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ABSTRACT

KENNETH EDWARD HINSON. Braid Indices in a Class of Closed Braids.
(Under the direction of DR. YUANAN DIAO)

A long-standing problem in knot theory concerns the additivity of crossing numbers of

links under the connected sum operation. It is conjectured that if L1 and L2 are links, then

Cr(L1#L2) = Cr(L1) + Cr(L2), but so far this has been proved only for certain classes of

links. For example, in cases where both L1 and L2 are alternating or adequate links, the

conjecture is known to be true. Another situation in which Cr(L1#L2) = Cr(L1)+Cr(L2)

is when both L1 and L2 are zero-deficiency links. Zero-deficiency links include some but

not all of the links in the prior named classes, as well as some links that are not included

in either of those. In addition, further results are known for situations in which only one of

the links being connected has deficiency zero. In this paper we expand the known realm of

zero-deficiency links to include some cases of links represented by alternating closed braids.

The ultimate goal is to show that if Dk is any k-string, reduced, alternating, closed braid,

then the braid index of Dk is k. Herein we show the result for a certain subset of these

closed braids, those with at most two sequences of crossings between consecutive strings

in the braid. This result is proved using a property of the HOMFLY polynomial, which

provides a lower bound for the braid index of a link. In the process, a simplified formulation

for computing the HOMFLY polynomial is implemented. It seems likely that this result

can be extended to prove the result for more complex alternating closed braids.
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CHAPTER 1: INTRODUCTION TO KNOT THEORY

1.1 Basics of Knots and Links

The mathematical object known as a knot is almost what anyone would expect. Given

a length of string, nearly everyone is familiar with the idea of tying a knot in the middle

of the string. One could tie a relatively simple knot, or a very complicated one. Now to

create a mathematical knot, the loose ends of the string would be connected together, to

form a loop including the knot. Adding the fact that the string in a mathematical knot

would typically be considered to have thickness zero, the concept can be formally defined

as follows:

Definition 1.1. [1, 6] A knot K is a closed curve in R3 that is homeomorphic to a circle.

The simplest knot is a topological circle, and is sometimes called a trivial knot or the

unknot. An infinite variety of non-trivial knots are possible, as one would probably guess

from an exercise of tying progressively more complicated knots with a long string. However,

the above definition is actually too general for most practical purposes, for it leaves open

the possibility of a knot having a limit point where it is not differentiable (See [6], p.24 for

an example). A knot with such a limit point is called wild, and a knot that is not wild is

tame. Although most knots are wild [19], we are not concerned with those here — All knots

considered in this paper will be assumed to be tame.

Expanding upon the idea of a knot, one can imagine several knotted loops of string,

possibly linked together. Such a collection is called a link.

Definition 1.2. [1, 6] A link L is a finite disjoint union of knots. If K1, K2, . . . , Kn are

mutually non-intersecting knots, then L =
⋃n

i=1 Ki is an n-component link and the knots

Ki are the components of L.

In particular, n can equal 1 so every knot is a link. In this paper, the term ‘link’ will

be used to refer to both knots and links, unless only knots are intended. A link consisting
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of n trivial knots, none of which are linked together, is called an n-component trivial link.

It is also an example of a split link.

Definition 1.3. [1,6] If L is a link and there exists a topological 2-sphere in R3\L such that

some components of a link are entirely on one side of the sphere and other components are

entirely on the other side, then the link is a split (or splittable) link. If L1 and L2 represent

the sets of components that lie on either side of the 2-sphere, then L = L1 t L2 indicates

that L1 and L2 are the split components of L. A link that is not split is connected.

Links are often represented pictorially in two dimensions by a link diagram. The most

important information contained in a link diagram involves the crossings, the points where

the link crosses over or under itself. At a crossing in a diagram, the strand that lies on top is

drawn uninterrupted, while the lower strand is drawn with a break where the upper strand

passes over it. See figure 1.1 for some link diagrams. (An understanding of the notations

5∗2 and 42
1 is not crucial; 52 and 42

1 are simply names from standard knot tables, and 5∗2 is

the mirror image of 52.)

Figure 1.1: Diagrams of the knot 5∗2 (left) and the 2-component link 42
1 (right). Taken as a

single diagram, these represent the split link 5∗2 t 42
1.

It is important to distinguish between a link and its diagram. There are many different

diagrams that can represent a given link, and some properties may have widely differing

values in two diagrams of the same link. One could think of the underlying link type

as an equivalence class, and its various diagrams as representing specific instances of the

equivalence class. In this case the equivalence relation would be ambient isotopy [6]. If two

links are ambient isotopic, that is if a link L1 can be deformed without being cut or passing
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through itself to form another link L2, then L1 and L2 are considered to be equivalent –

They are two different representations of the same link type.

The act of deforming a link into an equivalent link can be simplified to three basic

moves [24]. These are known as the Reidemeister moves, and are illustrated in Figure 1.2.

A Reidemeister Type I move involves a single strand in the diagram. If there is no crossing

in a section of the strand, then it can be twisted to create a small loop with a crossing;

or if the diagram already has such a loop, it can be untwisted to remove the crossing. A

Reidemeister Type II move involves two strands that lie alongside each other. If there is no

crossing between them, then the strands can be moved together so that one lies over the

other, creating two new crossings; or if there are two such crossings already, the strands

can be moved apart to remove the crossings. A Reidemeister Type III move involves three

strands that cross each other in a small area of the diagram. If one strand lies entirely

above or entirely below the other two, then it can be moved across to the other side of the

crossing between the other two strands.

The Reidemeister moves are widely used in knot theory due to the following result,

proved by K. Reidemeister in 1926.

Theorem 1.1. [24] Two links L1 and L2 are equivalent if and only if L1 can be transformed

into L2 by performing some finite sequence of Reidemeister moves.

Knots and links can be assigned an orientation, a direction to travel along the string.

A diagram of an oriented link is drawn with arrows indicating the orientation. Figure 1.5

shows an example of an oriented knot diagram.

Definition 1.4. [1, 6] A crossing in an oriented link is said to be positive if, as the upper

strand (following in its direction of orientation) crosses over the lower strand, the lower

strand is oriented toward the left. If instead the lower strand is oriented toward the right,

then the crossing is said to be negative.

Figure 1.3 illustrates positive and negative crossings between oriented strands. In a

knot, the sign of a crossing is not dependent on the orientation, since a reversal of orientation

affects the entire diagram. But if a link has two or more components, then there is a choice
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Type III:

Type II:

Type I:

or

Figure 1.2: Reidemeister moves

of orientation for each component. Thus changing the orientation of one component may

change the sign of some crossings involving that component.

Negative crossingPositive crossing

Figure 1.3: Positive and negative crossings
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Finally, two links can be connected together to form a new composite link. The most

common way of doing this is by performing a connected sum. A small arc that is not

involved in any crossings is removed from each link, and the loose ends are then connected,

as shown in Figure 1.4. The notation for a connected sum of links L1 and L2 is L1#L2.

The connected sum operation is not well-defined [6], for L1#L2 could potentially be any of

a variety of links. Perhaps the easiest way to see this is to suppose that L1 is a split link.

Then in forming L1#L2 there is a choice of which split component of L1 to connect to L2.

The choices will most likely result in new links that are not equivalent (unless all of the

split components of L1 are equivalent to each other).

Figure 1.4: Creating a connected sum of two knots

1.2 Some Properties and Invariants of Links

A link has many properties that can be measured. Some, as noted above, can vary

depending on the particular diagram being used. However, there are certain properties that
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remain the same regardless of the particular representation of the link.

Definition 1.5. [1, 6] A link invariant is a property of a link that has the same value

regardless of which diagram of the link is being considered.

Invariants can be useful in distinguishing between links, and can sometimes provide

other important insights. A very simple invariant is the number of components in a link [6].

Checking the Reidemeister moves, we see that each one moves the strands within a small area

of the diagram concerned, but none would result in a change in the number of components

in the link. Therefore if two links are equivalent, they must have the same number of

components. The number of components in a link L is denoted by µ(L).

Definition 1.6. [6] Let D be a diagram representing an oriented link L. Let C be the set

of crossings in D. For each crossing c, let ε(c) = 1 if c is a positive crossing, and ε(c) = −1

if c is a negative crossing. Then the sum
∑
c∈C

ε(c) is defined as the writhe of D, denoted

wr(D).

Definition 1.7. [1,6] Let D be a diagram representing an oriented link L. The number of

crossings in D is denoted Cr(D). The minimum number of crossings observed among all

diagrams of L is defined as the crossing number of L, and is denoted Cr(L).

Cr(D) and wr(D) are not invariants of L. However, Cr(L) is a link invariant. Note

that if L is the unknot or a trivial link with any number of components, then Cr(L) = 0.

Otherwise, Cr(L) ≥ 2. If there were a diagram with exactly one crossing, that crossing

could be removed by a Reidemeister type I move. See Figure 1.5 for a diagram showing

writhe and crossing number.

If a link diagram is of the form shown in Figure 1.6, then by flipping either section A

or section B of the diagram in the appropriate direction, the crossing shown can simply be

twisted out (similar to a Reidemeister type I move), thereby decreasing the crossing number

of the diagram by 1.

Definition 1.8. [1,6] A link diagram that includes no easily-removed crossings such as seen

in Figure 1.6 is called reduced.
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+
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Figure 1.5: Oriented knot diagram D showing positive and negative crossings, Cr(D) = 9
and wr(D) = 1

Definition 1.9. [1,6] A link diagram is called alternating if each strand passes alternately

above and below the other strands that it crosses. A link is considered alternating if it has

an alternating diagram.

The following theorem was proved independently by Kauffman [14], Murasugi [21], and

Thistlethwaite [28] in 1986.

Theorem 1.2. Let L be a link. If D is a reduced, alternating diagram of L, then D has

the minimum number of crossings possible in a diagram of L. That is, Cr(L) = Cr(D).

Note that the diagram in Figure 1.5 is reduced but not alternating. So one could not

necessarily conclude based on Theorem 1.2 that the represented knot has crossing number

9, the number of crossings in the diagram. (However, in this case it does – This is knot 942

from a standard knot table.)

1.3 Link Polynomials

Link polynomials are invariants that have come into prominence relatively recently.

The first polynomial invariant to be discovered was the Alexander polynomial in 1928

[3]. A Laurent polynomial in one variable, it was initially defined in terms of homology

theory, using Seifert surfaces (see Chapter 2). The Alexander polynomial can provide some

information about a link, for example its breadth (the difference between the greatest and

least exponents of its variable) can be used to obtain a lower bound for the genus of a knot

or link [16]. However, it cannot distinguish between many links. For example, a link L
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(Twist Section A)

Section B of link

Section A of link

Section B of link

Section A of link

(now flipped)

Figure 1.6: Reducing a non-reduced diagram

and its mirror image L∗ will have the same Alexander polynomial, even though they may

not be equivalent. In fact, there exist infinitely many non-equivalent knots having a given

Alexander polynomial [6].

The Conway polynomial [5] is a true polynomial in one variable, which is found to

be equivalent to the Alexander polynomial by a simple variable substitution. The main

advancement associated with the Conway polynomial is in how it is computed, by a skein

relation, using the link itself instead of a Seifert surface. A skein relation is an equation

relating three variations of a link diagram that differ in only a small area containing one

crossing. This discovery revealed that the Alexander polynomial can also be defined in

terms of a simple skein relation.

A completely new polynomial for links was discovered by V. Jones in 1984 [13]. Working

in von Neumann algebras, he realized that the algebras he was studying had applications in

knot theory. The Jones polynomial is a Laurent polynomial in one variable, but is distinct

from the Alexander polynomial. It can distinguish between many links that the Alexander

polynomial cannot [6]. It too can be defined by a skein relation.

Definition 1.10. [13] Let L be an oriented link. The Jones polynomial V (L) is defined by
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the following rules:

(i) V (L) = 1 if L is the unknot.

(ii) Let L+, L−, and L0 be three oriented links whose diagrams differ in only a small

region as shown in Figure 1.7. Then t−1V (L+)− tV (L−) = (t1/2 − t−1/2)V (L0).

+
L− L

0
L

Figure 1.7: Diagrams of L+, L−, and L0 are identical except for the region shown.

Examples using a skein relation will be seen in Chapters 3 and 5, with the HOMFLY

polynomial.

Many results involving the Jones polynomial followed shortly after its discovery. For

example, Theorem 1.2 had long been conjectured but never proved until it was discovered

that the Jones polynomial provides a lower bound for the crossing number of a link.

Theorem 1.3. [14, 22, 28] Let L be an oriented link with a connected n-crossing diagram

D, and let V (L) be the Jones polynomial of L. Then B(V (L)) ≤ n, where B(V (L)) is the

breadth of V (L) (the difference between the highest and lowest degrees of t in V (L)). Also,

if D is alternating and reduced, then B(V (L)) = n.

In addition to the new results that could be proven using the Jones polynomial, more

new polynomials were soon discovered. The HOMFLY polynomial (named as an acronym

of its discoverers’ names [11]) is a Laurent polynomial in two variables that generalizes

both the Alexander and the Jones polynomials [16]. The HOMFLY polynomial is the main

polynomial used in this paper, and will be discussed in much more detail later.

A useful fact about polynomial invariants is that they are multiplicative under the

connected sum operation [6].

Theorem 1.4. Let P be any of the Alexander, Conway, Jones or HOMFLY polynomials.
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If L1 and L2 are links with polynomials P (L1) and P (L2), then the polynomial of their

connected sum is P (L1#L2) = P (L1)P (L2).

1.4 Knot Theory Applications

Knot theory has been found to have applications in a variety of scientific areas, most

notably in the study of molecular cell biology. DNA (deoxyribonucleic acid), the molecule

in which an organism’s genetic code is stored, exists in long, tangled strands inside of a cell.

Certain enzymes, called topoisomerases, manipulate the DNA for cell processes such as

replication and transcription. When the enzyme acts on the DNA molecule, it can make a

number of different changes, such as breaking the molecule and reconnecting it in a different

way. As such, knots can be introduced. If the DNA molecule is cyclic, then these knots are

captured and can be detected experimentally [1].

For example, DNA of the P4 bacteriophage (a virus) is cyclic, and many DNA molecules

extracted from P4 are found to be non-trivial knots [4]. The percentage of knot occurrence

is much higher than that observed in experiments in which identical molecules are closed

into circles in a free solution. Furthermore, those cyclic DNA molecules formed in solution

are generally much less complicated than those taken from inside the virus [4]. The exact

mechanism of knot formation inside P4 is not known, but it seems likely that the confinement

of the DNA molecule in a small space is a factor in the higher incidence of complicated knots.

There are various ways of attempting to model DNA knotting in cells through random

processes [4, 29]. For example, polygonal knots are often used. Instead of a smooth curve,

a polygonal knot is composed of many line segments connected end-to-end, and eventually

returning to the starting point. Random polygonal knots have the benefit of being fairly

easy to generate. There are a variety of different generating techniques that have been tried,

including methods to create random polygons inside a confined space, and more are being

developed. Once generated, a random knot’s degree of ‘knottedness’ can be evaluated using

some basic knot properties such as the writhe, crossing number, number of Seifert circles

(see Chapter 2) and braid index (see Chapter 4). There are also ways of allowing some

randomness but also inducing a certain level of complexity. For example, a diagram can be

forced to be alternating, which, by Theorem 1.2, will ensure a crossing number nearly as
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high as the number of crossings seen in the diagram (minus only the number that would

need to be removed in order to make the diagram reduced).

Braids are another possible tool for generating random knots. Because of their simple

structure, random braids would be easy to generate, and certain properties could be easily

controlled. By using the results of this paper (and hopefully stronger results to come), for

example, braids could be used to produce knots with a high crossing number and low braid

index.

The ultimate goal of the various efforts to generate random knots is to create a model

with results that closely match observed experimental data, such as those obtained from

the P4 bacteriophage. Then perhaps the generating method can give some insight into how

the DNA molecules become knotted inside the cell.



CHAPTER 2: A LONG-STANDING CONJECTURE

2.1 Seifert’s Algorithm and Genus of a Link

In topology, the idea of the genus of a surface (or 2-manifold) without a boundary

basically amounts to how many ‘holes’ the surface has [1]. For example, a sphere has no

holes, and its genus is 0. A torus has a hole and its genus is 1. A surface with n holes has

genus n. The genus of a link is closely related, but takes a bit more work to compute. In

this section we look at the relationship between links and surfaces.

If a disc is removed from a surface, then it becomes a surface with a boundary. Several

discs could be removed to create several boundary components. Each boundary component

is a topological circle, and would remain a topological circle no matter how the surface is

deformed within R3. However, the surface can be embedded in space in many different ways.

In particular, there exist embeddings in which the boundary components are knotted and/or

linked together. Seifert’s algorithm is a method for constructing a surface with boundary

from a given link diagram such that the boundary of the surface is the link itself [27]. Once

such a surface is obtained, the genus of the corresponding surface without boundary can be

calculated. The genus of the link diagram is defined as the genus of this surface, and the

minimum genus among all diagrams of a link is defined as the genus of the link.

Seifert’s algorithm is as follows [27]. Beginning with an oriented, connected diagram D

of a link L, we first ‘smooth’ all of its crossings. That is, at each crossing, the two strands

involved are cut and each incoming strand is reconnected with the outgoing strand to which

it was not previously connected, thus removing the crossing and maintaining the original

orientation for all link components. See Figure 2.1. After all crossings have been smoothed

out, the remaining diagram consists of a number of unlinked topological circles. These are

called Seifert circles, and their number is denoted s(D).

Next, each Seifert circle is filled in to form a disc, and each disc is positioned at a

different elevation. Finally, a small rectangular strip with a half twist in the appropriate
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Figure 2.1: Smoothing a positive or negative crossing

direction is used to connect the discs at each point where there was a crossing in the original

link diagram. The strip is twisted so that when projected downward, the two portions of

its boundary that will not be attached to the discs cross in the same manner as the strands

of the link in the original crossing at that position. The resulting surface is called a Seifert

surface of D, and is an orientable (two-sided) surface whose boundary is D. See Figure 2.2

for an illustration of Seifert’s algorithm.

Now that the Seifert surface has been found, its genus is to be computed. The genus

g of a surface with boundary is defined by g = 2−χ
2 , where χ is the Euler characteristic

of the corresponding surface without boundary [1]. The Euler characteristic of a surface

without boundary is defined by χ = f − e + v, where f is the number of faces, e is the

number of edges, and v is the number of vertices in any triangulation of the surface without

boundary. Our Seifert surface with boundary is most easily triangulated by placing two

vertices connected by an edge across each of the strips that were added to connect the

discs, and then placing two more edges incident to each vertex that simply follow the

boundary of the Seifert surface. Therefore the number of faces in this triangulation is equal

to the number of Seifert circles obtained from the algorithm, s(D), the number of vertices

is 2 times the number of crossings, 2Cr(D), and the number of edges is 3 times the number

of vertices divided by 2, 3(2Cr(D))
2 = 3Cr(D). To obtain the Euler characteristic for the
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a set of disjoint Seifert circles is obtained.
Each circle is set at a different
elevation and filled in to form a disc.

After smoothing all crossings,

original crossing, to connect the discs and form the Seifert surface.
A thin band with a half−twist is inserted at the site of each

Initial oriented knot

(In this picture, one side of the surface is indicated with shading,
and the other side is white.)

Figure 2.2: Creating a Seifert surface from an oriented knot

corresponding surface without boundary, we think of the surface as embedded in a higher-

dimensional space. It is important to note that genus is an inherent property of a surface,

not dependent on its particular embedding [6]. When embedded in a higher-dimensional

space, each boundary component becomes a mere circle (see [1], p. 270-71), and as such

we may ‘cap off’ each boundary component with a disc. This action adds one additional

face per component to the triangulation, and leaves the numbers of vertices and edges
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unchanged. Thus we obtain f = s(D) + µ(L), e = 3Cr(D), and v = 2Cr(D). It follows

that g = 2−χ
2 = 2−f+e−v

2 = 2−s(D)+Cr(D)−µ(L)
2 .

Definition 2.1. [16] If D is a diagram of a link L, the genus of D is denoted g(D) and

is equal to the genus of the Seifert surface of D. The genus of L is denoted g(L), and is

defined as the minimum genus among all diagrams of L.

Genera of links are not always easy to compute, as the above process demonstrates.

The following two results are sometimes useful.

Theorem 2.1. [26] Let L1 and L2 be links. Then g(L1#L2) = g(L1) + g(L2).

Theorem 2.2. [7] Let L be an alternating link represented by an alternating, reduced dia-

gram D. Then g(L) = g(D).

2.2 The Additivity of Crossing Numbers

It is an open question whether the crossing number of a connected sum of two links

is equal to the sum of the crossing numbers of the two individual links. That is, if L1

and L2 are links, is it true that Cr(L1#L2) = Cr(L1) + Cr(L2)? Clearly Cr(L1#L2) ≤

Cr(L1)+Cr(L2) just by looking at a diagram of L1#L2. But it remains unknown whether

that diagram can be manipulated to produce a diagram with fewer crossings. It has not

even been proven whether in general Cr(L1#L2) ≥ Cr(L1) or Cr(L1#L2) ≥ Cr(L2).

It is known that crossing numbers are additive for some classes of links, but results

pertaining to all links remain, for the most part, elusive. If L1 and L2 are both alternating

links, then it has been established that Cr(L1#L2) = Cr(L1) + Cr(L2). It has also been

shown to be true for adequate links [17] and for links with zero deficiency [10]. In a recent

paper [15], M. Lackenby presents the first known result of a non-trivial lower bound on

Cr(K1#K2) for any two knots K1 and K2. He demonstrates that 1
152(Cr(K1)+Cr(K2)) ≤

Cr(K1#K2) ≤ Cr(K1) + Cr(K2).

This paper endeavors to expand the known realm of the zero deficiency links. As

explained in [10], the zero deficiency links include many (but not all) alternating links, all

torus knots, and some Montesinos links. Using the results of this paper, a class of alternating

closed braids will also be seen to have deficiency zero.
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Definition 2.2. [10] Let L be a link. The deficiency of L, denoted d(L), is defined by

d(L) = Cr(L)− b(L)− 2g(L)− µ(L) + 2

where Cr(L) is the crossing number of L, b(L) is the braid index of L, g(L) is the genus of

L, and µ(L) is the number of components in L.

The braid index will be defined in Chapter 4. In the meantime, we can make use of

the following theorem, due to S. Yamada [30].

Theorem 2.3. Let L be a link, let b(L) be the braid index of L, and let s(L) be the minimum

number of Seifert circles among all diagrams of L. Then b(L) = s(L).

In Chapter 6, a certain type of reduced, alternating closed braid diagram D will be

shown to have both the minimum number of Seifert circles and the minimum crossing

number possible for its link type. If L is the link represented by D, then this will mean

that s(D) = s(L) and Cr(L) = Cr(D). Since we also have b(L) = s(L) by Theorem 2.3,

the deficiency of L will thus be

d(L) = Cr(L)− b(L)− 2g(L)− µ(L) + 2

= Cr(L)− b(L)− 2
(

2− s(D) + Cr(D)− µ(L)
2

)
− µ(L) + 2

= Cr(L)− b(L)− 2 + s(L)− Cr(L) + µ(L)− µ(L) + 2

= 0

Then by the following theorem and corollary we can conclude that the crossing numbers

of links represented by these closed braid diagrams are additive under the connected sum

operation.

Theorem 2.4. [10] Let L1 and L2 be links such that d(L1) = 0 and d(L2) = 0. Then

Cr(L1#L2) = Cr(L1) + Cr(L2) and d(L1#L2) = 0.

Corollary 2.5. [10] Let n ≥ 2 and let L1, L2, . . . , Ln be links with d(L1) = d(L2) =

· · · = d(Ln) = 0. Then Cr(L1#L2# . . .#Ln) = Cr(L1) + Cr(L2) + · · · + Cr(Ln) and

d(L1#L2# . . .#Ln) = 0.
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Even though the diagrams that will be considered are alternating and thus already

known to have the property of their crossing numbers being additive, the fact that they

are of deficiency zero is still valuable information since not all zero-deficiency links are

alternating. For instance, if L1 is one of this class of closed braids and L2 is a torus knot, the

result for alternating knots alone would not tell us whether Cr(L1#L2) = Cr(L1)+Cr(L2)

(since torus knots are not generally alternating).

With adequate links, not only is there the fact that Cr(L1#L2) = Cr(L1) + Cr(L2),

but if only one of the links is adequate, say L1, then it is also known that Cr(L1#L2) ≥

Cr(L1) + B(V (L2)), where B(V (L2)) is the breadth of the Jones polynomial of L2 [17].

There is an analogous result for zero-deficiency links:

Theorem 2.6. [10] Let L1 and L2 be links such that d(L1) = 0. Then Cr(L1#L2) ≥

Cr(L1). If L2 is a non-trivial knot, then Cr(L1#L2) ≥ Cr(L1) + 3, and if L2 is a non-

trivial link with µ(L2) components then Cr(L1#L2) ≥ Cr(L1) + 2µ(L2)− 2.



CHAPTER 3: THE HOMFLY POLYNOMIAL

The HOMFLY polynomial is a Laurent polynomial in two variables, m and `. If L is

an oriented link, P (L) will denote the HOMFLY polynomial of L. As with the polynomials

discussed in Chapter 1, it is defined in terms of a skein relation.

Definition 3.1. [11] Let L be an oriented link. The HOMFLY polynomial P (L) is defined

by the following rules:

(i) P (L) = 1 if L is the unknot.

(ii) Let L+, L−, and L0 be three oriented links whose diagrams differ in only a small

region as shown in Figure 1.7. Then `P (L+) + `−1P (L−) + mP (L0) = 0.

The procedure for computing the HOMFLY polynomial is to split the diagram at

various crossings and apply the skein relation from part (ii) of the above definition. When

splitting a positive crossing, we have P (L+) = −`−2P (L−)−m`−1P (L0), and when splitting

a negative crossing we have P (L−) = −`2P (L+)−m`P (L0). The goal is to choose crossings

to split so that the resulting secondary diagrams will be simpler than the initial diagram.

Eventually, after applying the skein relation some finite number of times, each remaining

diagram should be reduced to either the unknot (whose HOMFLY polynomial is 1) or to a

trivial link of more than one component, i.e. a set of disconnected circles.

Regarding the latter situation, the HOMFLY polynomial of an n-component trivial

link can be calculated in the following way. Suppose two of the components are placed

beside each other such that in the region where they are closest to each other they are

oriented in the same direction (One component can be flipped over if necessary). Then

this region will be a case of the L0 diagram in Figure 1.7. According to the skein relation,

P (L0) = −m−1(`−1P (L−) + `P (L+)). But L− and L+ are each the result of adding

a crossing between the two components, thereby connecting them into one component.

Moreover, this new component is simply the unknot with a twist in the middle. The newly-

added crossing can be removed by twisting it out. Therefore, P (L−) = 1 and P (L+) = 1,
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and P (L0) = −m−1(`−1+`). Now this 2-component trivial link can be placed beside another

component, and the same action repeated, obtaining a second factor of −m−1(`−1 + `).

Repeating the process as many times as needed, if L is an n-component trivial link, then

P (L) =
[
−m−1(`−1 + `)

]n−1.

A split link need not be trivial in order to use the process described above. The

following example will illustrate that the HOMFLY polynomial of an n-component split

link is the product of the the quantity found above,
[
−m−1(`−1 + `)

]n−1, and the HOMFLY

polynomials of each of its split components.

Example 3.1. Let L1, L2, . . . , Ln be links and let L = L1 t L2 t · · · t Ln be a split link.

We place two of the split components, say L1 and L2, beside each other as described above

so that the region where they are closest to each other is a case of the L0 diagram in Figure

1.7, and then apply the relation P (L0) = −m−1(`−1P (L−) + `P (L+)). In this situation

each of L− and L+ is a connected sum of L1 and L2, with a crossing between them that

can be removed by twisting either L1 or L2 in the appropriate direction. By Theorem 1.4,

the HOMFLY polynomial of L1#L2 is simply the product of the polynomials P (L1) and

P (L2). Thus we find that

P (L1 t L2) = −m−1(`−1P (L1)P (L2) + `P (L1)P (L2))

= −m−1(`−1 + `)P (L1)P (L2)

Now if we place L3 beside L1 t L2 and repeat the process, we obtain

P (L1 t L2 t L3) = −m−1(`−1P (L1 t L2)P (L3) + `P (L1 t L2)P (L3))

= −m−1(`−1 + `)P (L1 t L2)P (L3)

=
[
−m−1(`−1 + `)

]2
P (L1)P (L2)P (L3)

Continuing in this manner, we eventually obtain the HOMFLY polynomial of the entire

split link,

P (L) = P (L1 t L2 t · · · t Ln) =
[
−m−1(`−1 + `)

]n−1
n∏

i=1

P (Li)
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Finally, we calculate the HOMFLY polynomial of a simple knot. When calculating link

polynomials using skein relations, a resolving tree such as in Figure 3.1 is often used.

Example 3.2. Let L be the trefoil knot shown at the top of Figure 3.1. Suppose the

diagram is split at the top crossing, which is negative. Then we think of this diagram as L−

and use the equation P (L−) = −`2P (L+)−m`P (L0). Using the labels in the figure, L1 is

the result of changing the negative crossing into a positive crossing, and L2 is the result of

removing the crossing while keeping the orientation intact, so P (L) = −`2P (L1)−m`P (L2).

Now if untwisted L1 can be seen seen to be equivalent to the unknot, so P (L1) = 1. The

skein relation needs to be applied once more on L2, since it is a non-trivial link. The

result of the skein relation on the rightmost crossing of L2 is shown in the third line in the

figure. L2,1 is the result of changing the negative crossing into a positive crossing. The two

components can now be separated, so L2,1 is the trivial 2-component link. L2,2 is the result

of removing the rightmost crossing from L2, and it can be untwisted to reveal the unknot.

So we have

P (L2) = −`2P (L2,1)−m`P (L2,2)

= −`2(−m−1(`−1 + `))−m`(1)

= m−1(` + `3))−m`

and then

P (L) = −`2P (L1)−m`P (L2)

= −`2(1)−m`(m−1(` + `3))−m`)

= −2`2 − `4 + m2`2
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Figure 3.1: Resolving tree for the trefoil knot 31



CHAPTER 4: BRAIDS AND CLOSED BRAIDS

Braids are important tools in knot theory, both because they have a very simple struc-

ture and because they can be used to represent any knot or link [2].

Definition 4.1. [1] A braid (or open braid) is a set of k strings arranged vertically alongside

one another, with the ends of each string fixed at the top and bottom, as if attached to two

bars. The strings may pass over or under one another as they traverse the space between

the bars, but any horizontal cross-section can only be intersected by each string once.

The last requirement means that as one follows the course of a string from top to

bottom, the string cannot at any point turn back upward. Obviously this also precludes

any string extending above the top bar or below the bottom.

The usual manner of describing a braid is by a braid word consisting of symbols such

as σ1, σ5
3, and σ−1

2 . If we think of the strings as traveling downward, σi indicates a crossing

in which the string in position i (counting from left to right) passes below the string in

position i + 1. The symbol σ−1
i indicates a crossing in which the string in position i passes

above the string in position i+1. (Note: Some texts use notation that is exactly the reverse

of that just stated. However, the choice is arbitrary and this notation is more convenient

for the purposes of this paper, for a positive crossing has a positive exponent and a negative

crossing has a negative exponent.) An exponent with absolute value greater than 1 simply

indicates that there are the corresponding number of consecutive σi or σ−1
i crossings. The

braid word then is a listing of the symbols describing all of the crossings in the braid, in

the order they are encountered as one moves downward from the top of the braid until one

reaches the bottom. Occasionally in this paper the notation σ0
i may be used to indicate that

there are no crossings between the strings in positions i and i + 1 at a particular location.

There is a natural product operation on braids. The product of two braids A and B

can be defined as the braid represented by the concatenation of the braid word of A with
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the braid word of B (in that order, for clearly this operation is not commutative). If n is a

positive integer and Bn is the set of all braids with n strings, then Bn is a group under this

product operation [1,8].

Definition 4.2. [1] Let k be the number of strings in a braid. A closed braid is a link

formed from the braid, by connecting the string in position i at the top with the string in

position i at the bottom, for 1 ≤ i ≤ k.

A braid and its corresponding closed braid are illustrated in Figure 4.1. In this paper,

the notation Dk[. . . ] or Dk will be used to indicate the closure of a k-string braid, where

the braid word (or the relevant parts thereof) will be specified in the square brackets. The

square brackets may be omitted for ease of reading, if such omission will not cause confusion.

Figure 4.1: The braid σ−1
1 σ−3

2 σ−1
1 σ3σ

−1
3 and its corresponding closed braid

Two braids are equivalent if one can be transformed into the other by moving the

strings around without moving the bars, cutting the strings or detaching any strings from

the bars. The ways of moving the strings around can be simplified to three basic moves.

A braid B1 is equivalent to a braid B2 if B1 can be transformed into B2 by applying some

sequence of the following three types of moves [1]:

σiσi+1σi = σi+1σiσi+1 and σ−1
i σ−1

i+1σ
−1
i = σ−1

i+1σ
−1
i σ−1

i+1
(4.1)
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σiσ
−1
i = σ0

i and σ−1
i σi = σ0

i
(4.2)

If |i− j| > 1 and α, β ∈ {−1, 1} , then σα
i σβ

j = σβ
j σα

i
(4.3)

Clearly, if two braids are equivalent and each one is closed to form a link, then the two

links will be equivalent. However, it is also possible for two non-equivalent braids, upon

closure, to produce equivalent links. So when considering closed braids, two additional

rules, known as the Markov moves, are required. Introduced in 1935 [18], these two moves

combined with the three original rules above are sufficient to demonstrate equivalence of

two closed braids [8].

The first Markov move is conjugation: A closed braid representation is equivalent to

its conjugate. If Bk is a braid with k strings, C(Bk) is the closure of Bk, and 1 ≤ i ≤ k− 1,

then C(σ−1
i Bkσi) = C(Bk) = C(σiBkσ

−1
i ). In practice, this rule provides the means to

move a crossing from the bottom of a braid all the way around (along the strings that are

added when the braid is closed) to the top, or vice versa.

The second Markov move is known as stabilization and has the effect of increasing or

decreasing the number of strings in the braid by 1. If Bk is defined as above, and one more

string and one crossing σ±1
k are added, then Bk+1 = Bkσ

±1
k is a (k + 1)-string braid such

that C(Bk+1) = C(Bk). Similarly, if C(Bk) is a closed braid with only one crossing between

strings in positions k−1 and k, then that crossing can be “twisted out” to reduce the braid

to k − 1 strings.

It was shown by J. W. Alexander in 1923 that every link has a closed braid represention

[2]. Knowing this, and applying the above rules, it is clear that there is an infinite variety

of braids whose closures could represent a given link. However, a link has closed braid

representations that are minimal in the sense that they use the smallest possible number of

strings.

Definition 4.3. [1,6,9] The braid index of a link L is the minimum number of strings used

among all braids whose closure is L.

If L has a closed braid diagram Dk, then clearly b(L) ≤ k. The only link with braid

index of 1 is the unknot, and an n-component trivial link has braid index n. The braid
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index is a link invariant and, as noted in Chapter 2, the braid index is equal to the minimum

number of Seifert circles in a diagram of a link [30].

In addition to the above five rules, the following fact is useful in the discussion that

follows.

Theorem 4.1. Let n ∈ Z. Then σiσ
n
i+1σ

−1
i = σ−1

i+1σ
n
i σi+1.

Proof. The proof is straightforward using the rules outlined above. If n = 0, then clearly

σiσ
−1
i = σ0

i = σ−1
i σi. If n > 0,

σiσ
n
i+1σ

−1
i = (σ−1

i+1σi+1)σiσ
n
i+1σ

−1
i

= σ−1
i+1(σi+1σiσi+1)σn−1

i+1 σ−1
i

= σ−1
i+1(σiσi+1σi)σn−1

i+1 σ−1
i

= σ−1
i+1σi(σi+1σiσi+1)σn−2

i+1 σ−1
i

= σ−1
i+1σi(σiσi+1σi)σn−2

i+1 σ−1
i

= σ−1
i+1σ

2
i (σi+1σiσi+1)σn−3

i+1 σ−1
i

= σ−1
i+1σ

2
i (σiσi+1σi)σn−3

i+1 σ−1
i

= . . .

= σ−1
i+1σ

n−2
i (σi+1σiσi+1)σi+1σ

−1
i

= σ−1
i+1σ

n−2
i (σiσi+1σi)σi+1σ

−1
i

= σ−1
i+1σ

n−1
i (σi+1σiσi+1)σ−1

i

= σ−1
i+1σ

n−1
i (σiσi+1σi)σ−1

i

= σ−1
i+1σ

n
i σi+1(σiσ

−1
i )

= σ−1
i+1σ

n
i σi+1

A similar process gives the proof for the n < 0 case. �



CHAPTER 5: COMPUTING HOMFLY POLYNOMIALS OF CLOSED BRAIDS

Now we consider a few examples of calculating HOMFLY polynomials of closed braids.

First note that in the final example in Chapter 3 the knot is equivalent to the closed braid

D2[σ−3
1 ]. So P (D2[σ−3

1 ]) = −2`2 − `4 + m2`2 and we do not repeat that calculation here.

Also recall that P (D2[σ1]) = P (D2[σ−1
1 ]) = P (D1) = 1 by the Markov move of stabilization,

and D2[σ0
1] is simply a two-component trivial link so P (D2[σ0

1]) = −m−1(`−1 + `).

Example 5.1. Let L be the link represented by the closed braid D2[σ−4
1 ]. Note that at

each step where there remain two or more consecutive negative crossings we may apply the

skein relation to any of the consecutive negative crossings and the result will be the same.

Without loss of generality we assume the skein relation is applied to the last crossing in the

sequence. See Figure 5.1 for a resolving tree for this calculation. The computation of the

HOMFLY polynomial of L is then

P (L) = P (D2[σ−4
1 ])

= −`2P (D2[σ−3
1 σ1])−m`P (D2[σ−3

1 ])

= −`2P (D2[σ−2
1 ])−m`P (D2[σ−3

1 ])

= −`2
(
−`2P (D2[σ−1

1 σ1])−m`P (D2[σ−1
1 ])

)
−m`

(
−`2P (D2[σ−2

1 σ1])−m`P (D2[σ−2
1 ])

)
= `4P (D2[σ0

1]) + m`3P (D2[σ−1
1 ]) + m`3P (D2[σ−1

1 ]) + m2`2P (D2[σ−2
1 ])

= `4(−m−1(`−1 + `)) + 2m`3 + m2`2
(
−`2P (D2[σ−1

1 σ1])−m`P (D2[σ−1
1 ])

)
= −m−1(`3 + `5) + 2m`3 −m2`4P (D2[σ0

1])−m3`3

= −m−1(`3 + `5) + 2m`3 −m2`4(−m−1(`−1 + `))−m3`3

= −m−1(`3 + `5) + m(3`3 + `5)−m3`3
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Figure 5.1: Resolving tree for P (D2[σ−4
1 ])

Let us list (without calculations) HOMFLY polynomials for closed braids of the form

P (D2[σ−n
1 ]), for the first few n ≥ 0.

P (D2[σ0
1]) = −m−1(`−1 + `)

P (D2[σ−1
1 ]) = 1

P (D2[σ−2
1 ]) = m−1(` + `3)−m`

P (D2[σ−3
1 ]) = −2`2 − `4 + m2`2

P (D2[σ−4
1 ]) = −m−1(`3 + `5) + m(3`3 + `5)−m3`3

P (D2[σ−5
1 ]) = 3`4 + 2`6 −m2(4`4 + `6) + m4`4
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Remark. A convenient property of the HOMFLY polynomial is that if L∗ is the mirror-

image of link L, then P (L∗) is of the same form as P (L) except that all exponents of `

are negated [6]. So for example, since D2[σ4
1] is the mirror image of D2[σ−4

1 ], we have

P (D2[σ4
1]) = −m−1(`−5 + `−3) + m(`−5 + 3`−3)−m3`−3.

Some patterns are apparent in this short list. First, it seems that the highest power

of ` in P (D2[σ−n
1 ]) is `n+1 and the lowest power of ` is `n−1, except in the case n = 1.

Not coincidentally, the diagram D2[σ−1
1 ] is the only one in the list that is not a reduced

diagram; it can be reduced to a 1-string braid by the Markov move of stabilization. Also,

whenever n is even there are terms containing m−1 in the polynomial, and whenever n is

odd the lowest power of m is m0. This is due to the following fact [16]:

Theorem 5.1. Let L be a link with µ(L) components, and let P (L) be the HOMFLY

polynomial of L. Then the lowest degree of m in P (L) is 1− µ(L).

Though interesting, this fact has no great bearing on the results to come. The obser-

vation about the powers of ` is more significant, but not immediately obvious why it would

be true. Perhaps more instructive for the purpose at hand would be to look not at the final

result of the calculation, but at the process. Note that at a certain point we could have

simply substituted the previously computed value of P (D2[σ−3
1 ]). In fact, for any n ≥ 2 we

could define P (D2[σ±n
1 ]) recursively by P (D2[σ−n

1 ]) = −`2P (D2[σ2−n
1 ]) − m`P (D2[σ1−n

1 ])

and P (D2[σn
1 ]) = −`−2P (D2[σn−2

1 ])−m`−1P (D2[σn−1
1 ]). However, we followed the process

all the way through in order to observe the following. Each time the skein relation is ap-

plied to one of the sequences of crossings that remains, the sequence is shortened by either

one or two crossings. If we continue, then we eventually reach a state in which every term

remaining contains a factor of P (D2[σ−1
1 ]) = 1 or P (D2[σ0

1]) = −m−1(`−1 + `). If we look

back at the example in those terms we obtain

P (D2[σ−4
1 ]) = `4P (D2[σ0

1]) + 2m`3P (D2[σ−1
1 ]) + m2`2P (D2[σ−2

1 ])

= `4P (D2[σ0
1]) + 2m`3P (D2[σ−1

1 ])

+m2`2
(
−`2P (D2[σ0

1])−m`P (D2[σ−1
1 ])

)
= (`4 −m2`4)P (D2[σ0

1]) + (2m`3 −m3`3)P (D2[σ−1
1 ])
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A similar formulation will be used to simplify most of the calculations needed later.

Example 5.2. In this example we look at a slightly more complex braid of three strings.

Let L be the link represented by the closed braid D3[σ1σ
−4
2 σ1σ

−1
2 ]. We will apply the skein

relation to the sequence σ−4
2 first.

P (L) = P (D3[σ1σ
−4
2 σ1σ

−1
2 ])

= −`2P (D3[σ1σ
−2
2 σ1σ

−1
2 ])−m`P (D3[σ1σ

−3
2 σ1σ

−1
2 ])

= −`2
(
−`2P (D3[σ1σ

0
2σ1σ

−1
2 ])−m`P (D3[σ1σ

−1
2 σ1σ

−1
2 ])

)
−m`

(
−`2P (D3[σ1σ

−1
2 σ1σ

−1
2 ])−m`P (D3[σ1σ

−2
2 σ1σ

−1
2 ])

)
= −`4P (D3[σ2

1σ
−1
2 ]) + 2m`3P (D3[σ1σ

−1
2 σ1σ

−1
2 ])

+m2`2
(
−`2P (D3[σ1σ

0
2σ1σ

−1
2 ])−m`P (D3[σ1σ

−1
2 σ1σ

−1
2 ])

)
= (`4 −m2`4)P (D3[σ2

1σ
−1
2 ]) + (2m`3 −m3`3)P (D3[σ1σ

−1
2 σ1σ

−1
2 ])

We pause here to point out that the polynomials multiplied with the P (D3[. . . ]) ex-

pressions are exactly the same as those seen above from the previous example multiplied

with P (D2[σ−1
1 ]) and P (D2[σ0

1]). The same steps have been performed in each example to

reduce a sequence of four consecutive negative crossings to either one or zero negative cross-

ings. As these reductions of the original sequence leave the rest of the diagram unchanged,

it is clear that any sequence of four consecutive negative crossings between the same two

strings can be reduced in the same way, obtaining the same two polynomials and essentially

performing several applications of the HOMFLY skein relation at one time.

All that remains then is to finish evaluating P (D3[σ2
1σ

−1
2 ]) and P (D3[σ1σ

−1
2 σ1σ

−1
2 ]).

Note that P (D3[σ2
1σ

−1
2 ]) can be reduced to P (D2[σ2

1]) by stabilization, and then

P (D2[σ2
1]) = −`−2P (D2[σ0

1])−m`−1P (D2[σ1])

= −`−2
(
−m−1(`−1 + `)

)
−m`−1(1)

= m−1(`−3 + `−1)−m`−1

P (D3[σ1σ
−1
2 σ1σ

−1
2 ]) cannot be simplified initially, so the skein relation can be applied
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to any crossing. Choosing the first σ−1
2 crossing,

P (D3[σ1σ
−1
2 σ1σ

−1
2 ]) = −`2P (D3[σ1σ2σ1σ

−1
2 ])−m`P (D3[σ2

1σ
−1
2 ])

= −`2P (D3[σ2σ1σ2σ
−1
2 ])−m`P (D2[σ2

1])

= −`2P (D3[σ2σ1])−m`P (D2[σ2
1])

= −`2P (D2[σ1])−m`
(
m−1(`−3 + `−1)−m`−1

)
= −`2P (D1)−

(
(`−2 + 1)−m2

)
= −`−2 − 1− `2 + m2

Finally, substituting these back into the earlier equation,

P (L) = (`4 −m2`4)P (D3[σ2
1σ

−1
2 ]) + (2m`3 −m3`3)P (D3[σ1σ

−1
2 σ1σ

−1
2 ])

= (`4 −m2`4)
(
m−1(`−3 + `−1)−m`−1

)
+(2m`3 −m3`3)

(
−`−2 − 1− `2 + m2

)
= m−1(` + `3)−m(3` + 4`3 + 2`5) + m3(` + 4`3 + `5)−m5`3

The following lemma formalizes the observations of the last two examples, and simplifies

the calculations needed in Chapter 6.

Lemma 5.2. Let Dk [. . . σn
i . . . ] be a k-string closed braid containing a sequence of cross-

ings σn
i with 1 ≤ i ≤ k − 1 and n ≥ 2. Let Dk

[
. . . σ0

i . . .
]

be the closed braid diagram

obtained by removing the crossings σn
i from Dk [. . . σn

i . . . ] (and leaving the rest of the

diagram unchanged). Let Dk [. . . σi . . . ] be the diagram obtained by replacing the cross-

ings σn
i with the single crossing σi. Then P (Dk [. . . σn

i . . . ]) = Q0(n)P (Dk

[
. . . σ0

i . . .
]
) +

Q1(n)P (Dk [. . . σi . . . ]), where

Q0(n) =


`−n

n−2
2∑

j=0

(−1)n−1−j

(
n− 2− j

j

)
mn−2−2j if n is even

`−n

n−3
2∑

j=0

(−1)n−1−j

(
n− 2− j

j

)
mn−2−2j if n is odd
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and

Q1(n) =


`1−n

n−2
2∑

j=0

(−1)n−1−j

(
n− 1− j

j

)
mn−1−2j if n is even

`1−n

n−1
2∑

j=0

(−1)n−1−j

(
n− 1− j

j

)
mn−1−2j if n is odd

If Dk

[
. . . σ−n

i . . .
]

is a closed braid containing a sequence of crossings σ−n
i , and

Dk

[
. . . σ0

i . . .
]

and Dk

[
. . . σ−1

i . . .
]

are defined similarly as above, then

P (Dk

[
. . . σ−n

i . . .
]
) = Q0(−n)P (Dk

[
. . . σ0

i . . .
]
) + Q1(−n)P (Dk

[
. . . σ−1

i . . .
]
), where

Q0(−n) =


`n

n−2
2∑

j=0

(−1)n−1−j

(
n− 2− j

j

)
mn−2−2j if n is even

`n

n−3
2∑

j=0

(−1)n−1−j

(
n− 2− j

j

)
mn−2−2j if n is odd

and

Q1(−n) =


`n−1

n−2
2∑

j=0

(−1)n−1−j

(
n− 1− j

j

)
mn−1−2j if n is even

`n−1

n−1
2∑

j=0

(−1)n−1−j

(
n− 1− j

j

)
mn−1−2j if n is odd

Proof. Upon applying the HOMFLY skein relation to one of the (positive) crossings in the

sequence σn
i , we obtain two terms. For one term a factor of −m`−1 is introduced and the

crossing is simply deleted from the diagram, so Dk [. . . σn
i . . . ] is reduced to Dk

[
. . . σn−1

i . . .
]
.

For the other term a factor of −`−2 is introduced and the positive crossing is changed to a

negative crossing. This negative crossing can then cancel with an adjacent positive cross-

ing, so Dk [. . . σn
i . . . ] is reduced to Dk

[
. . . σn−2

i . . .
]
. Thus we obtain P (Dk [. . . σn

i . . . ]) =

−`−2P (Dk

[
. . . σn−2

i . . .
]
)−m`−1P (Dk

[
. . . σn−1

i . . .
]
). By repeatedly applying the skein re-

lation on the new shorter sequences as long as the exponent of σi is at least 2, we eventually

obtain an expression for P (Dk [. . . σn
i . . . ]) in which every term contains a factor of either

P (Dk

[
. . . σ0

i . . .
]
) or P (Dk

[
. . . σ1

i . . .
]
). Grouping terms together according to which of

these factors they contain, we obtain the polynomials Q0(n) and Q1(n).

To calculate Q1(n), we must enumerate the ways of reducing Dk [. . . σn
i . . . ] to



32

Dk

[
. . . σ1

i . . .
]

by the HOMFLY skein relation. Each time the skein relation is applied,

it reduces the exponent of σi by either 1 or 2, so finding the ways that Dk [. . . σn
i . . . ]

can be reduced to Dk

[
. . . σ1

i . . .
]

is equivalent to finding the compositions of the integer

n − 1 in which each summand is either 1 or 2. One such composition is
1 + 1 + · · ·+ 1︸ ︷︷ ︸

(n− 1 times)

.

Combining two of the 1’s, and noting that the resulting 2 can be placed at any position

in a composition, we see that there are
(
n−2

1

)
= n − 2 possible compositions consisting of

exactly one 2 and (n−3) 1’s. Combining two more 1’s, there are
(
n−3

2

)
possible compositions

containing exactly two 2’s and (n−5) 1’s. In general, there are
(
n−1−j

j

)
possible compositions

containing exactly j 2’s and (n− 1− 2j) 1’s.

Now since a 1 in a composition corresponds to a factor of −m`−1 in the skein rela-

tion and a 2 corresponds to a factor of −`−2, we see that the composition of (n − 1) 1’s

gives us the term (−1)n−1mn−1`1−n, the compositions of one 2 and (n − 3) 1’s give us

(−1)n−2
(
n−2

1

)
mn−3`1−n, and so on. In general the compositions of j 2’s and (n − 1 − 2j)

1’s give us (−1)n−1−j
(
n−1−j

j

)
mn−1−2j`1−n.

If n is odd (so n− 1 is even), the last composition of n− 1 will consist of n−1
2 2’s and

no 1’s, so

Q1(n) = `1−n

n−1
2∑

j=0

(−1)n−1−j

(
n− 1− j

j

)
mn−1−2j

If n is even (so n − 1 is odd), the last set of compositions of n − 1 will consist of n−2
2

2’s and one 1, so

Q1(n) = `1−n

n−2
2∑

j=0

(−1)n−1−j

(
n− 1− j

j

)
mn−1−2j .

To calculate Q0(n), we must enumerate the ways of reducing Dk [. . . σn
i . . . ] to

Dk

[
. . . σ0

i . . .
]

by the HOMFLY skein relation. The procedure differs slightly from that of

Q1(n), in that in our reductions we never apply the skein relation to Dk

[
. . . σ1

i . . .
]
. There-

fore whenever Dk [. . . σn
i . . . ] is reduced to Dk

[
. . . σ0

i . . .
]
, the last step must be a reduction

from Dk

[
. . . σ2

i . . .
]

to Dk

[
. . . σ0

i . . .
]
. This will be as if we are listing the compositions of

the integer n in which each summand is 1 or 2 and the final summand is always 2. One such
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composition is
1 + 1 + · · ·+ 1︸ ︷︷ ︸ + 2

(n− 2 times)

, which corresponds to the term (−1)n−1mn−2`−n.

Combining two of the 1’s, there are
(
n−3

1

)
possible compositions of exactly two 2’s and

(n − 4) 1’s, giving the term (−1)n−2
(
n−3

1

)
mn−4`−n. Combining two more 1’s, there are(

n−4
2

)
possible compositions containing exactly three 2’s and (n − 6) 1’s, giving the term

(−1)n−3
(
n−4

2

)
mn−6`−n. In general, there are

(
n−2−j

j

)
possible compositions containing of

exactly (j+1) 2’s and (n−2−2j) 1’s, giving the general term (−1)n−1−j
(
n−2−j

j

)
mn−2−2j`−n.

If n is even, the final composition of n will consist of n
2 2’s and no 1’s, so

Q0(n) = `−n

n−2
2∑

j=0

(−1)n−1−j

(
n− 2− j

j

)
mn−2−2j

If n is odd, the last compositions of n− 1 will each consist of n−1
2 2’s and one 1, so

Q0(n) = `−n

n−3
2∑

j=0

(−1)n−1−j

(
n− 2− j

j

)
mn−2−2j

The derivations of Q0(−n) and Q1(−n) are similar. �



CHAPTER 6: MAIN RESULTS

In this chapter the braid index for a certain class of closed braids is discussed. Recall

that the braid index of a link L is the minimum number of strings needed in a braid whose

closure is L. The main new result will show that a reduced, alternating k-string closed braid

with at most two sequences of crossings between each pair of adjacent strings has braid index

equal to the number of strings in the braid, k. The proof makes use of properties of the

HOMFLY polynomial. However, it is worth noting that a stronger result is easily proven

for some of the simplest cases, without resorting to polynomials at all.

Theorem 6.1. Let 1 ≤ k ≤ 3 and let Dk be a reduced, alternating diagram which is the

closure of a k-string braid. Let L be the link type represented by Dk. Then the braid index

of L is k.

Proof. Note that if L is represented by a diagram Dk then clearly b(L) ≤ k, so it suffices in

each case to show that b(L) ≥ k.

For k = 1 there is only one 1-string braid, and its closure is the unknot. Since there is

no braid with fewer strings than 1, the braid index of the unknot is 1.

For k = 2, note that in order for its closure to be a reduced diagram, the underlying

braid must be of the form σ±n
1 with n ≥ 2 or n = 0. If n = 0 then L is the trivial

2-component link. Otherwise, since the diagram is alternating, we know that Cr(L) =

Cr(D2[σ±n
1 ]) = n ≥ 2. In either case, L is not the unknot, so b(L) ≥ 2. Thus b(L) = 2.

For k = 3, suppose L can be expressed as the closure of a 2-string braid. Then that

diagram (in its reduced form) would be of the form D2[σ±n
1 ], where n = Cr(D3), since

D3 and D2[σ±n
1 ] are both alternating and reduced. If n is even, then µ(D3) is odd1, but

µ(D2[σ±n
1 ]) = 2. And if n is odd then µ(D3) is even, but µ(D2[σ±n

1 ]) = 1. Since µ(L) is

a link invariant, we obtain a contradiction in either case. Therefore, b(L) ≥ 3, and then

b(L) = 3. �
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Note that the specific class of closed braids that we will be concerned with here excludes

situations where there is only one crossing between two adjacent strings, because in such

cases the diagram would not be reduced. The crossing in question could simply be twisted

out, as in Figure 1.6. There could however be no crossings between consecutive string

positions. In such a case the link would be a split link. This special case will be considered

separately from other cases. In a reduced, alternating closed braid that does not represent

a split link it is observed that not only is the diagram alternating in the manner defined

previously, but the columns of crossings in their entirety also alternate in sign. For instance,

all of the crossings between string positions 1 and 2 might be positive, and then all of the

crossings between positions 2 and 3 would be negative, all crossings between positions 3

and 4 would be positive, and so on. (In a split link this would not necessarily be the

case.) Because of this, it is sometimes convenient to use a slight abuse of terminology and

notation by referring to σi as being ‘positive’ or ‘negative’. This will simply mean that all

of the crossings between strings i and i + 1 are positive crossings, or negative crossings,

respectively.

The main result will make use of the following theorem, first proved by Morton [20]

and Franks and Williams [12]:

Theorem 6.2. Let L be a link and let P (L) be the HOMFLY polynomial of L. If E` and

e` are the maximum and minimum exponents of `, respectively, in P (L), then E` − e` ≤

2(S(D)− 1), where S(D) is the number of Seifert circles in a diagram of L.

That is, this theorem gives 1
2(E` − e`) + 1 as a lower bound for the number of Seifert

circles. Important to the purpose here, it has also been shown [30] that the minimum

number of Seifert circles for a link is equal to the link’s braid index.

Theorem 6.2 gives a lower bound on the braid index for a link L. If it is known

that there is a closed braid representation for L using a certain number of strings, then
1Suppose that D3 has no crossings. Then D3 is simply a 3-component trivial link. Now imagine that

crossings are added to D3, one at a time. Each crossing that is added either combines two components (if
the strings involved were previously in distinct components) or breaks one component into two (if the strings
were previously in the same component). So the effect of inserting one crossing is to change µ(D3) by ±1.
The number of crossings inserted will thus be congruent modulo 2 to the change in µ(D3). Since µ(D3) = 3
when Cr(D3) = 0, µ(D3) + Cr(D3) ≡ 1 (mod 2). Therefore if Cr(D3) is even, µ(D3) is odd, and if Cr(D3)
is odd, µ(D3) is even.
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that number is an upper bound for the braid index. Therefore, if there is a closed braid

representation of L using exactly 1
2(E` − e`) + 1 string positions, then 1

2(E` − e`) + 1 is the

braid index for L.

The strategy here will be to consider the special class of k-string closed braids specified

above, calculate the HOMFLY polynomial to obtain the values of E` and e`, and then show

that 1
2(E` − e`) + 1 = k in all cases.

The calculation of the HOMFLY polynomial can become lengthy, as seen in the rel-

atively small examples in Chapter 5. Fortunately, since the only parts of the polynomial

that are relevant to the present purpose are the highest and lowest powers of `, we do not

necessarily need to calculate the entire polynomial. However, we cannot simply apply the

skein relation and look only for the powers of `, because generally there could be several

branches of the resolving tree that could yield terms containing the highest or lowest power

of `. Without determining more precisely what those terms are, there is no way of knowing

whether they might cancel each other out when all of the terms are added together. Lemma

5.2 gives us a means to calculate the HOMFLY polynomial more efficiently, and eliminate

some of the uncertainty about whether some terms might cancel. Instead of using the basic

skein relation to reduce one crossing at a time, we will use Lemma 5.2 to reduce whole

sequences of crossings. Instead of a potentially very large and messy resolving tree, we

could draw an enhanced resolving tree which will result in at most four expressions from

which to draw high and low powers of `.

Example 6.1. Figure 6.1 illustrates an example of an enhanced resolving tree for the closed

braid P (D3[σ2
1σ

−4
2 σ1σ

−3
2 ]). (For clarity only the braids are shown in each step, rather than

the entire closed braid diagram.) The first split of the tree reduces the sequence σ−4
2 , and

then each of those branches is split to reduce the sequence σ−3
2 . Of the four diagrams

that remain at the right, the middle two now can be reduced to the two-string closed

braid D2[σ3
1] by stabilization, and the top one is a connected sum of D2[σ3

1] with D2[σ0
1].

The bottom diagram will require some more work using the regular skein relation. The
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Q (−4)
1

Q (−3)
1

Q (−3)
0

1
Q (−3)

Q (−3)
0

Q (−4)
0

Figure 6.1: Enhanced resolving tree for P (D3[σ2
1σ

−4
2 σ1σ

−3
2 ])

HOMFLY polynomial for D3[σ2
1σ

−4
2 σ1σ

−3
2 ] is thus

P (D3[σ2
1σ

−4
2 σ1σ

−3
2 ]) = Q0(−4)Q0(−3)P (D2[σ0

1])P (D2[σ3
1])

+ [Q0(−4)Q1(−3) + Q1(−4)Q0(−3)]P (D2[σ3
1])

+Q1(−4)Q1(−3)P (D3[σ2
1σ

−1
2 σ1σ

−1
2 ])

It will be seen in the proof of the next theorem that it is relatively easy to pick out the

terms with the highest and lowest powers of ` from the expression on the right.

Theorem 6.3. Let L be a link and let Dk be a reduced alternating k-string closed braid
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representation of L, with at least one and at most two sequences of consecutive crossings

between each pair of adjacent strings. If P (L) is the HOMFLY polynomial of L, then the

minimum exponent of ` in P (L) is 1− k − w, and the maximum exponent of ` in P (L) is

k − 1− w, where w is the writhe of Dk.

Furthermore, if k is odd, then the maximum exponent of m multiplied with `1−k−w is c −

2k + 2, and the maximum exponent of m multiplied with `k−1−w is c − 2k + 2, where c

is the number of crossings in Dk (also the crossing number of L). If k is even, we have

two subcases: If σ1 is positive, then the maximum exponent of m multiplied with `1−k−w is

c− 2k + 1 and the maximum exponent of m multiplied with `k−1−w is c− 2k + 3. If instead

σ1 is negative, then the maximum exponent of m multiplied with `1−k−w is c − 2k + 3 and

the maximum exponent of m multiplied with `k−1−w is c− 2k + 1.

Finally, the coefficient of each of the terms thus described is ±1.

Proof. We will prove the theorem by induction on the number of strings k in the braid

diagram. The basis step for the induction will include the cases k = 1 and k = 2, since the

induction step uses the two previous values of k.

For k = 1, only one 1-string braid exists, with no crossings and writhe 0. Its closure is

the unknot, of which the HOMFLY polynomial is 1. Since 1 − k − w = 0, k − 1 − w = 0,

and c− 2k + 2 = 0, all conditions hold.

For k = 2, a reduced 2-string braid is in one of two forms, either D2[σn
1 ] or D2[σ−n

1 ],

with n ≥ 2 (since if n = 1 or n = −1 then the closure is not a reduced diagram, and if

n = 0 there are no crossings between the two adjacent strings). Note however, for use in the

following calculations that P (D2[σ0
1]) = −m−1(`−1 + `) and P (D2[σ1]) = P (D2[σ−1

1 ]) = 1.

Let us consider P (D2[σn
1 ]) first. Since the writhe and number of crossings are each

n, we need to find 1 − k − w = −1 − n and k − 1 − w = 1 − n for the smallest and

largest exponents of `, respectively, and we need the largest exponent of m multiplied with

`−1−n to be c − 2k + 1 = n − 3, and the largest exponent of m multiplied with `1−n to be

c− 2k + 3 = n− 1.
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Using Lemma 5.2, if n is odd then

P (D2[σn
1 ]) = Q0(n)P (D2[σ0

1]) + Q1(n)P (D2[σ1])

= −m−1(`−1 + `)Q0(n) + Q1(n)

= −m−1(`−1 + `)`−n

n−3
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−2−2j

+`1−n

n−1
2∑

j=0

(−1)j

(
n− 1− j

j

)
mn−1−2j

= `−1−n

n−3
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−3−2j

+`1−n

n−3
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−3−2j

+`1−n

n−1
2∑

j=0

(−1)j

(
n− 1− j

j

)
mn−1−2j

= `−1−n

n−3
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−3−2j

+`1−n

mn−1 +

n−3
2∑

j=0

(−1)j+1

[(
n− 2− j

j

)
+

(
n− 2− j

j + 1

)]
mn−3−2j


The relevant terms from this polynomial are −`−1−nmn−3 and `1−nmn−1, so the con-

ditions hold.
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If n is even then

P (D2[σn
1 ]) = Q0(n)P (D2[σ0

1]) + Q1(n)P (D2[σ1])

= −m−1(`−1 + `)Q0(n) + Q1(n)

= −m−1(`−1 + `)`−n

n−2
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−2−2j

+`1−n

n−2
2∑

j=0

(−1)j+1

(
n− 1− j

j

)
mn−1−2j

= `−1−n

n−2
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−3−2j

+`1−n

n−2
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−3−2j

+`1−n

n−2
2∑

j=0

(−1)j+1

(
n− 1− j

j

)
mn−1−2j

= `−1−n

n−2
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−3−2j

+`1−n
(
−mn−1 + (−1)

n+2
2 m−1

)
+`1−n

n−4
2∑

j=0

(−1)j

[(
n− 2− j

j

)
+

(
n− 2− j

j + 1

)]
mn−3−2j

The relevant terms here are `−1−nmn−3 and −`1−nmn−1, so the conditions hold.

Continuing with the D2[σ−n
1 ] cases, since the number of crossings and writhe are each

−n, we need to find the greatest and least exponents of ` to be k − 1 − w = n + 1 and

1 − k − w = n − 1, respectively. The greatest exponent of m multiplied with `n+1 should

be c − 2k + 1 = n − 3, and the greatest exponent of m multiplied with `n−1 should be

c− 2k + 3 = n− 1.
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Applying Lemma 5.2, if n is odd then

P (D2[σ−n
1 ]) = Q0(−n)P (D2[σ0

1]) + Q1(−n)P (D2[σ−1
1 ])

= −m−1(`−1 + `)Q0(−n) + Q1(−n)

= −m−1(`−1 + `)`n

n−3
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−2−2j

+`n−1

n−1
2∑

j=0

(−1)j

(
n− 1− j

j

)
mn−1−2j

= `n−1

n−3
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−3−2j

+`n+1

n−3
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−3−2j

+`n−1

n−1
2∑

j=0

(−1)j

(
n− 1− j

j

)
mn−1−2j

= `n−1

mn−1 +

n−3
2∑

j=0

(−1)j+1

[(
n− 2− j

j

)
+

(
n− 2− j

j + 1

)]
mn−3−2j


+`n+1

n−3
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−3−2j

The relevant terms from this polynomial are −`n+1mn−3 and `n−1mn−1, so the condi-

tions hold.
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If n is even then

P (D2[σ−n
1 ]) = Q0(−n)P (D2[σ0

1]) + Q1(−n)P (D2[σ−1
1 ])

= −m−1(`−1 + `)Q0(−n) + Q1(−n)

= −m−1(`−1 + `)`n

n−2
2∑

j=0

(−1)j+1

(
n− 2− j

j

)
mn−2−2j

+`n−1

n−2
2∑

j=0

(−1)j+1

(
n− 1− j

j

)
mn−1−2j

= `n−1

n−2
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−3−2j

+`n+1

n−2
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−3−2j

+`n−1

n−2
2∑

j=0

(−1)j+1

(
n− 1− j

j

)
mn−1−2j

= `n−1
(
−mn−1 + (−1)

n+2
2 m−1

)
+`n−1

n−4
2∑

j=0

(−1)j

[(
n− 2− j

j

)
+

(
n− 2− j

j + 1

)]
mn−3−2j

+`n+1

n−2
2∑

j=0

(−1)j

(
n− 2− j

j

)
mn−3−2j

The relevant terms here are `n+1mn−3 and −`n−1mn−1, so the conditions hold.

Thus concludes the basis step of the induction.

Let us now suppose that for some k ≥ 3 the proposition holds for all Di with 1 ≤

i ≤ k − 1. For the induction step, there are many cases to consider. For all cases, the

closed braid Dk will be assumed to have writhe w and number of crossings c. Also, the

abbreviations H`Hm and L`Hm are introduced for purposes of brevity. We are concerned

with the highest and lowest powers of `, and the highest power of m multiplied with each

of those powers of `. The H`Hm term of a polynomial will indicate the term containing

the highest m power among all terms containing the highest ` power. The L`Hm term

of a polynomial will indicate the term containing the highest m power among all terms
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containing the lowest ` power.

Case 1, subcases 1 and 2. First let us consider the cases where a reduced alternating

closed braid Dk[. . . σa
k−1 . . . ] could be thought to have been formed from a reduced alternat-

ing closed braid Dk−1 by adding one string to the braid and a single sequence of consecutive

crossings σa
k−1, with a > 1 (If a = 1 then the closed braid diagram could be reduced back

to k − 1 strings by a Reidemeister type I move). If we apply Lemma 5.2 we obtain

P (Dk[. . . σa
k−1 . . . ]) = Q0(a)P (Dk[. . . σ0

k−1 . . . ]) + Q1(a)P (Dk[. . . σ1
k−1 . . . ])

= Q0(a)P (D2[σ0
1])P (Dk−1) + Q1(a)P (Dk−1)

=
[
Q0(a)P (D2[σ0

1]) + Q1(a)
]
P (Dk−1)

= P (D2[σa
1 ])P (Dk−1)

This is to be expected due to the fact that Dk[. . . σa
k−1 . . . ] is simply a connected sum

of Dk−1 and D2[σa
1 ]. See Figure 6.2. P (D2[σa

1 ]) has H`Hm term ±`1−ama−1 and L`Hm

term ±`−1−ama−3, as seen in the k = 2 case. Note that the diagram Dk−1 has c − a

crossings and writhe w − a. If k is even, then k − 1 is odd so the H`Hm term of Dk−1

is ±`(k−1)−1−(w−a)m(c−a)−2(k−1)+2 = ±`k−2−w+amc−a−2k+4 and the L`Hm term of Dk−1 is

±`1−(k−1)−(w−a)m(c−a)−2(k−1)+2 = ±`2−k−w+amc−a−2k+4. Therefore the H`Hm term of the

product P (D2[σa
1 ])P (Dk−1) is ±`k−1−wmc−2k+3 and the L`Hm term is ±`1−k−wmc−2k+1.

crossings

. . .

.

.

.

. . .

. . .

. . .

.

.

.

. . .

. . .

.

.

.

. . .

.

.

.

. . .

n

stringsk

Figure 6.2: The closed braid Dk[. . . σn
k−1 . . . ] is a connected sum of Dk−1 and D2[σn

1 ]
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If k is odd, then k − 1 is even and σ1 is negative so the H`Hm term of Dk−1 is

±`(k−1)−1−(w−a)m(c−a)−2(k−1)+1 = ±`k−2−w+amc−a−2k+3 and the L`Hm term of Dk−1 is

±`1−(k−1)−(w−a)m(c−a)−2(k−1)+3 = ±`2−k−w+amc−a−2k+5. Therefore the H`Hm term of the

product P (D2[σa
1 ])P (Dk−1) is ±`k−1−wmc−2k+2 and the L`Hm term is ±`1−k−wmc−2k+2.

Case 1, subcases 3 and 4. Next we consider the cases in which a reduced alternating

closed braid Dk[. . . σ−a
k−1 . . . ] is formed from a reduced alternating closed braid Dk−1 by

adding one string to the braid and a single sequence of consecutive crossings σ−a
k−1, with

a > 1. Applying the lemma we obtain

P (Dk[. . . σ−a
k−1 . . . ]) = Q0(−a)P (Dk[. . . σ0

k−1 . . . ]) + Q1(−a)P (Dk[. . . σ−1
k−1 . . . ])

= Q0(−a)P (D2[σ0
1])P (Dk−1) + Q1(−a)P (Dk−1)

=
[
Q0(−a)P (D2[σ0

1]) + Q1(−a)
]
P (Dk−1)

= P (D2[σ−a
1 ])P (Dk−1)

P (D2[σ−a
1 ]) has H`Hm term ±`a+1ma−3 and L`Hm term ±`a−1ma−1. Note that the

diagram Dk−1 has c − a crossings and writhe w + a. If k is even, then k − 1 is odd so the

H`Hm term of Dk−1 is ±`(k−1)−1−(w+a)m(c−a)−2(k−1)+2 = ±`k−2−w−amc−a−2k+4 and the

L`Hm term of Dk−1 is ±`1−(k−1)−(w+a)m(c−a)−2(k−1)+2 = ±`2−k−w−amc−a−2k+4. Therefore

the H`Hm term of the product P (D2[σ−a
1 ])P (Dk−1) is ±`k−1−wmc−2k+1 and the L`Hm

term is ±`1−k−wmc−2k+3.

If k is odd, then k − 1 is even and σ1 is positive so the H`Hm term of Dk−1 is

±`(k−1)−1−(w+a)m(c−a)−2(k−1)+3 = ±`k−2−w−amc−a−2k+5 and the L`Hm term of Dk−1 is

±`1−(k−1)−(w+a)m(c−a)−2(k−1)+1 = ±`2−k−w−amc−a−2k+3. Therefore the H`Hm term of the

product P (D2[σ−a
1 ])P (Dk−1) is ±`k−1−wmc−2k+2 and the L`Hm term is ±`1−k−wmc−2k+2.

Case 2, subcases 1 and 2. The next set of cases to consider are those in which Dk is

formed by adding one string to Dk−1 and exactly two non-consecutive crossings σk−1. In

order to be truly non-consecutive, there must be crossings σ−a
k−2 and σ−b

k−2, with a ≥ 1 and

b ≥ 1, separating the two σk−1 crossings. That is, the braid word must be of a form such as

. . . σk−1 . . . σ−a
k−2 . . . σk−1 . . . σ−b

k−2 . . .
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for otherwise the σk−1 crossings could commute with other crossings and combine into a

single sequence of crossings σ2
k−1. We shall use the notation

Dk[. . . σk−1 . . . σ−a
k−2 . . . σk−1 . . . σ−b

k−2 . . . ] to indicate this diagram, and changes made to these

crossings while leaving the rest of the diagram unchanged.

Since σk−1 commutes with all symbols in the braid word except the σk−2’s, we can

rearrange the braid word so that both crossings σk−1 are adjacent to one of the sequences

σ−a
k−2 or σ−b

k−2. For example, Dk[. . . σk−1 . . . σ−a
k−2 . . . σk−1 . . . σ−b

k−2 . . . ] could be written as

Dk[. . . σk−1σ
−a
k−2σk−1 . . . σ−b

k−2 . . . ].

Now applying the HOMFLY skein relation to one of the σk−1 crossings, we obtain

P (Dk[. . . σk−1σ
−a
k−2σk−1 . . . σ−b

k−2 . . . ]) = −`−2P (Dk[. . . σ−1
k−1σ

−a
k−2σk−1 . . . σ−b

k−2 . . . ])

−m`−1P (Dk[. . . σ−a
k−2σk−1 . . . σ−b

k−2])

In the far right term, the remaining σk−1 crossing can be removed by a Reidemeister

type I move, so that diagram is reduced to Dk−1. In the first term on the right hand side,

we can apply Theorem 1.1:

. . . σ−1
k−1σ

−a
k−2σk−1 . . . σ−b

k−2 · · · = . . . σk−2σ
−a
k−1σ

−1
k−2 . . . σ−b

k−2 . . .

This closed braid is now clearly a connected sum of Dk−1[. . . σk−2σ
−1
k−2 . . . σ−b

k−2 . . . ] and

D2[σ−a
1 ]. Indeed, we can go further: Dk−1[. . . σk−2σ

−1
k−2 . . . σ−b

k−2 . . . ] = Dk−1[. . . σ−b
k−2 . . . ] is

the connected sum of D2[σ−b
1 ] and the reduced alternating closed braid Dk−2. Therefore we

find that

P (Dk[. . . σk−1σ
−a
k−2σk−1 . . . σ−b

k−2 . . . ]) = −`−2P (D2[σ−a
1 ])P (D2[σ−b

1 ])P (Dk−2)

−m`−1P (Dk−1)

Note that Dk−1 has c− 2 crossings and writhe w − 2, and that Dk−2 has c− 2− a− b

crossings and writhe w − 2 + a + b.

Suppose that k is odd. Then the H`Hm term of −`−2P (D2[σ−a
1 ])P (D2[σ−b

1 ])P (Dk−2)
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is −`−2(±`a+1ma−3)(±`b+1mb−3)(±`(k−2)−1−(w−2+a+b)m(c−2−a−b)−2(k−2)+2) =

± `k−1−wmc−2k−2, and the H`Hm term of −m`−1P (Dk−1) is

−m`−1(±`(k−1)−1−(w−2)m(c−2)−2(k−1)+1) = ±`k−1−wmc−2k+2. Thus the H`Hm term for the

entire expression is ±`k−1−wmc−2k+2.

Likewise, the L`Hm term of −`−2P (D2[σ−a
1 ])P (D2[σ−b

1 ])P (Dk−2) is

−`−2(±`a−1ma−1)(±`b−1mb−1)(±`1−(k−2)−(w−2+a+b)m(c−2−a−b)−2(k−2)+2) =

± `1−k−wmc−2k+2, and the L`Hm term of −m`−1P (Dk−1) is

−m`−1(±`1−(k−1)−(w−2)m(c−2)−2(k−1)+3) = ±`3−k−wmc−2k+4. Thus the L`Hm term for the

entire expression is ±`1−k−wmc−2k+2.

Now suppose that k is even. In this case the H`Hm term of

−`−2P (D2[σ−a
1 ])P (D2[σ−b

1 ])P (Dk−2) is

−`−2(±`a+1ma−3)(±`b+1mb−3)(±`(k−2)−1−(w−2+a+b)m(c−2−a−b)−2(k−2)+3) =

± `k−1−wmc−2k−1, and the H`Hm term of −m`−1P (Dk−1) is

−m`−1(±`(k−1)−1−(w−2)m(c−2)−2(k−1)+2) = ±`k−1−wmc−2k+3. Thus the H`Hm term for the

entire expression is ±`k−1−wmc−2k+3.

Likewise, the L`Hm term of −`−2P (D2[σ−a
1 ])P (D2[σ−b

1 ])P (Dk−2) is

−`−2(±`a−1ma−1)(±`b−1mb−1)(±`1−(k−2)−(w−2+a+b)m(c−2−a−b)−2(k−2)+1) =

± `1−k−wmc−2k+1, and the L`Hm term of −m`−1P (Dk−1) is

−m`−1(±`1−(k−1)−(w−2)m(c−2)−2(k−1)+2) = ±`3−k−wmc−2k+3. Thus the L`Hm term for the

entire expression is ±`1−k−wmc−2k+1.

Case 2, subcases 3 and 4. We follow a similar procedure if Dk is formed by adding one

string to Dk−1 and exactly two non-consecutive crossings σ−1
k−1. Here again the braid word

must be of a form such as

. . . σ−1
k−1 . . . σa

k−2 . . . σ−1
k−1 . . . σb

k−2 . . .

with a ≥ 1 and b ≥ 1, and we will use the notation Dk[. . . σ−1
k−1 . . . σa

k−2 . . . σ−1
k−1 . . . σb

k−2 . . . ]

to indicate changes made to the crossings shown while leaving the rest of the diagram

unchanged.

As before we will rearrange the braid word so that both crossings σ−1
k−1 are adjacent to
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one of the sequences σa
k−2 or σb

k−2. For example, Dk[. . . σ−1
k−1 . . . σa

k−2 . . . σ−1
k−1 . . . σb

k−2 . . . ]

could be written as Dk[. . . σ−1
k−1σ

a
k−2σ

−1
k−1 . . . σb

k−2 . . . ].

Now applying the HOMFLY skein relation to one of the σ−1
k−1 crossings, we obtain

P (Dk[. . . σ−1
k−1σ

a
k−2σ

−1
k−1 . . . σb

k−2 . . . ]) = −`2P (Dk[. . . σ−1
k−1σ

a
k−2σk−1 . . . σb

k−2 . . . ])

−m`P (Dk[. . . σ−1
k−1σ

a
k−2 . . . σb

k−2 . . . ])

In the far right term, the remaining σ−1
k−1 crossing can be removed by a Reidemeister type

I move, so that diagram is reduced to Dk−1. In the first term on the right hand side, we

apply Theorem 1.1:

. . . σ−1
k−1σ

a
k−2σk−1 . . . σb

k−2 · · · = . . . σk−2σ
a
k−1σ

−1
k−2 . . . σb

k−2 . . .

This closed braid is a connected sum of Dk−1[. . . σk−2σ
−1
k−2 . . . σb

k−2 . . . ] and D2[σa
1 ], and

Dk−1[. . . σk−2σ
−1
k−2 . . . σb

k−2 . . . ] = Dk−1[. . . σb
k−2 . . . ] is the connected sum of D2[σb

1] and the

reduced alternating closed braid Dk−2. Therefore we find that

P (Dk[. . . σ−1
k−1σ

a
k−2σ

−1
k−1 . . . σb

k−2 . . . ]) = −`2P (D2[σa
1 ])P (D2[σb

1])P (Dk−2)−m`P (Dk−1)

Note that Dk−1 has c− 2 crossings and writhe w + 2, and that Dk−2 has c− 2− a− b

crossings and writhe w + 2− a− b.

Suppose that k is odd. Then the H`Hm term of −`2P (D2[σa
1 ])P (D2[σb

1])P (Dk−2) is

−`2(±`1−ama−1)(±`1−bmb−1)(±`(k−2)−1−(w+2−a−b)m(c−2−a−b)−2(k−2)+2) =

± `k−1−wmc−2k+2, and the H`Hm term of −m`P (Dk−1) is

−m`(±`(k−1)−1−(w+2)m(c−2)−2(k−1)+3) = ±`k−3−wmc−2k+4. Thus the H`Hm term for the

entire expression is ±`k−1−wmc−2k+2.

Likewise, the L`Hm term of −`2P (D2[σa
1 ])P (D2[σb

1])P (Dk−2) is

−`2(±`−1−ama−3)(±`−1−bmb−3)(±`1−(k−2)−(w+2−a−b)m(c−2−a−b)−2(k−2)+2) =

± `1−k−wmc−2k−2, and the L`Hm term of −m`P (Dk−1) is

−m`(±`1−(k−1)−(w+2)m(c−2)−2(k−1)+1) = ±`1−k−wmc−2k+2. Thus the L`Hm term for the

entire expression is ±`1−k−wmc−2k+2.



48

Now suppose that k is even. In this case the H`Hm term of

−`2P (D2[σa
1 ])P (D2[σb

1])P (Dk−2) is

−`2(±`1−ama−1)(±`1−bmb−1)(±`(k−2)−1−(w+2−a−b)m(c−2−a−b)−2(k−2)+1) =

± `k−1−wmc−2k+1, and the H`Hm term of −m`P (Dk−1) is

−m`(±`(k−1)−1−(w+2)m(c−2)−2(k−1)+2) = ±`k−3−wmc−2k+3. Thus the H`Hm term for the

entire expression is ±`k−1−wmc−2k+1.

Likewise, the L`Hm term of −`2P (D2[σa
1 ])P (D2[σb

1])P (Dk−2) is

−`2(±`−1−ama−3)(±`−1−bmb−3)(±`1−(k−2)−(w+2−a−b)m(c−2−a−b)−2(k−2)+3) =

± `1−k−wmc−2k−1, and the L`Hm term of −m`P (Dk−1) is

−m`(±`1−(k−1)−(w+2)m(c−2)−2(k−1)+2) = ±`1−k−wmc−2k+3 Thus the L`Hm term for the

entire expression is ±`1−k−wmc−2k+3.

Case 3, subcase 1. Here k is odd and and Dk is formed from Dk−1 by adding one string

to the braid, one sequence σa
k−1 with a > 1 and one crossing σk−1 that is separate from the

sequence σa
k−1. Applying the lemma to the sequence σa

k−1, we have

P (Dk[. . . σa
k−1 . . . σk−1 . . . ]) = Q0(a)P (Dk−1) + Q1(a)P (Dk[. . . σk−1 . . . σk−1 . . . ])

Notice that the polynomial P (Dk[. . . σk−1 . . . σk−1 . . . ]) is exactly the situation considered

in Case 2. Note also that with k odd, k− 1 is even and σ1 is negative, and the writhes and

crossing numbers of the relevant diagrams are as follows:

wr(Dk−1) = w − a− 1

Cr(Dk−1) = c− a− 1

wr(Dk[. . . σk−1 . . . σk−1 . . . ]) = w − a + 1

Cr(Dk[. . . σk−1 . . . σk−1 . . . ]) = c− a + 1

We are then able to calculate the necessary terms of P (Dk). The H`Hm term of
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Q0(a)P (Dk−1) is

(±`−ama−2)(±`(k−1)−1−(w−a−1)m(c−a−1)−2(k−1)+1) = ±`k−1−wmc−2k

and the H`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σk−1 . . . ]) is

(±`1−ama−1)(±`k−1−(w−a+1)m(c−a+1)−2k+2) = ±`k−1−wmc−2k+2

Similarly, the L`Hm term of Q0(a)P (Dk−1) is

(±`−ama−2)(±`1−(k−1)−(w−a−1)m(c−a−1)−2(k−1)+3) = ±`3−k−wmc−2k+2

and the L`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σk−1 . . . ]) is

(±`1−ama−1)(±`1−k−(w−a+1)m(c−a+1)−2k+2) = ±`1−k−wmc−2k+2

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+2 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+2.

Case 3, subcase 2. This will be the same as subcase 1 except that here k is even, so

k − 1 is odd and σ1 is positive.

The H`Hm term of Q0(a)P (Dk−1) is

(±`−ama−2)(±`(k−1)−1−(w−a−1)m(c−a−1)−2(k−1)+2) = ±`k−1−wmc−2k+1

and the H`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σk−1 . . . ]) is

(±`1−ama−1)(±`k−1−(w−a+1)m(c−a+1)−2k+3) = ±`k−1−wmc−2k+3

Similarly, the L`Hm term of Q0(a)P (Dk−1) is

(±`−ama−2)(±`1−(k−1)−(w−a−1)m(c−a−1)−2(k−1)+2) = ±`3−k−wmc−2k+1
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and the L`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σk−1 . . . ]) is

(±`1−ama−1)(±`1−k−(w−a+1)m(c−a+1)−2k+1) = ±`1−k−wmc−2k+1

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+3 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+1.

Case 3, subcase 3. Here k is odd and and Dk is formed from Dk−1 by adding one string

to the braid, one sequence σ−a
k−1 with a > 1 and one crossing σ−1

k−1 that is separate from the

sequence σ−a
k−1. Applying the lemma to the sequence σ−a

k−1, we have

P (Dk[. . . σ−a
k−1 . . . σ−1

k−1 . . . ]) = Q0(−a)P (Dk−1) + Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ])

Notice that the polynomial P (Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) is exactly the situation considered

in Case 2. Note also that with k odd, k − 1 is even and σ1 is positive, and the writhes and

crossing numbers of the relevant diagrams are as follows:

wr(Dk−1) = w + a + 1

Cr(Dk−1) = c− a− 1

wr(Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) = w + a− 1

Cr(Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) = c− a + 1

The H`Hm term of Q0(−a)P (Dk−1) is

(±`ama−2)(±`(k−1)−1−(w+a+1)m(c−a−1)−2(k−1)+3) = ±`k−3−wmc−2k+2

and the H`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) is

(±`a−1ma−1)(±`k−1−(w+a−1)m(c−a+1)−2k+2) = ±`k−1−wmc−2k+2
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Similarly, the L`Hm term of Q0(−a)P (Dk−1) is

(±`ama−2)(±`1−(k−1)−(w+a+1)m(c−a−1)−2(k−1)+1) = ±`1−k−wmc−2k

and the L`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) is

(±`a−1ma−1)(±`1−k−(w+a−1)m(c−a+1)−2k+2) = ±`1−k−wmc−2k+2

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+2 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+2.

Case 3, subcase 4. This will be the same as subcase 3 except that here k is even, so

k − 1 is odd and σ1 is negative.

The H`Hm term of Q0(−a)P (Dk−1) is

(±`ama−2)(±`(k−1)−1−(w+a+1)m(c−a−1)−2(k−1)+2) = ±`k−3−wmc−2k+1

and the H`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) is

(±`a−1ma−1)(±`k−1−(w+a−1)m(c−a+1)−2k+1) = ±`k−1−wmc−2k+1

Similarly, the L`Hm term of Q0(−a)P (Dk−1) is

(±`ama−2)(±`1−(k−1)−(w+a+1)m(c−a−1)−2(k−1)+2) = ±`1−k−wmc−2k+1

and the L`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−1

k−1 . . . ]) is

(±`a−1ma−1)(±`1−k−(w+a−1)m(c−a+1)−2k+3) = ±`1−k−wmc−2k+3

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+1 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+3.

Case 4. The situations considered here are those in which a new string is added to a

closed braid Dk−1 and two sequences each with more than one crossing are added.
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Subcase 1. k is odd and Dk = Dk[. . . σa
k−1 . . . σb

k−1 . . . ], with a > 1 and b > 1. Applying

the lemma to the sequence σa
k−1, we have

P (Dk[. . . σa
k−1 . . . σb

k−1 . . . ]) = Q0(a)P (Dk[. . . σb
k−1 . . . ]) + Q1(a)P (Dk[. . . σk−1 . . . σb

k−1 . . . ])

Notice that the polynomial P (Dk[. . . σk−1 . . . σb
k−1 . . . ]) is exactly the situation considered

in Case 3, and the polynomial P (Dk[. . . σb
k−1 . . . ]) = P (Dk−1)P (D2[σb

1]) is the situation

considered in Case 1. With k odd, σ1 is negative, and the writhes and crossing numbers of

the relevant diagrams are as follows:

wr(Dk[. . . σb
k−1 . . . ]) = w − a

Cr(Dk[. . . σb
k−1 . . . ]) = c− a

wr(Dk[. . . σk−1 . . . σb
k−1 . . . ]) = w − a + 1

Cr(Dk[. . . σk−1 . . . σb
k−1 . . . ]) = c− a + 1

We are then able to calculate the necessary terms of P (Dk). The H`Hm term of

Q0(a)P (Dk[. . . σb
k−1 . . . ]) is

(±`−ama−2)(±`k−1−(w−a)m(c−a)−2k+2) = ±`k−1−wmc−2k

and the H`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σb
k−1 . . . ]) is

(±`1−ama−1)(±`k−1−(w−a+1)m(c−a+1)−2k+2) = ±`k−1−wmc−2k+2

Similarly, the L`Hm term of Q0(a)P (Dk[. . . σb
k−1 . . . ]) is

(±`−ama−2)(±`1−k−(w−a)m(c−a)−2k+2) = ±`1−k−wmc−2k
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and the L`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σb
k−1 . . . ]) is

(±`1−ama−1)(±`1−k−(w−a+1)m(c−a+1)−2k+2) = ±`1−k−wmc−2k+2

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+2 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+2.

Subcase 2. k is even and Dk = Dk[. . . σa
k−1 . . . σb

k−1 . . . ], with a > 1 and b > 1. This is

the same as subcase 1 except with k even, σ1 is positive.

The H`Hm term of Q0(a)P (Dk[. . . σb
k−1 . . . ]) is

(±`−ama−2)(±`k−1−(w−a)m(c−a)−2k+3) = ±`k−1−wmc−2k+1

and the H`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σb
k−1 . . . ]) is

(±`1−ama−1)(±`k−1−(w−a+1)m(c−a+1)−2k+3) = ±`k−1−wmc−2k+3

Similarly, the L`Hm term of Q0(a)P (Dk[. . . σb
k−1 . . . ]) is

(±`−ama−2)(±`1−k−(w−a)m(c−a)−2k+1) = ±`1−k−wmc−2k−1

and the L`Hm term of Q1(a)P (Dk[. . . σk−1 . . . σb
k−1 . . . ]) is

(±`1−ama−1)(±`1−k−(w−a+1)m(c−a+1)−2k+1) = ±`1−k−wmc−2k+1

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+3 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+1.

Subcase 3. k is odd and Dk = Dk[. . . σ−a
k−1 . . . σ−b

k−1 . . . ], with a > 1 and b > 1. Applying

the lemma to the sequence σ−a
k−1, we have

P (Dk[. . . σ−a
k−1 . . . σ−b

k−1 . . . ]) = Q0(−a)P (Dk[. . . σ−b
k−1 . . . ])

+Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ])
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As before, the polynomial P (Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) was considered in Case 3, and the

polynomial P (Dk[. . . σ−b
k−1 . . . ]) = P (Dk−1)P (D2[σ−b

1 ]) was considered in Case 1. With k

odd, σ1 is positive, and the writhes and crossing numbers of the relevant diagrams are as

follows:

wr(Dk[. . . σ−b
k−1 . . . ]) = w + a

Cr(Dk[. . . σ−b
k−1 . . . ]) = c− a

wr(Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) = w + a− 1

Cr(Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) = c− a + 1

The H`Hm term of Q0(−a)P (Dk[. . . σ−b
k−1 . . . ]) is

(±`ama−2)(±`k−1−(w+a)m(c−a)−2k+2) = ±`k−1−wmc−2k

and the H`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) is

(±`a−1ma−1)(±`k−1−(w+a−1)m(c−a+1)−2k+2) = ±`k−1−wmc−2k+2

Similarly, the L`Hm term of Q0(−a)P (Dk[. . . σ−b
k−1 . . . ]) is

(±`ama−2)(±`1−k−(w+a)m(c−a)−2k+2) = ±`1−k−wmc−2k

and the L`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) is

(±`a−1ma−1)(±`1−k−(w+a−1)m(c−a+1)−2k+2) = ±`1−k−wmc−2k+2

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+2 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+2.

Subcase 4. k is even and Dk = Dk[. . . σ−a
k−1 . . . σ−b

k−1 . . . ], with a > 1 and b > 1. This is

the same as subcase 3 except with k even, σ1 is negative.
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The H`Hm term of Q0(−a)P (Dk[. . . σ−b
k−1 . . . ]) is

(±`ama−2)(±`k−1−(w+a)m(c−a)−2k+1) = ±`k−1−wmc−2k−1

and the H`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) is

(±`a−1ma−1)(±`k−1−(w+a−1)m(c−a+1)−2k+1) = ±`k−1−wmc−2k+1

Similarly, the L`Hm term of Q0(−a)P (Dk[. . . σ−b
k−1 . . . ]) is

(±`ama−2)(±`1−k−(w+a)m(c−a)−2k+3) = ±`1−k−wmc−2k+1

and the L`Hm term of Q1(−a)P (Dk[. . . σ−1
k−1 . . . σ−b

k−1 . . . ]) is

(±`a−1ma−1)(±`1−k−(w+a−1)m(c−a+1)−2k+3) = ±`1−k−wmc−2k+3

Therefore the H`Hm term of P (Dk) is ±`k−1−wmc−2k+1 and the L`Hm term of P (Dk)

is ±`1−k−wmc−2k+3. �

Theorem 6.4. Let L be a link and let Dk be a reduced alternating k-string closed braid

representation of L, with at most two sequences of consecutive crossings between each pair

of adjacent strings. If P (L) is the HOMFLY polynomial of L, then the minimum exponent

of ` in P (L) is 1− k − w, and the maximum exponent of ` in P (L) is k − 1− w, where w

is the writhe of Dk.

Proof. If Dk has at least one sequence of consecutive crossings between each pair of adjacent

strings, then the result follows directly from Theorem 6.3. So suppose Dk has at least one

pair of consecutive strings between which there are no crossings. Let n be the number of

pairs of consecutive strings between which there are no crossings. Then the diagram of Dk

could be separated into n + 1 distinct links, each of which fits the conditions required by

Theorem 6.3. Let L1, L2, . . . , Ln+1 be these links, then we have L = L1 t L2 t · · · t Ln+1.

Let ki and wi be the number of strings and the writhe, respectively, in each link Li, for 1 ≤
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i ≤ n+1. Let w be the writhe of L, and note that
∑n+1

i=1 ki = k and
∑n+1

i=1 wi = w. As shown

in Example 3.1, the HOMFLY polynomial of L is P (L) = [−m−1(`−1 + `)]n
∏n+1

i=1 P (Li).

Therefore the highest power of ` in P (L) is

`n
n+1∏
i=1

`ki−1−wi = `n`
Pn+1

i=1 (ki−1−wi)

= `n`k−(n+1)−w

= `k−1−w

and the lowest power of ` in P (L) is

`−n
n+1∏
i=1

`1−ki−wi = `−n`
Pn+1

i=1 (1−ki−wi)

= `−n`(n+1)−k−w

= `1−k−w

�

Corollary 6.5. Let L be a link having a reduced alternating k-string closed braid represen-

tation, with at most two sequences of consecutive crossings between each pair of adjacent

strings. Then the braid index of L is k.

Proof. Since the diagram of L has k strings, the braid index of L cannot be greater than

k. From Theorem 6.3, the highest ` power in the HOMFLY polynomial of L is `k−1−w and

the lowest power of ` is `1−k−w, where w is the writhe of the diagram. By Theorem 6.2 we

know that the braid index must be at least

1
2
(E` − e`) + 1 =

1
2
((k − 1− w)− (1− k − w)) + 1

=
1
2
(2k − 2) + 1

= k

Therefore the braid index of L is k. �



CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH

If a k-string braid has at most two sequences of crossings between each pair of adjacent

strings, and if its closure is a reduced, alternating link diagram, it has been shown that the

link L represented by the closed braid Dk has braid index k. This also means that L has

deficiency zero, for Cr(L) = Cr(Dk) by Theorem 1.2, and s(Dk) = s(L) = b(L) = k by

Theorem 2.3, so the genus g(L) = 2−s(Dk)+Cr(Dk)−µ(L)
2 = 2−k+Cr(L)−µ(L)

2 , and then

d(L) = Cr(L)− b(L)− 2g(L)− µ(L) + 2

= Cr(L)− k − (2− k + Cr(L)− µ(L))− µ(L) + 2

= 0

Thus all of the properties listed in Chapter 2 for zero-deficiency links apply to closed

braids of this class. If we know a link L1 has a closed braid representation in this class,

then its connected sum with any other zero-deficiency link L2 will have the property that

Cr(L1#L2) = Cr(L1) + Cr(L2). Also, if connected with another link that has deficiency

greater than zero, Theorem 2.6 gives a lower bound on the crossing number of the connected

sum.

One of the most obvious questions is whether the method used here can be extended

to prove the same result for more general alternating, reduced, closed braids. Preliminary

investigation indicates that it most likely can be extended to at least the case of such closed

braids having up to three sequences of crossings between each pair of adjacent strings, and

work is being done to verify this and complete the proof. The polynomials Q0 and Q1

introduced in Lemma 5.2 simplify the calculations a great deal in the quest for the highest

and lowest degrees of ` in the HOMFLY polynomial. In the case of a closed braid with three

sequences of crossings between each pair of adjacent strings, the enhanced resolving tree

seen in Figure 6.1 would simply have one more split of each diagram on the right, and many
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of the eight resulting diagrams can be evaluated inductively as in the proof of Theorem

6.3. However, as more sequences of crossings are assumed, some of those resulting diagrams

(after applications of Lemma 5.2) become more challenging. It is not certain whether the

same methods will suffice, or if additional techniques will be needed. Of course, if the result

can be extended, then all links to which the result would apply will have also been shown

to have deficiency zero.

This result, particularly if it can be extended to include more closed braids, could also

provide more options for the possible use of closed braids as a means of generating random

knots and links. For a k-string closed braid, the braid word could consist of symbols σ±1
i

where i is chosen randomly such that 1 ≤ i < k. It would be easy to stipulate that the

closed braid be alternating, and if it is also reduced then both the crossing number and the

braid index would be known directly from the diagram.

It might also be interesting to investigate whether the lower bound for crossing numbers

found by M. Lackenby can be improved for certain types of links. Recall from Chapter 2

that his result reveals that 1
152(Cr(K1) + Cr(K2)) ≤ Cr(K1#K2) ≤ Cr(K1) + Cr(K2) for

any two knots K1 and K2. Can a stronger lower bound be found for Cr(K1#K2) provided

that one of the knots is a zero-deficiency knot, for instance?

Finally, it seems worth pointing out that a general k-string closed braid diagram whose

braid index is exactly k does not necessarily represent a link with deficiency zero. There exist

non-alternating reduced closed braids with minimal number of strings but without the mini-

mal number of crossings for their link type. For example, the closed braid D3[σ−2
1 σ−1

2 σ1σ
−1
2 ]

(which we will call D3) has HOMFLY polynomial −m−1(`3 + `5) + m(−` + `3), hence its

braid index is 3. Let L be the link represented by D3. The genus of D3 is thus g =
2−s(D3)+Cr(D3)−µ(L)

2 = 2−3+5−2
2 = 1. However, L has another diagram D that is alternating

and has only four crossings. D is not a closed braid representation (Somewhat surprisingly, L

is an alternating link that is not expressible as an alternating closed braid). This diagram has

four Seifert circles, so its genus is g = 2−s(D)+Cr(D)−µ(L)
2 = 2−4+4−2

2 = 0, and thus g(L) = 0.

Hence the deficiency of L is d(L) = Cr(L)− b(L)−2g(L)−µ(L)+2 = 4−3−0−2+2 = 1.

However, some links represented by non-alternating closed braids do have deficiency

zero. For example, most torus knots are not alternating. It would be interesting to in-
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vestigate whether specific criteria can be found under which a non-alternating closed braid

represents a zero-deficiency link.
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