
 
 

LEVERAGING MACHINE AND DEEP LEARNING TO 

DEVELOP OPTIMIZED AND NOVEL MODELS FOR 

PATIENTS UNDERGOING ABDOMINAL WALL RECONSTRUCTION SURGERY 

 

 

 

by 

 

Keith Joseph Murphy 

 

 

 

 

A dissertation submitted to the faculty of  

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in  

Health Services Research 

 

Charlotte 

 

2023 

 

 

 

 

 

 

 

 

        Approved by: 

 

______________________________ 

Dr. Rajib Paul 

 

______________________________ 

Dr. B. Todd Heniford 

 

______________________________ 

Dr. Shi Chen 

 

______________________________ 

Dr. Hamed Tabkhi 

 

                                                                       ______________________________ 

Dr. Wlodek Zadrozny 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2023 

Keith Murphy 

ALL RIGHTS RESERVED 



iii 
 

 

ABSTRACT 

 

KEITH MURPHY. Leveraging Machine and Deep Learning to Develop Optimized and Novel 

Models for Patients Undergoing Abdominal Wall Reconstruction Surgery. 

Under the direction of DR. RAJIB PAUL 

 

This research investigates the intersection of applied statistics, machine learning, and 

healthcare to leverage the quantitative approaches as a means of improving patient quality of life 

after surgery. Relevant patient data prior to surgery remains relatively limited. Therefore, finding 

the appropriate means to maximize the limited data available to optimize patient outcomes 

postoperatively is imperative. This study utilizes multiple patient cohorts, drawn from a tertiary 

care hernia referral center in the southeastern United States, who underwent abdominal wall 

reconstruction surgery.  

Chapter 2 focuses on developing a multivariable model using unique preoperative patient 

features to model the relationship between these variables and the outcome of interest: patient 

quality of life six months following abdominal wall reconstruction surgery. Using patient cohort 

data from the years 2005-2017, this study successfully built and internally validated a 

multivariable model using 20 unique preclinical variables. These findings provide further 

evidence to determine what preoperative variables reliably predict patient quality of life after 

surgery. Ultimately, this assists clinicians in preoperative assessments to optimize early patient 

interventions and treatment plans.  

Chapter 3 shifts to investigating alternate data sources in predicting patient outcomes, i.e., 

patient imaging data in the form of computed tomography scans. Since these data are scarce prior 

to surgery, this research focuses on assessing multiple qualitative methodologies to align and 

improve image quality for predictive modeling. From the various methodologies analyzed, image 

averaging after cropping and alignment showed the most promising means of optimizing 
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preoperative patient images for patient quality of life classification. Using these techniques aids 

researchers in maximizing the limited image data available for building accurate classification 

models in surgery.  

Finally, Chapter 4 explores existing predictive models in abdominal wall reconstruction 

surgery to determine external generalizability on other patient cohorts. This research draws on 

the methods and techniques explored in the third chapter to optimize patient images to 

successfully train and validate these models. Although not initially successful in demonstrating 

model external validity on outside patients, investigation in pooled validation techniques 

suggests successful and generalizable models are possible with further investigation into 

matching internal and external patient cohorts. In conclusion, this research explores the possible 

applications of statistical and machine learning methods in surgery and provides means of 

implementing these techniques successfully in the clinical context.  
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CHAPTER 1: INTRODUCTION 

 

Minimally Invasive Surgery and Hernia Repairs 

The 1980s marked a significant event in the advancement of surgical techniques: the 

introduction of minimally invasive surgery (MIS). This new suite of techniques provided 

surgeons with a means of operating on patients with significantly less risk of damage to the 

patient’s body, as compared to open surgery (Schlich & Tang, 2017). As a result, MIS 

techniques have been adopted and incorporated into multiple surgical domains including spinal, 

abdominal, urological, and hepato-pancreato-biliary surgeries. Surgical repairs for abdominal 

surgery represent some of the most commonly performed procedures in MIS, with approximately 

350,000 ventral and incisional hernia repairs occurring annually in the United States (Wechter et. 

al., 2005).  

From an economic perspective, the estimated healthcare costs for such procedures totaled 

in excess of $3.2 billion in 2006 and continue to rise each year (Poulose et. al., 2012). Proper 

management following procedures is imperative in reducing adverse postoperative outcomes and 

hernia recurrence. For each percentage increase in average population hernia recurrence, Poulose 

et. al., (2012) estimated additional healthcare costs at $32 million dollars. With significant 

improvements made to reducing mortality rates across surgical domains in the past 70 years, the 

focus has now shifted to minimizing postoperative morbidity rates and optimizing patient quality 

of life (QOL) after surgery (Heniford et. al., 2008).  

Quality of Life in Surgery 

 As previously discussed, health-related QOL has become an increasingly utilized 

measure to evaluate the outcome of surgical care. This metric encompasses a wide range of 

concepts including a patient’s physical health, psychological state, social relationships, and level 
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of autonomy (Urbach, 2005). Not all of these aspects are applicable to surgery and surgery 

research. More specifically, those appropriate in describing QOL are broadly defined as patient-

based outcome measures. In essence, the goal of surgical care is inextricably tied to patient QOL. 

As the primary purpose of surgical care is to improve a patient’s health, the interventional effect 

surgery has on patient QOL could be argued as the most significant metric in evaluating the 

efficacy and effectiveness of surgical care (Urbach, 2005). However, due to the complexity 

inherent in defining patient QOL, one cannot directly measure this phenomenon in a patient 

(Fitzpatrick et. al., 1998). The most common estimation for QOL involves utilizing a derived 

measurement calculated from a questionnaire or survey. For example, a QOL measure might 

seek to quantify chronic pain in patients who suffer from gastroesophageal reflux disease 

(GERD) (Velanovich, 1998). 

 In MIS, rates for chronic pain following hernia repair have been reported as high as 39%, 

demonstrating a QOL measure that necessitates further investigation to optimize preoperative 

interventions and ultimately reduce patient pain following surgery (Luijendijk et. al., 2000). 

Traditionally, QOL instruments in medicine were primarily designed to measure multiple aspects 

of health, the most notable example in health research literature being the short-form 36 (SF-36) 

survey (Ware & Sherbourne, 1992). This 36-item questionnaire includes a variety of questions 

designed to calculate multiple measurements of patient QOL including physical, mental and 

emotional health.  

Predictive Models in Surgery 

Due to this shift towards quantifying patient QOL after surgery, many surgeons have 

sought to identify what patient features, if any, could be associated with this outcome. This can 

include, but is not limited to: patient demographics, co-morbidities, lab measurements, 
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diagnoses, interoperative factors, and immediate postoperative factors (Lee et. al., 2016). This 

development catalyzed researchers into developing predictive algorithms and formulae capable 

of modeling these relationships between these patient features and characteristics and the 

outcome in question. This surge is exemplified by the number of research publications in 

medicine involving predictive modeling increasing exponentially over the past two decades 

(Bendifallah et. al., 2015).  

Predictive modeling provides the means of stratifying patients based on risk for adverse 

outcomes (Osorio et. al., 2016). Among predictive modeling techniques, perhaps the most 

ubiquitously seen in medical literature is logistic regression (Hosmer & Lemeshow, 2013). This 

method is commonly used to model the probabilistic relationship between independent features 

on an adverse health outcome (Chen & Yun-Fang, 2013). This research has resulted in improved 

standardization processes across surgical domains with the intent of prioritizing both patient 

safety and postoperative outcomes. Ultimately, the ability to provide accurate predictions of 

patients’ postoperative outcomes has significant implications for tailored preoperative 

counseling, and more effective interventional and treatment plans (Bekelis et. al., 2014). These 

predictive models can facilitate more objective means of determining patients at high risk for 

adverse outcomes, and thus provide additional tools for more informed clinical decision-making 

with the intent of improving patient health and quality of life.  

Regarding MIS and hernia repair, numerous efforts have been made to model 

associations of singular risk factors with various postoperative surgical outcomes through 

multivariate analyses and logistic regression-based approaches (Montes et. al., 2015, Schug & 

Bruce, 2016). To date, no studies have aimed to predict patient postoperative QOL following 

hernia surgery utilizing purely preoperative patient features. Chapter Two will outline the current 
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state of disease-specific QOL measures in hernia surgery as well as the research in existing 

predictive models in MIS. Furthermore, the chapter will investigate generating a novel predictive 

algorithm built utilizing patient preoperative factors to model the association between these 

features and patient postoperative QOL.  

Deep Learning: A Brief Primer 

 With the widespread success and numerous publications using predictive modeling in 

medicine, researchers began to investigate what improvements could be made to existing 

modeling techniques to provide more accurate, valid, and generalizable predictions based on the 

wealth of patient data available. In the last decade, a newer algorithm gained notoriety in the 

clinical research community: deep learning. This methodology was of significant interest to 

medical researchers, as it provided a means of modeling complex data inputs i.e., text and image 

data which were previously unable to be analyzed adequately by more traditional statistical and 

machine learning modeling techniques (Wang et. al., 2018). In MIS, the majority of preoperative 

imaging consists of computed tomography (CT) images which enable trained clinicians to 

investigate internal anatomical structures and possible issues within a patient (Zhu et. al., 2022). 

These scans have been traditionally employed to determine clinical diagnosis and treatment 

courses for patient hernias. 

Before delving into the deep learning applications in MIS, we must first define deep 

learning models (DLM) and their general purpose and applications. The DLM is a subset of 

machine learning originally inspired to mimic the function of a neuron. The model takes an input 

that undergoes multiple transformations to provide a data representation tailored to solving a 

predetermined problem (Rivas-Blanco, et. al., 2021). Some of the most well-known and 

documented DLMs are those used in image processing applications which include AlexNet, 
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VGGNet, and ResNet. These DLMs are normally referred to as Convolutional Neural Networks 

(CNNs) and follow a general architecture of a series of convolutional and pooling layers as well 

as a fully connected layer (Shrestha & Mahmood, 2019). The convolution layers are where the 

model learns the localized patterns among an image’s pixels to extract high-level feature 

information. These layers can capture such information as an image’s edges or colors, to higher 

level representations within an image, such as the detected object of interest in an image. Next, 

the pooling layers decrease the dimensionality of the features generated from convolutional 

layers to summarize the information and consequently make them more robust to any possible 

feature variations that may occur in the image (Chollet, 2017). Finally, the fully connected layer 

provides the actual classification for our image input which is accomplished by learning non-

linear feature combinations provided through the pooling layer.  

Designing an ideal CNN architecture for research classification is not an easy task, as the 

deep learning architect must decide on the optimal number of layers in the DLM. This choice 

comes with multiple trade-offs including computational speed, good model classification 

performance, and adequate generalization ability on new input data (Jia et. al., 2009). In practice, 

having a “shallow” network with fewer convolutional layers will generally perform predictions 

much faster and with better generalizability but with less accuracy. In contrast, a deeper network 

which has the ability to model greater numbers of parameters will on average have much better 

prediction scores compared to shallower networks on the training set; however, this requires 

much greater processing time at the expense of generalizability and with the added risk of 

overfitting on the training data (Xiao et. al., 2020). Another key element to developing an 

accurate predictive model includes having large amounts of labeled data for model training so 

that the model can “learn” the inherent variability that could be present among the true 
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population of images. Obtaining sufficiently large quantities of images for adequate training can 

represent a daunting task, however, and significant research has been invested into determining 

the sufficient number of images to adequately train a deep learning model for classification 

(Simonyan & Zisserman, 2014). 

Limitations of Deep Learning in Medicine 

As previously mentioned, obtaining sufficient quantities of annotated data in specific 

research domains like MIS is a difficult and costly process. Building deep learning models that 

can adequately classify input data requires a significant amount of training images, with some 

researchers hypothesizing at least 10,000 unique images per class as a necessity for robust model 

development (Akkus et. al., 2017). Furthermore, many research questions in surgery involve rare 

disease states, procedures, and outcomes, which can result in very skewed datasets where 

positive or experimental cases represent as little as 5% of all sampled individuals. These heavily 

skewed datasets pose a difficult problem for deep learning classification, as it is unlikely to reach 

the requisite number of images to capture the full variation possible in positive cases. Utilizing 

clinical data also comes with other complications, including legal agreements over utilizing 

protected patient information, cost of requiring data, and, as previously mentioned, significant 

time and effort in annotating and labeling training classes for images (Shorten et. al., 2019).  

Due to these limitations, clinical researchers have sought methods to combat these issues 

inherent in applying these classification models in surgery. Consequently, two major methods 

have arisen to address data limitations which include quantity- and quality-driven approaches to 

data augmentation. Broadly speaking, data augmentation encompasses a host of techniques 

concerned with optimizing an existing, albeit limited, image dataset to more accurately represent 

the true variance present in the larger image population. Quantity-driven approaches to 
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augmentation use transformational techniques to artificially inflate the existing image sample 

size to capture the variance possible between images in a given dataset (Lo et. al., 2021). These 

include, but are not limited to: rotating an image, flipping an image on one or multiple axes, or 

image magnification or shrinking. For qualitative improvements, these generally include 

modifying pixel intensities to particular thresholds to reduce background noise which could 

result in image misclassification (Balaji & Sumathi, 2014).  

In MIS and hernia repair, similar to other surgical domains, many of the positive 

postoperative adverse outcomes are relatively limited. For example, rates of surgical site 

infection following hernia surgery are reportedly <10% which, as previously mentioned, 

provides a difficult outcome to classify using deep learning primarily due to the dataset’s class 

imbalances (Elhage et. al., 2021). Although there has been considerable discussion on these 

limitations in utilizing surgical data for image classification, there is limited available research 

on methods to optimize these images prior to model input and processing for analysis (Chunwei 

et. al., 2020).  

Chapter Three of this paper is concerned with optimizing image quality for building more 

accurate and discriminative predictive models. This chapter will investigate utilizing multiple 

quality-driven approaches to data augmentation to determine if these techniques can provide any 

appreciable difference in model accuracy as compared to utilizing the original, unmodified 

dataset.  

 

Validating Deep Learning Models in Medicine 

One of the earliest examples of deep learning applications utilizing medical imaging to 

classify outcomes was published in Nature by Wang et. al. in 2016. This paper sought to classify 
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breast macrocalcifications as either malignant or benign based on preoperative screening images 

of patient mammograms. The DLM outperformed all other classification algorithms with higher 

predictive accuracy and receiver operating characteristic (ROC) values. Deep learning 

publications in surgery continue to grow, with greater numbers of papers published utilizing deep 

learning for classification in medicine.  

In regards to MIS, Elhage et. al., (2021) published a study concerning the implementation 

of a DLM successfully on a patient cohort who underwent abdominal wall reconstruction (AWR) 

surgery to classify procedural difficulty and patient postoperative outcomes. Model ROC values 

for each outcome demonstrated strong discriminative ability (reported ROC values for risk of 

surgical complexity and wound infection as 0.74 and 0.89, respectively) and became one of the 

first studies to predict surgical complexity and postoperative outcomes using solely preoperative 

imaging data.  

Although publication rates for predictive models and deep learning-based classification 

models are high, there is a dearth of literature on sufficiently validating these models with the 

intent of clinical implementation. Of the 85,000 available predictive model publications on 

Pubmed, less than 5% involved any form of external validation to determine model 

generalizability on cohorts outside of the initial training sample (Ramspek et. al., 2021). Model 

performance has historically been demonstrated as worse in external samples due to the potential 

of overfitting on the initial training sample, and therefore, those models without sufficient 

validation cannot be reasonably recommended for clinical implementation. Chapter Four will 

describe this gap in the literature on insufficient validations involving deep learning prediction. 

In addition, this chapter will aim to validate the DLM model generated by Elhage et. al. (2021) 

using an external patient cohort to further validate model accuracy, discriminative ability 



9 

 

(through receiver operating characteristic [ROC] value) and, ultimately, model generalizability 

on cohorts outside of the patient sample originally leveraged to generate the model.  
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CHAPTER 2: PREDICTING POSTOPERATIVE PATIENT QUALITY OF LIFE AFTER 

HERNIA SURGERY USING PREOPERATIVE FACTORS 

 

2.1 Introduction 

 

With significant improvements made in reducing morbidity and mortality rates after 

hernia surgery and repair, clinical focus has shifted to improvements in the patient’s perceived 

quality of life (QOL) following hernia surgery (Heniford et. al., 2008). QOL assessments provide 

a means of assessing the repercussions following the medical conditions and treatments from the 

patient’s perspective (Urbach, 2005). The Carolinas Comfort Scale (CCS) was originally 

generated in 2008 as a means of more accurately determining a patient’s QOL following 

abdominal wall reconstruction (AWR) surgery (Heniford et. al., 2008). The score is calculated 

on a six-point scale based on answers from a 24-item questionnaire. Traditionally, the Short-

Form 36 (SF-36) survey was utilized to assess patients’ QOL after hernia surgery (Guyatt et. al., 

1993). However, previous research notes that the SF-36 survey was unable to accurately assess 

patients’ QOL compared to other clinically developed disease-specific questionnaires 

(Velanovich, 1998). Heniford and colleagues invented the CCS score as a reliable and accurate 

predictor of patient QOL after ventral and inguinal hernia surgery with a high Cronbach’s α 

(0.97), test-retest validity, concurrent validity, and spearman’s correlation coefficient 

demonstrating individual question significance within the survey. Furthermore, patient 

satisfaction in taking the CCS survey was significantly greater than in the comparative SF-36 

survey (Heniford et. al., 2008).  

In the past decade, the CCS score has been extensively validated both nationally and 

internationally across multiple hernia patient cohorts (Parseliunas et. al., 2022). Studies 

demonstrated high internal consistency with Cronbach α > 0.90, construct validity, and patient 

survey satisfaction similar to those documented in the initial study. Due to the extensive validity 
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and widespread usage of the CCS score following hernia surgery, the instrument represented an 

ideal measure for determining patient QOL following hernia surgery.  

       Optimizing patient-centered surgical care involves many potential tradeoffs including 

benefits, risks, and costs when determining a patient’s treatment plan (Wennberg, 2004). Ideally, 

all necessary information would be available to both the clinician and the patient before surgery 

to optimize patient care plans. However, current medical practices do not consider this 

comprehensive data-driven approach as necessary (Rudmik et. al., 2015).  Therefore, identifying 

what preoperative factors are most significantly related to the patient’s postoperative QOL could 

represent a significant decision-support tool in tailoring a patient’s treatment plan and immediate 

postoperative interventions to maximize patients’ QOL after surgery.  

In MIS, hernia repairs are often difficult to effectively manage postoperatively (Borad & 

Merchant, 2017). Van Ramhorst and colleagues remarked that many patients go on to develop 

incisional hernias post-operatively which have significant negative impacts on both patients’ 

QOL and patient perceived body image (van Ramhorst et. al., 2012). Among the 73 patients with 

incisional hernias, the authors noted a statistically significant reduction in SF-36 survey 

categories: “physical functioning” and “physical role” compared to those patients without 

incisional hernia at the time of primary surgery.  Other possible negative clinical outcomes 

include persistent postoperative pain which can affect up to one-third of patients following 

inguinal hernia surgery. Furthermore, Vad et. al. noted that anywhere from 2-30% of patients 

will report persistent postoperative pain (PPP) within 6 months following hernia repair surgery 

(Vad. Et. al., 2011). The researchers noted pharmacological and clinical management of PPP to 

be extremely difficult with inconclusive results on interventional efficacy from other reported 

studies (Kehlet et. al., 2008).  
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Due to the aforementioned suite of postoperative negative outcomes associated with poor 

management of hernia care, the developing a predictive model that can stratify patients on 

postoperative QOL based on preoperative features is essential in optimizing care treatment after 

hernia surgery.  Previous studies have sought to associate singular risk factors with various 

postoperative surgery outcomes through multivariable analyses and regression-based approaches. 

However, no studies have aimed to predict the patient postoperative QOL after hernia surgery 

solely using patient preoperative characteristics (Liang et. al., 2015, Schug & Bruce, 2016, 

Montes et. al., 2015).  

Our aim is to identify individual and combinations of patient preoperative features either 

statistically or clinically associated with patient postoperative QOL, represented by the 

individual CCS score, six months following abdominal wall reconstruction (AWR) surgery. 

Clinically and statistically significant features will be utilized to build a multivariate model 

outlining the aforementioned association. In addition, we aim to develop a novel predictive 

modeling algorithm using this multivariate model to identify high-risk patients who may have 

significantly reduced QOL postoperatively.  

2.2 Methods 

Study Data Overview 

This study incorporated data on n = 250 patients who underwent AWR surgery during 

the period of 2005-2017 at a tertiary care hernia referral center in the southeastern United States. 

Data included multiple features on patients’ pre-, intra-, and post-operative information 

regarding surgery totaling k = 774 variables. Since this study is concerned with identifying what 

preoperative features are most significantly associated with the postoperative QOL outcome, any 

features that did not meet these criteria (i.e., those recorded intra- or post-operatively) were 
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removed in the data processing step. All statistical analyses were performed in Python v3.7.1 and 

R version 4.0 (Van Rossum & Drake, 2009, RStudio Team, 2019). All packages and 

dependencies utilized for generating the code are outlined in Appendix A.  

Inclusion and Exclusion Criteria: 

Patients analyzed in this study included those who underwent a ventral or incisional 

hernia repair procedure, using either open or laparoscopic approaches. Patients with missing 

outcome data, i.e., no CCS score at time of survey follow-up (0.6%) at six months were excluded 

from the analysis. In addition, this study included males or females 18 years or older as well as 

those with a literacy level capable of understanding registry patient questionnaires.  

Outcome 

The outcome variable, the CCS Score (ranging from 0-6), was calculated for each patient 

within the sample after a six-month follow-up survey following AWR surgery. CCS Scores were 

dichotomized to patients with a score ≥2, or <2. Previous studies by Cox and colleagues (2016) 

had outlined this variable binarization for analysis with CCS score of 0 (no symptoms) or 1 

(minimal and not bothersome) as “asymptomatic patients” while those with CCS scores of 2 

(signified as mild symptoms, but bothersome) or higher as “symptomatic patients.  

Data Processing  

Preoperative patient variables included multiple patient factors including demographics, 

preoperative lab values, co-morbidities, previous surgeries and complications, and preoperative 

QOL (quantified by CCS score). After eliminating intraoperative and postoperative variables, 

those remaining were assessed for missing values. Any variables with >50% of values 

representing missing or null values were removed from the analysis. Furthermore, any features 

with less than 5% positive cases were also removed during data processing. Feature correlations 
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were calculated using Pearson’s correlation coefficient and any variable sets with an absolute 

correlation >0.7 (denoting “strong” correlation) were assessed by a surgeon expert and either 

removed or kept for further analysis (Assunção, et. al., 2017). Categorical variables were 

encoded using one-hot encoding methods to generate binary variables for each category. Due to 

the large date range encompassing patients in the sample, procedure year was also included as a 

variable to control for any major changes in surgical technique or practice over the past decade.   

Data Analysis 

Data were summarized by medians with interquartile ranges (for continuous variables) 

and frequencies (for binary and categorical variables). Independent variables were stratified by 

the outcome of interest and bivariate analyses were performed using Wilcoxon rank-sum test 

Chi-square tests of comparison or non-parametric Fisher’s exact tests were also performed for 

binary variables. All tests of comparison were reported with the associated significance P- 

values. Following bivariate analysis, missing values among variables were imputed using 

multiple imputations by chained equation (MICE) forest techniques (Mera-Garona et., al., 2013) 

which generated 50 imputed datasets for filling missing values. Variable selection was 

performed using stacked adaptive elastic net (SAENET), a penalized regression technique that 

regularizes model parameters by shrinking the regression coefficients (Du. et. al., 2020). To 

calculate the associated penalization factor for features, SAENET utilizes an alpha/lambda 

pairing combined with a fivefold cross validation. Alpha controls the relative balance between 

reducing feature importance to small values or reducing feature values to zero. Lambda is 

calculated as one standard error from the minimum error determined from the cross validation. 

Taken together, the chosen pair is determined based on the highest L1 penalty and incorporated 

into the equation.  All remaining non-zero features are therefore incorporated into the model.  
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Traditionally, combining multiple imputation with variable selection approaches is 

difficult as applying variable selection algorithms to each imputed dataset through multiple 

imputation can lead to varying sets of selected predictors and feature importance. We 

incorporated the “Miselect” R package which combines stacked adaptive elastic Net with forced 

variable selection across multiple imputed data (Du et. al., 2020). The algorithm pools objective 

functions across these imputations, and subsequently performs optimization jointly over all 

imputed datasets rather than separately for each dataset.  

All remaining imputed independent variables were then incorporated into a multivariable 

logistic regression model. Models and features were assessed using model goodness of fit 

through adjusted R-squared, expert surgical opinion, and variable statistical significance level 

<0.05. Model goodness-of-fit was also assessed by Hosmer-Lemeshow tests to determine the 

model was a good fit for the data with a reported P-value of >0.05 (Hosmer & Lemeshow, 

2013).  

In addition, a second, complete-case dataset was generated for comparison with the 

candidate multivariable model. This complete-case dataset utilized only the candidate 

independent features identified from the Miselect package. In this case, all patient rows with 

missing data were dropped from the analysis table and the remaining data were fitted to the 

outcome. Significant variables in the non-imputed model were compared to the imputed 

multivariable model variables to assess congruency in results.  

 Candidate final models were validated by constructing training and test samples (80:20 

train/test split) from the initial 250-sample patient cohort. Finally, models were evaluated on test 

sample receiver operating characteristic (ROC) scores to determine model predictive ability on 

patient CCS score six months after surgery. Following test ROC calculation, the patient sample 
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was further validated by 5-fold stratified sampling techniques to additionally cross-validate ROC 

values across 5 test samples using the built multivariate model (Rois et. al., 2021). The full data 

preprocessing steps and model analytics are summarized in Appendix B.  

Table 2.1: Median and Proportion values for all candidate model variables stratified by CCS 

Score 

 

Variable 

Total (%) 

(n=250) 

CCS Score <2 

(%) 

(n=128) 

CCS Score ≥2 

(%) 

(n=122) p-value 

Patient Age  61.0 [52.0, 69.0] 63.0 [52.0, 69.0] 60.0[52.0, 69.0] 0.242 

Patient Gender     

.     Male 106(42.4) 67(52.3) 39(32.0) 0.001* 

.     Female 144(57.6) 61(47.7) 83(68.0)  

Patient Race     

.     White or 

Caucasian 

230 (92.0) 120(93.7) 110 (90.2) 0.417 

.     Non-White 20 (8.0) 8 (6.3) 12(9.8)  

Patient BMI 31.6 [28.3,35.5] 

 

30.4 [27.6, 34.6] 

 

33.1 [29.1, 37.1] 

 

0.009* 

 

Patient Taking 

Steroids 

    

.    No 233(94.0) 120(95.2) 113(92.6) 0.550 

.    Yes 15(6.0) 6(4.8) 9(7.4)  

Patient Taking 

Coumadin 

    

.    No 233(94.3) 122(96.8) 111(91.7) 0.102 

.    Yes 14(5.7) 4(3.2) 10(8.3)  

Patient Taking PPI     

.    No 154(61.8) 81(63.8) 73(59.9) 0.610 

.    Yes 95(38.2) 46(36.2) 49(40.1)  

Patient Taking 

Antiplatelet 

    

.    No 189(76.2) 92(72.4) 97(80.2) 0.201 

.    Yes 59(23.8) 35(27.6) 24(19.8)  

     

--Comorbidities--     

     

Alcoholism     
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.    No 246(98.8) 125(97.7) 121(100.0) 0.248 

.    Yes 3(1.2) 3(2.3) 0(0.0)  

Tobacco Use     

.    No 218(87.2) 118(92.2) 100(82.0) 0.025* 

.    Yes 32(12.8) 10(7.8) 22(18.0)  

Heart Arrythmias     

.    No 240(96.4) 124(96.9) 116(95.9) 0.743 

.    Yes 9(3.6) 4(3.1) 5(4.1)  

Asthma     

.    No 223(89.6) 120(93.7) 103(85.1) 0.043* 

.    Yes 26(10.4) 8(6.3) 18(14.9)  

Congestive Heart 

Failure 

    

.    No 245(98.4) 127(99.0) 118(97.5) 0.358 

.    Yes 4(1.6) 1(1.0) 3(2.5)  

Cirrhosis or Liver 

Disease 

    

.    No 241(96.8) 122(95.3) 119(98.3) 0.283 

.    Yes 8(3.2) 6(4.7) 2(1.7)  

Chronic Obstructive 

Pulmonary Disease 

    

.    No 239(96.0) 128(100.0) 110(91.7) <0.001

* 

.    Yes 10(4.0) 0(0.0) 10(8.3)  

Coronary Artery 

Disease 

    

.    No 224(90.0) 114(89.1) 110(90.9) 0.784 

.    Yes 25(10.0) 14(10.9) 11(9.1)  

Cerebrovascular 

Accident (Stroke) 

    

.    No 240(96.4) 121(92.0) 119(98.7) 0.173 

.    Yes 9(3.6) 7(8.0) 2(1.3)  

Diabetes     

.    No 191(76.4) 105(82.0) 86(70.5) 0.046* 

.    Yes 59(23.6) 23(18.0) 36(29.5)  

End Stage Renal 

Disease 

    

.    No 242(97.6) 125(98.4) 117(96.6) 0.437 

.    Yes 6(2.4) 2(1.6) 4(3.3)  
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Gastroesophageal 

Reflux Disease 

(GERD) 

    

.    No 173(77.2) 93(78.8) 80(75.5) 0.663 

.    Yes 51(22.8) 25(21.2) 26(24.5)  

History of Cancer     

.    No 181(72.7) 87(68.0) 94(77.7) 0.115 

.    Yes 68(27.3 41(32.0) 27(22.3)  

Hypercholesterolemi

a 

    

.    No 191(76.7) 95(74.2) 96(79.3) 0.421 

.    Yes 58(23.3) 33(25.8) 25(20.7)  

Hyperlipidemia     

.    No 205(82.3) 103(80.5) 102(84.3) 0.532 

.    Yes 44(17.7) 25(19.5) 19(15.7)  

Hypertension     

.    No 115(46.2) 53(41.1) 62(51.2) 0.153 

.    Yes 134(53.8) 75(58.9) 59(48.8)  

Hypotension     

.    No 247(99.2) 126(98.4) 121(100.0) 0.500 

.    Yes 2(0.8) 2(1.6) 0(0.0)  

Hypothyroidism     

.    No 221(88.8) 113(88.3) 108(89.3) 0.966 

.    Yes 28(11.2) 15(11.7) 13(10.7)  

Pre-operative 

Anemia 

    

.    No 238(95.6) 120(93.7) 118(97.5) 0.218 

.    Yes 11(4.4) 8(6.3) 3(2.5)  

Previous Intra-

abdominal Surgery 

or Trauma 

    

.    No 7(2.8) 4(3.1) 3(2.5) 0.940 

.    Yes 242(97.2) 124(96.9) 118(97.5)  

Pulmonary 

Hypertension 

    

.    No 247(99.2) 127(99.0) 120(99.0) 1.000 

.    Yes 2(0.8) 1(1.0) 1(1.0)  

Peripheral Vascular 

Disease 
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.    No 246(98.8) 127(99.0) 119(98.3) 0.613 

.    Yes 3(1.2) 1(1.0) 2(1.7)  

Sleep Apnea     

.    No 216(86.7) 110(85.9) 106(87.6) 0.713 

.    Yes 33(13.3) 18(14.1) 15(12.4)  

     

Renal Insufficiency     

.    No 245(98.8) 125(98.4) 120(99.0) 1.000 

.    Yes 3(1.2) 2(1.6) 1(1.0)  

     

--Lab Values--     

     

Sodium Levels 139.0[138.0,141.0

] 

140.0[138.0,141.0

] 

139.0[138.0,140.0

] 

0.265 

Creatinine Levels  0.9 [0.7,1.1] 0.9 [0.7, 1.1] 0.9 [0.7, 1.1] 0.738 

     

--Prev. Abdominal 

Surgery-- 

    

     

Hysterectomy     

.    No 178(71.2) 101(78.9) 77(62.8) 0.009* 

.    Yes 72(28.8) 27(21.1) 45(37.2)  

Colectomy     

.    No 177(70.8) 94(73.4) 83(68.0) 0.423 

.    Yes 73(29.2) 34(26.6) 39(32.0)  

Cholecystectomy     

.    No 154(61.6) 79(61.7) 75(61.5) 0.927 

.    Yes 96(38.4) 49(38.3) 47(38.5)  

Previous Hernia 

Repair  

    

.    No 59(24.6) 40(31.1) 19(15.6) 0.005* 

.    Yes 191(76.4) 88(68.9) 103(84.4)  

Other     

.    No 81(32.4) 38(29.7) 43(35.2) 0.422 

.    Yes 169(67.6) 90(70.3) 79(64.8)  

C-Section     

.    No 226(91.4) 121(94.5) 105(86.1) 0.040* 

.    Yes 24(9.6) 7(5.5) 17(13.9)  

Appendectomy      
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.    No 192(76.8) 105(82.0) 87(72.3) 0.063 

.    Yes 58(23.2) 23(18.0) 35(28.7)  

Ostomy     

.    No 237(94.8) 120(94.6) 117 (95.9) 0.631 

.    Yes 13(5.2) 8(6.3) 5(4.1)  

Small Bowel 

Resection  

    

.    No 246(98.4) 127(99.0) 119(97.5) 0.581 

.    Yes 4(1.6) 1(1.0) 3(2.5)  

Urological     

.    No 249(99.6) 127(99.0) 122(100.0) 0.981 

.    Yes 1(0.4) 1(1.0) 0(0.0)  

Exploratory 

Laparotomy 

    

.    No 237(94.8) 121(94.5) 116(95.1) 0.929 

.    Yes 13(5.2) 7(5.5) 6(4.9)  

# of Previous 

Hernias 

2.0 [1.0, 3.0] 2.0 [1.0, 3.0] 2.0 [1.0, 3.0] 0.044* 

     

--Prev. Surgery 

Complications-- 

    

     

Mesh Infection      

.    No 227(90.8) 116(90.6) 111(91.0) 0.903 

.    Yes 23(9.2) 12(9.4) 11(9.0)  

Seroma      

.    No 245(98.0) 127(99.0) 118(96.7) 0.204 

.    Yes 5(2.0) 1(1.0) 4(3.3)  

Other Complications     

.    No 246(98.4) 125(97.7) 121(99.0) 0.622 

.    Yes 4(1.6) 3(2.3) 1(1.0)  

Wound Infection (6)     

.    No 246(98.4) 125(97.7) 121(99.0) 0.622 

.    Yes 4(1.6) 3(2.3) 1(1.0)  

     

Procedure Hernia 

Mesh Size 

 

900.0 [600.0, 

1050.0] 

900.0 [500.0, 

1050.0] 

 

930.0 [600.0, 

1068.0] 

 

0.269 
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Preoperative CCS 

Pain Score 
1.60 [0.63-2.86] 

 

1.00[0.25-2.31] 

 

2.43[1.13-3.50] 

 

0.094 

*Denotes variables were statistically significantly different at p<0.05 between CCS score patient groups 

 

2.3 Results 

Of the 250 patients who underwent abdominal wall reconstruction, 122(~48.8%) had a 

CCS score that was greater than 2. Of the 774 features, 710 were removed due to data 

missingness (features containing > 50% null values), <5% positive cases, or factors that were not 

deemed as preclinical variables. This filtering process left 64 independent variables for further 

analysis. Following this process, the remaining variables were assessed by Pearson’s correlation 

coefficient for any notable variables with correlations >0.50 for multicollinearity. After assessing 

correlations, this left 57 candidate preclinical variables for analysis. Full patient characteristics 

for both experimental (CCS Score ≥ 2) and reference group (CCS Score < 2) for all preclinical 

variables are summarized in Table 2.1.  

The patient cohort had a median age of 61 years old with an interquartile (IQR) range of 

17 years. Approximately 42.4% of patients were male with the majority of patients in the 

assessed cohort being predominantly white (92.0%). The average patient in the population had 

an obese body mass index (BMI) score of >30.0 (median BMI was reported as 31.6 with an IQR 

of 7.2 units). In addition, patients had multiple existing medications, co-morbidities, and 

previous surgical histories. Between the two CCS score outcome groups, ten features were noted 

to be statistically significantly different including: patient gender, patient BMI, current tobacco 

usage, history of asthma, history of chronic pulmonary obstructive disease, history of diabetes, 

previous hysterectomy surgery, previous hernia repair, previous C-section, and number of 

previous hernia repairs.  
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 As previously mentioned, the final multivariate model was selected after stepwise 

elimination of variables alongside multiple imputation, assuming the variables had no clinical or 

statistical importance for inclusion in the final model iteration. The complete multivariate model 

with adjusted odds ratios, confidence intervals, and unadjusted odds ratios is summarized in 

Table 2.2. The final model iteration was chosen based on statistical significance, clinical 

significance, as well as adjusted R-squared value. This model had 20 unique preclinical variables 

with an adjusted R-squared value of 0.2882. Of the 20 preclinical variables included in the 

model, four were significantly associated with the outcome with a P-value <0.05. Patients who 

are diabetic had OR=2.169 (95% CI: 1.032-4.561) of having a CCS score of ≥ 2 as compared to 

patients who are not diabetic, controlling for all other variables in the multivariate model. 

Patients who had a previous history of a colectomy surgery had OR=2.003 (95% CI: 1.009-

3.975) of having a CCS score of ≥ 2 as compared to patients who did not have a previous history 

of colectomy surgery, controlling for all other variables. Similarly, patients who had a previous 

history of an appendectomy procedure had OR=2.205 (95% CI: 1.036-4.692) of having a CCS 

score of ≥ 2 as compared to patients who did not have a previous history of an appendectomy 

procedure. Finally, for every unit increase in patient preoperative CCS score, patients had 

OR=1.879 (95% CI: 1.441-2.450) of having a CCS score ≥ 2. 

 After listwise deletion of missing values, this left n=162 patients to generate the 

complete-case comparison data table. These data were also fitted using a logistic regression 

model. Of the 20 unique preclinical variables, four were statistically significantly associated with 

the outcome variable with a P-value of 0.05. Like the imputed model, the independent variables: 

patient diabetes status and preoperative CCS score were statistically significant indicating further 

evidence of the associations between these variables and patient QOL outcome. Of note, two 
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new variables were recorded as statistically significant with the outcome variable in the non-

imputed dataset namely: patient history of hysterectomy procedure, and patient history of 

cholecystectomy procedure. It is possible these associations are becoming masked by the 

imputation technique, therefore obtaining more preoperative patient data may assist in 

determining the true relationship between these variables and the QOL outcome.  

Table 2.2: Adjusted and unadjusted odds ratios for variables modeled by logistic regression 

Variable Adjusted Odds Ratio [95% 

Confidence Interval] 

Unadjusted Odds Ratio 

[95% Confidence Interval] 

Patient Age 0.991[0.968-1.014] 0.999[0.995-1.003] 

   

Patient Sex   

.    Female Ref Ref 

.    Male 0.670[0.306-1.464] 0.574[0.387-0.850] 

   

Asthma   

.    No Ref Ref 

.    Yes 1.617[0.557-4.688] 2.250[0.978-5.175] 

Diabetes   

.    No Ref Ref 

.    Yes 2.169[1.032-4.561] 1.565[0.928-2.641] 

   

History of Cancer   

.    No Ref Ref 

.    Yes 0.645[0.313-1.328] 0.659[0.405-1.070] 

   

Hypertension   

.    No Ref Ref 

.    Yes 0.665[0.345-0.1.282] 0.787[0.559-1.106] 

   

Tobacco Use   

.    No Ref Ref 

.    Yes 1.590[0.580-4.358] 2.200[1.042-4.646] 

   

Hyperlipidemia   

.    No Ref Ref 
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.    Yes 0.707[0.302-1.655] 0.760[0.419-1.380] 

   

Patient BMI 1.012[0.971-1.054] 1.001[0.993-1.008] 

   

Previous Intra-abdominal 

Surgery or Trauma 

  

.    No Ref Ref 

.    Yes 0.273[0.055-1.366] 0.952[0.741-1.224] 

   

Hysterectomy   

.    No Ref Ref 

.    Yes 1.527[0.666-3.502] 1.667[1.034-2.686] 

   

Colectomy   

.    No Ref Ref 

.    Yes 2.003[1.009-3.975] 1.15[0.724-1.817] 

   

Cholecystectomy   

.    No Ref Ref 

.    Yes 0.566[0.292-1.097] 0.959 [0.643-1.431] 

   

Previous Hernia Repair   

.    No Ref Ref 

.    Yes 1.891[0.899-3.976] 2.429[1.008-5.856] 

   

C-Section   

.    No Ref Ref 

.    Yes 2.583[0.812-8.219] 2.265 [1.056-4.859] 

   

Appendectomy    

.    No Ref Ref 

.    Yes 2.205[1.036-4.692] 1.522[0.899-2.575] 

   

Race   

.    White Ref Ref 

.    Non-White 0.693[0.228-2.111] 1.500[0.613-3.670] 

   

Procedure Date   

.    2005-2011 Ref Ref 
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.    2012-2017 0.678[0.359-1.281] 0.853 [0.611-1.191] 

   

Mesh Infection    

.    No Ref Ref 

.    Yes 0.522[0.1780-1.533] 0.917[0.404-2.077] 

   

Preoperative CCS average 

pain 

1.879[1.441-2.450] 1.241[1.105-1.393] 

 

Table 2.3: Adjusted and unadjusted odds ratios for variables modeled by logistic regression for 

non-imputed data 

 

Variable Adjusted Odds Ratio [95% 

Confidence Interval] 

Unadjusted Odds Ratio 

[95% Confidence Interval] 

Patient Age 0.976 [0.947-1.006] 0.997 [0.992-1.002] 

   

Patient Sex   

.    Female Ref Ref 

.    Male 0.842 [0.313-2.261] 0.479 [0.291-0.788] 

   

Asthma   

.    No Ref Ref 

.    Yes 3.924 [0.844-18.259] 2.000 [0.602-6.642] 

Diabetes   

.    No Ref Ref 

.    Yes 3.139 [1.165-8.456] 1.533 [0.800-2.934] 

   

History of Cancer   

.    No Ref Ref 

.    Yes 0.516 [0.203-1.312] 0.484 [0.261-0.896] 

   

Hypertension   

.    No Ref Ref 

.    Yes 0.755 [0.314-1.815] 0.736 [0.687-1.112] 

   

Tobacco Use   

.    No Ref Ref 

.    Yes 1.575 [0.445-5.573] 2.143 [0.874-5.255] 

   

Hyperlipidemia   
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.    No Ref Ref 

.    Yes 0.585 [0.188-1.819] 0.579 [0.276-1.216] 

   

Patient BMI 1.021 [0.971-1.074] 0.998 [0.989-1.007] 

   

Previous Intra-abdominal 

Surgery or Trauma 

  

.    No Ref Ref 

.    Yes 0.508 [0.086-2.997] 0.857 [0.626-1.174] 

   

 

Hysterectomy 

  

.    No Ref Ref 

.    Yes 3.816 [1.220-11.934] 1.875 [1.022-3.439] 

   

Colectomy   

.    No Ref Ref 

.    Yes 1.803 [0.729-4.461] 0.917 [0.514-1.635] 

   

Cholecystectomy   

.    No Ref Ref 

.    Yes 0.281 [0.112-0.703] 0.765 [0.459-1.274] 

   

Previous Hernia Repair   

.    No Ref Ref 

.    Yes 2.365 [0.937-5.973] 1.105 [0.772-1.581] 

   

C-Section   

.    No Ref Ref 

.    Yes 2.383 [0.516-11.009] 2.750 [0.876-8.636] 

   

Appendectomy    

.    No Ref Ref 

.    Yes 2.015 [0.775-5.240] 1.352 [0.723-2.532] 

   

Race   

.    White Ref Ref 

.    Non-White 0.727 [0.167-3.152] 1.200 [0.366-3.932] 
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Procedure Date   

.    2005-2011 Ref Ref 

.    2012-2017 0.589 [0.254-1.364] 0.702 [0.468-1.051] 

   

Mesh Infection    

.    No Ref Ref 

.    Yes 1.611 [0.338-7.676] 1.750 [0.512-5.978] 

   

Preoperative CCS average 

pain 

1.436 [1.055-1.956] 1.151 [1.002-1.324] 

 

 

After developing the multivariate model, the patient cohort sample was divided into a 

training and test sample with an 80:20 split. The test sample predictions were calculated using 

the established multivariate model. Model accuracy on the test sample was assessed through 

receiver operating characteristic (ROC) and was calculated at 0.847. To provide further validity 

to the calculated ROC score, 5-fold internal cross validation using stratified k-fold techniques 

was performed on the sample set using the same multivariate model. In this case, across the 5 

generated test samples, the mean ROC was calculated at 0.750. Stratified k-fold sampling was 

chosen for incorporation to ensure the class frequency in the outcome label were preserved 

across test samples generated by the technique (Kluver et. al., 2016). ROC graph from 5-fold 

internal cross validation results are included in Figure 2.1 below. 
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Figure 2.1: ROC curves from multivariate model predictions on 5-fold internal cross validation 

2.4 Discussion 

 From the analysis of 250 patients who underwent abdominal wall reconstruction surgery 

(AWR) between 2005-2017, we developed a multivariable model to calculate the relationship of 

preoperative patient variables with patient QOL 6 months following surgery. Statistically 

significant predictors for reduced QOL following AWR surgery included patient age, patients 

taking coumadin, patients with diabetes, preoperative CCS scores, and prior history of 

hysterectomy surgery. Although not statistically significant, other preclinical variables were 

included in the model due to their clinical relevance to the QOL outcome. This included patient 
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sex, BMI, race, patients with end stage renal disease, asthma, hyperlipidemia, patient creatinine 

levels, and previous hernia surgery repair. Previous research has documented that patient age, 

sex, race, and BMI were all significantly associated with chronic pain, which is an indicator of 

QOL, following AWR surgery.  

Some study strengths include utilizing the CCS Score to determine patient QOL. As 

mentioned previously, multiple validation studies have been performed by clinical institutions 

across the United States and internationally in the past decade (Cox et. al., 2016) and were 

documented to be preferred to the standard analog of the SF-36 survey. With prospective 

appraisals including 11,000 surveys, the instrument was shown to have significant acceptability 

and reliability for assessing QOL in patients undergoing hernia surgery (Heniford et. al., 2018). 

Another strength includes the relatively balanced classes among patients in the sample set 

between those with a CCS score ≥ 2 and those with a score <2. Due to a small sample set, having 

significant class imbalances would have made it extremely difficult to develop a predictive 

model to determine patient QOL 6 months following surgery. 

Some limitations to the study include the relatively small sample size for developing an 

accurate and well-validated prediction model. There is an increased risk of model overfitting and 

therefore could have decreased generalizability to other sample populations. One possible 

solution to this issue is utilizing Firth’s Logistic Regression corrections for small datasets which 

will be further assessed in future model analyses (Puhr et. al., 2017).  Further investigation is 

therefore necessary to build a more robust prediction model with a larger sample set for internal 

validation to ensure more valid QOL predictions. In addition, another possible limitation could 

arise from the imputation techniques performed in data preprocessing. Although the MICE 

technique is a well-established and commonly applied technique for performing imputation on 
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missing data, these substituted values still hold risk of misrepresenting the true values in the 

dataset (Mera-Gaona et. al., 2021). Finally, since the study is dependent on patients submitting a 

6-month follow-up survey, there is the possibility of loss to follow-up which reduces the number 

of potential participants to predict in the sample. Furthermore, previous studies have 

demonstrated through concepts like the Hawthorne effect that those participants who respond to 

surveys generally do not represent the average individual within the true population (Granberg & 

Holmberg, 1992). These problems can also be potentially addressed with larger sample sets in 

future analyses.  

In conclusion, we developed a multivariate model based on 20 unique preclinical features 

to model the relationship between these variables and the outcome of interest: patient QOL 6 

months following hernia surgery. This study furthers the research in developing a prediction 

model based purely on preoperative variables to determine QOL after surgery. Using these 

findings, we can continue to determine what preoperative factors reliably predict patient QOL 6 

months after hernia surgery. Furthermore, we used this multivariate model to calculate 

predictions for patient QOL at 6 months using stratified k-fold cross validation techniques. The 

developed predictive model can assist clinicians during preoperative assessments to optimize 

early postoperative interventions and treatment plans for patients. 
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APPENDIX A: UTILIZED SOFTWARE PACKAGES 

 

Table denoting the software packages utilized in the analysis and their respective versions 

 

Package Version 

Python (ver. 3.7.1) 
 

Pandas 1.1.1 

Numpy 1.19.1 

Scipy 1.5.2 

Sklearn 1.0.2 

Statsmodels 0.13.2 

Matplotlib 3.3.1 

Seaborn 0.11.2 

Miceforest 3.1.1 

R (ver. 4.0.0) 
 

glmer4 1.1-29 
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APPENDIX B: DIAGRAM OF DATA PROCESSING AND MODEL ANALYTICS 
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CHAPTER 3: OPTIMIZING IMAGE QUALITY FOR DEEP LEARNING CLASSIFICATION 

MODELS IN HERNIA SURGERY 

3.1 Introduction 

 

Developing accurate deep learning models based on medical imaging for surgery can be a 

daunting task; many deep learning models require significantly large training sample sizes of up 

to 10,000 images equally distributed among the classes for proper model development (Akkus et. 

al., 2017). Often, research questions in surgery deal with rare disease states and complications 

which provide particularly skewed datasets with outcomes of interest representing only 1%-5% 

of sampled individuals. These skewed datasets are particularly difficult for classification 

algorithms to sensitive results as it is very easy for the model to simply predict all samples as the 

negative or control group due to their extremely high prevalence in the dataset (LeMaitre, 

Fernando, & Aridas, 2017). Other potential limitations with utilizing clinical data include legal 

concerns and agreements, cost of data acquisition, and intensive labeling processes (Shorten et. 

al., 2019). Due to their low dataset frequency, researchers have therefore looked to augment 

these images either through artificially increasing their sample size in the dataset through image 

manipulation (a quantity-driven approach) or by modifying image characteristics to provide for 

more optimal classification by the deep learning model (a quality-driven approach) (Shorten et. 

al., 2019, Uemera et. al., 2021).  

Data augmentation has traditionally been the most common method employed to combat 

these data limitation restrictions with clinical data (Lo et. al., 2021). Lo et. al. mention in their 

review that randomized data augmentation has represented the most popular form of the 

technique; however, this process generally does not accurately generate the natural randomness 

and variability necessary in image inputs to improve network robustness in classification. These 

random augmentations can include such techniques as flipping the image on a specific axis, 
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rotating the image, or modifying image characteristics which can potentially be too drastic or 

even too subtle to provide any appreciable improvements in network classification ability.  

Traditionally in medical imaging, lighting conditions can vary widely across computed 

tomography (CT) scans and images due to common histopathological characteristics. Some 

examples of this would include the presence of air bubbles in the gastrointestinal tract, as well as 

metal implants (Machida et. al., 2010). These can cause surges in light intensity, or conversely 

appear as “blacked out” regions in the image. This variability or “noise” generated by these 

phenomena makes it difficult to classify any “regions of interest” present on the image and 

therefore finding optimal methods to reduce this noise is imperative to successful image 

classification. 

With the desire to improve on classifying regions of interest on an image, many 

researchers have turned to utilizing techniques to first segment these regions prior to 

classification. One such method to improve classification is adaptive thresholding; this involves 

the binarization of an image (converting image pixels to 0 or 255) by setting a fixed threshold 

value (Balaji & Sumathi, 2014). Any pixel intensities less than the threshold value are 

consequently set to 0 while those above the threshold are set to 255. However, computing this 

optimal threshold value for an image can prove difficult and can require multiple iterations of 

hyperparameter tuning (Liu et. al., 2020). To address this limitation, researchers have utilized 

adaptive thresholding which considers small pixel clusters and computes the optimal threshold 

for that cluster. All adaptive and local thresholding methods assume that smaller regions of an 

image are more likely to have approximately uniform illumination (Liu et. al., 2020). This 

implies that local regions of an image will have similar lighting, as opposed to the image as a 

whole, which may have dramatically different lighting for each region.  
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In the context of image classification using patient surgical imaging, many patients 

undergo magnetic resonance imaging (MRI) or CT scans to identify the region of interest for 

operation. For example, the CT scan process takes detailed imagery of a patient’s bones, tissues, 

organs, and muscles across various dimensional axes. The CT imaging software could have as 

few as a single image up to hundreds of image slices detailing the region of interest (Elhage et. 

al., 2019). As a result, a full set of image slices from an individual patient could detail multiple 

organ structures, bones, and muscles across multiple slices. This high level of variability among 

images within a patient poses another layer of complexity in classification, as an axial image 

taken at a patient’s waistline will display very different structures compared to an image slice 

taken axially through the top of the chest even though both may pertain to the same abdominal 

outcome. Identifying methods of image optimization to reduce this variance is imperative to 

building successful classification models in surgery given the dearth of available data.  

One possibility to circumvent some of this variance is utilizing a technique known as 

image blending. Here, an image composite is generated from a set number of input images of 

equal dimension. The pixel values at each location are averaged together to produce the resulting 

image, comprising equal parts of each input image. By averaging a set of images together, this 

aids in reducing some of the variability among a predetermined set of images, as the most 

frequent portions or characteristics are going to be the most represented in the image. Methods 

like image averaging could assist in removing the noise and variability present in CT imaging to 

provide more accurate predictions in image classification.  

Although not the primary focus of this discussion, it is important to address the modeling 

architecture and methodology, as these modeling frameworks are ultimately used to classify 

these processed or unprocessed image sample sets. “ResNet”, short for residual network, is a 
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type of deep learning neural network originally built in 2015 by He et. al. in image recognition 

competitions. The original 34-layer architecture won first place in the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) 2015 classification competition with a top-5 error rate 

of 3.57% (An ensemble model). The researchers would go on to derive other model architectures 

including ResNet 18, ResNet-101, and ResNet-152 (He. Et. al., 2019). These models have been 

highly successful in image recognition and classification tasks across multiple publicly available 

datasets. Furthermore, clinical researchers have utilized these model architectures to great 

success, using the initial training weights garnered from previous datasets like ImageNet and 

applying them to answer multiple clinical research questions (Yu et. al., 2019, Chen et. al., 2022)  

This study has two primary aims in investigating multiple qualitative approaches to 

improving image quality for classification in CT images. Traditionally, many deep learning 

image based studies utilize single images for building classification models (Lin et. al., 2021, 

Mittman et. al., 2022, Skrede et. al., 2020) The first aim will align and then average all CT 

images associated with a unique patient who underwent AWR surgery into a composite image to 

determine if the original sample or augmented sample produces a more accurate and 

discriminative dataset built on the ResNet-18 architecture. Model performance will be assessed 

on model accuracy and receiver operating characteristic. The second aim will test interactive 

adaptive thresholding techniques on all sample images and image averaging per patient to 

generate potential “optimized” experimental images. These experimental samples will also be 

incorporated into the ResNet-18 classification model and compared to the model utilizing the 

original surgery patient sample to determine any significant improvements in deep learning 

model classification accuracy and minimized loss function between the qualitatively improved 

patient samples and the original sample. 
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3.2 Methods 

Patient Sample 

 This study incorporated data on n = 250 patients who underwent abdominal wall 

reconstruction (AWR) surgery between 2006-2017 at a tertiary care hernia referral center in the 

Eastern United States. Across all 250 patients, there were 4,225 CT scans available for analysis. 

In addition, patient demographic and comorbidity data were collected on the identified sample 

including patient age, gender, race, body mass index, hernia defect size, patient preoperative pain 

score, diabetes status, hypertension, and number of representative CT scans from a patient.  

Image Preprocessing 

 Axial cut CT scans from the patient cohort were deidentified and rendered into 

representative 3-5mm slices using TeraRecon© software (TeraRecon Inc, Durham, NC) to 

ensure the sample abdominal CT images contained only the herniated abdominal region in the 

training set. CT image sizes after cropping to the region of interest were 512x512 pixels in length 

and width. All images were compiled per patient with identifiers removed. Finally, the processed 

output was extracted and stored in a secure folder for later AI model use in assessment and 

classification.  

 Prior to image classification or quantitative/qualitative optimization, all patient CT 

images were standardized to a size of 224x224 pixels. This input dimension size was chosen 

based on the necessary input dimensions for analysis by the ResNet-18 architecture. Images were 

also scaled to ensure that image aspect and resolution were preserved during standardization. 

Prior to data modification and model generation, the 250-patient sample was divided into 

training and test samples (80:20 training: test split) to ensure that the same test set was utilized 
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between the original and augmented/optimized samples. Based on the total sample, there were 

3,380 CT scans in the training sample and 845 CT images in the testing sample. 

Classification Outcome 

 The outcome variable, which was utilized to build the deep learning classification model 

to determine any improvements in classification accuracy, utilized the Carolinas Comfort Scale 

(CCS) Score. This score represents a well-validated and tested metric to assess patient quality of 

life after surgery (Heniford et. al., 2008). The metric has been both nationally and internationally 

validated in multiple AWR patient cohorts through Cronbach’s α (0.97), test-retest validity, 

concurrent validity, and Spearman’s correlation coefficient (Heniford et. al., 2018). Patient CCS 

scores were calculated from the sample and dichotomized to scores of ≥2, or <2. This binary 

dichotomization was chosen based on a previous study by Cox and colleagues (2016) which 

outlined this dichotomization of CCS scores of 0 (no symptoms) or 1 (minimal and not 

bothersome) as “asymptomatic patients” while those with CCS scores of 2 (signified as mild 

symptoms, but bothersome) or higher as “symptomatic patients”. The binary QOL outcome [0-1, 

>2] was used to classify the patient sample by the ResNet-18 architecture.  

Data Augmentation (Quantitative Approach) 

 To conduct the data augmentation techniques, the training dataset was duplicated to 

preserve an “original” sample set which does not have any transformations for comparison. The 

data augmentation step included multiple image transformations to the newly generated duplicate 

sample set. Each image underwent three transformations. First, all training images in the 

experimental set were rotated by 10 degrees. Next, all initial training images in the experimental 

set were zoomed by 10%. Finally, all initial images were center cropped. In summary, each 

patient’s CT images were augmented by three extra images. This resulted in the initial training 
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set containing the original images, plus 3 generated images with a specific transformation 

(rotation, zoom, or axis flip). Examples of image transformations for data augmentation are 

illustrated in Figure 3.1 below. 

 

Figure 3.1: Example data augmentations from random images in the training sample. Images 

displayed show zoomed and cropped transformations of 4 example images.  

 

Adaptive Thresholding (Qualitative Approach) 

 The adaptive thresholding was calculated and set using OpenCV’s® adaptive 

thresholding function for localized regions in images (Kini et. al., 2021). The adaptive 

thresholding technique calculated the threshold values for pixels based on a specified region 

around a particular pixel. The original sample was therefore trained and compared to the patient 

image sample that underwent adaptive thresholding.  

Image Averaging/Blending (Qualitative Approach) 

 Image averaging was conducted on each unique patient for his or her respective number 

of CT scans. A weighted average of the pixel values for the set of CT images with the same 

processed dimensions of 224x224 was calculated to produce the composite image. For example, 

a patient with 20 axial CT images was averaged together to produce a composite single image 

comprising the unique pixel values from those twenty images. The unmodified sample was 

trained and compared to the patient sample with image averaging to produce composites. An 
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example image set showing the unmodified image, the adaptive thresholding image, and the 

composite image average are included in Figure 3.2.  

 

Figure 3.2: Image set (left to right) showing an example, unmodified single image from a patient, 

the composite image average for all images of that patient, and the adaptive threshold image.  

 

Combining Qualitative Image Approaches 

 After assessing performance of both image blending and adaptive thresholding 

individually, both techniques were performed on the sample data. In this case, a patient with 20 

axial CT images was averaged together to produce the composite image which then had adaptive 

thresholding applied to produce the final image product. This combined approach was trained 

and compared to the previous three approaches to determine which methodology had the greatest 

improvement in model accuracy and minimized loss function.  

Model Generation 

 The deep learning model utilized for training was utilized for all discussed study samples. 

We utilized the established ResNET-18 architecture in PyTorch for model training and 

classification. The model was built using PyTorch software versions 1.13.1. The ResNet-18 

model architecture consists of 18 unique layers including an initial convolutional layer, 4 sets of 

4 convolutional layer sets, and a fully connected layer. The full model architecture and 

specifications are illustrated in detail in Appendix A. The ResNet18 model utilizes the stochastic 
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gradient descent (SGD) optimizer and sparse categorical cross-entropy loss function for model 

training (Geron, Aurelien, 2019). Transfer learning was employed using pretrained model 

weights for ResNET-18 on the ImageNet database. The architecture was used to model each 

dataset quantitative augmented only image sample set, quantitative augmented image sample set 

with adaptive thresholding, and quantitative augmented image sample set with composite image 

averages per patient. Model learning rate was set to 0.001 with 0.9 momentum. These models 

were trained for 100 epochs, and the highest model training accuracy from each respective trial 

run was recorded and saved for further analysis. Each model per unique dataset was run with the 

same model learning rate and momentum for consistency and comparison purposes. To provide 

further evidence towards results, models were cross validated with five trial runs per approach, 

and model training and validation accuracy were assessed per fold. Averaged results across all 

five runs were also calculated and reported.  

Sample Set Evaluation 

Statistical analysis for patient sample comparisons were conducted using Python version 

3.7.1 (Van Rossum & Drake, 2009). Resnet model discriminative ability was assessed by 

percentage of correctly classified images on the test sample (Hosmer et. al., 2013). Evaluation 

metrics also included model loss calculated by binary cross entropy. First, the model trained on 

the original, un-augmented patient sample was compared by the outlined evaluation metrics to 

the model trained using the adaptive thresholding image sample. Next, the model trained on the 

original sample was compared by the same outlined evaluation metrics to the model trained 

using the images averaged per patient into composites. Finally, the model trained on a 

combination of composite/averaged images as well as adaptive thresholding was compared to 
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previous models to assess which qualitative improvements, if any, resulted in improved 

classification accuracy in the Resnet model.   

3.3 Results 

During the image processing steps, 33 patients were excluded from the analysis due to 

corrupted CT images. This left a total of n= 217 patients with varying numbers of CT images per 

patient for image augmentation and classification. Four unique datasets were generated and 

separately modeled using the ResNet-18 model architecture. These included: multiple images 

slices per patient with data augmentation (Model 1), multiple adaptive thresholding image slices 

per patient with data augmentation (Model 2), single composite/average image per patient with 

data augmentation (Model 3), and single composite/average adaptive thresholding image per 

patient with data augmentation (Model 4). Models 1 and 2 consisted of 4,799 training images 

and 1,173 testing images for an 80:20 train: test split for analysis. Models 3 and 4 consisted of 

174 training images and 43 test images for analysis following the same 80:20 train: test split.  

 Each model was initially assessed through cross validation from 5 unique trial runs. 

Results for each model across each run, as well as the overall average training and validation 

accuracy and loss, are reported in tables 3.1-3.4. For Model 1 (multiple patient slices with data 

augmentation), the training accuracy was relatively high across all runs, with a reported average 

accuracy of 93.2736% (training loss: 0.1565). However, the validation accuracy in comparison 

was very low, averaging at 59.81244% (validation loss: 1.7351). Results were relatively 

consistent across trial runs, and there was minimal reported variance between runs (57.9710%-

61.8926%). This likely indicates the model is overfitting on the training data and is unable to 

generalize well to the validation data. 
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Table 3.1: Cross-validation of 5 trial runs for model using single images (model 1) with reported 

training and validation accuracy and loss.  

 

Trial 1 2 3 4 5 average 

Epoch 9 18 26 90 10 30.6 

Training 

Acc. 

90.2271% 92.7902% 94.6864% 97.9579% 90.7064% 93.2736% 

Training 

Loss 

0.2285 0.1665 0.1270 0.0539 0.2068 0.1565 

Val. Acc.  59.8465% 57.9710% 57.8858% 61.4663% 61.8926% 59.81244% 

Val. Loss 1.1838 1.8999 1.9746 2.0810 1.5362 1.7351 

 

Model 2 (multiple images per patient with adaptive thresholding) had relatively similar  

 

performance to model 1 with a slightly higher training accuracy (95.2448% vs. 93.2736%) with  

 

slightly lower training loss (0.1091 vs. 0.1565).  However, model validation accuracy and  

 

validation loss were relatively comparable with only a slight improvement in accuracy observed  

 

in Model 2 over the five validation runs.  

 

Table 3.2: Cross-validation of 5 trial runs for model using single images with adaptive 

thresholding (model 2) with reported training and validation accuracy and loss.  

 

Trial 1 2 3 4 5 average 

Epoch 34 79 67 92 40 62.4 

Training 

Acc. 

92.7902% 96.3951% 95.7074% 97.0827% 94.2488% 95.2448% 

Training 

Loss 

0.1526 0.0899 0.1028 0.0711 0.1293 0.1091 

Val. Acc.  60.6991% 62.1483% 60.9548% 65.2174% 61.0401% 62.0119% 

Val. Loss 1.8358 1.8536 2.0299 2.0697 1.8848 1.9348 

 

Model 3 (average/composite image per patient) had relatively similar training accuracy. 

However, it excelled in validation accuracy and loss with the highest performance results 

compared to the two preceding models (74.4186% average validation accuracy). Some 

individual runs had reported validation accuracy greater than 80%, indicating good 

generalizability in Model 3 from the internal validation assessment.  

Table 3.3: Cross-validation of 5 trial runs for model using composite image samples (model 3) 

with reported training and validation accuracy and loss. 
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Trial 1 2 3 4 5 average 

Epoch 53 55 69 72 79 65.6 

Training 

Acc. 

94.8276% 91.9540% 89.6552% 95.4023% 93.1034% 92.9885% 

Training 

Loss 

0.1725 0.2074 0.1972 0.1094 0.1571 0.1687 

Val. Acc.  74.4186% 69.7674% 76.7442% 69.7674% 81.3953% 74.4186% 

Val. Loss 0.7551 0.9322 0.7744 0.9388 0.5964 0.7994 

 

Finally, Model 4 (utilizing both average image and adaptive threshold techniques)  

 

showed no improvement in model accuracy nor loss function across any trial runs. Model  

 

validation loss was reportedly lower compared to Models 1 and 2. However, it did not exceed the  

 

performance reported from Model 3 across any trial run.  

 

Table 3.4: Cross-validation of 5 trial runs for model using composite image samples with 

adaptive thresholding (model 4) with reported training and validation accuracy and loss. 

 

Trial 1 2 3 4 5 average 

Epoch 24 45 79 54 56 51.6 

Training 

Acc. 

84.8315% 91.5730% 89.8876% 93.8202% 92.1348% 90.4494% 

Training 

Loss 

0.3802 0.2817 0.1906 0.2081 0.2003 0.2522 

Val. Acc.  58.6957% 63.0435% 63.0435% 56.5217% 60.8696% 60.4348% 

Val. Loss 0.9852 1.1294 1.3547 1.4811 1.2359 1.2374 

 

Average model test accuracies across trial runs, as well as minimized loss functions, are 

summarized in Table 3.5 below. The single image + adaptive thresholding with data 

augmentation (Model 2) had the highest observed training (approx. 96.6%) and lowest training 

loss (0.1091) compared to other models. However, all models did achieve a training accuracy 

greater than 90%. The average/composite image patient model (Model 3) had the highest 

observed training accuracy at 74.4186% and with the lowest corresponding validation loss 

compared to all other models (0.7994). Furthermore, no other model achieved a validation 
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accuracy >70%, suggesting model 3 as having the most generalizability among the four tested 

models. 

Table 3.5: Averaged model training and test accuracies with corresponding loss function at the 

associated training epoch for all model types 

 

 SINGLE 

IMAGE 

SAMPLE 

(MODEL 1) 

SINGLE 

IMAGE 

SAMPLE, 

ADAPT. 

THRESHOLD 

(MODEL 2) 

AVERAGED 

IMAGE 

SAMPLE 

(MODEL 3) 

AVERAGE 

IMAGE 

SAMPLE + 

ADAPT. 

THRESHOLD 

(MODEL 4) 

TRAINING 

ACCURACY 

93.2736% 95.2448% 92.9885% 90.4494% 

TRAINING 

LOSS 

0.1565 0.1091 0.1687 0.2522 

TEST 

ACCURACY 

59.81244% 62.0119% 74.4186% 60.4348% 

TEST LOSS 1.7351 1.9348 0.7994 1.2374 

EPOCH 30.6 62.4 65.6 51.6 

 

There was no observable improvement from utilizing adaptive thresholding on patient CT  

 

Images, and the calculated training and test accuracy was comparable to the base model (Model  

 

1) without qualitative improvements. The combined model utilizing both adaptive thresholding  

 

and composite images had no major performance differences compared to both Models 1 and 2  

 

(single image with augmentation, single image + adaptive thresholding with augmentation) and  

 

still had lower performance in accuracy and loss compared to Model 3 (composite/average image  

 

with augmentation). Of note, the validation loss in model 4 was observably lower than both  

 

Models 1 and 2. Overall, this suggests that averaging images per patient with data augmentation  

 

provided the greatest boost in training and test accuracy compared to other qualitative  

 

improvement techniques.  

 

3.4 Discussion 
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 In this study, we investigated two methodologies to qualitatively improve patient CT 

images with the goal of reducing image noise and variability and providing more standardized 

input data for model prediction and classification. Of the two techniques, generating composite 

images from the available CT scan slices available for a patient represented the greatest 

improvement in model validation accuracy and minimization of the associated loss function. 

This technique provides significant contributions to the existing literature surrounding image 

based classification models in surgery as many traditionally utilized single images without 

alignment for classification (Mittman et. al., 2022, Skrede et. al., 2020)  

As mentioned in the introduction, patients may have multiple CT scan slices associated 

with their outcome, and with such high variability present between scans taken at varying 

positional axes in the chest, providing a composite average may assist in model discretization on 

the most important features pertaining to the classification outcome or outcomes. The ResNet18 

model trained on these composite images outperformed all other models in both validation 

accuracy and loss, suggesting this technique as a promising means of improving image quality 

for classification of surgical outcomes.  

 In contrast, the adaptive thresholding technique did not demonstrate any improvements in 

model classification accuracy as compared to the baseline image set with no qualitative 

transformations. In addition, the image sample utilizing both adaptive thresholding and image 

averaging performed worse than the model utilizing only image averaging. This suggests that the 

adaptive thresholding technique may be removing or masking important feature information 

within the image, resulting in no improvements to the classification accuracy after modeling. 

  This research contributes to the growing body of literature surrounding deep learning 

classification models and their applications within the surgical field. Numerous studies have 
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already been published utilizing deep learning models for prediction using medical imaging such 

as CT scans. Within the realm of abdominal wall reconstruction surgery, Elhage et. al., 2019 

successfully built a deep learning model to predict patient outcomes following abdominal wall 

reconstruction surgery with successful model performance. However, this study and others have 

not sought to investigate the image data inputs to effectively modify these inputs for superior 

classification. Due to the limited amount of available data for predictive modeling in surgery, 

this study addresses this fundamental issue by providing researchers the means to utilize as much 

available image data as possible without having to discard candidate medical images due to too 

much noise, image corruption or other issues. Within the context of AWR surgery, the image 

alignment and averaging techniques provide a standardized process for image input data to be 

effectively analyzed by predictive models and produce much higher performance when 

compared to using unaltered or unmodified input images. 

 Currently, no deep learning classification models exist for determining patient QOL using 

preoperative imaging data. Reduced patient QOL generally manifests as chronic pain 

postoperatively which also represents the most prevalent adverse outcome following hernia 

surgery. Effective management of chronic postoperative pain is a highly expensive process for 

patients with 9-year cost estimates exceeding $50,000 for U.S patients (Elsamadicy et. al., 2019). 

Classification models like those generated in this study can assist clinicians in identifying 

patients at reduced risk for QOL after surgery. Successful classification can therefore provide 

clinicians with the information to optimize treatment plans that are best suited to reducing 

financial costs while also optimizing patient health after surgery. 

Although this study aimed to explore some qualitative methods of improving image 

quality in medical images, this is not an exhaustive analysis of available techniques. Recent 
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research from Nagayam et. al., (2018) utilized deep learning reconstruction (DLR) techniques to 

successfully reduce CT image noise and increase spatial resolution compared to standard image 

reconstruction techniques like filtered back projection. Similar to DLR, Chaurdari et. al. (2019) 

explored the use of “super-resolution” techniques which utilize convolutional neural networks to 

transform low resolution MRI images to higher order resolution for detection of osteoarthritis. 

Notably, both studies were not concerned with improving image quality for model classification, 

but rather to improve image quality to assist clinical decision making with more readily 

interpretable images.  

 Another possible study limitation is the utilization of a singular deep learning architecture 

with ResNet-18. With the field of artificial intelligence constantly evolving and new neural 

network architectures being built and becoming available under various frameworks, there is the 

possibility that some architecture may better fit and classify the input data than ResNet-18. For 

example, ResNet-18 was originally trained on ImageNet which comprises many categories of 

natural images which has stark differences in feature characteristics compared to medical 

images. Consequently, Alzubaidi and colleagues (2021) developed a DLM: “MedNet”, which 

was specifically trained on over 3 million publicly available types of medical image data 

including CT scans. Future research could incorporate investigating multiple DLMs such as 

MedNet to compare performance across models in addition to image input optimization.  

In conclusion, multiple qualitative methodologies to improve medical image quality for 

analysis by prediction models were assessed. There are many tools available to researchers in 

manipulating and augmenting surgical images, however, it is difficult to determine what 

techniques are going to be most optimal for improving image quality for better evaluation 

performance by deep learning models. Furthermore, this analysis is very context-specific, and 
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what may be applicable for surgical and medical imaging may not be useful in developing 

methodologies in other fields. Image averaging therefore represents a promising means of 

optimizing patient CT images for AWR surgery for classification. Utilizing techniques like 

image averaging aids researchers in maximizing the limited image data available for building 

classification models in medicine. 
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APPENDIX C: RESNET-18 ARCHITECTURE DIAGRAM SHOWING ALL 18 LAYERS 
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CHAPTER 4: VALIDATING A NOVEL DEEP LEARNING MODEL FOR ABDOMINAL 

WALL RECONSTRUCTION WITH EXTERNAL COHORTS 

 

4.1 Introduction 

 

In recent decades, there has been an exponential increase in the number of surgical 

prediction models using artificial intelligence (AI) and deep learning (Chen et. al., 2018, Lee et. 

al., 2020). Deep learning systems employ an architectural framework consisting of artificial 

neural networks (ANN) which consist of multiple individual processing units commonly termed 

“neurons” that incorporate sets of input features with their corresponding weights (Savadijev et. 

al., 2019). The features and weights are summed as inputs and passed through a classification 

function to determine the output of the neuron. This methodology is intended to mimic a 

simplified architectural structure and function of a biological neuron which similarly 

incorporates multiple chemical inputs to send an output signal to other neurons (Bahl, M. 2020). 

Consequently, these hierarchical networks can encode complex nonlinear functions with 

significantly large numbers of input features or variables. For example, deep linear models have 

traditionally performed extremely well at classification problems involving images as the model 

contains the necessary structure that is directly sensitive to input data including the individual 

pixels in an image (Montagnon et. al., 2020). These pixels can subsequently be evaluated to 

determine potential classification outputs based on the proposed problems.  

These models have shown great promise and high accuracy performances in predicting 

patient outcomes; however, with their low levels of interpretability when calculating predictions, 

these models require substantial scrutiny before proper clinical implementation (Savadijev et. al., 

2019). Other researchers have noted that even slight modifications to the input data in deep 

learning models can result in dramatically different classifications, suggesting that these models 

must be extensively investigated and validated to ensure generalizability (Szegedy et. al., 2013).  



61 

 

These deep learning models utilize data-based algorithms to determine a patient’s risk for 

a certain outcome of interest depending on patient characteristics (Ramspek et. al., 2021). Such 

models have gained increased interest from medical practitioners and researchers aiming to 

develop models capable of optimizing a patient’s treatment plan by assessing benefit-to-risk 

ratios. Although this development has improved patient treatment plans and standardized care in 

some fields, the full potential of these models has yet to be seen (Navarro et. al., 2021).  Many 

deep learning models were initially developed on a specific cohort of patients; very few were 

later externally validated, which is imperative to proving model reproducibility and 

generalizability to other cohorts (Collins et. al., 2015). Among the approximately 85,000 

prediction model publications available on PubMed® in surgery, less than 5% included some 

form of external validation (Ramspek et. al., 2021). Since model performance is generally worse 

in external samples than in the initial sample used for model training, prediction models should 

not be recommended for clinical implementation and use before external validation (Fatemi et. 

al., 2021). Furthermore, it is imperative to appropriately apply external validation methodologies 

in clinical studies and also where it fails to guide us towards improved recommendations with 

clinical procedures.  

Of primary concern to both researchers and clinicians is that the prediction model 

initially developed on a specific dataset from a patient population may show excellent 

performance and accuracy, however, these results may not translate to external cohorts (Siontis 

et. al., 2015). To determine model performance, multiple measures can subsequently be included 

to test for model discrimination, calibration, and accuracy on the new external cohorts (Collins 

et. al., 2015). Siontis and colleagues (2015) investigated 127 risk prediction models published on 

clinical decision-making on the Pubmed® biomedical literature database to ascertain what 
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validation metrics, if any, were incorporated into the respective publication’s research design. 

They determined that only 25% of original authors/groups or third parties externally validated 

these initially published prediction models within five years from the initial model publication. 

In addition, the authors noted a statistically significant reduction in the mean area under the 

curve (AUC) score on models externally validated after initial publication (Siontis et. al., 2015).  

Elhage et al (2021) recently developed a novel deep learning–based prediction model 

incorporating 9,303 computed tomography (CT) images from 369 patients undergoing 

abdominal wall reconstruction (AWR) surgery to determine the probability of a patient requiring 

a component separation procedure based solely on these preoperative imaging scans. The 

researchers incorporated supervised learning techniques whereby the neural network is provided 

with labeled images in the training sample to learn the defining features directly from these 

images without the need for additional information (Starke et. al., 2020). The initial study was 

successful in internally validating the model with an AUROC (Area Under the Receiver 

Operating Characteristic) of 0.744 predicting the chance of needing component separation 

technique (CST) in abdominal wall reconstruction patients based on their preoperative CT 

images. The researchers also trained a second model on predicting the chance of surgical site 

infection (SSI) within 30 days of surgery and reported an AUROC value of 0.898 from internal 

validation. However, the clinical validity and reproducibility of this deep-learning model remain 

unknown without further validation from external cohorts (Navarro et. al., 2021).  

Originally, this study aimed to externally validate both previously developed deep 

learning models on an AWR patient cohort from a tertiary hernia center in the South Piedmont 

area of the United States (Elhage et. al., 2021). The initial assessment used the same model 

architecture and pre-trained model weights used in Elhage et. al’s 2021 paper for external 
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validation using a cohort of 75 patients from the Ohio State University Medical School. 

However, the model performance on the external cohorts was extremely low with reported 

receiver operating characteristic (ROC) values of 0.51 and 0.49 for CST and SSI models, 

respectively.  

As a result, this study sought to fit the original patient image data using a new deep-

learning model architecture to model two separate outcomes: the probability of requiring a 

component separation procedure and the probability of developing a wound infection after AWR 

surgery within 30 days. These models would first be trained and internally validated, then 

externally validated using the previously mentioned cohort of patients from the Ohio State 

University Medical School. Model Evaluation was based on discriminative ability including 

evaluation by comparison of ROC value and overall classification accuracy with corresponding 

loss functions.   

4.2 Methods 

Patient Cohorts: 

 The initial patient sample consisted of n=362 candidates from Atrium Health Carolinas 

Medical Center who underwent open AWR surgery to model CST and SSI outcomes. All data 

(n=362) were available to model the probability of SSI outcome in the patient sample. Of the 362 

candidates, CST outcome data were available for n=297 patients for model training to predict the 

probability of requiring CST. Both SSI and CST patient cohorts were utilized for initial model 

training and internal validation through leave-one-out cross-validation (LOOCV) and k-fold 

cross validation (Meijer & Goeman, 2013). Model external validation was conducted using a 

patient cohort consisting of 75 patients from the Ohio State Medical School comprising 75 

preoperative CT scans. All patient cohorts will be identified retrospectively from existing 
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databases of patients who underwent AWR surgery. Patient outcomes in each cohort will be 

identified to determine if the patient required a CST. Those requiring a CST will be defined as a 

positive “yes” case if the patient underwent musculo-fascial advancement via either an external 

oblique release (EOR) or transversus abdominus release (TAR) to enable complete abdominal 

wall closure.  

The SSI outcome was defined as either deep or superficial wound infection which was 

previously determined and documented by data entry specialists based on sources from the 

hospitals, clinics, and direct patient follow-ups, as well as any associated imaging 

documentation. Patient outcomes were dichotomized as either “0”, indicating no identified 

wounds/infections within 30 days of surgery, or “1”, indicating presented wounds/infections 

within 30 days of surgery. Individual image classification models were built for both CST and 

SSI outcomes and were utilized for sample assessment and evaluation following prediction 

scoring.  

In addition, patient demographic data were collected on each cohort which included age, 

gender, race, body mass index, hernia defect size, comorbidities, and Centers for Disease Control 

and Prevention wound classification to characterize each sample (Yamamoto et. al., 2015).  

Patient Inclusion/Exclusion Criteria 

 After receiving Institutional Review Board approval, patients were retrospectively 

identified from each respective institution from internally managed databases. Patients were 

excluded from the analysis if they were less than 18 years old, or had an emergent abdominal 

operation at the time of AWR. Patients were excluded if preoperative CT images displayed 

significant distortion or noise (for example, light saturation resulting from an orthopedic 
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prosthetic). In addition, patients with missing CT images around the region of interest (herniated 

region) are excluded from the analysis.  

Image Preprocessing 

Axial cut patient CT scans were deidentified and rendered into representative 3-5mm 

slices using TeraRecon© software (TeraRecon Inc, Durham, NC) so that only abdominal CT 

images containing the hernia region were included in the training set. All images were batched 

by patient, all patient identifiers were removed, and were exported and stored in a secure folder 

for later use by AI model assessment and validation.  

Before deep learning model classification, images were standardized to a size of 224 x 

224 pixels. Images were also scaled to ensure that image aspect and resolution are preserved 

during standardization. Since each patient had multiple associated CT image slices, each 

individual’s CT images were “blended” by taking the average pixel value across n images where 

n is the number of unique CT image slices associated with a unique patient. We, therefore, 

generated a “composite” CT image per patient for input and analysis by classification model. 

The final image number for internal training and validation is 297 images for the Atrium sample 

CST outcome. For the SSI outcome, there were 362 composite images from Atrium patients 

available. The external Ohio validation samples for CST and SSI, consisted of 75 composite 

images from each patient for each outcome. 

Model Generation 

We utilized the established ResNET-18 architecture in PyTorch for model training and 

classification (Paszke et. al., 2019). This architecture was utilized for internal and external 

validation for both surgical outcomes (CST and SSI). The model was built using PyTorch 

software version 1.13.1. The ResNet-18 model architecture comprises 18 unique layers which 
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includes the initial convolutional layer, four sets of convolutional layers of similar filter size, and 

the final fully connected layer. The full model architecture and specifications are illustrated in 

detail in Appendix C. The ResNet-18 model utilizes the stochastic gradient descent (SGD) 

optimizer and sparse binary cross-entropy loss function for model training (Geron, 2019). 

Transfer learning was employed using pretrained model weights for ResNET-18 on the 

ImageNet database. For cross-validation, datasets fit to Resnet-18 were trained for 100 epochs 

with a predetermined batch size of 32. Early stopping was also employed to cease training when 

the loss function was not found to decrease any further after five subsequent epochs. Model 

weights and settings at this epoch were saved for later evaluation on the external validation set.  

Leave-one-out Cross-validation 

 ResNet model classification consistency was first assessed by modeling patient outcomes 

using LOOCV (Meijer & Goeman, 2013). This technique was used in conjunction with k-fold 

cross-validation across multiple training runs to provide less biased estimates in internal 

prediction. Each image received an individual prediction classification using n-1 images for 

training where n = the total sample of images employed in the study. This process would thus 

produce n models for each classification. Model predictions from LOOCV were recorded and the 

average classification accuracy across all patient samples was recorded for both the CST and SSI 

models separately.  

Model Tuning and Cross-Validation 

  To ensure the ResNet-18 model had optimal fit on the patient sample data, multiple 

learning rate runs were tested from the specified list: [0.01, 0.001, 0.0001] which were used to 

determine the magnitude with which to update model weights during training (Iiuduka, 2022). In 

addition, for model training and internal validation, cross-validation across five model trial runs 
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was conducted to provide a more robust result on model accuracy during initial internal training 

and validation. Finally, sample sets with class imbalances between negative and positive 

outcomes for either CST or SSI were controlled for appropriately using the weighted class 

penalization function where incorrect classifications on the less frequent class are more heavily 

penalized during model training compared to the other.  

Model Predictions 

All patient test images were inputted into the existing deep learning model to generate 

classification scores for each outlined outcome. Classification percentages for all test images 

were therefore calculated from the pre-trained model weights. Each patient analyzed by the 

model received a continuous prediction value ranging from 0 to 1, with values >0.5 denoting a 

“positive” (1) outcome for either model, i.e. probability of CST or SSI. Scores less than the 

determined threshold are set as 0 or a “negative” outcome. These prediction scores were joined 

to the actual patient outcome label for subsequent evaluation. Each patient within each external 

cohort received a prediction score for the risk of requiring a component separation procedure, 

and the risk of postoperative SSI.  

Model Evaluation 

Statistical analysis for model evaluation was conducted using Python version 3.7.1 (Van 

Rossum & Drake, 2009). First, model accuracy was assessed by LOOCV to determine 

consistency in predictions. For the internal cross-validation, evaluation metrics also included 

model training and validation accuracy and corresponding loss functions. In addition, models 

were assessed by discriminative ability through the ROC score (Hosmer et. al., 2013). External 

validation similarly utilized both percentage of correctly classified outcomes and the 

corresponding ROC value.  
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4.3 Results 

 

Cohort Description 

 

For the SSI model, the internal sample (Atrium-Carolinas Medical Center) consisted of n 

= 362 patients where 285 were negative and 77 were positive. The CST model consisted of n = 

297 patients of which 200 had a negative CST outcome and 97 had a positive outcome. The 

external Ohio cohort consisted of 75 patients where 62 were negative for SSI and 13 were 

positive. The CST outcome had 27 who were negative and 48 who were positive. 

Leave-one-out Cross-validation 

 

 To build the deep learning models under the Resnet-18 architecture, the internal patient 

samples were first separated by outcome into two cohorts: CST and SSI. Model results from 

LOOCV are summarized in table 4.1 per outcome measure. The SSI model demonstrated 

promising classification performance with a reported accuracy of 94.65% from LOOCV across 

all 362 images. The CST model had reasonable overall classification accuracy with 75% of cases 

correctly classified from LOOCV. Although not exhaustive, reported accuracies from LOOCV 

provide an initial assessment of model internal performance with less biased estimates than 

simply utilizing a single train/test split.   

Table 4.1: Leave-one-out cross validation accuracy results for component separation and surgical 

site infection models using internal patient sample.  

 

 Prediction Accuracy (Full data) Correctly Classified (LOOCV) 

Surgical Site 

Infection 

93.37% 92.29% 

Component 

Separation 

77.44% 75.00% 

 

Internal Validation  

 

For the SSI and CST models, the negative and positive classes for each outcome were 

also randomly split into five-fold 80:20 train:validation splits and individually used across five 
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model trial runs. Model results for internal validation are summarized in Table 4.2 for SSI and 

CST with the relevant metrics of average training accuracy, training loss, validation accuracy, 

validation loss, and ROC across each fold as well as the average score for the best epoch prior to 

early stopping. From the SSI model results, overall model training accuracy (89.310%) and 

validation accuracy (80.833%) with similarly low loss functions (0.255 and 0.222, respectively) 

demonstrated promising performance on generalizing within the Atrium sample. These results 

are further supported with high calculated ROC in the validation sample averaging 0.898 across 

five trial runs, indicating the model has high internal discriminative ability.  

 In the CST model, the training accuracy reflected the classification accuracy from 

LOOCV, however, validation accuracy in this sample was notably lower at 66.552% (validation 

loss: 0.699) compared to LOOCV. In addition, validation ROC was very poor with a reported 

value of 0.509 across all five trial runs indicating very poor discriminative ability on the internal 

sample.  

Table 4.2: Best training and validation accuracy by fold as well as the overall average across 

folds for CST and SSI outcomes 

 

Run 1 2 3 4 5 Average 

       

SSI Outcome       

Epoch 89 96 99 88 97 93.8 

Training Acc. 87.586% 90.690% 91.724% 89.310% 87.241% 89.310% 

Training Loss 0.288 0.241 0.217 0.278 0.254 0.255 

Val. Acc. 81.945% 81.942% 79.166% 79.167% 81.945% 80.833% 

Val. Loss 0.221 0.218 0.243 0.241 0.190 0.222 

Val. ROC 0.966 0.899 0.897 0.865 0.863 0.898 

       

CST Outcome       

Epoch 93 96 96 97 97 95.8 

Training Acc. 73.2218% 74.4770% 75.7322% 76.1506% 76.9854% 75.3134% 

Training Loss 0.4713 0.4237 0.4307 0.4122 0.4166 0.4309 

Val. Acc. 60.3448% 70.6897% 65.5172% 67.2414% 68.9655 66.5517% 

Val. Loss 0.7126 0.6671 0.7368 0.6886 0.6906 0.6991 

Val. ROC 0.4388 0.5667 0.4597 0.5320 0.5486 0.5092 
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External Validation  

 

Test validation consisted of generating 10 random subsamples (n= 50) from the 75-

sample external patient set and calculating the corresponding accuracy for each sample. In 

addition, full test sample results for accuracy and ROC with corresponding graph are displayed 

in table 4.3 below. For the SSI model, the classification accuracy had relatively good 

performance in both randomly selected 50-patient subsamples as well as the total sample.  

 In CST, external validation accuracy was similar across subsample patient cohorts 

(63.8%) and the full 75-person cohort (65.33%). Furthermore, these results corroborate the 

observed internal validation accuracy from the atrium set (66.552% average).  

Table 4.3: Accuracy measures from 10 image subsamples (n=50 per subsample) and overall 

(n=75) average accuracy and ROC in CST and SSI outcomes 

 

 Subsample Average Overall Average 

SSI Outcome   

Accuracy 72.80% 73.33% 

   

CST Outcome   

Accuracy 63.80% 65.33% 

   

 

Pooled cross-validation Using Internal and External Samples 

 

Since the initial external validation for both CST and SSI models reported poor  

 

discriminative ability measured by ROC. To ensure that the results obtained from this pooled  

 

validation were not solely due to the larger sample size, each patient sample used to build the  

 

CST and SSI model respectively were proportionately sampled to have the same total population  

 

as the original internal sample. In other words, the total sample comprising Atrium and Ohio  

 

patients for the SSI model would represent 362 patients and 297 for the CST model. For SSI, the  

 

sample consisted of 300 (236 negative, 64 positive) and 62 Ohio (51 negative, 11 positive)  
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patients for internal validation. The CST model therefore consisted of 237 (160 negative, 77  

 

positive) Atrium patients and 60 (22 negative, 38 positive) Ohio patients for internal validation.  

 

Similar to the internal validation conducted above, these samples were split into 80:20 train: test  

 

samples and individually ran across five model trial runs. Model performance results by trial run  

 

from the CST model internal training with both Atrium and Ohio data are summarized in table  

 

4.4 below.  

Based on the SSI model pooled validation results, training accuracy was very high 

averaging 97.923% across five trial runs (training loss: 0.058). Furthermore, the validation 

accuracy was much higher in the SSI model averaging 88.611% (validation loss: 0.414) 

indicating much better model generalizability. Average model ROC value also reflects this result 

with a reported average score of 0.876, suggesting strong model discriminative ability and 

generalizability when coupled with the reported high calculated accuracy. 

 In contrast, the CST validation results continues to be poor with a less than 40% 

validation across averaged across the five trial runs (validation loss: 1.104), suggesting very low 

generalizability. Average model training accuracy was higher at 91.261% (training loss: 0.097). 

However, coupled with the low validation accuracy, this indicates that the model is likely 

overfitting on the training data. In addition, validation ROC supports this low accuracy score 

with an average value of 0.568, indicating minimal model discriminative ability.  

 

Table 4.4: Best training and validation accuracy by trial run as well as the overall average across 

folds for CST and SSI using all samples (Atrium and Ohio) 

Run 1 2 3 4 5 Average 

       

SSI Outcome       

Epoch 79 86 94 69 82 82 

Training Acc. 97.924% 97.924% 98.267% 97.924% 97.578% 97.923% 

Training Loss 0.065 0.047 0.049 0.069 0.060 0.058 

Val. Acc. 86.111% 87.500% 91.667% 87.500% 90.278% 88.611% 
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Val. Loss 0.432 0.432 0.454 0.386 0.365 0.413 

Val. ROC 0.880 0.862 0.853 0.881 0.903 0.876 

       

CST Outcome       

Epoch 79 90 86 95 80 86 

Training Acc. 92.017% 90.336% 91.177% 91.176% 91.597% 91.261% 

Training Loss 0.095 0.109 0.103 0.097 0.084 0.097 

Val. Acc. 37.647% 42.353% 41.177% 38.824 37.647% 39.529% 

Val. Loss 1.158 0.988 1.124 1.220 1.032 1.104 

Val. ROC 0.572 0.579 0.534 0.540 0.614 0.568 

 

4.4 Discussion 

 

 Our study aimed to externally validate a pretrained model architecture built on an AWR 

patient cohort from a tertiary hernia center in the South Piedmont area of the United States 

(Elhage et. al., 2021). In this endeavor, we internally trained and validated using the ResNet-18 

model architecture for outcomes: CST and SSI. From the validation, initial results for both 

outcome models from leave-one-out cross validation showed promise with high proportions of 

the validation data correctly classified. Furthermore, in the internal cross validation, the SSI 

model had high validation accuracy with greater than 80% of unseen cases correctly classified.  

However, the discriminative ability of both models after internal validation was found to 

be relatively poor with ROC values of approximately 0.6 for the CST model suggesting poor 

generalization in predictive performance from the initial models. This performance discrepancy 

may be due to surgical divisions across the United States having highly varied patient 

populations in terms of severity of patients’ conditions, types and complexity of performed 

procedures, and established protocols and standards of care (Poulose et. al., 2016). In addition, 

surgical decision-making in utilizing the CST varies significantly with many incorporating 

different criteria and modifications to the procedure (Adekunle et. al., 2013). Such variability 

among surgery practices may also contribute to the disparity in model discriminative ability 

between the Atrium and Ohio cohorts employed in the study.  As a result, a future investigation 
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may warrant supplementing patient image data with other tabular patient data, i.e patient 

demographic characteristics, lab values, etc. in an effort to build more promising classification 

models.  

 As a result, we investigated pooling the external sample data together with the initial 

internal sample data to perform one large validation study with each cohort’s data available to 

the model during training. Equal proportions of internal and external sample data were set aside 

for cross validation and left unseen to the model. Similar to the initial research investigation, the 

CST model demonstrated poor performance in the validation set with low validation accuracy at 

approximately 40% as well as poor ROC value at 0.6. However, the SSI model reported much 

higher validation accuracy with greater than 85% of cases in the validation sample correctly 

classified and a calculated ROC value of 0.88. Although unsuccessful with the CST model, the 

results from the SSI model demonstrate that there is some possibility in creating externally 

generalizable models for prediction in AWR surgery patients.  

 Other classification models in hernia surgery patients have achieved internal validation 

accuracies of approximately 70% for identifying if a patient will develop SSI after surgery 

representing the general standard for prediction models in hernia surgery (Hassan et. al., 2022). 

Our developed model represents a significant improvement on existing classification models for 

determining whether a patient will develop an SSI event. With SSI events costing approximately 

$11,000 compounded by the reduced quality of life and toll on physical health, minimizing these 

possible events by identifying those most at risk prior to surgery can assist physicians in 

optimizing preoperative and postoperative treatment plans for these high-risk patients (Wilson & 

Farooque, 2022).  
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Correctly identifying patients who require CST procedures can reduce hernia recurrence 

rates by up to 20% (Luijendijk et. al., 2000). With little to no tools available to predict the 

probability of requiring a CST, creating validated models which can classify patients as requiring 

a CST has significant implications in improving patient physical health due to avoiding adverse 

health outcomes like the aforementioned hernia recurrence. In addition to the physical health 

costs, these procedures also come with financial costs averaging approximately $21,000 per 

patient in the United States (Davila et. al., 2016).  

Some study limitations include the available sample data for both internal and external 

cohorts. Of note, proportions of classes between the internal and external cohorts were 

significantly skewed with approximately 33% of patients in the internal CST sample labeled as 

“positive” while 67% of cases in the external CST sample were labeled as “positive”. This 

significant discrepancy in outcome proportions may have contributed to the poor predictive 

performance reported when measured on the external validation sample. A preliminary k-nearest 

neighbors cluster analysis was performed using the Ohio and Atrium patient images to determine 

if the two patient groups have defining features within a unique culture (Zhu et. al., 2022). These 

results are summarized by cluster in Appendix D. Future research could expand on the initially 

performed cluster analysis to potentially match patients with similar outcome severity in the 

internal and external cohorts. With limited data available for training and validation, utilizing 

more similarly matched cohorts could assist in building accurate and generalizable models to 

specific patient cohorts in surgery.  

Another possible limitation is that this study was not an extensive search or analysis on 

possible deep learning model architectures and model fitting. There is the possibility that other 

available model architectures may better fit and classify the input data than ResNet-18 and, in 
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turn, have higher generalizability on external patient cohorts. Future research could include 

investigating multiple deep learning architectures to determine better performance between 

models on both internal and external sample data.  

Our research contributions strengthen the available literature on externally validating 

existing deep learning prediction models in surgery. From the literature, other institutions have 

successfully validated deep learning-based prediction models in clinical research using external 

cohorts. A study by Lee et. al., (2020) demonstrated that multiple deep learning models utilized 

in cervical lymph node cancer diagnosis could be successfully validated and retain reasonable 

image accuracy (ranging from 0.784-0.884). Another study by Choi et. al., (2017) demonstrated 

similar validation accuracy, this time predicting thyroid cancer nodules with AUC values 

reported at 0.83. These promising results demonstrate that deep learning models can successfully 

generalize to other clinical populations beyond those utilized in the training sample without 

significant drops in classification accuracy due to limitations from overfitting or other potential 

model shortfalls.  

In conclusion, we successfully trained and validated deep learning models for patients 

undergoing abdominal wall reconstruction surgery. Although the initially assessed external 

performance was poor, the pooled validation results and cluster analysis show promise in 

successfully building a generalizable deep learning model for predicting patient outcomes in 

surgery. Supplementing this and other studies with external validation is imperative in 

determining model viability for implementation in the clinical setting to aid clinical decision-

making. Model integration into clinical practice can therefore assist surgeons in determining 

high-risk patients for surgical complexity or postoperative outcomes and provide a more 
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objective means of tiering patient risk. Those identified can consequently be managed through 

specialized interventions to improve patient outcomes, satisfaction, and quality of life. 
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APPENDIX D: K-NEAREST NEIGHBORS CLUSTER ANALYSIS APPROACH ON 

PATIENT CT IMAGES FOR INTERNAL AND EXTERNAL COHORTS 

 

Wound model: 

Clusters = 2  

Cluster # # of images 

Ohio Dataset  

1 6 

2 69 

Atrium Dataset  

1 178 

2 184 

 

Clusters = 3 

Cluster # # of images 

Ohio Dataset  

1 8 

2 63 

3 4 

Atrium Dataset  

1 149 

2 141 

3 72 

 

Clusters = 4 

Cluster # # of images 

Ohio Dataset  

1 1 

2 29 

3 41 

4 3 

Atrium Dataset  

1 73 

2 135 

3 65 

4 89 

 

 

 

Component Separation model: 

Clusters = 2  

Cluster # # of images 

Ohio Dataset  

1 5 
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2 70 

Atrium Dataset  

1 181 

2 116 

 

Clusters = 3 

Cluster # # of images 

Ohio Dataset  

1 5 

2 66 

3 4 

Atrium Dataset  

1 121 

2 85 

3 91 

 

Clusters = 4 

Ohio Dataset 

Cluster # # of images 

Ohio Dataset  

1 35 

2 1 

3 36 

4 3 

Atrium Dataset  

1 102 

2 89 

3 41 

4 65 
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CHAPTER 5: CONCLUSIONS 

 

 This dissertation investigated multiple statistical and machine learning techniques within 

the context of MIS. In Chapter 2, we investigated patient preclinical variables to determine what 

factors were significantly associated with patient QOL six months after surgery. From the study, 

20 unique preclinical variables were identified with a significant association to patient QOL after 

surgery. Of these variables four were noted as risk factors of statistical importance with patient 

QOL including patient diabetes status, patient history of cholecystectomy, patient history of 

appendectomy, and patient preoperative CCS score. These findings were further validated by 

stratified k-fold cross validation. This first study demonstrated the utility of accurate predictive 

models in aiding clinicians during preoperative assessments by determining those most at risk for 

reduced QOL after surgery.  

 Chapter 3 investigates image data modeled using complex deep learning architectures to 

predict patient QOL after surgery. Given patient images prior to surgery are relatively limited, 

maximizing the available data represents the study’s primary focus. Multiple qualitative 

methodologies were investigated to improve image quality. By optimizing available image data, 

researchers can maximize the available data to build predictive models that otherwise would not 

have been possible. In addition, by reducing the noise and variation in images, researchers can 

provide more meaningful and accurate predictions based on the input data. Ultimately, this study 

demonstrated that cropping, aligning, and creating image composites from the available image 

data on the patient produced the most optimal input data to predict patient QOL. 

  Finally, Chapter 4 sought to validate an existing deep learning model in MIS designed to 

classify two postoperative outcomes following AWR surgery. Research findings suggest that 

although the generated predictive model externally classified probability of SSI with reasonable 
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accuracy, efforts to create a validated model to predict the probability of CST were unsuccessful. 

External validation is imperative in determining model viability for implementation in the 

clinical setting; otherwise, model predictions cannot be trusted as a supplement in the clinical 

decision-making process.  

 In Chapter 4, case-matching on internal and external patient cohorts on features including 

surgical complexity or procedure severity warrants further exploration. Surgical divisions across 

the United States may have highly varied patient populations in terms of severity of patients’ 

conditions, types and complexity of performed procedures, and established protocols and 

standards of care (Poulose et. al., 2016). Effectively validating model generalizability on other 

cohorts is exceedingly difficult due to the limitations in training and validation sample sizes 

(Krammer et. al., 2022). By matching based on these aforementioned criteria, researchers may 

have greater insight into model performance on external patient groups, controlling for some 

inherent variability present within clinical practices.   

Future studies would benefit from investigating additional deep learning architectures to 

effectively model and classify other outcomes in AWR surgery. With a multitude of available 

architectures and updated versions constantly under development, other models may more 

effectively fit patient CT data for outcome classification (Khamparia & Singh, 2019). In 

addition, other clinical studies have had significant success in creating ensemble models utilizing 

both patient row-level data (for example, patient demographic characteristics) and image data to 

classify outcomes which could be applicable within this study context (Suk et. al., 2017).  

Taken together, these applied statistics, machine learning, and deep learning techniques 

represent an effective means to optimize patient treatment plans and QOL before and after MIS. 

However, due to the inherent complexity and nuance surrounding patient image and tabular data, 
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these methodologies must be appropriately modified to fit the clinical context. Shortcomings 

such as missing data and image noise and variation pose a substantial barrier to clinical 

researchers seeking to build and validate predictive models in medicine. Recognizing and 

controlling these context-specific issues grants clinical researchers the ability to optimize the 

construction of robust predictive models that are both accurate and generalizable to multiple 

patient cohorts. Clinicians and clinical researchers can combine their respective domain expertise 

into actionable and valid products to provide treatments designed to optimize patient-specific 

care. In conclusion, to effectively maximize applied statistics, machine learning, and deep 

learning methods in surgery, clinical context-specific knowledge is critical in their respective 

application and eventual implementation.  
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