvalues and ψn(x) are eigenfunctions with normalization condition

(ψn, Aψm) = δmn
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They form the complete system in L2 (Γ3(L), dx)

Let, un = (Aψn)(0) and µL(dλ) =
∑

n δ(λ− λn)unu
∗
n

Note that, un×u∗n is a 3×3 positive de�nite matrix: the tensor squares of the vectors

un, n ≥ 1

The general theory contains the theorem on the existence of the weak limit of the mea-

sures µL(dλ), L→ ∞ (for details see [3] chapter 9) This approach is di�erent from

scalar Strum-Liouville theory, based on the generalized direct and inverse Fourier

transform [11].

For some classes of the matrix self-adjoint operators, one can also develop the spectral

theory based on the Fourier type integral transformation.

Consider the matrix Strum-Liouville spectral problem

−ψ⃗′′(x) +Q(x)ψ⃗ = λψ⃗(x), x ≥ 0 (3.11)

ψ⃗(x) = (ψ1(x), ...., ψd(x))
∗ and Q(x) = Q∗(x)

Let also take d× d matrix potential Q(x) > 0, in the sense of quadratic form:

(Qa⃗, a⃗) > 0 for all x ∈ [0,∞); a ∈ Rd

This system (like the previous case) can be represented as the canonical from :

J
dψ⃗

dx
= (λA+ Q̃)ψ⃗ (3.12)
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where,

J =

0 −I

I 0

 ; ψ⃗(λ, x) =

 ψ⃗
ψ⃗′

 ;A =

I 0

0 0

 ; Q̃ =

Q 0

0 I


Corresponding fundamental solution belongs to SP (2d) and we can use the ap-

proach used in [3] to explain the problem presented above.

However, there is another approach : Consider spectral theory for the equation (3.12),

with, say Neumann B.C. ψ⃗′(0) = 0.

It de�nes the d-dimensional Lagrangian plane π0 of the functions (ψ1, . . . , ψd) = ψ⃗:

ψ⃗(0) = 0 but ψ⃗′(0) ∈ Rd is an arbitrary vector.

Let us select basis in π(0):

ψ⃗i,0(λ, x) : ψ⃗i,0(λ, 0) = 0, ψ′
i,0(λ, 0) = (0, . . . , 0, 1, 0, . . . , 0)∗ for, i = 1, . . . , d

For arbitrary vector function ϕ(x) ∈ L2 ([0,∞), dx) we can de�ne the Fourier trans-

form

ϕ̂i(λ) =

∫ ∞

0

(
ϕ⃗(x), ψ⃗i,0

)
dx for i = 1, . . . , d

(in the beginning, for functions with bounded support and after, using L2-approximation

of the general function)

now we can introduce,

µL(dλ) =
∞∑
i=1

dλδ(λ− λi(L))
ψ⃗i(0)ψ⃗

∗
i (0)∫ L

0
ψ⃗2
i dx

and

trµL(dλ) =
∑ ψ⃗2

i (0)dλδ(λ− λi)∫ L
0
ψ⃗i(λ, x)
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note that: ψi(0) × (ψi(0))
∗ is the d × d matrix (tensor product of vectors) and ψ∗

iψi

is the dot product, such that :

ϕ(x) =

∫ L

0

ψi(λ, x)µ̄L(dλ)ϕ̂i(λ)

then, due to completeness, we have the Parseval's identity

∫ L

0

ϕ2(x)dx =

∫
R
ϕ̂∗
iµL(dλ)ϕ̂i (3.13)

If we take ϕ0(x) supported on [0, h], h << 1 and solve over system (3.13) on [0, h]

using the equivalent integral equation and iterations as in [11] then we will get the

weak compactness of µL on each interval of λ-axis. Now if one takes L → ∞, then

by Hellie's lemma it can be proved µL(dλ) → µ(dλ) in the weak sense on C0(R+).

The limiting spectral measure µ(dλ) is unique. It does not depend on L or boundary

conditions. The generalized Fourier transformation is given by,

ϕ̂L(λ) =

∫ L

0

ψi(λ, x)ϕ(x)

This implies

lim ϕ̂L = ϕ̂(λ)

with respect to the spectral measure µ(dλ)



CHAPTER 4: THE SPECTRAL THEORY OF THE SCHRÖDINGER

OPERATOR ON THE SPIDER-LIKE QUANTUM GRAPHS

4.1 Introduction to the spectral theory of Laplacian

Here we will consider the Schrödinger operator on the special case of quantum

graphs. There are two versions of this theory : continuous and lattice cases. We

will study here only the the continuous case. Consider the graph spN for N ≥ 2,

which consists of half-line [0,∞) connected at the �xed point 0 (origin). To simplify

notations we will take,in some cases N = 3).

Figure 4.1: Spider graph with N legs

On each leg of this spider like graph we introduce the coordinates x1, x2, ....., xN

and they are increasing in the corresponding directions from 0 to ∞. The Lebesgue

measure on each leg of spN is de�ned as dm = (dm1, dm2, ...dmN) on each leg with dif-

ferentials dx1,dx2,..., dxN .Consider on spN the space of compactly supported smooth

functions like,

f(x1, x2, ...., xN) =

[f1(x1) : x1 ∈ (0,∞), f2(x2) : x2 ∈ (0,∞), . . . , fN(xN) : xN ∈ (0,∞)]
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with

N∑
i=1

∫ ∞

0

|fi|2(xi)dxi = ∥f∥22

f is not a vector function. f ∈ L2(spN) are simply restrictions of f along the legs

(without the origin).Space L2(spN) contains, in general, only measurable functions but

it is the closure of the class of compactly supported C∞ functions f = (f1, ...fN) on

each leg with the appropriate gluing conditions at 0. Let us describe this conditions.

a) First we assume that the following limits exist and equal. It con�rms the continuity

of f on spN .

f(0) = lim
x1→0

f1(x1) = lim
x2→0

f2(x2) = · · · = lim
xN→0

fN(xN) (4.1)

b) also, we will assume that f has right derivatives at point 0,that is, df
dx1

(0), df
dx2

(0)..... df
dxN

(0)

exist on each half-axis correspondingly.

and ,

∑
i

df

dxi
(0) = 0 Kirchho�'s condition (4.2)

Note: We will have N − 1 continuity conditions for f(.) :

lim
x1→∞

f(x1) = lim
x2→∞

f(x2), lim
x1→∞

f(x1) = lim
x3→∞

f(x3), . . . , lim
x1→∞

f(x1) = lim
xN→∞

f(xN)

It means that vector (f⃗(0), f⃗ ′(0)) with 2N components, satisfying the gluing condition

(4.1) and 4.2 at the origin 0.

Function f on the spider is de�ned as follows: f(x1, x2, ...xn) = {f(x1), f(x2), . . . , f(xN)};

x1 ∈Leg1,x2 ∈ Leg2,...,xN ∈ LegN and f(x1),f(x2),. . . ,f(xN) are functions on Legi

for i = 1, 2, 3, . . . , N .
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The last condition (4.2) means that

N∑
i=1

dfi
dxi

(0) = 0

The operator −∆ (the Laplacian), on Γ with the gluing conditions (4.1) and (4.2) is

given by

−∆f =



−d2f
dx21
, if x ∈ (0,∞)along leg 1

−d2f
dx22
, if x2 ∈ (0,∞)along leg 2

. . .

− d2f
dx2N

if xN ∈ (0,∞)along leg N

(4.3)

Let us look at the Laplacian −∆ from the functional analysis perspective.

Let L2(spN , dm) is the Hilbert space of square integrable functions on spN (in our

particular case we consider N=3) with the dot product de�ned as :

< f, g >=

∫
spN

f.ḡdm =
N∑
i=1

(∫ ∞

0

fiḡidmi

)
(4.4)

For N = 3 that is, in our case,

< f, g >=

∫ ∞

0

(f1.ḡ1) (x)dx+

∫ ∞

0

(f2.ḡ2) (y)dy +

∫ ∞

0

(f3.ḡ3) (z)dz (4.5)

Consider on L2(spN , dm), the dense set of compactly supported C∞-functions on

each leg with gluing conditions (4.1), (4.2). On such functions we already de�ned the

Laplacian −∆ = − d2

di2
on each Legi. We will now give the sketch of the spectral the-

ory of the Laplacian −∆ on L2(spN , dm) . For each λ ∈ R we de�ne the fundamental

system of solutions of the equation −∆f = λf with gluing conditions (4.1),(4.2).

Let, λ = k2 > 0 then on each leg, the general solution of −d2f
dx2

= k2f has the form:
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fi(xi) = ci cos kxi + di sin kxi i = 1, ..., N

where, cos kxi and sin kxi are two linearly independent solutions on Legi Note: For

the N-legged spider we will have 2N solutions, two linearly independent solutions on

each leg.

Due the gluing condition (4.1), ci = c0 = f(0)

f = c0 cos kxi + di sin kxi (4.6)

Now, the gluing condition (4.2), (4.6) implies
∑
di = 0

4.2 Spectral theory on the �nite spider graph

Let us now describe (N−1) solutions with Dirichlet boundary condition at 0. First

�x the central leg 1. then,

ψi =


sin kx1, x1 > 0

− sin kxi, xi > 0 i ̸= 1

0, xj > 0,i = 2, .., N

(4.7)

we have (N − 1) such solutions.

The last i = N 's solution ψ1 = cos kxi for i = 1, 2, ....N . Here ψ1(0) = 1 and

dψi

dxi
= 0. We will develop the spectral theory of the the of the Laplacian on spN

passing to the limit from the �nite spider. Let us consider �rst the truncated graph

(spN , L) where all legs have length L and ψi(L) = 0.

Let us show that for λ < 0 there are no eigenvalues.
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Figure 4.2: spN with N �nite length legs

If λ = −k2 then on each Legi, solution has the form

ψi(xi) = ci sinh k(xi − L)

that is,

ψi(0) = −ci sinhL, sinhL > 0

due to condition (4.1)

c1 = c2 = ....cN

but, due to condition (4.2),

c1

N∑
i=1

d

dxi
sinh k(x− L)/x=0 = c1Nk cosh kL = 0

that is, c1 = 0 and hence ψ ≡ 0.

Assume now that λ = k2 > 0 where k is strictly positive and solve,

−d
2ψ

dx2
= k2ψ with boundary condition ψ(L) = 0 (4.8)
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Then on each leg we have ψi(x) = ci sin k(x − L) for i = 1, 2, 3, . . . , N . We will

consider later, for simplicity, N = 3.

Asuume �rst that sin k(x− L)/x=0 = − sin kL ̸= 0,

Then from condition (4.1) we have c1 = c2 = c3 and from condition (4.2)

3c1k cos kL = 0

knL =
π

2
+ nπ n ≥ 0

kn =
π(2n+ 1)

2L

Now, A) if, sin kL ̸= 0 that is ci ̸= 0 then λn = k2n = π2(2n+1)2

4L2 , without any

loss of generality, ci = 1. This gives the �rst series of eigenfunctions. For each kn,

n = 0, 1, 2, . . . , there is only one eigenfunction.

ψn = ± sin kn(xi − L) = cos knxi, xi ≥ 0 (4.9)

with kn = π(2n+1)
2L

where n ≥ 0 which implies λn = k2n = π2(2n+1)2

4L2

B) if, sin kL = 0 that is, ci, can be di�erent, then condition (4.2) gives

3∑
i=1

cik cos kL = 0

⇒
3∑
i=1

ci = 0
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This implies, that there are two linearly independent solutions corresponding to,

kmL = πm

⇒ km =
πm

L

We have the following eigenvalues and eigenfunctions. For eigenvalues λm = m2π2

L2

corresponding series of eigenfunctions are given by

ψL,m,i(x) =


sin km(x1−L)√

L
, x1 ∈ [0, L]

− sin km(xi−L)√
L

, xi ∈ [0, L]

0, for remaining legs

(4.10)

also,

∥ψL,m,i∥ = 1 i = 2, ...N

but these functions are not orthogonal:

(ψL,m,i, ψL,m,j) =
L

2
, i ̸= j, i, j ∈ (2, . . . , N)

for di�erent m we will have orthogonality associated with gluing condition

and, for λn = π2(2n+1)2

4L2 with n ≥ 0, corresponding eigenfunctions are given by

ψn =
cos knxi√

LN
2

,i = 1, 2, . . . , N (4.11)
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Figure 4.3: Eigenfunctions ψL,m,i(x)

Figure 4.4: Eigenfunctions ψn(x)

Let us take function f(x) on spN,L and expand it over the eigenbasis.

f(x) =
∞∑
n=0

ψnbn +
∞∑
m=1

N∑
i=1

ψm,iam,i (4.12)

To �nd coe�cients bn multiply (4.12) by ψn, we get,

bn = (ψn, f)
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To get am,i, multiply (4.12) by ψm,i and we get,

am,i.(ψm,i, ψm,j) +
∑
i ̸=j

am,j(ψm,i, ψm,j) = (f, ψm,i) i, j ∈ [2, ..N ]

am,i.1 +
∑
i ̸=j

am,j.
1

2
= (f, ψm,i)

This gives,

N

2
(am,1 + am,2 + · · ·+ am,n−1) = (f, ψm,1) + · · ·+ (f, ψm,n−1)

hence,

(am,1 + am,2 + ...am,n−1) =
2

N
[(f, ψm,1) + ...+ (f, ψm,n−1)]

This implies am,1 = 2
N
(f, ψm,1) and am,i = 2

N
(f, ψm,i) for i = 2, ...., N and 0 otherwise.

But the eigen functions are not orthogonal and as a result spectral measure will not

be diagonal.

So, for f(x) ∈ spN , consider,

F̂m,i(λ) =


∫
spN

f(x)ψm,1dx x1 ∈ [0, L] i = 1∫
spN

f(x)ψm,idx xi ∈ [0, L] i ∈ [2, N ]

0, for remaining legs

and

F̂n(λ) =

∫
spN

f(x)ψndx (4.13)

which gives the generalized Fourier transforms of the function f(x) on spN in the

case of zero potential and from the weak compactness of the measure on each �nite

interval, we can conclude that as L → ∞ the spectral measure tend weakly to the

limiting measure

Our next goal is to give the qualitative spectral analysis of the general spider type
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Hamiltonian. Using information about potential on each leg of the spider graph we

would be able to describe the structure of the spectral measure, that is, its represen-

tation as the sum of absolutely continuous, singular continuous and point (discrete)

components.

4.3 Spectral theory of sp3 with fast decreasing potential

In this section, the potentials, vj(xj) for j = 1, 2, 3, we will use the fundamental

fact : the change of the gluing condition at the point 0 (which is the rank 1 perturba-

tion of the operator) cannot change the fact of existence of the absolute continuous

component of the spectral measure as well as its support (that is, minimal closed set

such that absolute continuous measure is 0.

If on the spider sp3, the potentials vj(xj) are decreasing fast enough, then the standard

assumptions are

∫ ∞

0

xj|vj(xj)|dxj <∞ j = 1, 2, 3 ( Bargmann's condition )

then under Dirichlet condition at point 0:

ψ1(λ, 0) = ψ2(λ, 0) = ψ3(λ, 0) = 0

We can split the spectral problem on sp3 into three spectral problems on legs Legj

for j = 1, 2, 3 which have pure absolute continuous spectra for λ > 0, supported on

[0,∞) and at most �nite discrete spectra for λ < 0.

Hence, the initial problem on sp3 with our gluing conditions has the absolute contin-

uous spectrum of multiplicity 3, supported on [0,∞) and �nite spectrum for λ < 0.

Our goal in this section is to give the construction of the absolute continuous part.
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sp3 contains three legs, which starts from O(origin) and have coordinates xj for

j = 1, 2, 3 and xj ≥ 0. Let us denote Oj for j = 1, 2, 3, the part of the origin

attributed to Legj. The Schrödinger operator on sp3 has the form

H = −∆+ v(x) (4.14)

where,

−∆ = − δ2

δx2j
j = 1, 2, 3

and

v(x) = vj(xj) j = 1, 2, 3

Now, let us consider the following problem on the spider graph with three legs :

Hy = −∆y + vy = λy (4.15)

f(0) = lim
x1→0

f1(x1) = lim
x2→0

f1(x2) = lim
x3→0

f1(x3) (4.16)

df

dx1
(0) +

df

dx2
(0) +

df

dx3
(0) = 0 (4.17)

Let L be the truncation parameter. For simplicity, we consider compactly sup-

ported potentials v1, v2,v3 on open semi axes x1, x2, x3. For each vj(xj), j = 1, 2, 3

we will introduce the scattering solution for λ = k2 > 0, k > 0.

For waves, moving from right side to left:

ψ1(x) = e−ikxj forx < x−j (4.18)

= Aj(k)e
−ikxj +Bj(k)e

ikxj x > x+j (4.19)
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Figure 4.5: Three legged spider with fast decreasing potential

Figure 4.6: Wave propagation along the legs from right to left

Here Aj(k)e−ikxj is the incidented wave component with magnitude Aj(k) and fre-

quency k. Bj(k)e
ikxj is the re�ected wave component with magnitude Bj(k) and fre-

quency k, e−ikxj is the transmitted wave component. Aj(k), Bj(k) are the transamis-

sion and re�ection coe�cients.

It is well known, that,

|Aj(k)|2 = 1 + |Bj(k)|2 (the conservation of energy law)

Let,

Aj(k) = (aj1(k) + iaj2(k))

and Bj(k) = (bj1(k) + ibj2(k)) complex form for j = 1, 2, 3
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After separation of the real and imaginary part, we �nd two solutions:

cos kxj(near O) → (aj1 + bj1) cos kxj + (aj2 − bj2) sin kxj(near ∞)

and

sin kxj(near O) → (aj2 + bj2) cos kxj + (−aj1 + bj1) sin kxj(near ∞)

At the origin O = Oj for (j = 1, 2, 3) we have, two gluing conditions:

a) if ψ(x) ∈ D(H) ⇒ ψ(Oj) = ψ(0), j = 1, 2, 3 that is, (ψ(xj) → ψ(0), j = 1, 2, 3,

continuity of ψ(x) at the origin)

b)
∑3

j=1
δψ
δxj

(Oj) = 0, Kirchho�'s condition.

There are three solutions (for �xed λ = k2 > 0) which satisfy the gluing condition

at the origin and scattering information near in�nity. The �rst solution ψ1(x) (given

by �gure 4.7):

This solution is supported on three legs satisfying ψ1(0) = 1,
∑

j
δψ1

δxj
(Oj) = 0+0+0 =

Figure 4.7: Solution ψ1



60

0.

Other two solutions vanish at 0. The solution ψ2(x) (given by �gure 4.8) and

Figure 4.8: Solution ψ2

the solution ψ3(x) (given by �gure 4.9) are equal on Leg1. The solution ψ2 vanishes

at x3 axis and solution ψ3 vanishes at x2 axis.

Linear combination of ψj(x), j = 1, 2, 3 satis�es the gluing condition at x = 0

Consider,

ψ(x) = ξ1ψ1(x) + ξ2ψ2(x) + ξ3ψ3(x)

with some normalization condition at 0 (say) :

ξ21 + ξ22 + ξ23 = 1

Let us now impose, at the end points xj = L, j = 1, 2, 3, the Dirichlet boundary

conditions ψ(xj)/xj=L = 0.

Later we will pass to the limit L → ∞. It is well known that the limiting spectral

measure (which we will derive later) is independent of the boundary conditions at
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Figure 4.9: Solution ψ3

the end points if potentials v(x) = {vj(xj), j = 1, 2, 3, xj ∈ [0, L]} are bounded from

below, in the sense, vi(xi) ≥ c0 (for i = 1, 2, 3). This is su�cient condition for the

uniqueness of the spectral measure but not necessary condition.

For �xed L we have three free parameters, λ(= k2 > 0) and ξ2, ξ3. Which implies the

relation,

1− ξ21 = ξ22 + ξ33

and three Dirichlet conditions at the end points xj = L, for j = 1, 2, 3.

As a result we will �nd the discrete spectrum for the restriction of H on sp3(L).

To calculate the eigenvalues λn(L), we have to use three Dirichlet equations at the

end points.

0 = ξ1ψ1(x) + ξ2ψ2(x) + ξ3ψ3(x)/xj=L j = 1, 2, 3
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We will start from the equations at the point L2(x2 = L):

ξ1[(a21 + b21) cos kL+ (a22 − b22) sin kL]

− ξ2[(a22 + b22) cos kL+ (−a21 + b21) sin kL] = 0 (4.20)

Put

t =
cos kL

sin kL
= cot kL

then,
ξ2
ξ1

=
(a21 + b21)t+ (a22 − b22)

(a22 + b22)t+ (−a21 + b21)
(4.21)

at point L3(x3 = L) , we will �nd

ξ3
ξ1

=
(a31 + b31)t+ (a32 − b32)

(a32 + b32)t+ (−a31 + b31)
(4.22)

and at point L1(x1 = L),

−ξ2 + ξ3
ξ1

=
(a11 + b11)t+ (a12 − b12)

(a12 + b12)t+ (−a11 + b11)
(4.23)

Now, adding (4.21)-(4.23)

(a21 + b21)t+ (a22 − b22)

(a22 + b22)t+ (−a21 + b21)
+

(a31 + b31)t+ (a32 − b32)

(a32 + b32)t+ (−a31 + b31)

+
(a11 + b11)t+ (a12 − b12)

(a12 + b12)t+ (−a11 + b11)
= 0 (4.24)

(4.24) produces the equation for t = cot kL and �nally for kn, such that λ = k2n
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Note that,
at+ b

ct+ d
=
a

c
− 1

c2
(ad− bc)

t+ d
c

(4.25)

and apply (4.25) in (4.24). In all three cases (4.21),(4.22),(4.23) determinants are

equal −1, due to well known identity (law of the conservation of energy):

|Aj(k)|2 = 1 + |Bj(k)|2

i.e.(a2j1 − b2j1) + (a2j2 − b2j2) = 1

This means that the equation for unknown parameter t = cot kL has generically

three simple real roots t1(k),t2(k),t3(k).In some limiting cases we can get one root of

multiplicity 2 and one simple root (for instance v(x) ≡ 0)

4.4 Spectral analysis on the sp3(L) with Dirichlet boundary condition

Lemma 4.4.1. For each k > 0 one can �nd three real roots of the cubic equation:(by

using (4.24), (4.25))
α1

t− a1
+

α2

t− a2
+

α3

t− a3
= h

Under the generic condition α1, α2, α3 > 0, and a1 < a2 < a3 and any h.

Proof. The proof follows from the graph of the equation given by �gure 4.10

Remark. The parameters α1, α2, α3; a1, a2, a3, h can be expressed in the terms

of re�ection-transmission coe�cients Aj, Bj for j = 1, 2, 3 (see (4.24)) and they are

continuous functions of k.

Remark. Note that if αi have the di�erent signs then the situation is di�erent.

We can then �nd coe�cients c2(t), c3(t) such that,
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Figure 4.10: Graph of the cubic equation

ξ2 = c2(t)ξ1 ξ3 = c3(t)ξ1

ξ1 is arbitrary and t = tj for j = 1, 2, 3 where t = cot kL.

then, for arbitrary i = 1, 2, 3 we can construct eigenfunctios

ψ(x) = ξ1ψ1 + ξ2ψ2 + ξ3ψ3 = ξ1 (ψ1 + c2(t)ψ2 + c3(t)ψ3)

with boundary condition ψ(Li) = 0 + gluing condition at the point 0.

One can put,

α(t) =
ξ1√

ξ21 + ξ22 + ξ23
β(t) =

ξ2√
ξ22 + ξ22 + ξ23

and γ(t) =
ξ3√

ξ21 + ξ22 + ξ23

(for normalization)
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Lemma 4.1 gives tj = cos kL and kjL = πn+ cot−1 tj which give,

λn,j = k2n,j and kn,jL = πn+ cot−1 tj

For any n there are three eigenvalues corresponding to three roots t1,t2,t3

According to the Strum-Liouville theory by [11] real eigenvalues corresponding to

Dirichlet gluing condition are discrete with �nite multiplicity. If L → ∞ then eigen-

values become more and more dense, and the then discrete measure concentrated at

the eigenvalues will tend to limit which is called the spectral measure.

Let, for f(x) ∈ sp3, and λ > 0 then by (4.13) we can introduce the generalized

Fourier transform as follows:

F̂1(λ) =

∫
sp3

f(x)ψ1(λ, x)dx (4.26)

F̂2(λ) =

∫
sp3

f(x)ψ2(λ, x)dx

F̂3(λ) =

∫
sp3

f(x)ψ3(λ, x)dx

Let, ϕn(λ, L, x) be the orthonormalized eigenfunctions on the �nite interval of

sp3(L), then by the Strum-Liouville theory,

ϕn(λ, L, x) = αnψ1(λn, x) + βnψ2(λn, x) + γnψ3(λn, x)

The normalization condition gives: α2
n + β2

n + γ2n = 1

Here, behind the potentials v1, v2, v3, that is near end points L,
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ψ1(λn, x) =
c1 cos knx1 + c2 sin knx1√

L
2

ψ2(λn, x) =
c3 cos knx2 + c4 sin knx2√

L

ψ3(λn, x) =
c5 cos knx3 + c6 sin knx3√

L

the ci s, i = 1, . . . , 6 are given by the real and imaginary components of Aj and Bj,

that is aj,1, aj,2, bj,1 bj,2 where j = 1, 2, 3

For the �nite spider spL,3, due to completeness of the set of eigenfunctions ϕn(λn, L, x)

for all su�ciently large L and compactly supported f ,

f(x) =
∞∑
n=1

ϕn(f, ϕn)

=
∞∑
n=1

[αnψ1(λn, x) + βnψ2(λn, x) + γnψ3(λn, x)]

×
∫ L

0

f(y)(αnψ1 + βnψ2 + γnψ3)dy

=

∫ L

0

f(y)
∞∑
n=1

([αnψ1(λn, x) + βnψ2(λn, x) + γnψ3(λn, x)]

(αnψ1 + βnψ2 + γnψ3)dy)
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Applying the Parseval equality to f(x) we get,

||f ||22 =
∫ L

0

f 2(x)dx (4.27)

=
∞∑
n=1

{∫ L

0

f(x)[αnψ1(λn, x) + βnψ2(λn, x) + γnψ3(λn, x)]

}2

=
∞∑
n=1

α2
n

{∫ L

0

f(x).ψ1(λn, x)

}2

+ 2
∞∑
n=1

αnβn

∫ L

0

f(x).ψ1(λn, x)dx

∫ L

0

f(x).ψ2(λn, x)dx

+ 2
∞∑
n=1

αnγn

∫ L

0

f(x).ψ1(λn, x)dx

∫ L

0

f(x).ψ3(λn, x)dx

+
∞∑
n=1

β2
n

{∫ L

0

f(x).ψ2(λn, x)

}2

+ 2
∞∑
n=1

βnγn

∫ L

0

f(x).ψ2(λn, x)dx

∫ L

0

f(x).ψ3(λn, x)dx

+
∞∑
n=1

γ2n

{∫ L

0

f(x).ψ3(λn, x)

}2

Let us now introduce the matrix valued measure following Parseval's equality to

f(x) (Strum-Liouville Theory)

ρL(λ) =


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 (λ) =


∑

λn<λ
α2
n

∑
λn<λ

αnβn
∑

λn<λ
αnγn∑

λn<λ
αnβn

∑
λn<λ

β2
n

∑
λn<λ

βnγn∑
λn<λ

αnγn
∑

λn<λ
βnγn

∑
λn<λ

γ2n

 (4.28)

Note: This is a 3× 3 symmetric matrix. From the weak compactness of the measure

on each �nite interval, we can conclude that as L → ∞ the spectral measure ρn(dλ)

tend weakly to the limiting measure ρ(dλ) on any spectral interval. The o� diagonals

charges can be negative but the measure matrix is positive de�nite.
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Let us note that, say,

∑
λn<λ

α2
n =

∑
kn<

√
λ

c21(kn)

L
→
∫ λ

−∞
c21(k)dk similarly βn and γn

It means that the limiting spectral measure ρ(dλ) is absolute continuous with multi-

plicity 3. Unfortunately the coe�cients c1, c2, c3 as the roots of the cubic equation

from lemma 4.1 cannot be calculated explicitly. So, we do not have any clear formula

for ρ(dλ) = ρ(λ)dλ.

The inverse Fourier transform is given by:

f(x) =

∫ ∞

0

< F̂1(λ), F̂2(λ), F̂3(λ) > ρL(dλ) (4.29)

=

∫ ∞

0

F̂1ψ1(λ, x)ρ11(dλ) +

∫ ∞

0

F̂1ψ2(λ, x)ρ12(dλ) +

∫ ∞

0

F̂1ψ3(λ, x)ρ13(dλ)

+

∫ ∞

0

F̂2ψ1(λ, x)ρ21(dλ) +

∫ ∞

0

F̂2ψ2(λ, x)ρ22(dλ)

∫ ∞

0

F̂2ψ3(λ, x)ρ23(dλ)∫ ∞

0

F̂3ψ1(λ, x)ρ31(dλ) +

∫ ∞

0

F̂3ψ2(λn, x)ρ32(dλ) +

∫ ∞

0

F̂3ψ3(λ, x)ρ33(dλ)

4.5 Negative eigenvalues

Consider on sp3 the problem

−d
2ψ

dx2j
+ vj(xj)ψ = λψ λ = −k2

If ψ(0) = 0 on each leg and

∫ ∞

0

xj|vj(xj)|dxj <∞ j = 1, 2, 3

(Bargmann's condition)Then number of negative eigenvalues will be �nite.
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Total number of negative eigenvalues on sp3 is less or equal to

N0(H) ≤ 1 +
3∑
j=1

∫ ∞

0

xj|vj(xj)|dxj

This is the Bargmann's estimate plus rank one perturbation at x = 0. The change in

gluing condition at x = 0 can provide only one additional negative eigenvalue. Here,

the number of negative eigenvalues equal to the number of negative σis for i = 1, 2, 3.

4.6 Solvable model

Here we consider

v(x) = σδ(x− a)

Figure 4.11: Wave component on half axis with a positive delta potential

For the continuity condition at a:

e−ika = Ae−ika +Beika

1 = A+Be2ika (4.30)

and for jump of the derivative at a:

ψ
′
(a− 0)− ψ

′
(a+ 0) = σψ(a)

then we have,
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−ike−ika − (A(−ike−ika) +B(ikeika)) = σe−ika

−ik + Aik −Bike2ika = σ

A−Be2ika = 1 +
σ

ik
= 1− σi

k
(4.31)

(4.30) and (4.31) gives

A(k) = 1− σi

2k

and

B(k) =
σi

2k
e−2ika

Now

|A(k)|2 = 1 +
σ2

4k2
= 1 + |B(k)|2 (4.32)

Figure 4.12: Positive delta potential on the legs of the three legged quantum spider graph

We already pointed out that (more or less) explicit formulas for the spectral measure

ρ(dλ) = ρ(λ)dλ where ρ(λ) is (3× 3) positive de�nite function of λ, do not exist (like

the similar formulas in the case of R1, that is, sp2).

There are two reasons: there is no simple formulas for the roots of the roots of

the cubic equation from lemma 4.1 and in general there is no simple formulas for the
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re�ection-transmission coe�cient A(k) and B(k) except for some simple situations.

In this section we will give example of the solvable model. Consider sp3 and po-

tentials v(x1) = σδ(x1 − a), v(x2) = σδ(x2 − a) and v(x3) = σδ(x3 − a). Let us

stress on the fact that, all potentials are equal and model is invariant with respect to

interchange of the legs. Let us start from sp3,L.

In this case there are two invariant subspaces in L2(sp3): set of the functions

1)

ψ(0) = 0
∑ dψ

dxi
(0) = 0 (that is, L2

D(sp3), corresponding to Dirichlet condition)

and

2) ψ(0) > 0
∑ dψ

dxi
= 0 (that is, L2

N (sp3), corresponding to Neumann's condition)

hence,

L2(sp3) = L2
D ⊕ L2

N

Then, as result, the spectral problem can be reduced to two independent spectral

problems.

−d
2ψ

dxi
+ σδ(xi − a)ψ = λψ

ψ(0) = 0 and ψ(L) = 0

Now the solution on each leg with delta potential has the following form.

This implies

A = sin ka (by the continuity condition of ψ at point a)
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Figure 4.13: Solution on both side of a delta potential for a solvable model

and

k cos ka− kB = σ sin ka (continuity of the derivative at point a)

⇒ B = cos ka− σ

k
sin ka

Eigenvalues for this Dirichlet component of our spectral problem are given by the

following equation (ifx = L)

ψ(x− a)/x=L = 0[
sin ka cos k(x− a) + (cos ka− σ

k
sin ka) sin k(x− a)

]
/x=L = 0

sin kL− σ

k
sin ka sin k(L− a) = 0

sin kL− σ

k
sin ka(sin kL cos ka− cos kL sin ka) = 0

(1− σ

k
sin ka cos ka) sin kL+

σ

k
sin2 ka cos kL = 0

b sin kL+ c cos kL = 0

⇒
√
b2 + c2 sin (kL+ ϕ) = 0
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where ϕ is given by

tanϕ =
σ
k
sin2 ka

1− σ
k
cos ka sin ka

= F (k)

⇒ ϕ = tan−1

( σ
k
sin2 ka

1− σ
k
cos ka sin ka

)

Note that,

cosϕ =
b√

b2 + c2
and sinϕ =

c√
b2 + c2

where

b = (1− σ

k
sin ka cos ka) and c =

σ

k
sin2 ka

For the eigenvalues,

sin (kL+ ϕ(k)) = 0 where ϕ = ϕ(k) = sin−1 c√
b2 + c2

etc.

⇒ kL+ ϕ(k) = πn

⇒ kn =
nπ

L
− ϕ(k)

L

The eigenvalues are given by

k2n(L) = λn(L)

There are two normalized eigenfunctions associated with kn(L), given by �gure 4.14

and 4.15.

There are also eigenfunctions associated with Neumann's condition such that

A1 = cos ka (due to continuity condition)
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Figure 4.14: Normalized eigenfunction ψ1

and,

B1 = − sin ka− σ

k
cos ka

The eigenfunctions are given by �gure 4.17). For related work see also [14]

4.7 Spectral theory of sp3 with increasing potential

Let us consider potential v1 on leg 1, v2 on leg 2 and v3 on leg 3 and V (x) = vi(xi)

for i = 1, 2, 3. vj(x) ∈ Cloc and

vi(xi) → +∞ as xi → ∞ for i = 1, 2, 3 (4.33)

Let us consider in the beginning instead of Kirchho� gluing condition, the Dirichlet

boundary condition at point 0, ψ(0) = 0 for ψ ∈ C2(sp3). This Splits the spider graph

into 3 one-dimensional spectral problem on [0,∞)

According to the classical Strum-Liouville theory by [11], (4.14) with the Dirichlet
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Figure 4.15: Normalized eigenfunction ψ2

Figure 4.16: Solution on both side of a delta potential associated to Neumann's condition

boundary condition at point 0, any solution for every �xed λ has �nite number of

zeros. It implies the discreteness of the spectrum on each leg of the spider that is there

exist sequence λ1 < λ2 < ... < λn (λ → ∞) of eigenvalues of H and corresponding

eigenfunctions ψn(x), x > 0 form an orthogonal basis in L2[0,∞) on each leg and

decays super-exponentially. The spectral measure on each leg Legi is given by,

ρ(dλ) =
∞∑
0

αnδ(λ− λn)dλ
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Figure 4.17: Eigenfunction ψ3 associated to Neumann's condition

Corresponding atoms αn have the following meaning, let us consider on [0,∞) the

spectral problem (in fact, three problems on Legi for i = 1, 2, 3)

y
′′

λ = (vi(x)− λ)yλ for i = 1, 2, 3

with conditions

yλ(0) = 0 and y
′

λ(0) = 1

There exists only �nitely many eigenvalues λn,i for i = 1, 2, 3 and n ≥ 0 in any spectral

interval [0,∧] on each leg Legi. Corresponding solutions yλi,n (x) are decreasing on

Legi super-exponentially, for all other λ solutions (that is, there magnitudes)

rλi,n =

√(
y′2λi,n + y2λi,n

)
(x)



77

Figure 4.18: A three legged spider quantum graph with increasing potentials on each leg

are growing super exponentially. Then,

αn,i =

(∫ ∞

0

y2λn,i
dx

)− 1
2

Since the sets of eigenvalues {λi,n, n ≥ 1} are di�erent for di�erent i = 1, 2, 3 and

the discrete spectrum is unstable with respect to rank one perturbation (change of

the Kirchho�'s gluing condition on Dirichlet gluing condition) the result, presented

above, cannot prove the discreteness of the spectrum on sp3 for initial conditions of

the continuity and Kirchho� gluing condition.

However, the general compactness arguments give the desirable discreteness theorem.

Let us assume, with out loss of generality, that vi(xi) ≥ 0 for i = 1, 2, 3 and �x the

spectral interval [0,∧]. For given ∧ one can �nd such L, that for any i = 1, 2, 3

vi(xi) > ∧+ 1 if xi > L = L(∧). Then, any solution yλ(x) our initial equation

y
′′

λ(x) = (V − λ)yλ λ ≤ ∧

with continuity and Kirchho�'s conditions on each leg Li, i = 1, 2, 3 has at most one

zero (non-oscillating) if xi ≥ L.
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The member of eigenvalues on [0,∧] for the truncated spider with the legs of the

length L and any boundary condition at the endpoints xi = L, i = 1, 2, 3 is uniformly

bounded by constant, depending only on ∧ and potentials vi(xi), i = 1, 2, 3, xi ∈ [0, L].

As result, the spectral problem

y
′′

λ(x) = (V − λ)yλ xi ∈ [0, L] for i = 1, 2, 3 with yλ = L

on each leg plus the continuity and Kirchho�'s conditions at the origin has spectral

measure ρL(dλ), containing on [0,∧] is uniformly bounded (that is, independent of

L). Number of atoms (say, N(∧) (constant )), total mass of the spectral measure

is also uniformly bounded (this is true for any locally continuous and bounded from

below potential [see [3]])

The proof of these statements is based (like in [11]) on two Strum lemmas.

Lemma 4.7.1. Any solution of the equation

−y′′
+ g(x)y = 0 x ∈ [a, b] ⊂ R1

+

with condition g(x) ≥ m2 > 0 has at most one zero on [a, b].

Lemma 4.7.2. Comparison theorem

Consider the sp3 and two equations

−y′′

1 + g1(x)y1 = 0

−y′′

2 + g2(x)y2 = 0 x ≥ 0

with the same initial conditions at the origin, that is, continuity and Kirchho�'s con-

dition plus 3 initial data, say, value of y(0) and dy
dx1

(0), dy
dx2

(0) etc., such 6 equations

uniquely determine the solutions y1, y2. Assume that g1(x) < g2(x) and solution y1(x)

has zeros x
(1)
1 , x

(1)
2 , x

(1)
3 on each leg, Legi for i = 1, 2, 3. Then y2 has also zero on one
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of the intervals [0, x
(1)
i ] for i = 1, 2, 3

Proof of this lemma is like the proof of the Strum theorem (see [11] (theorem 3.1))

is based on the integration by the parts of the expression y
′′
1y2 − y1y

′′
2 over the �nite

spider with the legs [0, x
(1)
1 ], [0, x

(1)
2 ], [0, x

(1)
3 ] using the gluing conditions at 0.

The following lemma is obvious

Lemma 4.7.3. If on the �xed interval [0,∧] there is the family of the discrete mea-

sures µL(dλ) depending on the parameter L ≥ 0 and

i)

∫ ∧

0

dµL ≤M

ii)number of atoms of µL or [0,∧] ≤ N

(M ,N are constant and independent of L) then,

a) Family µL(�) is weakly compact

b) If µL(dλ) ⇒ µ(dλ) (weakly) then limiting measure µ(dλ) is discrete and satis�es

the same inequalities i), ii).

It implies the following result

Theorem 4.7.4. If vi(xi) → +∞ for i = 1, 2, 3 and at the origin we have the

usual gluing conditions (continuity + Kirchho� gluing condition) then the spectrum

is discrete, corresponding eigenfunction are decreasing super-exponentially and have

multiplicity at most 3.

Theorem 4.7.5. The condition vi(xi) → ∞, for i = 1, 2, 3 can be replaced by the
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conditions vi(xi) ≥ 0 for i = 1, 2, 3 and for arbitrary small l and any i = 1, 2, 3

∫ xi+l

xi

vi(xi)dxi → +∞ as xi → ∞

(condition that A.M Mol£anov [13] proved, which is necessary and su�cient for the

discreteness of the spectrum for 1-D Schrödinger operator with bounded from below

potential).

Proof. The proof for the spider case is the same as on R1. The central idea here is to

check that for λ < ∧ on each leg any solution yλ(x) has �nitely many zero.

4.7.1 Phase and amplitude

Let us consider the problem

Hψ(x) = −ψ′′
+ v(x)ψ = λψ (4.34)

ψ(0) = sin θ0,ψ
′
(0) = cos θ0

The solution of (4.34) in the form of phase-amplitude form can be given by the

standard formulas [3]

ψ(x) = ρλ(x) sin θλ(x) and ψ
′
(x) = ρλ(x) cos θλ(x)

Then,

θ
′

λ = cos2 θλ + (λ− v(x)) sin2 θλ, θλ(0) = θ0(=0 for Dirichlet gluing condition)

ρ
′

λ =
1

2
ρλ(x)(1 + v(x)− λ) sin 2θλ, ρλ(0) = 1

ρλ = e(
1
2

∫ x
0 (1+v(z)−λ) sin 2θλ(z)dz)
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The spectral properties for Hθ0 depend on the behavior of ρλ(L) where L → ∞.

The results on the negative part of the spectrum (λ < 0) of Hθ0 are simpler. For

positive energies λ (λ > 0), it is useful to work with frequency k =
√
λ > 0. The

WKB approach suggests the following de�nition of phase amplitude, which is called

Prüfer transformation.

ψk(x) = rk(x) sin tk(x)

ψ
′

k(x) = krk(x) cos tk(x)

Then,

t
′

k(x) = k − v(x) sin2 tk(x)

k

r
′

k(x) =
v(x) sin 2tk(x)

2k
rk

with initial conditions

cot tk(0) =
1

k
cot θ0

rk(0) =

√
sin2θ0 +

1

k2
cos2 θ0

In particular, if θ0 = π
2
, then,

tk(0) = 0, rk(0) = 1

Then the prespectral measure µ̄L(dλ) can be represented as (see [3])

µ̄L(dλ) =
2kdk

ρ2k2(L)

If ∆ = [a, b] ⊂ (0,∞) is a �xed interval on the positive energy axis then on the
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frequency axis it transforms to ∆̃ = [
√
a,
√
b]. Then for appropriate constants c±(∆)

and L > 0 (the following result follow from [3])

c−(∆)
1

r2k(L)
≤ 1

ρ2k2(L)
≤ c+(∆)

1

r2k(L)

The spectral measure on ∆̃ can be given by:

µ̃L(dk) =
dk

r2k(L)

For L → ∞, µ̃L(dk) has the same property as the properties of µ(dλ) on the corre-

sponding interval ∆ of the energy axis.

The following results follow from [15]

If v(x) ≥ v0(x) > −∞ that is, the potential is bounded from below, then for

any bounded interval ∆ on the energy axis, for x0 = x0(v0,∆), c0 = c0(v0,∆) and

δ0 = δ0(v0,∆) one can give the estimation for ψ(x, λ) as

∫
∆

ψ2
λ(x)µ(dλ) ≤ c0

and |ψλ(z) ≥
1

2
|ψλ(x)| for z ∈ [x0, x0 − δ0] or for z ∈ [x0, x0 + δ0]

for x ≥ x0 and λ ∈ ∆ If the potential is uniformly bounded, that is, ||v(�)||∞ ≤ v0 <∞

then the estimation for ψ
′
(λ, x) can be written as

|ψ′

λ(x)|2 ≤
c0
2δ

∫ x+δ

x−δ
ψ2
λ(z)dz

It gives (extension of Schnoll's lemma)

∫
∆

ρ2λ(x)µ(dλ) ≤ c0

for x0(v0,∆), c0(v0,∆) and ∀x ≥ x0. Then for �xed sequence {xn}, where xn → ∞
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and µ-a.e, λ ∈ ∆, ϵ > 0

ρλ(xn) ≤ c(λ, ϵ)n
1
2
+ϵ

and ρλ(x) ≤ c(λ, ϵ)x
1
2
+ϵ ∀x ≥ x0

We will now introduce the counting function N(λ) for λi < λ. The following

formula goes to Neils Bohr. It states that under some condition for λ→ ∞

N(λ) ∼ B(λ) ≡ 1

π

∫ ∞

0

d∑
0

√
λ− vj(x)

+
dx (4.35)

where d = 3 for three legged spider graph.

Let us recall the standard approach (by Kac [10]). Consider p(t, x, y) be the funda-

mental solution of the parabolic problem on sp3:

δψ

δt
= Lψ + V (x)ψ t, x > 0

p(0, x, y) = δ(x− y)

Here L = δ2ψi

δxi
and V (x) ≡ vi(xi) for i = 1, 2, 3 with gluing condition at xi = 0

Fourier transform gives: p(t, x, y) =
∑

i≥1 e
−λitψi(x)ψj(x)

which implies,

Tre−itH =

∫ ∞

0

p(t, s, s)ds =

∫ ∞

0

e−λtdN(λ)

also the Kac-Feynman formula gives:

p(t, x, x) =
1√
πt
Ex

(
e−

∫ t
0 V (B(s))

)
ds
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where B(s) is the Wiener process at time t = 0 at point x and B(t) = x (Wiener

bridge). Under minimum regularity condition p(t, x, x) ∼ 1√
πt
e−tV (x) for t ≥ 0

(see [10])

Now for t→ 0

∫ ∞

0

e−λtdN(λ) ∼ 1√
πt

∫ ∞

0

e−tV (s)ds =
1

π

∫ ∞

−∞

(∫ ∞

0

e−t(p
2+V (s))

)
ds =

∫ ∞

0

e−λtdµ(λ)

where

µ(λ) =
1√
π

∫ ∞

0

√
λ− V (s)+ds

applying so-called Tauberian theorem to the Laplace transform for t→ 0 we will get

N(λ) ∼ µ(λ) =
1

π

∫ ∞

0

√
(λ− V (s))+ds

For details see Holt and Molchanov's work in [8] Kac [10] and [16] Hence on the spider

graph with three legs

N(λ) ∼ µ(λ) =
1

π

∫ ∞

0

3∑
0

√
(λ− vj(s))+ds

Studying asymptotic is convenient using phase amplitude formalism. So, For N(λ)

where λ > 0

set

ψλ(x) = ρλ(x) sin θλ(x) and ψ
′

λ(x) = ρλ(x) cos θλ(x)
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then solve the Cauchy problem

θ
′

λ = cos2 θλ(x) + (λ− V (x)) sin2 θλ(x), θλ(0) = θ0

ρ
′

λ(x) =
1

2
ρλ(x)(λ+ 1− V (x)) sin 2θλ(x), ρλ(0) = 1

Let a(λ) = max {x : vj(x) ≤ λ}

by Strum theory,

N(λ) = ⌊ 1
π
θλ(a(λ))⌋+R(λ) |R(λ)| ≤ 1

[8] proved that for strictly increasing sequence of non-negative real numbers,

N(λ) = B(λ) + R̂(λ)

implies

N(λ) ∼ B(λ)

Where B(λ) =
∫ a(λ)
0

(λ−v(s))
1
2

π
ds and |R̂(λ)| ≤ a(λ) + 1 and we will use the approx-

imation for our increasing potential on the spider legs.

Let us de�ne, v+j (x) = maxy≤x vi(y) and v−j (x) = miny≥x vj(y). Let a±(λ) =

maxx : v±j (x) ≤ λ and denote N±(λ) for the eigenvalues {λ±i ≤ λ} for v±j

The following theorem is applicable for general non-monotonic increasing potential.

Theorem 4.7.6. suppose vj(x) → ∞ as x→ ∞ for j = 1, 2, 3 and Bohr asymptotic

holds for v±j (x). Let, for λ > 0 there exists L(λ) and ϵ(λ) → 0 as λ→ ∞ such that,
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1)
√
λL(λ) = O(N−(λ))

2) 1 ≤
v+j (x)

v−j (x)
≤ 1 + ϵ(λ) ∀x ∈ [L(λ), a−(λ)]

and 3)
N−

(
λ

1+1+ϵ(λ)

)
N−(λ)

→ 1 as λ→ ∞

The Bohr asymptotic holds for vj.

Figure 4.19: Positive and negative part of the potential which tends to ∞

Proof.

N+(λ) ≤ N(λ) ≤ N−(λ) ∀λ > 0 (4.36)
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and

B+(λ) ≤ B(λ) ≤ B−(λ)∀λ > 0 (4.37)

Let ϵ > 0 be arbitrary and λ > 0 such that

1 ≤
v+j (x)

v−j (x)
≤ 1 + ϵ(λ)

for all x ∈ [L(λ), a−(λ)].

Then

B+(λ) ≥ 1

π

∫ ∞

L(λ)

(
λ− v+j (s)

) 1
2

+
ds

≥
(
1 + ϵ

π2

) 1
2

∫ ∞

0

(
λ

1 + ϵ
− v−j )

1
2
+ds−

∫ L(λ)( λ
1+ϵ

−v−j )
1
2
+

0

ds


≥
(
1 + ϵ

π2

) 1
2
(∫ ∞

0

(
λ

1 + ϵ
− v−j )

1
2
+ds− L(λ)

√
λ

)

Assumption on v−j gives

N−(
λ

1 + ϵ
) ∼ B(

λ

1 + ϵ
) as λ→ ∞

This together with condition 2 and condition 3 give

B+(λ)

N−(λ)
≥ (1 + ϵ)

1
2 (4.38)

Relation (4.38) and the assumption that Bohr asymptotic holds for v+j implies

N+(λ)

N−(λ)
≥ (1 + ϵ)

1
2

since N+ ≤ N− and ϵ is arbitrary we have N−(λ) ∼ N+(λ) for λ→ ∞ Bohr asymp-
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totic for vj follow from (4.36) and (4.37).

The following theorem works for the general monotonically increasing potential.

Theorem 4.7.7. Let vj(xj) → ∞ for xj → ∞ for j = 1, 2, 3 be increasing po-

tential on the spider leg [0,∞). Let us consider {xn}, a monotonically increas-

ing sequence of non-negative real numbers on each leg of the spider and construct

v+j (x) = vj(xn − 0) ≡ v+jn and v−j (x) = vj(xn−1) ≡ v−jn for x ∈ [xn−1, xn) such that a)(
v+jn − v−jn

) 1
2 (xn − xn−1) ≤ c where c is a constant and b) vj(x)− vj(dn(x)) → ∞ as

x → ∞ where d is a constant and n(x) is an unique integer such that xn(x) ≤ x ≤

xn(x)+1. Then Bohr asymptotic formula holds for vj.

Proof. For �xed λ > 0 there exists a real number a = a(λ) such that

vj(x) > λ for x > a

vj(x) < λ for x < a

Let b = b(λ) be the unique integer such that xb ≤ a ≤ xb+1.

Let a± = a±(λ) be the unique real number such that

v±j (x) ≤ λ for x ≤ a±

and v±j (x) > λ for x > a±

This implies a+ = xb and a− = xb+1 except for v
+
jn
< v−jn+1

for some n and v+jn ≤ λ <

v−jn+1
. Then we have xb = a = a+ = a− then by Strum theory

1

π

∫ xb

0

(λ− v+j )
1
2ds ≤ 1

π

∫ a

0

(λ− vj)
1
2ds ≤ 1

π

∫ xb+1

0

(λ− v−j )
1
2
+ds (4.39)
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This implies

N+(λ) ≤ N(λ) ≤ N−1(λ)

Now for the phase rotation of N(λ) over [0, a±] we can write

N+(λ) =
1

π

∫ xb

0

(
λ− v+j

) 1
2 ds+O(b(λ)) (4.40)

N−(λ) =
1

π

∫ xb+1

0

(
λ− v−j

) 1
2

+
ds+O(b(λ)) (4.41)

(4.39),(4.40),(4.41) together implies, Now condition a) gives

N(λ) =
1

π

∫ a(λ)

0

(λ− vj(s))
1
2 ds+O(b(λ))

as λ→ ∞.

For large λ condition (b) gives,

1

bπ

∫ a

0

(λ− vj)
1
2 ds ≥ c

π
{vj(a)− vj(cb)}

1
2 ≥ c

π
{vj(xb − 0)− vj(cb)}

1
2

Such that 1
b(λ)π

∫ a(λ)
0

(λ− vj(s))
1
2 ds → ∞ for λ → ∞. Hence the Bohr asymptotic

formula holds that is N(λ) holds on the three leg of the spider as λ→ ∞

Example 5. Airy function [1]

The linearly independent solutions of the equation

−y′′
(x) + xy(x) = 0 on (−∞,∞) (4.42)

is given by

y1(x) =
1

π

∫ ∞

0

cos(tx+
t3

3
)dt for x→ ∞
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which is called Airy function of �rst kind and

y2(x) =
1

π

∫ ∞

0

[e(tx−
t3

3
) + sin(tx+

t3

3
)]dt for x→ −∞

which is called the Airy function of second kind which di�ers by phase π
2

Figure 4.20: Graph of the zeros of Airy function of �rst kind and its derivative

The asymptotic for the Airy function is given by

y(x) ∼ 1

2
√
π

e−
2
3x

3
2

x
1
4

(1 +O(
1

x
3
2

)) as x→ +∞

and y(x) ∼ x−
1
4

√
π
sin(

2

3
x

3
2 +

π

4
) as x→ −∞

Let us now consider the spectral problem on the full axis [0,∞):

−ψ′′
+ xψ = λψ with ψ(0) = 0 (4.43)

assume, λn = xn where −xn is the nth negative root of y(x) with yn(0) = 0, that is,

Dirichlet condition at point 0, on [0,∞)
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The Bohr formula can be given by,

N(λ) ∼ 1

π

∫ λ

0

√
λ− xdx

(λ− x)
3
2
2

3π
/0λ

= λ
3
2
2

3π

⇒ xn ∼ (
3

2
πn)

2
3

�nally we can write,

xn =

(
3

2
π(n− 1

4
) +O(

1

n
)

) 2
3

and x
′

n =

(
3

2
π(n− 3

4
) +O(

1

n
)

) 2
3

The solution of (4.42) is given by:

y(x) =
1

π

∫ ∞

0

cos(tx+
t3

3
)dt

and its derivative is y
′
(x) = − 1

π

∫ ∞

0

t sin(tx+
t3

3
)dt

then,

y(0) =
1

π

∫ ∞

0

cos(
t3

3
)dt

=
3−

2
3

π

∫ ∞

0

z−
2
3 cos zdz =

3−
2
3

π
Γ(

1

3
) cos(

π

6
) =

3−
1
6

2π
Γ(

1

3
)

and

y
′
(0) = − 1

π

∫ ∞

0

t sin(
t3

3
)dt

= −3−
1
3

π

∫ ∞

0

z−
1
3 sin zdz = −3−

1
3

π
Γ(

2

3
) sin(

π

3
) = −3

1
6

2π
Γ(

2

3
)
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now, the solution of (4.43) can be given by ψ1 = y(x − x1), ψ2 = y(x − x2),

ψ3 = y(x− x3),.....on [0,∞). 4.21 gives the zeros of (4.43) on [0,∞).

Figure 4.21: Graph of the zeros of (4.43) on [0,∞)

4.8 Spectral theory of spider graph with mixed potential

In this section we will consider mixed type potentials on our spider graph with three

legs. Consider �rst the case of increasing potentials on one leg and summable potential

on other two legs with Bargmann's condition
∫∞
0
xi|vi(xi)|dx <∞ for i = 2, 3

If we split the spider sp3 onto three half axis by the Dirichlet boundary condition at 0

and potentials vi(xi) for i = 1, 2, 3 such that vi(xi) → ∞, v1 ≥ 0 and
∫∞
0
xi|vi(xi)|dx

for i = 2, 3 then due to classical results of 1-D Strum-Liouville spectral theory we

will get the mixed spectrum. The Dirichlet spectrum of our operator on Leg1 will be

discrete with super-exponentially decreasing eigenfunctions. On the legs Leg2, Leg3

the spectrum will be absolutely continuous and supported on [0,∞) plus (maybe) the

�nite discrete spectrum for λ < 0. Due to Bargmann's condition, if we have only the



93

Figure 4.22: A three legged Spider quantum graph with fast increasing potential along leg

1 and fast decreasing potential along leg 2 and leg 3

summability of vi, i = 2, 3, then the discrete spectrum for λ < 0 can be in�nite.

When we will return to our initial conditions (Kirchho�'s gluing condition + continu-

ity at point 0) that is, rank one perturbation, then due to general theory the absolute

continuous part of the spectral measure will be preserved with some perturbations, that

is, the operator will have the absolute continuous spectrum of multiplicity 2, but what

will happen with the discrete part of the spectrum?

The following theorem gives the answer

Theorem 4.8.1. Consider the Hamiltonian Hy = −y′′
+ v(x)y on the quantum

graph sp3 with standard conditions at x = 0 (continuity of −→y and Kirchho�'s gluing

condition) has the potentials vi(xi), i = 1, 2, 3 such that, v1 ≥ 0 where v1(x1) → +∞

as x1 → +∞. v2,3 satisfy Bargmann's conditions
∫∞
0
xi|vi| <∞ for i = 2, 3. Then the

spectral measure of H for positive energies, λ ∈ [0,∞) is purely absolute continuous

with multiplicity 2., for λ ∈ (−∞, 0] can appear in the �nite discrete spectrum.

Proof. The essential spectrum of H equals [0,∞) (since, v1 ≥ 0, v2,3 ∈ L1). For any
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�xed λ > 0 on Leg1, there is only one solution yλ,1(x) which tends to 0 very fast

and all other solutions have the magnitude r1,λ(x1) =
√
y21,λ + (y

′
1,λ)

2(x1) tending to

+∞ super-exponentially. Due to Schnoll's theorem [see [6]] which tells that absolute

continuous spectrum with respect to spectral measure, the generalized eigenfunctions

of H have estimations |y1,λ| ≤ c|x| 12+ϵ for any ϵ > 0. It means that the generalized

eigenfunction on Leg1 must decay, that is equal to y1,λ(x1). Let us assume that

r1,λ(0) = 1, y1,λ(0) = cosα, y
′

1,λ(0) = sinα, where the phase α = α(λ) is at least

measurable function of the spectral parameter λ > 0. On Leg2, Leg3 we can consider

solutions y2,λ(x2), y3,λ(x3) such that

r2,λ(0) = r3,λ(0) = r1,λ(0) = 1

and due to Kirchho�'s gluing condition

y
′

1,λ(0) + y
′

2,λ + y
′

3,λ(0) = sin(αλ) + y
′

2,λ(0) + y
′

3,λ(0)

Of course, in the case of the multiple spectrum (in our case of the multiplicity 2)

the selection of y
′

2,λ(0), y
′

2,λ(0) is not unique, one can put, say,

y
′

2,λ(0) = − sinα(λ), y
′

3,λ(0) = 0

The conditions

r2,λ(0) = 1 y
′

2,λ(0) = − sinα

r3,λ(0) = 1 y
′

3,λ(0) = 0

uniquely de�ne on Leg2, leg3, the pair of the bounded solutions y2,λ(x2), y3,λ(x3).

The asymptotics for the solutions, for xi → +∞, i = 1, 2, 3 can be expressed in
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terms of the transmission-re�ection coe�cients and functions α(λ), Ai(k), Bi(k),

|Ai(k)|2 = 1 + |Bi(k)|2 where i = 1, 2, 3. Like in the scalar case (R1
+, see [11]) from

the last fact, it follows that for λ > 0 the spectral measure is absolute continuous and

has multiplicity 2.

4.8.1 In the class of bounded from below potential condition

Remark. ∀(l > 0),
∫ x+l
x

v(x)dx → +∞ if x → ∞ is necessary and su�cient for the

discreteness of the spectrum of 1D schr�'odinger operator on [0,∞). What happens if

for �xed L0 (and as result ∀L > L0)

lim
x→x0

∫ x+l

x

v(x)dx = +∞

but for L < L0

lim inf
x→+∞

∫ x+l

x

v(x)dx = c0 say c0 = 0

consider the following example on sp3 for x ∈ [0,∞), i = 1, 2, 3.

Hψi = −ψ′′

i + vi(xi)ψi ψ(0) = 0

with

vi(xi) =

0, x ∈ [2nLi, (2n+ 1)Li]n ≥ 0

hn, x ∈ ((2n− 1)Li, 2nLi)n ≥ 1 and hn → ∞
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Theorem 4.8.2. operator H has discrete essential spectrum containing three groups

of the points λi,n = n2π2

L2
i
, n ≥ 1 for i = 1, 2, 3. The full spectrum of H is pure point

with accumulation points λi,n

If on two legs of sp3 the potentials (say v1(x1), v2(x2)) are fast decreasing but

on third leg, has the from presented above, then the spectrum of H has absolute

continuous spectrum of multiplicity 2 and point spectrum with essential spectrum

presented above.
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