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ABSTRACT

ANJIA WANG. REX: A Source-to-Source OpenMP Compiler for Productive
Research of Parallel Programming. (Under the direction of DR. YONGHONG YAN)

The growing complexity of high-performance computing (HPC) systems has led to

the development of parallel programming models, such as OpenMP and OpenACC,

to make it easier to utilize modern HPC architectures. These models provide a

higher-level interface for specifying parallelism patterns and reducing programming

effort, but performance optimization and customization are left to the compilers. De-

spite the availability of state-of-the-art OpenMP compilers, including LLVM, GCC,

and ROSE, there remains a need for a compiler that is easily usable and extend-

able by researchers and students who are not in the field of compiler development,

supports multiple parallel programming models, and has comparable performance to

mainstream compilers. The REX compiler has been proposed as a solution to these

challenges. It is built upon the ROSE compiler and uses a unified parallel inter-

mediate representation (UPIR), targeting the LLVM OpenMP runtime for optimal

performance. REX provides essential OpenMP 5.0/5.1 constructs and preliminary

support for OpenACC 3.2. Its source-to-source transformation capabilities offer flexi-

bility and ease of use with minimal overhead. It can be installed as a Docker image or

used through a cloud service. The REX compiler’s performance has been evaluated

using an enhanced version of the parallel benchmark, Rodinia, which compares GPU

offloading performance across different parallel programming models and compilers.

In conclusion, the REX compiler provides a unique solution for parallel programming

research and education, balancing performance, portability, flexibility, and usability.
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CHAPTER 1: INTRODUCTION

In the last decades, the complexity of the heterogeneous system for high-performance

computing (HPC) has increased significantly. To utilize modern HPC architectures

efficiently and easily, many parallel programming models have been developed, such

as OpenMP and OpenACC. These models are directive-based, and users can specify

what and how the source code should be parallelized without knowing the low-level de-

tails. While reducing the programming effort effectively, those models do not specify

the implementation underneath, so users cannot directly maximize the performance

by themselves. Therefore, the compilers play a critical role in many scenarios, such

as scientific computing and climate simulation, because performance could highly

depend on their different implementations.

Multiple parallel programming models are introduced to ease the difficulty of uti-

lizing more complex HPC systems to help users focus on solving scientific problems

instead of programming details. Each model has its advantages and disadvantages.

For example, OpenMP requires users to specify more information to control the par-

allelism precisely. On the other hand, OpenACC is more descriptive so that users can

use simpler syntax for parallelization. However, with fewer details of parallelism, the

OpenACC compiler may be unable to generate efficient parallel code. Nevertheless,

as the arguably de facto standard of parallel programming, OpenMP is supported by

most compilers compared to other parallel programming models. It is widely used in

academia for both research and teaching. For research purposes, users can evaluate

various algorithms and optimizations using OpenMP. Meanwhile, since the funda-

mental concept of OpenMP is based on SPMD, it is an excellent tool for students to

learn parallel programming.
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Therefore, to better cover these two subjects, there is a need for an OpenMP

compiler that features performance, portability, flexibility, and usability. Specifically,

this compiler should meet the following requirements:

• It’s open source and free to use/modify/redistribute;

• It supports relatively new OpenMP specifications, if not the latest;

• It helps users quickly experiment with new algorithms, optimization, and pro-

totypes without the need for solid compiler development background;

• Users can easily use it both online and offline;

• It’s flexible for extensions to support new features, such as a different parallel

model, a new compiler transformation pass, etc.

There have been many state-of-the-art OpenMP compilers. However, none of them

fulfill all the points above. LLVM, one of the most popular OpenMP compilers, per-

fectly addresses performance, portability, and flexibility. Unfortunately, researchers

not in this field and students may have difficulty modifying the compiler according

to their needs because of the complexity. In addition, understanding the LLVM IR

generated from the original OpenMP code and the parallelism it represents could

also be a challenge since LLVM IR is very different from regular C/C++ code. GCC

is another well-known open-source OpenMP compiler. Compared to LLVM, it also

supports the OpenACC parallel programming model. However, it faces the same

usability issue as LLVM. GCC’s code base is complex, and its GIMPLE IR needs

to be more intuitive to showcase the parallelism underneath. Furthermore, GCC

presents a much worse performance in many cases than LLVM. Its license could also

be problematic for some users wanting to keep their research details private. ROSE, a

source-to-source OpenMP compiler developed by LLNL, shows outstanding usability.

It lowers the OpenMP code to human-readable generic C/C++/Fortran code. Users
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can easily recognize how the transformation is performed and make any changes in

the same programming language. Unfortunately, ROSE has its drawbacks. It only

has full support for OpenMP 3.0 and partial support up to OpenMP 4.5. In addition,

several significant constructs, such as target teams, are not supported. Because ROSE

uses GCC as the backend compiler, its performance could be more optimal. There

are also several commercial compilers. Intel compiler is based on LLVM and contains

its proprietary implementation for certain OpenMP constructs. NVIDIA HPC SDK

supports both OpenMP and OpenACC. It can achieve similar performance to LLVM

and even better in some cases. However, NVIDIA HPC SDK is proprietary and can

only produce its own IR as LLVM and GCC do.

Since those commercial compilers are primarily proprietary and LLVM/GCC re-

quires skills of compiler development to customize, source-to-source compilers like

ROSE and OpenUH, mostly from academia, are developed to generate new source

code for quick experiments on new algorithms or platforms. Users can focus on

high-level programming languages without knowing the compiler’s details. Despite

the ongoing efforts above, we are still looking for a single approach that achieves all

the goals. Thus, to address all the challenges and utilize the advantages of existing

compilers for parallel programming research and education purposes, we propose the

REX compiler, a source-to-source OpenMP compiler. It’s built upon the ROSE com-

piler. Instead of targeting GCC’s GOMP runtime, we lower the OpenMP constructs

all to the LLVM OpenMP runtime APIs for the best performance. To provide the

most flexibility to users, we adopt unified parallel intermediate representation (UPIR)

to support any parallel programming model, including OpenMP. UPIR covers com-

monly used features among different parallel models and carries as much parallelism

information as possible. It makes extending support to other parallel models and

transformation passes more accessible.

Our main contributions include the following:
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• Portability: REX uses a unified AST for C/C++/Fortran. Users can use the

same APIs to manipulate the AST of inputs in different languages. REX com-

piler supports essential OpenMP 5.0/5.1 constructs, including offloading and

tasking. To demonstrate the benefits of utilizing UPIR and unified transforma-

tion, REX provides preliminary support to OpenACC 3.2 specification.

• Performance: The OpenMP transformation in the REX compiler targets the

LLVM OpenMP runtime, enabling it to achieve the same performance as the

original LLVM OpenMP compiler while maintaining the flexibility of source-to-

source transformation. We have implemented several optimizations for OpenMP

GPU offloading, such as data shuffle and dynamic parallelism. We have devel-

oped a comprehensive parallel benchmark based on the classic Rodinia to evalu-

ate different parallel programming models, focusing on assessing compiler GPU

offloading performance. Compared to the original Rodinia, our enhanced ver-

sion adopts the latest OpenMP constructs and supports OpenACC, providing

a more robust performance evaluation framework.

• Flexibility: With source-to-source transformation, REX can transform OpenMP

and OpenACC code so that users can compile the generated source code using

any non-OpenMP/OpenACC compiler with eligible OpenMP runtime. The

REX compiler’s OpenMP/OpenACC parser and runtime are separate modules.

Users can make their customization as long as they keep the API consistent.

• Usability: REX offers a ready-to-use Docker image in addition to the conven-

tional installation, eliminating the need for users to deal with the complexi-

ties of setting up the environment. Furthermore, an open-source cloud service,

FreeCompilerCamp (FreeCC), is also available, enabling users to experiment

with the REX compiler within a browser. This service also serves as a platform

for users to learn compiler development. FreeCC can be deployed on local pri-
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vate and online public servers, ensuring flexibility and accessibility for users in

various settings.

As a research-oriented project, REX has its limitations:

• REX adopts the LLVM OpenMP runtime and benefits from its excellent per-

formance. However, REX also inherits its support status of OpenMP. It means

we may not always catch up with the latest OpenMP spec. Additionally, we

must internally create corresponding wrappers using LLVM OpenMP APIs to

support other parallel models.

• REX’s design allows any device code that LLVM supports. However, due to

resource limits, currently, we only implement the GPU kernel generation in

CUDA.

The remainder of the dissertation is organized as follows: Chapter 2 gives the re-

lated work and our motivation. Chapter 3 presents the design of UPIR. We explored

the usage of data shuffle on GPU in OpenMP in Chapter 4. In Chapter 5, we dis-

cuss the design and implementation details of the REX compiler and evaluate its

performance using the enhanced heterogeneous computing benchmark suite Rodinia.

Chapter 6 introduces an online learning platform to train researchers and students to

develop OpenMP compilers efficiently. Finally, Chapter 7 concludes the dissertation.



CHAPTER 2: MOTIVATION

2.1 Parallel IR

2.1.1 Challenges

Many compiler implementations to support the compilation of parallel programs

take the approach of transforming (lowering) IRs of parallel constructs to API calls

of parallel runtime systems, and it is often performed at the compiler front-end. The

parallel programs are then considered sequential programs in the later stages of com-

pilation. There are, in general, at least two limitations of this approach. First, the

parallelism information may not be carried sufficiently through the whole compilation

pass to the back-end, and the compilation would then lose some optimization oppor-

tunities in the later stage [4]. For example, function outlining is a common compiler

transformation step for lowering OpenMP parallel code region to runtime API calls.

The newly outlined function is separated from the original function. Thus traditional

data- and control-flow analysis and optimization cannot apply to the original function

body without additional effort to associate the two functions after outlining. Secondly,

since the transformation for parallelism is performed at the front-end, operating on

language-specific IRs, parallelism-aware compilation becomes language-specific. Each

programming model requires implementing the transformation in the compiler front-

end. The study of thread programming models such as OpenMP, OpenACC, CUDA,

Cilk, etc. shows that programming models share common functionality and even

similar syntax for programming parallelism [5]. Thus it is possible to unify compiler

transformation for multiple models if a common and language-neutral IR is used by

the compiler [6]. Major open-source compilers such as GCC and LLVM have shown
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the unification of IRs for multiple languages, their support for unifying parallel models

is however limited.

2.1.2 GCC

GCC supports a wide range of programming languages and platforms. It uses a

language-independent IR GIMPLE. GCC implements different parsers for each lan-

guage and generates a generic AST first. Then, it converts the generic AST into

GIMPLE for further analysis and transformation. This design reduces the dupli-

cated work of implementing similar compilation passes for multiple languages. GCC

supports both OpenMP and OpenACC. A set of IR components are added as ex-

tensions to GIMPLE for OpenMP, such as GIMPLE_OMP_TARGET represent-

ing an offloading region. All OpenMP constructs are converted to corresponding

GIMPLE IR objects. For OpenACC, GCC maps OpenACC constructs to OpenMP

GIMPLE IRs. For instance, acc kernels and acc parallel are both converted to GIM-

PLE_OMP_TARGET. The transformation for OpenACC then does not need to be

implemented separately.

The unification for OpenMP and OpenACC supports in GCC proved that a uni-

fied parallel IR reduces the compiler programming effort and an existing transfor-

mation module can be extended easily to support another parallel model. However,

rather than working as an abstraction for multiple parallel programming models,

those GIMPLE IR objects are primarily designed for OpenMP and tightly associated

with OpenMP syntax and semantics. Not all the necessary parallelism information is

included since they may not be required according to OpenMP specifications. Given

a group of optimization passes that need complete data attributes, each of them

has to search individually because GIMPLE only contains the information specified

explicitly by users.
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2.1.3 LLVM

LLVM is another widely used compiler like GCC but with a more flexible modular

design. Different languages have their own front-ends that generate unified LLVM

IR for later transformation. LLVM IR is a low-level language-neutral IR supporting

the same compiler analyses and transformations for multiple programming models.

However, the LLVM IR was not designed for parallelism, though it can be enhanced

to encode certain parallelism information using metadata or IR attribute (e.g. the

llvm.loop.parallel_accesses [7]), or parallel intrinsic functions [8]. However, using

the intrinsic or IR metadata has the same limitation of being complicated when the

parallel construct becomes complicated. Also, the conventional serial analysis and

optimization may not be applicable anymore because the parallel region has been

outlined and the compiler is not aware of the semantics of intrinsic calling the outlined

function. To bridge the gap between the low-level LLVM IR and high-level language-

specific IR and frontend, recently, LLVM adopts the MLIR [9] as the middle-end IR

and abstraction to address the fragmentation of compiler development for multiple

programming models including domain-specific languages. However, until now, MLIR

has mainly been used for defining language-specific IRs dialects for new languages or

extensions to existing languages, but not for unifying IRs of common constructs of

multiple languages [10].

2.1.4 Enhancing Existing IR for Parallelism

There are proposals for new IRs for parallelism, including as much relevant infor-

mation as possible. Zhao et al. designed a set of parallel IR including high, middle,

and low levels to represent parallel constructs [11], focusing on parallel loop chunk-

ing, load elimination, delegated isolation, automatic data privatization, vectorization,

and other cases. Benoit et al. presented Gomet and KIMBLE as GCC extensions

to support parallel IR [12, 13]. It introduces a hardware abstraction and hierarchy
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of parallel IR for parallelism adaption. Doerfert et al. proposed a new interface

TRegion used in the OpenMP lowering procedure [14]. It postpones the decision of

target-specific transformation and finds a better solution rather than solely relying on

the user’s original OpenMP code. HPVM/approxHPVM is another design of parallel

IR [15, 16]. HPVM provides compiler IR, virtual ISA, and runtime libraries, while

other studies mainly focus on one of them. Tapir/LLVM [4] adds three instructions

detach, reattach, and sync to encode logical parallelism asymmetrically in LLVM IR

to support task parallelism. It has been extended to support OpenMP tasking [17]

and TensorFlow [18]. However, these state of art lacks the generality for supporting

multiple parallelism patterns (e.g., SPMD, data, and task parallelism), data-sharing

attributes, and synchronization operations of parallel programs.

2.1.5 Creating Unified Parallel Intermediate Representation (UPIR)

As existing parallel programming models share common parallelism functional-

ity and similar interfaces of essential capability for programming parallelism [5], a

language-independent abstraction of the fundamental entities and constructs for par-

allelism and their connections can be constructed in a unified intermediate represen-

tation as the backbone to enable unified and common parallelism-aware analysis and

transformation. The UPIR design and specification include 1) the three commonly

used parallelism patterns, namely single program multiple data (SPMD), data paral-

lelism, and task parallelism, including offloading tasks; 2) data attributes and explicit

data movement and memory management for assisting data-aware optimization for

parallel programs; and 3) synchronization operations (e.g., barrier, reduction, mutual

exclusion, etc) used in parallel programming for optimizing synchronization cost by

the compiler. Table 2.1 shows the UPIR’s support and mapping for the language con-

structs of commonly-used parallel models. In the following three sections, we present

our design of the UPIR. Since UPIR naturally unifies IR of different programming

models, an additional benefit is that supporting programs of hybrid models or sup-
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porting translating programs of one model to another would be made much easier. In

comparison with related work such as INSPIRE [6], they share a similar concept, but

UPIR’s design allows for more parallelism information in the IR and provides more

features than INSPIRE. For example, UPIR categorizes data parallelism into work-

sharing, SIMD, and taskloop, compared to a generic work distribution in INSPIRE.

2.1.5.1 UPIR extension

Since the goal of UPIR is to cover the common features shared by multiple parallel

models, thus the limitation would be that some of the unique features of a parallel

model might not be included in UPIR. e.g., memory controls in CUDA. In our design,

we address this by including UPIR extension in the form of key-value maps such that

language-specific features can be added under the UPIR. For the compiler, a language-

unique compiler pass can be added as an extension of the UPIR transformation pass

in the UPIR compiler. For instance, metadirective in OpenMP is created as a UPIR

extension but not part of the UPIR nodes. It will be handled by the compiler only if

a corresponding transformation pass is implemented.
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Table 2.1: Mapping of parallel model constructs with UPIR design

SPMD parallelism Data parallelism Async task
parallelism

Data
attributes

Synchronization

UPIR spmd loop/loop-parallel task data sync
CUDA <<<...>>> - async kernel

launching
__shared__,
__global__,
memory opera-
tions

cudaDeviceSynchronize

OpenCL clEnqueueNDRangeKernel - clEnqueueTask clCreate / Read
/ WriteBuffer

clWaitForEvents

OpenClik - cilk_for, array op-
erations, elemental
functions

cilk_spawn,
cilk_sync

- cilk_sync

Kokkos parallel_for parallel_for task_spawn,
host_spawn

View, memory
space

fence

SYCL parallel_for parallel_for single_task,
host_task

buffer wait

OpenMP teams, parallel distribute, for,
simd

task, target map(to/from),
shared/private/-
firstprivate

barrier, atomic, criti-
cal, taskwait

OpenACC parallel loop gang/work-
er/vector

async, wait data(copyin/out),
shared/private/-
firstprivate

wait, atomic

PThread pthread_create/join - - - pthread_join,
pthread_cond_wait
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2.2 Data Shuffle on GPU

2.2.1 Challenges

In these architectures, data transfer between registers belonging to multiple com-

puting elements, such as cores or vector lanes, can be achieved without using the

memory and cache systems by employing shuffle or permutation operations. For

instance, starting with the Kepler architecture, NVIDIA incorporated shuffle instruc-

tions to enable data transfer among registers of separate threads within a warp. This

functionality allows multi-thread kernels to carry out synchronous vector-like opera-

tions inside a warp. As register access latency is 10 to 100 times lower than that of

SRAM and DRAM, respectively, taking advantage of this data shuffle feature among

threads can substantially enhance the computation performance of work-sharing or

vector loops. However, mainstream compilers like GCC and LLVM have yet to utilize

this feature in OpenMP GPU offloading.

This section explores the data shuffling capability between GPU cores and vector

lanes in NVIDIA GPUs, AMD GPUs, and vector architectures.

2.2.2 CUDA shuffle instruction for NVIDIA GPUs

Since Kepler architecture, NVIDIA releases the warp shuffle instructions to allow

data exchange between registers without touching memory. Before that, exchanging

data between threads must go through shared memory within a block or global mem-

ory. If the operation is not atomic, developers have to synchronize before and after

the data transfer, which introduces overhead and increases the programming complex-

ity. The shuffle instructions introduced in NVIDIA CUDA include __shfl_sync,

__shfl_up_sync, __shfl_down_sync, and __shfl_xor_sync. Using those instruc-

tions, data in private registers of threads within the same warp could be exchanged

directly. They are atomic operations, and the synchronization is enforced naturally

by the SIMT execution model of the NVIDIA GPU architecture. The shuffle in-
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structions are read-only operations to the threads that provide the data.

Table 2.2: CUDA shuffle instructions

Instruction Description Parameters
__shfl_sync Direct copy from indexed lane unsigned mask, T var, int

srcLane, int width=warpSize
__shfl_up_sync Copy from a lane with lower ID

relative to caller
unsigned mask, T var,
unsigned int delta, int
width=warpSize

__shfl_down_sync Copy from a lane with higher ID
relative to caller

unsigned mask, T var,
unsigned int delta, int
width=warpSize

__shfl_xor_sync Copy from a lane based on bitwise
XOR of own lane ID

unsigned mask, T var, int
laneMask, int width=warpSize

The description of the CUDA’s shuffle instructions are shown in Table 2.2. They

take four parameters and the last one for warp size is optional. mask is used to

indicate which threads are involved. var is the targeting data, which could be an

integer, float, double or other types. srcLane is an absolute lane ID in the warp

while delta represents the relative difference to the lane ID of the caller thread.

laneMask performs a bitwise operation to the lane ID of the caller thread.

Figure 2.1: Shuffle example using NVIDIA GPU instruction [3]

We use a sum reduction as an example to show how shuffle works. To simplify the

case, we ensure only 8 lanes hold their copy of variable v. They need to store the

value in shared memory without shuffling so that other threads can access it. Between

each iteration of reduction, the intermediate result also needs to be maintained in the



14

shared memory, and the synchronization has to be appropriately handled to avoid

a data race. By using shuffle instruction, a thread can directly access the private

register of another thread without routing via shared memory. Furthermore, the

shuffle operation is atomic and executed in lockstep. In Figure 2.1 [3], initially, the

first four threads read v from the last four threads and add it up to their copy of v.

Then the same kind of reduction continued among these four threads. Eventually, the

very first thread got the sum of all eight elements. Throughout the whole procedure,

only registers are used for computing.

2.2.3 Cross-lane operations of AMD GPUs

The AMD GPUs also provide instructions similar to the shuffle instructions in

CUDA. Wavefront on AMD GPU plays the same role as warp on NVIDIA GPU.

Within a wavefront, 64 lanes can execute the same code simultaneously as a SIMD

vector.

Table 2.3: Summary of AMD GPU shuffle instruction [1]

Instruction Description Parameters
ds_permute_b32 Push src data to a lane

indicated by addr
dest, addr, src
[offset:addr_offset]

ds_bpermute_b32 Pull src data from a lane
indicated by addr

dest, addr, src
[offset:addr_offset]

There are two instructions related to shuffle (Table 2.3). Unlike the read-only

operations in CUDA, AMD allows a thread to push its data to another thread’s

private register using ds_permute_b32. ds_bpermute_b32 reads data from another

thread’s private register.

2.2.4 Shuffle data between SIMD/vector lanes

Vector architectures also provide instructions for cross-lane operations. For exam-

ple, Intel AVX2 and AVX512 introduced SHUFFLE, BROADCAST, and PERMUTE

operations for cross-lane functionality for floating-point and integer operations. In-

structions are SHUFPS, VSHUFPS, VPERMI2D, VPERMD, VPERMQ, etc, and
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their intrinsics can be found from Intel compiler developer guide [19]. ARM Scal-

able Vector Extension (SVE) provides permutation and shuffle operations, including

reductions across vector lanes. RISC-V vector extensions also have to permute in-

structions to allow cross-lane data movement. While OpenMP’s simd directive can

instruct the compiler to vectorize a loop, advanced operations such as cross-lane data

movement have not yet been supported in the standard.

There are several works that have adopted the CUDA shuffle instructions in their

studies for performance improvement. CUDA shuffle instructions can improve the

performance of reduction operation by computing on private registers of multiple

threads [3, 20, 21]. Liu and Schmit similarly use warp shuffle functions to develop

LightSpMV, a faster algorithm for sparse matrix-vector multiplication [22]. For a

more general linear solver, shuffle instructions can speed up the computation by

directly exchanging values stored on registers as well [21]. Tangram is a high-level

programming framework that provides APIs to perform computation on GPU [23]. It

has been extended to use atomic and shuffle functions available in the framework [24].

During AST construction, an additional pass is added to determine the opportunity

of inserting shuffle instruction for loop optimization. With the help of shuffle

instructions, Chen et al. [25] realize the systolic execution on GPU and demonstrate

superior performance for 2D stencil in CUDA than most state-of-the-art implementa-

tions. In comparison, our work proposes a high-level interface using shuffle instruction

with OpenMP.

2.3 Source-To-Source Compiler

2.3.1 Challenges

As heterogeneous systems evolve to deliver higher performance, their complex-

ity also increases. Various parallel programming models have been introduced to

better harness the power of advanced hardware to ease programming difficulties.

Consequently, compilers are responsible for producing suitable binaries for different
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platforms. While mainstream compilers such as LLVM and GCC perform well in

most cases, they have limitations in supporting parallel models, keeping up with

the latest hardware features, and providing an accessible development experience for

non-compiler developers.

OpenMP and OpenACC are popular directive-based parallel models; however,

LLVM does not support OpenACC. Although GCC supports both models, its perfor-

mance can sometimes be suboptimal. Furthermore, these compilers often lag in sup-

porting the latest hardware features. For example, LLVM’s full support for NVIDIA

Ampere GPUs arrived a year after its official release in 2020. The latest NVIDIA

Ada Lovelace GPUs released in 2022 have yet to be fully supported. To leverage the

latest features of these GPUs within parallel models like OpenMP, it is necessary to

manually update the compiler and generate new device codes to run on the GPU.

This process requires extensive compiler development knowledge, which is unrealistic

for many researchers and students.

An alternative approach would be to use CUDA instead of OpenMP to write par-

allel programs. However, this approach may require migrating an existing codebase

from OpenMP to CUDA, resulting in a significant workload. Additionally, as a lower-

level parallel programming interface, CUDA demands more effort from users than

OpenMP.

This landscape creates a need for source-to-source compilers to address these issues.

Source-to-source compilers offer excellent language interoperability by converting code

from one language to another, allowing for better compatibility and integration be-

tween different languages and parallel programming models. For instance, a source-

to-source compiler could transform OpenACC code to OpenMP code, enabling LLVM

to handle both models indirectly.

Source-to-source compilers can also utilize the latest hardware features more ef-

ficiently due to their extensible language capabilities. For example, data shuffle, a
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feature available on recent NVIDIA GPUs, enables multiple threads to exchange data

directly through registers, bypassing the need for global and shared memory access.

LLVM or GCC does not yet support this feature. OpenMP source-to-source compiler

can convert OpenMP code to CUDA, and the data shuffle feature can be utilized

through CUDA API calls to improve performance. In addition to leveraging new

hardware features, new algorithms can be prototyped directly on the generated code.

Moreover, source-to-source compilers can expose more underlying details to users

than mainstream compilers like LLVM and GCC, which convert input code to com-

piler IR and then to the final binaries. The compiler IR and binaries are difficult to

understand without compiler background knowledge. For example, how an OpenMP

program is parallelized may be unclear to most users. In such cases, an OpenMP

source-to-source compiler can transform OpenMP code into human-readable C code

with appropriate runtime API calls, making it more accessible to C users.

2.3.2 Source-to-source Transformation

The process of source-to-source transformation converts code written in one pro-

gramming language to another instead of converting it to binary code. This approach

can improve performance by applying optimizations or reducing the costs associated

with coding by generating code in the new programming model with minimal human

effort. This is particularly important in parallel programming, as it allows researchers

and students to leverage their existing code base and reduces the learning curve as-

sociated with new parallel programming models.

One critical use case for source-to-source transformation is auto parallelization,

which aims to improve performance. However, transforming traditional serial pro-

grams into parallel ones can be challenging. For example, CUDA is a popular parallel

programming model developed by NVIDIA that is widely used in HPC systems with

NVIDIA GPUs. Despite its performance advantages, CUDA is limited by its device

specificity and support for only NVIDIA GPUs. This can hinder its portability, as
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many supercomputers use AMD GPUs (such as Corona at LLNL) or have no GPU

(such as Fugaku at RIKEN). Additionally, CUDA requires users to learn a new set

of extensions to C++ and runtime APIs, which can be a substantial effort.

OpenCL was introduced to address the limitations of device-specific programming

models like CUDA. Unlike CUDA, OpenCL code can theoretically be executed on

any device, including CPU, GPU, FPGA, and other accelerators. However, this

portability is sometimes hindered by vendor-specific implementations and extensions

that take advantage of specific platforms. As a result, the market has different open-

source and proprietary implementations of OpenCL, which can break its portability.

Multiple directive-based parallel programming models have been proposed to ad-

dress the second limitation of programming difficulties, such as OpenMP and Ope-

nACC. These models are an intermediate layer between the original sequential code

and lower-level languages like CUDA and OpenCL. Users describe how the program

should be executed in parallel using directives, and the compiler generates the corre-

sponding parallelized code. While this approach can make writing parallel programs

more efficient, it also sacrifices fine control over software and hardware. For in-

stance, CUDA provides a rich set of APIs for kernel execution and data transfer,

while OpenMP users mostly rely on implementing the compiler. As a result, these

high-level programming models may result in lower performance.

There is no one-size-fits-all solution for parallel programming due to the limitations

and trade-offs of the various models. There have been numerous studies on source-

to-source transformation to address these issues, focusing on optimizing performance,

portability, or a combination of both.

A source-to-source transformation is a popular approach for modern heterogeneous

parallel systems, converting generic C code into a parallel programming model. For

example, compilers can generate optimized CUDA code for NVIDIA GPUs based

on factors such as memory hierarchy, data access pattern, and loop structures [26,
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27, 28, 29, 30, 31]. Other high-level programming models, such as OpenMP, can

also be generated through source-to-source transformation. Cetus, for instance, is a

source-to-source compiler that converts sequential C code into parallel code by insert-

ing OpenMP directives. It performs various compiler analyses and transformations,

such as data privatization, reduction recognition, and loop parallelization. Evaluated

using the NPB benchmark, Cetus shows an average 1.66x speedup over Intel’s ICC

compiler [32].

There have been many developments in source-to-source translators for converting

between different parallel programming models because each model has its suitable

use case. For example, SnuCL and CU2CL address the challenge of automatic di-

rect translation between CUDA and OpenCL [33, 34]. SnuCL supports bidirectional

translation, while Swan provides a high-level abstraction that maps API calls to ei-

ther CUDA or OpenCL internally [35]. NMT uses machine learning techniques to

assist in the translation process by pairing commonly used CUDA and OpenCL APIs

as the training set and determining usage patterns [36].

There is a strong demand for transforming code between low-level and high-level

parallel programming models. For instance, OpenMP is a widely-used high-level

parallel programming model that provides portability, but performance depends on

the OpenMP implementation in a specific compiler. Researchers have developed

tools to translate OpenMP code into low-level models such as CUDA and OpenCL

to optimize performance.

Lee et al. proposed an automatic translator from OpenMP to CUDA, making

it easier for users to obtain equivalent CUDA code without learning the complex

CUDA APIs or writing code from scratch [37]. Once the translation is complete, the

compiler can further optimize the code. Kim et al. have also developed a tool that

lowers OpenMP code into OpenCL and enables runtime optimizations to minimize

data transfer, thus improving performance [38].
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The transformation of parallel programming models has significant benefits in terms

of reducing programming effort. However, it is challenging to achieve both optimal

performance and portability. For instance, automatic parallelization can improve per-

formance over the original sequential code, but it may not be suitable for all scenar-

ios. Furthermore, any optimizations made in the original code must be implemented

again. Additionally, these tools often require a learning curve, including the usage

and environment setup. REX has been introduced as an OpenMP compiler based

on ROSE to address these limitations. It leverages the LLVM OpenMP runtime for

improved performance, offers unified source-to-source transformation, and provides a

cloud-based integrated solution without needing installation, making it a more robust

and user-friendly solution.

2.4 Online Training for Compiler Development

2.4.1 Challenges

Table 2.4 summarizes the main pain points for compiler training. For example,

one of the first problems for developers is getting their hands on a machine that is

suitable for compiler development. Getting access to a supercomputing cluster could

be a challenge and a potential deterrent for many. The second, and most frustrat-

ing challenge for beginners is making sure that all the software packages necessary

for developing a compiler are met on the said machine. Sometimes users might not

have suitable access to install certain dependencies. Or sometimes the dependen-

cies are just too complex to resolve on a particular machine. One solution to these

two problems is to provide a free online sandbox terminal that will already have an

environment setup for compiler development.

Based on our experiences, traditional text tutorials are not as effective for compiler

development, as hands-on tutorials. If a framework is provided which gives its users

an option to learn by hands-on practice, and the freedom to dig deep and perform

self-experiments, then such a framework will be the most efficacious way of teaching
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compilers.

Another problem of creating the content of compiler development, especially for

OpenMP, is that no one person or group knows all the details of OpenMP implementa-

tions since they involve many compilation and runtime stages including parsing, AST,

transformation, as well as runtime support. No one implementation demonstrates all

the options of OpenMP. This generally results in incomplete or unproductive tuto-

rials. Having an open-source environment where multiple users can submit tutorials

for multiple compilers can resolve such complications.

Finally hosting tutorials on the website costs money. Having containers can re-

sult in larger disk space which means more expenses. Having an open-sourced, self-

deployable framework can help users host their tutorials for free. This work aims

to improve the effectiveness and scalability of compiler development training for re-

Table 2.4: Pain points and solutions for training OpenMP compiler developers

Pain
Points

Description Proposed Solution

Accessibility Paperwork to get accounts on
suitable machines

Online sandbox terminal open to
anyone

Installation Many software packages are
needed

Docker images

Effectiveness Traditional text tutorials are not
effective

Learning by doing, testing,
certification

Content No single person/group knows all
details of OpenMP compiler
development

Self-made tutorials +
crowd-sourcing to accept external
contributions

Design
trade-offs

One compiler cannot
demonstrate all options

Hosting tutorials for multiple
compilers

Costs Hosting websites with containers
costs money

Open-source, self-deployable
framework

Security Online websites have inherent
risks

Containers + Cloud machines
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searchers, developers, and graduate students. We chose two OpenMP compilers,

Clang/LLVM and ROSE, as examples. This section gives a brief introduction of

background information.

2.4.2 Compilers

Compilers are essential for HPC. Unlike interpreted languages, programs written

in compiled languages give a better performance and are more favorable towards

high-performance computing. A compiler takes high-level human-readable programs

in programming languages, such as C/C++ or Fortran, and converts them into low-

level binary machine codes for a specific architecture. The entire process of this

transformation is complicated. A compiler must parse the code, check for syntax

correctness, gather necessary semantic information (like type checking or variable

declaration before use), then convert the source from high-level language to interme-

diate representation before transforming them into machine codes [39].

Today a compiler can do much more than convert a program into machine instruc-

tions. As HPC hardware designs are evolving, machines are becoming more and more

complex, and issues that need to be addressed by programmers are also getting con-

voluted. This raises the question of what more a compiler can do for programmers.

Compilers have very complex designs so that the work of an application developer

becomes simpler. Owing to the complexity of design, extending a compiler to add a

new feature is a very time-consuming job. The development cycle of a compiler is

at least 3-5 years. Training programmers to develop compilers is challenging for the

trainer and the trainee.

2.4.3 Clang/LLVM

LLVM [40] is the prime environment for developing new compilers and language-

processing tools. HPC programmers rely on compilers and analysis tools. LLVM is

the environment of choice for developing such tools and, thus, should interest many
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HPC programmers. LLVM makes it easier to not only create new languages but to

enhance the development of existing ones. Its primary C/C++ compiler frontend is

Clang. Today most supercomputing clusters deploy LLVM as one of their compilers

due to the following reasons:

1. It provides a high-performance and up-to-date C/C++ compiler frontend Clang.

2. Many researchers in the HPC community enjoy Clang’s diagnostic abilities and

static-analysis framework.

3. It allows for tapping other languages with an LLVM back-end, like Intel’s ISPC

[41] and different scripting languages.

4. It makes for compelling compiler research, as evident by the plethora of projects

built using LLVM [42].

Ever since its first release in 2003, LLVM has gone through a plethora of changes and

updates. With every release, new features are added, and older features are deleted or

updated. Owing to these diverse sets of features and many more, using Clang/LLVM

for developing a tool or a plugin is a very complex task. Many tutorials are available

for Clang/LLVM, but they are all just text-based tutorials and come with their own

set of challenges.

2.4.4 ROSE

ROSE is an open-source compiler infrastructure developed at Lawrence Liver-

more National Laboratory (LLNL). It is designed to build source-to-source pro-

gram transformation and analysis tools for Fortran, C, C++, OpenMP, and UPC

applications[43]. Internally, ROSE generates a uniform abstract syntax tree (AST) as

its intermediate representation (IR) for input codes. Sophisticated compiler analyses,

transformations, and optimizations are developed on top of the AST and encapsulated

as simple function calls, which tool developers can readily leverage. The ROSE AST
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can be optionally unparsed to human-readable and compilable source files, which in

turn can be compiled into the final executable by a traditional compiler such as GCC

or Intel compiler.

However, for users unfamiliar with the ROSE compiler, it’s not easy to customize

the framework because of the complexity of ROSE. ROSE has more than two million

lines of code, including tests, built-in projects, and tutorial examples. Creating a

new transformation module could involve multiple functions located in different files

far away from each other. Like any other compiler framework, the ROSE compiler

exposes its API functions for developers to traverse, analyze, and modify its abstract

syntax tree. Users not only need to learn the general knowledge of compilers but also

have to understand how ROSE API functions work.

2.4.5 OpenMP

OpenMP is the de-facto portable programming interface in HPC for exploiting

node-level parallelism [44]. OpenMP uses C/C++ directives and Fortran comments

to annotate base language programs written in C/C++ and Fortran, respectively.

These annotations express additional semantics related to parallelism, worksharing,

synchronization, tasking, etc. A compiler supporting OpenMP can recognize OpenMP

annotations and transform the annotated input code into multi-threaded code by

calling some OpenMP runtime functions.

There are multiple compilers implementing OpenMP, such as GCC[45], Intel[46],

Cray[47], IBM XL[48], Clang/LLVM and ROSE[49]. Most of the parallel constructs in

OpenMP are realized through compiler directives. This allows a serial program to be

easily converted into a parallel one by adding the necessary pre-processor directives.

Figure. 2.2 is an OpenMP program to calculate PI in parallel. The user inserted an

OpenMP parallel for directive at lines 14-15 right above the loop (Figure 2.2a).

An OpenMP compiler transforms (or lowers) the program into multi-threaded code

with calls to runtime library functions (Figure 2.2b). In the lowered code at lines
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1 #include <omp.h>
2 #include <stdio.h>
3
4 int num_steps = 10000;
5
6 int main() {
7 double x = 0;
8 double sum = 0.0;
9 double pi;

10 int i;
11 double step = 1.0/(

double) num_steps;
12
13 // Run the code in

parallel
14 #pragma omp parallel

for private(i,x)
reduction(+:sum)
schedule(static)

15 for (i = 0; i <
num_steps; i = i +
1) {

16 x = (i+0.5)*step;
17 sum = sum +

4.0/(1.0+x*x);
18 }
19
20 pi = step * sum;
21 printf("%f\n", pi);
22 }

(a) OpenMP program to calculate PI

1 ... // omitted headers and a data
structure declaration storing
variable addresses

2 static void OUT__1__2189__(void *
__out_argv);

3 int main(int argc, char **argv) {
4 ... // omitted variable declarations
5 XOMP_parallel_start(OUT__1__2189__,&

__out_argv1__2189__,1,0,"demo.c"
,10);

6 XOMP_parallel_end("demo.c",15);
7 pi = step * sum;
8 printf("%f\n",pi);
9 XOMP_terminate(status);

10 }
11 static void OUT__1__2189__(void *

__out_argv) {
12 ... // omitted variable declarations
13 double *sum = (double *)(((struct

OUT__1__2189___data *)__out_argv)
-> sum_p);

14 double *step = (double *)(((struct
OUT__1__2189___data *)__out_argv)
-> step_p);

15 XOMP_loop_default(0,num_steps - 1,1,&
p_lower_,&p_upper_);

16 for (p_index_=p_lower_; p_index_<=
p_upper_; p_index_=p_index_+1) {

17 _p_x = (p_index_ + 0.5) * *step;
18 _p_sum = _p_sum + 4.0 / (1.0 + _p_x *

_p_x);
19 }
20 XOMP_atomic_start();
21 *sum = *sum + _p_sum;
22 XOMP_atomic_end(); XOMP_barrier();
23 }

(b) Transformed (or Lowered) code

Figure 2.2: PI calculation using OpenMP and its corresponding multi-threaded code
generated by ROSE

11-23, the loop block is outlined as a function containing the original statements in

the loop. Line 15 uses a runtime function call to split loop iterations among several

threads. At line 5, the main function passes the outlined function’s pointer to another
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runtime function which will spawn multiple threads to execute the outlined function.

The initial OpenMP standard in 1997 only specified a handful of directives. Since

then, many new constructs have been introduced, and most existing APIs have been

enhanced in each revision [50]. The latest version of OpenMP 5.0, released in 2018,

has more than 60 directives. Compiler support thus requires more effort than be-

fore [51]. A complete compiler implementation of the latest OpenMP standard for

C/C++ and Fortran would involve many development efforts spanning multiple years.

Furthermore, more and more researchers and developers are interested in designing

various extensions to OpenMP to tame the increasing complexity of heterogeneous

node designs in high-performance computing. Such extensions could be used to en-

hance the expressiveness, performance, or productivity of OpenMP. Support for those

extensions requires a significant amount of compiler development.

2.4.6 Existing Compiler Tutorials

Both ROSE [52] and Clang [53] already have abundant documentation on their

official websites, including user guides, tutorials, and Doxygen-generated API web-

pages, etc. There is also a ROSE wikibook which is open for anyone to contribute.

Clang’s official page provides documentation ranging from how to obtain and build

clang, to how to write plugins and create tools, etc. Additionally, several free and

open-source tutorial blogs are available for Clang. OpenMP’s official page provides

links [54] to several open tutorials available on the internet. However, all the existing

documentation is written in the traditional text format. It is still up to the readers

to find a machine to install and configure the development environment. The entire

preparation phase may take hours to finish. Many learners give up due to the tedious

steps or the lack of access to a suitable machine.
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2.4.7 Online Education systems

There is a large amount of online learning systems [55], including Khan Academy [56],

Coursera [57], edX [58] and so on. These learning systems are mostly aimed at general

education and training purposes. They are not especially targeting compiler devel-

opment. A closely related website is freeCodeCamp [59], which is an online training

platform for training web developers. Play-with-Docker is an online sandbox for peo-

ple to learn docker. Our work builds on top of this framework with customization for

compiler training.

Although several cloud-based tools have been leveraged for computer science edu-

cation, there is an apparent lack of such tools to teach compiler development. Ngo et

al. [60] use CloudLab, a national experimentation platform for advanced computing

research, to teach cluster computing to students. Bisbal [61] outlines what topics

need to be taught to computational scientists in a logical order to train them in

open-source software. Shin et al. [62] developed a web-based MOOC system related

to computational science education, which could hold various resources and efficient

programming practices. Many such tools and resources are available across several

computation domains, but compiler development still lacks such online tools.



CHAPTER 3: UPIR: TOWARD THE DESIGN OF UNIFIED PARALLEL

INTERMEDIATE REPRESENTATION FOR PARALLEL PROGRAMMING

MODELS

3.1 Introduction

The past two decades have seen dramatically increased complexity of computer

systems, including the significant increase of parallelism from 10s to 100s and 1000s

computing units and cores, the wide adoption of heterogeneous architecture such as

CPU, GPUs and vector units in a computer system, and the significant enhancement

to the conventional memory hierarchy using new memory technologies such as 3D-

stacked memory and NVRAM. Demands from users and applications for computing

have also become high and diverse, ranging from computational science, large-scale

data analysis, and artificial intelligence that adopts computation-intensive deep neural

network methods. Together they have driven the evolution of parallel programming

models to become more comprehensive and complex with multifaceted goals including

delivering portable performance across diverse architectures, being highly expressible

for the wide ranges of users and applications, and allowing for high-performance

implementation and tools support.

Compilers have been playing a critical role to meet those goals for parallel pro-

gramming. Enhancing the conventional compilation technologies and software infras-

tructure to be parallelism-aware has become one of the main goals of recent compiler

development. However, despite the efforts to support parallelism-aware compilation

in existing compilers [15, 16, 63, 14, 64, 65] and efforts to augment compiler inter-

mediate representation (IR) with parallelism [4, 66, 67, 68, 12, 13, 9], compilers may

still generate sub-optimal parallel code [69]. It is also observed that existing parallel
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programming models share common parallelism functionality and use similar inter-

faces of essential capability for programming parallelism [5]. However, supporting

these parallel models in one compiler often has to create language-dependent com-

piler passes of the same functionality for different models. We believe one of the

barriers is the lack of language-independent abstraction of the fundamental entities

and constructs for parallelism. This has hindered the research and development of

parallelism-aware analysis and transformation across multiple programming models.

In this chapter, we propose unified parallel intermediate representation (UPIR) to

enable language-neutral parallelism-aware compilation. UPIR specifies 1) three com-

monly used parallelism patterns, namely single program multiple data (SPMD), data

parallelism, and task parallelism, including offloading tasks; 2) data attributes and

explicit data movement and memory management for assisting data-aware optimiza-

tion for parallel programs; and 3) synchronization operations (e.g., barrier, reduction,

mutual exclusion, etc.) used in parallel programming for optimizing synchronization

cost by the compiler. We create a prototype implementation in the ROSE compiler

and demonstrate UPIR for unifying IR for offloading code in both OpenMP and

OpenACC and in both C/C++ and Fortran. The demonstration also includes a uni-

fied transformation that lowers OpenMP and OpenACC offloading code to LLVM

OpenMP runtime. UPIR is also implemented as an LLVM MLIR dialect. Thus the

ROSE-based UPIR compiler can export the UPIR of a program to its MLIR dialect.

For the remainder of the chapter, in Section 3.2, we describe the design of UPIR for

three kinds of parallelism, i.e., SPMD, data, and task parallelism. Section 3.3 includes

the description of UPIR for specifying data attributes, data movement, and memory

management used in parallel programming. In Section 3.4, we describe the UPIR

for synchronization in parallel programming. Section 3.5 includes the evaluation of

the UPIR to support multiple parallel models and unified compiler transformation.

Section 3.6 concludes the chapter.
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3.2 The UPIR for Parallelism: SPMD, Data, and Asynchronous Tasking

A programming model provides API for specifying different kinds of parallelism

that either maps to parallel architectures or facilitates expression of parallel algo-

rithms. We consider three commonly used parallelism patterns in parallel computing:

single program multiple data (SPMD), data, and asynchronous tasking. In the spec-

ification, we adopt the format of MILR dialect and specified using the EBNF form

used for MILR dialect.

3.2.1 SPMD Parallelism

Single program multiple data (SPMD) has been one of the most common styles

of parallel programming that a program uses to start parallel execution. A program

starts its parallel execution by launching multiple threads or processes on the pro-

cessing units (hardware threads, cores, processors, or nodes), and they all execute

the same program or code region (single program). During the parallel execution,

each processing unit works on parts of the program’s data (multiple data). Multiple

data processing can be implemented via either programming manually, e.g., the do-

main decomposition method used in MPI, or via explicit data parallelism constructs

(see Section 3.3). Examples of the style and language constructs for SPMD include

OpenMP parallel constructs, most MPI programs, and manycore programming with

GPU such as NVIDIA CUDA kernels or OpenCL kernels. For parallelism-aware anal-

ysis and optimization, data-race detection [70, 71], optimization of synchronization

within an SPMD region [72, 73], data scoping and privatization [74], parallel diver-

gence analysis and reduction (e.g. NVIDIA CUDA warp divergence) [75], etc, are

typical techniques for improving the accuracy of data race detection and performance

of SPMD regions and programs.

The IR for the SPMD parallelism model includes the notation for SPMD and a code

region. To support mapping of SPMD region to the hardware threading hierarchy such
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as GPUs and for languages that allow for specifying thread of hierarchy, SPMD units

are organized in a two-level hierarchy, namely teams and units. To create a unified IR

for different usage and variation of SPMD regions or programs, other important details

must be included in the IR specification for the compiler, including for example,

the target parallel systems (CPU, GPU or multi-node cluster); the synchronizations

used inside and at the end of the region such as barrier or reduction, and the data

environment of the region, etc. The SPMD IR in our design is shown in Figure 3.1,

which is written in EBNF form. The design enhances it with several important

features to cover the common usage of SPMD across different programming models

and to enable more advanced analysis and optimization for SPMD code regions.

1 upir.spmd ::= ’spmd’ spmd-field-list
2 spmd-field-list ::= spmd-field | spmd-field spmd-field-list
3 spmd-field ::= target | num_teams | num_units | data | nested-parent |

nested-child | nested-level | branch | sync
4 target ::= ’target’ ’(’ target-list ’)’
5 target-list ::= target-item | target-item ’,’ target-list
6 target-item ::= ’cpu’ | ’gpu’ | ’cluster’
7 num_teams ::= ’num_teams’ ’(’ expr-int ’)’
8 num_units ::= ’num_units’ ’(’ expr-int ’)’
9 data ::= ’data’ ’(’ data-list ’)’

10 data-list ::= data-item | data-item ’,’ data-list
11 nested-level ::= ’nested-level’ ’(’ expr-int ’)’
12 nested-parent ::= ’nested-parent’ ’(’ expr-id ’)’
13 nested-child ::= ’nested-child’ ’(’ expr-id ’)’
14 branch ::= ’branch’ ’(’ expr-id-list+ ’)’
15 sync ::= ’sync’ ’(’ expr-id-list ’)’

Figure 3.1: UPIR MLIR dialect for SPMD parallelism specified using EBNF form

3.2.1.1 Specification for Data and Memory Management

The SPMD IR includes the specification, using the data field, for the attributes of

data and memory used by the SPMD region. For example, the data field can be used

to specify whether a variable or an array is shared or private across processing units,

which could correspond to the shared and private clauses of OpenMP for parallel di-
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rective. Our UPIR design for data specification includes fields and parameters for

specifying more detailed information about data access, e.g. read-only, read-write ac-

cess, data distribution and mapping, and memory management. This facilitates more

advanced compiler analysis and optimization that involve data sharing and move-

ment, such as data race detection and enabling overlapping between data movement

and computations [76]. The data specification is explained in detail in Section 3.3.

3.2.1.2 Synchronization of an SPMD Region

During the execution of an SPMD region, it is often that the work units interact

with each other via synchronization, e.g. barrier, and communications, e.g. shuffling

or broadcasting data between units. We use the term "synchronization", in short,

"sync", in a broader sense to refer to such interaction. In Section 3.4, we describe the

design of synchronization UPIR for various types of sync operations. The UPIR for

the SPMD region allows for including a field to point to the UPIR objects for the syn-

chronization used in the region. This facilitates compiler analysis and optimization

before the actual sync operation inside the SPMD region, enabling advanced opti-

mization on the global level in coordination with the local level where the actual sync

operations are specified. For example, the compiler can fuse a reduction operation

with a barrier operation and can eliminate redundant barriers [77, 78] used inside the

SPMD region.

3.2.2 Data Parallelism

Data parallelism, by which multiple processing units perform the same operations

on different data items, refers to the patterns or parallel APIs of decomposing compu-

tation and data among parallel processing units. It is often programmed as parallel

loops and often inside an SPMD region. Depending on the target architectures in-

cluding CPUs or GPUs, SIMD or vector units, and multi-node clusters, parallelization

of data parallel loops is often programmed differently.
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For CPUs, GPUs or multi-node architecture, the common approach of program-

ming data parallelism is to associate (implicitly or explicitly) the data parallel loops

with an SPMD region, and then use the provided language constructs to prescribe

how the loop iterations should be distributed to the processing units of the SPMD

region. OpenMP worksharing-loop constructs, and OpenACC loop constructs are

typical constructs for annotating a loop for data parallel execution. For SIMD or

vector units, the "parallelization", known as vectorization of data parallel loops, is

performed by the compiler. Some programming languages provide language exten-

sions or APIs for the user to prescribe how the compiler can do vectorization, e.g.,

the SIMD directive of OpenMP.

The UPIR design for data parallelism, shown in Figure 3.2, includes two IRs: 1) the

IR for specifying canonical loops, 2) the IR for specifying loop parallelization target

and details such as schedule and chunk size. The separation allows for more flexibil-

ity and independence for the compiler to apply different loop transformations (e.g.

tiling and unrolling) and parallelization (worksharing-loop or vectorization) passes

compared to combining them into one IR. The IR for canonical loop specification

includes information for loop trip (induction variable, range, and step), collapsible

level, and its data environment and sync operations such as reduction.

The IR for loop parallelization specifies three options of parallelizing canonical

loops: worksharing, SIMD, and taskloop. The worksharing parallelization, more

specifically, SPMD worksharing, is specified with information such as schedule policy

(static, dynamic, guided, etc), chunk size and the distribution target of the SPMD

region (teams or units or both). This is similar to the OpenMP standard as OpenMP

includes a comprehensive list of options on how a canonical loop can be scheduled.

Worksharing-annotated loops must be within an SPMD region. For SIMD paralleliza-

tion, the IR includes fields and parameters such as simdlen. Clauses for OpenMP

SIMD directives represent a rich set of options that we can cherry-pick as fields in
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1 upir.loop ::= ’loop’ loop-field-list
2 loop-field-list ::= loop-field | loop-field loop-field-list
3 loop-field ::= induction-var | lowerBound | upperBound | step | data |

collapse | sync
4 induction-var ::= ’induction’ ’(’ expr-id ’)’
5 ...
6 collapse ::= ’collapse’ ’(’ expr-int ’)’
7 sync = ::= ’sync’ ’(’ expr-id-list ’)’
8
9 upir.loop-parallel ::= ’loop_parallel’ lp-list

10 lp-list ::= lp-list-item | lp-list-item lp-list
11 lp-list-item ::= worksharing | taskloop | simd
12
13 worksharing ::= ’worksharing’ ’(’ ws-field-list ’)’
14 ws-field-list = schedule | distribute | schedule distribute
15 schedule ::= ’schedule’ ’(’ schedule-parameter ’)’
16 schedule-parameter ::= schedule-policy | schedule-policy ’,’ chunk-size
17 schedule-policy ::= ’static’ | ’dynamic’ | ’guided’ | ’runtime’ | ’auto

’
18 chunk-size ::= expr-int
19 distribute ::= ’distribute’ ’(’ ’teams’ | ’units’ | ’teams,units’ ’)’
20 simd ::= ’simd’ ’(’ simdlen ’)’
21 simdlen ::= ’simdlen’ ’(’ expr-int ’)’
22 taskloop ::= ’taskloop’ ’(’ taskloop-field-list ’)’
23 taskloop-field-list ::= grainsize | num_tasks | grainsize num_tasks
24 grainsize ::= ’grainsize’ ’(’ expr-int ’)’
25 num_tasks ::= ’num_tasks’ ’(’ expr-int ’)’

Figure 3.2: UPIR MLIR dialect for data parallelism

the IR.

The taskloop parallelization is the approach that many programming models use to

parallelize a loop using an implicit parallel runtime system, typically tasking. For ex-

ample, cilk_for of OpenCilk, taskloop of OpenMP, for_each in Rayon, Kokkos::parallel_for,

RAJA::forall, tbb::parallel_for. Taskloop allows the runtime to be more flexible for

scheduling loop iterations, in comparison to worksharing, since it does not require to

be within an SPMD region and has less restriction than worksharing for the user to

provide schedule details. There are two important fields for taskloop parallelization,

grain size and num_tasks that are used to control the granularity (or the number of

tasks) of the taskloop.
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The current design includes the common and essential attributes among existing

parallel programming models for specifying canonical loops and parallelization options

that the compiler can apply. The separation of IRs for loop and parallelization allows

for flexible addition of other transformations such as tiling and unrolling before or

after parallel transformation of nested loops. As a foundation, more information that

is specific to a programming model about loops and parallelization can be added,

without comprising the generality of parallelism among programming models.

3.2.3 Asynchronous Task Parallelism

In contrast to data parallelism which involves performing the same operations on a

different part of the data, task parallelism is distinguished by running many tasks that

perform different operations at the same time on the data. Being asynchronous means

that a task (parent task) can spawn another task (child) and then the parent task

continues its execution without waiting for the child task to complete. Starting from

Cilk with C/C++ language extensions of adding spawn and sync API for creating and

synchronizing asynchronous tasks on shared memory computing systems [79], task

parallelism has become popular in mainstream programming models such as the task

and taskwait directives of OpenMP, std::async and std::future starting from C++11.

The concept of asynchronous tasking has been extended for supporting offloading

computation and data movement on GPU devices, or for launching computation on

remote computer nodes. E.g. in CUDA, launching an asynchronous offloading kernel

on GPU or an asynchronous memcpy operation can be considered as asynchronous

tasking. For OpenMP and OpenACC, the directives used for offloading computation

are considered as launching offloading tasks. Efforts for distributed tasking introduced

in related work such as PaRSEC [80, 81] have explored programming API and runtime

systems of using remote tasking for applications including dense linear algebra or other

scientific applications [82].

Tasking parallelism allows users to express the full potential of parallelism that
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exists in the application and its algorithm implementation. The approach of compiler

transformation and optimization of tasking impacts the overhead of task management

as well as the policy and priority of task scheduling. For example, for compiler

transformation to support asynchronous tasking, a task code region is often outlined

as a function used in tasking management (in many tasking implementation such

as LLVM and GNU OpenMP), or a re-entrant function needs to be created by the

compiler that contains the task code region (Cilk adopted this approach [79]). The

approach of using re-entrant functions in Cilk and cactus stack [83] often incurs lower

task management overhead than the outline approach, but requires more sophisticated

compiler transformation. Choosing help-first or work-first work-stealing policy of

tasking [84] also requires compiler to correctly transform the tasking code region. For

analysis and optimization, may-happen-in-parallel analysis has been used often for

asynchronous tasking [85, 86, 87]. The analysis gives compiler and users quantitative

guidance for tuning the task granularity (thus the amount of prescribed parallelism

in a program) to strike the balance between overhead of task management and load-

balance for the runtime systems.

In consideration of aforementioned techniques of compiler transformation to sup-

port tasking, the UPIR design must consider to include the required attributes in a

tasking IR to support those transformation. Existing work such as Tapir [4] demon-

strated the successful usage of a tasking IR for compiler to generating high perfor-

mance tasking code on shared memory systems. The design of UPIR for asynchronous

tasking advances these related state of the art in at least three aspects: 1) unifying

the three kinds of tasking into one IR: conventional tasking on shared memory sys-

tems, offloading tasking for accelerators, and remote tasking for distributed systems;

2) allowing the specification of data attributes of the task data environment; 3) in-

cluding more fields that are used in many programming models, such as the field for

task synchronization, task dependency, and target CPU, device or remote node for
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spawning a task. The specification of the UPIR for tasking is shown in Figure 3.3.

The tasking parallelism in UPIR has been implemented based on outlining. How-

ever, it has not been mapped to all the related constructs in the parallel models, like

taskloop directive in OpenMP. Users can also specify a task scheduling policy to guide

the compiler transformation.

1 upir.task ::= ’task’ task-field-list | ’task’ offload task-field-list |
’task’ remote task-field-list

2 task-field-list ::= task-field | task-field task-field-list
3 task-field ::= depend | data | sync | scheduling-policy
4 offload ::= ’offload’ ’(’ device ’:’ device-id ’)’
5 remote ::= ’remote’ ’(’ device ’:’ device-id ’)’
6 device ::= ’nvptx’ | ’amd’ | ’fpga’ | ’host’
7 device-id ::= expr-int
8 depend ::= ... // similar to OpenMP depend clause
9 scheduling-policy ::= ’policy’ ’(’ policy-item ’)’

10 policy-item ::= ’help-first’ | ’work-first’

Figure 3.3: UPIR MLIR dialect for tasking

3.3 The UPIR for Data Attribute, Explicit Data Movement and Memory

Management

With respect to parallelism, data usage by parallel processing units is another

dimension of complexity for parallel programming. Fundamentally, there are two

kinds of operations that matter to the performance that compiler and users focus on

optimizing: data movement (implicit such as paging or caching, or explicit such as

memcpy), memory allocation and deallocation (memory management, mm in short).

Most language-based programming models, such as OpenMP, OpenACC, and PGAS

models, provide language constructs for users to specify data usage attributes and

let the runtime determine when and how the data movement and mm operations are

performed. Library-based programming models such as MPI, CUDA and OpenCL

provide APIs for those two operations that have to be explicitly invoked in a program.

A comprehensive UPIR design should include IR fields for specifying both data

attributes, as well as explicit data movement and mm operations to enable compre-
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hensive compiler optimization across multiple programming models, such as memory-

aware compilation [88], data-aware compilation [89] and compiler-guided data place-

ment [90], overlapping data movement with computation with the help of compiler

analysis [91]. Thus, we design UPIR to have three IR classes: data attribute, explicit

data movement, and explicit memory allocation and de-allocation.

3.3.1 UPIR for Specifying Data Attributes

For a data item such as a variable or an array (section) that is used during the par-

allel execution of an SPMD region, a data parallel loop, or a task, the data attribute

could include as many as six fields: 1) shared or private attribute if it is used in the

shared memory system, 2) mapping attribute if it is used between discrete memory

space, 3) attribute for access modes such as read-only, read-write and write-only, 4)

memcpy attribute that is used to specify what memcpy API should be used when the

data needs to be moved, 5) mm attribute (allocator and deallocator) that specifies

what memory allocator and deallocator should be used when a new memory is needed

for the data item, e.g. privatizing or mapping the data item, and 6) distribution at-

tribute if an array (section) needs to be partitioned and distributed onto computing

units. These data attributes of a data item are used to specify the intention of how

data should be used for parallel execution. They do not specify when the data move-

ment and memory allocation should happen. This leaves to compiler and runtime

to apply optimization, such as combining memory allocation for multiple data items

and scheduling data movement to achieve overlapping computation and movement.

The IR for data attribute is described in Figure 3.4.

Programming models such as OpenMP and OpenACC provide language construct

for users to specify some of these attributes of a data item, e.g. OpenMP/OpenACC

shared and private clause for specifying the 1) shared-private attribute, OpenMP map

clause and OpenACC copyin/copy/copyout clause for the 2) mapping attribute, and

the allocate and alloc clause in OpenMP and related clause in OpenACC for specifying
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1 upir.data ::= ’data’ ’(’ data-list ’)’
2 data-list ::= data-item | data-item ’,’ data-list
3 // four dimensions: data-mapping is different from data-sharing
4 data-item ::= expr-id ’(’ data-sharing ’,’ data-mapping ’,’ data-access

’,’ data-distribution-list ’,’ data-mm-allocator ’,’ data-mm-
deallocator ’,’ data-memcpy ’)’

5 data-sharing ::= data-sharing-property | data-sharing-property ’(’
visibility ’)’

6 data-sharing-property ::= ’shared’|’private’|’firstprivate’|’
lastprivate’

7 data-mapping ::= data-mapping-property | data-mapping-property ’(’ data
-mapping-modifier-list ’)’

8 data-mapping-modifier-list ::= data-mapping-modifier | data-mapping-
modifier ’,’ data-mapping-modifier-list

9 data-mapping-modifier ::= visibility | data-mapper
10 data-mapper ::= ssa-id
11 data-mapping-property ::= ’to’ | ’from’ | ’tofrom’ | ’allocate’ | ’none

’
12 visibility ::= ’implicit’ | ’explicit’
13 data-access ::= ’read-only’ | ’write-only’ | ’read-write’
14 // three aspects to describe the data distribution
15 data-distribution-list ::= data-distribution-item | data-distribution-

item ’,’ data-distribution-list
16 data-distribution-item ::= unit-id | pattern | data-section
17 unit-id ::= ’unit-id’ ’(’ expr-id ’)’
18 pattern ::= ’pattern’ ’(’ pattern-item ’)’
19 pattern-item ::= ’block’ | ’cyclic’ | ’linear’ | ’loop’
20 data-section ::= ’section’ ’(’ array-section+ ’)’
21 array-section ::= ’[’ expr-id ’:’ expr-id ’:’ expr-id ’]’
22 data-mm-allocator ::= ’allocator’ ’(’ allocator-attr ’)’
23 allocator-attr ::= ’default_mem_alloc’ | ’large_cap_mem_alloc’ |

expr_id
24 data-mm-deallocator ::= ’deallocator’ ’(’ deallocator-attr ’)’
25 deallocator-attr ::= ’default_mem_dealloc’|’large_cap_mem_dealloc’|

expr_id
26 data-memcpy ::= ’memcpy’ ’(’ memcpy-attr ’)’
27 memcpy-attr ::= expr_id //the memcpy function id

Figure 3.4: UPIR MLIR dialect for data attributes

the 5) allocator attribute. For those attributes that are not explicitly specified in a

program, the language applies default rules that the compiler can use to append the

corresponding attributes.
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3.3.2 UPIR for Explicit Data Movement and Memory Management

The IRs for data movement operations are used for specifying the actual operations

that would incur moving data from one location to another. Such operation could

be explicitly specified in a program using language-provided constructs, such as the

update directive in OpenACC and target update directive in OpenMP, or analyzable

by compilers for known data-movement APIs such as memcpy or cudaMemCpy.

Similar to the data movement operations, IRs for memory management operations

specify the memory allocator and de-allocator supported by language constructs or

those operations that can be analyzed by compilers for API calls such as malloc,

cudaMalloc, hbm_alloc, pmem_alloc, etc. Making those operations as part of the

IR and to be analyzable would facilitate the optimization and code transformation.

Users can specify the information to guide the compiler to allocate the data to desired

locations. For example, a huge array can be allocated to the memory space with high

capacity by using allocator (large_cap_mem_alloc) so that it will not cause the

out-of-memory error. The UPIR specification for both data movement and mm are

provided in Figure 3.5.

1 upir.data_movement ::= ’data_movement’ ’(’ dest-target, dest-ptr, src-
target src-ptr, dm-size ’)’ dm-direction data-memcpy dm-field-list

2 dest-target ::= expr_id
3 ...
4 dm-direction ::== forward|backward //to allow two direction of data

movement
5 dm-field-list ::= dm-field | dm-field dm-field-list
6 dm-field ::= depend | ...
7
8 //upir.data_update is simplified data movement IR.
9 upir.data_update ::= ’data_update’ ’(’ data-list ’)’ dm-direction data-

memcpy dm-field-list
10 data-list ::= expr_id-list
11 upir.mm-allocator ::= ’mm_allocator’ ’(’ allocator-attr ’)’
12 upir.mm-deallocator ::= ’mm_deallocator’ ’(’ deallocator-attr ’)’

Figure 3.5: UPIR MLIR dialect for explicit data movement and memory management
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In summary, with this UPIR design for data attributes, data movement and mem-

ory management operations, they are able to provide adequate information for the

compiler to enable advanced data-flow and data-aware analysis and optimization for

parallel programs. There are two guidelines of the design to aid that compiler trans-

formation and optimization: 1) data attributes provide a rich set of information

about data sharing, but leaving data movement and memory management opera-

tions as compiler optimizations for the purpose of achieving maximum overlapping

and pipelining of computation and data movement, the fusion of data movement and

memory allocation, etc. 2) data movement and memory management operations ex-

plicitly specified in the program are also analyzable and optimizable with regards to

other operations including computation and implicit operations of them rendered by

the data attributes of data items, and synchronizations such as barrier and reduc-

tions.

3.4 The UPIR for Synchronization, Communication, and Mutual Exclusion

This group of IR elements is for representing the language constructs and APIs that

prescribe the behaviors of communications and coordination operations between par-

allel work units. We categorize those operations into three sub-groups: 1) those that

involve all participating units, referred to as collectives such as barrier (OpenMP bar-

rier, MPI_Barrier, etc), broadcast (MPI_Bcast), reduction in OpenMP/OpenAC-

C/MPI, etc; and 2) those that involve only two units, namely point-to-point (p2p)

operations, such as data shuffling between threads and message passing between two

MPI processes, and 3) mutual exclusion and locks/unlocks that involves collective

participation but one primary unit at a time such as OpenMP single, atomic, etc.

For most of those operations, there could be synchronous and asynchronous versions.

Using asynchronous operations helps achieve overlapping of synchronization/commu-

nication with computations.

Many of those operations are provided or implemented as runtime APIs, thus com-



42

piler transformation of those operations could be simply converting the languages

constructs to runtime API. For optimization, previous work has shown that the com-

piler can optimize the use of this group of constructs, such as reducing redundant

barriers or global synchronizations [77, 78], compiler-assisted optimization of MPI

calls [92, 93], and optimizing mutual excluded code sections that use heavy locks [94].

Converting synchronous operations to asynchronous ones by the compiler is also an

effective way of optimization for the synchronizations for parallel programs [95, 96].

Thus adequately representing those constructs in compiler IR is necessary for compiler

transformation and parallelism-aware optimizations.

The design of UPIR elements for synchronization operations needs to consider two

aspects: 1) to unify the IRs for various types of synchronizations, and 2) to unify

the IRs for synchronous and asynchronous synchronizations. For the first aspect, we

consider four fields that are common among the various types of sync operations:

1) the primary unit that participates in the operation, e.g. the thread that collects

the results in reduction operation, or the source process in an MPI_Bcast operation,

2) the secondary unit (s) that participate in the operation, e.g. the receivers of a

broadcast or an MPI_Recv, 3) the computation or operation that is performed with

the synchronization, e.g. reduction or broadcasting, and 4) the data that is used in

the synchronization.

For the second aspect, which is to unify the IRs for the synchronous and asyn-

chronous versions of each operation, we consider two steps when a sync operation,

particularly collective syncs, are performed. The first step is arrive-compute, which

indicates that a work unit arrives at the sync point and performs the necessary com-

putation or operations such as an addition in an add-reduction, or sending or receiving

messages for broadcast operations. The second step is wait-release, which indicates

that a work unit waits for the synchronization to be performed by all participating

units and then is released to continue. For synchronous synchronization, the two
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steps are performed by one API call. For asynchronous version, two API calls, one

for each step are performed, thus allowing adding computation between these two

calls to achieve overlapping of synchronization with computation. These two steps

are also similar to lock and unlock operations for mutual exclusion operations. With

these two aspects of unification, we believe the designed IR would facilitate much

more uniform compiler passes for the optimization of synchronizations than using in-

dependent IRs for each operation. Following this design, we describe the specification

of the IRs for the synchronizations in Figure 3.6.

1 upir.sync ::= sync-name sync-async primary secondary operation data-
list implicit

2 sync-name ::= ’barrier’ | ’reduction’ | ’taskwait’ | ’broadcast’ | ’
allreduce’ | ’send’ | ’recv’ | ’single’ | critical | atomic

3 sync-async ::= ’sync’ | ’async’ step
4 step ::= ’arrive-compute’ | ’wait-release’
5 primary ::= ’primary’ ’(’ sync-unit ’)’
6 secondary ::= ’primary’ ’(’ sync-unit ’)’
7 sync-unit ::= ’task’ | ’thread’ | ’rank’ ’:’ unit_id
8 unit-id ::= expr_id | ’*’
9 operation ::= //sync-specific operation, e.g. add for add-reduction

10 data-list ::= expr-id-list
11 implicit ::= | ’implicit’

Figure 3.6: UPIR MLIR dialect for synchronization

3.5 Evaluation

In this section, we present a prototype implementation of the UPIR in the design

and describe how the UPIR facilitates compiler transformation. We show how UPIR

supports the source code in CUDA, C/C++, and Fortran with OpenMP/OpenACC.

The performance evaluation compares our compiler with the OpenMP and OpenACC

compilers of LLVM, GCC, and NVIDIA.

Our prototype is implemented in the ROSE source-to-source compiler. ROSE

compiler supports C/C++, Fortran, Java, CUDA, and several other languages. It

provides source-to-source transformation and a rich set of APIs for program trans-
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Figure 3.7: UPIR implementation in ROSE compiler to support C/C++/Fortran and
OpenMP and OpenACC

formation for quick prototyping with high quality. It enables us to implement the

UPIR and the support for multiple parallel models much more productively than any

other compiler framework, such as GCC or LLVM. OpenACC is a parallel program-

ming language similar to OpenMP but more focused on accelerators. The original

ROSE compiler does not support OpenACC. However, by adding an independent

OpenACC directive parser to ROSE, we can handle OpenACC source code and con-

vert it to UPIR. The most significant advantage of using UPIR for both is sharing a

unified transformation.

Figure 3.7 shows how UPIR is generated from OpenMP and OpenACC source code,

in both C and Fortran, and followed by a unified transformation. ROSE uses EDG and

Open Fortran parser to parse the C/C++ and Fortran source code, respectively. We

integrate a separate OpenMP parser ompparser [97] and an OpenACC accparser into

ROSE to parse OpenMP and OpenACC directives. Their parser IRs are converted to

the unified UPIR, regardless of the base language of the source code. A data analysis

module is implemented to collect explicit and implicit data usage information and

populates the UPIRs with the complete data attribute.

The UPIR is also implemented with LLVM TableGen to produce the UPIR dialects

in MLIR, allowing the ROSE implementation of the UPIR to be exported to MLIR

(Figure 3.9, 3.12). Thus, besides the transformation for UPIR in the ROSE compiler,

developers can also work on the exported MLIR using the LLVM toolchain. The
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exported MLIR includes the same parallelism information as our UPIR implemen-

tation in ROSE, e.g., data attributes and movements in a parallel region (lines 3-6

in Figure 3.9). However, LLVM and MLIR are more complicated than ROSE and

require much more effort to implement the transformation of the supported feature.

1 void axpy (float* x, float* y,
int a, int n) {

2 #pragma omp target parallel for
num_threads(1024)

3 for (int i = 0; i < n; i++)
4 y[i] = y[i] + a * x[i];
5 }

(a) OpenMP

1 void axpy (float* x, float* y,
int a, int n) {

2 #pragma acc parallel loop
num_workers(1024)

3 for (int i = 0; i < n; i++)
4 y[i] = y[i] + a * x[i];
5 }

(b) OpenACC

Figure 3.8: AXPY in OpenMP and OpenACC for GPU offloading

1 func @axpy(%arg0: memref<*xi32, 8>, %arg1: memref<*xi32, 8>, %arg2: i32
, %arg3: i32) {

2 ... // %2, %3, %4, %5 are the data used in the parallel region
3 %2 = upir.parallel_data_info(x, shared, implicit, tofrom, implicit,

read-only)
4 %3 = upir.parallel_data_info(y, shared, implicit, tofrom, implicit,

read-write)
5 %4 = upir.parallel_data_info(a, shared, implicit, tofrom, implicit,

read-only)
6 %5 = ...
7 %c6_i32 = constant 1024 : i32
8 upir.task target(nvptx) data(%2, %3, %4, %5) {
9 upir.spmd num_units(%c6_i32 : i32) data(%2, %3, %4, %5) target(gpu)

{
10 %c0 = constant 0 : index
11 %c1 = constant 1 : index
12 upir.loop induction-var(%arg4) lowerBound(%c0) upperBound(%arg3)

step(%c1) {
13 upir.loop-parallel worksharing {
14 ...
15 } } } } }

Figure 3.9: AXPY in UPIR MLIR dialect, for OpenMP and OpenACC GPU Offload-
ing of Figure 3.8

Given the OpenMP and OpenACC versions of AXPY in Figure 3.8, identical UPIRs
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are generated (Figure 3.9) because they both reveal the same parallelism information.

Our implementation produces the same lowered source code from these two inputs. It

saves much effort by not developing different lowering modules for the two languages.

If necessary, language-specific transformations can be appended after the common

ones. The exported MLIR in UPIR dialect can be translated to other dialects or co-

operate with them. For instance, the UPIR of AXPY above can be converted to MLIR

OpenACC dialect (Figure 3.10). Developers who are more familiar with OpenACC

can apply their optimizations upon OpenACC MLIR translated from UPIR.

3.5.1 Using UPIR to Represent CUDA Kernel and Launching

CUDA is another popular parallel programming language designed for NVIDIA

GPUs. However, unlike OpenMP and OpenACC, which use simpler directive anno-

tations, it requires additional effort to learn the programming APIs. The language-

independent design of UPIR can take both advantages. UPIR can represent the

parallelism and data usage of CUDA kernel calls. Figure 3.11 and 3.12 show a CUDA

version of AXPY and its UPIR. The task IR with device attribute indicates that

the kernel runs on NVIDIA GPU. num_teams and num_units attributes of inner spmd

IR correspond to blocks and threads of the CUDA kernel. The task and spmd IRs

are always perfectly nested since they are converted from one CUDA kernel call.

1 func @axpy(%arg0: memref<f64>, %arg1: memref<f64>, %arg2: f64, %arg3:
i32) {

2 %c6_i32 = constant 1024 : i32
3 acc.parallel num_workers(%c6_i32: i32) {
4 %c0 = constant 0 : index
5 %c1 = constant 1 : index
6 acc.loop worker {
7 scf.for %arg4 = %c0 to %arg3 step %c1 {
8 ...
9 } } } }

Figure 3.10: AXPY in OpenACC MLIR dialect translated from UPIR shown in
Figure 3.9
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The produced UPIR can be unparsed to other parallel programming languages,

such as OpenMP. Doing so allows us to run CUDA kernels on the CPU and other

computing devices. In addition, the new source code in OpenMP or OpenACC is also

easier to program. Based on the same concept, lowering certain UPIRs to the CUDA

source code is possible.

3.5.2 Performance Evaluation of using UPIR in Compiler Transformation for

OpenMP and OpenACC Offloading

UPIR aims to unify the representation of parallelism across multiple parallel pro-

gramming languages. It helps compilers conduct a unified transformation for multi-

ple parallel programming models. Therefore, our performance demonstration shows

that implementing transformations on top of UPIR in a compiler can support both

OpenMP and OpenACC. We pick four offloading kernels for evaluation: AXPY,

1 __global__ void axpy_kernel(float* x, float* y, int a, int n) {
2 int i = blockDim.x * blockIdx.x + threadIdx.x;
3 if (i < n) y[i] = y[i] + a * x[i];
4 }
5 void axpy(float* d_x, float* d_y, int a, int n) {
6 axpy_kernel<<<(n+255)/256, 256>>>(d_x, d_y, a, n);
7 }

Figure 3.11: AXPY source code in CUDA

1 func @axpy_kernel(%arg0: memref<*xi32, 8>, %arg1: memref<*xi32, 8>, %
arg2: i32, %arg3: i32) { ... }

2 func @axpy(%arg0: memref<*xi32, 8>, %arg1: memref<*xi32, 8>, %arg2: i32
, %arg3: i32) {

3 ... // %2, %3, %4, %5 are the data used in the parallel region
4 upir.task device(nvptx) data(%2, %3, %4, %5) {
5 upir.spmd num_teams(%1 : i32) num_units(%c256_i32_0 : i32) data(%2,

%3, %4, %5) target(gpu) {
6 call @axpy_kernel(%arg0, %arg1, %arg2, %arg3) : (memref<*xi32, 8>,

memref<*xi32, 8>, i32, i32) -> ()
7 } } }

Figure 3.12: AXPY in UPIR MLIR dialect, for CUDA of Figure 3.11
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matrix multiplication, matrix-vector multiplication, and 2D stencil. They are imple-

mented in both OpenMP and OpenACC. The uses of OpenMP and OpenACC direc-

tives in these kernels represent these two models’ commonly used parallel constructs

in many applications [98]. These examples demonstrate the use of UPIR for SPMD

(OpenMP’s parallel and teams, OpenACC’s parallel), data parallelism (OpenMP’s

distribute and for, and OpenACC’s loop), offloading tasks (OpenMP’s target, Ope-

nACC’s parallel), data attributes (OpenMP’s map, private, shared, target data and

OpenACC’s data and copyin/copyout/copy), sync (OpenMP’s barrier, OpenACC’s

wait), etc. We experimented with an extensive range of problem sizes for each ker-

nel for performance collection but only reported the problem sizes that sufficiently

demonstrated the performance trends. Each kernel is executed ten times, and the

collected execution time is the average of the ten execution. Thus, we believe the

selected kernels are representative enough to serve the purpose. The evaluation com-

pared our ROSE-based UPIR compiler, NVIDIA HPC SDK, and GCC compile, all for

both OpenMP and OpenACC, and Clang/LLVM for OpenMP only since LLVM does

not support OpenACC. The execution time is presented in a log scale for better read-

ability. Our experimental platform has 2 CPUs (20 cores for each), 512 GB of RAM,

and one NVIDIA V100 GPU with 32 GB of HBM. The system runs Clang/LLVM

14.0, NVIDIA HPC SDK 22.1 with CUDA toolkit 11.5, and GCC 11.2 on Ubuntu

20.04. All compilations enable -O3 flag.

The performance results of the four compilers (UPIR, NVIDIA, GCC for Open-

MP/OpenACC, and LLVM for OpenMP) are shown in Figure 3.13, 3.14, 3.15, 3.16.

For the OpenMP version, our implementation can achieve up to 1.28x speedup over

LLVM, and 25.89x speed up over GCC on average for all the problem sizes we se-

lected. For the OpenACC version, UPIR shows up to 235.1x speedup over NVIDIA

compiler and 1.15x speedup over GCC on average for all the evaluated problem sizes.

We believe LLVM considers more general offloading cases and thus might introduce
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Figure 3.13: AXPY performance of UPIR compiler, LLVM, NVIDIA, and GCC com-
pilers
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Figure 3.14: Matrix multiplication performance of UPIR compiler, LLVM, NVIDIA,
and GCC compilers

more overhead in kernel launching and thread management internally. For example,

LLVM uses the state machine [14, 99] to manage dynamic threading on NVIDIA

GPU with relatively heavy overhead. Thus, we use dynamic parallelism introduced

in CUDA 5.0 for threading management. It directly launches the number of threads

for nested kernels as demanded on the device. It prevents the communication over-
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Figure 3.15: Matrix-vector multiplication performance of UPIR compiler, LLVM,
NVIDIA, and GCC compilers
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Figure 3.16: 2D stencil performance of UPIR compiler, LLVM, NVIDIA, and GCC
compilers

head to the host and does not need to maintain the state of redundant threads. This

demonstration shows that UPIR can assist in the unified compiler transformation.

It significantly reduces the compiler programming effort to support multiple parallel

programming models because we do not need to maintain several similar versions of

compiler transformation. Moreover, UPIR does not sacrifice performance to achieve
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this goal.

3.5.2.1 Performance Analysis

We conducted a detailed performance analysis of the compilers for OpenMP and

OpenACC programs. GCC utilizes the unified IR GIMPLE and maps both OpenMP

and OpenACC code to GIMPLE for later transformation. Theoretically, the com-

piled executable should lead to the same performance if they are semantic equivalent.

However, in all four kernels, the OpenACC version outperforms the OpenMP version

significantly. We notice that the number of GPU threads per block used in the ker-

nels is limited to 256, even if 1024 is specified in the source code. This issue only

exists in the OpenMP version but not the OpenACC version. GCC always follows the

specified number of threads in the OpenACC code. Although GCC adopts the idea

of unified parallel IR, it fails to deliver consistent performance for the same kernel in

different languages.

A similar problem happens to LLVM. LLVM determines the maximum number of

threads supported by GPU. If the specified value exceeds the limit, it will be reduced

to that threshold. However, in our experiments, LLVM does not always obtain the

threshold correctly. It may use a different number of threads instead.

The latest NVIDIA HPC SDK supports both OpenMP and OpenACC programs.

It uses different sets of IR for compilation, such as __nvomp_* in OpenMP and

__pgi_uacc_* in OpenACC. Our implementation of OpenMP and OpenACC code

is semantic equivalent. Thus, it should lead to a similar executable generated from

the same compiler. However, the NVIDIA compiler does not always show consistent

performance. For stencil and matrix multiplication, the OpenACC version is much

slower than the OpenMP version and the executable built by other compilers. The

profiling shows that the generated GPU code of stencil in OpenACC takes about 71

million cycles while the code generated by LLVM only takes around 50 thousand cy-

cles. About 99% of elapsed kernel time is spent on __acc_wait for synchronization.
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Additionally, the NVIDIA compiler can compile the OpenMP version of these two

test cases, but the execution results in either a kernel launching failure or incorrect

computation. It indicates that the transformation for OpenMP and OpenACC in the

NVIDIA compiler is not unified.

To sum up, GCC and NVIDIA compilers support both OpenMP and OpenACC,

and we notice some unification in their IR and transformations for different parallel

programming models. However, they do not deliver consistent performance for the

OpenMP and OpenACC programs of the exact computation and parallel semantics.

In contrast, the UPIR compiler can support OpenMP/OpenACC code with unified

transformation and achieves the same performance.

3.6 Summary

In this chapter, we present UPIR, a unified parallel intermediate representation

used for representing parallelism of parallel programming models to assist parallelism-

aware compiler analysis, transformation, and optimization. It is designed to support

a wide variety of parallel programming models, and the prototype implementation

in the ROSE compiler supports C/C++/Fortran, OpenMP, OpenACC, and CUDA.

UPIR enables a unified compiler transformation for multiple parallel programming

models, including OpenMP and OpenACC. Our experiments show that the UPIR

compiler utilizes the unified transformation to compile both OpenMP and OpenACC

programs. It achieves promising performance and saves much development effort

for supporting new programming models by leveraging the UPIR and the unified

transformation. UPIR provides a comprehensive, flexible, and extensible compiler IR

designed for compiler development targeting modern heterogeneous parallel systems.

The unified IR would enable lots of exciting research and accelerate the implementa-

tion of supporting new programming models in a compiler.



CHAPTER 4: SUPPORT DATA SHUFFLE BETWEEN THREADS IN OPENMP

4.1 Introduction

OpenMP has been known for productive shared-memory programming on multi-

core, multi-processor, and many-core homogeneous systems. Data movement be-

tween computing elements such as cores or CPUs is implicit via memory. The recent

specification introduced target-family constructs for specifying offloading data and

computation to accelerators whose memory is physically separate from the host CPU

memory. E.g., the map clause can explicitly specify data movement between the host’s

memories and an accelerator GPU. From OpenMP users’ perspective, data sharing

and movement between parallel threads and tasks must go through the memory sys-

tem, implicitly or explicitly.

For manycore accelerators such as GPUs and vector architectures, data can be

copied between registers of multiple computing elements such as cores or vector lanes

without going through the memory and cache system, using shuffle or permutation

operations. For example, NVIDIA introduced shuffle instruction from Kepler archi-

tecture to conduct data transfer between registers of different threads in a warp. The

feature enables a multi-thread kernel to synchronize vector-like operations within a

warp. When shared data is small and can reside in the register within a warp of

threads (32 threads), those threads can access registers from each other. Considering

that register access latency could be 10x and 100x smaller than SRAM and DRAM,

respectively, this data shuffle feature between threads could significantly improve the

computation performance of worksharing or vector loops.

In this chapter, we present two approaches to using shuffle in OpenMP. First, we

provide a high-performance runtime implementation of the reduction clause using
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shuffle. Then, a new directive and a new clause, named shuffle, are introduced

for programmers to specify explicit data movement between threads. The shuffle

clause is used to specify the data that can be shuffled between threads and the di-

rective to specify when and how the data are transferred. While the motivation is to

support shuffling data between cores or vector lanes via registers on many-core and

vector architectures, the support generally is designed to bypass slow memory for

data movement between threads via explicit data shuffle operation. We develop and

evaluate a prototype implementation of the proposed support using reduction and

stencil algorithms. The shuffle implementation always delivers the best performance

with up to 2.39x speedup compared with other high-performance implementations.

Compared with standard OpenMP offloading code for 2D stencil, our shuffle imple-

mentation delivers superior performance for as many as 25x better. We also provide

a study of simulated shuffle using shared memory on NVIDIA GPUs to demonstrate

how to support this extension on hardware without native shuffle support.

In the rest of the chapter, Section 4.2 shows the high-performance implementation

of reduction using shuffle instruction. Section 4.3 presents the shuffle extension to

OpenMP with syntax details and how to use it for 2D stencil. Then we show the

performance evaluation in Section 4.4. At last, we conclude this chapter in Section

4.5.

4.2 Using shuffle to implement the reduction clause

In parallel computing, reduction is a typical operation for aggregating partial re-

sults. For multi-thread programming, it repeatedly applies the same operation by

multiple threads with partial results. The final result resides in one thread. Figure 4.1

shows the sum reduction using OpenMP. The task is offloaded onto an accelerator

that has multiple teams of threads to perform the reduction operation. Within a

team, data from all threads are accumulated. Then those partial results are reduced

into one final result and can be copied back to the host. Data and operations are
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performed off the global DRAM memory on GPUs by default. An optimized im-

plementation can use NVIDIA’s shared memory (SRAM) to accelerate the reduction

operations, e.g., the reduction from the official CUDA examples of NVIDIA.

1 // prerequisite data declaration and computing
2 #define BLOCK_SIZE 64
3 float src[N] = ...;
4 #pragma omp target teams distribute parallel for map(to: src[0:N]) map(

from: sum) num_teams(N/BLOCK_SIZE) num_threads(BLOCK_SIZE) reduction
(+: sum)

5 for (i = 0; i < N; i++)
6 sum += src[i];

Figure 4.1: Sum reduction using OpenMP

Reduction in OpenMP can be implemented in CUDA using shuffle operations and

other optimization techniques. Such implementation can be done in the runtime

system, thus requiring minimum compiler transformation. In Figure 4.3, we show an

implementation similar to the one presented in [3]. This algorithm divides the whole

input in the global memory into multiple tiles, and each block on GPU reads a tile to

its shared memory. Using shuffle, threads in the same warp share their partial results

directly between private registers as soon as they are available. Only the results from

warps will be reduced in the shared memory.

For comparison, the same algorithm can be implemented using CUDA-shared mem-

ory, and the algorithm can be used for GPUs with no native shuffle instruction. The

implementation is shown in Figure 4.3. For each variable that needs to be shuffled,

an array of block sizes is created underneath so that each thread in that block can

maintain a copy of the variable in that array. From the user’s point of view, the

simulated shuffle can still directly access the private data of another thread even

though they didn’t declare the shuffle variable as shared data. Comparing the two

implementations in Figure 4.2 and Figure 4.3, it is shown that their algorithms are

identical, and the only difference is the implementation of the shuffle function.
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1 template <class T>
2 __inline__ __device__ T warpReduceSum(T val) {
3 for (int offset = warpSize/2; offset > 0; offset /= 2)
4 val += __shfl_down_sync((unsigned int)-1, val, offset);
5 return val;
6 }
7 template <class T>
8 __global__ void reduce(T *g_idata, T *g_odata, unsigned int n) {
9 T mySum = ...; // prepare the local partial sum per thread

10 mySum = warpReduceSum<T>(mySum);
11 int lane = threadIdx.x % warpSize;
12 int wid = threadIdx.x / warpSize; // warp id
13 if (lane == 0) sdata[wid] = mySum; // the partial result of a warp
14 ... // rest of reduction
15 }

Figure 4.2: Reduction implementation using native shuffle

4.3 Proposing shuffle clause and directive for OpenMP

As discussed in Section 4.1 for the current OpenMP memory model, sharing data

between threads must go through memory systems. This is defined based on the fact

that most existing multi-core and many-core architectures only allow data sharing

between functional units via memory. Shuffle primitives enable direct data movement

between threads, hence function units of a system, allowing data sharing by bypassing

memory system. For the second contribution of this work, we experiment with high-

level language support of data sharing between threads without using any kind or

level of memory. We introduce a shuffle clause and a shuffle directive to OpenMP

for such an experiment.

First, the shuffle clause can be used with parallel and teams directives to de-

clare the shuffling variables. Its syntax is simply as “shuffle (src-variable-list)",

in which the src-variable-list specifies the variables that can be shuffled. Compared

with the two similar clauses that are used in OpenMP to specify data sharing at-

tributes, the shared or private clauses, variables that are annotated to be shuffled

are read-only shared variables to other threads and access to the variable must use the
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1 template <class T>
2 __inline__ __device__ T warpReduceSum(T val) {
3 T *buffer = SharedMemory<T>();
4 int lane = threadIdx.x % warpSize;
5 int wid = threadIdx.x / warpSize;
6 buffer[threadIdx.x] = val;
7 __syncthreads();
8 for (int offset = warpSize/2; offset > 0; offset /= 2)
9 if (lane + offset < warpSize) {

10 val += buffer[wid*warpSize + lane + offset];
11 buffer[threadIdx.x] = val;
12 __syncthreads();
13 }
14 return val;
15 }
16 template <class T>
17 __global__ void reduce(T *g_idata, T *g_odata, unsigned int n) {
18 T mySum = ...; // prepare the local partial sum per thread
19 mySum = warpReduceSum<T>(mySum);
20 int lane = threadIdx.x % warpSize;
21 int wid = threadIdx.x / warpSize; // warp id
22 if (lane == 0) sdata[wid] = mySum; // the partial result of a warp
23 ... // rest of reduction
24 }

Figure 4.3: Reduction kernel using simulated shuffle

Figure 4.4: 2D 5 points stencil using shuffle. Each circle indicates an original pixel.
Each thread loads three pixels. Pixels in color are involved with the computation of
pixel (i,j). Arrow represents the shuffle direction
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1 // prerequisite data declaration and computing
2 float src[N], dst[N], fw, fc, fe, fn, fs, sum, BLOCK_SIZE = ...;
3 #pragma omp target teams map(to: src[0:N], fw, fc, fe, fn, fs) map(from

: dst[0:N]) num_teams(N/BLOCK_SIZE)
4 #pragma omp parallel num_threads(BLOCK_SIZE) shuffle(sum) // declare

sum for shuffle
5 { // prepared needed data, such as global index of src item and

dst item
6 int global_index[3], index = ...;
7 sum = src[global_index[1]] * fe; // partial sum1
8 #pragma omp shuffle down(-1, 1, sum, sum) // thread n shuffles

sum from thread n+1 and replace its own sum copy
9 sum += src[global_index[0]] * fn;

10 sum += src[global_index[1]] * fc;
11 sum += src[global_index[2]] * fs; // partial sum2
12 #pragma omp shuffle down(-1, 1, sum, sum)
13 sum += src[global_index[1]] * fw; // partial sum3
14 dst[index] = sum; // write the final result to output array dst
15 }

Figure 4.5: 2D 5 points stencil using shuffle OpenMP extension

1 // prerequisite data declaration and computing
2 float src[N], dst[N], fw, fc, fe, fn, fs, sum, BLOCK_SIZE = ...;
3 int N = width*height;
4 #pragma omp target map(to: src[0:N], fc, fn0, fn1, fw1, fw0, fe1, fe0,

fs1, fs0, height, width) map(from: dst[0:N])
5 #pragma omp teams distribute parallel for num_teams(N/BLOCK_SIZE)

num_threads(BLOCK_SIZE) collapse(2) schedule(static, 1) shuffle(sum)
6 for (int i = 0; i < height; i++) {
7 for (int j = 0; j < width; j++) {
8 sum = src[i*width+j+1] * fe;
9 #pragma omp shuffle down(-1, 1, sum, sum)

10 sum += src[(i-1)*width+j] * fn;
11 sum += src[i*width+j] * fc;
12 sum += src[(i+1)*width+j] * fs;
13 #pragma omp shuffle down(-1, 1, sum, sum)
14 sum += src[i*width+j-1] * fw;
15 dst[i*width+j+1] = sum;
16 }
17 }

Figure 4.6: 2D 5 points stencil using worksharing and shuffle OpenMP extension
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1 __global__ void stencil(const float* src, float* dst, ...,
2 float fc, float fn, float fw, float fe, float fs) {
3 // prepared needed data, such as global index of src item and dst

item
4 int global_index[3], index = ...;
5 sum = src[global_index[1]] * fe; // partial sum1
6 sum = __shfl_down_sync(0xFFFFFFFF, sum, 1);
7 sum += src[global_index[0]] * fn;
8 sum += src[global_index[1]] * fc;
9 sum += src[global_index[2]] * fs; // partial sum2

10 sum = __shfl_down_sync(0xFFFFFFFF, sum, 1);
11 sum += src[global_index[1]] * fw; // partial sum3
12 dst[index] = sum; // save the result back to the output array
13 }

Figure 4.7: 2D stencil kernel using shuffle instructions

shuffle directive proposed. The shared clause indicates read-write sharing among

all threads, while the private clause indicates that the data are only available to the

thread itself.

Second, the proposed shuffle directive is an executive directive to specify how

exactly the data should be shuffled between registers of different threads. It must be

used within a parallel or teams region. The syntax is: “shuffle clause", and the

clause must be in the following format:

“sync|up|down(mask-modifier[,] src-modifier[,] dst-variable [operator], shuffle-variable)"

The shuffle directive operates moving data of a shuffled variable from a source

thread or lane (specified by the src-modifier) and then accumulating the data using a

specified operation (the operator) with a variable (the dst-variable, and then storing

the result in the variable. The mask-modifier is a mask to indicate which threads to

participate in shuffle operation, similar to the first parameter in the CUDA’s shuffle

primitives. The src-modifier is used to specify the threads or lanes that supply the

data. For the sync shuffling, which stipulates that all participating threads shuffle

data from a single source thread, the src-modifier is the absolute warp or lane ID,

such as 25 or 31. For up and down clauses, the src-modifier is used to indicate the
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relative distance between the participating thread and the source thread. operator

is the operation to be applied to the shuffled data, which could be =, +=, -=, \=,

and so on. It equals dst-variable = dst-variable operator shuffle-variable. The default

operator is = if none is specified. The shuffle-variable must be the variables specified

by the shuffle clause.

Currently, the most usage of shuffle operation is for using GPUs because of its

availability on NVIDIA and AMD GPUs. On CPU and other platforms, shuffle can

be easily implemented using shared memory, and performance can be optimized by

taking advantage of the last level of shared cache. While our proposal is one approach

to exposing these features to users, shuffle can be used in other approaches, such as

via runtime function or used with metadirective or declare variant for perfor-

mance optimization. Yet those approaches require knowledge and skills in CUDA and

OpenCL programming. One limitation of this proposal is that the use of shuffle

directive may render incorrect execution of the OpenMP code if OpenMP compilation

is turned off since the use of shuffle requires parallel SIMD-type of data movement

between variables of the same symbol.

4.3.1 Stencil Example

In stencil, a filter is applied to each pixel and several pixels around it to get a

new value for that position. Since a pixel can be involved multiple times during

computing, loading several pixels to register once in one thread and completing all

the computations would be faster than multiple threads all loading the pixels from

global memory repeatedly. Taking a 2D 5 points stencil as an example, to compute

the pixel (i, j), it needs four adjacent pixels and itself. We consider these 5 pixels as

three columns handled by three threads (Figure 4.4). Each thread calculates a partial

sum and passes it to the left neighbor. The leftmost thread collects all partial results

and gets the final result. In this example, thread Ti+1 computes sum1i,j = Pi,j+1×fe

and passes it to thread Ti. Thread Ti computes sum2i,j = Pi−1,j × fn + Pi,j ×
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fc + Pi+1,j × fs and passes sum1i,j + sum2i,j to thread Ti−1. Then thread Ti−1

computes sum3i,j = Pi,j+1 × fw. As the last step, thread Ti−1 stores the final result

sumi,j = sum1i,j + sum2i,j + sum3i,j to a proper location.

Figure 4.5 shows a simplified 2D 5 points stencil using shuffle constructs. As

we described above, each thread reads 3 points. It generates two partial results and

passes them to neighbors. Two partial sums are retrieved back as well. At last, three

partial results corresponding to three filter columns are combined as the final result.

Figure 4.6 presents a worksharing version of 2D stencil. The nested loop is flattened

by collapse. schedule clause ensures that the threads next to each other process

continuous pixels to pass intermediate results correctly.

We create a prototype implementation in CUDA to demonstrate how the compiler

would transform the OpenMP code in Figure 4.5. It doesn’t perform shuffle operations

across the whole team. Instead, the operation is mapped to a warp on NVIDIA GPU,

which means the shuffle is conducted within a warp. For other platforms, it depends

on what native shuffle instruction is available and how it works on the hardware

level. The shuffle operations are implemented using native shuffle instructions

and shared memory. In Figure 4.7, the intermediate results of a column of pixels are

shuffled between adjacent threads at lines 6 and 10, which correspond to lines 8 and

12 in Figure 4.5. Each thread makes the maximum use of the pixels and produces

all the possible results from them. Then it exchanges the partial results among the

private register of neighbors via shuffle to avoid shared memory access. The shuffle

instruction can be simulated using shared memory at lines 8-14 and 18-24 so that the

code will support the devices without native shuffle (Figure 4.8). They still share the

same kernel function.

4.4 Experimental Results

The experimental platform used for reduction has a 12 cores Intel Xeon W-2133

CPU, 32 GB DRAM, and one NVIDIA Quadro P400 GPU with 2 GB of memory.
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1 __global__ void stencil(const double* src, double* dst, ...,
2 double fc, double fn, double fw, double fe, double fs) {
3 // prepared needed data, such as global index of src item and dst

item
4 int global_index[3], index = ...;
5 // an array shared in a block to exchange sum between threads
6 __shared__ double shared_sum[BLOCK_SIZE];
7 float sum = src[global_index[1]] * fe;
8 shared_sum[thread_id] = sum;
9 __syncwarp();

10 if (lane_id < warpSize) { // lane_id is the thread id within a warp
11 shared_sum[thread_id] = shared_sum[thread_id+1];
12 __syncwarp();
13 sum = shared_sum[sumId];
14 }
15 sum += src[global_index[0]] * fn;
16 sum += src[global_index[1]] * fc;
17 sum += src[global_index[2]] * fs;
18 shared_sum[thread_id] = sum;
19 __syncwarp();
20 if (lane_id < warpSize) {
21 shared_sum[thread_id] = shared_sum[thread_id+1];
22 __syncwarp();
23 sum = shared_sum[thread_id];
24 }
25 sum += src[global_index[1]] * fw;
26 dst[index] = sum; // save the result back to the output array
27 }

Figure 4.8: 2D Stencil kernel using shuffle simulated by shared memory

The other platform that is used for stencil has two 18-core Intel Xeon E5-2699 v3

CPUs, 256 GB DRAM, and two NVIDIA Tesla K80 GPUs with 24 GB of memory.

Both systems run Ubuntu 18.04 LTS and NVIDIA CUDA SDK 10.2.

As a baseline, omp target teams distribute parallel for is used to imple-

ment reduction and stencil, and then compiled by Clang/LLVM 10.0.1 with -O3 pa-

rameter. Thus the baseline performance completely depends on the transformation

and optimization by Clang/LLVM compiler. The kernel time on GPU is measured

as execution time, the time cost of data transfer is not included. There are four

more versions of implementation to be evaluated, including accessing global memory
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directly, using shared memory as software cache for a tile of loop tiling, using shared

memory to simulate shuffle, and using native shuffle. The version using shared mem-

ory as software cache for loop tiling is considered a highly optimized implementation

on NVIDIA GPUs [100].

In both tests, the baseline OpenMP version is much slower than the rest four

versions. The native shuffle version is about 20x faster than the baseline. Besides the

shuffle instruction, the reason could be that the manually transformed CUDA code

and the baseline OpenMP code compiled by LLVM have a different mechanism of

parallelization. It may lead to various memory access behaviors, such as coalesced

memory access versus uncoalesced memory access.

4.4.1 Reduction

Figure 4.9: Performance of reduction

The input is an array of a given size that is filled with randomly generated numbers.

We can see the native shuffle version is the fastest, as expected since it has the

least amount of access to slower memories (Figure 4.9). It shows up to 25x better

performance than the standard OpenMP version and 2.39x speedup over the global

memory version. The version using shared memory to simulate the shuffle instruction

is slower than the second version that uses shared memory without shuffle. It’s
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reasonable because the simulated shuffle requires more resources to maintain an array

to share data and it performs more synchronizations in the block to keep atomic and

data consistency.

Table 4.1: Memory accesses for reduction. N: problem size=G*B, G: grid size=32768,
B: block size=256, W: warp size=32

Global Memory Shared Memory Shared Memory Simulated Shuffle Native Shuffle

Global memory access 2*G*B + 2*G*f(B) 2*G*B 2*G*B 2*G*B

Shared memory access 0 2*G*f(B) 2*G*f(B) 2*G*W

Cross-bock synchronization 2*G 2*G 2*G*(f(B)+1) 2*G

The memory access of reduction can be modeled in Table 4.1. f(x) is the amount

of memory operations for reducing x numbers, where f(x) =
∑k

0 2
k and k = log2 x.

Different versions incur different amounts of memory access to each memory. In the

global memory version, all those accesses occur in the global memory. In the shared

memory version, the elements are reduced in the shared memory. It reads and writes

this memory location f(B) times, respectively. Since there are G blocks, the total

number of shared memory access is 2 ∗G ∗ f(B).

For the native shuffle version, within a warp, the elements are reduced among

registers directly. Then the partial results from all warps in the same block are

reduced in the shared memory as usual or via shuffle again. The simulated shuffle

shares the same operations. However, it accesses shared memory 2 ∗G ∗ f(B) times

to shuffle data. It also requires two more synchronizations to make the operation

atomic and prevent data race. Given one shuffle operation per iteration of reduction,

the additional amount of cross-block synchronization is 2 ∗G ∗ f(B).

According to the analysis above, the performance improvement of native shuffle over

the shared memory version is from the much less access to shared memory. The time

overhead of the simulated shuffle is caused by excessive cross-block synchronization,

which is a trade-off between performance and compatibility.
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4.4.2 2D Stencil

Figure 4.10: Performance of 2D 9 points stencil

Table 4.2: Memory accesses for 2D stencil N: problem size=4*G*B, G: grid
size=N/4B, B: block size=128, W: warp size=32

Global Memory Shared Memory Shared Memory Simulated Shuffle Native Shuffle

Global memory access G*B*4*10 G*B*9 G*B*9 G*B*9

Shared memory access 0 G*B*(8 + 4*9) G*B*4*16 0

Cross-bock synchronization 0 1 4*4*2 0

Shared memory size used 0 B*8 B 0

The input of this test is an automatically generated image by random numbers.

The results present a similar trend between the four versions of reduction experiments

(Figure 4.10). The native shuffle version has the best performance. According to the

breakdown of memory accesses, this version has the least amount of slower memory

accesses and cross-block synchronizations (Figure 4.2). The average speedup of the

native shuffle over the hand-written tiled shared memory version, which has been

highly optimized, is 1.11. While sharing the same source code, the simulated shuffle

version suffers from the overhead of cross-block synchronization.

4.5 Summary

Data shuffling between threads or lanes of many-core GPUs allows data copy be-

tween threads without involving the memory system. It could be exploited to im-
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prove computing performance when there is a large amount of data communication

between threads. In this work, we experiment with two approaches of using shuffle in

the OpenMP high-level programming model, 1) a high-performance runtime imple-

mentation of reduction clause; and 2) a proposed shuffle extension to OpenMP to

let users specify when and how the data should be moved between threads. Superior

performance improvement has been achieved and demonstrated when using shuffle to

implement the reduction and 2D stencil kernels. While the effort of correctly program-

ming using shuffle primitive is significant, our language extension to allow users to use

it in high-level programming models can reduce its complexity. These explorations

and experiments prove that shuffle instructions should be exploited in compiler code

generation and application optimization for performance improvement.



CHAPTER 5: REX: A SOURCE-TO-SOURCE OPENMP COMPILER FOR

PRODUCTIVE RESEARCH OF PARALLEL PROGRAMMING

5.1 Design

Figure 5.1: REX: a source-to-source OpenMP compiler based on ROSE

The REX compiler is a source-to-source compiler that targets OpenMP and pro-

vides preliminary support for OpenACC (as illustrated in Figure 5.1). It is built on

top of the ROSE compiler, enhancing its OpenMP capabilities with features such

as using the LLVM OpenMP runtime instead of GOMP, supporting more OpenMP

constructs, and improving existing transformations like the target parallel for

directive. The differences between REX and ROSE are thoroughly discussed in Sec-

tion 5.2.

The REX compiler is designed with modularity in mind. The OpenMP parser,

OpenACC parser, and LLVM OpenMP runtime library are integrated as submodules,

allowing users to build their version of the OpenMP/OpenACC parser and OpenMP

runtime library as long as they adhere to the API. This flexible design enables users

to customize REX to their specific needs and requirements.

To concentrate solely on the research and education of OpenMP, we have rebranded

the ROSE compiler. The focus of the rebranding effort is to create a C/C++/Fortran

OpenMP compiler that facilitates research and education in the field. To achieve this
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goal, we have removed support for languages such as PHP/Java and binary analysis.

The repository has also been cleaned up to minimize unnecessary dependencies.

5.1.1 Intermediate Representation

ROSE provides a unified Intermediate Representation (IR) for OpenMP that sup-

ports both C/C++ and Fortran, streamlining the process of mapping OpenACC

constructs. This enables a consistent transformation targeting the LLVM OpenMP

runtime, regardless of the parallel programming model used in the input, eliminating

the need for separate implementation of lowering modules for OpenMP and Ope-

nACC.

To enhance the performance of Single Instruction Multiple Data (SIMD) oper-

ations, REX employs different compiler intrinsics tailored to the specific platform.

These intrinsics transform the OpenMP simd directive, ensuring that the implemen-

tation of SIMD operations is optimized for each platform.

To achieve this, REX has designed a new IR set specifically for SIMD operations

called the SIMD IR. This IR set enables the conversion of for loops with the SIMD

clause into a three-address format, where the left-hand operand is either a memory

location or a scalar variable. The SIMD IR nodes are based on binary nodes, allowing

for both left and right operands. This IR set is kept in a vector, as it is not meant to

represent concrete code but instead to provide an efficient implementation method.

The SIMD IR has been proven highly effective, with an almost 1:1 mapping to

the underlying architecture. This mapping ensures that the SIMD operations are

optimized for the specific platform, whether Intel’s AVX2/AVX-512 or ARM’s SVE.

5.1.2 Front End

5.1.2.1 Parsers

The REX compiler incorporates two distinct parsers, ompparser and accparser, ex-

plicitly designed for OpenMP and OpenACC. The ompparser is a standalone parser
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for OpenMP, which can work as a crucial component of compilers [97]. To support

OpenACC, the REX compiler has developed accparser based on ANTLR4 and fol-

lows a similar concept as the ompparser. The accparser is responsible for converting

OpenACC directives into language-independent OpenACCIR, which is then passed

on to the REX compiler.

Once the REX compiler receives the OpenACCIR, it is converted into the inter-

nal unified AST and integrated with the ones generated from other source codes in

the base language. The conversion of OpenACCIR to the internal unified AST en-

sures that the REX compiler can work seamlessly with both OpenMP and OpenACC

directives and provide the required parallelism analysis and optimization accordingly.

5.1.3 Middle End

Implementing a data analysis and normalization module specifically for parallelism

in the REX AST is a crucial step after the construction of the REX AST. This module

is essential in the REX compiler because it includes several passes that must be

performed before the lowering phase. The information obtained through these passes

enables REX to optimize the code efficiently while ensuring that the transformed code

complies with the user’s specified data attributes.

5.1.3.1 Forward Declaration

OpenMP has powerful features to aid in parallel programming, including the declar-

ative directives declare target and declare mapper. The declare target direc-

tive allows users to declare variables or functions for use on devices, which can then be

used directly in kernels. For the compiler to correctly find these symbols in the symbol

table during analysis, the symbols specified in declare target must be explicitly de-

clared on the device by the compiler. To achieve this, REX stores all symbols specified

in declare target and inserts them into the symbol table whenever any analyses or

transformations are about to be performed for targeting devices.
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The declare mapper directive is used to specify a particular mapping pattern

between host and device memory. The compiler must implement the specified pattern

in the runtime to facilitate this mapping. REX helps to support this by creating a

separate helper function to transfer the data according to the pattern listed in declare

mapper. By doing so, the data transfer can be easily managed and optimized.

5.1.3.2 Data Analysis

To provide parallelism-aware analysis and optimization, REX implements a spe-

cialized pass to gather information about parallel data usage. The REX compiler is

capable of extracting data attributes, such as symbol name, access pattern (write,

read, or both), sharing property (shared, private, firstprivate), mapping property

(from host to device, from device to host, or bidirectional), and whether the infor-

mation is explicit or implicit, directly from the OpenMP and OpenACC directives or

through compile-time analysis of symbols that appear within parallel regions.

The collection of this information plays a crucial role in the later stages of the

compiler’s analysis and transformation processes, such as data dependency analysis

and kernel overlapping analysis. With the data attributes obtained from this pass,

REX can make informed decisions about handling the parallel data, ultimately leading

to a more efficient and optimized parallel code.

5.1.3.3 Clause normalization

As a source-to-source compiler, REX aims to transform both OpenMP and Ope-

nACC code into human-readable, lowered source code that generic non-OpenMP

compilers can handle. However, transforming OpenMP and OpenACC code into

C/C++ code is not always straightforward, as it involves following implicit rules for

data sharing and mapping.

The implicit rules for data sharing and mapping are specified in the OpenMP and

OpenACC specifications, which can be difficult to understand or locate for users. As
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a result, REX implements a clause normalization pass to explicitly specify all the

symbols used in the parallel region. This lets users understand the data and its use

in the generated source code.

To handle the data appropriately and follow the implicit rules, the compiler must

perform various analyses during the transformation process. These analyses can in-

terrupt the lowering process and make it more complex. By implementing the clause

normalization pass, REX simplifies the transformation process and ensures that the

generated code will be more transparent and easier to understand for users.

5.1.3.4 Lowering

We focus on GPU offloading in the REX compiler. The transformation details are

discussed in Section 5.3 to 5.4.

5.1.4 Back End

The REX compiler is designed to provide a solution for generating human-readable

and optimized source code from OpenMP and OpenACC code. The output from

REX is compatible with generic non-OpenMP compilers, making it easy for users to

integrate their code into existing projects or build environments.

One of the critical features of REX is its reliance on the LLVM OpenMP runtime

for linking. This guarantees that the produced code will work efficiently across various

platforms and systems. Furthermore, the new source code generated by REX only

requires a few files from the compiler rather than the entire tool. This makes it easy

for users to create a portable, self-contained collection of source code that can be used

on other systems without needing REX installed.

Currently, REX supports offloading to NVIDIA GPUs via the CUDA toolkit. This

makes it ideal for those looking to take advantage of the high performance and scal-

ability GPU computing offers. In addition, it is worth noting that future releases of

REX may expand its support to other platforms and architectures, such as AMD and
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Intel GPUs, providing even greater flexibility and compatibility for users.

5.2 OpenMP support status

Table 5.1: Comparison of essential OpenMP support in ROSE and REX compiler

OpenMP ROSE REX

target partial add the support to a complex target region and
dynamic parallelism

teams no add the support using LLVM OpenMP runtime

distribute no add the support using LLVM OpenMP runtime

target teams distribute
parallel for

no add the support using LLVM OpenMP runtime

metadirective no partial

simd no support AVX512/SVE using compiler intrinsics

task yes use LLVM OpenMP runtime instead

parallel yes use LLVM OpenMP runtime instead

map yes use LLVM OpenMP runtime instead

barrier / atomic / single yes use LLVM OpenMP runtime instead

for yes minor changes

reduction yes remove dependency on CUDA host APIs

orphaned constructs no no

The REX compiler is built on top of the ROSE compiler, which already has ex-

tensive support for OpenMP. With ROSE, many key OpenMP constructs, such as

parallel, for, and reduction, can be appropriately handled. However, it lacks

support for crucial directives like teams and related combined directives.

REX addresses these limitations by updating and enhancing the OpenMP trans-

formations in ROSE to target the LLVM OpenMP runtime. The intermediate layer

XOMP has been mostly removed, enabling users to directly modify the LLVM runtime

calls in the generated source code without learning a new set of APIs.

Previously, ROSE only supported a target directive followed by an immediate

parallel for directive. Any code regions not attached to this target directive
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could not be handled. This limitation is not problematic in simple cases, such as

AXPY and Sum, but it can lead to failure when compiling more complex kernels,

such as the one shown in Figure 5.2.

5.3 Supporting OpenMP parallel, teams and worksharing constructs

This section only focuses on using the teams and parallel constructs on the host.

GPU offloading is a separate topic in Section 5.4. In OpenMP, the teams directive

binds a group of threads together, and each team operates as a single program multiple

data (SPMD) unit. On the other hand, the parallel directive considers each thread

as an SPMD unit. ROSE implements the transformation of the parallel directive

through its interface, XOMP, using GOMP. However, it does not support the teams

directive.

REX replaces XOMP and GOMP with the LLVM OpenMP runtime to support

both teams and parallel directives, eliminating the need for an intermediary inter-

face like XOMP. Users can work directly with the LLVM OpenMP runtime APIs in

the new source code generated by REX. REX outlines the enclosing region first and

then replaces the original constructs with the appropriate LLVM runtime calls. The

__kmpc_fork_teams and __kmpc_fork_call are required for the teams and parallel

constructs, respectively, while the __kmpc_push_num_teams and __kmpc_push_num_threads

set the number of teams and threads. The LLVM runtime calls are inserted into the

original code location, while the host-related outlined functions are stored in a sep-

arate file. This allows users to optimize or modify the outlined functions without

affecting the original code.

5.4 Support OpenMP target GPU constructs

LLVM uses a state machine to manage the parallelism on GPUs. When a target

region is encountered, LLVM starts with the maximum number of threads required,

then modifies the number of threads that are actually used accordingly. In Figure 5.2,
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1 void compute(double *x,double *y,int n,double a) {
2 int i;
3 #pragma omp target map(tofrom: y[0:n]) map(to: x[0:n])
4 { printf("Loop␣1.\n");
5 #pragma omp parallel for num_threads(1024)
6 for (i = 0; i < n; i++)
7 ...;
8 printf("Loop␣2.\n");
9 #pragma omp parallel for num_threads(128)

10 for (i = 0; i < n; i++)
11 ...;
12 }
13 }

Figure 5.2: An example of having mixture of parallel and sequential code in the kernel
on GPU

there is a target region including two parallel for regions and two serial state-

ments. LLVM creates a target region with up to 1024 threads. Of these, only one

thread will execute the serial statements, while the remaining threads will stay idle.

In the first parallel for region, all 1024 threads will be running as specified in

the num_threads clause. In the second parallel for region, only 128 out of 1024

threads will be used, leading to high overhead due to excessive thread management.

To improve the performance, REX utilizes dynamic parallelism to transform such

a target region. Dynamic parallelism is a feature provided by NVIDIA since CUDA

5.0. It allows a CUDA kernel to call another kernel using multiple child threads. The

host does not need to be involved in the launching process, thus reducing communica-

tion overhead. Additionally, thread management is simplified by explicitly specifying

the kernel configuration.

5.4.1 Scheduling

To achieve the best performance in an SPMD region having loop worksharing, REX

will assign one iteration to each thread when the number of iterations is less than the

allowable number of threads on the GPU. If the user does not specify any schedul-

ing policy, REX will use the default scheduling policy for the transformation. If a



75

schedule clause is provided, REX will honor it and use the specified scheduling pol-

icy to assign iterations to threads. REX automatically adjusts the number of threads

used to optimize performance, making sure that all threads are utilized efficiently.

This helps ensure that the GPU is working at maximum efficiency and maximized

performance.

5.4.2 Kernel Generation

ROSE has already implemented an outliner that meets our needs, and the loop

transformation in ROSE works very well in terms of the performance and readability

of the lowered source code. Therefore, we chose not to change the original implemen-

tation. REX compiler utilizes dynamic parallelism to implement the kernel generation

in OpenMP. Given a target region, it starts with one team having one thread, and

the kernel is offloaded to the GPU with this configuration. If any SPMD region is

encountered, another kernel with more blocks and threads is launched directly from

the device side. After the execution, the original serial kernel continues, and only the

master thread runs.

Figure 5.3 presents the transformation of the source code shown in Figure 5.2. The

whole target region of function compute is replaced with an LLVM runtime call at

line 29 and necessary settings. The data analysis module in REX determines the

data usage based on the explicit information from map clause and implicit rules from

OpenMP specification. Then the required data and outlined function information are

passed to the LLVM runtime. It calls function OUT__3__compute__67__kernel__

on the device (line 7). Inside this base function for the target region, two outlined

functions for the loops are called using dynamic parallelism with different kernel

configurations (lines 11 and 16). Compared to the original LLVM OpenMP trans-

formation, REX does not use the state machine, which can slow down the kernel

execution. While being able to modify the extent of parallelism easily, dynamic par-

allelism also brings minor overhead. We measured the total kernel execution time
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1 __global__ void OUT__1__compute__75__kernel__(int *np__,double *ap__,
int *ip__,double *_dev_x,double *_dev_y) {

2 ...; // transformation for loop 2
3 }
4 __global__ void OUT__2__compute__70__kernel__(int *np__,double *ap__,

int *ip__,double *_dev_x,double *_dev_y) {
5 ...; // transformation for loop 1
6 }
7 __global__ void OUT__3__compute__67__kernel__(int *np__,double *ap__,

int *ip__,double *_dev_x,double *_dev_y) {
8 printf("Loop␣1.\n");
9 { int _threads_per_block_ = 1024;

10 int _num_blocks_ = 1;
11 OUT__2__compute__70__kernel__<<<_num_blocks_,_threads_per_block_>>>(

np__,ap__,ip__,_dev_x,_dev_y);
12 }
13 printf("Loop␣2.\n");
14 { int _threads_per_block_ = 128;
15 int _num_blocks_ = 1;
16 OUT__1__compute__75__kernel__<<<_num_blocks_,_threads_per_block_>>>(

np__,ap__,ip__,_dev_x,_dev_y);
17 }
18 }
19 void compute(double *x,double *y,int n,double a) {
20 int i;
21 int _threads_per_block_ = 1;
22 int _num_blocks_ = 1;
23 void *__host_ptr = (void *)(&OUT__3__kernel__67__id__);
24 void *__args_base[] = {&n, &a, &i, x, y};
25 void *__args[] = {&n, &a, &i, x + 0, y + 0};
26 int64_t __arg_sizes[] = {((int64_t )(sizeof(int ))), ((int64_t )(

sizeof(double ))), ((int64_t )(sizeof(int ))), ((int64_t )(sizeof(
double ) * n)), ((int64_t )(sizeof(double ) * n))};

27 int64_t __arg_types[] = {33, 33, 33, 32, 35};
28 int32_t __arg_num = 5;
29 __tgt_target_teams(OUT__3__kernel__67__id__,__host_ptr,__arg_num,

__args_base,__args,__arg_sizes,__arg_types,_threads_per_block_,
_num_blocks_);

30 }

Figure 5.3: Transformation of the source code shown in Figure 5.2

of AXPY, matrix multiplication, and matrix-vector multiplication compiled by the

REX compiler and found that using dynamic parallelism only leads to 8% overhead

at most.
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5.5 Extending the Infrastructure to Support OpenACC

REX compiler provides preliminary support for OpenACC. At the front end, we

designed an OpenACC parser based on ANTLR4, called accparser, to support the

latest OpenACC 3.2 syntax and parse C/C++ and Fortran. We also developed

OpenACCIR as an intermediate representation to store grammatical information.

Instead of using a dedicated OpenACC runtime, we target the LLVM OpenMP

runtime in OpenACC source code transformation. Essential directives and clauses

in OpenACC are mapped to the unified parallel IR of REX, which supports both

OpenMP and OpenACC, making the whole process transparent to end users. They

don’t need to change their code significantly, only needing to link a generic LLVM

OpenMP library. We also improved a commonly used benchmark Rodinia to test its

effectiveness, which will be introduced in Section 5.6.

A point-to-point translation can map many essential OpenACC constructs to REX

AST for OpenMP. Only acc kernels and acc loop need to be handled carefully. acc

kernels informs the compiler that the enclosed kernel should be offloaded to the GPU,

and any proper optimizations can be applied. For instance, the compiler may par-

allelize some loops in the given kernel. Therefore, we must comprehensively analyze

the kernel and convert acc kernels to one or more directives for better performance.

Nested loop worksharing is another problem. Unlike OpenMP, OpenACC does not

require the user to specify which parallelism level the loop should be assigned. acc

loop could be associated with gangs, workers, or vectors, and the association could

be implicit and decided by the compiler.

5.6 Evaluation

We aim to demonstrate the efficiency of the REX compiler by highlighting its

minimal overhead and consistent performance across different parallel programming

models. To facilitate this evaluation, we have enhanced the existing Rodinia bench-
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Table 5.2: Conversion between OpenMP and OpenACC essential constructs

OpenMP OpenACC

target teams/parallel parallel

distribute, for loop

map(to/from/tofrom/alloc) copyin/copyout/copy/alloc

target data data

target update to/from update device/host

atomic/critical atomic

mark to support both OpenACC and OpenMP GPU offloading, enabling a compre-

hensive comparison of the compiler’s performance in handling these parallel models.

This evaluation’s primary purpose is to validate REX’s effectiveness in managing both

programming models, proving that adopting UPIR and unified transformation strate-

gies allows the compiler to deliver reliable performance with a negligible increase in

overhead. By showcasing the consistency and low overhead of the REX compiler, as

well as our contribution to extending the capabilities of the Rodinia benchmark, we

seek to emphasize its potential to facilitate seamless integration and optimization of

various parallel programming models for high-performance computing applications.

5.6.1 Experimental Platform

The hardware and software configurations for the evaluation are listed in Table 5.3.

5.6.2 Enhanced Rodinia

Rodinia is one of the most popular benchmark suites targeting multi-core CPU and

GPU, developed by the University of Virginia (Table 5.4). It includes 24 benchmarks

in the latest release (v3.1 in Dec. 2015).

While Rodinia is widely used for evaluation in the HPC domain, it has a few

limitations. Its OpenMP variant could improve because most programs are only
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Table 5.3: Experimental platform

CPU Intel Xeon Gold 6230N CPU 2.30GHz

Cores 2 sockets × 20 physical cores

Vector Length 512-bit

RAM 512 GB

GPU NVIDIA Tesla V100 32 GB

OS Ubuntu 20.04 LTS

Compilers Clang/LLVM 15.0, GCC 12.2, NVIDIA HPC SDK 22.1

CUDA 11.5

Table 5.4: Rodinia applications and kernels [2]

Application/Kernel Algorithm Domain

K-means Dense Linear Algebra Data Mining

Needleman-Wunsch Dynamic Programming Bioinformatics

HotSpot Structured Grid Physics Simulation

Back Propagation Unstructured Grid Pattern Recognition

SRAD Structured Grid Image Processing

Leukocyte Tracking Structured Grid Medical Imaging

Breadth-First Search Graph Traversal Graph Algorithms

Stream Cluster Dense Linear Algebra Data Mining

Similarity Scores MapReduce Web Mining

implemented for CPU execution. The ones that support GPU offloading are not

optimized. For example, only parallel for is used in a target region. Without

teams distribute, compilers probably use only one CUDA block, which has 1024

threads, to run the kernel. It will significantly lower the performance. Furthermore,

Rodinia doesn’t have an OpenACC variant. It is arguably another important par-

allel programming model primarily focusing on GPU offloading. In NVIDIA HPC

SDK, besides CUDA, OpenACC is the only parallel programming model it supports
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natively. OpenMP support is implemented with OpenACC runtime APIs and is lim-

ited to more recent NVIDIA GPUs (SM70 or newer). We notice there are unofficial

versions of Rodinia porting for OpenACC. Unfortunately, they are incomplete and

barely working.

These limitations are pretty understandable since Rodinia hasn’t been updated

since 2015. Therefore, we implemented two more variants in Rodinia: OpenMP

GPU and OpenACC. We take the official CUDA and OpenMP versions as references

and implement these two versions according to the latest OpenMP and OpenACC

specifications.
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Figure 5.4: Kernel execution time of 7 benchmarks from Rodinia, including compu-
tation and data transfer. LLVM is taken as the baseline, and its total kernel
time is normalized to 1.

Besides the original 24 benchmarks, we implemented a group of commonly used

kernels to evaluate OpenMP GPU offloading 1, as a compliment to Rodinia. These

kernels utilize essential OpenMP and OpenACC directives for GPU offloading, such

as omp target teams distribute parallel for and acc parallel loop.

On average, REX incurs only a 6% overhead compared to the LLVM compiler, and

in some cases, REX is even faster (Figure 5.4 and 5.5). REX uses the same OpenMP

runtime as the LLVM compiler but can perform source-to-source transformations
1https://github.com/passlab/Benchmarks

https://github.com/passlab/Benchmarks
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that the latter cannot. Despite this additional functionality, REX maintains high

performance without sacrificing efficiency.
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Figure 5.5: Kernel execution time of 4 home-brewed benchmarks, including compu-
tation and data transfer. LLVM is taken as the baseline, and its total kernel
time is normalized to 1.

REX, NVC, and GCC are all compatible with OpenMP and OpenACC. Upon

evaluating the OpenMP GPU and OpenACC versions, we observed performance in-

consistencies and inappropriate GPU offloading configurations in NVC and GCC

(Table 5.5).

Firstly, our implementations of OpenMP GPU and OpenACC variants have equiv-

alent semantics. When using a compiler that supports both OpenMP and OpenACC,

the generated binary and its performance should be identical, provided that unified

transformation and runtime are employed. In the AXPY example, this trend is ev-

ident. However, the execution time for Matrix-Vector multiplication slightly differs.

A closer examination of the execution time reveals that the OpenMP computation

time with NVC is considerably longer than the OpenACC computation time. Similar

issues are present in Matrix-Multiplication and Stencil as well. Matrix-Multiplication

demonstrates that the GCC OpenMP and NVC OpenACC programs are significantly

slower than the other variant compiled by the same compiler. For Stencil, the NVC

OpenACC program consumes substantially more time than its OpenMP counterpart.
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Table 5.5: Kernel execution time of 4 home-brewed benchmarks. Time unit: ms.

REX

Benchmark
OpenMP/OpenACC

Compute HtoD DtoH Total

AXPY 44.4 4730 2574.9 7304.9

Mat-Vec 147.8 3049.9 0.08 3049.98

Mat-Mul 590.1 184.5 590.1 1364.7

Stencil 6.4 83.6 111.9 201.9

GCC

Benchmark
OpenMP OpenACC

Compute HtoD DtoH Total Compute HtoD DtoH Total

AXPY 406.7 5715.5 2829.8 8952 42.1 5811.3 2602.3 8455.7

Mat-Vec 183.5 3057.4 1 3241.9 148.8 3211.5 1 3361.3

Mat-Mul 12357 285.7 119.6 12762.3 598.8 235.4 114.8 949

Stencil 151.5 138.4 111.6 401.5 476 117.2 115.1 708.3

NVC

Benchmark
OpenMP OpenACC

Compute HtoD DtoH Total Compute HtoD DtoH Total

AXPY 34.6 1324 690 2048.6 36.2 1324.2 662.5 2022.9

Mat-Vec 38.8 868.6 1 908.4 13.8 868.5 1 883.3

Mat-Mul 317 54.3 28.2 399.5 3941.1 54.3 28.3 4023.7

Stencil 10.5 27.2 28.1 65.8 6607.5 27.2 28.1 6662.8

Profiling reveals that most of the extra time is spent on synchronization. Taking ma-

trix multiplication as an example, the computing time for the NVC OpenACC version

is 3583.7 ms, significantly higher than its OpenMP counterpart, which takes 307.4

ms. However, 3597.2 ms of the OpenACC computing time is spent on synchronization

at the beginning of the computation, specifically on the runtime API acc_wait. In

contrast, the NVC OpenMP version only spends 13.4 ms on acc_wait at the start

of the computation. Moreover, the profiling results reveal that the synchronization

call in the OpenACC version comprises two parts. One part stems from the Ope-
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nACC pragma in the source code, taking about 14 ms. The other part, marked as

unknown by the profiling tool, is generated by the compiler, not directly from the

source code. This latter portion is the primary cause of the significantly longer exe-

cution time for the OpenACC version. This additional synchronization is absent in

the NVC OpenMP version. Excluding this portion of time cost, the kernel time of

NVC OpenMP and OpenACC becomes similar.

Since NVC and GCC utilize a single runtime for both OpenMP and OpenACC, the

performance discrepancy can only be attributed to compiler transformation. They do

not implement a unified transformation for inputs with identical semantics. Continu-

ing with the matrix multiplication example, printing out the NVC compiler IR in both

OpenMP and OpenACC versions reveals that the compiler IR differs despite using the

same runtime. The NVC OpenMP version employs __nvomp_*, while the OpenACC

version uses __pgi_uacc_*. These different IRs lead to distinct transformations and

code generations.

Secondly, all benchmarks employed for evaluation specify the GPU offloading con-

figuration, such as 256 teams and 1024 threads per team. While this configuration

may not be optimal in every scenario, the compiler should respect these user-defined

values as long as they are valid. However, this is not the case for GCC and NVC. De-

spite specifying the number of teams and threads, and the GPU supporting them on

the hardware level, GCC and NVC still adopt different configurations. For example,

the GCC OpenMP program consistently uses 240 teams and 256 threads per team.

Conversely, the NVC OpenMP program reduces the specified 1024 threads per team

to 128. While they alter the configuration in OpenMP programs, GCC and NVC

adhere to the user-defined configuration in OpenACC.

We argue that this approach to compiler transformation is suboptimal. Although

the modified configuration could offer some performance advantages, the execution

result may not always be accurate. For instance, the user’s program may rely on team
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and thread indices with specific offloading configurations. The compilers risk intro-

ducing errors and unintended behavior by disregarding the user-specified settings.

5.7 Summary

In this chapter, we have introduced REX, an OpenMP source-to-source compiler

that leverages the unified parallel intermediate representation (UPIR) to support es-

sential features of OpenMP 5.1 and OpenACC 3.2. The output generated by REX is

designed to target the LLVM OpenMP runtime, with the option to produce MLIR in-

stead of new source code. Additionally, we have expanded the Rodinia parallel bench-

mark by implementing two more variants: OpenMP GPU and OpenACC, enabling

the evaluation of GPU offloading performance across various parallel programming

models and compilers.

REX uses the same OpenMP runtime as LLVM but offers additional source-to-

source transformation and OpenACC support. Remarkably, REX introduces an av-

erage overhead of only 6%. Compared to GCC and NVC, which also support OpenMP

and OpenACC, REX consistently delivers performance across both parallel models,

thanks to the UPIR. In contrast, semantically equivalent programs compiled by GCC

and NVC may exhibit significant performance discrepancies.

Moving forward, we plan to incorporate additional constructs from the latest

OpenMP and OpenACC specifications, further enhancing the capabilities of REX

and expanding its applicability across a broader range of high-performance comput-

ing scenarios.



CHAPTER 6: FREECOMPILERCAMP.ORG: TRAINING FOR OPENMP

COMPILER DEVELOPMENT FROM CLOUD

6.1 Introduction

Due to the increasing complexity of supercomputer node architectures for high-

performance computing (HPC), high-level programming models are used to improve

the productivity of using supercomputers. OpenMP is considered by many as the

de-facto portable programming model for exploiting node-level parallelism for super-

computers. Compiler support for OpenMP has been added in many open-source com-

pilers, such as GNU compiler collection, Clang/LLVM, and ROSE source-to-source

compiler frameworks, as well as vendor compilers from Intel, Cray, NVIDIA, and

AMD. More and more researchers are interested in researching using OpenMP as a

vehicle in parallel programming models, compiler technologies, and computer systems.

However, one of the significant challenges in developing an OpenMP compiler and ex-

tending OpenMP language is the steep learning curve of compiler implementation

and the development efforts of adding compiler support for language extensions.

Fundamentally, compiler development is a complex and time-consuming task. Al-

though many cloud-based, online learning platforms [55, 56, 58, 60, 62] have been

created for computer science education, focusing on entry-level programming courses,

there is an apparent lack of such resources to teach compiler development. Even with

the developer manuals of a compiler framework, it is difficult for beginners to teach

themselves how to modify compilers that contain millions of lines of code. Training

beginners by proficient compiler developers consume lots of time, human effort, and

cost, which is not scalable in the long term.

In this chapter, we introduce an ongoing effort, FreeCompilerCamp.org, a free
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and open online learning platform aimed at training researchers to quickly develop

OpenMP compilers and help them learn the skills of compiler development. FreeCom-

pilerCamp.org has several distinct features: 1) It allows anyone interested in develop-

ing OpenMP compilers to learn the necessary skills for free; 2) A live training website

is set up, so a web browser and an Internet connection are the only requirements

for anyone to take the training; 3) It enables those who have the relevant skills to

contribute new tutorials; and 4) The entire training system is open-source so it can

be deployed on a private server, workstation or even personal laptop.

The remainder of the chapter is divided as follows: Section 6.2 presents the im-

plementation of the framework. Section 6.3 gives an overview of the design of the

tutorials with a few examples. Finally, Section 6.4 consists of the conclusion and our

plans.

FreeCompilerCamp.org is aimed to build a free and open cloud-based training plat-

form integrating the solutions mentioned above. This platform aims to facilitate the

training of researchers to quickly develop compilers for OpenMP and help them learn

the skills of compiler development. We will elaborate the design and implementation

of this platform in the next sections.

6.2 FreeCompilerCamp.org Platform

FreeCompilerCamp.org is a learning system with several distinct design principles:

• It aims to allow any developer who is interested in understanding the internal

working of OpenMP compilers to learn the necessary skills for free.

• It provides a pre-configured compiler development environment in an online

sandbox, eliminating the burden of beginners’ tedious and error-prone software

installation processes.

• A live training website based on the system is set up, so a web browser and an

Internet connection are the only requirements for anyone to get the training.
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• The entire training system is open-source, so it can also be deployed by anyone

on a private server, workstation, or even personal laptop.

• It enables anyone with the relevant skills to contribute new tutorials as well.

There are two components in the FreeCompilerCamp.org platform (or FreeCC as

an abbreviation) as displayed in Figure 6.1 – a web-based framework with all tutorials

and a Play-With-Compiler (PWC) engine for the sandbox environment. The website

provides a browser-based interactive interface with two panels: the left panel contains

the training instructions in text, and the right panel connects with the PWC engine,

which creates a live terminal sandbox for real-time practice.

Figure 6.1: Two components of FreeComplierCamp.org

6.2.1 Tutorial Website

The tutorial website is created as the major interface of FreeCC. It provides easy-

to-understand documents in multiple tutorials organized by categories. Users can

choose any entry on demands or learn in order.
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6.2.2 Play-With-Compiler Engine

The Play-With-Compiler engine is based on Play-With-Docker (PWD) [101], which

is an online sandbox platform for visitors to learn basics about container techniques

using Docker [102]. Docker uses OS-level virtualization to deliver software, libraries,

and configuration files in packages called containers, which are isolated from one

another though there are defined channels to enable their communication. Contain-

ers on the same machine share a single operating-system kernel and are thus more

lightweight than virtual machines.

Play-With-Docker uses a so-called Docker-in-Docker technique. While the host

service is running in an outer docker, the component of this service runs in an isolated

inner docker so that multiple components won’t affect each other[103, 104]. In the

case of PWD, each user has their own sandbox and won’t get interrupted by others’

activities. PWD uses Apline Linux, which is widely used in docker images due to its

lightweight and security.

6.2.3 Customization

We encountered several technical issues during the development of FreeCompiler-

Camp.org and subsequently resolved them. Most of these issues may not be new in

web development, but our target audience is mostly people with a HPC background,

who may not have a flair for web development. Also these issues are common and

will be faced by anyone who would like to deploy our framework. Hence mentioning

these issues here is vital.

6.2.3.1 Same-Origin Policy

The same-origin policy [105] restricts resources loaded from one origin to interact

with resources from another origin. This prohibits training website and PWC to be

deployed on different servers. We had to apply Cross-Origin Resource Sharing [106]

mechanism that uses additional HTTP headers to enable resources on PWC server
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to be accessed by training website.

6.2.3.2 Port Conflict

Later to simplify management and lower the cost, we decided to deploy both the

training website and PWC on the same server. This caused port conflict since they

both use port 80 by default. We set up an HTTP server using Apache and non-default

ports redirection to resolve this conflict.

6.2.3.3 Alpine Linux

The PWD sandbox had dockers built from Alpine Linux, which was unfit for com-

piler training. Compilers are sensitive to the host system environment. Alpine Linux

is not supported for the development of either ROSE or LLVM. Therefore, we cre-

ated new docker images based on Ubuntu for better compatibility with both ROSE

and LLVM. Ubuntu has a much wider application support, hence if future even more

compilers can be added in the tutorial.

6.2.3.4 Security

The PWD sandbox by default gives users root access inside the terminal. This is a

security risk since a malicious user may hack into web hosting directories where they

are not supposed to access. As a solution we create a user/group (freecc/freecc) in

Figure 6.2: The tutorial for teaching AST modification
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our sandbox and let all process run in that user account instead of root. This way

we have more control over what access we want to provide the users.

6.3 Tutorial Design

We have created several initial tutorials to take advantage of FreeCompilerCamp.

The goal is to have a good mix of text and commands for users to read and practice

essential compiler skills.

6.3.1 Concepts

Tutorials of FreeCC are designed based on the principle of experimental learning

or learning by doing. John Dewey introduced learning-by-doing, and it promotes

the idea that students should learn by actively interacting with environments[107].

Kolb reviewed the major experimental learning models and created his comprehensive

structural model[108]. He also explored the application of experimental learning in

higher education. Students read static texts and apply theoretical knowledge to

practical cases. They learn the skills by solving problems, working on small projects,

etc.

Under the guidance of this theory, FreeCC hosts tutorials to let users start from

any point they like with a ready environment, with the following major features:

• We make users practice as much as possible with detailed instructions by pro-

viding an easy-to-use sandbox for users to test given code or conduct their

experiments.

• FreeCC covers different topics in compiler development, including parsing, AST

generation, OpenMP programming, compiler extension, and so on.

• We split larger learning tasks into smaller ones to fit each tutorial into a 10-15

minutes session. The goal is to ensure that we can grab sufficient attention from

visitors.
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• The tutorial lists the steps and explains why each step should be conducted and

how it works.

• FreeCC supports clickable code snippets, which can be tested in the sandbox

immediately by clicking.

• Video instructions are not included currently because more students prefer static

tutorials to video tutorials[109]. Using static tutorial is easier to seek and pick

different sections of tutorials and learn at a comfortable pace for themselves.

6.3.2 Example Tutorials

FreeCompilerCamp.org provides a flexible learning experience based on the con-

cepts mentioned above. In particular, we split the training content into several tu-

torials with incremental complexity so visitors can jump to the right levels they are

comfortable with. We start with simple ones to let visitors play with the input and

output of compilers and get familiar with compilers’ internal representations for input

programs. After that, we let them try out how to traverse the tree representations

and finally how to change the tree for writing transformations.

Figure 6.3: The tutorial for fixing an OpenMP translation bug in ROSE
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6.3.2.1 Tutorial for Learning AST

Taking ROSE as an example, we designed the following tutorials:

• AST/IR Generation. An AST will be generated and represented visually in

a graph for a given input source file. This tutorial shows how information is

retrieved from source code and organized internally inside ROSE for future use.

• AST/IR Traversal. After AST generation, this tutorial shows how to traverse

the tree to search for certain information of interest, such as loops or functions.

• AST/IR Modification. This tutorial demonstrates the method to add function

call nodes into AST. Unparsing the AST will result in an output source file with

the inserted function calls.

For example, the AST modification tutorial teaches users how to insert a functional

call node into AST and check the updated AST by looking into the corresponding

unparsed source code (Figure 6.2). Users can click the corresponding code snippets

to download those files without leaving the page. All necessary source files can be

downloaded in the sandbox on demand. The sample input has no function calls in

the main function. The tutorial explains how a function call subtree is constructed

in the compiler and shows all steps to create the subtree and attach it to the AST to

complete the task. The input and the expected output are provided in the tutorial

so that users can compare their results with the correct solution.

6.3.2.2 Tutorial of Fixing a Compiler Bug

Developers often learn many things by fixing actual bugs. Figure 6.3 is an example

tutorial to fix a user-reported bug in ROSE. A PI calculation program in OpenMP

compiled by ROSE generated some wrong values. Upon debugging, it was found that

during ROSE’s transformation of the loop body of ‘omp parallel for’, the loop

stride was miscalculated due to incorrect operand nodes retrieved in the AST. The tu-
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torial first highlights the bug and describes the steps to reproduce it. It then explains

how compiler transformation and a runtime library function collaborate to schedule

loop iterations among multiple threads. After that, it gives specific instructions on

which source files should be modified to fix the bug. At last, with a few simple clicks,

the modified ROSE is rebuilt to compile the test program, and the correct execution

output is generated. Thus in a wholesome way, this tutorial gives an example of a

real OpenMP implementation bug and explains how to reproduce, debug and resolve

it.

6.3.2.3 Tutorial for Writing a Clang Plugin

We take Clang as another example to show our tutorials. This is a self-contained

tutorial about writing a short plugin in Clang that modifies the source code as re-

quired.

Figure 6.4: The tutorial for writing a Clang Plugin

Let’s say we want to analyze a simple C file as shown in Listing 6.1. Suppose we

want to do some simple fixes on this C file. We want to change the name of func1

to add and func2 to multiply. Then we would also like to change the function calls

of func1 and func2 to add and multiply, respectively. This will result in a code as

shown in Listing 6.2. We can write a plugin that will parse through the AST and
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make the above changes to the file.

Listing 6.1: Example input code

1 int func1(int x, int y) { return x+y; }

2 int func2(int x, int y) { return x*y; }

3 int saxpy(int a, int x, int y) {

4 return func1(func2(a,x),y);

5 }

Listing 6.2: Expected output code

6 int add(int x, int y) { return x+y; }

7 int multiply(int x, int y) { return x*y; }

8 int saxpy(int a, int x, int y) {

9 return add(multiply(a,x),y);

10 }

This tutorial explains in detail the steps that need to be taken to write this plugin.

It starts with giving an overview of what is a Clang plugin. Then it goes on to

explain what this plugin intends to do. Then it explains how to set up the source

code structure of the plugin and which files need to be written or modified to write

this plugin. The tutorial also allows users to download a reference plugin or write it

themselves. Ultimately, it helps the user build and test out the plugin. Figure 6.4 is

a screenshot of this tutorial where the user tests the plugin.

6.3.3 Trial and Feedback

We invited six Ph.D. students majoring in Computer Science, with only basic

compiler knowledge, to participate in a trial of FreeCC. No pre-training was provided

before the trial to ensure the most accurate feedback. Each student chose a tutorial

based on their interests and completed it independently without additional guidance.

After the tutorial, they completed a survey form to share their experiences using
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FreeCC. The feedback from the survey is summarized as follows:

• They feel comfortable with the length of each tutorial of 10-15 minutes.

• All steps of the tutorial are completed without any issues.

• Students prefer using clickable code snippets rather than manually typing them.

• Providing a choice from multiple code editors will be helpful.

• Additional video instructions are not needed.

• The sandbox and clickable code snippets attracted the most attention. They

make FreeCC unique compared to conventional tutorials.

• Some students tried to conduct their experiments in PWC as we expected.

• The overall appearance of FreeCC could be improved.

• They want to retrieve files from the sandbox (ssh or git might help).

• Support for X11 forwarding might be needed to display graphics.

• The tutorials can use some links to external courses for fundamentals about

OpenMP and compilers.

• GPU support is needed for extending tutorials running on GPU.

Based on the feedback, we conclude that the current design of the FreeCC tutorial

is a very good starting point. All testers are satisfied with the features of FreeCC. The

sandbox, PWC, is highly rated since students don’t need to configure any complicated

environment but a modern browser on any system. Criticism mostly came from the

website appearance, customization, and cloud-machine resources for GPUs, which

can be addressed in the future.
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6.4 Summary

In this chapter, we have introduced an ongoing effort, FreeCompilerCamp.org, a

free and open online learning platform to train researchers to develop OpenMP com-

pilers quickly. FreeCompilerCamp.org is built on the Play-with-Docker platform to

relieve learners’ difficulty finding suitable machines and installing software. The tu-

torials of FreeCompilerCamp are entirely web-based with both text content and a

live embedded sandbox terminal in which learners can immediately practice compiler

development skills. Instructors or students can customize this platform quickly and

deploy it on any local server, workstation, or even personal laptop.

In the future, we will include more tutorials on developing OpenMP compilers for

HPC. We will also design online examinations to help learners evaluate the effective-

ness of their learning process. We welcome anyone to try out our system, give us

feedback, contribute new training courses, or enhance the training platform to make

it a practical learning resource for the HPC community.



CHAPTER 7: CONCLUSIONS

In this dissertation, we present UPIR, a unified parallel intermediate representa-

tion designed to facilitate the representation of parallelism in parallel programming

models, thereby enabling parallelism-aware compiler analysis, transformation, and

optimization. Developed to support a wide range of parallel programming mod-

els, UPIR’s prototype implementation within the ROSE compiler is compatible with

C/C++/Fortran, OpenMP, OpenACC, and CUDA. This approach allows consistent

compiler transformation applicable to multiple parallel programming models, such as

OpenMP and OpenACC.

Moreover, we investigate the application of data shuffle in many-core GPUs, which

allows data to be copied between threads without relying on the memory system. This

technique can improve computing performance when significant data communication

occurs between threads. In this research, we explore two methods of integrating

shuffle within the OpenMP high-level programming model: 1) an efficient runtime

implementation of the reduction clause; and 2) a proposed ’shuffle’ extension for

OpenMP, enabling users to control when and how data is moved between threads.

We have achieved notable performance enhancements by implementing shuffle for re-

duction and 2D stencil kernels. Although programming with the shuffle primitive

can be challenging, our language extension allows users to leverage it in high-level

programming models with reduced complexity. Our findings demonstrate the poten-

tial for shuffle instructions to be utilized in compiler code generation and application

optimization to boost performance.

We then introduce REX, an OpenMP source-to-source compiler that employs the

unified parallel intermediate representation (UPIR) to support critical features of
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OpenMP 5.1 and OpenACC 3.2. REX generates output targeting the LLVMOpenMP

runtime and offers the option to produce MLIR instead of new source code. Addi-

tionally, we have extended the Rodinia parallel benchmark by implementing two new

variants: OpenMP GPU and OpenACC, which facilitate evaluating GPU offloading

performance across various parallel programming models and compilers.

REX operates on the same OpenMP runtime as LLVM, providing additional source-

to-source transformation and OpenACC support. Impressively, REX incurs an aver-

age overhead of only 6%. Compared to GCC and NVC, which also support OpenMP

and OpenACC, REX delivers consistent performance across both parallel models,

thanks to UPIR. Conversely, semantically equivalent programs compiled by GCC

and NVC may display considerable performance differences.

Lastly, we have initiated FreeCompilerCamp.org, a complementary and accessible

online educational platform to accelerate researchers’ training in OpenMP compiler

development. FreeCompilerCamp.org is built on the Play-with-Docker platform to

mitigate learners’ difficulties when seeking appropriate machines and installing the

required software. The platform’s web-based lessons combine textual content with

an interactive embedded sandbox terminal, allowing learners to apply their compiler

development skills immediately. This versatile platform can be easily customized by

instructors or students and deployed on any local server, workstation, or even an

individual’s laptop.
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