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ABSTRACT

BENIKA CHENAE HALL. Integrative Network Approaches to Understanding
MicroRNA and Gene Expressions in Cancer. (Under the direction of DR.

XINGHUA SHI)

Cancer is among the leading cause of deaths in men and women today. Regulation

of gene expression by microRNAs (miRNA) has been linked to cancer progression in

recent years. Therefore there has been a growing interest understanding how miR-

NAs mediate gene expression in cancer. In this dissertation we aimed to construct an

integrative miRNA-gene network to understand how miRNAs affect gene expression

and their downstream genetic neighborhoods in ovarian cancer and colon cancer. To

conduct this research, we applied different techniques to determine how miRNAs im-

pact downstream genetic neighborhoods and identify cancer enriched neighborhoods

in ovarian and colon cancer. First, we developed a community based method utiliz-

ing the spin-glass model to construct an integrative miRNA-gene network. Second,

we developed a label propagation framework to construct a multi-layer miRNA-

gene network to exploit the downstream effects of miRNAs throughout integrating

multiple networks. We identified multiple communities enriched in cancer-driven

pathways across multiple networks in ovarian cancer. We also uncovered enriched

genetic neighborhoods and identified key network signatures in patients with differ-
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ent pathological stages in colon cancer. The methods developed provide a better

outlook on how miRNAs affect gene expression and their downstream genetic neigh-

borhoods, which will improve our understanding of their role in tumorigenesis and

cancer progression.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Human genomics is the study of all of a person’s genes, in which a gene is a set of

deoxyribonucleic acid(DNA). Each person has a genome comprised of the same set of

genes. However, what makes each person different are the minor variations in their

genes. There are approximately 30,000 genes in the human genome [1]. Each of these

genes carry information which is used in a process called gene expression to synthesize

a gene product. Often, the created products are proteins, which dictate the functions

and actions of a cell. Therefore, the thousands of genes that are expressed in a single

cell can dictate the role of the cell [2].

Gene expression is a complex trait or phenotype. There are several factors that

influence gene expression such as environmental, genetic and epigenetic factors [3].

Many complex diseases are caused by the combination of these factors rather than

the expression of a single gene. In fact, most human diseases are caused by mu-

tations in multiple genes, meaning they are multigenic [4]. The regulation of gene

expression is important in complex diseases such as diabetes, Alzheimer’s disease and
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cancers. There are many mechanisms that can regulate gene expression including

but not limited to, chromatin modification [4], alternative splicing, post-translational

modifications and protein degradation [3].

In genomics research, we seek to understand the complexity of gene regulation in

human disease. MicroRNAs (miRNAs) have been reported to regulate gene expres-

sion [5–7]. MiRNAs are small non-coding ribonucleic acid (RNA) molecules approx-

imately 22 base-pairs in length [5,8,9]. MicroRNAs are also involved several biolog-

ical processes including, cell proliferation, differentiation, and apoptosis [5, 10, 11].

However, it remains unclear how these small molecules regulate gene expression in

complex diseases.

1.2 Problem Statement

There is evidence that suggests that miRNAs play a pivotal role in many biological

processes. In fact, exhaustive research has shown that miRNAs are key regulators

of gene expression [12–18]. However, it remains unclear exactly how miRNAs af-

fect gene expression. Because of this gap, there has been a growing trend of using

network analysis to study the complex relationships between miRNAs and gene ex-

pression [19–23]. Based on the existing body of research on constructing miRNA-gene

networks, there is a gap in capturing the complexity of true genetic networks.

Although there are methods that have proposed an integrative approach to con-
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struct miRNA-gene networks with miRNA expression and gene expression [22], these

methods do not consider the correlations between miRNAs and the correlations be-

tween genes. These correlations in addition to protein-protein interaction networks

add to complexity of genetic networks. Furthermore, these methods do not con-

sider the community structure and how miRNAs affect the downstream communities.

That said, Zhang et al. [19] proposed an alternative approach to include individual

miRNA co-expression networks and gene co-expression networks. However, this kind

approach is limited due to the fact that it does not capture the true heterogeneous

nature of genetic networks.

It is worth noting that advancements have been made to address this limitation

by integrating heterogeneous data such as miRNAs, miRNA-target genes, protein-

protein interactions and gene expression [20,21,24]. This kind of integrative approach

is important in understanding the biological functions of genetic networks in complex

diseases. While the majority of these integrative methods have drawn attention to

integrative network analysis, there exists a need to use such methods to expand our

knowledge of disease progression in cancer subtypes.

Given the gap described in the sections above, this dissertation proposes new

methodologies to construct an integrative miRNA-gene network in two cancer sub-

types. There are three goals of this dissertation: 1. To construct an integrative
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miRNA-gene network in ovarian serous cystadenocarcinoma (ovarian cancer) using

a community-based network expansion method to explore the relationships between

miRNAs and downstream genes in ovarian cancer networks. 2. To construct a

multi-layer miRNA-gene network using a label propagation approach and capture

the complexity of heterogeneous genetic networks. 3. Examine the relationships

between miRNA-gene networks and the pathologic stages in colon adenocarcinoma

(colon cancer). As explained, the work in this study aims to close the gap in miRNA-

gene network construction and expand our knowledge of the functional mechanisms

of miRNA-gene networks in ovarian and colon cancer.

1.3 Research Aims

As previously stated, our research aims are as follows:

* Our first research aim is to investigate the relationship between miRNAs and

gene expression in ovarian cancer by constructing an integrative miRNA-gene net-

work via community-based network expansion.

* Our second research aim is to improve our network expansion methodology by

integrating multiple networks to identify downstream relationships between miRNA

expression, gene expression, protein-protein networks, gene regulatory networks and

the downstream effects on genetic networks in patients with ovarian cancer.

* Our third research aim is to utilize our methods to explore the relationship
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between miRNA-gene networks and the pathologic stages of colon cancer and expand

our knowledge by identifying prognostic network signatures in enriched communities

and patients with stage II and stage III colon cancer.

1.4 Research Contributions

To support the advancement of genomics research in the area of integrative miRNA-

gene network analysis, the proposed work will address the aforementioned challenges

in the following ways:

• A robust framework to improve integrative miRNA-gene network ex-

pansion. This research provides an integrative framework capable of constructing

an integrated miRNA-gene network via community-based network expansion. The

method also extends the current knowledge of miRNA-gene relationships in down-

stream subnetworks in ovarian cancer.

•A powerful framework for integrating multiple networks. This research

provides an efficient and scalable method for integrating more than 2 biological net-

works. This method also contributes a set of functional groups containing potential

biomarkers and potential candidate genes in ovarian cancer for the research commu-

nity.

•Prognostic signatures in colon cancer. The results generated in this research

provide potentially new targets for cancer therapeutics in colon cancer. Results reveal
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network signatures related to different stages of cancer progression to help improve

diagnosis and early detection.

1.5 Significance

My interest in this area developed while I was conducting research on gene net-

works in pancreatic cancer. Years later, as we began to design the studies explained

in this dissertation, we noticed the gaps in the methods for constructing integrative

networks in cancer and that has driven this research. This work sheds new light on

methods for constructing integrative miRNA-gene networks in cancer. Further, this

work provides the opportunity to expand our knowledge of functional enrichment of

complex miRNA-gene networks in cancer subtypes. Moreover, the findings should

also make an important contribution to the field of prognostic markers in colon

cancer. To the future researchers, this work can provide a baseline methodology

for integrating heterogeneous genetic networks to explore the relationships between

miRNAs and various regulatory elements.



CHAPTER 2: BACKGROUND

2.1 Introduction

The recent discovery of miRNAs has added to the complexity of gene regulation.

In fact, deregulated microRNA(miRNA) expression has been found in many human

diseases including colon adenocarcinoma(colon cancer) [25–27]. That said, it has

become more challenging to understand how miRNAs affect downstream genes in

genetic networks in cancer. Therefore, a great deal of previous research into ge-

netic networks has focused on constructing miRNA-gene networks [19–23]. Using

this approach, researchers have been able to identify relationships between miRNAs

and gene expression. Much of the current literature on miRNA-gene networks pays

particular attention to the direct relationship between miRNAs and genes [20, 28],

but neglect to consider the miRNA-miRNA correlations and gene-gene correlations.

To understand why this is neglected, we must examine the different methodologies

developed in this topic. As mentioned in the previous chapter, many of the current

methods do not capture the complexity of heterogeneous genetic networks. In addi-

tion, it is important to consider the community structure of genetic networks because
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communities contain miRNAs or genes with similar functions. Therefore, in the next

section, we review the literature on community structure in biological networks.

2.2 Community structure in biological networks

Over the years, we have learned that underlying mechanisms can be investigated

by learning the community structure in biological networks [29–34]. This exhaustive

research in community structure has increased interest in determining the commu-

nity structure in biological networks as it may reveal insights into the functional

components of a network system. The broad use of the term "community" is defined

as a hub of densely connected nodes in which each node has more connections within

the community than with the rest of the network [29, 35, 36]. In a community, the

internal degree is the sum of the internal edges and vertices within the community.

The external degree is the sum of the edges to the vertices out of the community.

Community structure in biological systems can provide insight on how functional

groups in complex networks affect the topology. In biological networks, communities

represent functional groups such as genes or proteins that have similar functions and

are involved in similar cellular processes [37]. Now that we know what the com-

munity structure is, let us consider how to detect communities by investigating the

current methods of community detection.
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2.3 Community detection methods

In this section, we will review various community detection methods as community

detection is key to understanding the structure of complex networks. As indicated

in the previous section, community detection methods are of vital in understanding

the functional patterns in biological systems. Identifying communities in biologi-

cal networks can be a challenging task. Most research on community detection has

been carried out utilizing modularity-based based methods. While modularity-based

methods have been the most popular [32,36,38,39], these methods have a key disad-

vantage in real-world networks as they are unable to handle noise perturbations in

the network [40, 41]. This limitation is due the resolution limit of modularity which

is an intrinsic scale that depends on the interconnectedness between node pairs of

communities [42]. Fortunato et al. [40] found that the natural community structure

is not detected by modularity-based optimization if the communities are smaller than

the resolution limit of the graph. Furthermore, modularity optimization could miss

important communities in real-world networks. With respect to this information,

an alternative to these methods is to use a spin-glass model approach from statis-

tical mechanics. The spin-glass model is a semi-supervised learning approach that

is coupled with simulated annealing [41, 43, 44]. It is far less computationally inten-

sive compared to other methods solely based on modularity [38]. Due to the large
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size of our network, the computational efficiency makes this algorithm attractive for

large-scale networks.

In the sections to follow, we review community detection methods. We will discuss

the approaches used in each method. Regarding each community detection method,

we also determine the advantages and disadvantages of each method as it pertains

to the field and the work in this dissertation.

2.3.1 Edge-betweenness community detection

As indicated previously, many community detection methods measure the quality

of a community using the modularity score. This notion was first introduced by

Newman and Girvan [45]. This method is now one of the most popular methods

in community detection. In this approach, Newman and Girvan introduced the

notion of modularity which is a measure of the quality of a community. In terms

of the algorithm, the edge-betweenness algorithm is a hierarchical decomposition

method that removes edges based on the descending order of the edge-betweenness

score [29, 34, 45]. To calculate the edge-betweenness score, one must calculate the

number of shortest paths that interact with a given edge. The theory behind this

methodology is that edges connecting different communities are likely to be involved

in many shortest paths because they are often the only option connecting the groups.

Having defined what is entailed in the algorithm, we will now move on to discuss the
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advantages and disadvantages of this method.

We first examine the edge-betweenness method because it is highly effective in

discovering community structure in real biological networks [31, 45]. Another ad-

vantage is that the accuracy of the edge-betweenness algorithm is not dependent

on the size of the network [35], which makes it applicable to large-scale biological

networks. Further review of literature showed that while this method is effective, it

does have key limitations. Although this method is popular and it provides good

results, it has a high cost of computational cost. This is because each time an edge-

betweenness score is re-calculated after every edge removal step. One disadvantage of

this method is that it is limited in the size of the input network. This limitation is a

major drawback in community detection of large-scale biological networks. Another

disadvantage is that it yields a full dendrogram, but without guidance on where to

cut the dendrogram in order to obtain the final communities. One way to identify the

final communities is to calculate the modularity score of each partition in the graph.

Although the method would yield good results for a limited size network, it is not

recommended for networks involving multiple layers and heterogeneous data types.

With these limitations in mind, we review other methods that have a reasonable

computation speed in the following sections.
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2.3.2 Leading eigenvector community detection

Regarding the limitations discussed in the previous section, we now review meth-

ods with better computational performance. This leads us to another popular com-

munity detection method known as the leading eigenvector community detection.

This method is a top-down hierarchical method that optimizes the modularity func-

tion [35]. To understand how this algorithm works, let us discuss the steps involved

to divide the graph.

During the process, the graph is divided into two parts such that this division

increases the modularity of the graph [45]. In order to partition the graph, each split

is based evaluating the leading eigenvector of the modularity matrix, which is similar

to the Laplacian matrix used in spectral partitioning. To complete the partitioning,

the eigenvector corresponding to the most positive eigenvalues in the modularity ma-

trix is chosen and then divided inn to two groups based on the sign of the eigenvalue.

This method works well and is not constrained to finding communities of a specific

size. The benefit of this method is that there is no loss of information from the

remainder of the eigenvectors. A disadvantage of this method is the computational

expense to split the network into communities. Further investigation into the leading

eigenvector method revealed more limitations. Yang et al [35] showed that while this

method has a more reasonable computation speed, it underestimates the number
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of communities in large-scale networks. Moreover, the accuracy of this method de-

creases as the size of the network increases. In regards to the diminishing accuracy

of the leading eigenvector method in large networks, we will now review methods

that address this limitation.

2.3.3 Info-map community detection

As previously indicated, the leading eigenvector method loses accuracy in large net-

works. Therefore, we investigate the Info-map community detection method, which

is based on the flow of information and minimizes the map equation [35,46]. Unlike

the previously mentioned methods, the Info-map method utilizes a random walk to

analyze the flow of information in the network [47].To be more precise, this method

divides the network into communities by determining the shortest description lengths

for a random walk on the network. For each community detected, there is an associ-

ation cost that describes the path of the random walk movements. The splits in the

graph with the shortest description length (information flow) represents the commu-

nity structure in the network. The map equation is minimized over all partitions in

the network. Although there is a lacking presence of research using this method, a

comparative study by Yang et al. [35] demonstrated that Info-map performs better

on smaller networks. This is a disadvantage for analyzing large biological networks.

Furthermore, similar to the leading eigenvector approach, it overestimates the num-
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ber of communities in larger networks. Regarding the limitations mentioned in this

section, we turn our attention to methods that focus on quality of the community

structure in the following sections.

2.3.4 Walk-trap community detection

Most recently, studies have shown that with methods that excel in computational

time, there is a trade-off in the quality of the community structure [48]. Therefore,

we investigate the walk-trap community detection which is a bottom-up approach

based on random walks. The concept of this method is that the walks are more

likely to stay within the same community because there are a small number of edges

leading outside of the community. It merges the communities of walks consisting of

length 3-4-5. One disadvantage of this method is that it is much slower and therefore

not ideal for large scale biological networks. The determine the final communities,

the modularity score can be used to select where to partition the network. One of

the major advantages of the walk-trap community detection method is that it has

better accuracy on larger networks. On the other hand, a disadvantage is that the

computation speed does not scale with large networks [35, 48]. While this method

may seem suitable for mid-size networks, the work in this dissertation requires much

larger networks and may be far more complex for this method. That said, we will

discuss methods that have been proposed for more complex real-world networks in
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the sections to follow.

2.3.5 Spin-glass community detection

The spin-glass model is a statistical mechanics model in which each spin state (of

the spin-glass) exclusively interacts with the adjacent spin states based on an inter-

action energy depending on the similarity of the spins. Using the spin-glass model,

identifying community indices is equivalent to identifying the spin states of a spin

glass that lead to the ground state of the system. In community detection, the ground

state would be the natural structure of a network partitioned into communities. The

model is based on optimizing the Hamiltonian energy function in Equation 2.3.5 [41]

such that it minimizes the energy of the system and maximizes the modularity in

Equation 2.3.5 [40].

H(σ) = (Ai,jγpi,j)δ(σm, σn), (1)

where Ai,j is the adjacency matrix consisting of nodes i and j; γ represents the

weights and pi,j represents the probability of an edge between nodes i and j. Thus,

the adjacency matrix represents the relationships between nodes and edges based on

the weights determined by γ. The Kronecker delta function formulates the energy; in

this part of the equation, σm and σn represent the spin states or community indices in

which nodes i and j belong to in the network. The Kronecker delta is a binary value
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of 1 if the nodes represented by σm and σn are in the same community, otherwise it

is 0. In reference to σ, m and n represent each community index. This function is

updated and optimized throughout the community detection process.

Modularity can be defined in the following equation: 2.3.5.

Q =
1

m

∑
i,j

(Ai,j −
kikj
m

)δ(ci, cj) (2)

,

where m is the total weight of the graph, Ai,j is the element in the adjacency

matrix and C is the set of all communities. ci, cj is a community in C, ki,kj are the

degrees of nodes i, j. The Kronecker δ(ci,cj) is 1 if the nodes i and j are in the same

community and 0 if they are not in the same community. In order to calculate the

Q, we iterate through each element in the adjacency matrix.

In optimizing the spin-glass model, the minimum number of edges required to

partition a graph can be retrieved from the ground-state energy of the Hamiltonian.

To minimize the Hamiltonian, we apply a simulated annealing for optimization [49].

Simulated annealing is a stochastic optimizing technique that is very efficient and

easy to implement. The optimization procedure of simulated annealing is an iterative

improvement completed at a finite interval of temperatures. Along with simulated

annealing, the spin glass algorithm implements efficient update rules to improve
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computation when adding a node to its proper community. This is applicable to

our setting because we aim to assign each node to a unique community much like

identifying spin states. Another advantage of this algorithm is that the spin-glass

method can detect overlapping communities without the network being affected by

the degeneracy of the Hamiltonian. One disadvantage of this method is the slow

computational speed. Despite the flaw in computational speed, this method has

many advantages that help meet the goals of this dissertation.

2.3.6 Bayesian network models

In this section, we will continue to review methods for constructing networks. A

Bayesian network (BN) is a directed acyclic graph where G = (X, E) based on a set

of local conditional probabilities P . X is a set a nodes (xi, xj,.xn) representing a set

of variables [50, 51]. E is a directed edge that represents a conditional dependence

between two variables. In a BN, the directed edge from Xi to Xj represents the rela-

tionship from parent node Xi to child node Xj. To construct the graph, BN employ

belief propagation for network inference. Belief propagation works by updating and

propagating beliefs about the network structure based on evidence in the observa-

tions. Bayesian networks have the advantage of predicting non-linear relationships

between nodes. Another advantage is the ability to handle noisy or missing data [52].

There are many applications of Bayesian networks for graph construction. In Yu



18

et al. [53], a BN was used to develop the gene network inference software named

Banjo. Banjo is based on the BN framework and implements Bayesian and Dy-

namic Bayesian networks. Dynamic Bayesian networks are an extension of standard

Bayesian networks, but are much more capable of handling feedback loops. This is

beneficial when handling time-series data. However, if the data is static, Banjo and

regular BNs cannot infer cyclic relationships. Other applications of BNs were used

to analyze expression data in [54] and to model gene regulatory networks in [55,56].

2.3.7 Correlation-based methods

Correlation-based approaches are centered on correlation measures of mutual in-

formation, such rank correlation, Pearson correlation, Euclidean distance and the

angle between the expression vectors [57]. For a given set nodes, the correlation

measure is computed in order to compare the respective co-expression profiles. The

most common correlation measure is the Pearson coefficient. A disadvantage of cor-

relation based methods, is that one cannot infer the direction of an edge between two

nodes. It is also impossible to determine if there is a direct or indirect interaction

between two nodes based on co-expression profiles. This method has its limitations

but has also been very successful in biological applications [58].
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2.3.8 Graph-based learning methods

Turning now to a different approach, this section reviews graph-based learning

approaches which have been widely used in the machine learning paradigm. Al-

though there are many semi-supervised methods, graph-based learning approaches

have shown to be the most promising. Similar to the standard graph representation,

the labeled and unlabeled data points are vertices and the relationship between two

data points are weighted edges.

Much of the current literature on graph-based learning [59–61] suggests that graph-

based learning can be used to find strongly connected subnetworks within a larger

network. In fact, Long et al. [60] proposed a graph approximation model learn a

link-pattern based community structure. The link-pattern based communities are

a group of nodes that have similar link patterns. For example, the nodes within

a strongly intra-connected community have similar link patterns with other nodes

in that community and the same is true for weakly intra-connected communities.

A slight disadvantage of this method is that it requires some knowledge about the

link-patterns in community structure. Also, the lack of application to the biological

domain raises concerns if it can handle complex network structures. However, this

study does reveal that this type of community detection method is capable of using

labeled data to infer labels on unlabeled data. With this in mind, we will now explore
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other suitable methods that incorporate labeled and unlabeled data.

There are two issues in graph-based learning. The first issue is handling noise

perturbations in large-scale datasets. The other problem is the scalability of the

large-scale datasets. Recent algorithms have been proposed to address these issues.

In fact, a recent review by Liu et al. proposed a scalable graph-based learning

approach based on anchor points in a graph [62, 63]. Anchor points are defined

as points in the graph that allow the use of a non-parametric regression model to

predict the labels of each data point as the weighted average of the labels of the

anchor points [63]. Unlike other community detection methods, the anchor graph

model infers label information onto the input data points instead of reconstructing

the entire network. Thus, one major advantage of this method is the minimal impact

on storage and computation. In the sections to follow, we will continue to review

different types of graph-based learning methods.

2.3.9 Label propagation method

Semi-supervised methods have been used to predict unknown parts of network

topology. The label propagation method is known to be fast and efficient. The label

propagation algorithm (LPA) is a graph-based semi-supervised learning algorithm.

In this algorithm, class labels are propagated from labeled nodes to unlabeled nodes

[64–66]. The algorithm proposed in Zhu et al. [67] and Raghavan et al. [68] have
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been the basis of many variations of the label propagation framework. The general

idea of this method is that if a node x has a set of neighbors (x1, x2,.xn), then each

of its neighbors will have the same label. The label of x is determined by the label

of the maximum number of neighbors in a community. Each node is initialized with

a label and the labels propagate through the graph. As they propagate, a densely

connected group of nodes is created, called a community. Each community created

will have a unique label associated with it.

Label propagation is a robust method that uses the structure of the given net-

work to guide the propagation process. [69]. Over the years, LPA has been applied

to social networks [69, 70], computational linguistics [65, 71–73], neurological imag-

ing [74], drug interaction discovery [75,76], disease-gene discovery [66,77] and protein

function prediction and classification [37, 78, 79]. In many of these real-world appli-

cations research has shown it is possible to utilize data from various sources. This

is a major advantage for research in constructing genetic networks. For example,

Shahreza et al [75] included similarity networks for genes and targets, drug-target

interactions and drug-disease associations in order to allow LPA to predict potential

drug repositioning targets. Such implementations of this magnitude can attest to

the robustness of LPA. We believe this algorithm can adapt to the noisy and com-

plex nature of genetic networks including protein protein interaction networks and
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regulatory networks as we investigate here.

2.3.10 Graph partitioning

In a broader aspect, the problem we are addressing is comparable to graph par-

titioning problem. The problem in graph partitioning is to divide the vertices of a

graph into smaller equal sized hubs in a way that minimizes the number of edges

connecting vertices of different hubs [80]. This problem is an NP-Complete problem,

While the problem is the same, the mathematical description of the graph partition

problem is as follows: data can be represented as a graph G = (V,E), with V vertices

and E edges. This graph can be partitioned into smaller sub-graphs. A good par-

tition is obtained when the number of edges between each partition is minimal and

the edges within each partition is greater than the edges between the neighboring

partitions. This problem has gained much traction due to its application in social

network analysis, analyzing biological networks and clustering functionality.

There has been a multitude of methods developed to solve the graph partitioning

problem. The field has gained much attention due to its applications in clustering for

complex networks such as biological and social networks [81]. Moreover, these exists

a great body of research on multi-level partitioning. LaSalle et al. [80] developed

a multilevel partitioning algorithm built on k-way partitioning (KMetis) [82] and

parallel partitioning (ParMetis) [83] methodologies. This is an optimization problem
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where the goal is to compute the k-way partition the graph with the lowest edge-

cut. Regarding the algorithm, we will now discuss the details of the partitioning

algorithm.

The k-way partitioning of a graph G is breaking the graph into k disjoint subsets

V . A partitioning vector is used to store the partition number of each vertex v. The

edges connecting these vertices are cut based on the sum of the weight of the cut

edges which is called the edge-cut, but it is constrained to the balance to be upper

bounded by 1 + ε. The balance measures the weight distribution and evenly-weighted

the partitions are in the graph. If the balance is close to 1, then the partitions are

evenly weighted. If greater than one, then there are some partitions who have more

heavily weighted vertices than average.

This method has a slight disadvantage due the serial nature of its greedy refinement

of the graph. To address this concern, ParMetis, which is a parallelized implemen-

tation of KMetis, splits the refinement into two iterative passes. While this method

is optimal for large graphs, its application to biological networks is limited in scope.

The even partitioning of graphs is unlikely to provide much insight on the function

similarities of vertices in the same partition. In many biological networks, densely

connected groups often contain vertices with large weights.

In summary, it has been shown from this review section that there are many
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methods available for community detection. As indicated in the previous sections,

there is a common disadvantage of computational speed or inability to handle large

scale networks. Therefore, this section examined alternative approaches that have

been proposed to address these challenges such as graph based learning and graph

partitioning. The remaining sections of this review will explore the literature related

to miRNAs and miRNA-gene networks.

2.4 Introduction to miRNAs

MicroRNAs (miRNAs) are a class of non-protein-coding RNAs ranging from 21-25

base-pairs in length that regulate gene expression. They target complementary mes-

sengerRNA (mRNA), which triggers a translational blockade or degradation [84].

MiRNAs have also evolved and play a critical role in gene regulation and many

biological functions and processes. Recent studies have shown that miRNAs play

an important role in various cancers [15, 85–88]. Moreover, miRNAs have been re-

ported to have specific involvement in many cellular functions in cancer such as

cell differentiation, cell proliferation and apoptosis. The subsequent alterations have

downstream regulatory effects in key driver pathways which cause various cancers

including ovarian, colorectal, lung and breast cancer. Thus, it is important to under-

stand how miRNAs effect gene expression and the downstream genetic neighborhood.

This could lead to ways of identifying novel therapeutic targets and biomarkers to
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improve prognosis procedures.

2.5 Role of miRNAs in cancer

In recent years, the role of miRNAs in cancers have be investigated extensively.

Studies have proven that the dysregulation of miRNA is critical in cancer progres-

sion [89]. It is suggested that miRNA profile signatures could be used to classify

tumor subtypes, improve diagnosis and prognosis. In a recent review, Peng et al [10]

compiled evidence that shows there is a direct relationship with alterations in miRNA

regions and ovarian cancer and breast cancer. More involved experiments show that

numerous miRNA genes are located in cancer-related genomic regions. As previously

mentioned, miRNAs play an important role in cellular functions such as cell prolif-

eration. The dysregulation of miRNAs is suspected to aide in the evasion of growth

suppressors and promote cell proliferation.

The potential of miRNAs as oncogenes has been studied exhaustively in previous

years. Calin et al. [90] spearheaded this field by uncovering the effects of significant

down-regulation of miR − 15 and miR − 16 in chronic lymphoid leukemia (CLL)

by frequent deletions in chromosome 13q14 locus. This study also revealed 186

miRNAs that were located in various genomic regions that are frequently altered

in many cancers. In addition, high expression levels of mir − 155 in pancreatic

cancer, miR−155 helps decrease apoptosis by targeting a common tumor suppressor
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known as TP53INP1.There have been several studies highlighting the effects of the

up-regulation and down-regulation of miR − 21 in various cancers cancer [17, 91,

92]. It is well documented that miR − 21 is often up-regulated and targets mostly

tumor suppressor genes. These effects impact many functions such as promoting

cell proliferation, invasion and metastasis, evading cell death and even abnormal

metabolic functions [93].

2.6 Identifying miRNA target genes

In this section, we will investigate the current methods for identifying miRNA tar-

get genes. As previously mentioned in the first chapter, the goals of this dissertation

involve identifying downstream miRNA target genes in genetic networks. Current

research suggests that we must first understand the direct relationship between miR-

NAs and their target genes [94]. That said, we will first examine methods to identify

miRNA target genes and then expand our review to methods focused on identifying

miRNA-gene associations using gene expression profiles.

The current research on miRNA-gene relationships has established that identifying

miRNAs, target genes and their functional regulatory networks are critical in under-

standing miRNAs and their roles in the onset and progression of disease [95–99].

This evidence has drawn great attention on the development of methods for the pre-

diction of miRNA target genes. Therefore, in this section we will examine current
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methodologies and discuss the advantages and disadvantages of each method.

In a recent study, Rabiee-Ghahfarrokhi et al. [94] used a machine learning approach

to predict the the target genes of miRNAs. In particular, the method developed in

this study used a genetic algorithm-based decision tree to identify miRNA target

genes. In this approach, the researchers use a decision tree and a set of logical

classification rules. Regarding the details of this method, the process in this method

is as follows: 1. Split the dataset into training, testing and validation sets. 2. Using

the decision tree, extracted the relationships based on the rule-based classification.

3. Apply 10-fold cross-validation 4. Apply the genetic algorithm to select the best set

of rules. 5. Apply the best set of rules to the test dataset. The results of this method

yield the number of times a set of rules has predicted a miRNA-gene relationship

correctly or incorrectly. The benefit of this approach is the low computational cost

and its high prediction accuracy.

To further examine the use of machine learning algorithms to identify miRNA tar-

get genes, we review a newer methodology proposed by Ovando-Vasquez [100]. This

study used gene expression profiles to identify miRNA-gene relationships. Specifi-

cally, this method trains a support vector machine algorithm on a feature-ranked set

of for each miRNA target gene in the dataset. A major advantage of this method

is that by using the trained SVM models, this study showed that gene expression is
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the most predictive feature to identify true target genes. Furthermore, it has a low

computational cost. One limitation is that this method focuses on single miRNA

target gene relationships. As previously stated, research has shown that multiple

miRNAs regulate the same gene.

In a different study, Wang et al. [101] proposed a multiple linear regression method

to identify miRNA-gene relationships in colorectal cancer. This method began with

selecting candidate genes commonly involved in colorectal cancer pathways. The

next step involved pruning a selected miRNA target prediction databases to identify

miRNAs targeting the predefined set of candidate genes. With the candidate genes,

expression data and the miRNAs targeting those genes, Wang et al. used a multiple

linear regression model to identify the associations between each miRNA and the

corresponding target gene. In this case, there were multiple hypotheses tested, thus

requiring a multiple test correction. A common standard when correcting for multiple

hypotheses is to calculate the false discovery rate to control the expected proportion

of false positives. Results from this study confirmed that by integrating miRNA

targets from prediction databases, one can decrease the number of false positives.

One major advantage of this approach is that it can determine if more than one

miRNA are targeting the same gene.

In terms of accessing information on miRNA target genes, we will discuss databases
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available for systematic searches for identifying miRNA target genes. Research shows

that there is a growing usage of using curated databases to retrieve miRNA tar-

get genes. Most recently, many target prediction databases are available. Among

these comprehensive prediction databases, some of the prediction algorithms predict

miRNA targets using conservation among various species, such as TargetScan [102].

Databases such as miRDB [97,103] use machine learning to predict miRNA targets.

Moreover, comprehensive databases such as TarBase [104] and miRTarBase [105] con-

tain a catalogue of experimentally validated targets. In addition, there are databases

curated for miRNA targets in human disease, such as miR2Disease [106] and miR-

Cancer [107]. With many resources available and various methods to identify miRNA

target genes, combining this information has become increasingly popular. That said,

in the next section, we will discuss methods for constructing miRNA-gene networks.

2.7 Constructing miRNA-gene networks

The previous section has shown that there are several methods to identify miRNA-

gene relationships. In this section, we will discuss methods for constructing miRNA-

gene networks as this is directly related to the work in this dissertation. Furthermore,

an earlier review by Drakaki and Iliopoulos [108] revealed the importance of miRNA-

gene networks in the oncogenesis of cancer. Moreover, miRNA-gene networks contain

diagnostic and prognostic signatures in cancer.
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There are various ways of constructing miRNA-gene networks. One common ap-

proach is to build co-expression networks and identify miRNA-gene associations.

Mamdani et al. constructed miRNA-gene networks using methodologies such as

WGCNA [109] to build co-expression modules [110]. Such correlation based method

relies on calculating the pair-wise Pearson correlation coefficients between differen-

tially expressed genes. The correlations are then represented as a signed similarity

matrix in which the positive correlations are selected for the co-expression networks.

Using co-expression modules to construct miRNA-gene networks has a key advantage

in identifying how gene subnetworks are targeted by multiple miRNAs. However, like

many correlation based methods, it is difficult to determine the direction of the re-

lationship.

The powerful capabilities of machine learning algorithms have allowed the feasible

integration of discrete and continuous variables. This setting requires the use of a

mixed graphical Markov model. In Tur et al. [111], the mixed graphical Markov

model was used to construct miRNA-gene networks. In this study, the discrete

variables are mapped to the genotype alleles from the corresponding target. The

continuous variables are the values of gene expression. This model is assumed to

follow a joint Gaussian distribution whereby the continuous variable follows a mul-

tivariate normal distribution with conditional dependence on the discrete variable.
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Another key assumption in this study is that the miRNA-gene network is a homo-

geneous mixed graphical Markov model which, in theory, assumes that the miRNAs

can only influence the mean expression levels rather than any correlations between

the genes. In terms of constructing the network, miRNA-gene associations are de-

picted by discrete vertices and expression values are depicted by continuous vertices.

It is critical to understand in this setting, miRNA-gene associations affect the gene

expression and this behavior is non-interchangeable. This method is advantageous

when generating directed and some undirected mixed graphs or networks.

Research on miRNA-gene networks has drawn much attention to integrating ex-

pression data with interaction data and various other types of biological data. A

recent study by Freiesleben et al. [112] implemented a consensus approach combin-

ing differentially expressed genes, miRNA targets from target prediction databases

and transcription factor-miRNA interactions. Using this consensus strategy, the con-

structed miRNA-gene network revealed that miRNAs are involved in the complex

regulation system in gene networks. One major advantage of this consensus-based

approach is that there is a smaller risk of finding false positives [112]. Let us now

consider an integrative approach to construct miRNA-gene networks.

Quitadamo et al. [21], proposed an integrated network that included four types of

miRNA and gene interactions. More specifically, this approach combined gene asso-
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ciations, miRNA-gene associations and correlated miRNAs. This integrative method

began with identifying miRNA-gene associations and then identifying miRNA tar-

get genes using target prediction databases. Using the miRNA-gene associations and

miRNA target genes as seed nodes, the network was extended with a statistical model

provided by Disease Associated Protein-Protein Link Evaluator (DAPPLE) [113].

Unlike the other miRNA-gene network methods previously mentioned, this method

captured miRNA co-expression networks and gene co-expression networks using a

two-graph guided approach to determine network associations. The networks gen-

erated in this method were integrated to construct a comprehensive network of the

relationship between miRNA expression and gene expression. One major advantage

of this method is that it captures different types of interactions between miRNA

expression and gene expression [21]. Furthermore, it captured relationships between

miRNAs and known cancer genes in ovarian cancer. Regarding the methods dis-

cussed in this section, integrative approaches yield more insight into the complex

relationships between miRNA expression and gene expression.

2.8 Conclusion

Overall, these studies highlight the need for methods that can capture the true

complexity of miRNA-gene networks. In addition, after carefully reviewing the cur-

rent state of constructing miRNA-gene networks, there is a need to expand our
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knowledge by investigating how miRNAs affect gene expression and other down-

stream genes in genetic networks. Moreover, integrative network approaches can

shed light on the relationships between miRNAs, genes, protein-protein interactions

and even phenotypic associations. Therefore, the aim of this dissertation is to un-

derstand how miRNAs affect gene expression and the downstream genetic networks.

In this work, we investigate the challenges in constructing integrative miRNA-gene

networks with multiple layers of expression data and interaction data in efforts to

understand how miRNAs effect gene expression. In our first study, we introduce

a community detection approach to expand miRNA-gene networks using miRNAs,

miRNA affected genes and miRNA target genes in ovarian cancer. This methodol-

ogy is focused on constructing miRNA-gene networks from large-scale datasets and

identifying significant genetic networks. Then, we use a robust label propagation

algorithm to construct miRNA-gene networks with miRNAs, miRNA target genes,

protein-protein interactions, gene regulatory network interactions and miRNA-gene

associations in colon cancer. We compare this method with our previous method and

other network construction approaches. Finally, we apply these methods to identify

enriched communities and network patterns associated with the pathologic stages

in a miRNA-gene network in colon cancer. Our results show that by using these

methods, we can gain a better understanding of the relationships between miRNAs
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and gene expression and the effects on downstream targets in genetic networks.

In the chapter that follows, we present our first study to examine the relationship

between miRNAs and gene expression in ovarian cancer by constructing an integra-

tive miRNA-gene network via community-based network expansion. We also explore

how miRNAs affect downstream genes in genetic networks. The chapter that follows

moves on to consider the challenges discussed in this review.



CHAPTER 3: CONSTRUCTING INTEGRATIVE MICRORNA-GENE
NETWORKS IN OVARIAN CANCER

3.1 Introduction

Ovarian cancer is the fifth leading cause of cancer related deaths in women today

[114]. In 2017 alone, there will be 22,440 expected new cases of ovarian cancer and

approximately 14,080 deaths. If diagnosed in its early stages, the five year survival

rate is over 90%, but is less than 20% if diagnosed in its final stage. It is evident that

understanding the underlying functions that induce progressive behavior can lead

to better prognosis and early detection. Recent studies have shown that miRNAs

mediate cell growth [89] and act as tumor suppressors [11].

The influence of miRNAs on gene expression have become an important part of

disease studies. For instance, mir − 200c, which modulates metastasis, targets gene

PTPN6, which is a protein tyrosine phosphatase, non-receptor-type, 6. Although

the role of PTPN6 in cancer development is still unclear, we know that it is targeted

by mir − 200c, a common biomarker in epithelial ovarian cancer [115]. Using this

knowledge and our integrated network, we can investigate other downstream targets,

such as PTPN6 and their neighbors. With the advancement in high-throughput
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sequencing technologies and the availability of multiple layers of data, we should

design methods to integrate these layers together for a more systematic view of how

miRNAs perturb gene expression.

Based on these challenges, we developed a framework based on the spin-glass model

to construct an integrative miRNA-gene network. We then address the question of

how do miRNAs affect the downstream genes in genetic networks in ovarian cancer.

Also, we investigate the enrichment of these genetic networks. We hypothesized that

integrated miRNA-gene networks can identify the relationships between miRNAs and

the downstream genes in genetic networks in ovarian cancer. In doing this, we believe

that the miRNA-gene networks provide insight on how miRNAs affect progression

of ovarian cancer.

3.2 Methods

This study was designed to construct an integrative miRNA-gene network in ovar-

ian cancer. The goal was to study the relationship between miRNAs and downstream

genes in genetic networks. Our research design was the following: First, we used

miRNA and gene expression data, we identified miRNA-target genes using target

prediction databases. Using miRNA-gene association analysis, we identified relation-

ships between miRNAs and genes [20,21]. We also performed correlation analysis to

identify correlations between miRNAs and correlations between genes [19,116]. Net-
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work expansion was performed via community detection to integrate miRNA-gene

associations, miRNA-miRNA and protein-protein interactions. Pathway enrichment

analysis was performed to investigate the function of candidate genes and communi-

ties. A work-flow of our study is shown in Figure 1.

The data used in this study was generated by The Cancer Genome Atlas (TCGA)

(https://cancergenome.nih.gov/) [117] which is a collaboration between the National

Human Genome Research Institute and the National Cancer Institute. The mission

of TCGA is to build a comprehensive profile of the major types and subtypes of

cancer [118]. In this study, we chose to focus on Ovarian Serous Cystadenocarcinoma

because it is the fifth leading cause of cancer deaths in women. From TCGA, we

collected miRNA expression profiles and gene expression profiles for 480 Ovarian

Serous Cystadenocarcinoma samples.

Our design required a comprehensive network of protein-protein interactions to

expand our miRNA-gene network. We chose to use the InWeb human interactome,

which is a protein-protein interaction network (https://github.com/BenikaH/spinglass/

blob/master/data/InWeb29.txt) [119]. The InWeb network containing over 500

protein complexes associated with human disease. Lage et al. constructed this com-

prehensive protein-protein network by pooling human protein interaction data from

various databases such as MINT [120], BIND [121], Reactome [122] and KEGG an-
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notated protein-protein interactions [123]. To construct the network, in this study

a probabilistic score was developed to obtain a global interaction score. Next,an

interaction confidences was measured by calculating the reliability of the probabilis-

tic score and confirmed by a fitted calibration curve. Using these high-confidence

interactions, the final InWeb network contains 343,000 unique protein-protein inter-

actions. Having discussed how the InWeb network was constructed, the next section

of this dissertation addresses our data preprocessing.

3.2.1 Data preprocessing

We preprocessed the data in a series of data cleansing and filtering steps. First,

we removed the samples with missing data. We then extracted expression data for

each sample containing 183 miRNAs and 13,536 genes. For each miRNA expres-

sion set, we created an RxC miRNA expression matrix where rows = miRNAs and

columns = sample ID. Thus, each row contained miRNA expression values for each

patient sample. This was completed in Python with the following script https://

github.com/BenikaH/spinglass/blob/master/scripts/miRMatrix.py. We then

repeated this process for the gene expression data https://github.com/BenikaH/

spinglass/blob/master/scripts/ExpressionMatrix-1.py. To reduce the varia-

tion between the samples, we utilized sample-based quantile normalization to nor-

malize the miRNA and gene expression data separately [124, 125]. This was im-
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portant because we had to normalize the read counts to account for any technical

effects that may have occurred during sequencing. This is a standard approach with

high-throughput data. This global normalization technique relies on the assump-

tion that any global changes observed across all samples are caused by unwanted

technical variability [126]. To normalize the expression data, we utilized a func-

tion in R called "normalize.quantiles" from the "PreprocessCore" library (https:

//github.com/BenikaH/ColonStudy/blob/master/scripts/stage2_eqtl.R).

3.3 MiRNA-gene associations

To determine miRNA-gene associations, we identified the relationships between the

miRNA expression and gene expression profiles. We performed this analysis using

Matrix eQTL [125], an R package that uses matrix operations to performs mapping

using large matrix operations. We performed this analysis using miRNA and gene

pairs whose genomic locations were within 1MB of each other. To identify associ-

ations between the miRNAs and genes, we used a linear regression model provided

by the Matrix eQTL package. Using Matrix eQTL, we identified 44 miRNA-gene

associations with a FDR <0.01.

Because we were testing many associations, the traditional statistical significance

of α = 0.05 would have yielded many false positives. For this reason, we corrected

for multiple comparisons and to do so, we utilized a multi-test correction based on
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false discovery rate (FDR). We implemented false discovery rate by applying the

Benjamini-Hochberg test [127]. Benjamini-Hochberg test assumes that the tests are

independent or positively correlated. When using the FDR estimation, we tested

if each miRNA-gene pair is statistically significant by estimating the corresponding

q-value in Equation (3.3).

E(Q) ≤ m0

m
α ≤ α (3)

where m0 is the number of true null hypotheses, m is the total number of hypothe-

ses tested, α is the FDR level threshold. Implementing this procedure, we chose the

significant miRNA-gene associations with an FDR threshold at level α <0.01.

3.3.1 Network Expansion

Using the genes from the miRNA-gene associations obtained in the miRNA-gene

association analysis, we queried two databases: the MicroRNA Target Prediction

And Functional Study Database (miRDB) [97] and Tarbase [104], which is an exper-

imentally validated miRNA target database. If the database query results revealed

targets for the matching miRNAs, we added the targets as edges to our network.

We then expanded the network with the edges of the matching genes in the InWeb

network.

In order to identify downstream communities that interact directly with miR-
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NAs and associated genes, we implemented the spin-glass community detection algo-

rithm in R’s igraph library [128] (https://github.com/BenikaH/spinglass/blob/

master/scripts/Spinglass.R). We first, generated an edge-list (node-node pairs)

for our extended network. We then converted the edge-list into a graph object.

We used the "spinglass.community" function with the following parameters: (graph,

weights = NULL, start.temp = 1, stop.temp = 0.3, update.rule = "config", gamma

= 2). Here, the graph parameter is the network to be analyzed and the weights are

the corresponding weights of the network. The start.temp and stop.temp parameters

are the temperatures for the simulation. More specifically, when to start and stop

the simulation based on the lowering of the temperature to optimize the system.

We chose the default value of 1 for start.temp, but increased stop.temp to 0.3. The

update.rule parameter corresponds to the null-model of the simulation which uses a

random graph with the same vertex degrees as the input graph as opposed to a the

same number of edges as the probability baseline of the input graph. We chose the

"config" option in order to use the same number of degrees as our input network for

the simulation. The gamma parameter specifies the importance of edges present in

a community and edges not present in a community. Here, lower values make the

edges inside the community more important than edges outside of the community.

We chose a lower value of 2 to make the edges inside the community more important
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than edges outside of the community. Next, we ran the model with these parameters.

We then extracted the node membership for each community in order to visualize

the communities in Cytoscape [129].

3.3.2 Edge recovery of spin-glass

Before investigating the communities detected by spin-glass, it was important

to determine if these communities were defined each time we ran the spin-glass

method. To do this, we chose to run 10 simulations of spin-glass and measure the edge

similarity of the communities in each simulation. This allowed us to quantitatively

measure the community divergence in our miRNA-gene network.

To calculate the edge similarity of each community, we aligned the communi-

ties using the "GraphAlignment" package in R (https://github.com/BenikaH/

spinglass/blob/master/scripts/node_recovery.R) [130]. We imported commu-

nities derived from the spin-glass algorithm into R. For each community, we gener-

ated the adjacency matrix. Using the adjacency matrices, we aligned the matching

communities from each run to determine the edge similarity between the commu-

nity structures. This was done to measure how many nodes does spin-glass recover

when it defines a community. We wanted to know if a community consisted of the

same nodes each time it is ran. For each community linked to the miRNA-gene

associations, we performed pathway enrichment analysis using DAVID [131].
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3.3.3 Statistical Analysis

After identifying communities with spin-glass and determining the consistency of

these communities through simulations, we conducted a statistical analysis to test if

the enriched genes found in our pathway analysis results were significant. Moreover,

we wanted to test if our pathway gene sets were independent of the published pathway

gene sets. Therefore, for each functionally enriched pathway in the reference, we

created a 2x2 contingency table to represent the number of genes present in each

pathway found in the original published data and our pathway analysis. First, we

calculated the number of genes in our functionally enriched pathways and in the

functionally enriched reference pathways. Then we calculated the number of genes

that were unique to our functionally enriched pathways.

To compare the genes found in our Notch pathway with the genes found in the

reference Notch pathway, we performed the Fisher’s exact test of independence.

In this test the null hypothesis is that the gene set in our Notch pathway were

independent of the gene set in the reference Notch pathway (Table 1) and similarly

for the Basal pathway (Table 2). Assuming this null hypothesis, we applied the

Fisher’s exact test on the 2x2 contingency table to generate a p-value and odds ratio,

given a 95% confidence interval (https://github.com/BenikaH/ColonStudy/blob/

master/scripts/fisher.test_spinglass.R).
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Table 1: A 2x2 contingency table representing the number of genes in our Notch
pathway and the reference Notch pathway, the unique genes in the reference Notch
pathway, the unique interactions found in our Notch pathway and the total number
of genes.

Genes in Reference Notch Pathway Genes not in Reference Notch Pathway

Genes in our Notch Pathway 7 22

Genes not in our Notch Pathway 2 297

Table 2: A 2x2 contingency table representing the number of genes in our Basal
pathway and the reference Basal pathway, the unique genes in the reference Basal
pathway, the unique interactions found in our Basal pathway and the total number
of genes.

Genes in Reference Basal Pathway Genes not in Reference Basal Pathway

Genes in our Basal Pathway 9 182

Genes not in our Basal Pathway 1 147

3.4 Results

We generated an integrated network consisting of miRNAs, their directly asso-

ciated genes, protein-protein interactions and indirect targets of miRNAs and the

genes from the communities derived from the spin-glass model. The edges of the

constructed network include the miRNA-gene associations, their affected genes and

the interactions among their downstream genes in a genetic network. Our integrated
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network contained 183 miRNAs, 13,536 genes, 44 miRNA associated genes and 2361

miRNA targets. These miRNAs and genes are connected through 855 miRNA-gene

association edges and 380,000 protein-protein edges. In terms of the community

detection analysis, we observed that the spin-glass model detected a total of 25 com-

munities, however only 13 communities were linked to miRNA-gene associations.

Therefore, these 13 communities were used for our downstream analysis described in

the Methods.

Our simulation results showed that out of the 15 consistent communities, spin-

glass recovered more than 76% of nodes and edges in all 10 simulations (Table 3).
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Table 3: Table showing the percentage of edge recovery of the most consistent com-
munities in all 10 simulations of spin-glass. Only 15 communities were consistently
detected in all 10 simulations while the others were not consistently defined in the
spin-glass algorithm. This shows that spin-glass recovered 76% or more of the edges
in each of these communities.

Community Number Percent of Edge Recovery

Community 1 97.48596

Community 2 97.85322

Community 3 97.87851

Community 4 95.64697

Community 5 95.08038

Community 6 97.56603

Community 7 87.34146

Community 8 76.0274

Community 11 80.95071

Community 12 86.31008

Community 13 87.98856

Community 14 84.6952

Community 15 93.61404

To validate our findings, we compared our communities to the subnetworks in The

Cancer Genome Atlas Network’s published study of the ovarian cancer data [132].

In the initial analysis, there were four altered pathways discovered for potential

therapeutic targets.

We found 59 miRNA associated genes with disease associations identified in the

OMIM database and 2361 targets with disease associations in our extended network.
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However, many had unclassified phenotypes and deserve further investigation to help

understand the effects of genetic variation throughout the specified communities. We

also observed oncogenes and disease interactions present in the downstream genes

in genetic networks of these miRNAs identified in the OMIM database [133]. This

information will be vital in identifying new biomarkers for early prognosis in ovarian

cancer.

We also discovered 6 communities were enriched in cancer related pathways. We

observed that there were several genes present in these these cancer related pathways

such as, PTPN6, CCND1, TP53. At this point in our analysis, it is unclear whether

the cancer genes in these communities are drivers of the cancer related pathways

or are mediated by the involved miRNAs. This requires further investigation and

validation on the roles of the participating genes in these pathways.

Results from our statistical analysis showed that there is a significance (p-value <

6.534e-07) in the gene sets in our Notch pathway and the reference Notch pathway.

These findings imply that we can reject the null hypothesis that these gene sets

are independent. Moreover, we can interpret the odds ratio of 45.75 as the odds of

the genes in our Notch pathway are 45.75 times that for the genes in the reference

Notch pathway [132]. It is unlikely that the gene-sets in our enriched Notch pathway

equally occur by chance in the reference Notch pathway. This was in line with our
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hypothesis that the genes in these pathways are not independent and they contribute

to the functional enrichment of the Notch pathway. Similarly, for the Basal pathway,

our analysis yielded a p-value < 0.04728. While this p-value is close to .05, it still

implies that the gene set found in our Basal pathway is independent of the gene set

found in the reference Basal pathway. We can interpret the odds ratio of 7.24 as the

odds of the genes in our Basal pathway are 7.24 times that of the the genes in the

reference Basal pathway [132].

3.4.1 Comparison to Metis

We compared spin-glass community structure with the graph partitioning algo-

rithm Metis [80, 82, 134, 135]. We used "gpmetis" application and the default pa-

rameters but chose the following options for number of partitions = 25 and partition

type = kway. We then compared the community membership of the vertex sequences

from spin-glass with the graph partition file generated by Metis. For example, we

collected the vertex sequences for all graph partitions detected by Metis and similarly

for spin-glass. Next, we compared the community membership of the miRNAs and

genes generated by each method. By doing this, we were able to identify the number

of matching genes in each community between both methods.

What we found here is that Metis partitioned the network into nearly equal number

of genes (Figure 2), while spin-glass did not split them equally (Figure 3). Shown
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in Table ?? is a summary of counts describing which communities had the most

overlap. While there was not much overlap between the spin-glass communities

and Metis communities, pathway enrichment analysis revealed similar cancer related

genes embedded in the communities. In addition, although the community mem-

bership differs from that of spin-glass method, the Metis graph partitioning method

detected communities that were enriched in the same cancer related pathways (Table

??). We also identified common genes in both Metis communities and its compa-

rable spin-glass community and performed pathway enrichment analysis on those

common genes. These communities had the most overlap when comparing Metis

and spin-glass communities. Shown in Table ?? are the enriched pathways of the

common genes found in Metis communities and its respective spin-glass community.

These findings showed that both methods are capable of detecting communities in

an integrated network. However, Metis has the computational advantage over the

spin-glass method.

3.5 Discussion

One goal in this chapter was to explore the relationship between miRNAs and gene

expression in ovarian cancer by constructing an integrative miRNA-gene network via

community-based network expansion. In addition, we wanted to understand the

effects of miRNAs and downstream genes in genetic networks. Thus, we integrated
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the InWeb protein-protein interaction network and downstream miRNA targets. We

believe that by extending the miRNA-gene expression network, we were able to

observe direct and indirect downstream genes in genetic networks in ovarian cancer.

The enriched communities were enriched with oncogenes such as PTPN6 and

TP53 which are known to be pivotal in tumorigenesis of epithelial tissues in ovar-

ian cancer. We also observed that some of the oncogenes were directly affected by

miRNAs. For example, the relationship between miR − 200c and PTPN6 which

modulates metastasis and tumor progression in epithelial cells. On the other hand,

when evaluating the enriched pathways of these downstream genes in the network,

we identified more enriched pathways and novel genes within those pathways. Al-

though the reference pathways contained different genes, we do believe that the genes

identified are correct as they were conserved in each of our spin-glass simulations.

Our work here suggests that spin-glass is able to capture the direct and indirect

effects of miRNAs and their downstream genes in genetic networks. One advantage

of this method was that it allowed use to explore enriched communities that were

affected by miRNA mediated target genes. One of the major concerns with the

spin-glass model is the size of input network. As the size of the network increases,

the algorithm becomes more computationally expensive. This is a slight challenge

as we are interested in integrating multiple networks and identifying downstream
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genes in genetic networks across multiple layers. While the algorithm successfully

integrated miRNA affected genes and the InWeb network, it was unable to initialize

seed nodes. However, when we compared to Metis, we found that spin-glass is the

more preferred method. Metis partitioned the graph into nearly equal partitions

which may not be the true nature of a biological network. In terms of computation

performance, Metis outperformed spin-glass by a factor of 60x (minutes). It is also

worth noting that Metis found similar enriched pathways, but did not have many

genes in common for the detected communities. This could be due to the equal par-

titioning and the manner in which it assigns its membership. it could also be due to

the community sizes for spin-glass, the communities were very dense and its possible

not all genes contribute to the functional enrichment of their respective communities.

For the reasons mentioned above, we developed an alternative approach, based on a

label propagation framework which is capable of integrating multiple networks in an

efficient manner.
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Figure 1: A work-flow diagram showing the detailed steps of the spin-glass method.
First, we preprocessed the data. Then we identified miRNA-gene associations. We
then performed spin-glass community to expand the network. Next, we visualized
the integrated network in Cytoscape. Lastly, we evaluated the spin-glass model.
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Figure 2: A histogram of the total number of vertices in each community detected
by Metis.
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Figure 3: A histogram of the total number of vertices in each community detected
by Spin-glass.



CHAPTER 4: CONSTRUCTING MULTI-LAYER MICRORNA-GENE
NETWORKS USING A LABEL PROPAGATION APPROACH

4.1 Introduction

There has been great interest in determining how miRNA-gene relationships im-

pact disease progression. These relationships play a critical role in various key cellular

functions such as cell differentiation, proliferation, cell invasion and apoptosis. In-

terestingly enough, these relationships can be exploited via miRNA mediated gene

regulatory networks. In order to understand the role of miRNAs and the regulation

of gene expression in ovarian cancer, it is critical to learn how the miRNAs interact

with targets in other networks such as gene regulatory networks and protein-protein

networks.

Gene regulatory networks have been used to identify novel biomarkers in many

cancers and various diseases [136–138]. While some genes in these networks are

prone to miRNA regulation, it is unclear what the consequences are for those regu-

latory events [23]. The phenotypic outcome of a disease is not mediated by a single

miRNA and a single target, therefore we must consider intermediate factors such

as regulatory networks. By doing this, we are able to capture many different rela-
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tionships between the miRNAs, protein-protein networks, regulatory networks and

other genetic interactions. Generally, multiple genetic mutations occur in cancer

progression, however it is unclear if the mutations are driven by miRNA regulation

or in fact gene-gene regulation. For instance, the TP53 suppressor gene is reported

to be the most frequently mutated gene in cancer and leads to the critical loss of the

functional protein p53 [139]. This gene is also found to interact with or be mediated

by hsa−mir − 877, which is related to ovarian cancer [21].

Network-based integration of multi-omics data has been important in suggest-

ing functional mechanisms for pathological phenotypes. Currently, majority of the

methods involve only two layers of network interactions such as protein-protein in-

teractions or correlation based gene interactions. Other methodologies have included

DNA methylation data to identify gene regulatory modules [140,141]. The inclusion

of gene regulatory networks will expand the current knowledge of the complex rela-

tionship between miRNAs and the downstream genes in gene regulatory networks in

cancer subtypes.

The task of integrating multiple networks in our setting was modeled as a network

expansion problem, where a complete network topology was constructed based on

known subnetworks or seed nodes. As opposed to combining bioinformatics analysis

results from single layers, there is always a risk of loss of information [142]. To
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address this issue, we implemented a robust semi-supervised learning approach called

the label propagation algorithm, to model the complex relationships among miRNAs

and their regulated genes. In this study, we integrated three heterogeneous networks

to help understand how miRNAs interact with protein-protein interaction networks

and gene regulatory networks in ovarian cancer via network expansion based on the

label propagation algorithm.

4.2 Methods

The data used in this study was based upon data generated by the TCGA Research

Network: http://cancergenome.nih.gov/. All scripts used to transform the data

for our analysis can be found at https://github.com/BenikaH/LPA/. We utilized

preprocessed data generated in the previous chapter.

The full work-flow of our integrative method is shown in Figure 4. Similar to

the procedures described in Chapter 3, we collected miRNA and mRNA expression

data from The Cancer Genome Atlas (TCGA) [117]. We also gathered networks

from two respected databases. First, the protein-protein interaction network was

obtained from Lage et al [119], which represented the human interactome. We re-

trieved a gene regulatory network from RegNetwork database [143] which consisted

of experimentally verified targets. The second phase in our work-flow involved the

data preprocessing steps required to conduct analysis on. We begin by filtering
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the data to handle missing values. We then applied quantile-quantile normaliza-

tion on both sets of expression data. Next, we filtered the networks to retain the

most highly confident interactions in our data pool. The next phase of our approach

included identifying associations between miRNAs and gene expression and discover-

ing correlations between miRNAs as well as correlations between genes. To identify

miRNA-gene associations, we used Matrix eQTL [125] with the following parameters

:(useModel : modelLINEAR, cisDist : 1000000, pvOutputThreshold-cis : .01). Here,

we identified 44 miRNA-gene associations with an FDR ≤ .01. MtLasso2G [116] was

used to identify the correlations between miRNAs and correlations between genes

in which we identified 48 associations. Next, we performed the network expansion

phase in which we integrated multiple networks using the label propagation algo-

rithm. Here, we used our miRNA affected genes as seed nodes and expanded our

network with two additional networks, the InWeb protein-protein network and the

RegNetwork regulatory network. To test the prediction accuracy of the model, we

conducted three-fold cross validation to learn the hyper-parameters in the LPA al-

gorithm. Lastly, we visualized the fully integrated network in Cytoscape [129].

4.2.1 Network expansion via label propagation framework

In general, the label propagation algorithm works as follows: Given a set of n nodes

represented in an undirected graph G, X = [x1...., xl] in which a portion of the nodes
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are labeled l. LPA predicts the labels of the remaining unlabeled nodes [y1...., yl]. We

assigned our miRNA-gene associations from our Matrix eQTL results generated in

the previous chapter as seed nodes. Using these seed nodes, we expanded our network

with the InWeb protein-protein network and the RegNetwork regulatory network

using a robust label propagation algorithm. In this particular phase, we utilized

the algorithmic implementation developed by Karasuyma [65], namely SMGI. This

implementation used sparse integration of multiple graphs by combining Laplacian

matrices linearly.
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4.2.2 Label propagation algorithm

Algorithm 1 Label Propagation
1: procedure INPUTLk,k=1, λ1, λ2
2: Output: f , u
3: Initialize u
4: Optimize f , the optimal f is reached using Equation (4.2.2), given the fixed
u, then solved by Quadratic Problem solvers

5: Optimize u by using Quadratic Problem solvers to minimize u using Equation
(2), the optimal u vector has m non-zero elements and the remainder of the
elements are equal to 0

6: Repeat step 2 and step 3 and convergence.

• LPA Algorithm (1) requires a set of Laplacian graphs, the corresponding label

vector and desired values for regularization parameters λ1 and λ2 as input. To gener-

ate the Laplacian matrices, we wrote an R script to convert the edge-lists to normal-

ized Laplacians https://github.com/BenikaH/LPA/blob/master/scripts/smgi_

data_prep_experiments.R.

• The resulting output is the minimized objective function and a resultant weight

vector, u. The objective function is minimized by quadratic programming.

• Next, the objective function and the resultant vector are optimized and this

process is repeated until convergence is reached. Convergence is reached when all

nodes have been assigned a label.

• The optimization of f and u occurs in two separate phases. First, to optimize the

score, f , Equation (4.2.2) is applied. Here, I is the identity matrix, u represent the
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vector of weights and Z is the normalized constant for the Laplacians, represented

by L.

f = λ1(λ1I +
∑

K
k=1uk/ZkLk)

−1y (4)

min uvTu+
λ2
2
||u|| (5)

Algorithm 2 Optimization of u
1: procedure Inputv(has to be sorted), λ2
2: Output: u
3: form← 1 to K do
4: n← (λ2 +

∑
m
k=1vk)/m

5: ifm = k|n− vk ≥ 0, k = 1, ..., K
6: break
7: end if loop
8: end for loop
9: uk ← (n− vk)/λ2 for all k = 1, ...,m.

10: uk = 0 for all k = m + 1,...,K.

The optimization of the resultant weighting coefficients, u, was applied in Algo-

rithm (2). For all non-zero elements m from 1 to K (the total number of graphs) in

the resultant vector u, the number of positive elements n was calculated in step 4 of

the algorithm. In step 4, the number of positive elements, n is approximated by the

regularization parameter λ2 plus the summation of all data points, vk in each graph
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k, divided by the number of non-zero elements, m. The optimal resultant vector, u,

is considered optimal if it has only m non-zero elements and the remaining elements

are zero. Thus to find the optimal number of non-zero elements is key to finding the

optimal resultant weight vector of the integrated graph. The algorithm then checked

to see if u was equal to zero for each non-zero elements and counted the number of

positive elements. If m is a set of positive integers for graphs k = 1, ..., K, then we

have an optimal resultant weight vector, uk. For all k = 1, ..., m, uk is calculated

by the number of positive elements minus the number of data points divided by the

regularization parameter λ2. Lastly, for all k = m + 1, ..., K, uk equals 0. Thus,

defining the optimal resultant weighting coefficients vector, u.

4.2.3 Cross-validation

In Matlab we wrote a function to performed three-fold cross validation to learn

parameters λ1 and λ2 and to evaluate the model. We applied a grid search method

to determine which parameter values would be most optimal for our networks. We

chose to do three fold cross validation with our λ1 values between [0.01, 0.1] and our

λ2 values between [0.1, 1]. For each run, we increased λ1 and λ2 by intervals of .01

and 0.1 respectively until the max of each interval was met. Cross validation results

yielded a minimum error rate of 2.2796e-04 with λ1 = .01 and λ2 = 1. Using these

parameter values, we performed the integration with LPA.
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4.2.4 Evaluation

To evaluate the LPA implementation, we tested the robustness of the model by

initializing different seed nodes for 3 separate runs. The first implementation was

run with only the significant miRNA-gene associations as seed nodes, the second and

third implementations were ran with random seed initialization. We utilized the co-

sine similarity function to measure the similarity between each of the resultant vectors

provided by the LPA algorithm. Cosine similarity is a measure of similarity between

two non-zero vectors to determine the cosine angle between the two vectors. The re-

sulting similarity ranges from -1 to 1, indicating if the similarity is 1, then the vectors

are identical. If the resulting similarity is 0, then the vectors are orthogonal. Result-

ing similarity measures close to -1 or close to 1 represent dissimilarity or similarity be-

tween the two vectors respectively. The cosine similarity is shown in Table 4. https:

//github.com/BenikaH/LPA/blob/master/scripts/lpa_cosine_similarity.R

Table 4: Cosine similarity measure between LPA networks for 3 implementations
with different seed initializations

Cosine Similarity measure between LPA networks
LPA-1 LPA-2 LPA-3

LPA-1 1 0.2242562 0.2023935

LPA-2 0.2242562 1 0.9754067

LPA-3 0.2023935 0.9754067 1
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4.2.5 Enrichment analysis

We performed functional enrichment analysis on the full integrated network gene

set using DAVID [131]. After conducting pathway analysis on the full network,

we expanded this analysis to investigate the community enrichment. To do this,

we performed community detection on the integrated network. Then we performed

community detection on each community. Using our previously developed method,

spin glass community detection, we observed 25 relatively small communities. Of

those 25 communities, we found 13 communities directly linked to the previously

identified miRNA-gene associations.

4.2.6 Graph alignment of LPA integrated network and Spin-glass

We performed a graph alignment of the integrated networks from both methods.

The graph alignment allowed us to measure the consistency of the edge interactions

of the integrated networks constructed with spin-glass and the LPA method. We

utilized the "GraphAlignment" package in R. First, we created an adjacency matrix

from each of the edge-lists for both stages. Next, we calculated the node similarity

between both networks by calculating the intersection of the two networks. Lastly,

we extracted the weights for each interaction occurring in both networks. This

was completed in the following R script https://github.com/BenikaH/spinglass/

blob/master/scripts/node_recovery.R.
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4.3 Results

We constructed a fully integrated multi-layered miRNA-gene network that includes

miRNA-gene associations, correlations between miRNAs and genes, protein-protein

interactions and a gene regulatory network. In the integrated network we have 174

miRNAs and 2,180 genes. These miRNAs and genes are connected through 803

regulatory edges, 1313 protein-protein edges, 9 correlated miRNAs, 18 correlated

gene edges, 799 miRNA targets and a total of 855 miRNA-gene association edges

(Figure 7).

We also identified a total of 251 genes that are somatic mutations or oncogenes

in various cancers in the COSMIC database [144]. The integrated network revealed

downstream target genes and subnetworks of several oncogenes including but not

limited to, AKT1, AKT2, TP53, FOXO3 and TGF−β1. As previously mentioned,

these genes have critical roles in the onset and progression of ovarian cancer. Thus,

exploiting the downstream targets across multiple layers of regulation.

4.3.1 Pathway Enrichment Analysis

Enrichment analysis revealed that over 50% (861) of our genes were identified

in KEGG pathways and 120 of those genes were identified in cancer related path-

ways. We also found that many of the genes in our integrated network are involved

in the MAPK signaling pathway. The mitogen-activated protein kinase (MAPK)
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pathway is reported to play an important role in cell migration, apoptosis, cell pro-

liferation and cell differentiation [145]. These are critical functions that induce the

progression of ovarian cancer. The community enrichment analysis revealed 9 out of

13 functionally enriched communities. Additional analysis revealed that 7 of the 9

enriched communities were enriched in cancer related pathways and various cell func-

tions that impact tumor progression (Table 11). The integrated network highlighted

downstream targets in subnetworks involved in various cancer related pathways. To

investigate the interactions int he enriched pathways, we visualized the most enriched

communities using Cytoscape [129]. Visualization of community 7 confirmed that it

was enriched with multiple interactions found in cancer related pathways involved in

bladder cancer, pancreatic cancer, prostate cancer and other critical signaling path-

ways(Figure 9). We found that it included interactions across all three layers in our

integrated network which included the E2F1 oncogene.

4.3.2 Comparison with related methods

We compared these findings with GeNets [146] using the top 500 genes from our

seed nodes and expanding with the InWeb protein-protein network. When only using

the InWeb network, GeNets was able to identify 56 cancer related genes with only 3

of those specific to ovarian cancer. By adding the regulatory network in our analysis,

the LPA algorithm was able to identify 4x more genes directly related to cancer
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and nearly quadruple for ovarian cancer genes comparing with GeNets(Table 9). We

also compared LPA to the spin-glass community detection method to extend the

miRNA-gene network using the InWeb network as a template network [147]. The

graph alignment we performed revealed that the integrated networks constructed by

these two methods had an edge similarity of 58%. That means that LPA recovered

58% of the same interactions as the spin-glass method. We also found that many

of the common interactions were affected by our miRNA-gene associations. Also,

these conserved interactions were found in cancer related enriched pathways. When

evaluating the robustness of LPA, out of our 3 LPA networks, we found that LPA-1

network and LPA-2 network had a similarity measure of .2242562, meaning these two

networks had little similarity. LPA-1 network and LPA-3 network had a similarity

measure of .2023935, meaning there was little similarity between these two networks.

LPA-2 network and LPA-3 network had the most similarity with a cosine measure

of .9754067. This means that the random seed initialization in our simulation had

a strong influence on recovering the same network topology in each run and may

impact the robustness of LPA. Let us consider other factors and discuss the properties

of the networks integrated into the final LPA network. Given the density of the

InWeb protein-protein network ( ˜350, 000 interactions) and the addition of the gene

regulatory network (RegNetwork), the LPA method recovered more interactions than
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expected. The rationale of this expectation is that we used the InWeb network as

a template in the spin-glass method and random seed node initialization. However,

with LPA, we initialized our miRNA-gene associations as seed nodes and propagated

the labels through the InWeb network and the RegNetwork using only the information

of our seed genes. This suggests that with more labeled nodes in other networks, the

percentage of recovery should increase drastically compared to using one subset of

genes as seed nodes.

4.4 Discussion

Our results confirmed that there is collective action by multiple miRNAs, genes and

other key interactions. We identified enriched communities across multiple networks

of regulation, including miRNA-gene, protein-protein and regulatory networks. To

exploit the large scope of regulation, we applied a network based learning approach

to integrate multiple networks in ovarian cancer. In ovarian cancer and many other

complex diseases, changes in miRNA expression and gene expression play a critical

role in disease development and progression. Identifying more precise and detailed

interactions on multiple levels of regulation can advance current prognosis and treat-

ment procedures in ovarian cancer. Integrating multiple networks of miRNA-gene,

protein-protein interactions, and regulatory networks is an effective way to explore

these complex relationships. Such integrative methodology provides more insight on
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understanding biological interactions in ovarian cancer and will lead to an advance-

ment in current cancer therapies.

In comparison to the spin-glass model, LPA is more flexible allows for seed set

network expansion via integrating multiple networks. While the spin-glass method

was successful in network expansion, it produced a large number of communities and

it was computationally expensive. We were unable to set seed nodes with the spin-

glass model. Therefore, we chose to apply this method only to identify communities

within our integrated network. Unlike the method proposed in the previous chapter,

this method was able to predict the labels of unlabeled nodes using an LPA method.

Thus, it is desirable to construct the integrated network utilizing multiple types of

interactions while reducing the noise of irrelevant nodes and edges.

Also, our results showed that miRNAs regulate gene expression through multiple

paths. The downstream genes in the subnetworks observed in this work are affected

by miRNAs via protein-protein interactions and regulatory interactions. We used the

miRNA affected genes as seed nodes to gain an understanding on the regulation of

gene expression by miRNAs in these genetic networks. We observed that the miRNA-

gene subnetworks consist of multiple interactions and are also enriched in multiple

cancer related pathways. Some of the observed pathways had a high abundance

of regulatory interactions affected by miRNAs. This shows how central regulatory
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networks are in understanding the regulation in ovarian cancer phenotypes. Our

results also showed that the integrated network constructed on ovarian cancer in this

study, captures numerous cancer genes as a result of combining information from

multiple genetic resources. Without this multi-layer approach, this information is

not obtainable. This is beneficial to understanding the progression of ovarian cancer

and could aid in improving early prognosis procedures.

This will expand the knowledge of candidate targets for therapeutic applications.

In trying to understand how miRNAs affect disease progression through altered gene

expression, we believe that we can exploit community enrichment at different stages

of a disease using an integrated network such as the one generated in this study. To

do so, we applied this theory and our developed methods to patients with stage II

and stage III colon cancer to analyze the downstream genes in genetic networks for

enriched network signatures. Additional results will show the benefits of integrating

multiple networks to improve current prognostic knowledge in colon cancer.
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Figure 4: An overview of our integrative approach. We began with preprocessing the
data. Then we identified miRNA-gene associations. We then expanded the network
using LPA. We evaluated the model and tuned parameters. Next, we visualized the
integrated network in Cytoscape.
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Figure 5: An example of our integrated network highlighting the TP53 suppressor
gene. In this network, each yellow node represents a miRNA and light blue nodes
represent a gene. The nodes connected with blue edges are from the RegNetwork,
green edges are from InWeb network and the red edges are from our miRNA-gene
network.



73

Figure 6: Another example of our integrated network highlighting the AKT1 genes
responsible for activating the PI3K/AKT1 pathway. Cancer genes are depicted by
red nodes. Each yellow node represents a miRNA and light blue nodes represent
a gene. The nodes connected with blue edges are from the RegNetwork, miNRA
targets are denoted by purple edges, green edges are from InWeb network and the
red edges are from our miRNA-gene network.
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Figure 7: The fully integrated network after applying LPA . Each yellow node rep-
resents a miRNA and gray nodes represent interacting genes. The nodes connected
with blue edges are from the RegNetwork, green edges are from InWeb network and
the red edges are from our miRNA-gene network.
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Figure 8: A Venn diagram showing the number of unique nodes in each network and
the number of nodes in common between each network.
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Figure 9: Enriched community 7 from our integrated network. Each yellow node
represents a miRNA and light blue nodes represent a gene. The nodes connected
with blue edges are from the RegNetwork, green edges are from InWeb network and
the red edges are from our miRNA-gene network.



CHAPTER 5: IDENTIFYING MICRORNA-GENE NETWORKS SPECIFIC TO
PATHOLOGIC STAGES IN COLON CANCER

5.1 Introduction

Colon cancer is one of the most common cancers in men and women today. Of

the many cancers, it is reported to be one of the few curable cancers. However, the

stage progression of colon cancer is very complex and makes for a poor prognosis. In

stage I colon cancer, there is a 92% 5-year relative survival rate. For patients with

stage II colon cancer, there are two stage subtypes: stage IIA and stage IIB colon

cancers. There is an 87% 5-year relative survival rate for stage IIA and 63% for stage

IIB. Similarly, for stage III colon cancer there are three subtypes: stage IIIA, IIIB

and IIIC colon cancers. In patients with stage IIIA, the 5-year relative survival rate

is 89%, for stage IIIB it is 69% and 53% for stage IIIC [114]. When the cancer has

reached stage IV and metastasized to other parts of the body, the 5-year relative

survival rate is decreased to approximately 12%. The drastic decrease in survival

rate in colon cancer speaks to the need for better prognostic procedures.

The role of pathologic prognostic markers is important in the advancement of

personalized medicine and can help reduce the risk of recurrence, especially in high-
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risk patients with stage II colon cancer [148–150]. Due to the benefits of personalized

medicine, these patients have an increased overall survival with therapies such as

adjuvant chemotherapy. Gene expression signatures have shown much promise as

prognostic markers [151]. For example, the progression of colon cancer is directly

linked to the functional epithelial-mesenchymal transition (EMT) gene expression

signatures [152]. Genes ZEB1 and ZEB2 are known repressors that regulate targets

in the EMT pathway by changing the phenotype of normal cells to cancerous cells

[153]. These genes are also known to be present in the beginning of metastasis.

Cell invasion and migration are also critical components in colon cancer progres-

sion. For instance, genes PRKCQ and PRKCZ are members of the protein kinase

family and PRKCZ is often involved in cell survival and cell migration in different

cancers such as ovarian cancer [154]. It has also been reported that ARID4B is a key

player in pathogenesis and is classified as a metastasis modifier gene. Over-expression

of this gene is thought to enhance the cell migration process as well as cell invasion.

In contrast, the knockdown of ARID4B, causes metastasis of cancer cells to other

regions of the body [155, 156]. More recently, miRNA expression profiles have been

utilized as predictive markers for survival of colon cancer [157]. Studies have shown

that specific miRNAs are directly related to poor prognosis in colon cancer as well as

a poor therapeutic outcome [25,158,159]. For example, miR−148, miR−26a−2 and
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miR − 130a were identified to be significantly associated with a poor clinical prog-

nosis [160]. Exploiting the downstream neighborhoods of genes with such a critical

role in the pathogenesis of colon cancer provide long-term benefits in personalized

medicine and adjuvant therapies.

Recent studies have confirmed that there are genetic changes between stage II

and stage III colon cancer [148, 161, 162]. However, it is unclear how these genetic

changes drive the progression between stage II and stage III colon cancer. Therefore,

in this study we focused on integrating genomics data and clinical phenotypes of

colon cancer generated from the TCGA project. To demonstrate an application of

our method, we applied this approach to study the relationships between miRNA

expression, gene expression and clinical phenotypes to identify genetic and network

patterns for stage II and stage III colon cancer. We aimed to identify pathologic

prognostic network signatures such as enriched communities that are prevalent in

stage II and stage III in colon cancer to understand how miRNAs affect gene expres-

sion in their downstream communities or neighborhoods. We hypothesized that as

colon cancer progresses, there are unique network patterns present in stage II that

are not present in stage III and network patterns specific in stage III that are not

present in stage II. We believe that identifying these pathologic network signatures

in enriched communities can lead to better prognosis and a better understanding in
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the stage progression of colon cancer. The benefits of miRNA-gene networks will

improve our understanding the complex biology of colon cancer.

5.2 Methods

The data used in this study generated by the TCGA Research Network: http:

//cancergenome.nih.gov/. Scripts used to transform the data for our analysis

can be found at https://github.com/BenikaH/ColonStudy/. We retrieved miRNA

expression data, gene expression data and clinical profiles for all colon cancer patients

using the TCGA Data Portal located at https://portal.gdc.cancer.gov. We

had a total of 196 patient samples with corresponding clinical profiles including

information on pathologic stage, race and gender. We then chose to use stages II (82

samples) and stages III (59 samples) to run our miRNA-gene association analysis

pipeline due to relatively small sample sizes for stage I (29 samples) and stage IV

(26 samples) patient samples.

5.2.1 Data preprocessing

The data in this study was preprocessed using the same strategy implemented

in Chapter 3. We removed samples with missing data. We retained all clinical

profiles of patients whose pathologic stage was known. If the sample stage was

unknown, we did not include that sample in the study. We also used the same

scripts to perform the data transformation described in Chapter 3 to build miRNA
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and gene expression matrices (https://github.com/BenikaH/ColonStudy/blob/

master/scripts/miRMatrix.py, https://github.com/BenikaH/ColonStudy/blob/

master/scripts/ExpressionMatrix-1.py. We then filtered the miRNA and gene

expression matrices by removing rows with over 10% of missing values. The final

expression matrix was used for our study.

5.2.2 MiRNA-gene associations

In this study we performed miRNA-gene association analysis between the miRNA

expression and gene expression profiles in both stage II and stage III separately. The

analysis was performed using Matrix eQTL [125], which is an R package that uses ma-

trix operations to identify miRNA-gene associations. We performed cis-miRNA-gene

association analysis, in which we only tested miRNA and gene pairs where miRNAs

were within 1MB window from the genes. Prior to this, we extracted the gene posi-

tions from the human reference genome 37 using a command line tool called "gff2bed"

https://github.com/BenikaH/ColonStudy/blob/master/scripts/Extract_positions_

gff.txt. Next, similar to the process in Chapter 3, the miRNA-gene association

analysis was completed with the following R code:(https://github.com/BenikaH/

ColonStudy/blob/master/scripts/stage2_eqtl.R and https://github.com/BenikaH/

ColonStudy/blob/master/scripts/stage3_eqtl.R).
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5.2.3 Network expansion with the InWeb network

We ran the significant miRNA-gene associations from Matrix eQTL in the mirDB

target prediction database [97] To expand our miRNA-gene association network for

each stage, we used GeNets https://apps.broadinstitute.org/genets [146] to

identify candidate genes in the InWeb protein-protein network. GeNets is a web-

application developed by the Broad Institute for network analysis and visualization.

We expanded our network with the InWeb protein-protein interaction network by

identifying candidate genes in GeNets was able to import a gene list (max = 250)

and expand to a single network, such as InWeb, BLAST, CLIME, ConsensusPathDB,

GEO Expression, GeNets MetaNetwork and Achilles Cancer Co-dependency network

to identify candidate genes. We chose our top ranked genes from the mirDB target

prediction database. Using the pathway gene classifier within GeNets, we performed

a pathway analysis and expanded our miRNA-gene network with the InWeb protein-

protein interaction network. This was completed by determining the similarity of our

test genes utilizing the similarity score within GeNets. The candidate genes were then

identified based on the connectivity and the probability of being in the same path-

ways. Using this measure of connectivity, we expanded our network within GeNets

by identifying candidate genes in the InWeb network. After expanding the network,

we performed community detection analysis within GeNets for further analysis.
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We performed a comparative analysis for all samples in stage II and samples in

stage III by investigating miRNAs and miRNA-gene associations that were unique

to each stage via enriched communities. First, we performed a pathway enrich-

ment analysis on all genes in both stages separately within GeNets. By integrating

miRNA-gene associations and miRNA targets, we exploited specific network signa-

tures that were embedded in the community structures in different stages in colon

cancer. In our stage II samples, we found that 4 of the 13 communities were enriched

in pathways directly involved in various cancers, such as colorectal, bladder, thyroid,

lung, prostate and pancreatic cancer. Similarly, we found 3 notable communities en-

riched in cancer related pathways in our stage III samples. We further investigated

all communities to identify unique network signatures.

5.2.4 Network expansion via the Spin-glass model

In comparison with GeNets, we applied the spin-glass model to the stage II and

stage III miRNA-gene associations generated with Matrix eQTL. From our previous

evaluations of other methods such as Metis, GeNets and LPA, we decided to use spin-

glass because of the following reasons: 1) Metis partitions networks into equal sized

networks. Because we are interested in highly enriched communities, the equal-sized

method may miss key interactions by dividing the graph into equal partitions. 2)

GeNets limits the number of genes one can analyze to 250 genes. Due to the size of
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our networks, this option was less effective. 3) Although, it did not allow seed initial-

ization, the spin-glass model was consistent detecting interactions through multiple

simulations. Also, the consistency was not impacted by the size of the networks. For

these reasons, we found spin-glass was the most reliable for this comparison. We

used the InWeb protein-protein interaction network as a template and expanded the

network with miRNA-gene associations and predicted mirDB targets. For each stage

we applied the spin-glass algorithm in the following scripts https://github.com/

BenikaH/ColonStudy/blob/master/scripts/stage2_spinglass.R and https://

github.com/BenikaH/ColonStudy/blob/master/scripts/stage3_spinglass.R.

5.2.5 Network alignment of Stage II and Stage III

We were also interested in seeing how the networks for stage II and stage III

aligned with one another. Therefore, we performed a graph alignment to identify

the commonality between the two networks. To perform the network alignment, we

utilized the "GraphAlignment" package in R [130]. The "GraphAlignment" pack-

age uses the adjacency matrices of two networks to align them and take the in-

tersection of the two graphs. Then it creates an adjacency matrix of the similar

nodes found in the intersection resulting in a similarity score for the two graphs.

Using this package, we first created an adjacency matrix from each of the edge-

lists for both stages. Next, we calculated the node similarity between both net-
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works by calculating the intersection of the two networks. Lastly, we extracted the

weights for each interaction occurring in both networks. This was completed in

the following R script https://github.com/BenikaH/ColonStudy/blob/master/

scripts/stage2_stage3_graph_alignment.R.

5.2.6 Statistical Analysis

We created a 2x2 contingency table (Table 5) to represent the number of interac-

tions in each stage and in both stages. First, we calculated how many interactions

were identified in both stage II and stage III (97). Next, we calculated the number

of interactions that were in stage II but not in stage III (202). We then calculated

the number of interactions that were in stage III but not in stage II (439). Lastly, we

calculated all possible edge interactions that were not identified in either of the two

stages (696,584). In order to compare the interactions found in the stage II network

with the interactions found in the stage III network, we tested the null hypothesis

that the interactions in the stage II network were equally likely to occur in the stage

III network. Assuming this null hypothesis, we applied the Fisher’s exact test on

the 2x2 contingency table to generate a p-value (https://github.com/BenikaH/

ColonStudy/blob/master/scripts/fisher.test_stages.R).
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Table 5: A 2x2 contingency table representing the number of interactions found in
stage II & III, the unique interactions found in stage II, the unique interactions found
in stage III and the total possible interactions.

Interactions in stage III Interactions not in stage III

Interactions in stage II 97 202

Interactions not in stage II 439 696,584

5.3 Results

We identified 14 significant miRNA-gene associations (FDR ≤ 0.05) in stage II

samples (Table 12) and 12 significant miRNA-gene associations in stage III samples)

(Table 13). For stage II, there were 13 communities identified and 14 communities

identified for stage III. In our stage II samples, we identified 27 enriched cancer path-

ways across 9 communities directly involved with various cancers (Table 14).

Results from our community enrichment analysis revealed that out of the 26

miRNA-gene associations identified, we observed two of these miRNA-gene in our

stage II samples were directly associated with tumorigenesis, miR − 429-ZEB1,

miR − 429-ZEB2 (Figure 10). We also found evidence that these miRNAs target

multiple genes that are enriched in cancer-related pathways in colon and bladder

cancer. Further investigation revealed downstream interactions in our study that are

enriched in stage II, but are not present in stage III samples. While miR− 429 was
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significant in both samples, miR− 147b was specific only to stage II. In our network

alignment, we discovered that there were only 97 (1̃3%) shared interactions between

the stage II and the stage III network. The similar interactions between stage II and

stage III networks are shown in Table ??. Pathway enrichment analysis revealed the

pathways of the similar interactions between stage II and stage III. This evidence

supports our hypothesis that the network patterns are significantly different in stage

II and stage III colon cancer.

Additionally, we observed 16 enriched pathways directly involved in cancer across

5 communities (Table 15) in stage III samples. Results revealed a network signa-

ture containing miR − 429, PRKCQ, PRKCZ, ARID48. Further investigation is

suggested to understand the downstream effects in the later stages of colon cancer.

However, we believe this network signature and may be involved in the advanced

stages of breast, lung, ovarian and colon cancer.

Results from our statistical analysis showed that there is a significant difference

(p-value < 2.2e-16) in the interactions identified in stage II and stage III. It is unlikely

that the interactions identified in stage II samples equally occur in stage III samples.

This was in line with our hypothesis that there are specific interactions unique to

each stage in the progression of colon cancer.
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5.4 Discussion

This study was an application of network expansion to understand how miRNAs

affect gene expression and the downstream genetic neighborhoods of pathologic stages

in colon cancer. We found that there is a significant difference in the presence of

network edge interactions between the stages. We found that both network structures

contained a similar number of communities. However, in our community enrichment

analysis, we found more cancer enriched communities in stage II samples than in the

stage III samples.

When evaluating the communities, we found that there were several interactions

in stage III samples that were not present in stage II samples and vice versa, but they

were not associated with our miRNAs. This could explain why we were only able to

identify a small number of network signatures in each stage. Another explanation is

that we had a limited sample size and many of the patients’ prognosis was unknown.

The size limitation of GeNets may have affected our candidate gene pool in the

InWeb network. This was because GeNets only allowed a maximum of 250 genes

as an input. This limited the number of possible candidate genes from the InWeb

network within GeNets.

Lastly, there was strong evidence in our statistical analysis that there was a sig-

nificant difference between the interactions identified in stage II and the interac-
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tions identified in stage III. There was also evidence in provided literature that

supported our hypothesis on the different roles of network signatures in the patho-

genesis [163,164], metastasis [165] and the tumorigenesis of colon cancer. Therefore,

we do believe the interactions discovered and their cross-talk between the multiple

layers in the integrated network.
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Figure 10: Enriched community 7 in our stage II samples. We visualized the network
signature with miR− 429, ZEB1, ZEB2 and SMAD2 which is only present in our
samples with stage II prognosis. Red nodes are cancer genes, blue nodes are miRNAs
associated with target genes and miRNA-gene associations are solid blue lines.
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Figure 11: Enriched community in our stage III samples. The miR− 429, PRKCZ
and ARID4B interactions all have key roles in cell migration, invasion, pathogenesis
and metastasis. Red nodes are cancer genes, blue nodes are miRNAs associated with
target genes and miRNA-gene associations are solid blue lines.



CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusion

It has been shown that miRNAs are key regulators of gene expression. In fact,

miRNAs have also been identified as tumor suppressors and oncogenes in various can-

cers. Moreover, miRNA-gene networks are embedded with miRNA-gene signatures

that have diagnostic and prognostic significance. To better understand how miRNAs

affect gene expression, we must first know more about the many complex relation-

ships between miRNAs, genes and their downstream targets in genetic networks.

Furthermore, we must understand the functional roles of miRNA-gene interactions

and miRNA-gene subnetworks in cancer subtypes. There are numerous methods

available to identify miRNA-gene relationships and construct miRNA-gene networks

and this dissertation explores and compares these methods.

The first aim of the present research was to examine the relationship between miR-

NAs and gene expression in ovarian cancer by constructing an integrative miRNA-

gene network via community-based network expansion. In this study, we addressed

this by using the spin-glass community detection method to construct an integrated
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miRNA-gene network and identify downstream communities in ovarian cancer. Our

findings revealed that there is a complex relationship between miRNAs and their

downstream targets and their neighbors embedded in smaller communities. Results

also showed that these communities are functionally enriched in cancer related path-

ways that are. The evidence from this study suggests that miRNAs not only regulate

expression levels of their immediate target genes but also downstream genes in ge-

netic networks. The current findings add to a growing body of literature on the

importance of miRNA-gene networks and their functional roles in ovarian cancer. A

few limitations of this study is that it was computationally expensive and it produced

extremely dense communities which were challenging to analyze as a whole.

The second aim of this research was to improve our network expansion methodol-

ogy by integrating multiple networks to identify downstream relationships between

miRNA expression, gene expression, protein-protein networks, gene regulatory net-

works and the downstream effects on genetic networks in patients with ovarian can-

cer. In this study we used the label propagation method to construct a multi-layer

miRNA-gene network to investigate the miRNA-gene relationships in different levels

of regulation in ovarian cancer. By expanding from miRNA-genes as seed nodes, the

results of this investigation show that there are miRNAs that mediate multiple layers

of regulation. This study has found that generally, miRNA-gene networks are also
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embedded with smaller multi-layer subnetworks that are enriched in cancer related

pathways. This research provides a framework for the exploration of integrating mul-

tiple networks and downstream analyses. Taken together, these findings enhance our

understanding of how miRNAs affect gene expression on multiple levels in ovarian

cancer. A limitation of this study is that we were unable to assess this study in other

cancer subtypes.

The third aim of this study was to investigate the downstream effects of the re-

lationship between miRNA-gene networks and the pathologic stages of colon cancer

and expand our knowledge by identifying prognostic network signatures in enriched

communities and patients with stage II and stage III colon cancer. In this study we

used our spin-glass method to construct integrate miRNA-gene networks for stage II

and stage III colon cancer samples. This study has identified novel prognostic net-

work signatures in both stage II and stage III colon cancer. Moreover, the prognostic

markers identified play pivotal roles in pathogenesis and metastasis in colon cancer.

The results of this research support the idea that miRNA-gene network patterns are

significantly different in stage II and stage III colon cancer. This study has raised

important questions about the nature of prognosis of colon cancer and how miRNA-

gene networks can improve the current knowledge. The present study also provides

additional evidence with respect to the enrichment of cancer genes and prognostic
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markers in miRNA-gene subnetworks in colon cancer. A limitation of this study is

that it did not include additional layers such as gene regulatory networks, which we

believe would yield more novel prognostic network signatures.

In summary, we developed frameworks to construct integrative miRNA-gene net-

works consisting of miRNA expression, miRNA correlations, gene correlation, gene

expression, protein-protein networks, miRNA targets, clinical profiles and regulatory

networks. This dissertation revealed methods to help to exploit the complexity of

regulation, by constructing robust integrative miRNA-gene networks. We applied

different approaches to attain this goal, specifically community based network ap-

proaches, and a semi-supervised learning approach to integrate multiple networks

containing multiple regulatory elements in ovarian and colon cancer. Although there

is much to learn about miRNA and gene expressions in cancer, the methods composed

in this dissertation yield new ideas to inspect the relationships between miRNAs,

genes, proteins and other regulatory elements in complex diseases. This will pro-

vide a better outlook on how these prognostic signatures can improve early detection

techniques.

In terms of directions for future research, further work could involve several di-

rections. For instance, one direction is to integrate cellular signaling networks with

miRNA-gene networks. This direction can help researchers understand how miR-
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NAs regulate cell migration via signaling networks. Because metastasis and tumor

invasion are harmful consequences of cancerous cells migrating to other regions of

the body, researchers can investigate this phenomenon using multi-layer networks.

Another direction for this research would be to integrate metabolic networks to

explore how miRNA-gene networks respond to changes in expression and regulatory

pathways involved in colon cancer. This direction will also allow researchers to study

therapeutic strategies by investigating enriched metabolic pathways. By investigat-

ing the combination of miRNA-associated genes, proteins and metabolic pathways,

one could understand metabolic responses in colon cancer and pancreatic cancer.

Further work needs to be done to establish whether the miRNA-gene relationships

are drivers of their respective cancer related pathways. Moreover, it would also be in-

teresting to compare the miRNA-gene networks and communities for multiple cancer

subtypes to determine if there are conserved network patterns across various cancers.

By investigating conserved miRNA-gene networks, researchers can identify enriched

pathways across multiple cancer subtypes. In addition to this direction, these meth-

ods will be useful in studying prognostic network patterns within the different cancer

subtypes. This will yield clinical benefits in current prognostic procedures.

In conclusion, the work in this dissertation was aimed to construct integrative

miRNA-gene networks consisting of multiple data sources. The methods explained
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in the previous chapters represent my intentions to explore the relationship between

miRNAs and gene expression in ovarian and colon cancer. Moreover, in ovarian

cancer and many other complex diseases, changes in miRNA expression and gene

expression play a critical role in disease development and progression. In addition

to cancer, the methods in this dissertation can also be applied to investigate other

complex diseases. In fact, we have the means to provide more knowledge in miRNA-

gene networks that can help establish better prognostic procedures and therapeutic

strategies to improve human health.
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APPENDIX: SUPPLEMENTARY TABLES

Table 6: A summary table showing the genes affected by miRNAs that overlapped
with disease genes according to the OMIM database.

Gene Description Disease/Phenotype

CDKN1C, KIP2, BWS, IMAGE Cyclin-dependent kinase inhibitor 1C (p57, Kip2) IMAGE syndrome

CDKN1C, KIP2, BWS, IMAGE Cyclin-dependent kinase inhibitor 1C (p57, Kip2) Beckwith-Wiedemann syndrome

DGCR2, DGS2 .l.o;-.?[;/ syndrome chromosome region-2 DiGeorge syndrome/velocardiofacial syndrome complex-2

HNRNPA1, IBMPFD3, ALS20 Heterogeneous nuclear ribonucleoprotein A1 Inclusion body myopathy wtih early-onset Paget disease without frontotemporal dementia 3

HNRNPA1, IBMPFD3, ALS20 Heterogeneous nuclear ribonucleoprotein A1 Amyotrophic lateral sclerosis 20

KIAA1279 KIAA1279 gene Goldberg-Shprintzen megacolon syndrome

KIF1A, ATSV, UNC104, SPG30, HSN2C, MRD9 Kinesin family member 1A Spastic paraplegia 30, autosomal recessive

KIF1A, ATSV, UNC104, SPG30, HSN2C, MRD9 Kinesin family member 1A Neuropathy, hereditary sensory, type IIC

KIF1A, ATSV, UNC104, SPG30, HSN2C, MRD9 Kinesin family member 1A Mental retardation, autosomal dominant 9

LDLRAP1, ARH, FHCB2, FHCB1 Low density lipoprotein receptor adaptor protein 1 Hypercholesterolemia, familial, autosomal recessive

NUMA1 Nuclear mitotic apparatus protein-1 Leukemia, acute promyelocytic, NUMA/RARA type

POMC Proopiomelanocortin (adrenocorticotropin/beta-lipotropin) Obesity, adrenal insufficiency, and red hair due to POMC deficiency

POMC Proopiomelanocortin (adrenocortic’otropin/beta-lipotropin) Obesity, early-onset, susceptibility to

RECQL4, RTS, RECQ4 DNA helicase, RecQ-like 4 Rothmund-Thomson syndrome

RECQL4, RTS, RECQ4 DNA helicase, RecQ-like 4 RAPADILINO syndrome

RECQL4, RTS, RECQ4 DNA helicase, RecQ-like 4 Baller-Gerold syndrome

SLC25A3, PHC Solute carrier family 25 (mitochondrial carrier), member 3 Mitochondrial phosphate carrier deficiency

TUBB, TUBB5, M40, CDCBM6 Tubulin, beta polypeptide Cortical dysplasia, complex, with other brain malformations 6
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Table 7: List of cancer related pathways discovered for each community. Each com-
munity linked to our miRNA affected genes was investigated for enriched pathways.

Pathway Pathway size # of genes in pathway Genes Community

KEGG CHEMOKINE SIGNALING PATHWAY 190 18 ADRBK2 CCL11 CCL13 CCL14 CCL16 CCL2 CCL3 CCL3L1 CCL5 CCL7 CCL8 CCR1 CCR2 CCR3 CCR5 CXCL10 CXCL11 CXCR3 3

KEGG ENDOCYTOSIS 183 2 ADRBK2 CCR5 3

KEGG PARKINSONS DISEASE 133 4 COX4I1 COX5A COX5B COX6A1 3

KEGG ALZHEIMERS DISEASE 169 4 COX4I1 COX5A COX5B COX6A1 3

KEGG HUNTINGTONS DISEASE 185 4 COX4I1 COX5A COX5B COX6A1 3

KEGG MELANOGENESIS 102 2 ASIP POMC 6

KEGG INSULIN SIGNALING PATHWAY 137 2 RPS6KB1 TSC1 7

KEGG COLORECTAL CANCER 62 2 APC RALGDS 7

KEGG VASCULAR SMOOTH MUSCLE CONTRACTION 115 2 CALCRL RAMP1 7

KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION 118 2 MLLT4 RAPGEF3 7

KEGG ENDOCYTOSIS 183 2 ARRB2 GRK5 7

KEGG CHEMOKINE SIGNALING PATHWAY 190 2 ARRB2 GRK5 7

KEGG INSULIN SIGNALING PATHWAY 137 5 CALML3 PHKA1 PHKA2 PHKB PHKG1 7

KEGG ALZHEIMERS DISEASE 169 3 CACNA1D CALML3 RYR3 7

KEGG VASCULAR SMOOTH MUSCLE CONTRACTION 115 2 CACNA1D CALML3 7

KEGG LEISHMANIA INFECTION 72 3 CYBA NCF1 NCF2 7

KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION 118 3 CYBA NCF1 NCF2 7

KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY 137 3 NFATC1 NFATC2 NFATC4 7

KEGG ENDOMETRIAL CANCER 52 2 CTNNA3 TCF7 7

KEGG COLORECTAL CANCER 62 2 BCL2 TCF7 7

KEGG SMALL CELL LUNG CANCER 84 2 BCL2 NOS2 7

KEGG PROSTATE CANCER 89 2 BCL2 TCF7 7

KEGG ACUTE MYELOID LEUKEMIA 60 2 RUNX1T1 ZBTB16 11

KEGG BASAL CELL CARCINOMA 55 2 SMO WNT16 11

KEGG PANCREATIC CANCER 70 2 BRCA2 RAD51 11

KEGG SMALL CELL LUNG CANCER 84 2 LAMA4 TRAF4 11

KEGG HUNTINGTONS DISEASE 185 2 AP2A2 CREB1 11

KEGG MATURITY ONSET DIABETES OF THE YOUNG 25 3 HES1 MAFA NKX2-2 11

KEGG PRIMARY IMMUNODEFICIENCY 35 3 CD3D RAG1 RAG2 11

KEGG NOTCH SIGNALING PATHWAY 47 3 DLL3 DTX3 HES1 11

KEGG PARKINSONS DISEASE 133 4 COX4I2 NDUFB7 SNCAIP UCHL1 11

KEGG VASOPRESSIN REGULATED WATER REABSORPTION 44 2 CREB3L1 CREB3L4 11

KEGG HUNTINGTONS DISEASE 185 4 COX4I2 CREB3L1 CREB3L4 NDUFB7 11

KEGG TGF BETA SIGNALING PATHWAY 86 2 ID4 SMAD2 11

KEGG ALZHEIMERS DISEASE 169 3 ATF6 COX4I2 NDUFB7 11

KEGG PROSTATE CANCER 89 2 CREB3L1 CREB3L4 11

KEGG MELANOGENESIS 102 2 CREB3L1 CREB3L4 11

KEGG ENDOCYTOSIS 183 2 ACAP3 STAM 11

KEGG P53 SIGNALING PATHWAY 69 6 CHEK1 MDM2 MDM4 PPM1D TP53 TP73 11

KEGG PROSTATE CANCER 89 6 CREB5 CREBBP EP300 LEF1 MDM2 TP53 11

KEGG WNT SIGNALING PATHWAY 151 7 CREBBP EP300 JUN LEF1 SMAD3 SMAD4 TP53 11

KEGG COLORECTAL CANCER 62 5 JUN LEF1 SMAD3 SMAD4 TP53 11

KEGG RENAL CELL CARCINOMA 70 5 CREBBP EP300 ETS1 HIF1A JUN 11

KEGG UBIQUITIN MEDIATED PROTEOLYSIS 138 6 BRCA1 MDM2 PIAS1 PIAS3 PIAS4 UBE2I 11

KEGG TGF BETA SIGNALING PATHWAY 86 5 CREBBP EP300 SMAD3 SMAD4 SP1 11

KEGG NOTCH SIGNALING PATHWAY 47 4 CREBBP EP300 NOTCH1 NUMB 11

KEGG HUNTINGTONS DISEASE 185 6 CREB5 CREBBP EP300 SP1 TGM2 TP53 11

KEGG CHRONIC MYELOID LEUKEMIA 73 4 MDM2 SMAD3 SMAD4 TP53 11

KEGG SMALL CELL LUNG CANCER 84 4 PIAS1 PIAS3 PIAS4 TP53 11

KEGG PANCREATIC CANCER 70 3 SMAD3 SMAD4 TP53 11

KEGG THYROID CANCER 29 2 LEF1 TP53 11

KEGG MELANOGENESIS 102 3 CREBBP EP300 LEF1 11

KEGG BLADDER CANCER 42 2 MDM2 TP53 11

KEGG ENDOMETRIAL CANCER 52 2 LEF1 TP53 11

KEGG BASAL CELL CARCINOMA 55 2 LEF1 TP53 11

KEGG GLIOMA 65 2 MDM2 TP53 11

KEGG MELANOMA 71 2 MDM2 TP53 11

KEGG NOTCH SIGNALING PATHWAY 47 2 CTBP1 CTBP2 11

KEGG HEDGEHOG SIGNALING PATHWAY 56 2 GLI2 ZIC2 11

KEGG CHRONIC MYELOID LEUKEMIA 73 2 CTBP1 CTBP2 11

KEGG WNT SIGNALING PATHWAY 151 2 CTBP1 CTBP2 11

KEGG TGF BETA SIGNALING PATHWAY 86 17 ACVR1C BMP2 BMP4 BMP6 BMP7 BMPR2 GDF5 SMAD1 SMAD5 SMAD6 SMAD7 SMAD9 SMURF1 SMURF2 TGFBR2 ZFYVE16 ZFYVE9 11

KEGG BASAL CELL CARCINOMA 55 2 BMP2 BMP4 11

KEGG P53 SIGNALING PATHWAY 69 13 CCNB1 CCND1 CCND2 CCND3 CCNE1 CCNE2 CDK4 CDK6 CDKN1A CDKN2A GADD45B GADD45G TSC2 11

KEGG SMALL CELL LUNG CANCER 84 11 CCND1 CCNE1 CCNE2 CDK4 CDK6 CDKN1B E2F1 E2F2 E2F3 RB1 SKP2 11

KEGG CHRONIC MYELOID LEUKEMIA 73 10 CCND1 CDK4 CDK6 CDKN1A CDKN1B CDKN2A E2F1 E2F2 E2F3 RB1 11

KEGG GLIOMA 65 9 CCND1 CDK4 CDK6 CDKN1A CDKN2A E2F1 E2F2 E2F3 RB1 11

KEGG BLADDER CANCER 42 8 CCND1 CDK4 CDKN1A CDKN2A E2F1 E2F2 E2F3 RB1 11

KEGG MELANOMA 71 9 CCND1 CDK4 CDK6 CDKN1A CDKN2A E2F1 E2F2 E2F3 RB1 11

KEGG NON SMALL CELL LUNG CANCER 54 8 CCND1 CDK4 CDK6 CDKN2A E2F1 E2F2 E2F3 RB1 11

KEGG PROSTATE CANCER 89 9 CCND1 CCNE1 CCNE2 CDKN1A CDKN1B E2F1 E2F2 E2F3 RB1 11

KEGG PANCREATIC CANCER 70 8 CCND1 CDK4 CDK6 CDKN2A E2F1 E2F2 E2F3 RB1 11

KEGG TGF BETA SIGNALING PATHWAY 86 5 E2F4 E2F5 RBL1 RBL2 TFDP1 11

KEGG WNT SIGNALING PATHWAY 151 3 CCND1 CCND2 CCND3 11

KEGG ACUTE MYELOID LEUKEMIA 60 2 CCNA1 CCND1 11

KEGG ERBB SIGNALING PATHWAY 87 2 CDKN1A CDKN1B 11

KEGG NOTCH SIGNALING PATHWAY 47 4 CIR1 MAML3 NOTCH4 RBPJ 11

KEGG WNT SIGNALING PATHWAY 151 2 TBL1X TBL1XR1 11

KEGG LONG TERM DEPRESSION 70 2 PPP1R17 PRKG1 14

KEGG THYROID CANCER 29 1 TPR 14

KEGG TYPE I DIABETES MELLITUS 44 1 PTPRN 20

KEGG ENDOMETRIAL CANCER 52 1 APC2 20

KEGG BASAL CELL CARCINOMA 55 1 APC2 20

KEGG COLORECTAL CANCER 62 1 APC2 20
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Table 10: List of genes that are enriched in cancer related pathways from the KEGG
pathway database. These genes are also found in our integrated network.

Gene	Symbol Gene	Name KEGG	Pathways
AKT1 AKT	serine/threonine	kinase	1(AKT1) MAPK	signaling	pathway
AKT2 AKT	serine/threonine	kinase	2(AKT2) MAPK	signaling	pathway
ATF2 activating	transcription	factor	2(ATF2) MAPK	signaling	pathway
ATF4 activating	transcription	factor	4(ATF4) MAPK	signaling	pathway
BCR BCR,	RhoGEF	and	GTPase	activating	protein(BCR) Pathways	in	cancer,	Chronic	myeloid	leukemia

BMP2K BMP2	inducible	kinase(BMP2K) Transcriptional	misregulation	in	cancer
BRAF B-Raf	proto-oncogene,	serine/threonine	kinase(BRAF) MAPK	signaling	pathway
CASP3 caspase	3(CASP3) MAPK	signaling	pathway
CCNT1 cyclin	T1(CCNT1) Transcriptional	misregulation	in	cancer
CDCA5 cell	division	cycle	associated	5(CDCA5) MicroRNAs	in	cancer
CDK9 cyclin	dependent	kinase	9(CDK9) Transcriptional	misregulation	in	cancer
CHUK conserved	helix-loop-helix	ubiquitous	kinase(CHUK) MAPK	signaling	pathway
CRK CRK	proto-oncogene,	adaptor	protein(CRK) MAPK	signaling	pathway

DAPK3 death	associated	protein	kinase	3(DAPK3) Pathways	in	cancer,	Bladder	cancer
EGFR epidermal	growth	factor	receptor(EGFR) MAPK	signaling	pathway
ELK4 ELK4,	ETS	transcription	factor(ELK4) MAPK	signaling	pathway
FGFR2 fibroblast	growth	factor	receptor	2(FGFR2) MAPK	signaling	pathway
FLNA filamin	A(FLNA) MAPK	signaling	pathway

FOS
Fos	proto-oncogene,	AP-1	transcription	factor	

subunit(FOS) MAPK	signaling	pathway
GOLPH3 golgi	phosphoprotein	3(GOLPH3) Transcriptional	misregulation	in	cancer
GPC1 glypican	1(GPC1) Proteoglycans	in	cancer
GRB2 growth	factor	receptor	bound	protein	2(GRB2) MAPK	signaling	pathway

HOXD10 homeobox	D10(HOXD10) Proteoglycans	in	cancer,	MicroRNAs	in	cancer
HPGD hydroxyprostaglandin	dehydrogenase	15-(NAD)(HPGD) Transcriptional	misregulation	in	cancer
HSPB1 heat	shock	protein	family	B	(small)	member	1(HSPB1) MAPK	signaling	pathway

IKBKB
inhibitor	of	kappa	light	polypeptide	gene	enhancer	in	B-

cells,	kinase	beta(IKBKB) MAPK	signaling	pathway

IKBKG
inhibitor	of	kappa	light	polypeptide	gene	enhancer	in	B-

cells,	kinase	gamma(IKBKG) MAPK	signaling	pathway
IL1A interleukin	1	alpha(IL1A) MAPK	signaling	pathway
IL1B interleukin	1	beta(IL1B) MAPK	signaling	pathway

JUN
Jun	proto-oncogene,	AP-1	transcription	factor	

subunit(JUN) MAPK	signaling	pathway
KIF23 kinesin	family	member	23(KIF23) MicroRNAs	in	cancer
KLF3 Kruppel	like	factor	3(KLF3) Transcriptional	misregulation	in	cancer
KRAS KRAS	proto-oncogene,	GTPase(KRAS) MAPK	signaling	pathway
LMO2 LIM	domain	only	2(LMO2) Transcriptional	misregulation	in	cancer
MAP2K2 mitogen-activated	protein	kinase	kinase	2(MAP2K2) MAPK	signaling	pathway
MAPK1 mitogen-activated	protein	kinase	1(MAPK1) MAPK	signaling	pathway

MAPKAPK2
mitogen-activated	protein	kinase-activated	protein	

kinase	2(MAPKAPK2) MAPK	signaling	pathway
MAX MYC	associated	factor	X(MAX) MAPK	signaling	pathway
MEF2C myocyte	enhancer	factor	2C(MEF2C) MAPK	signaling	pathway

MKNK1
MAP	kinase	interacting	serine/threonine	kinase	

1(MKNK1) MAPK	signaling	pathway

MKNK2
MAP	kinase	interacting	serine/threonine	kinase	

2(MKNK2) MAPK	signaling	pathway
MLLT1 MLLT1,	super	elongation	complex	subunit(MLLT1) Transcriptional	misregulation	in	cancer
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MYC
v-myc	avian	myelocytomatosis	viral	oncogene	

homolog(MYC) MAPK	signaling	pathway
NRAS neuroblastoma	RAS	viral	oncogene	homolog(NRAS) MAPK	signaling	pathway
PAK1 p21	(RAC1)	activated	kinase	1(PAK1) MAPK	signaling	pathway

PPM1A
protein	phosphatase,	Mg2+/Mn2+	dependent	

1A(PPM1A) MAPK	signaling	pathway
PPP3CA protein	phosphatase	3	catalytic	subunit	alpha(PPP3CA) MAPK	signaling	pathway
PPP5C protein	phosphatase	5	catalytic	subunit(PPP5C) MAPK	signaling	pathway

PRKACA
protein	kinase	cAMP-activated	catalytic	subunit	

alpha(PRKACA) MAPK	signaling	pathway

PTPN5
protein	tyrosine	phosphatase,	non-receptor	type	

5(PTPN5) MAPK	signaling	pathway

PTPN7
protein	tyrosine	phosphatase,	non-receptor	type	

7(PTPN7) MAPK	signaling	pathway
PTPRR protein	tyrosine	phosphatase,	receptor	type	R(PTPRR) MAPK	signaling	pathway

RAC1
ras-related	C3	botulinum	toxin	substrate	1	(rho	family,	

small	GTP	binding	protein	Rac1)(RAC1) MAPK	signaling	pathway
RAF1 Raf-1	proto-oncogene,	serine/threonine	kinase(RAF1) MAPK	signaling	pathway
RAP1A RAP1A,	member	of	RAS	oncogene	family(RAP1A) MAPK	signaling	pathway
RAP1B RAP1B,	member	of	RAS	oncogene	family(RAP1B) MAPK	signaling	pathway

RECK
reversion	inducing	cysteine	rich	protein	with	kazal	

motifs(RECK) MicroRNAs	in	cancer
RPS6KA1 ribosomal	protein	S6	kinase	A1(RPS6KA1) MAPK	signaling	pathway

RUNX1 runt	related	transcription	factor	1(RUNX1)

Pathways	in	cancer,	Transcriptional	misregulation	in	
cancer,	Chronic	myeloid	leukemia,	Acute	myeloid	

leukemia
ST14 suppression	of	tumorigenicity	14(ST14) MicroRNAs	in	cancer
STK3 serine/threonine	kinase	3(STK3) MAPK	signaling	pathway
STMN1 stathmin	1(STMN1) MAPK	signaling	pathway

TAB2
TGF-beta	activated	kinase	1/MAP3K7	binding	protein	

2(TAB2) MAPK	signaling	pathway
TAOK1 TAO	kinase	1(TAOK1) MAPK	signaling	pathway
TAOK2 TAO	kinase	2(TAOK2) MAPK	signaling	pathway
TFE3 transcription	factor	binding	to	IGHM	enhancer	3(TFE3) Transcriptional	misregulation	in	cancer
TFG TRK-fused	gene(TFG) Pathways	in	cancer,	Thyroid	cancer
TGFB1 transforming	growth	factor	beta	1(TGFB1) MAPK	signaling	pathway
TGFB2 transforming	growth	factor	beta	2(TGFB2) MAPK	signaling	pathway
TGFBR2 transforming	growth	factor	beta	receptor	2(TGFBR2) MAPK	signaling	pathway
TLX1 T-cell	leukemia	homeobox	1(TLX1) Transcriptional	misregulation	in	cancer
TLX3 T-cell	leukemia	homeobox	3(TLX3) Transcriptional	misregulation	in	cancer
TP63 tumor	protein	p63(TP63) MicroRNAs	in	cancer
TRAF6 TNF	receptor	associated	factor	6(TRAF6) MAPK	signaling	pathway
TWIST1 twist	family	bHLH	transcription	factor	1(TWIST1) Proteoglycans	in	cancer
ZEB1 zinc	finger	E-box	binding	homeobox	1(ZEB1) MicroRNAs	in	cancer
ZEB2 zinc	finger	E-box	binding	homeobox	2(ZEB2) MicroRNAs	in	cancer
ZFPM2 zinc	finger	protein,	FOG	family	member	2(ZFPM2) MicroRNAs	in	cancer



133

Table 11: List of genes that are enriched in cancer related pathways from the KEGG
pathway database. These genes are also found in our LPA integrated network.

Pathway # of genes in pathway Genes Community

KEGG BLADDER CANCER 2 E2F1 E2F3 7

KEGG NON SMALL CELL LUNG CANCER 2 E2F1 E2F3 7

KEGG GLIOMA 2 E2F1 E2F3 7

KEGG PANCREATIC CANCER 2 E2F1 E2F3 7

KEGG MELANOMA 2 E2F1 E2F3 7

KEGG CHRONIC MYELOID LEUKEMIA 2 E2F1 E2F3 7

KEGG SMALL CELL LUNG CANCER 2 E2F1 E2F3 7

KEGG PROSTATE CANCER 2 E2F1 E2F3 7

KEGG SMALL CELL LUNG CANCER 2 PIAS2 PIAS3 7

KEGG P53 SIGNALING PATHWAY 3 CCND1 CCND3 TP73 7

KEGG ACUTE MYELOID LEUKEMIA 2 CCND1 FLT3 7

KEGG WNT SIGNALING PATHWAY 2 CCND1 CCND3 7

KEGG ENDOMETRIAL CANCER 2 CTNNB1 GSK3B 11

KEGG BASAL CELL CARCINOMA 2 CTNNB1 GSK3B 11

KEGG COLORECTAL CANCER 2 CTNNB1 GSK3B 11

KEGG PROSTATE CANCER 2 CTNNB1 GSK3B 11

KEGG MELANOGENESIS 2 CTNNB1 GSK3B 11

KEGG WNT SIGNALING PATHWAY 2 CTNNB1 GSK3B 11

KEGG TGF BETA SIGNALING PATHWAY 3 BMP2 BMP4 TGFB1 12

KEGG BASAL CELL CARCINOMA 2 BMP2 BMP4 12

KEGG GLIOMA 2 PTEN SHC1 12

KEGG CHRONIC MYELOID LEUKEMIA 2 SHC1 TGFB1 12

KEGG P53 SIGNALING PATHWAY 3 ATM CHEK1 TP53 13

KEGG AMYOTROPHIC LATERAL SCLEROSIS ALS 2 SOD1 TP53 13

KEGG APOPTOSIS 2 ATM TP53 13

KEGG HUNTINGTONS DISEASE 2 SOD1 TP53 13

KEGG P53 SIGNALING PATHWAY 2 CHEK2 MDM2 13

KEGG COLORECTAL CANCER 2 BCL2 KRAS 16

KEGG PROSTATE CANCER 2 BCL2 KRAS 16

KEGG PROSTATE CANCER 4 AKT1 AKT2 AKT3 FOXO1 17

KEGG INSULIN SIGNALING PATHWAY 4 AKT1 AKT2 AKT3 FOXO1 17

KEGG ENDOMETRIAL CANCER 3 AKT1 AKT2 AKT3 17

KEGG NON SMALL CELL LUNG CANCER 3 AKT1 AKT2 AKT3 17

KEGG ACUTE MYELOID LEUKEMIA 3 AKT1 AKT2 AKT3 17

KEGG COLORECTAL CANCER 3 AKT1 AKT2 AKT3 17

KEGG GLIOMA 3 AKT1 AKT2 AKT3 17

KEGG PANCREATIC CANCER 3 AKT1 AKT2 AKT3 17

KEGG RENAL CELL CARCINOMA 3 AKT1 AKT2 AKT3 17

KEGG MELANOMA 3 AKT1 AKT2 AKT3 17

KEGG SMALL CELL LUNG CANCER 3 AKT1 AKT2 AKT3 17

KEGG APOPTOSIS 3 AKT1 AKT2 AKT3 17

KEGG JAK STAT SIGNALING PATHWAY 3 AKT1 AKT2 AKT3 17

KEGG PANCREATIC CANCER 3 RAC2 TGFBR2 VEGFA 23

KEGG COLORECTAL CANCER 2 RAC2 TGFBR2 23

KEGG P53 SIGNALING PATHWAY 2 SESN3 THBS1 25

KEGG TGF BETA SIGNALING PATHWAY 2 BMPR2 THBS1 25
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Table 12: Table of miRNA-gene associations for stage II samples.

MiRNA Gene FDR

hsa-mir-429 CDK11B 0.00019764

hsa-mir-429 PRKCZ 0.000244602

hsa-mir-147b MESP2 0.002152882

hsa-mir-429 MMEL1 0.012186697

hsa-mir-940 CREBBP 0.014576292

hsa-mir-429 MIB2 0.01953022

hsa-mir-940 ZNF500 0.022218129

hsa-mir-429 NADK 0.024168807

hsa-mir-429 RER1 0.024168807

hsa-mir-429 CDK11A 0.024168807

hsa-mir-147b WDR93 0.031533831

hsa-mir-1291 CDK17 0.037043283

hsa-mir-429 PANK4 0.037968774

hsa-mir-3687 HSPA13 0.038841051
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Table 13: Table of miRNA-gene associations for stage III samples.

MiRNA Gene FDR

hsa-mir-940 FAM86A 0.022834838

hsa-mir-940 TFAP4 0.031093644

hsa-mir-429 PRKCZ 0.031093644

hsa-mir-940 ALG1 0.031093644

hsa-mir-940 HMOX2 0.031093644

hsa-mir-940 DNAJA3 0.039209633

hsa-mir-429 SSU72 0.039209633

hsa-mir-484 C16orf93 0.039209633

hsa-mir-429 NADK 0.039497555

hsa-mir-484 PHKG2 0.039497555

hsa-mir-484 PRSS36 0.044826117

hsa-mir-429 MRPL20 0.046093757
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Table 14: List of enriched pathways by community directly involved in various can-
cers. In stage II, there are four distinct communities enriched in cancer related
pathways.

Pathway Pathway size # of genes in pathway Gene list Community

KEGG BLADDER CANCER 42 3 MYC RAF1 RASSF1 1

KEGG COLORECTAL CANCER 62 3 MYC RAF1 RALGDS 1

KEGG THYROID CANCER 29 2 MYC TPM3 1

KEGG ENDOMETRIAL CANCER 52 2 MYC RAF1 1

KEGG NON SMALL CELL LUNG CANCER 54 2 RAF1 RASSF1 1

KEGG ACUTE MYELOID LEUKEMIA 60 2 MYC RAF1 1

KEGG PANCREATIC CANCER 70 2 RAF1 RALGDS 1

KEGG CHRONIC MYELOID LEUKEMIA 73 2 MYC RAF1 1

KEGG ERBB SIGNALING PATHWAY 87 2 MYC RAF1 1

KEGG GAP JUNCTION 90 2 MAPK7 RAF1 1

KEGG GNRH SIGNALING PATHWAY 101 2 MAPK7 RAF1 1

KEGG NEUROTROPHIN SIGNALING PATHWAY 126 2 MAPK7 RAF1 1

KEGG SMALL CELL LUNG CANCER 84 2 COL4A6 FN1 2

KEGG HYPERTROPHIC CARDIOMYOPATHY HCM 85 2 ITGA1 ITGA11 2

KEGG DILATED CARDIOMYOPATHY 92 2 ITGA1 ITGA11 2

KEGG CELL ADHESION MOLECULES CAMS 134 2 ICAM2 ITGAL 2

KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY 137 2 ICAM2 ITGAL 2

KEGG RNA DEGRADATION 59 2 ENO3 RQCD1 3

KEGG PARKINSONS DISEASE 133 2 NDUFA4 NDUFA5 4

KEGG OXIDATIVE PHOSPHORYLATION 135 2 NDUFA4 NDUFA5 4

KEGG ALZHEIMERS DISEASE 169 2 NDUFA4 NDUFA5 4

KEGG HUNTINGTONS DISEASE 185 2 NDUFA4 NDUFA5 4

KEGG INSULIN SIGNALING PATHWAY 137 2 PRKCZ RPS6KB1 6

KEGG WNT SIGNALING PATHWAY 151 7 CCND1 CREBBP JUN SENP2 SMAD2 SMAD3 TP53 7

KEGG COLORECTAL CANCER 62 5 CCND1 JUN SMAD2 SMAD3 TP53 7

KEGG PANCREATIC CANCER 70 5 CCND1 RELA SMAD2 SMAD3 TP53 7

KEGG CELL CYCLE 128 5 CCND1 CREBBP SMAD2 SMAD3 TP53 7

KEGG CHRONIC MYELOID LEUKEMIA 73 4 CCND1 RELA SMAD3 TP53 7

KEGG PROSTATE CANCER 89 4 CCND1 CREBBP RELA TP53 7

KEGG ACUTE MYELOID LEUKEMIA 60 3 CCND1 PML RELA 7

KEGG P53 SIGNALING PATHWAY 69 3 CCND1 CCNG2 TP53 7

KEGG RENAL CELL CARCINOMA 70 3 CREBBP ETS1 JUN 7

KEGG ADHERENS JUNCTION 75 3 CREBBP SMAD2 SMAD3 7

KEGG SMALL CELL LUNG CANCER 84 3 CCND1 RELA TP53 7

KEGG TGF BETA SIGNALING PATHWAY 86 3 CREBBP SMAD2 SMAD3 7

KEGG THYROID CANCER 29 2 CCND1 TP53 7

KEGG NEUROTROPHIN SIGNALING PATHWAY 126 3 JUN RELA TP53 7

KEGG JAK STAT SIGNALING PATHWAY 155 3 CCND1 CREBBP STAT4 7

KEGG BLADDER CANCER 42 2 CCND1 TP53 7

KEGG ENDOMETRIAL CANCER 52 2 CCND1 TP53 7

KEGG NON SMALL CELL LUNG CANCER 54 2 CCND1 TP53 7

KEGG GLIOMA 65 2 CCND1 TP53 7

KEGG EPITHELIAL CELL SIGNALING IN HELICOBACTER PYLORI INFECTION 68 2 JUN RELA 7

KEGG MELANOMA 71 2 CCND1 TP53 7

KEGG APOPTOSIS 88 2 RELA TP53 7

KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY 102 2 JUN RELA 7

KEGG T CELL RECEPTOR SIGNALING PATHWAY 108 2 JUN RELA 7

KEGG HUNTINGTONS DISEASE 185 2 CREBBP TP53 7

KEGG FOCAL ADHESION 201 2 CCND1 JUN 7

KEGG WNT SIGNALING PATHWAY 151 4 SFRP1 SFRP4 SFRP5 WNT16 9

KEGG CYTOSOLIC DNA SENSING PATHWAY 56 2 NFKBIA TBK1 10

KEGG RIG I LIKE RECEPTOR SIGNALING PATHWAY 71 2 NFKBIA TBK1 10

KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY 102 2 NFKBIA TBK1 10
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Table 15: List of enriched pathways by community directly involved in various can-
cers. In stage III, there are 5 distinct communities enriched in cancer related path-
ways.

Pathway Pathway size # of genes in pathway Gene list Community

KEGG OOCYTE MEIOSIS 114 2 ANAPC7 RPS6KA3 8

KEGG ACUTE MYELOID LEUKEMIA 60 1 KIT 8

KEGG LONG TERM POTENTIATION 70 1 RPS6KA3 8

KEGG RENAL CELL CARCINOMA 70 1 CRKL 8

KEGG CHRONIC MYELOID LEUKEMIA 73 1 CRKL 8

KEGG ERBB SIGNALING PATHWAY 87 1 CRKL 8

KEGG MELANOGENESIS 102 1 KIT 8

KEGG CELL CYCLE 128 1 ANAPC7 8

KEGG ENDOCYTOSIS 183 1 KIT 8

KEGG HYPERTROPHIC CARDIOMYOPATHY HCM 85 4 ITGA1 ITGA2B ITGA3 ITGA5 6

KEGG SMALL CELL LUNG CANCER 84 3 FN1 ITGA2B ITGA3 6

KEGG PRION DISEASES 35 1 C1QA 6

KEGG SYSTEMIC LUPUS ERYTHEMATOSUS 140 1 C1QA 6

KEGG HUNTINGTONS DISEASE 185 1 TGM2 6

KEGG COLORECTAL CANCER 62 2 CCND1 JUN 4

KEGG CELL CYCLE 128 2 CCND1 PRKDC 4

KEGG WNT SIGNALING PATHWAY 151 2 CCND1 JUN 4

KEGG THYROID CANCER 29 1 CCND1 4

KEGG BLADDER CANCER 42 1 CCND1 4

KEGG ENDOMETRIAL CANCER 52 1 CCND1 4

KEGG NON SMALL CELL LUNG CANCER 54 1 CCND1 4

KEGG ACUTE MYELOID LEUKEMIA 60 1 CCND1 4

KEGG GLIOMA 65 1 CCND1 4

KEGG EPITHELIAL CELL SIGNALING IN HELICOBACTER PYLORI INFECTION 68 1 JUN 4

KEGG P53 SIGNALING PATHWAY 69 1 CCND1 4

KEGG PANCREATIC CANCER 70 1 CCND1 4

KEGG RENAL CELL CARCINOMA 70 1 JUN 4

KEGG MELANOMA 71 1 CCND1 4

KEGG LEISHMANIA INFECTION 72 1 JUN 4

KEGG CHRONIC MYELOID LEUKEMIA 73 1 CCND1 4

KEGG VIRAL MYOCARDITIS 73 1 CCND1 4

KEGG SMALL CELL LUNG CANCER 84 1 CCND1 4

KEGG ERBB SIGNALING PATHWAY 87 1 JUN 4

KEGG PROSTATE CANCER 89 1 CCND1 4

KEGG T CELL RECEPTOR SIGNALING PATHWAY 108 1 JUN 4

KEGG ENDOCYTOSIS 183 3 ADRBK1 GIT2 PRKCZ 2

KEGG ALZHEIMERS DISEASE 169 2 APOE MAPT 2

KEGG TYPE II DIABETES MELLITUS 47 1 PRKCZ 2

KEGG ACUTE MYELOID LEUKEMIA 60 1 RPS6KB1 2

KEGG ADIPOCYTOKINE SIGNALING PATHWAY 67 1 PRKCQ 2

KEGG TGF BETA SIGNALING PATHWAY 86 1 RPS6KB1 2

KEGG ERBB SIGNALING PATHWAY 87 1 RPS6KB1 2

KEGG T CELL RECEPTOR SIGNALING PATHWAY 108 1 PRKCQ 2

KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION 118 1 MSN 2

KEGG CELL ADHESION MOLECULES CAMS 134 1 SELPLG 2

KEGG ADHERENS JUNCTION 75 3 ACTB SORBS1 WASF3 1

KEGG PATHOGENIC ESCHERICHIA COLI INFECTION 59 2 ACTB YWHAZ 1

KEGG OOCYTE MEIOSIS 114 2 YWHAE YWHAZ 1

KEGG CELL CYCLE 128 2 YWHAE YWHAZ 1

KEGG MATURITY ONSET DIABETES OF THE YOUNG 25 1 NR5A2 1

KEGG VIBRIO CHOLERAE INFECTION 56 1 ACTB 1

KEGG VIRAL MYOCARDITIS 73 1 ACTB 1

KEGG HYPERTROPHIC CARDIOMYOPATHY HCM 85 1 ACTB 1

KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION 118 1 ACTB 1

KEGG WNT SIGNALING PATHWAY 151 1 RUVBL1 1
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Table 16: List of similar nodes found in stage II and stage III network alignment.

Node Node Weight
ADRBK1 GIT2 1
AFF3 RQCD1 1
RQCD1 WIPF1 1
ANK3 CRKL 1
CRKL ARID4B 1
CRKL SLIT2 1
CRKL WIPF1 1
CRKL MAP4K5 1
ANXA6 CFL2 1
ANXA6 GMFB 1
ANXA6 MPRIP 1
ANXA6 TMOD3 1
ANXA6 UACA 1
CFL2 GMFB 1
CFL2 MPRIP 1
CFL2 TMOD3 1
CFL2 UACA 1
GMFB MPRIP 1
GMFB TMOD3 1
GMFB UACA 1
MPRIP TMOD3 1
MPRIP UACA 1
MPRIP CKAP4 1
MPRIP LRP1B 1
MPRIP RANBP9 1
MPRIP SASH1 1
MPRIP TFAP2A 1
TMOD3 UACA 1
TMOD3 EPS8 1
ARID4B MCFD2 1
ARID4B MSN 1
ARID4B PICALM 1
ARID4B PRKCZ 1
ARID4B SLIT2 1
PRKCZ FEZ1 1
PRKCZ FEZ2 1
PRKCZ RPS6KB1 1
SLIT2 GPC1 1
SLIT2 GTF3C4 1
ENO3 SEC23A 1
SEC23A WIPF1 1
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ATF3 JUN 1
JUN CCND1 1
JUN NR3C1 1
JUN FOSL2 1

ATXN1 RBFOX1 1
BCL11A KIF13B 1
BCL11A PPAP2B 1
BCL11A UTP6 1
KIF13B PPAP2B 1
KIF13B UTP6 1
PPAP2B UTP6 1
RASSF8 CLASP1 1
RASSF8 NADK 1
RASSF8 RAB11FIP2 1
RASSF8 GOLGA1 1
CFD FN1 1
FN1 COL2A1 1
FN1 PKD1 1
FN1 TGFBI 1
FN1 COL6A2 1
FN1 TCEB1 1
FN1 IGLL1 1

CKAP4 LRP1B 1
CKAP4 PLAT 1
CKAP4 RANBP9 1
LRP1B PLAT 1
LRP1B RANBP9 1
RANBP9 NR3C1 1
CLASP1 NADK 1
CLASP1 RAB11FIP2 1
NADK RAB11FIP2 1
COL2A1 PKD1 1
COL2A1 TGFBI 1
TGFBI RAP2C 1
CPA5 RECK 1
NR3C1 TCEB1 1
MAP4K5 CSNK1G3 1
MAP4K5 TBK1 1
CSNK1G3 TBK1 1
ELL2 PHACTR2 1
ERRFI1 SASH1 1
ISL1 RABIF 1
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MAPK7 HIPK3 1
MAP2 MARCKS 1
MAP2 NIN 1
FEM1C PPM1F 1
FEM1C TCEB1 1
PPM1F TCEB1 1
FEZ1 FEZ2 1
GATA4 ZFPM2 1
GTF3C4 SIP1 1
MARCKS NIN 1
MARCKS TOB1 1
MDK PTPRZ1 1

PTPRZ1 TNR 1
PDS5B WAPAL 1
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Table 17 : List of common pathways between stage II and stage III network interac-
tions. There were 97 interactions in common between stage II and stage III. Several
pathways are involved in cancer and important signaling pathways that aid in cancer
progression.

Gene KEGG PATHWAY

CRKL MAPK signaling pathway

GATA4 cGMP-PKG signaling pathway

ISL1 Signaling pathways regulating pluripotency of stem cells

JUN MAPK signaling pathway

NADK Nicotinate and nicotinamide metabolism

RAB11FIP2 Endocytosis

TBK1 Ras signaling pathway

WIPF1 Endocytosis

ATF3 HTLV-I infection

ANK3 Proteoglycans in cancer

CSNK1G3 Hedgehog signaling pathway

COL2A1 PI3K-Akt signaling pathway

COL6A2 PI3K-Akt signaling pathway

CCND1 FoxO signaling pathway

ENO3 Glycolysis / Gluconeogenesis

FN1 PI3K-Akt signaling pathway

GPC1 Proteoglycans in cancer

MAPK7 MAPK signaling pathway

MSN Leukocyte transendothelial migration

MARCKS MicroRNAs in cancer

PLAT Transcriptional misregulation in cancer,

PRKCZ Rap1 signaling pathway

PTPRZ1 Epithelial cell signaling in Helicobacter pylori infection

RECK MicroRNAs in cancer

RPS6KB1 ErbB signaling pathway

TNR PI3K-Akt signaling pathway

TCEB1 Pathways in cancer - Renal cell carcinoma

ZFPM2 MicroRNAs in cancer
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