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ABSTRACT

YUELIANG LU. Three Essays in Empirical Asset Pricing and Return Predictability.
(Under the direction of DR. YUFENG HAN & DR. WEIDONG TIAN)

This dissertation contains three essays on empirical asset pricing. The first essay presents

the first evidence on how macro trends affect equity risk premium, going beyond the lit-

erature that rely on only the most recent values. We show that macro trends contribute

statistically and economically to the out-of-sample aggregate market return predictability.

Moreover, we present novel evidence that nonlinearity matters in market return predictabil-

ity by combining macro trends with neural networks, yielding an out-of-sample R2
OS statis-

tic as high as 1.6%.

The second essay develops a theory of forward returns for an equity index. We obtain the

forward returns using information from derivatives markets, including index option prices

and gammas, VIX-futures, and prices of VIX-options. We document a pro-cyclical term

structure of S&P 500 forward returns and a robust short-term reversal pattern. Moreover, by

designing and implementing a market-timing strategy, we demonstrate that forward equity

returns provide real-time trading signals with substantial economic value.

The third essay studies the causal effect of short-sale constraints on anomalies by ex-

amining an extensive set of 182 anomalies documented in the accounting, finance and

economics literature. Our identification strategy relies on a persistent, robust and plausibly

exogenous shock to short-selling supply induced by the dividend tax law change in the Job

and Growth Tax Relief Reconciliation Act (JGTRRA) of 2003. We find that anomalies

become stronger following the dividend record months, driven by stronger overpricing as

opposed to underpricing in the post-JGTRRA periods. While the shock magnifies returns

to most anomaly types, the valuation anomalies seem unlikely to be driven by mispricing.
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CHAPTER 1: MACROECONOMIC TRENDS AND EQUITY RISK PREMIUM

1.1 Introduction

As emphasized by Fed Chair Powell, it is important to have more than just one month’s

worth of data to make informed decisions about monetary policy, and one must be cautious

against overreaction to short-term data that may not provide a clear picture of the economic

outlook. The implication is that in predicting the future economy, the past month data is

unlikely to be sufficient, and the entire macro trends are likely to matter. To the extent that

expected asset returns are function of the future states of the economy (see, e.g., Merton,

1973), the expected market risk premium must be a function of not only the most recent

macroeconomic variables, but also their past trends. In the voluminous macroeconomic

literature, researchers already use a time series approach to forecast GDP growth or infla-

tion with their long-term lagged values (for example, Stock and Watson, 1993, 1999, 2003,

2004, 2006; Ang et al., 2006; Aruoba and Diebold, 2010; Bauer and Rudebusch, 2020;

Yang, 2020). However, in the vast literature on market return predictability, there is no

study yet that accounts for the role of macro trends or uses the data beyond the most recent

ones.1

In this paper, we present the first evidence on how macro trends affect market risk pre-

mium, going beyond the literature that rely on only the most recent values. Specifically, we

focus on how investors learn from economic fundamentals based on moving averages of ob-

servable macroeconomic variables to forecast the market excess return. Trend has received

increasing attention and has been proved fruitful for macroeconomy and individual stocks.

1Nelson (1976); Fama and Schwert (1977); Rozeff (1984); Keim and Stambaugh (1986); Campbell
(1987); Fama and French (1988a); Kothari and Shanken (1997); Pontiff and Schall (1998), among many
others, find that a number of macro economic variables contain information on the market risk premium.
Goyal and Welch (2008) examine a common set of 15 variables, and Rapach and Zhou (2022) provide a
latest survey.
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For example, Cieslak and Povala (2015); Han et al. (2016); Huang et al. (2020); De la O

and Myers (2022), among others, extrapolate the trend in inflation, individual stock prices,

firm fundamentals, and earnings growth, based on averages of past observations. How-

ever, a study on how macro trends affect the market return is missing in the literature. We

fill the gap and show that macro trends are important and they contribute statistically and

economically to the out-of-sample aggregate market return predictability.

We make several contributions. First, we show, for the first time, that macro trends mat-

ter to the aggregate stock market return predictability both statistically and economically,

highlighting its significant unrecognized role in time-series return predictability. Com-

pared with the 1-month forecast combination (simple pooling) that only uses the most

recent data on a set of 14 macro variables, the trend-pooling methods, based on trends

data, produce larger and more significant out-of-sample R2
OS statistics. For instance, in the

period of 2000:01−2020:12, 1-month simple pooling fails to outperform the historical av-

erage, resulting in an insignificant out-of-sample R2
OS statistic of 0.41%. In contrast, the

trend-pooling through 1- and 3-year moving averages outperform substantially, with R2
OS

statistics rising to significant levels of 0.56% and 0.69%, respectively. The empirical results

are robust to using various dimension reduction techniques, including LASSO, PCR, and

PLS.

Whether significant predictability of macro trends can yield sizable economic gains is

another important question. We show that information of the macro trends indeed leads

to sizable investment gains for a mean-variance investor from an asset allocation perspec-

tive. The annualized certainty equivalent return (CER) gains are 6.83%, 7.35%, 7.80%,

and 8.76% at the annual horizons for 1-month simple pooling, 1-year trend-pooling, 1-year

PLS-pooling, and 1-year LASSO-pooling, respectively, when the investor allocates invest-

ments between the market and risk-free rate. In general, investor portfolios based on 1-year

macro trends consistently deliver higher average returns, lower standard deviation, and thus

significantly larger out-of-sample Sharpe ratios. Our asset allocation results are robust to a
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proportional transaction cost of 0.50%.

Second, to the best of our knowledge, we contribute to the market risk premium literature

by providing the first evidence that nonlinearity matters in the aggregate market return

predictability. We apply neural networks into equity risk premium forecast, and allow

for a large number of trend indicators and their complex nonlinear interactions. While

neural networks have been applied into complex machine learning problems in finance and

asset pricing, our paper employs it to predict the market directly.2 We find that combining

time-series trends with conventional neural networks is important. For example, a neural

network with two hidden layers on average performs the best, yielding an out-of-sample

R2
OS statistic around 1.6%, an almost 80% increase relative to the linear model. We also

find that increasing the number of hidden layers (or neurons) does not always translate into

incremental gains, suggesting that “shallow” learning outperforms “deep” learning in the

time-series market return prediction, which is consistent with Gu et al. (2020) finding in

the cross-sectional stock return prediction.

Lastly, we contribute to the debate on market return predictability. The investigation of

predictive power of macroeconomic variables on equity risk premium can go back to 1920

when Dow (1920) first explores the role of dividend ratios. Goyal and Welch (2008) call

into question the out-of-sample predictability of the US market excess return, generating

a substantial number of responses such as Campbell and Thompson (2008); Rapach et al.

(2010); Neely et al. (2014); Rapach et al. (2016); Huang et al. (2015); Dong et al. (2022).

A decade later, Goyal et al. (2021) re-examine the 29 variables from 26 papers published

after Goyal and Welch (2008) and conclude that the predictive performance remains dis-

appointing overall. The lack of consistent out-of-sample evidence in Goyal et al. (2021)

indicates the need for improved forecasting methods to better establish the empirical relia-

bility of market risk premium predictability. We show that the evidence is still in favor of

2Gu et al. (2020) provide a comparative analysis of machine learning methods in return prediction and
find that neural networks perform best; Goyenko and Zhang (2020) extend their approach to include option
characteristics. However, they both study cross-sectional return predictability using data of individual stocks,
whereas we study the time-series return predictability with only market return data and the predictors.
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the out-of-sample market excess return predictability, which is statistically and economi-

cally strong especially accounting for trends and nonlinearity.

Our paper uses a simple moving average method to capture the longer-term informa-

tion in macroeconomics. An open question is why use a moving average. First, it has a

long history. Relative to the extensive use of macro variables by academia, technical in-

dicators based on moving averages of prices are commonly used by practitioners to track

price trends and to make forecasts of price moves. We simply apply the same logic to

macro variables. Second, moving average can reduce noise and smooth predictors as most

macroeconomic variables are highly persistent. For instance, the T-bill rate is known to ex-

hibit an autocorrelation as high as 0.99. The moving-average rule as a simple filter is less

model dependent and thus more robust to the choice of underlying predictive variables.

Third, moving average compares current levels to previous ones. In this regard, it is possi-

ble that the algorithm is able to capture under/over reaction to macroeconomic news, which

is the key driver of return predictability (e.g., Hong and Stein, 2007, the gradual informa-

tion flow). Lastly, moving average can be viewed as the simplest method that captures the

sequential effect in time series. Because asset returns often exhibit sequential dependence,

conventional machine learning models like the (feed-forward) neural networks may lose

effectiveness with sequentially dependent input predictor variables (Cong et al., 2021). We

show that one could also use the underlying lagged values to forecast, but using moving av-

erages has economic interpretation as trends.3 Using moving averages generally performs

better than using lagged values directly in the long run.

1.2 Macro Trends

To learn the economic fundamentals and capture the trend in macroeconomics, we allow

investors to use the past values of macroeconomic variables and summarize them using a

3A large body of literature use the term trend inflation to acknowledge the highly persistent expected
inflation dynamics (e.g., Kozicki and Tinsley, 2001; Rudebusch and Wu, 2008; Bekaert et al., 2010; Cieslak
and Povala, 2015; De la O and Myers, 2022). Among them, Cieslak and Povala (2015) show that a moving
average of past core inflation forecasts the future inflation well, which reflects people’s sluggish update of
their inflation expectations.
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moving average with a backward-looking window of l. Specifically, let {Xk
t }K

k=1 denote

K macroeconomic variables known at time t. Mathematically, for each variable, Xk
t , we

define a macro trend signal

MAk
t,l =

Xk
t +Xk

t−1 + · · ·+Xk
t−l+1

l
, 1≤ l ≤ L. (1.1)

Obviously, when l = 1, the above equation reduces to the existing literature where only the

most recent value, Xk
t , is used.

1.2.1 Linear trend-pooling

Given K×L moving-average-based predictors, we start with a linear trend-pooling method

by running predictive regressions with one at a time, and use the estimated coefficients to

compute the one-step ahead forecast of the market excess return,

r̂t+1|t,l,k = α̂
k
t,l + β̂

k
t,lMAk

t,l, l ≤ L, k ≤ K. (1.2)

We next take the arithmetic mean of K×L individual forecasts from Equation (1.2),

r̂t+1|t =
1

K×L

K

∑
k=1

L

∑
l=1

r̂t+1|t,l,k (1.3)

and use it as the final forecast.

It is well-known that a combination of forecasts often performs better than a single fore-

cast in various domains since the seminal work by Bates and Granger (1969). When L = 1,

the two-step pooling includes only the first step and reduces to the forecast combination

method proposed by Rapach et al. (2010). For comparison, we name it simple pooling. We

extend simple pooling to include macro trends into market return forecasting.
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1.2.2 Nonlinear trend-pooling

We next apply neural networks into equity risk premium forecast, and allow for a large

number of trend indicators and their complex nonlinear interactions. While neural networks

have been applied into complex machine learning problems in finance and asset pricing, our

paper employs it to predict the market return directly.

We focus on the conventional “feed-forward” neural network, which consist of an “input

layer” of raw predictors, one or more “hidden layers” that interact and nonlinearly trans-

form the predictors, and an “output layer” that aggregates hidden layers into an ultimate

outcome prediction. Constructing a neural network requires the inputs of the number of

hidden layers, the number of neurons of each layer, and which units are connected. How-

ever, selecting a network structure by cross-validation is in general a challenging task.

Therefore, we follow Gu et al. (2020) to fix a variety of network architectures ex ante and

estimate each one of them.

Specifically, we consider the neural network structures with up to five hidden layers. The

simplest neural network has a single hidden layer of 2 neurons, denoted as NN1. Next, NN2

has two hidden layers with 4 and 2 neurons, respectively; NN3 has three hidden layers with

8, 4 and 2 neurons, respectively; NN4 has four hidden layers with 16, 8, 4 and 2 neurons,

respectively; and NN5 has five hidden layers with 32, 16, 8, 4 and 2 neurons, respectively.

All architectures are fully connected so that each unit receives an input from all units in

the layer below. Overall, the consideration of multiple neural network structures helps to

provide us with a good sense of the robustness of the out-of-sample forecasting results and

the trade-offs of network depth in the equity risk premium forecasting.

We use the same activation function at all nodes, and choose a popular functional form

in recent literature known as the rectified linear unit

ReLU(x) = max(x,0), (1.4)
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which encourages sparsity in the number of active neurons and allows for faster derivative

evaluation. We use stochastic gradient descent (SGD) to train a neural network. For com-

putational efficiency, we choose the adaptive moment estimation (Adam) by Kingma and

Ba (2015).

We use multiple random seeds to initialize the neural network estimation and construct

predictions by averaging the forecasts from the top five best networks in validation. Specif-

ically, in each step of forecasting, we choose a fixed validation period and rank the fore-

casting performance by the out-of-sample R2
OS statistics computed in the validation period.

We then choose the five models with the highest R2
OS and use the pooling of these five fore-

casts as the final forecast. In essence of forecast combination, this averaging step reduces

prediction variance because the stochastic nature of the optimization can cause different

seeds to produce different forecasts.

1.2.3 Dimension reduction

Apart from the linear forecast combination and the nonlinear neural networks, another

straightforward method to incorporate a large set of information is a multiple predictive

regression (or a “Kitchen sink” model),

rt+1 = αt +
K

∑
k=1

L

∑
l=1

β
k
t,lMAk

t,l + εt . (1.5)

An obvious out-of-sample forecast by Equation (1.5) is given by

r̂t+1|t = α̂t +
K

∑
k=1

L

∑
l=1

β̂
k
t,lMAk

t,l, (1.6)

where {α̂t , β̂
k
t,l} are the OLS estimates in Equation (1.5) based on data up to time t.

However, the forecast based on Equation (1.5) is highly susceptible to in-sample overfit-

ting, and thus leads to poor out-of-sample performance (Goyal and Welch, 2008; Rapach

et al., 2010). Therefore, given K× L moving-average based predictors, we propose sev-
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eral more sophisticated dimension reduction techniques that can deal with a large number

of potential predictors while guard against overfitting. We consider LASSO (Tibshirani,

1996), Elastic Net (Zou and Hastie, 2005), principal components regression, partial least

squares (Kelly and Pruitt, 2013, 2015), and scaled PCR (Huang et al., 2021).

For shrinkage methods, like LASSO, we apply penalty to K macro variables of the same

lag, and obtain a one-step ahead forecasts; we repeat the procedure for each lag, and aggre-

gate the forecasts by a simple mean as the final forecast; conversely, for principal compo-

nent methods, like PLS, we apply the algorithm to L moving averages of the same macro

variable, and obtain a one-step ahead forecast; we repeat the procedure for each variable,

and aggregate the forecasts by a simple mean as the final forecast.

1.2.4 Forecast evaluation—statistical accuracy

We assess equity risk premium forecasts in terms of statistical accuracy via mean square

prediction error (MSPE). Denote the errors for the historical average benchmark and a

competing forecast by

ê0,t = rt− r̄HA
t|t−1, (1.7)

ê1,t = rt− r̂t|t−1, (1.8)

respectively. The sample MSPE is given by

M̂SPE j =
1
T

T

∑
t=1

ê2
j,t|t−1, j = 0,1, (1.9)

where T is the number of out-of-sample observations.

To test for a difference in the population MSPEs, we use Clark and West (2007) proce-

dure which can be conveniently implemented in a simple regression framework,

ê2
0,t|t−1− ê2

1,t|t−1 +
(

r̂HA
t|t−1− r̂t|t−1

)2

︸ ︷︷ ︸
ft|t−1

= µ + εt . (1.10)
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The t-statistic corresponding to the OLS estimate of µ in Equation (1.10) is used to test

H0 : µ ≤ 0 versus H1 : µ > 0, (1.11)

which is equivalent to

H0 : MSPE0 ≤MSPE1 versus H1 : MSPE0 > MSPE1. (1.12)

The t-statistic is computed using a heteroskedasticity- and autocorrelation-consistent (HAC)

standard error (Newey and West, 1987).

It is common to report the Campbell and Thompson (2008) R2
OS statistic,

R2
OS = 1− M̂SPE1

M̂SPE0
, (1.13)

which gives the proportional reduction in the sample MSPE for the competing forecast

with regard to the benchmark. Using Clark and West (2007) statistic to test the statistical

significance of R2
OS is tantamount to testing (in population)

H0 : R2
OS ≤ 0 versus H1 : R2

OS > 0. (1.14)

Because the predictable component in the monthly market excess return is necessarily

limited, the R2
OS statistic will be small. Nevertheless, Campbell and Thompson (2008) sug-

gest that a monthly R2
OS statistic as small as 0.5% can signal economic significance based

on the market Sharpe ratio. In the next subsection, we assess the economic significance of

market return forecasts by measuring their economic value to an investor.
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1.2.5 Forecast evaluation—economic value

Consider a mean-variance investor who allocates across the market and risk-free Trea-

sury bills each month. At the end of month t, the investor faces the objective function

argω̂t+1
ω̂t+1r̂t+1−

γ

2
ω̂

2
t+1σ̂

2
t+1, (1.15)

where γ denotes the coefficient of relative risk aversion, {ω̂t+1,1− ω̂t+1} are allocation

weights to the market portfolio and risk-free bills at month t +1, r̂t+1 is the market excess

return forecast, and σ̂2
t+1 is the investor’s forecast of the variance of the market excess

return. The optimal mean-variance portfolio weight on the market can be computed as4

ω̂
?
t+1 =

(
1
γ

)(
r̂t+1

σ̂2
t+1

)
. (1.16)

We assume that the investor uses the sample variance computed over a 60-month rolling

estimation window to forecast the variance in Equation (1.16).

We next compute three quantities (performance measures), based on the mean µ̂ j and

standard deviation σ̂ j of the out-of-sample realized returns by a forecasting method j. First,

we measure the out-of-sample Sharpe ratio (SRatio)

ˆSRatio j =
µ̂ j

σ̂ j
. (1.17)

To test whether the Sharpe ratios of two strategies are statistically distinguishable, we fol-

low DeMiguel et al. (2009) to compute the p-value of the difference.

Second, we compute the certainty-equivalent return (CEQ) of each strategy,

ˆCEQ j = µ̂ j−
γ

2
σ̂

2
j . (1.18)

4We follow Campbell and Thompson (2008) to set γ = 3 and to constrain the portfolio weight on risky
asset to lie within 0 and 1.5.
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Relative to a benchmark, we also compute the CEQ difference, which is known as the

utility gain in the forecasting literature (see, e.g., Rapach and Zhou, 2022).

Lastly, we compute the performance fee suggested in Fleming et al. (2001). It can be

interpreted as the maximum fee that a quadratic-utility investor would be willing to pay to

switch from the benchmark to the alternative. To estimate this fee, we find the value of ∆

that solves

∑
t

[(
R j,t−∆

)
− γ

2(1+ γ)

(
R j,t−∆

)2
]
= ∑

t

[
Ri,t−

γ

2(1+ γ)
R2

i,t

]
, (1.19)

where R j,t and Ri,t denote the out-of-sample realized returns by the competing forecast j

and the benchmark forecast i, respectively. We report the estimate of ∆ as annualized fees

in basis points.

1.3 Data

We consider the same 14 macroeconomic variables from Goyal and Welch (2008) for

which monthly data are available for 1926:12−2020:12.5 The market excess return is the

CRSP value-weighted market return minus the risk-free return (Treasury bill rate). The 14

macroeconomic variables are as follows.

1. Dividend-price ratio, D/P: Difference between the log of dividends paid on the S&P

500 index and the log of stock prices (S&P 500 index), where dividends are measured

using a one-year moving sum.

2. Dividend yield (log), D/Y : Difference between the log of dividends and the log of

lagged stock prices.

3. Earnings-price ratio, E/P: Difference between the log of earnings on the S&P 500

index and the log of stock prices, where earnings are measured using a one-year

moving sum.
5The data can be obtained from Amit Goyal’s website at https://sites.google.com/view/

agoyal145/?redirpath=/
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4. Dividend-payout ratio (log), D/E: Difference between the log of dividends and the

log of earnings.

5. Book-to-Market, B/M: Ratio of book value to market value for the Dow Jones In-

dustrial Average.

6. Net equity expansion, NT IS: Ratio of twelve-month moving sums of net issues by

NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks.

7. Treasury bill rate, T BL: Interest rate on a three-month Treasury bill (secondary mar-

ket).

8. Long-term yield, LTY : Long-term government bond yield.

9. Long-term return, LT R: Return on long-term government bonds.

10. Term spread, T MS: Difference between the long-term yield and the Treasury bill

rate.

11. Default yield spread, DFY : Difference between BAA- and AAA-rated corporate

bond yields.

12. Default return spread, DFR: Difference between long-term corporate bond and long-

term government bond returns.

13. Inflation, INFL: Calculated from the CPI (all urban consumers). We use Xt−1 for

inflation since inflation rate data are released in the following month (Goyal and

Welch, 2008; Rapach et al., 2010).

14. Stock variance, SVAR: Sum of squared daily returns on the S&P 500 index.

We generate out-of-sample forecasts of the market excess return using a recursive win-

dow as in most of the literature. We consider one “long” and one “short” out-of-sample
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evaluation periods: i) 1965:01−2020:12 and ii) 2000:01−2020:12. The two correspond-

ing initial estimation windows are originally used in Goyal and Welch (2008) and Rapach

et al. (2010). We focus on the longer evaluation period as it covers more than half a cen-

tury, which allows us to analyze market return predictability under a variety of economic

conditions. As will be discussed in Section 1.4.4, we also consider alternative forecasting

constructions, including rolling window estimation, different estimation periods, and quar-

terly data frequency. Those additional exercises help provide us with a good sense of the

robustness of out-of-sample performance.

1.4 Out-of-Sample Results

This section resents the out-of-sample statistical results, economic values, along with a

battery of robustness checks.

1.4.1 Statistical gains

Table 1.1 reports the R2
OS statistics by linear trend-pooling methods. We choose the

maximum moving average length L in Equation (1.3) to be 1 month, 6 months, 1 year, 2

years, and 3 years.6 For example, the row with the heading of “6 mo” uses the moving

averages of past 1, 2, 3, 4, 5 and 6 months. Together, we have 14×6 = 84 trend indicators

(moving averages), and thus 84 individual market excess return forecasts. The final forecast

is to pool those 84 individual ones using a simple average.

Panel A of Table 1.1 reports the results for the period 1965:01−2020:12. Column (2)

reveals that, consistent with the finding in Rapach et al. (2010), the 1-month forecast com-

bination (simple pooling) that only uses the most recent data on a set of 14 macro variables

produces a significant R2
OS statistic of 0.63%. In contrast, all trend-pooling methods with

different macro trends substantially outperform with R2
OS statistics ranging from 0.72% to

0.83%. The good out-of-sample forecasting performance of the conventional 1-month sim-

6According to Zhu and Zhou (2009), selecting some ex-ante value as the “optimal” lag length of the
moving average might be been done only by trial and error, and might result in being suboptimal. Therefore,
in this paper, we consider several fixed lag lengths for moving-average rules.
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ple pooling does not preserve once we switch to the period 2000:01−2020:12. As shown in

Panel B, the R2
OS statistic for simple pooling is around 0.41% and insignificant. In contrast,

the trend-pooling through 1- and 3-year moving averages outperform substantially, with

R2
OS statistics rising to significant levels of 0.56% and 0.69%, respectively.

Table 1.2 presents the R2
OS statistics by combing macro trends with neural networks.

Applying neural networks to the most recent data on the same set of 14 macro variables

fails to outperform the historical average benchmark, as the R2
OS statistics are mostly neg-

ative or positive but insignificant. On the contrary, capturing the macro trends recovers

the out-of-sample predictability and generates substantial forecasting gains. In the period

1965:01−2020:12, the R2
OS statistics peak at 1.31%, 1.62%, 1.90% and 1.46% for NN1,

NN2, NN3 and NN4, respectively, and they are all significant at least at the 5% level. Turn-

ing to the evaluation period of 2000:01−2020:12, the most striking result is the extremely

high R2
OS statistics, larger than 4%, achieved by NN2 and NN4 when including the macro

trends up to 1 year. The patterns documented in Table 1.2 also coincide with the finding

in Gu et al. (2020) on individual stocks that shallow learning outperforms deeper learning.

On average, we find that neural network performance peaks at two hidden layers then de-

clines as more layers are added, when we consider a range of neural networks from very

shallow (a single hidden layer) to deeper networks (up to five hidden layers). Overall, NN2

performs the best, followed by NN4, and NN5 performs the worst. One plausible reason

is an artifact of the relatively small amount of data and tiny signal-to-noise ratio for our

aggregate market return prediction setting. As argued by Gu et al. (2020), simple networks

with only a few layers and nodes often perform best in small data sets. Training a very

deep neural network is challenging because of the highly noncovex objective function and

a large number of parameters.

On thing to note is that the poor performance of using 14 most recently macro variables

is not necessarily a result of fewer input predictors. In the Internet Appendix, we apply

neural networks to moving averages of different lags on the same set of 14 macro vari-
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ables and compare their R2
OS statistics. In other words, the input features are fixed for 14.

We find that neural networks based on moving averages of different lags still significantly

outperforms the historical average, though the results are not as strong as we observe in

Table 1.2 when multiple macro trend signals are used all together. The results point to the

economic value of incorporating both macro trends and complex nonlinear interactions,

which are embedded in the neural networks but missed by other (linear) approaches. More

discussions are provided in Section ??.

Finally, Table 1.3 reports the R2
OS statistics by dimension reduction. We consider PCR,

PLS, Scaled PCR, LASSO, and ENet. As we mentioned in Section 1.2.3, for extracting

principal components, we apply algorithm like PLS to moving averages of the same macro

variable to generate one-step ahead forecast, repeat the procedure for k = 1, · · · ,14, and

aggregate the 14 individual forecasts with a simple mean. Thus, the row with the heading “1

mo” essentially becomes the simple pooling on 14 most recent macro variables. Compared

with “1 mo”, incorporating macro trends witnesses a substantial decrease in MSPE, leading

to much larger and more significant R2
OS statistics.

Taken together, Tables 1.1 − 1.3 reveal that macro trends statistically and economically

contribute to the out-of-sample aggregate market return predictability, substantially beyond

using only the most recent data as in the literature. The market is more predictable than

commonly believed once we incorporate trends and nonlinearity.

1.4.2 Economic gains

As described in Section 1.4.2, we measure the marginal economic benefit of the pre-

dictive ability of macro trends for a quadratic-utility investor who allocates between the

market portfolio and risk-free Treasury bills. Figure 1.1 plots cumulative excess returns of

one dollar for portfolios constructed based on market excess return forecast. In each panel,

we compare the 1-month simple pooling with 1-year trend-pooling by either linear, PLS,

ENet, or neural networks, respectively. Figure 1.1 reveals that portfolios that incorporate

trend information generally exhibit superior performance compared to the simple pooling
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method that ignores it.

Table 1.4 reports several performance measures over the period 1965:01−2020:12. All

results are annualized. We show that information of the macro trends indeed leads to sizable

investment gains for a mean-variance investor from an asset allocation perspective. In gen-

eral, investor portfolios based on 1-year macro trends consistently deliver higher average

returns, lower standard deviation, and thus significantly larger out-of-sample Sharpe ratios,

and larger CER gains. For instance, the annualized CER gains are 6.83%, 7.35%, 7.80%,

and 8.76% for 1-month simple pooling, 1-year trend-pooling, 1-year PLS-pooling, and 1-

year LASSO-pooling, respectively. We also observe consistently positive performance fees

relative to simple pooling. For example, a quadratic-utility investor would be willing to pay

an estimated 206 basis points annually to switch from the 1-month simple-pooling to the

1-year LASSO-pooling in order to acquire the longer-term trend information. Our results

are robust to adjusting for transaction fees.

In summary, there are potentially large investment profits by capturing macro trends,

emphasizing its important role in the market return predictability from the asset allocation

perspective.

1.4.3 Variable importance

So far, results have shown that macro trends are important, and they contribute statisti-

cally and economically to the out-of-sample aggregate market return predictability. Given

the K×L moving average trend indicators, an interesting question to ask is which macro

variable matters, and likewise, which moving average lag matters? To understand the rela-

tive importance of each predictor, we use LASSO and ENet to assess “variable importance”

to the predictability by counting how frequent each predictor is selected. Same as previous

analysis, we choose the maximum backward-looking window of 1 year. Hence, we have

14 macro variables and 12 lags to rank.

The top two panels in Figure 1.2 present the relative importance of the 14 macro vari-

ables selected by either LASSO or ENet in predicting the market excess return, where the
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variable importance within the model is normalized to sum to one across all available pre-

dictors. Both LASSO and ENet agree that the top 3 most selected variables are T-bill rate

(T BL), Long term government bond return (LT R), and earnings-price ratio (E/P). In con-

trast, the top 3 least selected ones are net equity expansion (NT IS), stock variance (SVAR),

and Inflation (INFL). However, for the rest 7 variables, ENet tends to put more weight

on dividend yield (log) (D/Y ), dividend-payout ratio (log) (D/P), term spread (T MS), and

default spread return (DFR), whereas LASSO tends to zero them out.

The middle two panels present the relative importance of the 12 moving average lags. For

each lag l, we count the total number of predictors that have been selected for forecasting

and use that as a proxy for “lag importance”. Surprisingly, we find that the most important

lag terms in market return predictability are 12-, 11-, and 10-month lags, which further

indicates the importance of macro trends. By contrast, the 1-month (thus the most recent

data), along with 2- and 3-month lags, turn out to be the least selected ones by both LASSO

and ENet. Finally, we plot the heatmaps for the 14×12 moving averages in the bottom two

panels in Figure 1.2.

The above findings echo with the Fed Chair Powell on the importance of having more

than just one month’s worth of data to make informed decisions, and on the importance

of not overacting too much to short-term data that may not provide a clear picture of the

economic outlook.

1.4.4 Robustness

In this subsection, we conduct a battery of additional robustness checks, including eco-

nomic bounds, rolling window estimation, alternative estimation periods, and quarterly

forecasts.

1.4.4.1 Economic bounds

In the time-series forecasts of the equity risk premium, Campbell and Thompson (2008);

Pettenuzzo et al. (2014) are the pioneering examples that incorporate economic constraints
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into the forecasts. In this subsection, we consider imposing a simple economic lower and/or

upper bounds on our trend-based forecasts. The lower bound follows the idea of Campbell

and Thompson (2008) and requires the conditional mean of the equity risk premium to be

non-negative. The upper bound requires the conditional Sharpe ratio to be smaller than a

predetermined value. The zero lower bound is identical to the equity risk premium con-

straint, and the upper bound rules out that the price of risk becomes too high (Pettenuzzo

et al., 2014).

Columns (3) − (5) in Table 1.1 report the R2
OS statistics for economically constrained

forecasts with the lower bound, the upper bound, and both. We use a value of one, sug-

gested by Cochrane and Saa-Requejo (2000), to bound the Sharpe ratio. Across different

rows, we find capturing macro trends still generate greater forecasting gains. Across dif-

ferent columns, we find that imposing economic constraints, especially the upper bound,

yields better forecasting result for 1-month simple pooling, yet does not translate into

greater forecasting gains in presence of macro trends. In other words, the predictive power

of macro trends may not be subsumed by imposing economic constraints.

1.4.4.2 Rolling window forecast

For out-of-sample tests, it is equally important to have enough initial data to get a reliable

estimate at the start of evaluation period and to have an evaluation period that is long

enough to be representative. Researchers in this strand of literature, including Goyal and

Welch (2008); Campbell and Thompson (2008); Rapach et al. (2010); Neely et al. (2014);

Pettenuzzo et al. (2014), usually study a sequence of recursively generated out-of-sample

equity risk premium forecasts.

Alternatively, we can adopt a rolling window and compute the corresponding out-of-

sample R2
OS statistics. A rolling window appears better able to accommodate changes in

the parameters over time, despite at the cost of a shorter estimation sample and thus less

precise parameter estimates (Pesaran and Timmermann, 2007). Column (2) in Table 1.5

reports the R2
OS statistics for 1965:01−2020:12 using a 15-year rolling window. Different
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from the result in Table 1.1 with a recursive window, 1-month simple pooling that only uses

the most recent data on a set of 14 macro variables can no longer outperform the historical

average, resulting in an insignificant R2
OS around 0.50%. By contrast, the trend-pooling

methods continue to yield significantly positive R2
OS statistics that are larger than 0.60%.7

1.4.4.3 Alternative estimation periods

In forecasting, the length of training and testing periods reflects different trade-offs be-

tween the desire to obtain statistical power and the desire to obtain results that remain rele-

vant today. Apparently, a training sample starting from 1926 ensures the first objective—to

obtain statistical power. We next focus on the second objective to obtain relevant results for

today. For this purpose, we restrict the whole sample to 1999:12−2020:12 and evaluate the

out-of-sample performance over the two more recent periods: (i) 2010:01−2020:12 and

(ii) 2016:01−2020:12.

The results are presented in columns (3) and (4) in Table 1.5. As before, we find that

the trend-pooling methods consistently outperforms simple pooling with much larger sig-

nificant R2
OS statistics. For example, in the period of 2010:01−2020:12, the R2

OS statistic

(around 1.19%) from 1-month simple pooling is marginally significant at the 10% level.

In contrast, all trend-pooling methods achieve significant levels of R2
OS statistics, ranging

from 1.57% to 2.41%. A more striking result is in the second period, 2016:01−2020:12.

The 1-month simple pooling leads to a negative R2
OS around −0.06%, whereas the trend

methods yield substantially positive R2
OS statistics.

1.4.4.4 Quarterly forecast

We have shown that macro trends contain valuable information for predicting the monthly

market excess return on an out-of-sample basis. In this subsection, we conduct the quar-

terly forecast with the same quarterly variables used in Rapach et al. (2010) available for

7We also consider rolling windows of 10 years and 20 years. The results are consistent.
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1947Q1−2020Q4.8 We consider the same two out-of-sample periods: 1965Q1−2020Q4

and 2000Q1−2020Q4.

Columns (5) and (6) in Table 1.5 report the R2
OS statistics for quarterly return forecast.

Consistent with the findings in Table 1.1 where monthly data are used, the trend-pooling

strategies yield more significantly positive R2
OS statistics. Specifically, in their original

study, Rapach et al. (2010) document a reasonably significant R2
OS of 3.04% at the 5%

level, in the period 2000Q1−2005Q4 (Table 1 in their paper). Here we find that the R2
OS

statistic drops to 0.99%, and becomes marginally significant at the 10% level, if we extend

the evaluation period to 2020. The trend-pooling methods still significantly outperform the

historical average.

1.5 Macro Trends and Longer-Term Information

In this section, we further examine the relevance of longer-term information for market

return predictability based on macro trends. Instead of pooling moving averages of different

lags (and different variables) together, we examine the moving average of the same set of

14 macro variables, based on each lag separately.

1.5.1 Moving averages and lagged values

Our paper uses a simple moving average method to capture the longer-term information

in macroeconomics. A natural question is why not use lagged values directly? To answer

this question, we consider the simple predictive regression such that

rt+1 = α +βXk
t + εt+1 (1.20)

where we replace Xk
t with either its lagged value, Xk

t−l , or its moving average, MAk
t,l . We

repeat the simple predictive regression for the same set of 14 macro variables and pool the

individual forecasts based on either lagged values or moving averages, separately.

8The quarterly data include one more variable, Investment-to-capital ratio, I/K: ratio of aggregate (private
nonresidential fixed) investment to aggregate capital for the entire economy (Cochrane, 1991).
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Table ?? compares the out-of-sample R2
OS statistics from using lagged values up to 12

months with those from moving averages. We find that using moving averages generally

performs better than using lagged values directly in the long run.9 Moreover, using mov-

ing averages has economic interpretation as trends (see, e.g., Kozicki and Tinsley, 2001;

Cieslak and Povala, 2015; Han et al., 2016).

1.5.2 Short-term or longer-term information?

The trend-pooling method in Equation (1.3) can be decomposed into two-step pooling.

First, for each moving average lag, l, we run K simple predictive regressions with respect

to {MAk
t,l}

K
k=1, and pool the K forecasted values as

f (MAl) =
1
K

K

∑
k=1

[
α̂

k
t,l + β̂

k
t,lMAk

t,l

]
. (1.21)

Equation (1.21) can be viewed as a simple pooling based on a single macro trend signal,

MAl , on a set of K macro variables.

We next repeat the above procedure for l from 1 to L, obtain L forecasts, [ f (MA1), · · · , f (MAL)],

and take another arithmetic mean to obtain the final forecast,

r̂t+1|t =
1
L

L

∑
l=1

f (MAl). (1.22)

Intuitively, the trend signal, MAl , captures either short or longer-term macroeconomic in-

formation.

To test whether the longer-term signal contains more relevant information than the short

term, we first directly compare the out-of-sample forecasting performance of f (MAl), from

both statistical and economic aspects. Table 1.6 reports the R2
OS statistics. Compared with

using the most recent macro variables (MA1), we observe much larger R2
OS statistics start-

ing from MA4 to MA12. For instance, the R2
OS for MA1 is 0.63% and rises to 1% for

9Similar results are obtained when we apply neural networks to lagged values of macro variables directly.
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MA7, increasing by 58% in magnitude. Table 1.7 report the economic values by con-

ducting asset allocation analysis. Relative to the most recent information, the longer-term

macro trends on average deliver higher returns, smaller volatilities, higher Sharpe ratios,

and larger CERs.

Overall, Tables 1.6 and 1.7 suggest that the longer-term macro trend contains valuable

information in predicting market that can not be subsumed by the short-term (current) data.

To formally test it, we next employ the encompassing test.

1.5.3 Encompassing test

Consider an optimal composite forecast of rt+1 as a convex combination of forecasts

from two models, i and j,

r̂?t+1 = (1−λ )r̂i,t+1 +λ r̂ j,t+1, 0≤ λ ≤ 1. (1.23)

λ = 0 suggests that model j does not contain any useful information, and thus is encom-

passed by model i. Likewise, λ > 0 indicates that model j is not encompassed by i.

To test the null hypothesis that model i encompasses j (H0 : λ = 0), against the one-

sided alternative hypothesis that the model i does not encompass j (H1 : λ > 0), we follow

Harvey et al. (1998) to compute the modified HLN-statistic over the out-of-sample eval-

uation period of T0. Define dt+1 = (êi,t+1− ê j,t+1)êi,t+1, where êi,t+1 = rt+1− r̂i,t+1 and

ê j,t+1 = rt+1− r̂ j,t+1. Let d̄ = 1
T0

∑k dk, and we compute

MHLN =
T0−1

T0

([
V̂ (d̄)

]− 1
2 d̄
)
∼ tT0−1, (1.24)

where V̂ (d̄) = 1
T0

φ̂0 and φ̂0 =
1
T0

∑k(dk− d̄)2.

Table 1.8 reports the Harvey et al. (1998) MHLN statistic p-values applied to the fore-

casts in Equation (1.21), thus [ f (MA1), · · · , f (MA12)]. Each entry corresponds to the null

hypothesis that the row heading is encompassed by the column heading. The p-values in
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the right top are mostly larger than 0.8, suggesting that we can not reject the null hypothesis

that short-term information, from MA1 (the most recent value) to MA4, is encompassed

by longer-term, from MA5 to MA12; conversely, p-values in the left bottom are mostly

smaller than 0.1, suggesting that we can reject the null hypothesis that longer-term trend

information is encompassed by the short-term or the most recent data. In other words,

in predicting the future market return, the past one or two month data is unlikely to be

sufficient, and the entire macro trends are likely to matter.

1.5.4 Bias-Variance trade-off

The out-of-sample R2
OS statistic essentially compares the MSPEs between the two fore-

casting approaches in Equation (1.13). Theil (1966) decomposes MSPE as follows,

MSPE =
( ¯̂e
)2

+Var(ê), (1.25)

where ê signifies the forecast error,
( ¯̂e
)2 is the squared forecast bias, and Var(ê) is the

forecast variance.

Figure 1.3 is a scatterplot depicting the forecast variance and the squared forecast bias

for the forecasts based on the historical average and simple pooling of different macro trend

signals. The figure shows that the historical average is at the top right corner, suggesting

both the largest forecast variance and the largest squared forecast bias. In contrast, pooling

across 14 macro variables is concentrated at the (bottom) left corner. To avoid cluttering

the diagram, we remove the historical average. As shown in the right panel of Figure 1.3,

the simple pooling forecasts based on MA4 or longer-term moving averages yield much

smaller forecast variance. Because the variance is much larger than the squared forecast

bias, the reduction in variance dominates the performance and thus leads to a much larger

R2
OS statistics. Among them, MA10, MA11, and MA12 achieve both smaller variance

and smaller squared bias, justifying the importance of longer-term macro trend signals

in market excess return predictability. Overall, Figure 1.3 suggests that capturing macro
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trends helps to regulate more effectively the forecast variability and is thus more stable.

Apart from decomposing the R2
OS statistics from a single macro trend signal, we can also

apply it to the linear, nonlinear, and dimension reduction trend-pooling methods that are

introduced and discussed in Section 2.3. To avoid cluttering the diagram, the left panel in

Figure 1.4 plots the scatters of 1-month simple pooling, 1-year linear trend-pooling, 1-year

LASSO-pooling, and 1-year ENet-pooling. Applying shrinkage significantly reduces the

forecast variance at the cost of slightly larger forecast bias. Notwithstanding, the substantial

reduction in forecast variance helps to offset the increase in squared forecast bias, thereby

leading to much smaller MSPEs and much larger R2
OS statistics. Likewise, the right panel

plots the scatters of 1-month simple pooling, and 1-year trend-pooling by linear combina-

tion, PLS, PCR, and neutral networks (2-hidden layers). We find that extracting principal

components or applying neural networks maintains a similar forecast bias square, but sub-

stantially reduces the forecasting variance. Remarkably, combing neural networks with

macro trends delivers the highest forecasting precision (the lowest forecasting variance),

due to the potential nonlinear interactions.

1.5.5 Performance over business cycles

To get a visual impression of the forecasting performance over the real economy (busi-

ness cycles), we compute the square error difference relative to the historical average

benchmark,

square error difference = (rt− r̄HA
t|t−1)

2− (rt− r̂t|t−1)
2, (1.26)

and plot the cumulative difference curve. Intuitively, when the curve increases, the com-

peting forecast outperforms the historical average, while the opposite holds when the curve

decreases. If the curve is higher (lower) at the end of the out-of-sample period than at the

beginning, the forecasting approach (historical average) has a lower MSPE, leading to a

positive (negative) R2
OS statistic.

In total there are eight recessions over the out-of-sample period, 1965:01−2020:12,
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with business-cycle peaks (troughs) occurring at 1969:12 (1970:11), 1973:11 (1975:03),

1980:01 (1980:07), 1981:07 (1982:11), 1990:07 (1991:03), 2001:03 (2001:11), 2007:12

(2009:06), and 2020:02 (2020:04). Figure 1.5 plots the cumulative error difference curves

for the simple pooling based on MA1, MA7, and MA12 of the same set of 14 macro

variables, along with the vertical lines indicating NBER-dated business-cycle peaks and

troughs. Consistent with the R2
OS statistics documented in Panels A of Table 1.6, the figure

shows that the MA7 trend signal achieves the largest cumulative square error difference

at the end of 2020 (and thus the largest R2
OS), followed by the MA12, whereas the MA1,

which uses the most recent data only, yields the smallest cumulative error difference.

All three curves, however, become markedly negatively sloped starting from the mid-

1990s and reach the trough around 2000. This is anticipated as the literature (see, e.g., Ra-

pach et al., 2010; Neely et al., 2014) have demonstrated that the market return predictability

is mostly concentrated during recessions. Too see it, we compute R2
OS statistics separately

for cyclical expansions and recessions. As shown in columns (3) and (4) in Table 1.6, the

out-of-sample predictive ability is uniformly much stronger for recessions than for expan-

sions. Within the recession periods, the longer-term macro trends produce much larger and

more significant R2
OS,REC statistics than MA1. Moreover, we also observe that longer-term

macro trends, starting from 5-month, also have predictive power during the expansions,

with three of them significant at the 5% level. Utilizing macro trends helps to track more

closely the important macroeconomic fluctuations and thus contributes to out-of-sample

predictability in both recessions and expansions, substantially beyond using only the most

recent data as in the literature.

To conclude the discussion, we also plot and compare the cumulative predictive errors

among different trend-pooling methods introduced in Section 2.3. Figure 1.6 displays that,

among different trend methods, ENet dominates PLS, which strictly dominates the lin-

ear combination. Furthermore, we find that the performance of neural networks heavily

depends on the real economic conditions: it underperforms the historical average in expan-
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sions, mainly in the forecasting period of 1990s, but substantially outperforms the historical

average in recessions because of the oil crisis in mid-1970s and the global financial crisis

in 2008/09.

Taken together, in this section, we show that macro trends with longer-term information

contain valuable information that can not be ignored in predicting equity risk premium.

However, we also argue that when investors make real time decisions, it is important to use

multiple macro trend signals together, from 1-month to L-month, rather than rely on one

particular signal.

1.6 Conclusion

Echoing with the Fed Chair Powell’s typical view that the Federal Reserve would not

react too much to short-term fluctuations in the data, as they could be uninformative on

the overall economic outlook, we provide the first evidence on how macro trends affect

the equity risk premium, uncovering its significant and unrecognized role in market return

predictability. To capture the trend in macroeconomics, we apply the technical rule used by

practitioners—the moving average—to multiple macroeconomic variables to form various

trend indicators. We find that macro trends statistically and economically contribute to the

out-of-sample aggregate market return predictability, substantially beyond using only the

most recent data as in the literature. Moreover, by applying neural networks, a powerful

machine learning method, to various macro trends, we provide another novel evidence that

nonlinear interaction matters in the aggregate market return predictability. Our study shows

that the market is more predictable than commonly believed, once we incorporate trends

and nonlinearity.
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Table 1.1: R2
OS statistics by trend-pooling

This table reports out-of-sample R2 statistic, R2
OS (in percent), from trend-pooling by using moving-

average-based predictors up to Lags months together. The lower bound requires the forecasted
equity premium to be non-negative. The upper bound requires the conditional Sharpe ratio to be
no larger than one. “Lags up to" denote the maximum moving average lag starting from 1 month.
Based on Clark and West (2007) test, *, **, and *** indicate significance for positive R2

OS at the
10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5)
Lags up to Unconstrained Lower Bound Upper Bound Lower & Upper

Panel A: 1965:01−2020:12 out-of-sample period

1 mo 0.63*** 0.55*** 0.70*** 0.63***
6 mo 0.72*** 0.66*** 0.71*** 0.66***
1 yr 0.83*** 0.77*** 0.78*** 0.74***
2 yr 0.81*** 0.76*** 0.77*** 0.74***
3 yr 0.74*** 0.70*** 0.72** 0.70***

Panel B: 2000:01−2020:12 out-of-sample period

1 mo 0.41 0.31 0.58* 0.49**
6 mo 0.47* 0.38* 0.58* 0.49**
1 yr 0.56** 0.45** 0.70** 0.59**
2 yr 0.61* 0.44* 0.79** 0.61**
3 yr 0.69** 0.51** 0.83** 0.65**
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Table 1.2: R2
OS statistics by neutral networks

This table reports out-of-sample R2 statistic, R2
OS (in percent), by combing multiple macro trends

with the neural networks. We use neural networks with 1 to 5 layers (NN1−NN5). “Lags up to"
denote the maximum moving average lag starting from 1 month. Based on Clark and West (2007)
test, *, **, and *** indicate significance for positive R2

OS at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6)
Lags up to NN1 NN2 NN3 NN4 NN5

Panel A: 1965:01−2020:12 out-of-sample period

1 mo -0.07 -0.19 0.40* -2.09 -1.59
6 mo 0.59** 0.35 1.90*** 0.57** -0.32
1 yr 1.31*** 1.62** 0.87*** 1.46** 0.11**
2 yr 0.74** 0.89*** 0.22** 0.66** -0.02
3 yr 0.73** 0.69** 0.47** 0.09* 0.00*

Panel B: 2000:01−2020:12 out-of-sample period

1 mo 0.31 0.90 0.52 -1.72 -3.49
6 mo 1.22* 0.87 3.90** 1.78* -0.29
1 yr 2.69*** 4.17** 1.45** 4.13** 1.39**
2 yr 2.14*** 1.63*** 1.00* 0.82* 0.65*
3 yr 1.61** 1.66** 1.77* 1.56** 1.27**
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Table 1.3: R2
OS statistics by dimension reduction

This table reports out-of-sample R2 statistic, R2
OS (in percent) from applying dimension reduction

techniques to K×L moving-average-based predictors. “Lags up to" denote the maximum moving
average lag starting from 1 month. Based on Clark and West (2007) test, *, **, and *** indicate
significance for positive R2

OS at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6)
Lags up to PCR PLS S-PCR LASSO ENet

Panel A: 1965:01−2020:12 out-of-sample period
1 mo 0.63*** 0.63*** 0.63*** -0.18 -0.23
6 mo 0.76*** 0.83*** 0.83*** 0.96** 0.71**
1 yr 0.95*** 0.99*** 0.95*** 1.27*** 1.37***
2 yr 0.95*** 1.02*** 1.02*** 0.75** 0.84**
3 yr 0.79*** 0.91*** 0.96*** 0.41* 0.56*

Panel B: 2000:01−2020:12 out-of-sample period

1 mo 0.41 0.41 0.41 -0.26 -0.09
6 mo 0.47* 0.50* 0.43* 0.40 0.14
1 yr 0.59** 0.65** 0.55* 0.75* 0.91*
2 yr 0.61* 0.62* 0.60* 0.65* 1.14**
3 yr 0.68** 0.62* 0.65* 0.68** 1.02**
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Table 1.4: Economic values relative to 1-month simple pooling, 1965:01−2020:12
This table reports various economic measures for a mean-variance investor with relative risk aver-
sion coefficient of three who allocates monthly between equities and risk-free bills based on equity
risk premium forecasts. We consider the simple forecasts that rely on only the 14 most recent lagged
values, as well as 1-year trend-based methods, including trend-, PCR-, PLS-, sPCR-, LASSO, ENet-
pooling, as well as neural networks. The performance measures include out-of-sample average re-
turn, standard deviation, Sharpe ratio (SRatio), certainty equivalent return (CEQ), and Fleming et al.
(2001) performance fee (Fee). All results are annualized. *, **, and *** indicate significance at the
10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Avg. Ret (%) S.D. (%) SRatio CEQ (%) SRatio diff CEQ diff Fee (bps)

Panel A: 1-month simple pooling

Linear 6.32 16.33 0.39 6.83

Panel B: Trend-pooling combing macro trends from 1-month to 1-year

Linear 6.82 16.29 0.42 7.35 0.03* 0.51 49.71

PCR 7.00 16.09 0.44 7.63 0.05** 0.79 70.59

PLS 7.07 15.87 0.45 7.80 0.06*** 0.96 79.65

S-PCR 7.02 15.92 0.44 7.73 0.05*** 0.89 74.57

LASSO 8.43 16.72 0.50 8.76 0.12* 1.92 206.05

ENET 8.19 16.13 0.51 8.80 0.12* 1.97 189.04

NN1 7.47 12.75 0.59 9.55 0.20** 2.72 154.07

NN2 8.00 14.23 0.56 9.50 0.17** 2.65 192.00

NN3 8.16 15.42 0.53 9.11 0.15* 2.34 194.32

NN4 8.09 15.55 0.52 8.99 0.14** 2.22 185.63
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Table 1.5: R2
OS statistics for robustness

This table reports out-of-sample R2 statistics, R2
OS (in percent) for alternative forecasting construc-

tions. All statistics are for the period that starts at “Forecast Begin” and ends on December 2020.
“Lags up to" denote the maximum moving average lag starting from 1 month. Based on Clark and
West (2007) test, *, **, and *** indicate significance for positive R2

OS at the 10%, 5%, and 1%
levels, respectively.

(1) (2) (3) (4) (5) (6)

Data Monthly Monthly Monthly Quarterly Quarterly
Sample begin 1926:12 1999:12 1999:12 1947Q1 1947Q1
Forecast begin 1965:12 2010:01 2016:01 1965Q1 2000Q1
Estimation Rolling Recursive Recursive Recursive Recursive

Lags up to

1 mo 0.50 1.19* -0.06 2.44*** 0.99*
6 mo 0.63* 1.57*** 0.47 2.63*** 1.33**
1 yr 0.82** 1.99*** 0.88* 2.39*** 1.49**
2 yr 0.72** 2.17** 0.98* 1.84*** 1.33**
3 yr 0.71** 2.41** 1.06** 1.47** 1.24*
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Table 1.6: R2
OS statistics by a single macro trend signal, 1965:01−2020:12

This table reports out-of-sample R2 statistic, R2
OS (in percent), from forecast combination of 14

macro variables of the same moving average lag. We also report the R2
OS for NBER-dated expansions

and recessions, separately. “Lag" denote the moving average lag. Based on Clark and West (2007)
test, *, **, and *** indicate significance for positive R2

OS at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4)
Lag Overall Expansions Recessions

1 mo 0.63*** 0.18 1.70***
2 mo 0.58** 0.26 1.36***
3 mo 0.60** 0.18 1.60***
4 mo 0.67*** 0.27 1.62***
5 mo 0.87*** 0.43* 1.95***
6 mo 0.94*** 0.50** 1.98***
7 mo 1.00*** 0.58** 1.99***
8 mo 0.96*** 0.49** 2.10***
9 mo 0.95*** 0.46* 2.11***
10 mo 0.88*** 0.34* 2.17***
11 mo 0.86*** 0.32* 2.15***
12 mo 0.91*** 0.32* 2.32***
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Table 1.7: Economic values of a single macro trend signal, 1965:01−2020:12
This table reports various economic measures for a mean-variance investor who allocates monthly
between equities and risk-free bills. “Lag" denote the moving average lag. We compute out-of-
sample average return, standard deviation, Sharpe ratio (SRatio), certainty equivalent return (CEQ),
and Fleming et al. (2001) performance fee (Fee). All results are annualized. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
Lag Avg. Ret (%) S.D. (%) SRatio CEQ (%) SRatio diff CEQ diff Fee (bps)

Panel A: 1-month simple pooling

1 mo 6.32 16.33 0.39 6.83

Panel B: L-month simple pooling (a single macro trend)

2 mo 6.15 16.44 0.37 6.61 -0.01 -0.22 -18.24

3 mo 6.22 16.03 0.39 6.87 0.00 0.04 -7.02

4 mo 6.47 16.35 0.40 6.98 0.01 0.15 14.94

5 mo 6.97 16.54 0.42 7.38 0.03** 0.55 62.41

6 mo 7.02 16.36 0.43 7.51 0.04** 0.68 68.85

7 mo 7.18 16.46 0.44 7.63 0.05** 0.79 83.92

8 mo 7.18 16.30 0.44 7.71 0.05** 0.87 86.12

9 mo 7.19 16.42 0.44 7.66 0.05* 0.82 85.44

10 mo 6.90 15.98 0.43 7.58 0.04 0.75 61.75

11 mo 6.95 16.07 0.43 7.59 0.05* 0.76 66.12

12 mo 6.98 15.83 0.44 7.73 0.05* 0.89 71.41
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Table 1.8: Forecast encompassing test, MHLN statistic p-values, 1965:01−2020:12,
This table reports p-values for the Harvey et al. (1998) MHLN statistic. We compare the out-of-
sample forecasts by pooling 14 macroeconomic variables of the same moving average lag, l, ranges
from 1 to 12 months. The statistic corresponds to an upper-tail test of the null hypothesis that the
forecast given in the row heading is encompassed by the forecast in the column heading.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
1 mo 2 mo 3 mo 4 mo 5 mo 6 mo 7 mo 8 mo 9 mo 10 mo 11 mo 12 mo

1 mo 0.28 0.33 0.60 0.95 0.97 0.97 0.94 0.88 0.84 0.81 0.85
2 mo 0.67 0.55 0.78 0.99 0.99 0.99 0.97 0.94 0.91 0.89 0.92
3 mo 0.60 0.40 0.86 0.99 1.00 1.00 0.99 0.95 0.93 0.91 0.93
4 mo 0.31 0.15 0.10 1.00 1.00 1.00 0.98 0.94 0.89 0.86 0.89
5 mo 0.02 0.01 0.00 0.00 0.81 0.88 0.74 0.63 0.43 0.38 0.48
6 mo 0.01 0.00 0.00 0.00 0.14 0.78 0.56 0.46 0.25 0.23 0.33
7 mo 0.01 0.00 0.00 0.00 0.08 0.17 0.27 0.25 0.10 0.08 0.18
8 mo 0.02 0.01 0.00 0.01 0.17 0.33 0.66 0.37 0.14 0.13 0.25
9 mo 0.04 0.02 0.02 0.02 0.24 0.40 0.64 0.55 0.16 0.16 0.30
10 mo 0.07 0.04 0.03 0.06 0.42 0.62 0.83 0.80 0.78 0.35 0.61
11 mo 0.09 0.04 0.04 0.07 0.46 0.65 0.85 0.80 0.76 0.59 0.81
12 mo 0.06 0.03 0.02 0.05 0.33 0.49 0.68 0.62 0.57 0.30 0.14
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Figure 1.1: Cumulative excess returns for portfolios constructed based on macro trends,
1965:01−2020:12

Each panel depicts the cumulative excess return for a portfolio constructed based on forecasts from
1-month simple pooling or 1-year macro trends, including PLS, Scaled PCR, ENet, and neural
networks. Vertical lines indicate NBER-dated business-cycle peaks (P) and troughs (T).
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Figure 1.2: Selection frequency by LASSO and elastic net, 1965:01−2020:12

This figure demonstrates the selection frequency of 14×12 moving averages on a set of 14 variables
in based on LASSO or ENet for the out-of-sample period 1965:01−2020:12.

(a) (b)

(c) (d)



37

Figure 1.3: Scatterplot of forecast variances and squared forecast biases

This figure plots the bias-variance decomposition of the MSPEs based on historical average and
forecast combination of 14 macroeconomic predictors of different moving average lags, in the pe-
riod of 1965:01−2020:12
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Figure 1.4: Bias-Variance decomposition for trend-based machine learning methods

This figure plots the bias-variance decomposition of the MSPEs based on 1-month forecast combi-
nation or 1-year macro trends, including ENet-pooling, PLS-pooling, and neural networks, in the
out-of-sample period 1965:01−2020:12.
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Figure 1.5: Cumulative square error difference from a single macro trend signal

This figure plots the cumulative square prediction error based on the forecast of 14 macro variables
that are either 1-month (most recent), 7-month, or 12-month moving averages. The out-of-sample
evaluation period is 1965:01−2020:12.
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Figure 1.6: Cumulative square error difference of 1-year trend-pooling

This figure plots the cumulative square prediction error of the forecast based on 1-month forecast
combination or 1-year macro trends, including ENet-pooling, PLS-pooling, and neural networks.
The out-of-sample evaluation period is 1965:01−2020:12.



CHAPTER 2: EQUITY FORWARD RETURN FROM DERIVATIVES

2.1 Introduction

As argued by Miller (1999), “simply averaging the returns of the last few years, along

the lines of the examples in the Markowitz paper (and later book), won’t yield reliable

estimates of the return expected in the future” (page 97). Since the derivatives market

provides forward-looking information related to the expected return, previous studies have

successfully derived the expected spot return from derivatives markets. For instance, Mar-

tin (2017); Chabi-Yo and Loudis (2020) for the aggregate market; Martin and Wagner

(2019); Kadan and Tang (2020) for individual stocks; and Kremens and Martin (2019) for

currencies.

In this paper, we introduce the notion of a forward equity return and establish its rela-

tionship to certain derivative securities. Specifically, for any positive number n, the for-

ward return Et [Rt+n→t+n+1] is the expectation conditional on time t of the future return

Rt+n→t+n+1 of the underlying asset over a future time interval from t +n to t +n+1. We

develop a methodology to measure forward returns implied in information from the deriva-

tives market, including prices of index options and VIX-derivatives. Furthermore, we can

derive all higher moments of future returns using derivatives market information. Our ap-

proach even reveals new information about spot returns from the derivatives not previously

studied in the literature, such as the conditional correlation between two spot returns and

the joint distribution between two consecutive returns or two spot returns.1 Importantly,

our approach does not require us to impose any distributional assumptions on the aggregate

equity market.

1Remarkable exceptions in the literature include Martin (2021), and Chabi-Yo (2019). We will explain
these related studies and the distinct features of our paper.
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Ultimately, we can construct an entire term structure of forward returns starting from

the expected spot return when n = 0.2 Knowing such a term structure of forward returns,

we can investigate how a future return Rt+n→t+n+1 dynamically evolves with market infor-

mation available at time t. As an example, what is the autocorrelation coefficient between

Rt+n→t+n+1 and Rt+n+1→t+n+2? By answering this question, we can study the momen-

tum or reversal patten of the equity market from a forward-looking derivative perspective.3

Similarly, we can design dynamic trading strategies based on the conditional view of the

aggregate market’s future returns from derivatives.

We first express the equity index’s forward return in terms of available VIX-derivatives

(VIX-futures and VIX-options). Because of its high volume and vast liquidity, incorpo-

rating information from the VIX derivatives market is essential in constructing a complete

picture of the equity market. In the expression we derive, VIX derivatives play an analo-

gous role for forward returns as index options play for the expected spot return (see Martin,

2017). All quantities in this expression are observable in real-time. Thus, we can com-

pute these forward returns in real-time as well. Since this expression depends on VIX-

derivatives, we call it the VIX-approach for forward returns.

We present three applications of the VIX-approach. In the first application, we docu-

ment a pro-cyclical term structure of forward returns: upward sloping in good times but

downward sloping in bad times. Several studies have documented the average shape of the

term structure of the equity risk premium, which is the expected spot return of dividend

strips across different maturities. For instance, Binsbergen et al. (2012); Binsbergen and

Koijen (2017) document that the equity term structure is downward sloping, on average.

2Our approach to modeling the term structure of equity forward returns, Et [Rt+n→t+n+m],m > n > 0,
instead of the sequence of expected spot returns Et [Rt→t+n],n > 0, is conceptually similar to forward rate
models compared to spot rate models in fixed income (see, for instance, Heath et al., 1992; Duffie and
Singleton, 1999). However, there are substantial differences between equity returns and interest rates; and
the forward equity return cannot be derived from the equity spot return. Specifically, spot returns are static,
similar to the current yield curve in the fixed income market. In contrast, the term structure of forward returns
provides a dynamic movement of the equity return, which resembles the movement of the yield curve.

3There has been extensive research about the realized autocorrelation using historical equity index
data (see, for instance, Lo and MacKinlay, 1988, 1990; Fama and French, 1988b; Poterba and Summers,
1988; Moskowitz et al., 2012). These studies do not use derivatives.
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Moreover, Gormsen (2021) finds that the equity term structure is downward sloping in good

times, but upward sloping in bad times, and thus counter-cyclical. We document a new styl-

ized fact about the shape of the term structure of forward equity returns. The key difference

between the previous studies and ours is that, in our setting, we recover expected future re-

turns on the aggregate market, whereas these previous studies focus on the spot return of

a dividend-strip (Binsbergen et al., 2012; Binsbergen and Koijen, 2017), the futures of the

dividend-strip (Bansal et al., 2021), or a short-maturity asset in excess of long-maturity

asset (Gormsen, 2021). Moreover, we use VIX-derivatives, whereas dividend strips, index

options, or asset pricing models are used in previous studies.

In the second application, we use the VIX-approach to compute conditional autocorre-

lation in real-time. Predicting the expected market return with past return observations has

been a challenge for researchers and practitioners for decades. Can past returns forecast

future returns? Are the returns of a given stock market index autocorrelated? How can

we estimate the unconditional autocorrelation coefficients of market returns? Despite ex-

tensive research about the realized autocorrelation using historical data (see, for instance,

Lo and MacKinlay, 1988, 1990; Fama and French, 1988b; Poterba and Summers, 1988;

Moskowitz et al., 2012), the literature still offers no clear guidance as findings have var-

ied depending on the horizon studied and on the sample frequency selected (Campbell,

2017; Baltussen et al., 2019). Moreover, what remains unclear is how to infer the forward-

looking autocorrelation perceived by investors, as the true autocorrelation may diverge

significantly from zero and fluctuate over time (LeRoy, 1973). Empirically, we document

significantly negative autocorrelation on the S&P 500 index from index options and VIX-

derivatives. For instance, the conditional autocorrelation between two consecutive monthly

returns, corrt (Rt→t+1mo,Rt+1mo→t+2mo), is on average −20.90% with a t-stat of −18.10.

On average, the market autocorrelation on the S&P 500 index is around −20% to −40%,

suggesting a robust short-term reversal from the perspective of derivatives.

The third application illustrates the economic value of forward returns from derivatives.
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Specifically, we construct a reversal signal to trade the market. This signal relies on the

real-time autocorrelation identified from the derivatives market in the second application.

We find that the reversal signal predicts market downturns well, particularly when the mar-

ket declines significantly in the next month. Furthermore, we show that the corresponding

market timing strategy is conservative and delivers higher Sharpe ratios compared to the

buy-and-hold benchmark strategy. Moreover, the economic value of this timing strategy

can be substantial during prolonged market downturns. For example, investors are will-

ing to pay as much as 11% per annum to switch from the buy-and-hold strategy to the

derivative-based market-timing strategy during the 2008/09 global financial crisis, January

2008−June 2009.

The VIX-approach relies on the assumption that θt ≡ corrQ
t (Rt→t+1,R2

t+1→t+2) = 0,

which states that the risk-neutral conditional correlation coefficient between Rt→t+1 and

R2
t+1→t+2 is zero. This risk-neutral zero correlation assumption seems rather technical and

restrictive as our objective is to use available market information alone and avoid using

any model assumption about the future return. Moreover, there are no available derivatives

in the market yet to reveal this risk-neutral correlation coefficient directly. Therefore, we

need to (1) justify the VIX-approach empirically for the equity index and (2) introduce

econometric methods to estimate this risk-neutral correlation coefficient.

For this purpose, we derive an alternative expression for forward returns using another set

of derivatives data - index option prices and their gammas. A disadvantage of this approach

is that it cannot be applied in real-time. Nevertheless, by comparing this expression for

forward returns to those derived using the VIX-approach, we can estimate past values of θt

and analyze its time series properties. In the end, we document that the VIX-approach is

reasonably good as the sample average of θt is fairly close to zero. Moreover, if we use the

estimated θt , we derive a more robust expression of forward return. In the latter expression

of forward return, we use all historical and current index option derivatives (option prices

and gammas) and the VIX-derivatives. In this paper, we refer to this more general approach
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to estimating forward returns as the VIX-Gamma approach.

We implement the VIX-Gamma approach in the market-timing strategy and demonstrate

that its economic value is even more significant than in the VIX-approach. For instance, we

find that investors are willing to pay 31.153% per annum to switch from the buy-and-hold

portfolio to the VIX-Gamma-based trading strategy, more than double the amount for the

VIX-approach. Moreover, VIX-Gamma-based trading strategy produces a positive average

return and a positive Sharpe ratio, even during the 2008/09 global financial crisis period.

Our study is related to Martin (2021), which reduces the conditional expected future re-

turn to the no-arbitrage price of a “forward-start option". Since the forward-start option is

traded only in over-the-counter markets, he obtains quoted prices from a sophisticated in-

vestment bank for a small number of days. In contrast, we present two new expressions of

the expected future return that rely on VIX-derivatives and index options—pricing data for

both are publicly available. Notably, in our second application, the autocorrelation based

on the exchange-traded derivatives is comparable (in magnitude) to that based on the over-

the-counter derivatives in Martin (2021). Moreover, we demonstrate novel implications for

the equity term structure, investment trading strategy, and risk-neutral density. Another

related working paper is by Chabi-Yo (2019), who derives lower and upper bounds, vary-

ing from −28% to −3% with a mean value of −14%, on the market autocorrelation with

index option prices. Other studies have documented how contingent claims can be used to

elicit valuable forward-looking information about the market’s expected spot returns (Ross,

2015; Borovička et al., 2016; Jensen et al., 2019; Heston, 2021; Bakshi et al., 2022). But

these authors do not study forward returns.

2.2 Theory

For a discrete time subscript t, St denotes the time-t price of the stock index. Rt→t+1 =

St+1
St

is the gross market return over the time period from t to the next time t + 1, and

R f ,t→t+1 is the gross risk-free return over the same time period. We denote the real-world

probability measure by P, and the information set at time t by Ft . Let (Mt) be a pricing
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kernel process and mt,t+1 = Mt+1
Mt

be the stochastic discount factor (SDF) over the period

from t to t +1. Consequently, the risk-neutral probability measure Q satisfies

dQ
dP
|Ft+1 = R f ,t→t+1mt,t+1.

For any f (St+1) ∈Ft+1 with suitable integrability condition, its conditional expectation

under P is given by

EP
t [ f (St+1)] = EQ

t

[
dP
dQ

f (St+1)

]
=

1
R f ,t→t+1

EQ
t

[
f (St+1)

mt,t+1

]
. (2.1)

Equation (2.1) states that a conditional expectation of f (St+1) under the real-world prob-

ability measure P is the no-arbitrage time-t price of a contingent claim with payoff f (St+1)
mt,t+1

at time t +1.4 We use the notation EP
t [·] to highlight the fact that those quantities are under

the real-world probability measure. Henceforth, we drop the superscript and use Et [·] to

denote conditional expectation under the P-measure.

Consider a log-utility-based SDF such that,

mt,t+1 =

(
St

St+1

)
.

By Equation (2.1), we obtain

Et [Rn
t→t+1] =

1
R f ,t→t+1

EQ
t

[(
St+1

St

)n+1
]
, (2.2)

where the right-hand side of the above equation can be synthesized in terms of time-t prices

of index call options Ct→t+1(K) that expire at t +1. Precisely,

Et [Rn
t→t+1] =

(n+1)n
Sn+1

t

∫
∞

0
Kn−1Ct→t+1(K)dK. (2.3)

4Bakshi et al. (2022) refer to this known result as the inverting the Girsanov theorem.
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This equation for the expected spot return (and higher moments) in terms of options is

well studied in the literature (see, e.g. Bakshi et al., 2003; Bakshi and Madan, 2000; Carr

and Madan, 1999; Carr et al., 1998; Martin, 2017; Martin and Wagner, 2019). We next

move to the forward return (i.e., conditional expected future return).

2.2.1 VIX-approach

By Equation (2.1), the forward return is written as5

Et [Rt+1→t+2] =
1

R f ,t→t+2
EQ

t

[
Rt+1→t+2

mt,t+2

]
. (2.4)

Rewriting the right-hand side, we obtain

Et [Rt+1→t+2] =
1

R f ,t→t+2
EQ

t

[(
St+2

St+1

)
×
(

St+2

St

)]
=

1
R f ,t→t+2

EQ
t

[
(Rt+1→t+2)

2×Rt→t+1

]
,

=
1

R f ,t→t+2

{
EQ

t

[
(Rt+1→t+2)

2
]
×EQ

t [Rt→t+1]+CovQ
t

(
(Rt+1→t+2)

2 ,Rt→t+1

)}
.

Then,

Et [Rt+1→t+2] =
1

R f ,t+1→t+2
EQ

t [(Rt+1→t+2)
2]+

θt

R f ,t→t+2

√
VarQt (R2

t+1→t+2)

√
VarQt (Rt→t+1),

(2.5)

where θt ≡ corrQt
(
Rt→t+1,R2

t+1→t+2
)

is the correlation coefficient between the spot return,

Rt→t+1, and the future return square, R2
t+1→t+2, under the risk-neutral probability measure

Q. In Eq. (2.5), the risk-neutral conditional variance of Rt→t+1 is computed from Eqs. (2.2)

- (2.3) using index options. The other two terms are the risk-neutral conditional (upon at

time t) moment, EQ
t [(Rt+1→t+2)

2], and the risk-neutral conditional variance of R2
t+1→t+2,

which are discussed in the following result.

Proposition 2.2.1 Suppose that interest rates are deterministic. For simplicity, let R =

5For simplicity we only derive the result for Et [Rt+1→t+2]. The expression of Et [Rt+n→t+n+s] is similar
and given in the Appendix.
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Rt+1→t+2, R f = R f ,t+1→t+2. Let Ft = FV IXt,t+1→t+2 be the futures price of the VIX index,

and σt be the implied volatility of at-the-money options on the VIX index. Then EQ
t [Rn] can

be solved recursively for n = 2,3,4, · · · via the following approximation formulas,

F2
t (1+σ

2
t )∼

(
EQ

t

[(
R
R f

)2
]
−1

)
, (2.6)

F2
t (1+T1σ

2
t )∼

1
T2

(
−2

3
EQ

t

[
(

R
R f

)3
]
+3EQ

t

[
(

R
R f

)2
]
− 7

3

)
, (2.7)

1
2

F2
t
(
1+σ

2
t
)
∼

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f
−1
)i
]
,n≥ 3. (2.8)

Proof: See Appendix �

Proposition 2.2.1 states that all risk-neutral higher moments of Rt+1→t+2 can be com-

puted from the publicly available VIX index, VIX futures, and VIX options.6 For instance,

the risk-neutral conditional moment of Rt+1→t+2 is given by

EQ
t [(Rt+1→t+2)

2]∼ R2
f ,t+1→t+2

(
1+F2

t (1+σ
2
t )
)
. (2.9)

This formula can be understood as follows. The CBOE’s VIX index measures the risk-

neutral entropy,

V IX2
t→t+1 =

2
T

LQ
t

(
Rt→t+1

R f ,t→t+1

)
, (2.10)

where LQ
t (X)≡ log

[
EQ

t (X)
]
−EQ

t

[
log(X)

]
.

Among quadratic polynomials, EQ
t [(Rt+1→t+2)

2] is the best one (up to a constant) to

approximate the risk-neutral conditional entropy of Rt+1→t+2, i,e., the second moment of

a future VIX. By the equation, EQ[X2] = EQ[X ]2 +VarQ(X), the second moment of a

future VIX (represented by a random variable X) is the sum of a square of a VIX futures

price, EQ[X ], and a conditional risk-neutral variance of a future VIX. Since the latter can

be proxied by the square of the implied volatility of VIX options, we use VIX-derivates

6Although Proposition 2.2.1 is given as an approximation, we show that the approximation error is very
small for the empirical application in the Appendix.
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to compute the risk-neutral conditional second moment of a future return. Similarly, by

high-degree polynomial best approximation, we obtain other equations (recursive formula)

in Proposition 2.2.1. Then we can calculate EQ
t [(Rt+1→t+2)

3],EQ
t [(Rt+1→t+2)

4], and so on.

Accordingly, we calculate VarQ
t (R2

t+1→t+2) using VIX-derivatives.

Remark 2.2.1 Following Martin (2013), the risk-neutral conditional cumulant-generating

function K(λ ) of the relative future return R
R f

is K(λ ) = log
(
EQ

t

[
eλR/R f

])
. Notice that

EQ
t

[
R

R f

]
= EQ

t

[
EQ

t+T

(
R

R f

)]
= 1, then

K(λ ) = log

(
1+λ +

∞

∑
n=2

1
n!
EQ

t

[(
R
R f

)n]
λ

n

)
.

By Proposition 2.2.1, the function K(λ ) can be computed from VIX-derivatives.

Now, in computing the forward return in Equation (2.5), the last ingredient is θt . Theoret-

ically, θt can be obtained from the risk-neutral bivariate distribution of (Rt→t+1,Rt+1→t+2).

Thus basket or correlation options can be used to recover the value of this parameter.7 Nev-

ertheless, there are no available real-time basket or correlation options yet in the financial

market to derive the value of θt .

In this paper, we suggest two methods to estimate the value of θt . The first method is

as follows. While θt is unknown, we know that the risk-neutral correlation coefficient,

corrQt
(
R2

t→t+1,Rt+1→t+2
)
= 0, and in general, corrQt (g(Rt→t+1),Rt+1→t+2) = 0, for any

function g(·). This implies that, to a certain extent, Rt+1→t+2 is independent from Rt→t+1.

Therefore, it is reasonable to expect that θt is close to zero.8 Indeed, in Section 2.4 below,

we introduce an alternative expression of forward returns in terms of index options and
7For this particular case, Martin (2021) reduces it to be a forward-start option valuation. In general, if

Ft+T is generated by S1, · · · ,St+T , then all conditional information at time t should be recovered by the time
t value of some options such as basket options with state variables St+1, · · · ,St+T . The theory is developed in
Tian (2014, 2019) by using the universal approximation theorem from neural networks. Carr and Laurence
(2011) also develop a theory in terms of basket options based on random transformation.

8For instance, if Stein’s lemma holds for the risk-neutral bivariate distribution of (Rt→t+1,Rt+1→t+2),
then θt = 0. In general, however, the bivariate distribution of (X ,Y ) has a rich structure, yielding non zero
correlation coefficient between X and Y 2, but zero-correlation between X2 and Y . We will discuss this issue
in Appendix C.
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option greeks. As will be shown in Section 2.4, we can use historical option data to estimate

θt (the second method), and the averages are fairly close to zero. For these reasons, we first

assume that θt = 0; thus, the forward return is

Et [Rt+1→t+2] =
1

R f ,t+1→t+2
EQ

t [R
2
t+1→t+2]∼ R f ,t+1→t+2

(
1+F2

t (1+σ
2
t )
)
. (2.11)

Since VIX-derivatives data alone are sufficient to compute the forward return in the last

equation, we call this approach the VIX-approach for estimating the forward return.

Remark 2.2.2 Similar to Equation (2.3), in which the conditional moments of spot return

can be implied by index options, we can also express the higher moments of future return

with VIX-derivatives. Precisely, by assuming corrQ
t

(
Rt→t+1,(Rt+1→t+2)

k
)
= 0,k ≥ 2, we

have

Et

[
(Rt+1→t+2)

k
]
=

1
R f ,t+1→t+2

EQ
t

[
(Rt+1→t+2)

k+1
]
. (2.12)

Thus far, we assume a log-utility-based specification of the pricing kernel process. It can

easily be extended to a power specification for a representative CRRA-type agent with a

coefficient of constant relative risk aversion γ ,

mt,t+1 =

(
St

St+1

)γ

, γ ≥ 1.

2.3 Empirical Results and Applications

In this section, we use the theoretical results of Section 2.2 in three novel applica-

tions. We start with the first application by applying the VIX-approach to derive the term

structure of forward one-month returns. Next, we compute the expected spot return (and

higher orders) from index options. Combined with the moments of future return from VIX-

derivatives, we recover the market autocorrelation on a real-time basis. Finally, we show

how the real-time market autocorrelation can be used to construct a market timing strat-
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egy that outperforms the buy and hold benchmark. A common theme of these applications

is that the recovered future return and autocorrelation contain valuable forward-looking

information not captured by historical measures.

2.3.1 Data

We collect data for S&P 500 index options and VIX options from OptionMetrics, and

obtain VIX index and VIX futures data from the CBOE. On each trading day, we fol-

low Hu and Jacobs (2020) to use linear interpolation to compute daily VIX futures prices,

FVIXt,t+T1→t+T1+T2 , with constant maturities for T1 = 1, 2, 3, 4, 6, and 9 months.9 Since

both VIX index and VIX futures measure the forward-looking implied index volatility over

30 days, T2 always represents one month.

Panels A and B in Table 2.1 report summary statistics for VIX index and VIX futures

prices. Typically, the VIX futures market is in contango. That is, on average, VIX futures

prices are higher than the VIX index, reflecting the volatility risk premium paid by holders

of long volatility positions. Panel C reports summary statistics for implied volatility of at-

the-money VIX call and put options. After applying standard filters and merging data from

different databases, we end up with a sample of daily observations from February 24, 2006

to December 31, 2019. All results are annualized.

2.3.2 Term structure of forward returns

The expected excess return on the market, or expected equity risk premium, is one of

the central quantities of interest in finance and macroeconomics (Martin, 2017; Rapach

and Zhou, 2022). In this subsection, we study the shapes of the term structure of forward

returns and equity forward risk premiums, as the first application.

9CFE may list futures for up to nine near-term serial months, as well as five months on the February
quarterly cycle associated with the March quarterly cycle for options on S&P 500 (Mencia and Sentana,
2013). We thus choose the maximum constant maturity to be nine months. VIX futures expiration calendar
can be found at https://www.macroption.com/vix-expiration-calendar/.
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To be specific, let

ft,T = Et [Rt+T→t+T+1] ,∀t,∀T = 0,1, · · · , (2.13)

where ft ≡ ft,0 is the conditional expected spot return Et [Rt→t+1]. The one-period forward

return ft,T forms a term structure of future returns analogous to the term structure of for-

ward rates: Conditional on the time-t, ft,T = Et [Et+T [Rt+T→t+T+1]] = Et [ ft+T ], which is

similar to the equation that the implied forward rate equals the expected spot rate in the

fixed-income market.

However, the relationship between equity spot and forward returns is fundamentally

different than the relationship between bond spot and forward returns. To see this, suppose

r̂t→t+n is a default-free continuously compounded spot interest rate in effect from time

t until the future time t + n.10 In other words, R f ,t→t+n = exp(nr̂t→t+n) = 1/P(t, t + n),

where P(t, t + n) is the time t price of a default-free zero coupon bond paying 1 at time

t + n. By the (continuously compounded) yield curve at time t, we mean the mapping

n→ r̂t→t+n. At time t, the return that will be realized from holding the zero-coupon bond

until maturity at time t + n is known. On the other hand, we can also construct a term

structure of equity spot returns, say, n→ Et [Rt→t+n]. However, the realized return Rt→t+n

on the equity index is unknown at time t, as the expected spot return is distinct from the

realized return due to the perpetual nature of equity claims.

Now let f̂t,t+n→t+n+m be the implied (continuously compounded) forward rate, at time t,

from time t +n to t +n+m. The well-known relationship between forward and spot rates,

f̂t,t+n→t+n+m =
(m+n)r̂t→t+n+m−nr̂t→t+n

m
, (2.14)

is a straightforward consequence of the no-arbitrage principle. However, the forward equity

return, Et [Rt+n→t+n+m], cannot be derived similarly in terms of expected spot returns. In

10A similar argument also holds for any discrete compounding convention.
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fact, we can determine the time-t fair rate, K, of a forward contract maturing at time t +n,

to exchange the realized return Rt+n→t+n+m at time t + n+m. By the no-arbitrage asset

pricing principle,

K = EQ
t [Rt+n→t+n+m] = EQ

t

[
EQ

t+n[Rt+n→t+n+m]
]
= EQ

t [R f ,t+n→t+n+m]. (2.15)

Hence, the “implied" forward return on the equity index is the risk-free forward return.

The difference between Et [Rt+n→t+n+m] and EQ
t [Rt+n→t+n+m] is called the time-t con-

ditional expected forward risk premium. Compared to the equity index’s forward return,

the risk-free return in each short time period is small and relatively stable. Therefore, the

term structure of ft,T is essentially comparable (in shape) to the term structure of expected

forward risk premiums, ft,T −EQ
t [R f ,t+T→t+T+1], which reduces to ft,T −R f ,t+T→t+T+1,

provided interest rates are deterministic. Thus, we obtain the term structure of forward

one-period returns and expected forward risk premiums by the VIX-approach in Equation

(2.11) and Proposition 2.2.1.

Table 2.2 reports the summary statistics for the T -forward one-month returns. We choose

T to be 1, 2, 3, 4, 6, and 9 months in ft,T . Panel A considers the full sample period from

February 24, 2006 to December 31, 2019. The term structure of forward one-month equity

returns (and equity risk premiums) is mainly upward-slopping in normal times. On average,

the forward one-month return and expected risk premium increase with respect to maturity

T , except for a slightly downward/flat feature when T = 6 months.

We next examine the shape of the term structure ft,T , for T = 1,2,3,4,6,9, when the

market is in bad (good) times. Precisely, we use the NBER recessions period, January

1, 2008−June 30, 2009 to represent bad times, and the post-NBER recessions, July 1,

2009−December 31, 2019, to represent good times. As shown in Panel B of Table 2.2,

the term structure of forward one-month returns (and equity forward risk premiums) is

downward sloping on average in bad times. In contrast, Panel C reveals an upward-sloping
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term structure of one-month future returns (and expected risk premiums), on average, in

good times.

Collectively, Figure 2.1 illustrates the term structure of future one-month returns on av-

erage, in “good", “bad", or “overall" times, respectively. The slope of the term structure is

pro-cyclical. Furthermore, Figure 2.2 displays the term structure of future one-month re-

turns for all time t during the NBER recessions. More specifically, we divide the sample pe-

riod into four shorter ones: January 2008−October 2008; November 2008−January 2009;

February 2009−April 2009; and May 2009−June 2009. We observe that the downward-

sloping term structure is significantly steep between October 2008 and April 2009 (the

most severe period of the 2008/09 global financial crisis). By contrast, Figure 2.3 shows

an upward-sloping term structure of forward one-month returns (expected risk premiums)

most of the time between 2009 and 2019.

It is interesting to compare our results on the equity forward term structure with recent

studies of the equity term structure in the literature (see, for instance, Binsbergen et al.,

2012; Binsbergen and Koijen, 2017; Gormsen, 2021). By a term structure of equity risk

premia, these previous studies refer to the relationship between a one-period spot return

premia of maturing asset with the maturity.11 Specifically, a zero-coupon equity or dividend

strip is a claim with only one dividend payment at a future time, analogous to a zero-coupon

bond. Let Pn,t be the price at time t of a claim (dividend strip) to the dividend at time t +n.

Then, the time-t price of the underlying index is St = ∑
∞
n=1 Pn,t . Let Rn,t be the one-period

spot return of the dividend strip maturing t +n from period t to t +1. That is,

Rn,t+1 =
Pn−1,t+1

Pn,t
. (2.16)

11In Chabi-Yo and Loudis (2020), a term structure is a lower bound of hold-to-maturity expected spot
returns at various horizons. The authors show that the term structure of the (lower bound) of spot returns is
downward-sloping during turbulent times but upward-sloping during normal times.



55

The spot return of the underlying index is

Rt→t+1 =
∞

∑
n=1

ωn,tRn,t+1,ωn,t =
Pn,t

St
. (2.17)

Then, the term structure of the dividend return, n→ Rn,t+1, illuminates the contribution of

the dividend return Rn,t+1 to the spot return Rt→t+1. 12 For example, an upward-sloping

term structure of the dividend return shows a higher contribution of the dividend strip ma-

turing t + n to the underlying aggregate market index return Rt→t+1 when the maturity n

is higher, and vice versa. In contrast, we focus on the term structure of the aggregate eq-

uity market’s forward returns, T → Rt+T→t+T+1, a relationship between T and the forward

return starting from period t +T to t +T +1.

In this regard, we document a new stylized fact that the term structures of forward one-

period returns and expected forward risk premiums implied by derivatives markets are

pro-cyclical. The pro-cyclicality can be explained as follows. By Proposition 2.2.1, the

conditional expected future one-month returns in T months are essentially determined by

the futures prices of VIX over the same period. Therefore, a pro-cyclical term structure

of equity risk premia is consistent with Hu and Jacobs (2020) which documents that VIX

futures prices tend to have an upward sloping term structure during normal times and tend

to become inverted or hump-shaped in times of market turbulence.

2.3.3 Market autocorrelation

Building on the theoretical results of Section 2.2, we turn now to the question of predict-

ing the expected market return with past return observations. Specifically, we are interested

in computing the conditional market autocorrelation, corrt (Rt→t+1,Rt+1→t+2), under the

real-world probability measure. This conditional market autocorrelation reveals how two

future returns change from the perspective of time t in two consecutive periods. Our goal

12Gormsen (2021); Bansal et al. (2021) study the term structure of the dividend future return, or θ n,m =
Et [Rn,t −Em,t ] for long maturity n and short maturity m < n. Similarly, Binsbergen et al. (2012); Binsbergen
and Koijen (2017) consider the difference between short-term assets with all dividend payments until T , say
three years, and long-term assets with all remaining future dividends.
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is to compute these conditional market autocorrelations from derivatives data.

For this purpose, we compute

Covt (Rt→t+T ,Rt+T→t+T+1) = Et [Rt→t+T+1]−Et [Rt→t+T ]×Et [Rt+T→t+T+1] . (2.18)

By Equations (2.3) and (2.11), the expected spot return can be recovered from equity index

option prices, and the expected future return can be obtained from the VIX-derivatives.

Similarly, we can estimate Vart(Rt→t+T ),Vart(Rt+T→t+T+1), and then the autocorrelation

coefficient corrt (Rt→t+1,Rt+1→t+2), under the real-world probability measure.

Table 2.3 (Panel A) reports the market autocorrelation on the S&P 500 index. We use the

average value between the implied volatility of at-the-money put and call VIX options as a

proxy for σt . Following the VIX futures structure, we consider T1 to be 1, 2, 3, 4, 6 and 9

months, and T2 to be fixed for 1 month. Across columns, we observe significantly negative

coefficients, suggesting a persistent short-term reversal. For instance, when T1 is 1 month,

corrt(Rt→t+1mo,Rt+1mo→t+2mo) is on average −20.90% with a t-stat of 18.10. On average,

the market autocorrelation on S&P 500 index is around −20% to −40%. Notably, the

numbers in Table 2.3 are comparable to Chabi-Yo (2019) and Martin (2021). Using index

options data, Chabi-Yo (2019) estimates that the upper bounds of autocorrelation vary from

−28% to −3%; with price quotes of forward-start options from a major investment bank,

Martin (2021) estimates that the autocorrelation of the S&P 500 index is between −20%

and−40% for a small number of days. Table 2.3 suggests that our no-arbitrage framework,

in Proposition 2.2.1, is consistent with the pricing of over-the-counter derivatives in the

market.

Figure 2.4 displays the time-series of corrt(Rt→t+1mo,Rt+1mo→t+2mo). It is well known

that the month-month autocorrelation coefficient from the historical data is close to zero

((Lo and MacKinlay, 1988, 1990), and Table 2.3, Panel B). From the perspective of the

derivatives market, however, the autocorrelation coefficients can be either negative or pos-
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itive, though they are negative most of the time.

As a comparison, we also compute the month-to-month autocorrelation between two

consecutive calendar months using historical stock return, including January/February,

February/March, · · · , and December/January. Figure 2.5 plots the consecutive month-to-

month autocorrelation over various periods with the data prior to January 1927 obtained

from Robert Shiller’s website. In contrast to virtually zero month-month autocorrelation

coefficient in (Lo and MacKinlay, 1988, 1990), the autocorrelation between two consecu-

tive months can be significantly nonzero. It can be either positive or negative, depending

on the sample of the data. For example, the autocorrelation of March/April is around 10%

over 1871-2019, but −20% over a recent time period 1990-2019.

We next compute the consecutive month-to-month autocorrelation from the derivative

market as explained in Section 2.2. For consistency, we restrict the sample period to

2006−2019, calculate corrt(Rt→t+1mo,Rt+1mo→t+2mo) on the first day of each month and

take the simple average within each of the 12 calendar months of the year. For example, for

March/April, we compute the correlation coefficient with VIX-derivatives data on March

1 in each year and then take a simple average. Our results are displayed in Figure 2.6, in

which the solid red line displays the month-to-month autocorrelations from the derivative

market. By contrast, the blue dot line represents the month-month autocorrelation from the

historical stock return (as in Figure 2.5). Both methods yield a similar pattern of consec-

utive month-month autocorrelation, but the derivative approach results more negatively in

magnitude. In fact, we demonstrate negative autocorrelation between any two consecutive

months from the derivatives market. As an illustration, both yield similar autocorrela-

tion coefficients of −35% between February and March, and −10% between December

and January. Between May and June, the derivative approach implies an autocorrelation

as large as −40%, while the historical returns suggest a value of −20%. Moreover, the

monthly return displays a stronger reversal in specific periods than others (for instance,

from February to March, May to June, July to August, and December to January) by both
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approaches. However, Figure 2.5 also displays a moderate reversal between two consecu-

tive calendar months in specific periods. For instance, the corresponding autocorrelations

are significantly negative from February to March, March to April, May to June, November

to December, and December to January. In summary, the derivative market reveals a robust

short-term reversal in the stock market from a forward-looking perspective.

Finally, using the VIX approach, we can derive the conditional correlation coefficient

between two spot returns. For instance, in the following conditional correlation between

Rt→t+1 and Rt→t+2,

corrt(Rt→t+1,Rt→t+2) =
Et [Rt→t+1Rt→t+2]−Et [Rt→t+1]Et [Rt→t+2]√

Vart(Rt→t+1)
√

Vart(Rt→t+2)
, (2.19)

every term except Et [Rt→t+1Rt→t+2] is obtained from index options. Similar to Equation

(2.5), we have

Et [Rt→t+1Rt→t+2] =
1

R f ,t→t+2
EQ

t

[
(Rt+1→t+2)

2× (Rt→t+1)
3
]
,

=
1

R f ,t→t+2

{
EQ

t

[
(Rt+1→t+2)

2
]
×EQ

t

[
(Rt→t+1)

3
]
+CovQ

t

(
(Rt+1→t+2)

2 ,(Rt→t+1)
3
)}

∼ 1
R f ,t→t+2

EQ
t

[
(Rt+1→t+2)

2
]
×EQ

t

[
(Rt→t+1)

3
]
,

assuming corrQ
t

(
(Rt+1→t+2)

2 ,(Rt→t+1)
3
)
= 0.13 Proposition 2.2.1 and Equation (2.3)

can be used to derive Et [Rt→t+1Rt→t+2] with index options and VIX derivatives.

Panels C and D in Table 2.3 report this new correlation coefficient calculated using either

derivatives or historical stock returns. As shown, using historical data, the autocorrelation

between two spot returns is significantly positive. For example, on average, the correlation

coefficient between the one-month spot return and the two-month spot return is 0.746.

13By a similar method in Section 2.4, we can also justify this assumption empirically. Without the VIX
approach, we need prices of some generalized forward-start options or spread options which are at present
traded only in over-the-counter markets.
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However, based on derivatives market information, the one-month spot return and two-

month spot return are more significantly positively correlated (0.83). Furthermore, the mar-

ket autocorrelation between two spot returns, for T1 = 1,2,3,4,6,9 months, using deriva-

tives market information is more significant than the correlation coefficients derived from

the historical stock returns data. Given the robust short-term reversal from the derivatives

(Panel A), we document that the derivatives market information reveals a very substantial

and higher correlated movement between two spot returns.

2.3.4 Market timing

To demonstrate the investment value of the VIX-approach, we next propose a market

timing strategy as the third application. We start by constructing a reversal trading signal

based on the forward-looking autocorrelation from the derivatives. We then discuss sev-

eral evaluation criteria and report the out-of-sample performance of the marketing timing

strategy.

2.3.4.1 A reversal trading signal

Motivated by the short-term reversal documented in Table 2.3, we construct a reversal

signal based on both realized cumulative excess returns and the conditional derivative-

based autocorrelation. Specifically, we define the reversal signal at time t as, the realized

cumulative excess return over the past K months, rt−K→t , and the corresponding conditional

autocrrelation corrt−K(rt−K→t ,rt→t+1) by Q-approach computed at time t−K as follows.

S̃t,K [rt−K→t ,corrt−K(rt−K→t ,rt→t+1)] =



1, if rt−K→t > 0 & corrt−K(rt−K→t ,rt→t+1)> 0,

1, if rt−K→t < 0 & corrt−K(rt−K→t ,rt→t+1)< 0,

0, otherwise,

(2.20)

where rt−K→t = Rt−K→t −R f ,t−K→t is the realized cumulative excess return over the past

K months, corrt−K(rt−K→t ,rt→t+1) is calculated from the derivatives, and K = 1, 2, 3, 4,
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6, and 9 months. In total, we have six market reversal signals at time t.14

Following the market reversal signal in 2.20, we trade the market by implementing a

zero-cost strategy at the beginning of the subsequent month. As an illustration, if we use

the one-month reversal signal as a trading signal at time t and implement the corresponding

market timing strategy, the realized return in the subsequent month is

η
[
S̃t,1
]
=


rt→t+1, if S̃t,1 = 1,

0, otherwise.
(2.21)

We call the strategy based on the 1-month reversal signal the single timing strategy. It is

also possible to use all six reversal signals together, which we call combination timing strat-

egy. For instance, employing the combination strategy would entail being long the market

if ∑K S̃t,K is greater than some threshold, ξ , an integer ranging from 2 to 5. Following the

combination timing strategy, the realized return in the next month is

η
[
S̃t,K,∀K;ξ

]
=


rt→t+1, if ∑K S̃t,K ≥ ξ ,

0, otherwise.
(2.22)

In other words, we should be long the market if and only if at least ξ reversal signals

defined in Equation (2.20) indicate long signals.

2.3.4.2 Performance evaluation

To evaluate the market timing strategy’s performance, we compute four performance

measures based on the mean µ̂ j and standard deviation σ̂ j of the out-of-sample realized

returns of strategy j.

First, we measure the out-of-sample Sharpe ratio (SRatio) and the certainty-equivalent

14Notice that computing the autocovariance is sufficient in constructing the reversal signal. We do not
necessarily need the autocorrelation in this case.
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return (CEQ) of each strategy,

ŝ j =
µ̂ j

σ̂ j
(2.23)

and

ˆCEQ j = µ̂ j−
γ

2
σ̂

2
j , (2.24)

where γ is chosen to be 1, consistent with the log-utility specification of the stochastic

discount factor in Section 2.2.

Next, we compute DeMiguel et al. (2009) return-loss with respect to a benchmark. We

choose the buy and hold strategy as the benchmark as in Gao et al. (2018). Precisely, if

{µ̂b, σ̂b} are the monthly out-of-sample mean and volatility of the excess returns from the

buy-and-hold strategy, the return-loss from strategy j is

return-loss j =

(
µ̂b

σ̂b

)
× σ̂ j− µ̂ j. (2.25)

In other words, the return-loss is the additional return required in order for the performance

of strategy j to be consistent with the performance of the benchmark. A negative value

indicates that strategy j outperforms the benchmark as measured by the Sharpe ratio.

Lastly, we calculate the performance fee suggested in Fleming et al. (2001), defined as

the maximum fee that a quadratic-utility investor would be willing to pay to switch from

the benchmark to the timing strategy. This fee is estimated as the value of ∆ that solves

∑
t

[(
R j,t−∆

)
− γ

2(1+ γ)

(
R j,t−∆

)2
]
= ∑

t

[
Rb,t−

γ

2(1+ γ)
R2

b,t

]
, (2.26)

where R j,t and Rb,t denote the out-of-sample realized returns for timing strategy j and the

benchmark, respectively. We report the estimates of ∆ in units of basis points per annum.

2.3.4.3 Out-of-sample performance

Panel A of Table 2.4 reports the performance measured on (annualized) returns generated

from the market timing strategies over the full sample period. The market timing strategy
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delivers good realized returns, but does not necessarily lead to the highest realized return

on average. The average realized return is about 4.433% per annum by the single timing

strategy, whereas the average return from buy and hold is about 5.489%. This is reasonable

given the market’s upward trend from 2006 to 2019, regardless of the financial crisis around

2008 or a market downturn in 2018.

More important questions to ask are: (i) whether the market timing strategy delivers a

higher Sharpe ratio; and (ii) whether it “predicts” bad market times.

For the first question, all timing strategies produce minor standard deviations than the

benchmark, suggesting that the market timing strategy is more conservative than the bench-

mark. For instance, the standard deviation is 9.616% per annum for the single timing strat-

egy; but 14.789% for buy and hold, which is almost twice large. As a result, the single

timing strategy produces a Sharpe ratio of 0.461, whereas the buy and hold only achieves

0.371. We also see that the last combination timing strategy delivers a higher Sharpe ratio

of 0.467.

For the second question, we evaluate the out-of-sample performance during the NBER

recessions in Panel B of Table 2.4. Not surprisingly, the buy and hold strategy suffers a

dramatic loss, yielding a negative average return of −32.304% per annum, along with a

standard deviation as high as 25.565%, during January 2008−June 2009. Consequently,

the Sharpe ratio of the benchmark is around −1.264. In contrast, the single timing strat-

egy, η
[
S̃t,1
]
, achieves an average return of−7.027% per annum, along with a much smaller

standard deviation of 14.420%. Although the Sharpe ratio from the single timing strategy is

also negative, around−0.487, it exhibits a significant economic value relative to the bench-

mark, as suggested by the return-loss and the performance fee. The −11.194% return-loss

value of the single timing strategy suggests that investors are willing to pay as high as 11%

per annum to switch from the buy and hold to the market timing strategy. Likewise, the

quadratic-utility investor would be willing to pay an estimated 2630 basis points annually

to switch from the benchmark portfolio to the single timing strategy. Remarkably and con-
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sistently, during the market crisis, all single and combination timing strategies yield higher

average returns, smaller standard deviations, higher Sharpe ratios, larger CEQs, negative

return-loss measures, and positive performance fees than the buy and hold strategy.

Furthermore, we plot the realized returns generated from the single market timing strat-

egy and the buy and hold strategy during the NBER recessions from January 2008 to June

2009 in Figure 2.7. This recession period overlaps the 2008/09 global financial crisis. We

observe that the market timing strategy based on a one-month reversal signal avoids signifi-

cant market crashes in January, June, September, October of 2008, and January of 2009. To

summarize, we show that the robust short-term reversal identified by the derivative market

does reveal valuable information on future market downturns, and the associated economic

value can be substantial.

2.4 VIX-Gamma approach

So far, we have assumed that θt = corrQt
(
Rt→t+1,R2

t+1→t+2
)
= 0. One appealing feature

of the VIX-approach is that it provides an effective way to compute forward return in real-

time.

However, we need to justify this assumption for the equity index, as this zero risk-neutral

correlation coefficient assumption fails for a general risk-neutral bivariate distribution in a

no-arbitrage pricing model.15 Consequently, we turn our attention now to the problem of

estimation and prediction of θt using available derivatives data.

In this section, we first provide an alternative expression of forward return in terms of

option prices and gammas. Although this formula cannot be used in real-time to compute

forward return (see explanations below), we can combine this expression and Equation

(2.5) to construct a predictor for the parameter θt using available historical index options

and VIX-derivatives. Then, we use this estimation of θt at time t to compute the forward

return. We call this methodology, the VIX-Gamma approach, and apply the VIX-Gamma

15We provide a simple example in ?? to illustrate that the risk-neutral correlation coefficient can be any
nonzero number between -1 and 1 in a simple two-period no-arbitrage asset pricing model.
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approach to the market timing strategy on a real-time basis.

2.4.1 Forward return from index option market

In this subsection, we provide an alternative expression of forward return from the op-

tions market.

Proposition 2.4.1 Suppose that interest rates are deterministic. Then,

Et [Rt+1→t+2] = 2St

∫
∞

0

C
′′
t (St ,L)

L3


∫

∞

0
Ct+1(L,K)dK︸ ︷︷ ︸

inside-integral, It+1(L), known at t

 dL, (2.27)

where

• St = underlying index price observed at time t;

• C
′′
t (S,L) = the call option gamma at time t with the underlying St and strike price L;

• Ct+1(L,K) = the call option price at time t+1 with the underlying L and strike price

K.

Proof: See Appendix �

Compared with Eq. (2.11) for the equity index, Equation (2.27) presents an alternative

formula of forward return for a general underlying variable Rt . Specifically, to compute a

forward return at time t, there are two sets of option data required in Equation (2.27) in

addition to the asset price St . First, the call option gamma, C
′′
t (S,L), with the underlying

St , strike price L, and maturity t + 1, is needed. The option gamma is available in real-

time. Second, the time t +1 price of call option price with time to maturity t +2, when the

underlying price is L at time t+1, from time t perspective. Notice that this price Ct+1(L,K)

is known at time t, but it is not real-time, since the underlying index only achieves one

particular number at time t +1. Therefore, we need to explain why the option gamma and

Ct+1(L,K) are involved in this equation (the details are given in the Appendix).
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First of all, the number Ct+1(L,K) involved in Equation (2.27) is well-defined at time t.

As a simple illustrative example, the Black Scholes option formula, assuming the underly-

ing asset has a normal distribution with a constant volatility parameter σ , presents a known

option price at a future time as follows:

Ct+1(L,K) = LN(d1)−
K

R f ,t+1→t+2
N(d1−σ

√
∆t),d1 =

log(L/K)+(rt +
1
2σ2)∆t

σ
√

∆t
.

When we write Ct+1(St+1,K) at time t, the reason we do not know the option price precisely

is that we do not know the realized value St+1. However, the no-arbitrage asset pricing

theory guarantees the relationship between Ct+1(St+1,K) and St+1. In particular, when

St+1 achieves a number L, the price Ct+1(L,K) is known. This argument holds in general,

regardless of the distribution of St+1. The reason is simple. Given the specification of the

stochastic discount factor, we know at time t a precise relationship between the underling

index price St+1 and the option price Ct+1(St+1,K) for any conditional distribution of St+1.

Hence, Ct+1(L,K) is well-defined at time t.

Second, even though Ct+1(L,K) is known at time t, its expression could be complicated.

Under the power-specification of the stochastic discount factor, we obtain

Et [Rt+1→t+2] =
2

R f ,t→t+1St

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK, (2.28)

which resembles a similar insight in Equation (2.3) for a future return (a proof is given

in the Appendix). If the specification of the stochastic discount factor contains a volatility

component, as discussed in Bakshi et al. (2021); Babaoğlu et al. (2018); Christoffersen et al.

(2013), the above expression of the forward return would be different, since Ct+1(L,K)

would also depend on the volatility at time t. But, such a specification involving a volatility

component is beyond the scope of the present paper.

Third, why do we need option gammas in Equation (2.27) for a future return, whereas

only option prices are required to compute expected spot return Et [Rt→t+1] in Equation
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(2.3)? This difference seems substantial since Rt+1→t+2 is just the index return in a future

time period [t + 1, t + 2]. We notice that the term inside the integral is time t price (ig-

noring the interest rate) of a future payoff Ct+1(St+1,K)
St+1

at time t +1; thus, it is essentially a

forward-start option price with payoff max(St+2−K,0)
St+1

at time t +2. We write Π(L|St) be the

conditional distribution of St+1. Namely,

Π(L|St) =
∫ L

0
q(z|St)dz

where q(z|St) is the conditional density function under the risk-neutral probability measure.

It is known in the options literature that

dΠ(L|St) = R f ,t→t+1
∂ 2Ct(St ,L)

∂L2 dL

Therefore, we can represent the forward-start option at time t as

EQ
t

[
Ct+1(St+1,K)

St+1

]
=
∫

∞

0

Ct+1(L,K)

L
R f ,t→t+1

∂ 2Ct(St ,L)
∂L2 dL.

Finally, Equation (2.27) follows from the following relationship between option gamma

and strike-gamma as follows.

L2 ∂ 2Ct(St ,L)
∂L2 = S2

t
∂ 2Ct(St ,L)

∂S2
t

,

in which we can use the option gamma to replace the strike gamma up to a constant.

Remark 2.4.1 Similarly, we can derive Et
[
Rk

t+1→t+2
]
,k ≥ 2 as follows.

Et

[
Rk

t+1→t+2

]
= (k+1)kSt

∫
∞

0

C
′′
t (St ,L)
Lk+2

∫ ∞

0
Kk−1Ct+1(L,K)dK︸ ︷︷ ︸

 dL. (2.29)

Therefore, we can obtain the conditional distribution of a future return Rt+1→t+2 in terms
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of index option prices and index gamma.

It is worth mentioning that Proposition 2.4.1 cannot be used directly since Ct+1(L,K)

cannot be calculated precisely, at time t, since we do not specify the conditional distribution

of St+1. For this reason, there is no way to find such data at time t to derive the forward

return in real-time.

This limitation of Proposition 2.4.1 prevents us from deriving the forward return from

the option market, compared with the real-time VIX-approach. In the next section, we

explain how to combine both Proposition 2.4.1 and Eq. (2.11) to introduce an improved

VIX-Gamma approach for the forward return.

2.4.2 VIX-Gamma approach

Suppose our objective is to estimate the number θt at time t. One procedure is as follows.

First, at time t− 1, we calculate all risk-neutral return quantities on the right-hand side

of Equation (2.5) by Proposition 2.2.1, except for θt−1. Second, assuming the index price

St is realized at time t. By the homogeneous property of the option price, Ct(L,K) =

Ct(St ,StK/L) L
St

, we are able to calculate Ct(L,K) at time t for any L. Therefore, at time t−

1, we compute the left-hand side, Et−1[Rt→t+1], of Equation (2.5) directly by Proposition

2.4.1. By equating the left-hand and right-hand sides calculations, we calculate the value

of θt−1. Figure 2.8 provides a visual illustration on how to understand Equation (2.27).

Finally, at time t, we compute the forward return by,

Et [Rt+1→t+2] =
1

R f ,t+1→t+2
EQ

t [Rt+1→t+2]+
θ̂t

R f ,t→t+2

√
VarQ

t (Rt→t+1)

√
VarQ

t (R2
t+1→t+2),

(2.30)

where θ̂t = θt−1,

In the above procedure, we use the risk-neutral correlation coefficient θt−1 as a predictor

of θt . The reason is straightforward. From an econometrics perspective, we can investigate

the time-series property of θs,s < t, at time t. Then, we can use statistics of this time-

series {θs,s < t} to predict θt by an econometrics study. For example, if this time series is
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stationary, θt−1 is a good indicator of θt . More generally, if this time series is ergodic, the

sample average of θs,s < t is a good indicator of θt . A VIX-Gamma approach is to use a

predictor θ̂t from the statistics of time-series of all past θ ’s in Equation (2.30).

Table 5 reports some statistics of the time series of θt that is calculated with available

derivative data. We find out the sample average of θt is relatively stable across different

periods and close to zero. For instance, the average value of θt in different periods varies

between -0.092 to 0.049 except for the calendar year 2010−2011. Moreover, the moving

average of θt from 6 months to 5 years belongs to [-0.046, 0.013]. And for the entire period,

the moving average of θt is about -0.06. Therefore, we have justified the VIX-approach by

assuming a zero value of θt for the equity index.

The difference between the VIX-Gamma approach, Equations (2.30), and the VIX-

approach is a non-zero predictor θ̂t , which relies on all index (prices and gammas) up

to (and include) time t, and VIX derivatives data prior to time t. In the end, we make use

of all available VIX derivative data. all option price and option gamma data until to time t,

to calculate the forward return Et [Rt+1→t+2]. Since the VIX-Gamma approach relies on all

historical and current derivatives data, it provides a forward-backward perspective of future

returns. In contrast, the VIX approach is forward-looking because current VX-derivatives

data are required.

2.4.3 Market timing by VIX-Gamma

In this subsection, we implement the same market timing strategy with the VIX-Gamma

approach. Same as before, we compute the market autocovariance (autocorrelation) on the

market and construct the market timing strategy. For brevity, we simply choose the single

timing strategy where we rely on the 1-month reversal signal only. We use the θt that are

predicted recursively as explained in the last subsection.

Table 2.5 reports several key out-of-sample performance measures of VIX-Gamma ap-

proach and the buy and hold benchmark. Same as in Table 2.4, we consider both full sample

period and the NBER recession subperiod during January 2008−June 2009. We observe
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that, in the full sample, the VIX-Gamma approach outperforms the buy and hold with a

higher average return, smaller standard deviation. Remarkably, the Sharpe ratio increases

by 35%, from 0.371 by buy and hold to 0.500 by VIX-Gamma. Moreover, the Sharpe ratio

difference of 0.129 is statistically significant. Likewise, the CEQ difference is also signifi-

cantly positive at the 5% level. The negative return-loss and positive performance fee both

suggest that the market timing strategy improves significantly by considering much more

options data in VIX-Gamma approach.

A more striking result is given in Panel B of Table 2.5, during the NBER recessions

period. In comparison to the negative mean returns and Sharpe ratios from buy and hold

strategy, and those from the VIX-approach based timing strategy in Panel B of Table 2.4,

here we observe a positive average return, a positive Sharpe ratio, and a positive CEQ.

Compared with the return-loss of−11.194% and the performance fee of 2,630 basis points

for the VIX-approach based single timing strategy in Panel B of Table 2.4, the two quan-

tities jump to −31.153% and 3,948 basis points, separately, once we switch to the VIX-

Gamma approach. On the whole, those results highlight the improved forecasting gains

associated with the VIX-Gamma approach, and justify the investment value of studying

the conditional expected returns from the derivatives.

The difference between our market timing strategy and the benchmark strategy is that we

long the market only when the signal shows a positive market excess return in the following

month. In contrast, the benchmark strategy is long the market persistently. In other words,

our market timing strategy is to stay away from the stock market if the signal from the

derivative market suggests a future market downturn. Therefore, the relative performance

of the market timing strategy mainly depends on whether the reversal signal identified

indeed reveals valuable information about the market return in the following month.

As shown in Figure 2.9, the reversal signal from the VIX-Gamma approach more ac-

curately predicts the market downturn than the VIX-approach in Figure 2.7. Remarkably,

we find that the trading signals from the VIX-Gamma approach successfully predicted all
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market crashes during the 2008/09 global financial crisis, except for the most severe one in

October 2008. Remarkably, it also captures the upside potentials, for instance, in April and

May of 2009, which seems missing in the VIX-approach.

Finally, we plot the realized returns during in full sample period in Figure 2.10. To

highlight the predictive power of the timing strategy, we shadow the area below zero. The

reversal signal from VIX-Gamma does seem to predict the market downturn, particularly

when the market crashed in 2008−2009, 2014, 2015, and 2018−2019.

2.5 Conclusion

In this paper, we express the equity index’s forward return by market available derivatives

data–index option prices and gammas, VIX-futures, and VIX-option prices. Since this

expression depends on all historical derivative and current derivative data, this expression

yields a term structure of forward returns from a forward-backward perspective without

relying on any model assumption about the equity index.

We present three applications of this expression of forward return from derivatives, in-

cluding the pro-cyclic term structure of forward returns, robust autocorrelation analysis and

short-term reversal pattern, and a profitable dynamic market-timing strategy. The forward

return reveals future market drawdowns and captures upward market movements, yielding

substantial economic value. Overall, we demonstrate the significance of derivatives market

information in estimating expected returns in the future (Miller, 1999, page 100).
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Table 2.1: Summary statistics of VIX and VIX-derivatives

This table provides the summary statistics for VIX, VIX futures, and implied volatility of VIX
options. The sample period is from March 26, 2004 (February 24, 2006) to December 31, 2019 for
VIX futures (options).

Mean Std dev p25 Median p75 Skew Kurt

Panel A: VIX index

18.869 9.013 13.150 16.210 21.490 2.556 11.963

Panel B: VIX futures prices

Maturity (in months)

1 19.417 8.157 14.300 16.883 22.100 2.308 9.896

2 20.144 7.328 15.350 17.800 23.000 1.946 7.809

3 20.767 6.596 16.286 18.558 23.702 1.610 6.072

4 21.072 6.260 16.682 18.925 24.107 1.428 5.097

6 21.578 5.835 17.355 19.504 24.669 1.179 4.024

9 22.039 5.874 17.993 20.130 25.579 0.518 3.880

Panel C: Implied volatility of VIX options

Maturity (in months)

1 Put 0.891 0.168 0.789 0.871 0.974 1.268 8.293
Call 0.893 0.164 0.788 0.875 0.978 1.139 7.033

2 Put 0.790 0.111 0.716 0.795 0.858 0.453 6.279
Call 0.789 0.110 0.714 0.794 0.857 0.444 5.125

3 Put 0.717 0.089 0.660 0.724 0.776 0.159 4.776
Call 0.716 0.089 0.657 0.723 0.774 0.245 5.208

4 Put 0.668 0.078 0.616 0.673 0.720 0.070 3.692
Call 0.667 0.078 0.613 0.673 0.719 0.269 5.711

6 Put 0.630 0.071 0.579 0.635 0.678 0.067 3.396
Call 0.628 0.072 0.576 0.634 0.676 0.153 4.176

9 Put 0.617 0.073 0.568 0.622 0.667 0.003 3.247
Call 0.615 0.074 0.565 0.622 0.665 -0.019 3.161
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Table 2.2: Expected future one-month return from the VIX-derivatives
This table provide the summary statistics for the expected future one-month return from the VIX-
derivatives. The maturities are 1, 2, 3, 4, 6 and 9 months. We report mean, median, standard
deviation, skewness and kurtosis. Panel A, B, and C consider three different sample periods: (i)
full sample: February 24, 2006−December 31, 2019; (ii) Bad times (NBER recessions): January 1,
2008−June 30, 2009; and (iii) Good times (post-NBER recessions): July 1, 2009−December 31,
2019. All results are annualized and expressed in percentage.

Avg. Ret (%) Std dev (%) p25 p50 p75 Skew Kurt

Panel A: Sample period: February 24, 2006−December 31, 2019

Maturity (in months)

1 5.891 5.202 2.813 4.557 6.887 3.810 22.653

2 6.254 4.419 3.386 5.160 7.392 3.077 16.245

3 6.602 3.802 3.993 5.680 7.845 2.530 12.536

4 6.853 3.553 4.350 5.951 8.102 2.155 9.718

6 6.818 3.371 4.386 5.780 8.204 1.895 7.380

9 7.197 3.891 5.093 6.412 9.116 0.837 4.739

Panel B: Bad times (NBER recessions): January 1, 2008−June 30, 2009

Maturity (in months)

1 14.952 10.142 7.527 9.864 20.475 1.359 4.103

2 14.071 7.860 7.959 10.163 19.375 1.131 3.365

3 13.178 6.205 8.286 10.262 18.021 1.075 3.290

4 12.915 5.440 8.528 10.385 17.486 0.868 2.660

6 12.329 4.801 8.435 9.718 17.007 0.712 2.086

9 11.859 4.436 8.549 9.702 16.067 0.997 4.787

Panel C: Good times (post-NBER recessions): July 1, 2009−December 31, 2019

Maturity (in months)

1 4.332 2.477 2.569 3.683 5.233 2.056 8.809

2 4.891 2.399 3.066 4.357 5.753 1.574 5.815

3 5.442 2.356 3.582 4.968 6.331 1.330 4.548

4 5.781 2.360 3.939 5.294 6.714 1.289 4.395

6 6.409 2.451 4.499 5.724 7.366 1.174 3.754

9 7.446 2.931 5.360 6.439 9.011 1.023 3.683
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Table 2.3: Market autocorrelation on S&P 500 index from the derivatives
Panels A and C report the statistics of the conditional market autocorrelation,
corrt(Rt→t+T1 ,Rt+T1→t+T1+T2) and the conditional correlation between two spot returns,
corrt(Rt→t+T1 ,Rt→t+T1+T2), on S&P 500 index from the derivatives, respectively. We also
compute them from historical stock returns in Panels B and D, respectively. The sample period is
from February 24, 2006 to December 31, 2019. *** indicates significance at the 1% level.

T1 1 month 2 months 3 months 4 months 6 months 9 months
T2 1 month 1 month 1 month 1 month 1 month 1 month

Panel A: corrt(Rt→t+T1 ,Rt+T1→t+T1+T2) from derivatives

Mean -0.209*** -0.279*** -0.362*** -0.313*** -0.268*** -0.257***

p25 -0.290 -0.364 -0.462 -0.383 -0.318 -0.346

p50 -0.196 -0.238 -0.346 -0.270 -0.251 -0.255

p75 -0.087 -0.151 -0.229 -0.194 -0.199 -0.204

Skew -0.944 -0.645 0.252 -1.364 0.018 1.048

Kurt 5.467 7.696 8.711 5.814 8.116 8.160

Panel B: corrt(Rt→t+T1 ,Rt+T1→t+T1+T2) by realized historical returns

ρ̂ 0.093 0.044 0.079 0.118 0.035 0.029

Panel C: corrt(Rt→t+T1 ,Rt→t+T1+T2) from derivatives

Mean 0.829*** 0.944*** 0.978*** 0.982*** 0.976*** 0.971***

p25 0.734 0.912 1.000 1.000 1.000 1.000

p50 0.850 0.997 1.000 1.000 1.000 1.000

p75 0.963 1.000 1.000 1.000 1.000 1.000

Skew -0.765 -8.093 -9.046 -4.847 -4.448 -3.833

Kurt 3.151 114.762 111.636 31.996 24.396 18.117

Panel D: corrt(Rt→t+T1 ,Rt→t+T1+T2) by realized historical returns

ρ̂ 0.746*** 0.841*** 0.889*** 0.919*** 0.944*** 0.961***
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Table 2.4: Market timing
This table reports the investment value of timing the previous cumulative market excess return and
conditional market autocorrelation. We consider six reversal signals, S̃t,K , for K = 1, 2, 3, 4, 6, and
9 months.

The single timing strategy, η
[
S̃t,1
]

takes a long position in the market when the one-month reversal
signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise.
The combination timing strategy, η

[
S̃t,K ,∀K;ξ

]
utilizes all six reversal signals, and takes a long

position in the market only if at least ξ out of six reversal signals take values of ones. We consider
ξ to be 1, 2, 3, 4, and 5.

Panel A and B consider two different out-of-sample periods: 1) full sample period; 2) NBER reces-
sion period: January 2008−June 2009. The average value, standard deviation, and return-loss are
expressed in percentage, and the performance fee is in basis points. All results are annualized.

Avg ex-Ret (%) Std dev (%) SRatio CEQ SRatio Diff CEQ Diff Ret-Loss (%) Fee (bps)

Panel A: Full sample period

Buy and hold 5.489 14.789 0.371 0.044

η
[
S̃t,1
]

4.433 9.616 0.461 0.040 0.090 -0.004 -0.863 -74.433

η
[
S̃t,K,∀K;ξ = 2

]
2.389 11.175 0.214 0.018 -0.157 -0.026 1.759 -286.856

η
[
S̃t,K,∀K;ξ = 3

]
1.997 9.986 0.200 0.015 -0.171 -0.029 1.709 -319.872

η
[
S̃t,K,∀K;ξ = 4

]
1.733 9.343 0.185 0.013 -0.186 -0.031 1.735 -343.248

η
[
S̃t,K,∀K;ξ = 5

]
3.347 7.166 0.467 0.031 0.096 -0.013 -0.687 -172.763

Panel B: NBER recessions: January 2008−June 2009

Buy and hold -32.304 25.565 -1.264 -0.356

η
[
S̃t,1
]

-7.027 14.420 -0.487 -0.081 0.776 0.275 -11.194 2630.850

η
[
S̃t,K,∀K;ξ = 2

]
-23.918 20.746 -1.153 -0.261 0.111 0.095 -2.297 890.633

η
[
S̃t,K,∀K;ξ = 3

]
-11.842 18.780 -0.631 -0.136 0.633 0.220 -11.888 2116.325

η
[
S̃t,K,∀K;ξ = 4

]
-11.842 18.780 -0.631 -0.136 0.633 0.220 -11.888 2116.325

η
[
S̃t,K,∀K;ξ = 5

]
-0.456 11.728 -0.039 -0.011 1.225 0.344 -14.364 3304.994
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Table 2.5: Market timing by VIX-Gamma
This table reports the single timing strategy based on the 1-month reversal signal identified from
the VIX-Gamma approach. Panel A and B consider two different out-of-sample periods: 1) full
sample period; 2) NBER recession period: January 2008−June 2009. The average value, standard
deviation, and return-loss are expressed in percentage, and the performance fee is in basis points.
All results are annualized. The statistical significance of the Sharpe ratio difference (SRatio Diff)
and certainty equivalent return difference (CEQ Diff) are evaluated based on p-values using the
Jobson and Korkie (1981) methodology described in Section 2 of DeMiguel et al. (2009). ** and *
indicate significance at the 5% and 10% levels, respectively.

Avg ex-Ret (%) Std dev (%) SRatio CEQ SRatio Diff CEQ Diff Ret-Loss (%) Fee (bps)

Panel A: Full sample period

Buy and hold 5.489 14.789 0.371 0.044

VIX-Gamma 5.659 11.322 0.500 0.050 0.129* 0.006** -1.456 39.453

Panel B: NBER recessions: January 2008−June 2009

Buy and hold -32.304 25.565 -1.264 -0.356

VIX-Gamma 6.538 19.480 0.336 0.046 1.599 0.402 -31.153 3948.062
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Table 2.6: Implied risk-neutral correlation
This table reports the average value of the risk-neural correlation, θt = corrQt

(
Rt→t+1,R2

t+1→t+2
)
,

that are “calibrated” from the VIX-Gamma approach. We compute the average values either by
moving-averages (MAs) or by the calendar years.

By MAs: 6-month 1-year 3-year 5-year Overall

-0.046 -0.029 0.006 0.013 -0.060

By years: 2006−2009 2010−2011 2012−2014 2015−2017 2018−2019

-0.059 -0.281 0.049 -0.092 0.040
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Figure 2.1: The term structure of expected future one-month return

This figure plots the term structure of the expected future one-month returns by VIX-derivatives.
The figure shows the unconditional average return (solid line), the average return in bad times from
January 2008 to June 2009 during the NBER recessions (dashed line), and the average return in
good times during the post NBER recessions (dash-dotted line).
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Figure 2.2: Expected future one-month returns during the NBER recessions

This figure plots the expected one-month returns in one, three, and six months by VIX-derivatives
during the NBER recessions from January 1, 2008 to June 30, 2009. All results are annualized and
expressed in percentage.
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Figure 2.3: Expected future one-month returns post the NBER recessions

This figure plots the expected one-month returns in one, three, and six months by VIX-derivatives
during the post NBER recession period from July 1, 2009 to December 31, 2019. All results are
annualized and expressed in percentage.
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Figure 2.4: Market autocorrelation on S&P 500 index from VIX-derivatives

This figure plots the real-time forward-looking 1-month to 1-month market autocorrelation,
corrt(Rt→t+1mo,Rt+1mo→t+2mo), on S&P 500 index recovered from VIX-derivatives.
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(a) Sample period 1871 - 2019 (b) Sample period 1920 - 2019

(c) Sample period 1970 - 2019 (d) Sample period 1990 - 2019

Figure 2.5: Realized market autocorrelation between adjacent calendar months

This figure plots the realized month-to-month autocorrelation of the S&P 500 monthly returns be-
tween two consecutive months. The area between the dotted line represents the 90% confidence
interval for the sample autocorrelation by assuming the standard error equals one over the square
root of the sample size. We consider four time periods: (a) 1871 – 2019, (b) 1920 – 2019, (c) 1970
– 2019, (d) 1990 – 2019. The data prior to January 1927 are obtained from Robert Shiller’s website.
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Figure 2.6: Month-to-month market autocorrelation by derivatives and historical data

This figure plots the month-to-month autocorrelation on S&P 500 index between two consecutive
months. By historical return, we compute the sample autocorrelation using historical monthly return
data; by VIX-approach, we compute corrt(Rt→t+1mo,Rt+1mo→t+2mo) by derivative data on the first
day of each month, and then take the average within January, February, ..., and December. The
sample period is from 2006 to 2019.
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Figure 2.7: Market timing during NBER recessions

This figure plots the realized out-of-sample excess returns generated from either buy-and-hold strat-
egy (benchmark) or the market timing strategy over the NBER recessions from January 2008 to
June 2009. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-
month reversal signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free
asset otherwise.
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(a) Call option at time t +1 (b) Call option at time t

Figure 2.8: Calculating the two-integral from call option prices

This figure illustrates the calculation of the two-integral in Proposition 2.4.1. At time t in the right-
side panel, we plot the call option price, Ct(St ,L) for a sequence of strike prices, L ≥ 0, assuming
St = 100, r f = 5%, σ = 25%, and T = 1 year. At time t + 1 in the left-side panel, we plot the
call option prices, Ct+1(L,K), given each L “observed” at time t in the right-side panel as the new
underlying prices, and for a sequence of strikes, K ≥ 0.
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Figure 2.9: Market timing by VIX-Gamma approach during NBER recessions

This figure plots the realized out-of-sample excess returns generated from either buy-and-hold strat-
egy (benchmark) or the market timing strategy over the NBER recessions from January 2008 to
June 2009. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-
month reversal signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free
asset otherwise.
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Figure 2.10: Market timing by VIX-Gamma approach

This figure plots the realized out-of-sample excess returns generated from either buy and hold strat-
egy (benchmark) or market timing strategy over the out-of-sample evaluation period from 2006 to
2019. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-month
reversal signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset
otherwise.



CHAPTER 3: MISPRICING AND ANOMALIES: AN EXOGENOUS SHOCK TO

SHORT SELLING FROM JGTRRA

3.1 Introduction

There is a large asset pricing literature that documents that many firm characteristics can

predict future stock returns (see e.g., Haugen and Baker, 1996; Bali et al., 2016; Harvey

et al., 2016; Hou et al., 2020), yielding a number of anomalies that standard asset pricing

models cannot explain. A fundamental question is what causes anomalies. Despite many

studies on anomalies, researchers still disagree on the source of return predictability. The

literature offers two major explanations.1 First, return predictability could be a result of

compensation for rational risks (e.g., Fama and French, 1992, 1998). Second, it could

reflect mispricing due to limits to arbitrage (e.g., Shleifer and Vishny, 1997; Barberis and

Thaler, 2003; Engelberg et al., 2018). In either case, anomalies exist for good economic

reasons. However, empirically, it is difficult to distinguish between the two explanations as

both explanations can exist (Lewellen, 2010; Lam and Wei, 2011).

This paper investigates the economic causes of anomalies in a comprehensive way. First,

we analyze the issue for all the 182 significant ones out of 355 anomalies identified in

the accounting, economics and finance literature. Second, we utilize the Job and Growth

Tax Relief Reconciliation Act (JGTRRA) of 2003 as a plausibly exogenous shock to short

selling supply and examine its causal effect on anomalies. After the JGTRRA, equity

lenders are reluctant to lend shares around the dividend record dates because “substitute

dividends” that they would receive from short sellers are taxed at ordinary income rates

1A third explanation is that anomalies could result from data mining (Harvey et al., 2016). However, as
shown by Chen (2021), it is unlikely to attribute all the anomalies to p-hacking. Additionally, Bowles et al.
(2017) use a database with the precise release dates of accounting information to show that anomaly returns
are real but quickly exploited after information announcements.
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while qualified dividends are taxed at 15 percent, thus creating a negative shock to the short

selling supply (Thornock, 2013).2 In this paper, we investigate the causal effect of the

differential dividend taxation-induced short selling shocks on mispricing and anomalies.

Since JGTRRA is still in effect, and if we find that it impacts anomalies, it will serve as a

persistently present arbitrage barrier to support the mispricing interpretation.

To investigate how JGTRRA shocks affect limits to arbitrage, we construct a cross-

sectional aggregate net overpriced score (NOPS) from 182 anomalies. Stocks with the

highest values of NOPS are the most “overpriced", whereas those with the lowest values

are the most “underpriced". We focus on two main hypotheses: 1) Mispricing is stronger in

the dividend record months compared to the other months after the JGTRRA of 2003, and

as a result, anomalies are stronger in the subsequent months; 2) The effect mainly comes

from the overpriced stocks.

To assess the causal effect of short selling on mispricing and anomalies, we use a stock-

level difference-in-differences (DID) panel regression framework. Specifically, we regress

future one-month stock returns on NOPS, a dividend record month dummy (DivR) and

JGTRRA dummy, the interaction terms between NOPS and each of two dummy variables,

and finally a three-way interaction term between NOPS, DivR, and JGTRRA. The coeffi-

cient on the three-way interaction term measures the DID effect, namely, the difference

between after and before the enactment of JGTRRA of 2003 of the differences in the pre-

dictive power between the dividend record months and non-dividend record months. In

other words, it captures the differential responses of anomalies to JGTRRA between fol-

lowing the dividend record months and following the other months. We show that the

coefficients on the three-way interaction term, NOPS×DivR×JGTRRA, are significantly

negative (the same sign as NOPS) at the 1% level for various fixed effects and clustering

methods. These results indicate that after JGTRRA, anomalies become stronger following

2According to Thornock (2013), lending fees on average spike by 24% over the median rate, and loan
quantities for tax-sensitive lenders decrease by 18% over the median quantities before the dividend record
dates.
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the dividend record months than following the other months, because stocks become more

mispriced in the dividend record months when it is harder for arbitrageurs to do short sells.

To test the hypothesis that the effects of shocks to short selling come mostly from the

overpriced stocks, we extend our DID analysis by adding High NOPS, Low NOPS and their

corresponding interaction terms. If our conjecture is true, then we expect that the coefficient

on High NOPS×DivR×JGTRRA would be significantly negative, while the coefficient on

Low NOPS×DivR×JGTRRA would be insignificant. Indeed, we find that the coefficient

on High NOPS×DivR×JGTRRA is −0.744 with a t-stat of −2.33, whereas the coefficient

on Low NOPS×DivR×JGTRRA is positive but insignificant. In summary, our results are

consistent with the mispricing explanation for anomalies. This tax-driven exogenous shock

to short selling prevents arbitrageurs from exploiting overpricing and thereby amplifying

anomalies.

We further demonstrate that our results are unlikely driven by risk or data-mining. We

find that our results are robust to controlling for various dynamic risk factors including the

market portfolio and five macroeconomic risk factors in Chen et al. (1986). Moreover, we

conduct various placebo tests to address the data-mining concern. We change the timing

of JGTRRA to various periods and re-estimate our DID regressions. We find that these

fictitious scenarios do not have the same significant impact on anomalies between dividend

record months and the other months. Next, we randomly create pseudo dividend record

months without changing the timing of JGTRRA, and find that the coefficient of the three-

way interaction term is always statistically insignificant.

We conduct a battery of additional robustness checks. First, we show that our results

hold in a portfolio-level DID framework. Economically, in response to JGTRRA, the in-

crease in the anomaly return is on average 1.677% higher after the dividend record months

than after the other months, indicating a stronger response of anomalies after the dividend

record months. Second, we find that the effect of shocks to short selling on mispricing is

more pronounced in periods with higher investor sentiment and stronger for stocks with
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younger age, smaller size, higher idiosyncratic volatility, and lower size-adjusted institu-

tional ownership. Lastly, we show that our results are robust to alternative sample periods,

regression specifications, and mispricing measures.

Equipped with the large number of anomalies, we separate them into four groups: event,

market, fundamentals and valuation following Engelberg et al. (2018), and construct the

mispricing measure (NOPS) for each of the anomaly groups. We then conduct the DID

analysis for each group and find that the impact of JGTRRA on anomalies is significant for

event, market, and fundamentals anomalies but is insignificant for the valuation anomalies.3

These results indicate that valuation anomalies are unlikely due to mispricing. Our evidence

casts some doubts on the mispricing explanation for the value premium (see, e.g., Porta

et al., 1997; Ali et al., 2003) and is consistent with various risk-based explanations in the

literature.4

It is worth noting that the DID framework used in this paper only requires a rather weak

exogeneity condition that the decision to issue dividends does not affect the evolution of

anomalies over time, which is likely to be true as firms rarely change their dividend poli-

cies. In particular, it does not require that dividend stocks and non-dividend stocks are

indistinguishable. In other words, dividend stocks can differ from non-dividend stocks in

systematic ways as long as the differences do not depend on some time-varying unobserv-

able that affect the anomalies because of the double differences approach. Nevertheless, we

further test the robustness of our results using only firms that issue dividends so as to have a

matched sample. In addition, Chetty and Saez (2005) report that a number of firms initiate

dividends immediately after the enactment of the law, which in itself should not affect the

evolution of anomalies over time since it is a one-time change. We nevertheless further

3We find similar results after separating anomalies into momentum, profitability, investment, intangible,
trading frictions, or value & growth according to Hou et al. (2020). The effect is highly significant in all but
value & growth anomalies.

4The risk-based explanations for the value premium include financial distress risk (Fama and French,
1995), investment risk (Berk et al., 1999), investment irreversibility and countercyclical price of risk (Zhang,
2005), consumption risk (Lettau and Ludvigson, 2001), aggregate cash flow risk (Campbell and Vuolteenaho,
2004). More recently, Gerakos and Linnainmaa (2018) show that value premium is mainly driven by varia-
tions in size. Ball et al. (2020) document that earnings yield explains value premium.
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exclude all firms that initiate dividend payouts after the JGTRRA of 2003 to mitigate the

potential concern that firms may initiate dividends in response to the act. An additional

benefit of this exclusion is that we now have the same firms as treated (dividend record

months) and control (other months) before and after JGTRRA. In other words, we have a

setting that resembles the controlled experiment often available in physics or other natural

science disciplines, but rarely available to finance or economics. Our results are robust in

both samples.

Our study is related to Chu et al. (2020), which presently is the only other study to

investigate the causal effect of short-selling constraints on anomalies. Chu et al. (2020)

make a first attempt by using Regulation SHO (Reg SHO) as a quasi-exogenous shock

to the short-sale constraint to study its impact on the 11 anomalies in Stambaugh et al.

(2012) and argue that those anomalies reflect mispricing. While their results are indicative,

it remains unclear whether or not mispricing is a pervasive phenomenon beyond those 11

ones. We utilize a new exogenous shock, which tightens the short-sale constraint instead

of loosening it in Reg SHO and still remains effective today, to study its causal effect on

all the anomalies documented in the literature. We provide strong evidence that mispricing

drives anomalies in general but also find new evidence that if we separate the anomalies

into different types, valuation anomalies do not seem to be driven by mispricing. The two

papers complement each other by shedding light on the source of anomalies.

3.2 JGTRRA dividend tax cut and shocks to short selling

The Jobs and Growth Tax Relief Reconciliation Act (JGTRRA) of 2003 is a tax law

passed by the United States Congress on May 23, 2003. This law reduces the maximum

federal tax rate on qualified dividends from 38.6% to 15%. This tax cut remains effective

for taxpayers whose income does not exceed the thresholds set for the highest income tax.

JGTRRA provides a new opportunity for examining the causal effect of dividend tax-

ation on financial markets. First, this tax cut was largely a surprise to the market prior

to 2003 as it moved from an initial proposal to a signed law in under five months. Con-
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sequently, researchers generally consider it as an exogenous event. Second, JGTRRA is

free of other major changes to the tax law that might confound the empirical analysis of its

effects.

The JGTRRA dividend tax cut substantially affects short selling. Thornock (2013) first

documents the effect of dividend taxation on short selling around the dividend record dates

using proprietary short lending data between 2005 and 2007. He argues that dividend

taxation can affect short selling through “loan effect”, which stems from the different tax

treatments for qualified and unqualified dividends. If a short seller borrows a stock over

the dividend record date, then she repays the amount of dividend to the lender because the

buyer in the short sale is the legal shareholder of record. This repayment is referred to as

the “substitute dividend”, which is taxed at the ordinary income rate rather than the rate of

qualified dividends.

The following numerical example explains the above tax effect. An investor in the 35%

marginal tax bracket owns 100,000 shares of a stock that has an annual dividend pay-

ment of $1.00. After JGTRRA of 2003, this dividend of $100,000 could be taxed at 15%

and therefore the investor would pay $15,000 in taxes. However, if the investor lends the

shares, she would pay $35,000 in taxes. This tax differential of $20,000 is economically

large. Consequently, tax-sensitive equity lenders would increase their fees and decrease

their lending quantities around the dividend record dates. Another adverse effect of divi-

dend taxation on short selling is associated with dividends received deduction (DRD) from

corporate income. The DRD allows for a 70% deduction on dividends received from other

corporations. However, substitute dividends are not qualified for the DRD.

Dixon et al. (2021) also observe a significant tightening of the equity lending market

around dividend record days. Blocher et al. (2013) find that prices of hard-to-borrow stocks

surge around ex-dividend dates due to a decline in short selling supply driven by dividend

taxation. However, none of these studies directly test a causal relation between dividend

taxation and short selling. We document a causal relation between the short interest ratio
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and JGTRRA in the dividend record months in the later section.

3.3 Data and research design

In this section, we discuss the data, the construction of the aggregated mispricing mea-

sure, and the difference-in-differences panel regression framework used to detect the impact

of shocks to short selling on mispricing and the strength of anomalies.

3.3.1 Data

We collect dividend information, prices, and monthly returns from the Center for Re-

search in Security Prices (CRSP) between July 1965 and December 2019. One concern is

that from 1954 to 1984, a dividend income exemption was introduced that initially started

at $50, and a 4% tax credit for dividends above the exemption. After 1985, dividends

were fully taxed under ordinary income rates, without any exemption, until the JGTRRA

of 2003.5 To that end, we restrict our main analysis using the sample from July 1985 to

December 2019. We also restrict our sample to ordinary taxable cash dividends (CRSP dis-

tribution code = 1232) of $0.01 or greater that are paid by ordinary common shares listed

on the NYSE, AMEX, or NASDAQ exchanges. We exclude stocks with prior month prices

below $5 per share.

We define DivRi,t as a dummy variable that equals one if stock i reports a dividend record

date in month t and zero otherwise. Panel A Table 3.1 provides the descriptive statistics of

DivRi,t for our sample. In total, we obtain 1,588,481 firm-month observations with a mean

DivR of 14.20%. We obtain firm information from CRSP/Compustat Merged annual and

quarterly files, IBES, Thompson Reuter’s 13F database, and OptionMetrics to construct

anomaly variables.

3.3.2 Net overpriced score

We use a comprehensive set of anomalies to construct the mispricing measure. Our

initial anomaly pool consists of 355 individual anomaly variables. These variables are

5For more details regarding the history of dividend tax rates in the U.S., please refer to https://www.
dividend.com/taxes/a-brief-history-of-dividend-tax-rates/.
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primarily drawn from Harvey et al. (2016); McLean and Pontiff (2016); Green et al. (2017);

Engelberg et al. (2018); Hou et al. (2020); Chen and Zimmermann (2021).6 We follow

Green et al. (2017) to exclude variables that are insignificant in predicting future returns

and end up with 182 significant ones.7

Inspired by Stambaugh et al. (2015) and Engelberg et al. (2018), we construct a cross-

sectional aggregated mispricing measure, net overpriced score, (NOPS). Stocks with the

highest values of NOPS are the most “overpriced", whereas those with the lowest values

are the most “underpriced”. We construct the mispricing measure as follows. Each month,

we sort stocks into decile portfolios based on each anomaly characteristic. We use the

extreme deciles to define the long or short side for each anomaly. Next, for each firm and

month, we sum the number of short-side and long-side anomalies that the firm belongs to.

Doing so produces NShort and NLong. Finally, the cross-sectional mispricing measure,

NOPS is defined as NShort−NLong. Panel B Table 3.1 provides the descriptive statistics

of NOPS. On average, a stock is in 12.54 short portfolios and 14.84 long portfolios. NOPS

has a mean value of −2.29, a standard deviation of 10.12, a maximum value of 63, and a

minimum value of −61.

3.3.3 Difference-in-differences regressions

Ideally, the best approach to identify a causal effect is a controlled (random) experiment

that is often done in physics, biology, and other natural science disciplines. In finance

and economics, the best available situation most of the time is a quasi-experiment such as

JGTRRA or Reg SHO. In this case, the validity of the approach crucially depends on the

identification assumption. An instrumental variable approach such as 2-step Least Square

is often used if an exogenous variable that only affects the treated can be identified. Alter-

6Chen and Zimmermann (2021) cover all independent anomalies in Hou et al. (2020); 98% of the port-
folios in McLean and Pontiff (2016); 90% of the characteristics from Green et al. (2017); and 90% of the
firm-level predictors in Harvey et al. (2016). We thank Andrew Chen for making their data available. We
also obtain additional variables from Han et al. (2016); ?); Avramov et al. (2021), and among others.

7We also drop nine dividend-related anomalies such as dividend initiation, dividend omission, and divi-
dend yield, and among others.
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natively, if conditional exogeneity assumption (or selection on observables) holds, a simple

difference approach or propensity score matching approach would suffice. However, if in-

stead a weaker exogeneity condition holds such as exogeneity of selection to changes in

outcomes, the appropriate approach is the difference-in-differences (DID) approach that

compares the difference from before and after the quasi-experiment for a treated group to

the same difference for a control group. In particular, DID approach does not require the

treated and the control groups to be matched or random. Instead, it only requires that the

selection does not change over time or if it changes, it will not affect the changes in the

outcome. Since a firm’s dividend policy rarely changes, it seems that the DID approach is

appropriate to study the effect of JGTRRA.8

In this paper, we investigate the effect of the differential tax-driven shock to short selling

on mispricing and anomalies in a stock-level DID panel regression framework. Specifically,

we estimate the following regression equation,

reti,t = α0 +αt +αi +b1NOPSi,t−1 +b2DivRi,t−1 +b3NOPSi,t−1×DivRi,t−1 +b4NOPSi,t−1× JGT RRAt−1

+b5DivRi,t−1× JGT RRAt−1 +b6NOPSi,t−1×DivRi,t−1× JGT RRAt−1 + εi,t , (3.1)

where reti,t is the percentage return of stock i in month t; DivRi,t−1 is a dummy variable

indicating stocks that report dividend record dates in the previous months; JGT RRAt−1 is

a dummy variable which equals one if month t−1 is after May 2003 (after the JGTRRA of

2003); JGT RRAt−1 itself is subsumed by the time fixed effect, and thus is dropped from the

regression; αt is the time fixed effect that captures the common factor and/or market-wide

or economy-wide trends that drive the stock returns in both dividend record months and

other months; and αi is the firm fixed effect to mitigate the potential omitted variable bias.

The three-way interaction term, NOPS×DivR×JGTRRA captures the moderating effect

of the JGTRRA of 2003 and the dividend record months on the predictive power of NOPS.

The DID coefficient b6 is the coefficient of interest, capturing the difference between the

8JGTRRA also allows for a situation resembling a controlled experiment, which will be discussed in detail
in Section ??.
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dividend record months and non-dividend record months in their respective changes of

NOPS’ predictive power between after and before the enactment of JGTRRA of 2003. In

other words, it captures the differential response of anomalies to JGTRRA between the

dividend record months and the non-dividend record months. If our hypothesis is true, we

would expect b6 to be significantly negative because of stronger mispricing in the dividend

record months.

We also investigate the causal effect of short selling on anomalies in a portfolio-level

DID panel regression framework following Chu et al. (2020). To construct the decile port-

folios, for stocks that report dividend record dates in the previous months, we sort them into

ten deciles based on NOPS and then compute the monthly portfolio returns. We repeat the

procedure for stocks that do not report dividend record dates in the previous months. Then,

we pool the monthly returns of the two types of decile portfolios and run the following

panel regressions,

yi,t = α0 +αt +β0Treatedt−1 +β1Treatedt−1× JGT RRAt−1 + εi,t , (3.2)

where the dependent variable, yi,t , is the monthly return of a decile portfolio in month t,

Treatedt−1 is a dummy variable that is equal to one if the portfolio is formed on stocks

whose DivRi,t−1 = 1, and αt is the time fixed effect. Similar to the stock-level DID regres-

sion, the coefficient of interest is β1, which captures the difference between the dividend

record months and the other months in their respective differences in portfolio returns af-

ter versus before the JGTRRA of 2003. In other words, it captures the differential impact

of JGTRRA on anomaly returns after the dividend record months versus after the non-

dividend record months. If our hypothesis is true, we would expect β1 to be significantly

positive (negative) for the long-short portfolio (short side) because of stronger mispricing

in the dividend record months.
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3.4 Shocks to short selling and mispricing

In this section, we examine the hypothesis that mispricing is stronger in dividend record

months compared with other months after the JGTRRA of 2003 periods. We also investi-

gate whether our hypothesis holds after the Reg SHO program periods.

3.4.1 Stock-level difference-in-differences analyses

In this subsection, we report the effect of the tax-driven shock to short selling on mispric-

ing and anomalies in a stock-level DID panel regression framework as discussed in subsec-

tion 3.3.3. Recall that the three-way interaction term in Equation (3.1), NOPS×DivR×JGTRRA

captures the moderating effect of the JGTRRA of 2003 and the dividend record months on

the predictive power of NOPS, and thus its coefficient, b6, represents the differential im-

pacts of JGTRRA on the predictive power of NOPS between the dividend record months

and the non-dividend record months. If our hypothesis is true, we would expect b6 to be

significantly negative.

Table 3.2 reports the coefficients of Equation (3.1), from b1 to b6 for specifications with

various fixed effects and clustering methods. We find that our overpricing measure, NOPS,

is highly significantly negative in each column. In the last column, the coefficient of NOPS

is −0.100 with a t-stat of −11.12, confirming the strong negative return predictability for

NOPS. Interestingly, we also observe significantly negative coefficients of DivRi,t−1, in-

dicating a negative return after the dividend record month before JGTRRA. This result

is consistent with Hartzmark and Solomon (2013) findings of high returns before the ex-

dividend day and the subsequent reversals afterward.9 Additionally, an insignificant co-

efficient on DivR×JGTRRA suggests that this price pattern is indifferent to the tax law

change. Furthermore, the interaction term between the overpricing score and the dividend

9More specifically, they show that “a portfolio that longs companies in the month of their predicted div-
idend and shorts same companies in other months (within companies) earns abnormal returns of 37 basis
points”, thereby generating the dividend premium. Significant reversals are observed in the 40 days after the
ex-dividend day. The effect is argued to be driven by price pressure from dividend-seeking investors in the
lead-up to the ex-dividend day.
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record month dummy variable is always significantly positive. This finding implies that be-

fore JGTRRA, the return predictability of NOPS becomes weaker after the dividend record

months, likely due to the dividend month premium effect on the underpriced stocks. Next,

we show a significant positive coefficient for NOPS×JGTRRA in each column, consistent

with the findings that anomalies are weaker in the recent two decades (see, e.g, Chordia

et al., 2014).

Consistent with our prediction, the coefficients on the three-way interaction term are

significantly negative across all columns. For example, in the last column with firm and

time fixed effects and double clustered standard errors, b6 is−0.028 with a t-stat of−2.89,

which is significant at the 1% level. These results indicate a significant increase in the

predictive power of NOPS to future returns in response to the enactment of JGTRRA for

the dividend record months relative to the other months.

We conduct several robustness checks. First, we repeat our analysis using several bal-

anced sample periods including 5, 10, or 15 years before and after the JGTRRA of 2003.

Next, we repeat our analyses using an alternative proxy for mispricing, which is the mis-

pricing score in Stambaugh et al. (2015).10 The results are reported in Table B.1 and B.2,

respectively, in the Appendix. Apart from them, in the Online Appendix, we report re-

sults extending the sample period up to July 1965 or replacing the firm fixed effect with

the industry fixed effect (3-digit SIC codes). All these results deliver the same message as

Table 3.2. Collectively, we demonstrate that this tax-driven shock to short selling tightens

short-sale constraints, thereby causing stocks to be more mispriced in the dividend record

months than in the non-dividend record months.

3.4.2 Does this effect hold after the Reg SHO program period?

Reg SHO was in effect from May 2, 2005 to August 6, 2007. After the program period,

the SEC eliminated short-sale price tests for all exchange-listed stocks. Consequently,

10MISP is constructed using 11 anomalies studied in Stambaugh et al. (2012). The data of MISP that ends
in December 2016 is available on Robert Stambaugh’s website: http://finance.wharton.upenn.edu/
~stambaug/.
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the short-sale constraint imposed by the uptick rule was removed for all stocks. In this

subsection, we investigate whether the effect of the differential tax-driven shock to short

selling on mispricing and anomalies still prevails after the Reg SHO program period. Doing

so could avoid the confounding effects and further validate the robustness of this dividend

taxation shock to short-sale constraints.

Since the JGTRRA was enacted at the end of May, 2003, we exclude sample periods

between June, 2003 and July, 2007 and redo our DID analysis. Table 3.3 reports our re-

gression results. We find that the coefficients on the three-way interaction term are always

negatively significant. For example, using firm and time fixed effects and double clustering

method, the coefficient of NOPS×DivR×JGTRRA is −0.022 with a t-stat of −2.64. Our

results indicate that the effect of the dividend taxation shock to short selling on mispric-

ing and anomalies is powerful even after the Reg SHO, when the short-sale price tests are

eliminated for all stocks.

3.4.3 Overpricing from the tax-driven shock to short selling

Anomalies could reflect mispricing. In the presence of limits to arbitrage such as short-

sale constraints, negative information could be slowly incorporated into stock prices. There-

fore, overpriced stocks earn lower future stock returns and contribute to return predictabil-

ity. Because this tax-driven shock to short selling tightens short-sale constraints, its effect

on anomalies should be mainly manifested on the overpriced stocks, which are concen-

trated in the short leg of the anomalies.

We construct two dummy variables, Low NOPS and High NOPS, based on the decile

rank of NOPS each month. Low NOPS identifies the most underpriced stocks, while High

NOPS represents the most overpriced stocks. In other words, High NOPS represents stocks

in the short side of anomalies, whereas Low NOPS reflects stocks in the long side of anoma-

lies. Next, we add High NOPS or Low NOPS individually or together, along with their

respective interactions with JGT RRA and DivR to our DID regression in Equation (3.1).

The new specification including both dummies is as follows,
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reti,t = α0 +αt +αi +b1DivRi,t−1 +b2DivRi,t−1× JGT RRAt−1 +b3NOPS DPi,t−1 +b4NOPS DPi,t−1×DivRi,t−1

+b5NOPS DPi,t−1× JGT RRAt−1 +b6NOPS DPi,t−1×DivRi,t−1× JGT RRAt−1 +b7Low NOPSi,t−1

+b8High NOPSi,t−1 +b9Low NOPSi,t−1×DivRi,t−1 +b10Low NOPSi,t−1× JGT RRAt−1

+b11High NOPSi,t−1×DivRi,t−1 +b12High NOPSi,t−1× JGT RRAt−1

+b13Low NOPSi,t−1×DivRi,t−1× JGT RRAt−1 +b14High NOPSi,t−1×DivRi,t−1× JGT RRAt−1 + εi,t , (3.3)

where NOPS DPi,t−1 represents the decile rank of stock i based on its NOPS in month t−1.

The results are presented in Table 3.4. Consistent with our prediction, the effect mainly

comes from the overpriced stocks. The first column reports the regression results for Low

NOPS alone. The coefficient on the three-way interaction term, Low NOPS×DivR×JGTRRA,

is positive but statistically insignificant. This result implies that underpriced stocks play

little role in driving the differential changes in return predictability of anomalies across

the dividend record months and the other months after the JGTRRA. The second column

presents the result for High NOPS alone. The coefficient on the three-way interaction term,

High NOPS×DivR×JGTRRA, is−0.738 with a t-stat of−2.30, significant at the 5% level.

The last column reports the result in Equation (3.3) after considering Low NOPS and High

NOPS together. We obtain similar results. The coefficient on Low NOPS×DivR×JGTRRA

is insignificant, while the coefficient of High NOPS×DivR×JGTRRA is significantly nega-

tive. These results indicate that after JGTRRA, stocks in the short leg of anomalies become

more overpriced in the dividend record month than in the other months compared to be-

fore JGTRRA. Consequently, this pattern drives the effect of the tax-driven shock to short

selling on the strength of the anomalies.

3.4.4 The risk-based explanation

In this subsection, we examine whether exposure to systematic risks can explain why

anomalies become stronger following the dividend record months after JGTRRA. In a dy-

namic risk premia model, our results could potentially hold if the risk premia of stocks
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change after the dividend record months, i.e., the betas of stocks change in the months after

the dividend record months. For example, increases (decreases) in betas for Low (High)

NOPS stocks after the dividend record months can result in stronger anomalies.

We consider the market factor (MKT ) and five macroeconomic risk factors of Chen

et al. (1986), including log-change in monthly industrial production index (MP), unex-

pected inflation (UI), change in expected inflation (DEI), change in term premium (UT S),

and change in default premium (UPR).11 To examine whether the dynamic risk can ex-

plain our results, we re-estimate our stock-level DID regression in the previous section

by adding each factor and their corresponding interaction terms. Specifically, we modify

Equation (3.3) by interacting each factor with the dummies, High or Low NOPS, JGT RRA,

DivR individually or in combinations. Table 3.5 reports the results. We find similar results

to Table 3.4 after controlling for the effects of the dynamic risk premia of various macro

factors. The coefficients of High NOPS×DivR×JGTRRA are always significantly negative

regardless of which factor is used, whereas the coefficients of Low NOPS×DivR×JGTRRA

are always insignificant. Similar results are obtained when all six factors are included as

shown in the last column of Table 3.5. For example, the coefficient is −1.242 with a t-stat

of −3.49 for the triple interaction term High NOPS×DivR×JGTRRA, and 0.122 with a

t-stat of 0.67 for Low NOPS×DivR×JGTRRA.

Overall, our findings in this subsection suggest that risk is unlikely to explain the findings

that overpriced stocks largely contribute to the effect of the tax-driven shock on anomalies.

3.4.5 Placebo tests

Data-mining and repeated use of the same data have always been a concern in finance

(see, e.g., Harvey et al., 2016; McLean and Pontiff, 2016; Linnainmaa and Roberts, 2018).

For instance, Heath et al. (2022) show that the repeated use of the Reg SHO pilot program

increases the likelihood of false discoveries. We alleviate this concern by exploiting a

11The first three factors data used in Liu and Zhang (2008) can be downloaded from Laura Liu’s web-
site: http://lauraxiaoleiliu.gsm.pku.edu.cn/en_research.htm. The data for term premium and
default premium are obtained from Amit Goyal’s website http://www.hec.unil.ch/agoyal/.
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novel exogenous shock to short selling, and thus it is less likely to be spurious. However,

to further guard against spurious results, we conduct several falsification tests for our main

DID analysis.

First, we conduct various placebo tests by changing the timing of JGTRRA, while main-

taining dividend record dates for each stock. We use the timing before and after 2003 for

pseudo enactment of JGTRRA including July of 1997 and 2013, and January of 1999 and

2005. To avoid the actual effect of JGTRRA, we use two sample periods: (1) between July

of 1985 and May of 2003; (2) between June of 2003 and December of 2019 for our placebo

tests. We run the difference-in-differences regression as follows,

reti,t =α0 +αt +αi +b1NOPSi,t−1 +b2DivRi,t−1 +b3NOPSi,t−1×DivRi,t−1

+b4NOPSi,t−1×PseudoJGT RRAt−1 +b5DivRi,t−1×PseudoJGT RRAt−1

+b6NOPSi,t−1×DivRi,t−1×PseudoJGT RRAt−1 + εi,t , (3.4)

where PseudoJGT RRAt−1 is a dummy variable which equals one if month t− 1 is after

each of these four pseudo JGTRRA periods, respectively, and zero otherwise.

Table 3.6 shows that in none of these placebo tests, the coefficients of NOPS×DivR×

PseudoJGT RRA are significantly negative. Instead, they are significantly positive for

pseudo events before 2003, and statistically insignificant for pseudo events after 2003.

Next, we conduct several placebo tests on the dividend record months. We consider two

testing samples: (1) excluding only the dividend record months; (2) excluding dividend-

paying stocks altogether. For each sample, in each month, we randomly choose 14% of

firm-months observations (based on summary statistics in Table 3.1) to be the dividend

record months. Consequently, we create a pseudo dividend record month dummy variable
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for each sample. We run the following regressions using different simulation seeds,

reti,t =α0 +αt +αi +b1NOPSi,t−1 +b2PseudoDivRi,t−1 +b3NOPSi,t−1×PseudoDivRi,t−1

+b4NOPSi,t−1× JGT RRAt−1 +b5PseudoDivRi,t−1× JGT RRAt−1

+b6NOPSi,t−1×PseudoDivRi,t−1× JGT RRAt−1 + εi,t , (3.5)

where PseudoDivRi,t−1 is a dummy variable indicating the pseudo dividend record month

of t−1 for stock i.

The results are presented in Table 3.7. The coefficient of interest is essentially zero and

statistically insignificant in each column. In sum, our placebo tests indicate that our results

are not spurious and that anomalies become stronger following the dividend record months

after JGTRRA.

3.5 Portfolio-level DID and subsample analyses

In this section, we provide portfolio-level DID analyses to further confirm our findings

in the previous sections. We first conduct portfolio-level DID regressions to re-examine

our hypotheses. We then provide a series of subperiod or subsample analyses to further

confirm the causal effect of short selling on anomalies.

3.5.1 Portfolio-level DID analyses

In this subsection, we investigate the causal effect of short selling on mispricing and

anomalies in a portfolio-level DID panel regression framework described in Subsection 3.3.3.

Table 3.8 reports the results of the portfolio-level DID regressions for the long-short

portfolio as well as the long side and short side, separately. For the long-short portfolio,

the coefficient of the interaction term, β1, is 1.677 with a t-stat of 4.04, further confirming

our first hypothesis that anomalies become stronger after the dividend record months than

after the other months in response to the JGTRRA of 2003.12 Specifically, the results

12We also obtain qualitatively similar results using value-weighted and gross-return-weighted portfolios.
The results are presented in the Online Appendix.
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show that in response to JGTRRA, the change in the anomaly returns is on average 1.677%

higher after the dividend record months than after the other months. It is worth noting

that it does not mean that the anomaly return is higher after the dividend record months

than after the other months. It merely signifies that JGTRRA has a stronger impact on

anomalies following the dividend record months than following the other months, and this

is because mispricing is stronger in the dividend record months due to the tax-driven shock

to short selling. Indeed, β0, the coefficient of Treated, is −2.083, highly significant and

larger than β1 in magnitude, suggesting that anomalies are much weaker after the dividend

record months before JGTRRA. This result is consistent with that reported in Table 3.2. In

contrast, anomalies are much less so following the dividend record months after JGTRRA.

We also find that the short side dominates the long side portfolio in driving the causal

effect of short selling on anomalies, confirming our previous findings. The coefficient on

Treated × JGT RRA in the short side is −1.284 compared with 0.393 in the long side.

Economically, after JGTRRA, the short side contributes to around 77% of the difference in

anomaly profit change between the dividend record months and the other months.13

Overall, our portfolio-level results confirm our findings in the stock-level analyses. We

document that this dividend taxation shock imposes greater constraints to short selling in

the dividend record months and thereby causing more overpricing in the short legs of the

anomalies. As a result, anomalies become stronger following the dividend record months

compared with the other time periods.

3.5.2 Investor sentiments

In this subsection, we examine how investor sentiment impacts the relation between short

selling and anomalies. Stambaugh et al. (2012) argue that when investor sentiment is high,

overpricing becomes more prevalent and thereby anomalies become stronger. If anomalies

are driven by mispricing, then the causal effect of JGTRRA should be more pronounced in

13The significance of the coefficient on Treated× JGT RRA for the long side is not robust, and becomes
insignificant in the subsequent analyses.
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the periods of high investor sentiment.

We use two orthogonalized investor sentiment indices from Baker and Wurgler (2006)

and Huang et al. (2015) to identify high and low sentiment periods.14 We obtain the mean

of each index using an expanding-window approach with at least twenty-four monthly ob-

servations. A high (low) sentiment month is the one in which the value of sentiment index

at the end of previous month is above (below) the estimated mean value. Next, we re-run

the portfolio-level DID regressions in Table 3.8 separately over the high and low senti-

ment periods, for the long side, short side, and long-short portfolio, respectively. Table 3.9

reports the coefficient of interest, β1, for each regression.

The left panel describes the results using Baker and Wurgler (2006) sentiment index.

For the long-short portfolios, the coefficient on Treated×JGT RRA is 3.195 (t-stat = 3.48)

in the high sentiment periods compared with 0.909 (t-stat = 2.20) in the low sentiment

periods. These results accord well with our hypotheses. For the short side, the high senti-

ment periods display a significantly negative coefficient on Treated× JGT RRA, while the

low sentiment periods accompany an insignificant β1. After JGTRRA, when the investor

sentiment is high, stocks in the short legs of the anomalies become more overpriced in

the dividend record months than in the other months. In contrast, we do not observe such

pattern in the low investor sentiment periods. Furthermore, we find little variation in β1

between the high and low sentiment periods for the long side. We find qualitatively similar

results using the sentiment index of Huang et al. (2015). In unreported analysis, we also

identify the high or low sentiment periods using the full-sample median value and find sim-

ilar results. For the long-short portfolios, β1 is 1.858 (t-stat =3.08) in the high sentiment

periods as opposed to 0.819 (t-stat =1.69) in the low sentiment periods.

Overall, we obtain a substantial variation in the causal effect of the shock to short selling

on anomalies with respect to investor sentiment. These results also strengthen our second

hypothesis that the effect mainly comes from the overpriced stocks.

14We thank Jeffrey Wurgler for sharing the investor sentiment data on his website at: http://people.
stern.nyu.edu/jwurgler/.
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3.5.3 Subsamples

We further explore the causal effect of the tax-driven shock to short selling on anoma-

lies across stocks with various degrees of limits to arbitrage. If our results are driven by

overpricing due to the negative shock to short selling, then the effect should be stronger for

stocks with higher limits to arbitrage.

We consider various proxies for limits to arbitrage including firm age, firm size, id-

iosyncratic volatility, and size-adjusted institutional ownership. Stocks of young and small

firms are faced with greater limits to arbitrage as they are more costly and difficult to ar-

bitrage (Israel and Moskowitz, 2013). Idiosyncratic volatility could reflect risks that deter

arbitrage (Stambaugh et al., 2015). Nagel (2005) shows that short-sale constraints are most

likely to be binding among stocks with low size-adjusted IO, which is a proxy for short

selling supply.15

For each of the limits to arbitrage proxies, we define high or low groups based on tercile

portfolios. We then conduct the portfolio-level DID analysis for each subsample. For the

analysis of size-adjusted IO, we exclude stocks in the lowest decile rank of IO because the

dividend taxation shock might have a marginal effect on these stocks, which are already

highly constrained due to the lack of short selling supply. Panel A of Table 3.10 reports the

results for firm size and firm age, and Panel B reports the results for idiosyncratic volatility

and size-adjusted IO. Consistent with our expectation, we observe substantially larger coef-

ficients on Treated× JGT RRA in smaller and younger stocks, stocks with higher idiosyn-

cratic volatility, and lower size-adjusted IO for the long-short portfolios. For example, the

coefficient of Treated× JGT RRA is 1.510 (t-stat = 3.78) for small stocks compared with

0.833 (t-stat = 2.54) for large stocks. We also find that for the short legs of the anomalies,

the DID coefficients are considerably more negative for stocks with smaller size, younger

age, higher idiosyncratic volatility, and lower size-adjusted IO. For instance, the coefficient

15To calculate size-adjusted IO, we first obtain the logit of IO and then run cross-sectional regressions of
the logit(IO) on the logarithm of firm size and squared logarithm of firm size each quarter. The residuals in
the regressions are referred to size-adjusted IO. Following Nagel (2005), we lag IO by two quarters.
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of Treated×JGT RRA is −1.299 (t-stat =−3.06) for small stocks compared with −0.543

(t-stat =−1.35) for large stocks. However, all the DID coefficients are insignificant for the

long legs of the anomalies.

In summary, the evidence in Table 3.10 provides additional support for the causal effect

of short selling on anomalies.

3.5.4 Dividend stocks only

One of the advantages of a DID regression framework is the weak requirement of exo-

geneity. For example, it only requires that the selection into dividend record months does

not affect the evolution of anomalies over time. Since firms rarely change their dividend

policy, this exogeneity condition should hold.

Nevertheless, we test the robustness of our results using only firms that issue dividends

so as to have a matched sample. Specifically, in this sample, the treated and control obser-

vations are all from the same dividend stocks. Panel A of Table 3.11 reports the results.

The DID coefficient, β1, is 0.753 (t-stat = 3.06) for the long-short portfolio, −0.550 (t-stat

=−2.50) for the short side, and 0.203 (t-stat = 1.33) for the long side, respectively. These

results are consistent with the evidence in Table 3.8.

One potential issue about the exogeneity of JGTRRA is that some firms may start to

pay dividends because of the dividend tax cut. For example, Chetty and Saez (2005) show

an increase in dividend initiations immediately after JGTRRA for non-financial and non-

utility firms. On the other hand, Brav et al. (2008) argue that the tax cut merely imposes

a marginal effect on a firm’s dividend policy. They show that dividend initiations indeed

temporarily spike after the act, but then return to pre-JGTRRA levels.16 In addition to the

low number of tax cut-induced dividend initiations, this one-time change should not affect

the evolution of anomalies over time, and thus it does not violate the weak exogeneity

requirement of the DID analysis. Nevertheless, further excluding these stocks creates an

16They find that between 2002 and 2005, 76 out of 265 firms initiated dividends after the act. Only a few
firms occasionally mention the dividend tax cut as the reason for their initiations in their press releases. In
our sample, we observe an increase of 66 dividend stocks to a total of 1555 from 2003Q3 to 2004Q3.
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interesting setting resembling a controlled experiment – identical samples are randomly

chosen either to be the treated (dividend record months) or the control (the other months)

before the shock.17 We repeat the above analysis by keeping only stocks that pay dividends

before JGTRRA. We assume that it takes three months for a firm to change its dividend

policy after JGTRRA. Thus, we drop stocks that initiated dividends after September 2003.

Panel B of Table 3.11 reports the new DID results. We observe virtually the same results:

β1 is 0.517 (t-stat = 2.01) for the long-short portfolio and −0.514 (t-stat =−2.54) for the

short side, while it is only 0.03 (t-stat = 0.02) for the long side. It is worth noting that β0,

the coefficient of the treated on the short side is insignificant in both panels, contrary to the

significant coefficients in Table 3.8, confirming that the treated and the control behave the

same before the act.18

We also use the within-firm calendar-time portfolio method in Hartzmark and Solomon

(2013) to test the robustness of our results. Hartzmark and Solomon (2013) argue that the

within-firm portfolios are likely to have zero loadings on risk factors, making the results

less likely driven by risk. Specifically, each month, we sort all dividend-paying firms into

quintile portfolios based on NOPS. The treated group consists of firms that report dividend

record dates in the previous months, while the control group includes firms that do not

report dividend record dates in the previous months, but have reported dividend record

dates in the previous 12 months. Then we obtain the respective long-short portfolios for

the treated and control groups. Finally, we regress the difference in the long-short portfolio

returns between the treated and control groups on the post-JGTRRA dummy. The results

are reported in Table B.3 of the Appendix. We find that the difference in the anomaly

returns between the treated and control groups is significantly positive after the JGTRRA

periods, although they are significantly negative before JGTRRA, consistent with our other

17Despite the above stated benefits of using this sample, there are also potential issues such as survivorship
bias and too few observations. Dividend-paying stocks account for about 33% in our sample.

18The reversal after the dividend record month (Hartzmark and Solomon, 2013) may account for the nega-
tive β0 coefficient for the long sides in both panels. In an unreported analysis, we obtain similar results after
excluding stocks that suspend paying dividends after the JGTRRA.
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results. When adding risk factors to our regressions, we indeed obtain insignificant loadings

on them.

Overall, the results in this subsection further strengthen the causal effect of the differen-

tial tax-driven shock to short selling on mispricing and anomalies.

3.6 Anomaly Types

In this section, we investigate whether different types of anomalies respond differently

to the dividend tax cut shock. We categorize the 182 anomalies based on four types in

McLean and Pontiff (2016) and Engelberg et al. (2018): (1) event, (2) market, (3) funda-

mentals, and (4) valuation. Specifically, Event anomalies are based on corporate events

and changes in performance, such as share issues and investment growth; market anoma-

lies are constructed using only market data such as price momentum and idiosyncratic

volatility; fundamentals anomalies are firm accounting attributes; valuation anomalies con-

sist of accounting fundamentals scaled by market information, such as book-to-market and

earnings-to-price ratios. In total, we have 52 event anomalies, 62 market anomalies, 51

fundamentals anomalies, and 17 valuation anomalies. In addition to these four types of

anomalies, we consider the 11 anomalies in Stambaugh et al. (2012). We label this type of

anomalies as SYY.

We first construct NOPS separately for each of these five groups of anomalies. Next,

we re-run our portfolio-level DID regressions. Table 3.12 presents the results separately

for each anomaly type. We find consistent results for all but valuation anomalies. The

coefficients on Treated× JGT RRA are significantly positive for the long-short portfolios,

confirming our hypothesis that anomalies respond to JGTRRA more strongly after the div-

idend record months compared with the other months, and are substantially negative for

the short legs, whereas these coefficients are insignificant for the long legs. These results

provide further support for our hypothesis that the effect mainly comes from the overpriced

stocks.

Our findings that most anomalies are likely driven by mispricing are surprising and yet
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important. Mispricing is often associated with behavioral biases, and thus our findings

highlight the prevalence of behavioral biases in stock markets. A few fundamentals anoma-

lies such as accruals (Hirshleifer et al., 2012, 2011) and asset growth (Lam and Wei, 2011;

Lipson et al., 2011) are argued to be related to mispricing in the prior literature. Addi-

tionally, Yan and Zheng (2017) find that many fundamental-based anomalies are stronger

following higher sentiment periods and among stocks with greater limits to arbitrage. They

argue that these anomalies are likely to be driven by mispricing rather than random chance

or data mining. We provide more definite evidence supporting this argument. We also fol-

low Hou et al. (2020) to categorize our 182 anomalies into six types: (1) momentum, (2)

value & growth, (3) profitability, (4) investment, (5) intangibles, and (6) trading frictions.

Our results remain strong for momentum, profitability, investment and intangibles, and

marginally significant for trading frictions, but insignificant for value & growth anomalies.

Overall, we demonstrate that the causal effect of the tax-driven shock to short selling

on mispricing is robust to various anomaly types except for valuation or value & growth

anomalies, which are likely driven by risk. We emphasize this new result is not possible

to obtain due to the small number of anomalies considered in Chu et al. (2020). Our result

highlights the importance of using a comprehensive set of anomalies.

3.7 Conclusion

There are numerous studies on anomalies, but the causes of anomalies are still in debate.

In this study, we investigate the causal effect of short selling on mispricing and anoma-

lies using a robust and plausibly exogenous shock after the Job and Growth Tax Relief

Reconciliation Act (JGTRRA) of 2003.

Using 182 anomalies and the DID regression framework, we find that mispricing be-

comes stronger in the dividend record months after the JGTRRA, and as a result, anomalies

are stronger after the dividend record months. Moreover, we show that the effect mainly

comes from the overpriced stocks. Our findings are robust after controlling for various

risk factors. Moreover, our various falsification tests indicate that data-mining is unlikely
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to drive our results. We further demonstrate that our results are stronger during high in-

vestor sentiment periods when overpricing is more prevalent, and in stocks that are more

short-sale constrained.

We further divide anomalies into four types and examine each type separately. We find

that the effect of the shock is significant in all but valuation anomalies, suggesting that

most anomalies are driven by mispricing while valuation anomalies are likely driven by

risk. Taking advantage of the unique setting of the JGTRRA shock, we also consider

dividend stocks only, and find virtually the same results. Taken together, this study offers

a novel test of the causal effect of short selling on mispricing and anomalies and provides

solid evidence that anomalies mainly reflect mispricing.
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Table 3.1: Summary statistics

Panel A describes summary statistics of DivRi,t , which equals one if stock i reports a dividend
record date in month t and zero otherwise. We restrict our sample to ordinary taxable cash
dividends (CRSP distribution code = 1232) of $0.01 or greater that are paid by ordinary common
shares listed on the NYSE/AMEX/NASDAQ. We exclude stocks with prior month prices below $5
per share. The sample period is 1985:7 to 2019:12.

Panel B provides descriptive statistics for the aggregated mispricing measure which is the average
of those at the stock level. The net overpriced score (NOPS) for each stock is defined as NShort
- NLong, where NShort (NLong) is the total number out of 182 anomalies that the stock is in the
short (long) legs of the decile portfolios. The sample period is 1985:7 to 2019:12.

Panel A: Firm-month observations with dividend record dates

DivR = 1 DivR = 0 Total

# of firm-month observations 225,631 1,362,850 1,588,481

Percentage 14.20% 85.80% 100%

Panel B: Summary statistics of NOPS

Mean Std.Dev Min p25 p50 p75 Max

NShort 12.54 8.94 0 6 10 16 77

NLong 14.84 7.88 0 9 14 19 66

NOPS -2.29 10.12 -61 -8 -2 3 63
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Table 3.2: Difference-in-differences results

This table reports results from the stock-level difference-in-differences regression, where the depen-
dent variable reti,t is the monthly stock return (in percentage). t-statistics are presented in parenthe-
ses below the coefficient estimates. The sample period is 1985:7 to 2019:12. *** denotes two-tail
statistical significance at the 1% level.

Fixed Effects Month Month Firm & Month Firm & Month

S.E. Clusters Month Firm & Month Month Firm & Month

NOPS -0.095*** -0.095*** -0.100*** -0.100***
(-9.02) (-9.00) (-11.07) (-11.12)

DivR 0.077 0.077 -0.273*** -0.273***
(0.37) (0.37) (-2.78) (-2.77)

NOPS×DivR 0.046*** 0.046*** 0.031*** 0.031***
(4.55) (4.55) (4.76) (4.76)

NOPS×JGTRRA 0.055*** 0.055*** 0.062*** 0.062***
(4.56) (4.55) (5.76) (5.79)

DivR×JGTRRA -0.148 -0.148 0.081 0.081
(-0.62) (-0.62) (0.43) (0.43)

NOPS×DivR×JGTRRA -0.035*** -0.035*** -0.028*** -0.028***
(-2.83) (-2.82) (-2.89) (-2.89)
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Table 3.3: DID results after Regulation SHO

This table provides DID results for testing whether the causal effect of dividend taxation shock
to short-selling on anomalies is robust after the Reg SHO. t-statistics are presented in parentheses
below the coefficient estimates. The sample period is 1985:7 to 2019:12 excluding the period 2003:6
to 2007:07. * and *** denote two-tail statistical significance at the 10% and 1% levels, respectively.

Fixed Effects Month Month Firm & Month Firm & Month

S.E. Clusters Month Firm & Month Month Firm & Month

NOPS -0.089*** -0.089*** -0.098*** -0.098***
(-12.88) (-12.86) (-17.22) (-17.26)

DivR -0.056 -0.056 -0.300*** -0.300***
(-0.52) (-0.52) (-6.32) (-6.19)

NOPS×DivR 0.031*** 0.031*** 0.021*** 0.021***
(5.33) (5.29) (4.86) (4.82)

NOPS×JGTRRA 0.052*** 0.052*** 0.071*** 0.071***
(5.12) (5.11) (8.69) (8.72)

DivR×JGTRRA 0.063 0.063 0.140 0.140
(0.35) (0.35) (0.99) (0.99)

NOPS×DivR×JGTRRA -0.019* -0.019* -0.022*** -0.022***
(-1.87) (-1.86) (-2.66) (-2.64)
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Table 3.4: Overpricing from the tax-driven shock to short selling

This table tests whether the mispricing effect comes from the long or short side. We create two
dummy variables, High NOPS and Low NOPS , based on the decile rank of NOPS each month. We
add firm and month fixed effects and cluster standard errors on both firm and time. t-statistics are
presented in parentheses below the coefficient estimates. The sample period is 1985:7 to 2019:12.
*, **, and *** denote two-tail statistical significance at the 10%, 5%, and 1% levels, respectively.

DivR -0.927*** -0.682*** -0.654***
(-7.53) (-6.75) (-5.92)

DivR×JGTRRA 0.642*** 0.451*** 0.435***
(3.77) (2.90) (2.66)

NOPS DP -0.284*** -0.232*** -0.210***
(-10.44) (-11.96) (-9.94)

NOPS DP×DivR 0.108*** 0.054*** 0.049***
(5.31) (3.39) (2.88)

NOPS DP×JGTRRA 0.178*** 0.141*** 0.129***
(5.11) (5.74) (4.72)

NOPS DP×DivR×JGTRRA -0.094*** -0.049** -0.047*
(-2.99) (-1.99) (-1.77)

Low NOPS 0.133 0.350***
(1.60) (4.93)

High NOPS -1.171*** -1.238***
(-6.99) (-7.57)

Low NOPS×DivR 0.158 -0.045
(1.41) (-0.41)

Low NOPS×JGTRRA -0.045 -0.189*
(-0.35) (-1.68)

High NOPS×DivR 0.857*** 0.866***
(4.08) (4.12)

High NOPS×JGTRRA 0.742*** 0.780***
(3.55) (3.88)

Low NOPS×DivR×JGTRRA -0.132 0.025
(-0.80) (0.16)

High NOPS×DivR×JGTRRA -0.738** -0.744**
(-2.30) (-2.33)



116

Table 3.5: Controlling for dynamic risk factors

This table investigates whether the causal effect of dividend taxation shock to short-selling on
anomalies comes from the short legs after controlling for dynamic risk factors. We consider the
market factor (MKT), and five macroeconomic risk factors from Chen et al. (1986): the growth rate
of industrial production (MP), unexpected inflation (UI), change in expected inflation (DEI), term
premium (UTS), and default premium (UPR). We interact each source of risk with the dummies,
High or Low NOPS, JGT RRA, DivR individually or in combinations. In the first six columns, we
add one factor at a time. In the last column, we include all six risk factors. We add firm and month
fixed effects and cluster standard errors on both firm and time. t-statistics are presented in parenthe-
ses below the coefficient estimates. The sample period is 1985:7 to 2019:12. *, **, and *** denote
two-tail statistical significance at the 10%, 5%, and 1% levels, respectively.

MKT MP UI DEI UTS UPR All

DivR -0.504*** -0.738*** -0.635*** -0.664*** -0.670*** -0.649*** -0.505***
(-3.93) (-5.47) (-5.68) (-6.00) (-6.01) (-5.82) (-3.52)

DivR×JGTRRA 0.398** 0.506*** 0.380** 0.407** 0.413** 0.409** 0.331*
(2.43) (2.76) (2.25) (2.43) (2.47) (2.47) (1.85)

NOPS DP -0.209*** -0.210*** -0.210*** -0.210*** -0.210*** -0.210*** -0.210***
(-9.91) (-9.99) (-9.98) (-9.98) (-9.98) (-9.95) (-9.94)

NOPS DP×DivR 0.052*** 0.051*** 0.050*** 0.049*** 0.051*** 0.050*** 0.053***
(2.95) (2.96) (2.91) (2.84) (2.97) (2.90) (3.05)

NOPS DP×JGTRRA 0.128*** 0.126*** 0.121*** 0.120*** 0.121*** 0.125*** 0.119***
(4.73) (4.61) (4.38) (4.35) (4.39) (4.58) (4.37)

NOPS DP×DivR×JGTRRA -0.047* -0.048* -0.042 -0.042 -0.043 -0.047* -0.044
(-1.78) (-1.80) (-1.58) (-1.55) (-1.60) (-1.78) (-1.61)

Low NOPS 0.409*** 0.315*** 0.359*** 0.352*** 0.350*** 0.352*** 0.427***
(5.01) (4.12) (5.03) (4.95) (4.97) (4.88) (5.18)

High NOPS -1.532*** -1.168*** -1.244*** -1.240*** -1.234*** -1.239*** -1.734***
(-7.16) (-4.35) (-7.47) (-7.61) (-7.57) (-7.45) (-6.76)

Low NOPS×DivR -0.125 -0.014 -0.072 -0.037 -0.031 -0.051 -0.142
(-1.10) (-0.12) (-0.68) (-0.35) (-0.29) (-0.47) (-1.15)

Low NOPS×JGTRRA -0.213* -0.163 -0.183 -0.176 -0.174 -0.182 -0.237*
(-1.69) (-1.40) (-1.58) (-1.53) (-1.52) (-1.59) (-1.82)

High NOPS×DivR 0.949*** 0.907*** 0.891*** 0.883*** 0.857*** 0.862*** 1.175***
(4.22) (3.49) (4.22) (4.24) (4.10) (4.05) (4.29)

High NOPS×JGTRRA 0.852*** 0.748** 0.767*** 0.769*** 0.781*** 0.764*** 1.135***
(3.66) (2.55) (3.67) (3.76) (3.85) (3.71) (4.12)

Low NOPS×DivR×JGTRRA 0.088 0.014 0.050 0.009 0.011 0.027 0.122
(0.53) (0.08) (0.31) (0.06) (0.07) (0.17) (0.67)

High NOPS×DivR×JGTRRA -0.814** -0.941*** -0.841** -0.828** -0.794** -0.760** -1.242***
(-2.41) (-2.64) (-2.57) (-2.54) (-2.50) (-2.34) (-3.49)
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Table 3.6: Placebo tests with pseudo JGTRRA

This table reports various placebo tests where the timing of the tax code is arbitrarily changed. We
use the timing before and after 2003 for pseudo enactment of JGTRRA including July of 1997 and
2013, and January of 1999 and 2005. Consequently, we use two sample periods: (1) between July
1985 and May 2003; (2) between June 2003 and December 2019. We consider PseudoJGT RRAt , a
dummy variable which equals one if month t is after the pseudo date specified, and zero otherwise.
We add firm and month fixed effects and cluster standard errors on both firm and time. t-statistics are
presented in parentheses below the coefficient estimates. *, **, and *** denote two-tail statistical
significance at the 10%, 5%, and 1% levels, respectively.

Sample period 1985:7 - 2003:5 2003:6 - 2019:12

1997:7 1999:1 2005:1 2013:7

NOPS -0.090*** -0.093*** -0.019 -0.034***
(-12.48) (-12.04) (-1.19) (-5.22)

DivR -0.334*** -0.291** -0.581* -0.387***
(-2.69) (-2.35) (-1.80) (-4.38)

NOPS×DivR 0.013** 0.016** -0.015 -0.000
(2.10) (2.41) (-0.77) (-0.03)

NOPS×PseudoJGTRRA -0.050** -0.058** -0.013 0.011
(-2.52) (-2.30) (-0.77) (1.04)

DivR×PseudoJGTRRA 0.322 0.248 0.410 0.463***
(0.87) (0.47) (1.13) (2.76)

NOPS×DivR×PseudoJGTRRA 0.048*** 0.055*** 0.021 0.013
(3.03) (2.77) (1.00) (1.22)
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Table 3.7: Placebo tests with pseudo dividend record months

This table reports placebo tests with pseudo dividend record dates. We consider two testing samples:
(1) excluding only the dividend record months; (2) excluding dividend-paying stocks altogether.
For each sample, in each month, we randomly choose 14% of firm-month observations (based on
summary statistics in Table 1) to be stocks with dividend record dates over the previous month.
PseudoDivRi,t−1 is a dummy variable that equals one if stock i has a pseudo dividend record date
in month t − 1, and zero otherwise. Simulation 1 and Simulation 2 use two different simulation
seeds. We add both firm and month fixed effects and cluster standard errors on both firm and time.
t-statistics are presented in parentheses below the coefficient estimates. The sample period is 1985:7
to 2019:12. ** and *** denote two-tail statistical significance at the 5% and 1% levels, respectively.

Subsample Drop if DivR = 1 Drop dividend stocks

Simulation 1 Simulation 2 Simulation 1 Simulation 2

NOPS -0.051*** -0.053*** -0.113*** -0.113***
(-8.66) (-8.97) (-11.58) (-11.38)

PseudoDivR -0.027 0.063 0.109 -0.080
(-0.35) (0.88) (1.33) (-1.13)

NOPS×PseudoDivR -0.006 0.008 0.002 -0.001
(-0.65) (0.84) (0.26) (-0.14)

NOPS×JGTRRA 0.022** 0.022** 0.074*** 0.073***
(2.32) (2.32) (6.26) (6.19)

PseudoDivR×JGTRRA 0.010 0.094 -0.092 0.184**
(0.09) (0.86) (-0.89) (1.97)

NOPS×PseudoDivR×JGTRRA 0.007 0.007 0.002 0.004
(0.46) (0.48) (0.29) (0.43)
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Table 3.8: Portfolio-level DID

This table reports the portfolio-level DID results. For stocks that report dividend record dates in
the previous month, we sort them into ten decile portfolios based on NOPS and then compute the
monthly portfolio returns for the long, short, and long-short portfolios. We repeat the procedure
for stocks that do not report dividend record dates in the previous month. Robust t-statistics are
presented in parentheses below the coefficient estimates. The sample period is 1985:7 to 2019:12.
** and *** denote two-tail statistical significance at the 5% and 1% levels, respectively.

Long-Short Long side Short side

Treated -2.083*** -0.545*** 1.539***
(-6.21) (-3.67) (3.73)

Treated×JGTRRA 1.677*** 0.393** -1.284***
(4.04) (2.12) (-2.68)

Constant 2.351*** 1.476*** -0.875***
(15.82) (22.23) (-5.06)
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Table 3.9: Subperiods of investor sentiment

This table reports the main DID coefficients β1 from subperiods regression with respect to investor
sentiment. We use two orthogonalized investor sentiment indices from Baker and Wurgler (2006)
and Huang et al. (2015), respectively, to identify the high or low sentiment periods. We first ob-
tain the mean of each investor sentiment index using a recursive-window with at least twenty-four
monthly observations. A high-sentiment month is the one in which the value of sentiment index
at the end of previous month is above the mean value in the recursive-window, or vice versa. We
re-run the DID regression for the two subperiods, respectively. Robust t-statistics are presented in
parentheses below the coefficient estimates. The sample period is 1985:7 to 2019:12. *, **, and ***
denote two-tail statistical significance at the 10%, 5%, and 1% levels, respectively.

Baker and Wurgler (2006) Huang et al. (2015)

High Low High Low

β1 (Long-Short ) 3.195*** 0.909** 3.424*** 0.795**
(3.48) (2.20) (3.45) (2.14)

β1 (Long side ) 0.303 0.402* 0.860* 0.174
(0.80) (1.90) (1.92) (0.92)

β1 (Short side ) -2.892*** -0.507 -2.565** -0.621
(-2.77) (-1.12) (-2.14) (-1.64)
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Table 3.10: Subsamples of limits to arbitrage proxies

This table reports the main DID coefficients β1 from subsample regression with respect to different
limits to arbitrage proxies, including firm size, firm age, idiosyncratic volatility (IVOL), and size-
adjusted institutional ownership (IO). For each of limits to arbitrage proxies, we define high or
low groups based on tercile portfolios. Robust t-statistics are presented in parentheses below the
coefficient estimates. The sample period is 1985:7 to 2019:12. *, **, and *** denote two-tail
statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Firm size and firm age

Large Firm Small Firm Mature Firm Young Firm

β1 (Long-Short) 0.833** 1.510*** 0.729*** 1.840***
(2.54) (3.78) (3.36) (3.48)

β1 (Long side) 0.289 0.211 0.231 0.381
(1.55) (0.96) (1.38) (1.30)

β1 (Short side) -0.543 -1.299*** -0.497** -1.459**
(-1.35) (-3.06) (-2.09) (-2.50)

Panel B: IVOL and IO

High IVOL Low IVOL High IO Low IO

β1 (Long-Short) 1.594*** 0.502*** 0.981*** 1.378***
(2.86) (2.80) (2.60) (3.40)

β1 (Long side) 0.520 0.143 0.099 0.376
(1.47) (1.14) (0.43) (1.63)

β1 (Short side) -1.073* -0.359** -0.882** -1.002**
(-1.86) (-2.14) (-2.33) (-2.01)
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Table 3.11: Dividend stocks only

This table investigates the causal effect of dividend taxation shock to short-selling on anomalies
for dividend-paying stocks. In Panel A, we exclude non-dividend-paying stocks during the entire
sample period. In Panel B, we exclude both non-dividend-paying stocks and stocks that initiated
dividends after September 2003. We choose September of 2003 because we assume that it might
take three months for a firm to react to the act. Robust t-statistics are presented in parentheses below
the coefficient estimates. The sample period is 1985:7 to 2019:12. *, **, and *** denote two-tail
statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Dividend-paying stocks only

Long-Short Long side Short side

Treated -0.715*** -0.487*** 0.228
(-4.00) (-4.57) (1.30)

Treated×JGTRRA 0.753*** 0.203 -0.550**
(3.06) (1.33) (-2.50)

Constant 1.423*** 1.509*** 0.085
(16.32) (27.94) (1.08)

Panel B: Dividend-paying stocks before JGTRRA only

Treated -0.470*** -0.348*** 0.122
(-3.05) (-3.62) (0.97)

Treated×JGTRRA 0.517** 0.003 -0.514**
(2.01) (0.02) (-2.54)

Constant 1.309*** 1.430*** 0.121*
(14.52) (25.69) (1.71)
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Table 3.12: Types of anomalies

This table investigates the different types of anomalies. We split the 182 significant anomalies into
four groups based on McLean and Pontiff (2016); Engelberg et al. (2018): (1) Event, (2) Market,
(3) Fundamentals, and (4) Valuation. We separately compute NOPS for each of these four types of
anomalies. We also consider NOPS constructed from Stambaugh et al. (2012) 11 anomalies, labeled
as NOPS SYY. Robust t-statistics are presented in parentheses below the coefficient estimates. The
sample period is 1985:7 to 2019:12. ** and *** denote two-tail statistical significance at the 5%
and 1% levels, respectively.

NOPS by Type: SYY Event Market Fundamentals Valuation

11 52 62 51 17

Panel A: Long-Short

Treated -1.589*** -1.085*** -1.964*** -1.924*** -0.693
(-6.29) (-5.36) (-6.00) (-6.14) (-1.56)

Treated×JGTRRA 1.258*** 1.092*** 1.064*** 1.440*** 0.296
(3.89) (4.13) (2.81) (3.60) (0.55)

Constant 1.617*** 1.128*** 2.194*** 1.605*** 1.206***
(14.00) (11.97) (16.03) (11.23) (6.26)

Panel B: Long side

Treated -0.459** -0.215 -0.423*** -0.498*** -0.110
(-2.44) (-1.01) (-2.60) (-2.69) (-1.03)

Treated×JGTRRA 0.342 0.221 0.024 0.356 0.001
(1.60) (0.88) (0.12) (1.62) (0.01)

Constant 1.133*** 1.057*** 1.327*** 1.215*** 1.095***
(14.62) (11.68) (18.62) (15.37) (18.23)

Panel C: Short side

Treated 1.130*** 0.870*** 1.541*** 1.427*** 0.583
(3.33) (3.13) (3.85) (3.38) (1.19)

Treated×JGTRRA -0.916** -0.871*** -1.040** -1.085** -0.295
(-2.26) (-2.64) (-2.31) (-2.17) (-0.52)

Constant -0.483*** -0.072 -0.866*** -0.390** -0.111
(-3.31) (-0.60) (-5.31) (-2.17) (-0.54)
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APPENDIX A: EQUITY FORWARD RETURN FROM DERIVATIVES

A.1 Proof of Proposition 2.2.1

The proof is divided into several steps.

Step 1. We first derive an approximation formula of VIX as follows

V IX2
t→t+T ∼

1
T

(
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
−1

)
. (A1)

By using the second-order expansion of log(1+ x) ∼ x− 1
2x2 when x closes to zero, and

Rt→t+T
R f ,t→t+T

sufficiently closes to one, we obtain

log
(

Rt→t+T
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)
∼ Rt→t+T

R f ,t→t+T
−1− 1

2
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−1
)2

. (A2)

By taking the conditional expectation under the risk-neutral probability measure Q, and

using the relation that EQ
t

[
Rt→t+T

R f ,t→t+T

]
= 1, we obtain

EQ
t log

(
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R f ,t→t+T

)
∼ 1

2
− 1

2
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t
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]
. (A3)

Recall the definition of VIX as a risk-neutral entropy

V IX2
t→t+T =

2
T

LQ
t

(
Rt→t+T

R f ,t→t+T

)
(A4)

where LQ
t (X)≡ logEQ

t X−EQ
t logX . By Equation (A3), we obtain

V IX2
t→t+T ∼

1
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, (A5)

since logEQ
t

[
Rt→t+T

R f ,t→t+T

]
= 0.

Step 2. We derive the result for EQ
t [Rn] when n = 2. We use the formula (A1) for the
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time period from t +T1 to t +T1 +T2,

V IX2
t+T1→t+T1+T2

∼ 1
T2

(
EQ

t+T1

[(
R
R f

)2
]
−1

)
.

Here, to simplify notation, we write R = Rt+T1→t+T1+T2 ,R f = R f ,t+T1→t+T1+T2 .

By applying the conditional expectation of the last equation at time t under the Q-

measure , we have
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, (A6)

where the left-hand side can be expressed as

EQ
t [V IX2

t+T1→t+T1+T2
] =

EQ
t [V IXt+T1→t+T1+T2]︸ ︷︷ ︸

FV IXt,t+T1→t+T1+T2


2
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Here, the first term on the right-hand side of the last equation is the square of the VIX

future by the risk-neutral pricing formula, and the second term is the conditional variance

VarQt (V IXt+T1→t+T1+T2).

We now consider the VIX option with maturity t+T1 and the underlying is V IXt+T1→t+T1+T2 .

Since the VIX is a tradable asset, by the fundamental pricing theorem in derivative theory,

its future value process under the Q-measure is a martingale. Then, the conditional vari-

ance VarQt (V IXt+T1→t+T1+T2) equals
(
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t T1, where σt is the implied

volatility of the at-the-money VIX option. Therefore,
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Plug back into Equation (A6) and we obtain
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2
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)
, (A8)

where Ft = FV IXt,t+T1→t+T1+T2 denotes the futures prices on VIX index.

Step 3. We derive the result for EQ
t [Rn] for n ≥ 3. By the n-th order approximation of

log(1+ x), we have
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R
R f

)

]
∼

n

∑
i=1

(−1)i−1 1
i
EQ

t+T1

[(
R
R f
−1
)i
]
.

Since

V IX2
t+T1→t+T1+T2

=− 2
T2
EQ

t+T1

[
log(

R
R f

)

]
∼ 2

T2

n

∑
i=1

(−1)i 1
i
EQ

t+T1

[(
R
R f
−1
)i
]
,

By taking expectation conditional on t, the iterated law of expectation implies

Et [V IX2
t+T1→t+T1+T2

]∼ 2
T2

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f
−1
)i
]
,

and we obtain,

T2

2
F2

t
(
1+σ

2T1
)
∼

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f
−1
)i
]
, n≥ 3. (A9)
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�

Approximation error: We next explain why this approximation is sufficiently tight for

empirical applications. For simplicity, we use x = Rt,t→t+T
R f t,t→t+T

−1. Let a≡ supx | log(1+ x)−

(x− x2

2 )| for all possible scenarios of x. The number a is very small in magnitude because

x is closes to zero. Moreover, for any c > 0,

EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣] = EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x| ≤ c
]

+EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|> c
]

≤ c3

3
+EQ

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|> c
]

≤ c3

3
+aP(|x|> c).

Clearly, the smaller the parameter c, the smaller the first term c3

3 . Although the probabil-

ity P(|x| ≥ c) can become larger given a smaller value of c, this probability itself is usually

very small. In total, the upper bound of EQ
[
| log(1+ x)− (x− x2

2 )|
]

is very small.

Numerically, if choose |x| ≤ 1% for the monthly return (annual return bound is 12 per-

cent), and the average VIX is 15%, then

EQ
t

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣]≤ 1
3
(0.01)3,

and

∣∣∣EQ
t [log(1+ x)]

∣∣∣= T
2

V IX2 =
1

2×12
(0.15)2.

Therefore,

∣∣∣∣∣∣
EQ

t

[∣∣∣log(1+ x)− (x− x2

2 )
∣∣∣]

EQ
t [log(1+ x)]

∣∣∣∣∣∣≤ 1
3
(0.01)3× (2×12)

1
0.152 = 0.04%.
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If we choose a large number for the month return, |x| ≤ 2%, which means the annual

return is bounded between [−24%,24%], and VIX = 20%, then

∣∣∣∣∣∣
EQ

t

[∣∣∣log(1+ x)− (x− x2

2 )
∣∣∣]

EQ
t [log(1+ x)]

∣∣∣∣∣∣≤ 0.16%.

Therefore, the approximation formula is sufficiently accurate for the market data.

A.2 Proof of Proposition 2.4.1

Before proving Proposition 2.4.1, we prove two results first. The first one presents an

alternative expression of forward return in terms of expected value of future options’ values.

The second one is on a relationship between option gamma and strike gamma for a general

option.

Proposition A.2.1 Suppose that interest rates are deterministic. Then

Et [Rt+1→t+2] =
2

R f ,t→t+1St

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK, (A10)

where

• St = underlying index price observed at time t;

• Ct+1 = the call option price at time t +1.

Proof: Suppose that interest rates are deterministic. By Equation (2.1), the expected future

return under the real-world probability measure P can be written as

Et [Rt+1→t+2] =
1

R f ,t→t+2
EQ

t

[
(Rt+1→t+2)

2×Rt→t+1

]
, (A11)

=
1

R f ,t→t+2
EQ

t

{
EQ

t+1

[
(Rt+1→t+2)

2
]
×Rt→t+1

}
, (A12)
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where

EQ
t+1

[
(Rt+1→t+2)

2
]
= EQ

t+1

[(
St+2

St+1

)2
]
=

1
S2

t+1
EQ

t+1
[
S2

t+2
]
. (A13)

Plug back into the equation and we have

Et [Rt+1→t+2] =

(
1

R f ,t→t+2

)(
1
St

)
EQ

t

{
1

St+1
EQ

t+1
[
S2

t+2
]}

. (A14)

We use Equation (2.3) for EQ
t+1
[
S2

t+2
]
, obtaining

1
R f ,t+1→t+2

EQ
t+1
[
S2

t+2
]
= 2

∫
∞

0

1
R f ,t+1→t+2

EQ
t+1
[
(St+2−K)+

]
dK (A15)

= 2
∫

∞

0
Ct+1(St+1,K)dK, (A16)

where Ct+1(St+1,K) denotes the price of a call option at time t +1 that will expire at time

t +2 with a strike price K.

Then, by Fubini’s theorem, we have,

Et [Rt+1→t+2] =

(
1

R f ,t→t+2

)(
1
St

)
EQ

t

{
1

St+1

[
2R f ,t+1→t+2

∫
∞

0
Ct+1(St+1,K)dK

]}

=
2

R f ,t→t+1St

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK. (A17)

�

The following result could be known as folklore in derivative literature. However, since

we do not find an appropriate reference for this result, we present its complete proof.

Lemma A.2.1 Let C′′ denote the second-order partial derivative of call option price with

respect to the underlying price, and C̈ the second-order partial derivative with respect to
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the strike, then we have

S2C′′(S,K) = K2C̈(S,K). (A18)

Proof:

Let C′ denote the partial derivative of call option price with respect to (w.r.t.) the under-

lying price, Ċ the partial derivative w.r.t. strike, and Ċ′ the second-order partial derivative

w.r.t. strike and underlying.

We first demonstrate that C(S,K) is homogeneous of degree 1. In other words, C(aS,aK)=

aC(S,K), for all real numbers a > 0. To see it, by the risk-neutral pricing equation,

C(S,K) = e−r(T−t)EQ
t
[
(ST −K)+|St = S

]
. (A19)

Using the formula (ax)+ = ax+, for all x and a > 0, the payoff is (aST −aK)+ = a(ST −

K)+. Then by the risk-neutral pricing equation again,

C(aS,aK) = e−r(T−t)EQ
t
[
(aST −aK)+|aSt = aS

]
= ae−r(T−t)EQ

t
[
(ST −K)+|St = S

]
= aC(S,K).

(A20)

Accordingly, for any a,b > 0, we have

abC(S,K) =C(abS,abK). (A21)

Take ∂

∂a on both sides of Eq. (A21) and set a = 1

bC(S,K) = bSC′(bS,bK)+bKĊ(bS,bK). (A22)

First, evaluate Equation (A22) at b = 1

C(S,K) = SC′(S,K)+KĊ(S,K). (A23)
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Take partial derivative ∂

∂K

Ċ(S,K) = SĊ′(S,K)+KC̈(S,K)+Ċ(S,K), (A24)

and we obtain

SĊ′(S,K)+KC̈(S,K) = 0. (A25)

Second, take first ∂

∂a on both sides of Equation (A22), and then ∂

∂b on the resulting

equation, and set a = b = 1, we obtain

C(S,K) = SC′(S,K)+S2C′′(S,K)+2SĊ′(S,K)K +KĊ(S,K)+K2C̈(S,K). (A26)

We next equate the right-hand sides of Equations (A23) and (A26) and obtain

S2C′′(S,K)+2SĊ′(S,K)K +K2C̈(S,K) = 0. (A27)

Plug the Equation (A25) into the equation above,

S2C′′(S,K) = K2C̈(S,K), (A28)

and we obtain Lemma A.2.1. �

Now we are ready to prove Proposition 2.4.1.

Proof of Proposition 2.4.1

To compute the right-hand side of Equation (A17), and thus Et [Rt+1→t+2], write

C(S,K) =
1

R f

∫
∞

K
(z−K)q(z|S)dz, (A29)

where q(·) is the conditional density of St+1 under the risk-neutral probability measure Q

and R f denotes the gross risk-free return. Now let Ċ denote the partial derivative with
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respect to strike. Then

Ċ(S,K) =
1

R f
(
∫ K

0
q(z|S)dz−1). (A30)

Write Π(K|S) =
∫ K

0 q(z|S)dz for the conditional distribution under Q, that is, Π(K|S) =

Q(St+1 ≤ K|St = S). Then, Π(K|S) = 1+R f Ċ(S,K), and dΠ(K|S) = R f C̈(S,K)dK.

Hence,

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK =

∫
∞

0

∫
∞

0

Ct+1(L,K)

L

(
R f ,t→t+1C̈t(St ,L)dL

)
dK

= R f ,t→t+1

∫
∞

0

∫
∞

0

Ct+1(L,K)

L
C̈t(St ,L)dLdK

= R f ,t→t+1S2
t

∫
∞

0

∫
∞

0

Ct+1(L,K)

L
C
′′
t (St ,L)

L2 dLdK, (A31)

where the last line substitutes gamma for strike-gamma using C′′(S,K) = K2

S2 C̈(S,K), as

specified by Lemma A.2.1.

Plug back into Equation (A17)

Et [Rt+1→t+2] = 2St

∫
∞

0

C
′′
t (St ,L)

L3


∫

∞

0
Ct+1(L,K)dK︸ ︷︷ ︸

inside-integral, I(L)

 dL, (A32)

and we obtain Proposition 2.4.1. �

A.3 Nonzero Risk-neutral Relation

In this section, we provide a simple example to demonstrate that the risk-neutral corre-

lation between the spot return and the future return square, corrQt
[
Rt→t+1,R2

t+1→t+2
]
, can

be nonzero.

At time t = 0,1,2, let the risk-free rate of return be zero, and the risky asset returns

during the two consecutive periods be Rt→t+1 = R1 = 1+ ε and Rt+1→t+2 = R2 = 1+ εη ,

respectively. Suppose F1 is generated by ε , and F2 is by {ε,η}, where both ε and η are
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mean zero and independent of one another. Immediately, we have

E [R1] = 1+E [ε] = 1, (A33)

E1 [R2] = 1+E1 [εη ] = 1+ εE1 [η ] = 1, (A34)

since E1 [η ] = E [η ] = 0. Therefore, the conditional expectation operator, E[.], is under the

risk-neutral probability measure Q.

We next compute the (risk-neutral) covariance between the spot return and the future

return square, Cov(R1,R2
2). First,

E
[
R2

2
]
= E

[
1+2εη + ε

2
η

2]= 1+E
[
ε

2
η

2] (A35)

Second,

E
[
R1R2

2
]
= E

[
(1+ ε)(1+2εη + ε

2
η

2)
]
= E

[
1+2εη + ε

2
η

2
ε +2ε

2
η + ε

3
η

2] ,
(A36)

= 1+E
[
ε

2
η

2]+E
[
ε

3
η

2] . (A37)

Hence,

Cov(R1,R2
2) = E

[
R1R2

2
]
−E [R1]E

[
R2

2
]
= E

[
ε

3
η

2] , (A38)

= E
[
ε

3]E[η2] . (A39)

In other words,

corr(R1,R2
2) 6= 0 if and only if E

[
ε

3] 6= 0. (A40)

If we choose ε ∼η (the same distribution), in theory, the risk-neutral correlation corr(R1,R2
2)

can be any number (with the same sign as E
[
ε3]), as long as E

[
ε3] 6= 0.
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APPENDIX B: MISPRICING AND ANOMALIES: AN EXOGENOUS SHOCK TO

SHORT SELLING FROM JGTRRA

Table B.1: DID results over balanced sample periods

This table reports the main DID results over the balanced sample periods over [−5,+5], [−10,+10],
and [−15,+15] years before and after the JGTRRA 2003. We add both firm and month fixed effects
and cluster standard errors on both firm and time. t-statistics are presented in parentheses below the
coefficient estimates. *, **, and *** denote two-tail statistical significance at the 10%, 5%, and 1%
levels, respectively.

Sample periods [−5,+5] [−10,+10] [−15,+15]

NOPS -0.125*** -0.108*** -0.103***
(-4.92) (-7.94) (-9.99)

DivR -0.207 -0.267* -0.292***
(-0.75) (-1.71) (-2.63)

NOPS×DivR 0.058*** 0.041*** 0.035***
(3.79) (4.46) (4.94)

NOPS×JGTRRA 0.059** 0.059*** 0.061***
(2.37) (3.95) (5.18)

DivR×JGTRRA -0.045 -0.035 0.092
(-0.10) (-0.12) (0.44)

NOPS×DivR×JGTRRA -0.059*** -0.043*** -0.032***
(-2.79) (-3.14) (-3.05)
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Table B.2: DID results with MISP

This table reports the main DID results after replacing NOPS by Stambaugh et al. (2015) mispricing
score, MISP. The MISP data are obtained from Robert F. Stambaugh’s website. t-statistics are
presented in parentheses below the coefficient estimates. The sample period is 1985:7 to 2016:12
due to the availability of MISP data. *** denotes two-tail statistical significance at the 1% level.

Fixed Effects Month Month Firm & Month Firm & Month

S.E. Clusters Month Firm & Month Month Firm & Month

MISP -0.049*** -0.049*** -0.041*** -0.041***
(-8.54) (-8.53) (-5.98) (-6.00)

DivR -1.767*** -1.767*** -1.171*** -1.171***
(-8.09) (-8.00) (-5.63) (-5.57)

MISP×DivR 0.034*** 0.034*** 0.017*** 0.017***
(5.75) (5.73) (3.98) (3.97)

MISP×JGTRRA 0.034*** 0.034*** 0.039*** 0.039***
(4.38) (4.38) (5.35) (5.37)

DivR×JGTRRA 1.372*** 1.372*** 1.255*** 1.255***
(4.56) (4.58) (4.20) (4.23)

MISP×DivR×JGTRRA -0.029*** -0.029*** -0.024*** -0.024***
(-3.68) (-3.69) (-3.67) (-3.69)
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Table B.3: Within-firm portfolios

This table reports results using the within-firm calendar-time portfolio method in Hartzmark and
Solomon (2013). Each month, we sort dividend-paying firms into quintile portfolios based on
NOPS. The treated group consists of firms that report dividend record dates in the previous months,
while the control group includes firms that do not report dividend record dates in the previous
months, but reported dividend record dates in the previous 12 months. Then we obtain the respec-
tive long-short portfolios for the treated and control groups. Finally, we regress the difference in the
long-short portfolio returns between the treated and control groups on JGT RRAt−1. We also control
for Fama and French (2015) five factors and Hou et al. (2015) four factors. Newey-west t-statistics
are presented in parentheses below the coefficient estimates. * and ** denote two-tail statistical
significance at the 10% and 5% levels, respectively.

Long-Short Long-Short Long-Short

JGTRRA 0.308** 0.279* 0.276*
(2.11) (1.95) (1.87)

MKT -0.021
(-0.79)

SMB -0.020
(-0.62)

HML -0.005
(-0.10)

RMW -0.049
(-1.09)

CMA -0.054
(-0.98)

MKT (HXZ) -0.019
(-0.87)

ME -0.003
(-0.08)

IA -0.065
(-1.15)

ROE -0.004
(-0.09)

Constant -0.228** -0.168 -0.181
(-2.22) (-1.62) (-1.63)
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