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ABSTRACT

TUMININU AYOTUNDE MBANISI. Proactive topology optimization and service
restoration for improved distribution system outage management. (Under the

direction of DR. VALENTINA CECCHI)

It is estimated that close to 90% of outages in the electric power grid originate

in the distribution system. Although the use of advanced metering infrastructure

has increased situational awareness in the distribution system, current approaches

to outage management are often reactive and do not fully leverage insights from

outage prediction models for the service restoration process. Hence, this work aims

to provide a holistic strategy for combining outage prediction and service restoration

in the outage management process.

First, a detailed analysis of an outage dataset is conducted in order to gain insights

into the frequency and duration of outages in a distribution system. Two machine

learning techniques, random forest and gradient boosting, are used to rank outage

features, including outage causes, climate descriptions, and failed equipment, to de-

termine which outage features have the greatest impact on average outage duration

in a distribution system.

Following that, this dissertation proposes a proactive topology optimization and

service restoration framework that leverages forecasts from outage prediction models

to mitigate the impacts of predicted outages in the distribution system. The proposed

framework is formulated as a mixed integer linear programming (MILP) problem with

the objectives of minimizing the load lost prior to the outage and maximizing the

restorable load when the outage occurs at the predicted locations. The MILP model

was simulated using the Python Optimization Modeling Objects (Pyomo) package, an

open-source tool, and solved using the CPLEX solver. Using modified versions of the

IEEE 13-node and 123-node test feeders, the framework considers three optimization

cases: single outage, multiple outage, and weighted multiple outage. In addition, a
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sensitivity analysis based on the weighted multiple outage case is presented in order

to determine the optimal topology to operate in given a range of probabilities for the

possible outage locations in the distribution system.

Furthermore, the MILP model used in this work is validated by comparing its power

flow results with those obtained from OpenDSS, an open-source simulation tool for

electric power distribution systems. The results show that the MILP model provides

a reasonable approximation of the nonlinear power flow model.

Overall, this dissertation provides a method for improving situational awareness

within the distribution system. Using the proposed approach, distribution system

operators can determine what topology to operate in ahead of predicted outages,

thereby reducing the loads left out of service.
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CHAPTER 1: INTRODUCTION

1.1 Overview

Around 90% of all outages in the electric power system can be traced to the dis-

tribution network [1,2]. The increase in severe weather events leading to widespread

and long-duration outages to customers is a source of concern for electric utilities.

Other factors such as aging infrastructure and cyberphysical attacks also result in

outages in the distribution system. The impacts of outages in the grid could range

from mild inconveniences to losses in millions of dollars, or even loss of life. For ex-

ample, the economic losses due to the February 2021 North American winter storm

were estimated at around $130 billion in Texas alone [3,4]. Hence, there is a need to

develop strategies that help prevent outages or mitigate the impacts of outages and

improve the resilience of the power system.

This dissertation examines the need to improve situational awareness given the

increase in the frequency of outages in the distribution system and proposes a method

for managing outages in a more proactive manner.

The following are discussed in subsequent sections of this chapter:

• Background and motivation for this work

• Objectives of this work

• A summary of the contributions

• The dissertation organization
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1.2 Background and Motivation

In September 2000, the National Academy of Engineering named the electric power

grid as the greatest engineering achievement of the twentieth century [5, 6]. The

electric power grid, which has also been described as the most complex machine

ever invented, comprises of a network that transports power from generation through

transmission and down to the distribution system, where electricity is delivered to

the final customers.

There is a need for high reliability in the distribution system due to its proximity to

customers. However, the reliability and resilience of the distribution system is often

threatened by several factors including severe weather events, aging infrastructure

and cyberphysical attacks which could cause outages and damages in the distribution

system [7].

In the past, electric utilities had no way of detecting outages automatically, and had

to depend primarily on phone calls from customers [8,9]. Upon receiving these calls,

utilities used paper maps to pinpoint the location of affected customers, and possibly,

the exact location of the fault, after which repair crews were dispatched to the outage

locations [10]. Once on site, the crew had to investigate the source of the fault, and

isolate the fault. To isolate the fault, network reconfiguration could be implemented

to restore power to some affected customers [11]. After repairs, service restoration

was considered complete. One problem with this traditional approach is that it was

highly reactive in nature—the outage occurs, and then the utility responds. Other

issues stemmed from the fact that utilities did not have complete network connectivity

information such as phase connectivity and meter-to-transformer connectivity in the

network [12,13].

This changed with the introduction of smart electricity meters which led to in-

creased monitoring and visibility at the distribution level. Electric utilities now have

access to huge amounts of data from smart meters, distribution system sensors as well
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as other systems including distribution management and outage management sys-

tems. As of 2019, close to 95 million smart meters have been deployed in the United

States [14], and this has increased the amount of data processed by electric utili-

ties by at least three thousand times [15]. These data have opened up opportunities

for more advanced functions such as volt/var optimization, distribution automation,

and demand response in the distribution system. Hence, utilities consider the use

of advanced metering infrastructure (AMI) data for improved outage management

and service reliability of utmost importance [16, 17]. AMI comprises sensors, devices

and communication networks that enable bidirectional communication between me-

ters/devices and electric utilities, allowing for increased monitoring and management

of the grid.

For outage management purposes, AMI data is often integrated with information

such as customer calls and notes from repair crews from outage management systems

(OMS). Similarly, utilities have created online outage maps by integrating AMI data

with OMS and geographical information systems (GIS). Some benefits of using AMI

data for outage management include faster outage isolation, reduced trips by outage

crews, and faster power restoration [18]. Smart meters could be pinged to verify

outages caused by momentary events, and to verify actual outage location [11]. Using

the last gasp feature of smart meters [16, 19], outages can be detected even before

customers call in, thus reducing outage duration, and improving reliability indices

and customer satisfaction. After outage response by field crews or remotely, smart

meters can be used to verify service restoration to customers [11]. Nonetheless, this

approach is still reactive: the outage occurs before the utility responds [9].

Nevertheless, AMI data, coupled with improvements in data analysis and fore-

casting methods, provide utilities the opportunity to move from managing outages

reactively to managing them proactively. This paradigm shift adds a new layer to

the traditional outage management process—outage prediction. The field of data an-
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alytics makes it possible to analyze patterns and detect anomalies in the distribution

system using large datasets, including historical outage and weather data. Thus, it

is possible to predict the failure of a piece of distribution system equipment before it

happens, or detect weather or vegetation patterns that could lead to outages using

outage prediction models (OPMs) [20–23].

In addition to outage prediction, the service restoration process could be improved

by leveraging distribution system data through a combination of prescriptive and

predictive analytics. While predictive analytics focuses on analyzing historical outages

and predicting future outages before they occur, the focus of prescriptive analytics is

on leveraging outage forecasts to optimize the service restoration process.

1.3 Research Objectives

This dissertation proposes a proactive topology optimization and service restoration

framework that leverages forecasts from OPMs to prevent or mitigate the effects

of predicted outages in the distribution system. The result is a holistic and more

proactive approach to outage management in the distribution system. The objectives

of this work are as follows:

1. To analyze outage frequency and duration in a distribution network by applying

machine learning techniques to an OMS dataset.

2. To propose a two-stage proactive topology optimization and service restoration

framework that prescribes a set of switching actions and an optimal network

topology that minimizes the impact of outages at predicted outage locations.

The objectives of the framework are as follows:

• The objective of the first stage is to optimize the network topology by

minimizing the power flowing through the predicted outage locations. The

results show that by minimizing the power flowing through the predicted
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outage locations the out-of-service (or unserved) load is minimized when

the outage occurs as predicted.

• The objective of the second stage is to maximize the amount of loads left

in service after the outage occurs at the predicted locations.

• Both objectives are achieved by changing the status of switchable lines in

the distribution network.

1.4 Summary of Contributions

The contributions of this work are summarized as follows:

1. The frequency and duration of power system outages in a distribution system are

analyzed based on several features in an outage management dataset including

outage cause, climatic description, and voltage level of the affected circuit. The

impact of these features are ranked using two machine learning techniques:

random forests and gradient boosting regression.

2. A topology optimization and service restoration framework is proposed for

proactive outage management in the distribution system. This framework is

formulated as a two-stage mixed integer linear programming (MILP) problem

with the following objectives:

• In the first stage, the objective is to minimize the power flowing through

the predicted outage locations. By minimizing the power flowing through

the predicted outage locations, the unserved load is minimized when the

outage occurs as predicted.

• In the second stage, the amount of loads left in service after the outage

occurs at the predicted locations is maximized by changing the status of

the operational switchable lines.
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3. In addition, three cases are proposed for implementing the proactive topology

optimization and service restoration framework as follows:

• Single outage case

• Multiple outage case

• Weighted multiple outage case

1.5 Dissertation Organization

The rest of this dissertation is organized as follows:

• Chapter 2 presents a review of literature on outage management in distribution

systems including current approaches to service restoration.

• In Chapter 3, the gap in current approaches to outage management in the

distribution system are identified, and the problem statement is presented and

discussed in further detail.

• Chapter 4 presents an analysis of frequency and duration of outages in the

distribution network using outage data from a utility in southeastern United

States.

• In Chapter 5, the proposed topology optimization and service restoration frame-

work is presented and described in detail. The framework is formulated using

an MILP model and applied to three optimization cases.

• In Chapter 6, the proposed topology optimization and service restoration formu-

lation is demonstrated using modified versions of the IEEE 13-bus and 123-bus

feedesr. Results of the three optimization cases discussed in the previous chapter

are presented to demonstrate the validity of the proposed framework.

• The conclusion, summary of contributions as well as recommendations for future

work are presented in Chapter 7.



CHAPTER 2: LITERATURE REVIEW

2.1 Overview

Outages in the distribution system impact system reliability and customer sat-

isfaction. Effects of outages could range from minor inconveniences and stress to

customers, safety hazards at road intersections due to traffic lights losing power, to

economic losses in thousands or even millions of dollars. Moreover, the average cost

per event for a momentary outage in the United States is estimated to range from

around $3.90 for residential customers to as high as $12,952 for medium and large

commercial and industrial customers [24]. This cost increases with the duration of

the outage. In 2017, it was estimated that Delta Air Lines lost up to $50 million dur-

ing an 11-hour outage at the Hartsfield-Jackson Atlanta International Airport [25,26].

Hence, this chapter presents a review of literature on distribution system outage man-

agement including the state-of-the-art on outage analysis and prediction as well as

current approaches to distribution system service restoration.

2.2 Distribution System Outage Management

Outage management encompasses activities undertaken by an electric utility to

predict, prevent, identify and locate outages, and promptly restore power to its cus-

tomers, thereby reducing the time customers are left without power. Fig. 2.1 displays

a summary of the traditional approach to outage management in distribution systems

as described in Section 1.2.

Significant research has been conducted in the area of outage management dating

back to the 1990s. However, considerable interest in outage management increased

significantly in the 2000s due to the advent of smart meters and the consequent explo-
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Figure 2.1: Traditional outage management approach

sion of data in the distribution system. These studies can be broadly categorized into

the following themes: outage analysis and detection, outage prediction and modeling

and service restoration. Some studies have also focused on the application of machine

learning/data analytics to the afprementioned areas.

2.2.1 Outage Analysis and Prediction

Most of the literature have approached the subject of outage management by ana-

lyzing or predicting the causes of outages in the distribution system using historical

data. Fig. 2.2 shows the top causes of power outages in different regions of the United

States. Common causes of distribution system outages include: vegetation, weather,

animals, equipment failure and planned maintenance and repairs; a large percentage

of literature focuses on analyzing outages based on the first three cause categories. It

is important to note that sometimes the cause of an outage may be unknown [27].

Early studies on outage analysis and prediction focused on analyzing and predicting

Figure 2.2: Top causes of power outages in the United States [28]
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outages due to various causes including trees and animals simultaneously [29–32].

A drawback of this approach is that factors affecting each outage cause could be

different. For example, some outage causes are affected more by weather-related

factors than others, and there could be seasonal variations in outages due to different

causes. Hence, more recent studies have emerged that focus on outages due to a

single cause category. Most of these studies are focused on outages due to trees or

vegetation, animals, lightning and weather.

Outages attributed to vegetation could be growth-related (that is, growth of tree

branches to make contact with distribution lines and equipment) or weather-related

(weather-related factors causing vegetation to make contact with distribution lines

and equipment). The study in [33] used time series and nonlinear machine learning

models to categorize outages due to vegetation as growth-related or weather-related,

and predict the number of monthly-related outages in a distribution network. This

study revealed a seasonal pattern in growth-related outages while weather-related

vegetation outages showed no apparent trend over time. Other studies such as [34]

and [35] focused on predicting the failure risk or rate of vegetation-related outages

in the distribution system. In [35], a spatiotemporal prediction model was used

to develop an optimal dynamic tree trimming scheduler which reduces the risk of

vegetation-related outages by more than 30%.

Over 70% of power outages in the US can be traced directly or indirectly to weather-

related causes [36], hence a considerable amount of literature has also been published

on outages directly caused by weather phenomena such as wind, hurricanes, thun-

derstorms and ice. This may be attributed to an increase in adverse weather events

affecting the US power grid. The studies in [21, 37–40] proposed outage prediction

models (OPMs) to analyze and predict outages caused by severe weather such as thun-

derstorms, ice storms and hurricanes. Tree-based machine learning models were used

in [21, 39, 40] while [37] and [38] used generalized linear mixed models and negative
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binomial regression, respectively. These studies, along with others in literature inves-

tigating weather-related outages typically leverage historical and forecasted weather

data along with historical outage records.

With respect to outages caused by animals, studies have shown that most animal-

related outages are caused by squirrels [41, 42]. These studies showed that weather

and season play significant roles in animal-related outages with most of the outages

occurring in the spring and fall seasons in the locations under study. A range of

methods have been used for predicting these outages including dynamic regression

[41], neural networks [43–45] and Bayesian network models [22, 42, 44]. In addition,

some studies applied wavelet techniques [46] and boosting algorithms [43] to improve

the performance of neural network models used to predict animal-related outages.

Studies focused on outage analysis or prediction often use historical outage records

from outage management systems (OMS) as well as weather data. The studies in [41]

and [43, 44] used five years and ten years worth of historical outage records in the

Carolinas and in the state of Kansas, respectively. The date-time information from

historical outage records is often decomposed to create new variables such as season,

day of week, time of day, and month of year. Commonly used weather variables

include temperature, wind speed, humidity, and precipitation.

With respect to distribution system reliability, it is important to know the frequency

and duration of outages occurring in the distribution network; hence reliability in-

dices measure how outage frequency and duration impact the system as well as the

customers. Commonly used distribution reliability indices include: system average

interruption frequency index (SAIFI), customer average interruption frequency index

(CAIFI), system average interruption duration index (SAIDI) and customer average

interruption duration index (CAIDI) [47].

Consequently, several papers in literature focused on analyzing and predicting out-

age frequency and duration, with a larger proportion focusing on estimating outage



11

frequency or number of outage events. Furthermore, a number of studies investigated

the impact of different variables on outage duration. Variables considered in these

studies include: outage cause, action taken by repair crew to resolve the outage and

calendar variables such as month, day of week, and hour of day. Outage cause was

found to have the most impact on outage duration in [48] and [49]. In [50], outage du-

ration was predicted in real-time using recursive neural networks to analyze weather

information, outage reports and repair logs. Natural language processing was used to

identify the outage cause from outage reports.

Furthermore, several machine learning or data-driven techniques have been applied

to predict and analyze power outages. Some of these techniques include regression

models [41,51–53], artificial neural networks [43–45], tree-based approaches [20], and

support vector machines [54]. Specifically, [52] and [53] investigated and compared the

performance of several regression-based models for analyzing outages caused by wind

and lightning. Other studies formulated outage analyses as classification problems

with the goal of identifying the cause of outages in distribution systems. The study in

[20] compared the performance of three classification methods—decision tree, logistic

regression and naive Bayesian classifier—in identifying equipment failure outages in

distribution systems. The study used outage data and weather data for five years, and

outages due to equipment failure were analyzed based on twelve variables including

weather conditions, clearing device activated and time of day. The results showed

that the decision tree classifier outperformed the other two classifiers. The study

in [55] proposed a method that used a supervised topic model for outage detection

and location using information from Twitter. On the other hand, [51] used logistic

regression to predict outages of grid devices during severe weather events such as

hurricanes.

Overall, these studies revealed the value of data and machine learning techniques

in drawing actionable insights that could help utilities better manage and predict
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outages in the distribution system.

2.2.2 Distribution System Service Restoration

Following an outage, it is important to restore service to affected customers as

quickly as possible. Distribution service restoration is the last step in the fault loca-

tion, isolation and service restoration (FLISR) process that involves restoring power

to customers affected by an outage. The primary objective of service restoration is to

restore service to as many customers as possible and it typically involves reconfiguring

the distribution network [56] subject to various constraints.

The service restoration (SR) problem is complex and often involves multiple ob-

jectives. A survey of nineteen papers focused on distribution system restoration

presented in [57] highlights two primary objectives of service restoration: restoring

power to as many affected customers as possible and restoring power as quickly as

possible. The SR problem has been formulated using different methods including

heuristics [58–60], expert systems [61], combinatorial optimization, and evolutionary

programming such as genetic algorithms [62,63].

With regards to combinatorial optimization (specifically mathematical program-

ming), the SR problem is often formulated using methods such as mixed integer

linear programming (MILP) [64, 65], mixed integer second-order cone programming

(MISOCP) [66–68], mixed integer quadratic programming (MIQP) [69,70], and mixed

integer nonlinear programming (MINLP) [71, 72]. Some objectives considered in lit-

erature include minimizing total restoration time [73,74], minimizing the duration of

customer interruption [73], minimizing the number of switching operations [75–78],

minimizing the number of customers without supply, maximizing the total restored

energy [64], minimizing lines losses [77, 79] as well as feeder load balancing [60, 80].

Constraints considered in the formulations include: feeder loading limits, voltage

magnitude limits, transformer and line capacity limits, switching time, network ra-

diality [62, 69, 75–77, 81, 82]. For MILP models, the linear DistFlow equations in-
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troduced in [80] are often used to linearize the power flow equations. Some other

considerations in these formulations include cold load pickup (CLPU) conditions, in-

tegration and dispatch of renewable energy resources, energy storage systems and

microgrids [65, 73,74,82].

Some studies have included distributed generation (DG) in the service restoration

process to increase the amount of load restored, reduce losses in the network and to

deal with load uncertainties due to CLPU. [82] proposes an approach that uses dis-

tributed generation for service restoration and conserves load diversity in the system,

hence mitigating the CLPU problem. The study considers both utility-owned and

non-utility owned DGs in the restoration process. [66] presents a two-stage stochastic

optimization model that considers the uncertainty of load demand and distributed

generation in the service restoration process. Some studies considered the effects of

DG output uncertainty on the SR problem using stochastic models [66,81,83]. Other

studies [69, 84, 85] considered microgrids in the service restoration formulation; this

involved leveraging power support from local microgrids or sectionalizing the dis-

tribution network into microgrids to maximize the loads restored or minimize load

shedding during the SR process. [69] leveraged power support from local microgrids

to restore power to de-energized loads in the network.

The study in [64] presented a multi-time step service restoration methodology that

considers distributed generators (DGs) and energy storage systems connected in the

network. The study considered cold load pickup in the SR process. The proposed

methodology generated a sequence of control actions for controllable switches, dis-

patchable DGs and energy storage systems. The SR problem was formulated using

an MILP model with the objective of maximizing the total restored energy. The

proposed methodology was validated using the IEEE 13-node and 123-node test feed-

ers, and in each case, the test systems were restored in several time steps ensuring

that operation constraints were not violated. One limitation of this study is that it
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assumed that the system was completely de-energized at the start of the restoration

process. However, most outages do not lead to a complete de-energization of the

distribution network; typically, only some parts of the distribution network are de-

energized during outage events. Hence, it is necessary to consider outage scenarios

in which only some sections of the distribution system are affected. The study also

assumes the same line impedance for each line in the test systems.

2.3 Summary

In conclusion, this chapter presented a survey of current literature on distribution

system outage management, with a focus on outage analysis and prediction as well

as service restoration.

In the area of outage analysis and prediction, studies focusing on different outage

causes were discussed, and several machine learning and statistical methods used for

outage analysis and prediction were presented. With regards to service restoration

(SR), different approaches to the SR problem in literature, including heuristics and

mathematical programming, were examined. Common objectives, constraints as well

as considerations such as CLPU and the use of distributed energy resources in the

SR problem were discussed.



CHAPTER 3: PROBLEM STATEMENT

3.1 Overview

In the previous chapters, background and motivation for a more proactive approach

to outage management were presented. Current approaches to distribution system

outage management in the literature were also discussed. Specifically, a survey of

the literature on outage analysis and prediction as well as on service restoration ap-

proaches was presented. This chapter begins with a synthesis of the gaps in literature,

followed by a presentation of the problem statement and the specific contributions of

this work.

3.1.1 Gaps in Literature

Based on the literature survey presented in Chapter 2, it is clear that the out-

age management and service restoration problems in distribution systems have been

widely researched and are well-understood. However, in the area of outage anal-

ysis and prediction, most of the literature focuses on analyzing historical outages

and predicting outage cause or location, by using descriptive and predictive analytics

methods. These studies typically do not propose actions to prevent these predicted

outages or to mitigate their impacts on the distribution network. In the area of ser-

vice restoration, studies in literature often propose the next course of action after the

outages have occurred instead of prescribing actions to be taken before the outage

occurs.

In addition, existing studies often focus on either outage analysis and prediction

or service restoration without making a vital connection between these two processes

that comprise the overall outage management framework. This results in an outage
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management approach that is largely reactive and somewhat disjointed. Although

outage prediction models (OPMs) provide valuable insights to distribution system

operators, it is important to go a step further by prescribing specific actions that

allow system operators to manage outages proactively [86]. Hence, there is a need

for a prescriptive approach that leverages insights gleaned from outage prediction in

the service restoration process, by recommending actions to be taken to reduce the

impact of predicted outages on customers in the distribution system.

3.2 Problem Statement

The research questions addressed in this dissertation are as follows: Given a set of

predicted possible outage scenarios,

1. Can proactive actions be prescribed and implemented in the distribution net-

work that would prevent predicted outages from even occurring?

2. If the predicted outage cannot be prevented, can actions be implemented before

the outage in the distribution system (in real-time) that would result in the

shortest outage duration or the least number of affected customers affected?

To address these questions, this work proposes a prescriptive approach to service

restoration that leverages outage forecasts with a goal of reducing the impact of out-

ages in the distribution system. This is done using a two-stage framework comprising

topology optimization and service restoration. In this approach, topology optimiza-

tion and service restoration are achieved by performing switching operations in the

distribution network. Asides switching, methods that have been proposed in litera-

ture include line hardening, installing backup generators, upgrading distribution poles

and vegetation management [87, 88]. Although these methods have been proven to

improve resilience in distribution networks, they require medium-term to long-term

planning or investment in distribution system equipment to be implemented. On



17

the other hand, the proposed topology optimization and service restoration frame-

work can be implemented in the short-term using already available switches in the

distribution system.

In the first stage, proactive topology optimization is carried out. The impact of

predicted outages is first evaluated by estimating the total unserved load (or total load

not served) in kilowatts (or megawatts) in the event of the predicted outages. The

predicted outage locations (POL) are assumed to be outputs of a probabilistic OPM

that leverages historical outage and weather records for the distribution network in

question. Then, topology optimization is carried out by prescribing a set of switching

actions that result in an optimal topology with the least amount of load lost in the

event of the predicted outage.

In the second stage, service restoration is carried out with a goal of maximizing

the amount of load restored in the event of the outage. This may result in a new

operating topology for the distribution network.

The two-stage topology optimization and service restoration problem is formulated

using mixed integer linear programming (MILP). The objective of the topology op-

timization stage is to reconfigure the distribution network by changing the status

of switchable lines such that the minimum kW amount of loads would be lost if an

outage occurs at the predicted locations. This is achieved by minimizing the power

flowing through the predicted outage locations as shown in (3.1) below:

OF1 : min
∑
|PBR

ij | (i, j) ∈ BF (3.1)

where PBR
ij is the power flowing through line ij and BF represents the set of predicted

outage locations. The predicted outage locations are assumed to be lines in the

distribution network.

In other words, the goal of the first stage is to reconfigure the distribution network,
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by solving for the status of switchable lines in the network that optimize the above

objective function.

The objective of the second stage is to reconfigure the distribution network by

changing the status of switchable lines such that the maximum kW amount of loads

is restored after an outage occurs at the predicted locations. This is represented in

(3.2) as follows:

OF2 : max
n∑

i=1

xL
i P

L
i i ∈ N (3.2)

where xL
i is the status of the load demand at the ith bus, PL

i is the load demand

in kW on the ith bus, n is the number of energized buses in the system, and N

represents the set of nodes in the distribution network.

The above objectives are subject to a number of constraints including the linear

DistFlow constraints, load limits, transformer and line loading limits, voltage limits,

switching limits, radiality constraints as well as a number of connectivity constraints.

A detailed formulation of the optimization problem will be presented in Chapter 5.

Three cases of the proposed proactive topology optimization and service restoration

framework are considered as follows:

• Single outage case: In this case, the impact of a single outage case on the

distribution network is evaluated and the proposed topology optimization and

service restoration framework is implemented. The goal is to optimize the net-

work topology for a single scenario of predicted outage(s). An outage scenario

may comprise a single or multiple predicted outage locations.

• Multiple outage case: In this case, multiple outage scenarios are considered

and the proposed topology optimization and service restoration framework is

applied to minimize the impact of outages across the multiple scenarios.

• Weighted multiple outage case: The weighted multiple outage case extends the

multiple outage case by assigning weights to each outage scenario based on its
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probability or likelihood of occurrence.

3.3 Summary of Contributions

The contributions of this work are summarized as follows:

1. A proactive approach to service restoration that leverages outage forecasts is

proposed with a goal of reducing the impact of outages in the distribution

system. This is achieved through a proactive topology optimization and ser-

vice restoration framework formulated as a two-stage MILP. The objectives of

the MILP are to minimize the load lost prior to an outage and maximize the

restorable load if the outage occurs at the predicted location(s). The MILP

formulation is validated using test feeders applied to the following three opti-

mization cases:

• Single outage case

• Multiple outage case

• Weighted multiple outage case

2. A sensitivity analysis is presented to assist distribution system operators in

making decisions about the topology to operate in given a range of possible

outage locations in the distribution network along with their probabilities of

occurrence. The optimal topologies are generated by assigning weights to pre-

dicted outage locations and implementing the weighted multiple outage case

using the proposed topology optimization and service restoration framework.

3. The frequency and duration of power system outages in a distribution system

are analyzed based on several features in an outage dataset. The impacts of

the features, including outage cause, climatic description, and voltage level of

the affected circuit, are ranked using two machine learning techniques: random

forest and gradient boosting regression.



CHAPTER 4: ANALYSIS OF OUTAGE FREQUENCY AND DURATION IN

DISTRIBUTION SYSTEMS USING MACHINE LEARNING∗

4.1 Overview

Outage frequency and duration impact system reliability and customer satisfac-

tion. With regards to outages, customers are most concerned about the duration of

outages [50]. Hence, there is a need to study factors that significantly impact the

duration of outages in a distribution system. In this chapter, the impact of several

features on outage frequency and duration in a distribution network is analyzed using

the frameworks presented in [90] and [91]; the features considered in this analysis

include: outage cause, interrupted phase, voltage level of the affected circuit, climatic

description, and calendar variables. The impact of these features are ranked using

random forest and gradient boosting regression.

4.2 Introduction

Outage frequency and duration impact system reliability and customer satisfaction.

With regards to outages, customers are most concerned about the duration of outages

[50]. A major priority of utilities is to reduce the amount of time that customers are

left without power. The impact of outages on customers can range from inconvenience

and stress (for residential customers) to loss of revenue and man-hours (for commercial

and industrial customers). The study in [24], which was conducted in 2015, estimates

that the average cost per event for a momentary outage in the United States ranges

from around $4 for residential customers to as high as $12,952 for medium and large
∗This chapter is based on the following paper: T. Lawanson, V. Sharma, V. Cecchi,

T. Hong, "Analysis of Outage Frequency and Duration in Distribution Systems using Ma-
chine Learning," 2020 52nd North American Power Symposium (NAPS), 2021, pp. 1-6. doi:
10.1109/NAPS50074.2021.9449708 c© 2021 IEEE [89]

https://doi.org/10.1109/NAPS50074.2021.9449708
https://doi.org/10.1109/NAPS50074.2021.9449708
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commercial and industrial customers. Results from the same study show that the

average cost per event rises as the outage duration increases. Hence, there is a need

to study factors that significantly impact the duration of an outage.

Much of the current literature pays attention to analyzing outages based on their

frequency and causes; typically these studies focus on using machine learning tech-

niques to predict the cause of outages or to analyze outages based on a particular

outage cause (typically, trees and animals) [41,46,52,92,93].

Conversely, fewer studies have analyzed factors that impact outage duration. Relia-

bility indices can be improved by reducing not only outage frequency, but also outage

duration. One of the most common distribution system reliability indices, Customer

Average Interruption Index (CAIDI), represents the average time to restore service

after an outage. Authors in [90] investigate the impact of several variables on time

of outage restoration (TOR) in distribution systems using statistical methods and

measures such as the chi-square approximation to Kruskal-Wallis test and the coeffi-

cient of determination (R2). The variables considered in the analysis were categorized

under time (hour of day, day of week and month), consequence (number of phases

affected and protection device activated) and external factors (weather condition and

outage cause). Similarly, [91] presents an analysis to assess the impacts of different

features on outage duration in a distribution network. Some features considered in the

study include outage cause, action taken by repair crew, weather conditions, clearing

device, number of customers and calendar variables such as year, month, and hour

of day. On the other hand, [50] uses recursive neural networks (RNN) to predict the

duration of distribution system outages in real-time. Data used in this study include

weather information, outage reports and repair logs. Outage causes are identified by

applying natural language processing to utility outage reports.

In the following sections, the impact of several features on outage frequency and du-

ration in a distribution network is analyzed using random forest and gradient boosting
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regression. The analysis uses the frameworks presented in [90] and [91]; the outage

features considered in this analysis include: outage cause, interrupted phase, voltage

level of the affected circuit, climatic description, and calendar variables. The impact

of these features are ranked using random forest and gradient boosting regression.

4.3 Outage Data Description

This study uses outage data obtained from an electric power utility in southeastern

United States. The dataset, which comprises over 20,000 entries, includes outage

information from 2016 to 2018 for an electric power distribution network. Prior to

analyzing the data, data cleansing is performed by removing duplicates and missing

entries from the dataset.

Features in the dataset include: climatic description during the outage, voltage

level of the circuit affected by the outage, outage cause, outage duration, interrupted

phase and failed equipment. In addition to the features in the original dataset, the

date of the outage is decomposed into new features: year, month, day of the week and

season. Table 4.1 presents a summary of the features from the outage dataset along

with their respective classes. The failed equipment feature (not listed in Table 4.1)

comprises over 20 classes, some of which include: transformer, switchgear, regulator,

meter, and conductor.

This study also uses weather information for the distribution network location,

sourced from OpenWeatherMap, an online weather data service [94]. The weather

variables considered are: temperature (Fahrenheit), wind speed (miles/hour) and

humidity (%). Table 4.2 presents a statistical summary of the daily average of the

three weather variables.

4.4 Data Analysis

This section presents results from exploratory analysis of the outage data. The

features listed in the previous section are analyzed based on outage frequency and
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Table 4.1: Summary of features in outage dataset c© 2021 IEEE

Features Classes/Description
Climatic Calm, Precipitation-Rain, Thunderstorm,
Description Wind & Precipitation
Day of Week Mon, Tue, Wed, Thu, Fri, Sat, Sun
Interrupted Phase A, AB, ABC, AC, B, BC, C
Month Jan, Feb, Mar, Apr, May, Jun

Jul, Aug, Sep, Oct, Nov, Dec
Outage Cause Animal, Equipment Failure Event Response,

Lightning, Other, Third Party, Tree, Unknown
Season Fall, Spring, Summer, Winter
Voltage Level 4 kV, 12 kV, 46 kV, 161 kV
Year 2016, 2017, 2018

Table 4.2: Summary statistics for weather variables

Statistics Temperature Humidity Wind Speed
(◦F) (%) (mph)

Mean 66.48 70.10 6.68
Standard Deviation 13.04 11.95 2.72
Minimum 17.04 31.25 1.87
25th Percentile 57.80 62.08 4.73
Median 71.06 71.79 6.09
75th Percentile 77.01 78.17 7.82
Maximum 85.43 96.04 15.63

average outage duration (in minutes).

4.4.1 Number of Outages/Outage Frequency

Fig. 4.1 shows a breakdown of the outage events by cause. Outages due to trees

are the most frequent and account for 38.5% of the outages, while outages caused by

a third party are the least frequent, and account for 3.4% of the outages. Outages

attributed to Third party include outages caused by vehicle accidents and contractor

dig-ins. It is interesting to note that the cause of nearly 7% of the outages is catego-

rized as Unknown. Outages categorized under Event response refer to outages caused
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Figure 4.1: Distribution of outage frequency by cause c© 2021 IEEE

by opening a protection device for repair purposes, whereas outages categorized as

Other include outages that do not fall into any of the other cause categories shown.

Fig. 4.2 presents plots of outage frequency with respect to each feature in the outage

dataset listed in Table 4.1.

Fig. 4.2(a) shows the number of outages categorized by the climatic condition at

the time of the outage. The climatic description feature has four classes: calm, wind

and precipitation, precipitation-rain, and thunderstorm. About 75% of the outages

occur in calm weather, while 18% of the outages occur during thunderstorms. The

precipitation-rain class has the lowest number of outages.

Fig. 4.2(b) presents the number of outages categorized by each day of the week.

This is done to identify any patterns that might be present due to changing load

profiles for different days of the week. Monday has the highest number of outages,

followed by Saturday, while Friday and Sunday have the least outages. Thursday,

Tuesday and Wednesday have very similar number of outages.

Fig. 4.2(c) presents the number of outages by the interrupted phase, that is, the

phase affected by the outage. 75% of the outages affect only a single phase (A, B,

or C) with phase C having the most outages. This is not surprising as single-phase

faults are the most common faults in distribution systems [95]. 18% of the outages

affect all three phases (ABC) simultaneously. On the other hand, less than 5% of the
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outages affect only two phases (AB, AC or BC) at the same time.

Similarly, Fig. 4.2(d) presents the number of outages categorized by the months

of the year. The month of June stands out with the maximum number of outages,

nearly 15% of the total. It can be observed that in the initial months of year, i.e.

Calm Thunderstorm Wind & 
Precipitation

Precipitation-
Rain

Climatic Description

0

5000

10000

15000

N
um

be
r o

f O
ut

ag
es

(a) Climatic description

Mon Tue Wed Thu Fri Sat Sun
Weekday

0

1000

2000

3000

N
um

be
r o

f O
ut

ag
es

(b) Day of week

A AB ABC AC B BC C
Interrupted Phase

0

1000

2000

3000

4000

5000

N
um

be
r o

f O
ut

ag
es

(c) Interrupted phase

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

1000

2000

3000

N
um

be
r o

f O
ut

ag
es

(d) Month of the year

Animal Equipment
failure

Event
response

Lightning Other Third
party

Tree Unknown

Outage Cause

0

2000

4000

6000

8000

N
um

be
r o

f O
ut

ag
es

(e) Outage Cause

Fall Spring Summer Winter
Season

0

2000

4000

6000

N
um

be
r o

f O
ut

ag
es

(f) Season

4 12 46 161
Voltage Level (kV)

0

5000

10000

15000

N
um

be
r o

f O
ut

ag
es

(g) Voltage Level (kV)

2016 2017 2018
Year

0

2000

4000

6000

8000

N
um

be
r o

f O
ut

ag
es

(h) Year

Figure 4.2: Outage frequency with respect to categorical features in outage data set
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January, February and March, the outages are low. The outages begin to rise in the

months of April, May, peaking in June. After June, the number of outages begin to

decrease until September, which has higher number of outages and then the number

of outages decrease till December.

Fig. 4.3 shows the distribution of outages by climatic description and by month of

the year. The highest number of outages during thunderstorm occurs in June. It is

worth noting that September is the only month that has all four climatic description

classes present. Further investigation revealed that the highest frequency of outages

during wind and precipitation occurred in September 2017, and this coincides with the

period Hurricane Irma struck the US. On the other hand, June and July account for

the most outages during thunderstorms, while August accounts for the most outages

during calm weather.

Outage frequency by cause categories is presented in Fig. 4.2(e). As previously

stated, outages caused by trees are the most frequent, while outages caused by a

third party are the least frequent.

Fig. 4.2(f) shows the number of outages by season. The months of the year are

categorized into four seasons as follows: Spring (March to May), Summer (June to

August), Fall (September to November), and Winter (December to February). As was
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observed from the monthly plot, outages are most frequent are in the summer months

and least frequent in winter. The lower number of outages during the winter could

be attributed to the location of the the distribution network location, which typically

experiences mild winters. However, this location experiences a significant number

of tornadoes, hurricanes and thunderstorms, in the other three seasons. Hence, the

number of outages in each of these seasons are at least 1.5 times as much as the

number of outages in the winter.

Fig. 4.2(g) shows the number of outages by voltage level (kV) of the affected circuit.

The most number of outages occur in the 12 kV circuits. Most of the circuits in the

distribution network in this study operate at the 12 kV level.

Fig. 4.2(h) shows the number of outages per year. 2017 has the highest number of

outages.

Fig. 4.4 presents plots of outage frequency with respect to temperature (◦F), hu-

midity (%) and wind speed (mph).
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Figure 4.4: Outage frequency with respect to weather variables
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4.4.2 Average Outage Duration

This section presents a visual analysis for the average outage duration in minutes by

each category in the outage dataset. The histogram in Fig. 4.5 shows the distribution

of outage duration (in minutes) of outages in this analysis. As seen in the histogram,

most of the outages last between 38 to 76 minutes. The shortest outages lasted for

only 1 second, while the longest outage lasted for about 2 days. It is interesting to

note that close to half of the outages lasted at least 2 hours or more. The average

duration of all the outages in the dataset (indicated with a dashed line in Fig. 4.5) is

around 3.5 hours (213 minutes to be precise).

Fig. 4.6(a) shows the average outage duration by climatic description. Although

calm weather had maximum number of outages, the average duration of the outages

during calm weather is the lowest. The maximum average outage duration is during

wind & precipitation and thunderstorm. This could be due to the amount and severity

of damage caused by severe weather events, hence leading to longer repair times and

outage duration compared to outages that occur in calm weather.

Fig. 4.6(b) shows the average outage duration per weekday. Maximum average

outage duration occurs on Saturday while the minimum occurs on Friday.
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Fig. 4.6(c) categorizes the average outage duration by the interrupted phase. Al-

though outages affecting two phases simultaneously (AB, AC, BC) accounted for the

lowest number of outages, they result in higher average outage durations as shown.
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On the other hand, outages affecting all three phases (ABC) account for the lowest

outage duration.

Fig. 4.6(d) shows the average outage duration per month of the year. March has

the highest average outage duration whereas October has the least average outage

duration. It is interesting to note that although the month of March ranked 6th in the

frequency of outages, it has the highest average outage duration. Further investigation

reveals that this is due to long duration outages occuring during thunderstorms as

well as wind and precipitation in March as shown in Fig. 4.7. The distribution of

average outage duration by climatic description and by month of the year is presented

in Fig. 4.7. September has the highest average outage duration during wind and

precipitation.

Fig. 4.6(e) shows the average outage duration per outage cause. Outages caused

by trees have the highest average outage duration, followed by outages caused by

lightning and equipment failure.

Fig. 4.6(f) shows the average outage duration for each season. Spring and summer

have higher average outage durations than the fall and winter.

Fig. 4.6(g) shows the average outage duration by voltage level in kV. It can be

observed that average outage duration is higher for the 12 kV and 4 kV circuits
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compared to the 46 kV and 161 kV circuits.

Fig. 4.6(h) shows the average outage duration by year. 2017 has the highest average

outage duration.

Table 4.3 presents a summary comparison of outage frequency and average outage

duration for the features considered in this analysis. The results in the table show

that the class with the most number of outages does not automatically account for

the highest average outage duration. For example, with respect to the month of the

year, the highest number of outages occurred in June, but March had the highest

average outage duration. On the other hand, with respect to interrupted phase,

outages affecting phases A and C simultaneously accounted for the least number of

outages, but had the longest average outage duration.

4.5 Feature Importance

In addition to exploring outage frequency and average outage duration, this study

seeks to determine the features or variables in the dataset that affect average out-

age duration. To rank the importance of each variable, two machine learning-based

approaches are used: Random Forest Regressor and Gradient Boosting. Both tech-

niques are implemented using Python’s Scikit-Learn library [96]. Feature importance

is estimated by calculating the ratio of the number of samples that get through to

Table 4.3: Outage frequency and duration for outage features c© 2021 IEEE

Number of Outages Average Outage Duration
Features Highest Least Longest Shortest

Voltage Level 12 kV 161 kV 12 kV 161 kV
Climatic Calm Precipitation Wind and Calm
Description (Rain) Precipitation
Weekday Monday Friday Saturday Friday
Interrupted Phase C AC AC ABC
Month June December March October
Outage Cause Tree Third Party Tree Event Response
Season Summer Winter Spring Winter
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a node to the total number of samples [97]. The more important the feature, the

greater the value of its feature importance score.

4.5.1 Random Forest Regressor

Random Forest is a tree-based supervised learning algorithm introduced in [98].

The random forest algorithm is a bagging-based algorithm that takes the ensemble of

randomly sampled trees [99]. A random Forest regressor-based model is used to rank

the various features based on their importance. The random forecast model is trained

using the entire outage dataset and the importance of each feature is estimated. The

random forest model is modeled with 150 trees. The number of trees was selected by

performing a grid search, varying the trees from 30 to 300 trees and comparing their

prediction score.

Fig. 4.8(a) shows the feature importance as estimated by the random forest algo-

rithm. It is observed that climatic description has the maximum importance followed

by failed equipment and wind speed. Interrupted phase, outage cause and temper-

ature are moderately important while humidity, month, weekday, voltage level, year

and season have very low importance. In general, calendar variables like year, month,

season and weekday have very less importance, showing that there is no significant

seasonal pattern in the dataset used in this study.

4.5.2 Gradient Boosting Regressor

Gradient boosting regressor is a supervised learning algorithm introduced in [100].

As the name suggests, gradient boosting is a boosting-based approach that uses deci-

sion trees and selects the best trees using a gradient loss function [101]. The gradient

boosting model is trained using the entire outage dataset and the importance of each

feature is estimated. The gradient boosting model is modeled with 100 trees. The

number of trees was selected by performing a grid search, varying the trees from 30

to 300 trees and comparing their prediction score.
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Figure 4.8: Feature ranking using random forest and gradient boosting regressors

Fig. 4.8(b) shows the feature importance according to the gradient boosting algo-

rithm. Consistent with results from the random forest model, climatic description

has the highest importance, however the magnitude of importance is more, followed

by failed equipment and wind speed. Temperature ranks higher than interrupted

phase and outage cause; this is different from the results of the random forest model.

Season, year, voltage level and weekday are the features with the least importance.

Again, this shows that there is no significant seasonal pattern in the outage dataset

used in this study.
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4.6 Conclusion

This chapter presented an analysis of the frequency and average duration of out-

ages in a distribution network using the frameworks presented in [90] and [91]. Also,

random forests and gradient boosting regression are used to rank the importance of

several features in predicting outage duration. The results from both regressors show

that climatic description is the most significant feature for explaining the variability

of outage duration for the distribution network considered in this study. Other signif-

icant features include: failed equipment, wind speed and interrupted phase. Future

work will focus on data-driven probabilistic outage prediction using weather data.



CHAPTER 5: PROPOSED PROACTIVE TOPOLOGY OPTIMIZATION AND

SERVICE RESTORATION FRAMEWORK

5.1 Overview

This chapter begins with a brief background on distribution system optimization,

followed by a detailed presentation of the proposed topology optimization and ser-

vice restoration scheme which leverages outage forecasts. By applying the proposed

scheme, distribution system operators can minimize the loads left out of service due

to predicted outages. This scheme is formulated as a MILP problem consisting of two

stages: pre-outage proactive topology optimization and post-outage service restora-

tion. A detailed mixed integer linear programming (MILP) formulation for these two

stages is presented, after which three outage optimization cases are considered to im-

plement the proposed scheme as follows: single outage, multiple outage, and weighted

multiple outage.

5.2 Distribution System Optimization

Distribution system optimization entails finding the most efficient way to operate

the distribution system in order to achieve a certain objective or set of objectives

within specific constraints. In [102], distribution system optimization problems were

broadly categorized into operations and planning problems. Distribution system op-

erations problems include: network reconfiguration, optimal power flow, volt-var op-

timization, demand side management and electric vehicle charging. On the other

hand, distribution system planning problems include: distribution network planning,

capacitor placement, meter placement, and distributed generation (DG) planning.

Distribution system optimization problems primarily consist of an objective func-
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tion, f(X) (which is minimized or maximized), as well as a set of decision variables,

X, and constraints. They are typically formulated as follows:

min /max f(X) (5.1a)

s.t. g(X) = 0 (5.1b)

h(X) ≤ 0 (5.1c)

where f(X) represents the objective function, g(X) represents the set of equality

constraints, h(X) represents the set of inequality constraints, and X represents the

set of decision variables, {x1, x2, . . . , xn} which optimize the objective function while

satisfying the given constraints.

Common objectives in distribution system optimization problems include mini-

mizing power losses, load unbalance, capacitor costs, voltage deviation, fuel costs or

investment costs. Similarly, the objective could be maximizing the total load served

or savings from reduced energy and peak power losses in the distribution network.

Some problems may have more than one objective, which would result in a multi-

objective optimization problem. In the case of service restoration, for example, the

objectives may be to minimize power losses, out-of-service loads, and the number of

switching operations [77].

Decision variables in distribution optimization problems may vary depending on

the problem: they may be continuous variables or discrete variables. In network

reconfiguration and service restoration problems, for example, real and reactive line

flows are normally continuous variables, whereas switch status is typically modeled

as a binary variable, x ∈ {0, 1}. In addition to the line flows and switch status,

other decision variables include the location to place capacitors, DG or meters in the

network as well as the size of the capacitors or DGs to install in the network.

Furthermore, distribution system optimization problems require the solution of
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power flow equations, which are represented as equality and inequality constraints in

the formulation. Equations relating to power flow, such as the real and reactive power

balance, are incorporated as equality constraints. Operational limits such as voltage

limits, current limits or generator real and reactive power limits are represented as

inequality constraints. Inequality constraints can also represent resource constraints

(such as the number of capacitors or meters available for installation in capacitor or

meter placement problems) in the optimization problem.

Equations (5.2) to (5.3) present commonly used equality and inequality constraints

derived from a simple mathematical formulation of a distribution system optimization

problem presented in [79].

PG
i +

n∑
h=1

Phi =
n∑

j=1

Pij +
n∑

j=1

P losses
ij + PL

i (5.2a)

QG
i +

n∑
h=1

Qhi =
n∑

j=1

Qij +
n∑

j=1

Qlosses
ij + QL

i (5.2b)

|Vj|2 − |Vi|2 = 2(RijPij + XijQij)− (R2
ij + X2

ij)|Iij|2 (5.2c)

V min
i ≤ Vi ≤ V max

i (5.3a)

|Iij| ≤ |Imax
ij | (5.3b)

Equations (5.2a) and (5.2b) represent real and reactive power balance equations

for each bus in the network, and (5.2c) represents the voltage drop along each branch

ij of the network. PG
i and QG

i are the real and reactive powers generated at bus

i. PL
i and QL

i are the real and reactive load demand at bus i, respectively. Pij and

Qij are the real and reactive power flows through line ij. P losses
ij and Qlosses

ij are the

real and reactive power losses in line ij. |Vi| represents the voltage magnitude at

bus i, Rij and Xij represent the resistance and reactance of branch ij, respectively,
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and |Iij| is the magnitude of current flowing through branch ij. Equations (5.3a) and

(5.3b) represent constraints on the bus voltages and line currents, respectively. During

normal operation, bus voltages are usually limited between 0.95p.u. and 1.05p.u, that

is, V min
i = 0.95p.u. and V max

i = 1.05p.u. [103] while line current or power is limited

by the capacity of the line or transformer.

Radiality constraints are often used in distribution system optimization problems

since distribution networks are typically operated in radial configurations to ensure

effective protection coordination [104]. A significant amount of critical attention has

been focused on modeling of radiality in distribution systems, particularly in network

reconfiguration and service restoration problems. Radiality is further complicated

by the increase in DGs and microgrids, which could result in bidirectional power

flow in the distribution network. To enforce radiality, several methods have been

applied, including heuristics, metaheuristics, and mathematical models. Additionally,

graph theory has been used to enforce radiality, since the distribution network can

be viewed as a graph, G(V , E) consisting of vertices (or nodes), V and edges (or

branches), E . Several works in literature have incorporated the radiality constraint

into mathematical models using only (5.4) as follows:

NE = NV −NS (5.4)

where NE represents the number of active edges/lines in the network, NV is the

number of vertices/nodes in the network and NS is the number of substations.

Recent studies have demonstrated that while (5.4) is a necessary condition for

radiality in a distribution network, it is insufficient for enforcing radiality. Using

only (5.4) could still result in a disconnected system with loops. Hence, additional

constraints are required to ensure radiality in the distribution network as illustrated

in [104–107]. [106] summarizes some methods for expressing radiality constraints in

network reconfiguration problems; it also proposes a method for enforcing radiality
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using graph theory concepts.

Several methods have been proposed and applied to solving distribution system

optimization problems. Among these methods are heuristics (such as the branch

exchange method presented in [80]), metaheuristics (such as genetic algorithm, simu-

lated annealing and particle swarm optimization), hybrid methods and mathematical

programming. Some mathematical programming models used include: mixed integer

linear programming (MILP), mixed integer non-linear programming (MINLP), mixed

integer second-order cone programming (MISOCP), and mixed integer quadratic pro-

gramming (MIQP).

In distribution optimization problems, it is necessary to solve the power flow equa-

tions. However, due to its complexity, nonconvexity and nonlinearity, the AC power

flow formulation requires a high level of computational effort. Moreover, the distribu-

tion system is inherently unbalanced, which necessitates three-phase modeling; this

further complicates the computation of AC power flow. To approximate the non-

linearity of AC power flow in distribution systems, linear power flow formulations

have been developed; these models reduce the computational burden of the nonlin-

ear power flow model and can be efficiently solved with commercial solvers such as

CPLEX and Gurobi [108] or open-source solvers such as SCIP [109] and CBC [110].

Several linear formulations including the DC power flow model have been pro-

posed in literature for solving power flow in distribution system optimization meth-

ods [111,112]. MILP models often use the linearized version of the DistFlow equations

(popularly known as LinDistFlow model) introduced by Baran and Wu in [80, 113].

In the LinDistFlow formulation, the loss terms in (5.2) are ignored since they are

much smaller than the branch power terms. Hence, (5.2) is modified as follows:

PG
i +

n∑
h=1

Phi =
n∑

j=1

Pij + PL
i (5.5a)
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QG
i +

n∑
h=1

Qhi =
n∑

j=1

Qij + QL
i (5.5b)

Uj − Ui = 2(RijPij + XijQij) (5.5c)

where Ui and Uj represent the square of the voltage magnitude at buses i and j

respectively. The LinDistFlow equations are used in the MILP formulation of the

proposed proactive topology optimization and service restoration scheme presented

in Section 5.3.2.

5.3 Proactive Topology Optimization and Service Restoration Framework

Chapter 2 discussed the need for a proactive approach to service restoration that

harnesses insights from outage prediction models (OPMs) to enhance resilience in

the distribution system. Consequently, this chapter presents a proactive topology

optimization and service restoration framework that enhances data-driven outage

prediction and analysis.

1. Prior to a predicted outage, the proposed framework prescribes a topology that

minimizes loads that would be left out of service if the outage occurs in the

distribution network.

2. If an outage is unavoidable and occurs as predicted, the framework prescribes

a topology to maximize the loads restored in the distribution network during

service restoration.

The proposed framework (illustrated in Fig. 5.1) provides a holistic approach to

outage management that integrates outage prediction with service restoration instead

of treating both processes as silos. In most studies, the interaction between outage

prediction and service restoration is not taken into consideration, but in reality, service

restoration depends on processes, such as outage prediction, that precede it during

outage management. Hence, the proposed framework in this work considers how to
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Figure 5.1: Proposed proactive outage management approach

transform outage forecasts into operational decisions regarding service restoration in

the distribution network [86].

The framework assumes that the outage locations are provided from an outage

prediction model (OPM). The OPM provides forecasts of possible outage locations

in the distribution network using historical weather and outage data along with ge-

ographical information and weather forecasts. Although the design and details of

OPM are beyond the scope of this dissertation, the following paragraphs provide a

brief overview of how it interacts with the proposed proactive topology optimization

and service restoration scheme.

The OPM produces forecasts of outage scenarios in the distribution network us-

ing inputs such as historical weather and outage data, geographic information, and

customer information. Historical weather data could include measurements of wind

speed, temperature, humidity, wind gust among others. Other possible inputs to the

OPM include vegetation and social media information. As discussed in Chapters 2

and 4, trees often account for a large portion of outages, hence vegetation information

could serve as valuable input to the OPM, especially if the distribution network is

located in a woody geographical area. In the same vein, studies have demonstrated
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the use of social media for outage detection purposes. The studies in [55, 114–116]

demonstrated the use of tweets for power outage detection. Feature importance can

be implemented as shown in Chapter 4 to determine which input variables contribute

most to the predictive performance of the OPM.

Due to the uncertainty associated with weather forecasts and failure of distribution

system components, a probabilistic OPM is assumed. In literature, probabilistic

outage models have been developed to estimate the impact of outages caused by severe

weather on distribution networks. The studies in [21,37–40] present OPMs to predict

the impact of outages caused by severe weather such as thunderstorms, ice storms

and hurricanes. [21, 39, 40] use tree-based machine learning models, whereas [37, 38]

use generalized linear mixed models and negative binomial regression, respectively.

Outage scenarios could be generated using Monte Carlo simulations based on failure

rates or fragility curves of grid components. This is done using the probability of

severe weather along with the probability of asset failure due to severe weather.

In [117], to estimate overhead distribution line failure rates, Monte Carlo simulations

were used to estimate the prediction bounds of Poisson regressions and Bayesian

network models. Similarly, [22] used weather radar measurements to simulate failure

rates for grid assets with a Bayesian-based outage prediction model.

The outage scenarios generated from the OPM can assist distribution system op-

erators in making decisions related to service restoration, including proactive topol-

ogy optimization, crew coordination and dispatch planning, and resource allocation.

The OPM could provide insights into distribution system equipment on the verge of

failure, allowing operators to plan accordingly. This work assumes that the OPM

generates a forecast of distribution lines (referred to as predicted outage locations in

this work) likely to be impacted by severe weather or equipment failure in the distri-

bution system. These lines are assumed to represent outage locations in the topology

optimization and service restoration framework presented in the following sections.
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5.3.1 Nomenclature

Sets

B, BF , BS, VR Set of branches, subset of predicted outage locations, subset

of switchable branches, subset of voltage regulators

G Set of generators

L Set of loads

N , N (i) Set of nodes, subset of nodes connected to node i

Binary Variables [0 - Disconnected/Offline, 1 - Energized/Online]

sNg Status of the node to which generator g is connected

sNi Status of node i

sNl Status of the node to which load l is connected

xG
g Status of generator g

xBR
ij Status of branch/section ij

xL
l Status of load l

Continuous Variables

PBR
ij , QBR

ij Real and reactive power flowing through branch/section ij

PG
i , QG

i Real and reactive power generated at node i

PL
i , QL

i Real and reactive power demand at node i

Ui Square of the magnitude of voltage at node i

Parameters

aij Effective regulator ratio of voltage regulator across section ij

M Big-M

Pg, Qg Real and reactive power output of generator g
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Pmin
g , Pmax

g Minimum and maximum real power rating of generator g

Qmin
g , Qmax

g Minimum and maximum reactive power rating of generator g

P nom
l , Qnom

l Nominal real and reactive power rating of load l

rij, xij Resistance and reactance of branch ij

Smax
ij Maximum kVA rating of branch/section ij

V min
i , V max

i Minimum and maximum voltage magnitude limits at node i

5.3.2 Mixed Integer Linear Programming (MILP) Problem Formulation

This work proposes a proactive topology optimization and service restoration frame-

work that leverages outage forecasts to improve outage management in the distribu-

tion system. This involves prescribing switching actions that reduce the impact of

predicted outages on the system by 1) minimizing the kW amount of loads that would

be affected if the outage occurs and 2) maximizing the kW amount of load restored

to the network after the outage. Both objectives are achieved through network re-

configuration using switchable lines in the network, resulting in optimal topologies

for the network in both cases.

To find the optimal network topology, the proactive topology optimization and

service restoration problem is formulated using mixed integer linear programming

(MILP). The MILP formulation is adapted from [64]. The objectives of the problem

are presented as follows:

1. Proactive Topology Optimization: In this stage of the framework, the distri-

bution network is reconfigured using switchable lines so that the total load left

out of service if the predicted outage occurs is minimized. This is achieved by

minimizing the power flowing through the predicted outage locations as follows:

OF1 : min
∑
|PBR

ij | (i, j) ∈ BF (5.6)
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where PBR
ij is the power flowing through branch ij and BF is the set of predicted

outage locations in the system. As previously mentioned, the predicted outage

locations are assumed to be lines in the network. The objective function in (5.6)

is linearized by introducing an auxiliary variable, zij to eliminate the absolute

value function as follows:

min
∑

zBR
ij (i, j) ∈ BF (5.7a)

s.t. zij ≥ PBR
ij (i, j) ∈ BF (5.7b)

zij ≥ −PBR
ij (i, j) ∈ BF (5.7c)

The topology optimization stage could result in a new operational topology for

the distribution network, if the new topology reduces the potential unserved

loads in the original topology.

2. Service Restoration: In this stage, the distribution network is reconfigured using

switchable lines to maximize the total amount of loads left in service (restorable

loads) after the outage occurs at the predicted locations. This is represented

below:

OF2 : max
n∑

i=1

xL
i P

L
i i ∈ N (5.8)

where xL
i is the status of the load connected to bus i, PL

i is the load demand in

kilowatts on the ith bus, and n represents the number of buses in the system.

The constraints considered in the MILP formulation are as follows:

1. Linear DistFlow Constraints: Distribution network power flow is solved using

the linear DistFlow equations introduced in [80]. The nodal power balance

equations are represented by equality constraints (5.9a) and (5.9b). Reactive

power injection from capacitors in the distribution network is represented as re-

active power generation, QG
i in constraint (5.9a). Inequality constraints (5.9c)
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and (5.9d) ensure that only energized lines have power flowing through them.

Constraints (5.9e) and (5.9f) are linear approximations of the power loss on each

branch, ij ∈ B\VR, of the network, and they represent the voltage magnitude

difference between the nodes, i and j of each energized branch (excluding volt-

age regulators). The big-M formulation [118] is used to activate or deactivate

constraints (5.9c)–(5.9f) depending on the status, xBR
ij of each line.

∑
h:(h,i)∈B

PBR
hi + PG

i =
∑

j:(i,j)∈B

PBR
ij + PL

i i ∈ N (5.9a)

∑
h:(h,i)∈B

QBR
hi + QG

i =
∑

j:(i,j)∈B

QBR
ij + QL

i i ∈ N (5.9b)

−M · xBR
ij ≤ PBR

ij ≤M · xBR
ij (i, j) ∈ B (5.9c)

−M · xBR
ij ≤ QBR

ij ≤M · xBR
ij (i, j) ∈ B (5.9d)

Ui − Uj ≤ 2(rij · PBR
ij + xij ·QBR

ij ) + M(1− xBR
ij ) (i, j) ∈ B\VR (5.9e)

Ui − Uj ≥ 2(rij · PBR
ij + xij ·QBR

ij ) − M(1− xBR
ij ) (i, j) ∈ B\VR (5.9f)

− M(1− xBR
ij ) ≤ a2ij · Uj − Ui ≤ M(1− xBR

ij ) (i, j) ∈ VR (5.9g)

Constraint (5.9g) represents the voltage magnitude difference on the both sides

of a voltage regulator. The voltage regulators in the system are modeled using

the Type B step-voltage regulator model in [119]. The effective regulator ratio,

a is given by:

a = 1 + 0.00625ntap (5.10)

where ntap ∈ {−16,−15, ...,+15,+16} is the tap position of the voltage regu-

lator. Tap positions are assumed to be fixed for each voltage regulator in this

work.

2. Load Model: The loads in the system are modeled as constant power (constant

PQ). For energized loads (load status, xL
l = 1), active and reactive load de-
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mands, PL
i and QL

i , are equal to nominal load ratings, P nom
l and Qnom

l , while

power demand is zero for de-energized loads (xL
l = 0). This is represented in

(5.11) below:

PL
i = xL

l · P nom
l i ∈ N , l ∈ L (5.11a)

QL
i = xL

l ·Qnom
l i ∈ N , l ∈ L (5.11b)

3. Transformer and Line Loading Limits: The transformers and lines must be

operated within their rated kVA capacity limits, Smax
ij as shown in (5.12).

(
PBR
ij

)2
+
(
QBR

ij

)2
≤
(
Smax
ij

)2
(i, j) ∈ B (5.12)

Constraint (5.12) is linearized as shown in [64,120] to yield the following linear

constraints:

−
√

3(PBR
ij + Sij) ≤ QBR

ij ≤ −
√

3(PBR
ij − Sij) (i, j) ∈ B (5.13a)(

−
√

3/2
)
Sij ≤ QBR

ij ≤
(√

3/2
)
Sij (i, j) ∈ B (5.13b)

√
3(PBR

ij − Sij) ≤ QBR
ij ≤

√
3(PBR

ij + Sij) (i, j) ∈ B (5.13c)

4. Voltage Limits: Node voltages should be maintained within the acceptable lim-

its of 0.95 and 1.05 p.u [103]. Ui represents the square of the magnitude of the

voltage at node i.

sNi ·
(
V min
i

)2 ≤ Ui ≤ sNi ·
(
V max
i

)2
i ∈ N (5.14)

5. Switching Limits: To avoid mechanical wear and tear of the switches, the num-
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ber of switching operations, ns, is limited as follows:

∑ ∣∣∣xBR
ij − xBR0

ij

∣∣∣ ≤ ns (i, j) ∈ BS (5.15)

where xBR0
ij represents the initial status of switchable line ij, xBR

ij is the status of

switchable line ij after topology optimization, and ns is the number of switching

operations allowed. Constraint (5.15) is linearized by introducing an auxiliary

variable, yij as follows:

∑
yij ≤ ns (i, j) ∈ BS (5.16a)

yij ≥ xBR
ij − xBR0

ij (i, j) ∈ BS (5.16b)

yij ≥ xBR0
ij − xBR

ij (i, j) ∈ BS (5.16c)

6. Connectivity Constraints: These constraints ensure connectivity among ener-

gized components (nodes, lines and loads) in the network. Also, they determine

which components should be connected during the topology optimization and

service restoration process [64].

sNg = xG
g g ∈ G (5.17a)

xBR
ij ≤ sNi (i, j) ∈ BS\BF (5.17b)

xBR
ij ≤ sNj (i, j) ∈ BS\BF (5.17c)

xBR
ij = sNi = sNj (i, j) ∈ B\(BS ∪ BF ) (5.17d)

xL
l = sNl l ∈ L\LF (5.17e)

In (5.17a), a node will be energized if it is connected to the substation node (or

a node with a generator). In constraints (5.17b) and (5.17c), a switchable line,

xBR
ij will be energized when both its nodes, i and j are energized, that is sNi
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and sNj are both equal to 1. On the other hand, a non-switchable line will be

restored when either of its nodes are restored as shown in (5.17d). A load will

be energized when connected to an energized node as shown in (5.17e).

7. Radiality Constraints: The topology resulting from the topology optimization

and service restoration process must be radial. To gurarantee radiality, the

following two conditions must be met: 1) the resulting topology should have no

loops and 2) every node in the resulting topology asides the substation node,

Ng should have only one parent [104].

∑
i∈N

sNi −
∑

(i,j)∈B

xBR
ij =

∑
g∈G

xG
g (5.18a)

bij + bji = xBR
ij (i, j) ∈ B (5.18b)∑

j∈N (i)

bij = 1 i ∈ N\Ng (5.18c)

bij = 0 i ∈ Ng, j ∈ N (i) (5.18d)

Equations (5.18) ensure that every node except the substation node has exactly

one parent node. Equation (5.18d) is enforced for the substation node, since

it has no parents. In the second stage (that is, service restoration), (5.18c) is

modified to allow for isolation of parts of the network affected by the outage as

follows:

0 ≤
∑

j∈N (i)

bij ≤ 1 i ∈ N\Ng (5.19)

8. Other constraints are included in the problem as follows:

(a) The substation node is energized throughout the topology optimization

and service restoration process as shown in (5.20a), and its voltage, Ug is
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regulated at Us in (5.20b).

xG
g = 1 g ∈ G (5.20a)

Ug = Us g ∈ G (5.20b)

(b) Every node should be operational in the optimal topology resulting from

the proactive topology optimization stage, since this is done prior to the

outage occurring.

sNi = 1 i ∈ N (5.21)

(c) The constraint in (5.21) is relaxed in the service restoration stage, since

some sections of the distribution network may be disconnected as a result

of the predicted outages.

sNi ≤ 1 i ∈ N (5.22)

(d) In addition, the predicted outage locations must remain operational during

the proactive topology optimization stage unless they are switchable lines.

Predicted outage locations that are switchable lines may remain energized

or de-energized during proactive topology optimization to allow for more

topology flexibility.

xBR
ij = 1 (i, j) ∈ BF\BS (5.23)

(e) On the other hand, the status of the predicted outage locations during the

service restoration process are assumed to be zero. It is assumed that the

predicted outage locations are disconnected or isolated as a result of the
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outage. This is represented as follows:

xBR
ij = 0 (i, j) ∈ BF (5.24)

The above MILP formulation for the proposed topology optimization and service

restoration framework can be summarized as follows:

1. Proactive Topology Optimization

Minimize
∑

zBR
ij ∀ (i, j) ∈ BF subject to:

(a) Constraints (5.7b) and (5.7c)

(b) Linear DistFlow constraints given by (5.9)

(c) Load limits given by (5.11)

(d) Transformer and line loading limits given by (5.13a) to (5.13c)

(e) Voltage limits given by (5.14)

(f) Switching limits given by (5.16)

(g) Connectivity constraints given by (5.17)

(h) Radiality constraints given by (5.18a) to (5.18d), and

(i) Other constraints given by (5.20), (5.21) and (5.23)

2. Service Restoration

Maximize max
∑n

i=1 x
L
i P

L
i ∀ i ∈ N subject to:

(a) Linear DistFlow constraints given by (5.9)

(b) Load limits given by (5.11)

(c) Transformer and line loading limits given by (5.13a) to (5.13c)

(d) Voltage limits given by (5.14)

(e) Switching limits given by (5.16)
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(f) Connectivity constraints given by (5.17)

(g) Radiality constraints given by (5.18a), (5.18b), (5.18d), and (5.19)

(h) Other constraints given by (5.20), (5.22) and (5.24)

5.4 Outage Optimization Cases

The previous section presented the MILP formulation of the proposed proactive

topology optimization and service restoration framework. In this section, three out-

age optimization cases are considered for implementing the proposed framework: sin-

gle outage, multiple outage and weighted multiple outage cases. These cases are

summarized in Fig. 5.2 below and explained in detail in the following subsections.

Figure 5.2: Summary of outage optimization cases

5.4.1 Single Outage Case

In the single outage case, each predicted outage scenario is considered individually,

and the proposed topology optimization and service restoration framework is applied

to each predicted outage scenario. It is assumed that outage scenarios are generated

from an OPM, as mentioned in Section 5.3. In the single outage case, there may be

one or more predicted outage locations (POLs) impacted in an outage scenario. In
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other words, one or more lines or sections of the distribution network may be affected

by an outage simultaneously.

The proposed topology optimization and service restoration process proceeds as

follows. First, the topology optimization stage will find a topology that minimizes

the loads left unserved (or out of service) in the event of the predicted outage, as

indicated in (5.6). Using the MILP formulation presented in the previous section,

this objective is achieved by minimizing the amount of power flowing through the

predicted outage locations. If the original network topology is not optimal, a new

topology would result from this stage. The new topology results from changing the

status of switchable lines in the distribution system.

Having optimized the topology before the outage, the service restoration stage will

focus on maximizing the restored load when the outage occurs as predicted. The

predicted outage locations are now out of service, and the goal is to reconfigure the

system to maximize the restored loads, as indicated in (5.8). Depending on the extent

of the outage, some loads may be left unrestored in the service restoration stage. For

example, loads that have only one supply path from the substation might be left

unrestored if that path is affected by the outage.

5.4.2 Multiple Outage Case

The multiple outage case optimizes for several outage scenarios at the same time.

The proposed topology optimization and service restoration framework is applied to

minimize the impact of outages across these different scenarios. An outage scenario

in the multiple outage case may affect one or more predicted outage locations simul-

taneously, just as in the single outage case.

In the multiple outage case, the proactive topology optimization process seeks to

find an optimal topology, Topt, that minimizes the total out-of-service loads across a

set of two or more predicted outage scenarios. In the service restoration process, the

aim is to determine the optimal topology that maximizes the load restored across the
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set of predicted outage scenarios. The following paragraphs explain how the proposed

framework is applied in the multiple outage case.

First, the MILP formulation presented in Section 5.3.2 is used to determine the

optimal topology Ti ∀ i ∈ {1, 2, ...,m} that minimizes the out-of-service loads, Lij,

for each predicted outage scenario, Sj. Lij represents the out-of-service loads or

unserved demand (in kilowatts) in network topology Ti if outage scenario Sj occurs as

predicted. For example, when outage scenario S1 occurs in the distribution network,

T1 is the topology that results in the lowest out-of-service loads, L11. While operating

in topology T1, L12 represents the out-of-service loads (in kilowatts) resulting from

outage scenario S1.

For n predicted outage scenarios, we may obtain up to n network topologies. How-

ever, in a case where the same topology is optimal for more than one outage scenario,

the number of network topologies would be less than n. In summary, for n predicted

outage scenarios and m optimal topologies, m × n values of out-of-service loads are

obtained as shown in Table 5.2. Each scenario Sj results in the least amount out-of-

service loads, Lij, over all topologies when i = j. Hence, the diagonal terms, L11, L22

and so on, are the minimum across the topologies considered in Table 5.2 for scenarios

S1, S2 and so on.

To determine the optimal topology for the considered predicted scenarios, ∆Lij is

Table 5.2: Multiple outage case: Out-of-service loads

Scenario
Topology

T1 T2 · · · Tm

S1 L11 L21 · · · Lm1

S2 L12 L22 · · · Lm2

... ...
...

. . .
...

Sn L1n L2n · · · Lmn
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Table 5.3: Computing additional out-of service loads to determine the optimal topol-
ogy in the multiple outage case

Scenario
Topology

T1 T2 · · · Tm

S1 ∆L11 ∆L21 · · · ∆Lm1

S2 ∆L12 ∆L22 · · · ∆Lm2

...
...

...
. . .

...
Sn ∆L1n ∆L2n · · · ∆Lmn

Average
Cost

1
n (∆L11 + ∆L12 +
· · ·+ ∆L1n)

1
n (∆L21 + ∆L22 +
· · ·+ ∆L2n)

· · ·
1
n (∆Ln1 + ∆Ln2 +
· · ·+ ∆Lmn)

obtained for all combinations of topology Ti and outage scenario, Sj as follows:

∆Lij = Lij − Lii (5.25)

When outage scenario Sj occurs, ∆Lij represents the cost of not operating in the

optimal topology Ti. In other words, ∆Lij ∀ i 6= j is the additional load left out of

service while operating in a suboptimal topology Ti during outage scenario Sj. For

instance in Table 5.3, if outage scenario S2 occurs in the distribution network, ∆L12

represents the cost in kilowatts associated with operating in topology T1. Topology

T2 is the optimal topology to operate in prior to outage scenario S2; hence, operating

in T1, which is suboptimal for outage scenario S2, would result in additional loads

L12 being left out of service in the network.

It is worth noting that ∆Lij = 0 for cases where i = j. This is corresponds to

operating in the optimal topology Ti, which results in the least amount of loads left

out of service when outage scenario j occurs. Hence, the diagonal terms ∆L11,∆L22

and so on in Table 5.3 are all equal to 0.

After obtaining ∆Lij for all combinations of topologies and predicted outage sce-
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narios, the average cost, Ci for each topology is calculated as follows:

Ci =
1

n
·

n∑
j=1

∆Lij ∀ Ti (5.26)

where n represents the number of outage scenarios, and ∆Lij represents the cost

(in kilowatts) associated with operating in a suboptimal topology, Ti for outage sce-

nario Sj, as shown in (5.25). To eliminate the zero terms, that is ∆Lij ∀ i = j,

Equation (5.26) is rewritten as follows:

Ci =
1

n
·

n∑
j=1
j 6=i

∆Lj
i ∀ Ti (5.27)

The topology Ti, with the lowest average cost Ci, across the n predicted outage

scenarios as shown in Table 5.3, is chosen as the optimal topology, Topt.

To illustrate the multiple outage case in practice, the case of a distribution network

with three predicted outage scenarios from an OPM is presented in Table 5.4. As

previously mentioned, each outage scenario could affect one or more locations (repre-

sented as line sections in this work) in the given distribution network. T1, T2 and T3

represent the optimal distribution network topologies to operate in if outage scenarios

S1, S2 and S3 occur, respectively, as single outage cases. The diagonal terms, L11, L22

and L33 are obtained from the first objective function, OF1 of the MILP formulation

in (5.6). They represent the out-of-service loads (in kilowatts) if the three predicted

scenarios, S1, S2 and S3 occur while operating in their respective optimal topologies,

T1, T2 and T3. The off-diagonal terms, Lij ∀ i 6= j, are obtained by estimating the

loads left out of service due to outage scenario Sj while operating in topology Ti. For

example, L12 represents the loads left out of service in topology T1 in the event of

outage scenario S2.

Next, ∆Lij is calculated for each topology and scenario using Equation (5.25). In
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Table 5.4: Out-of-service loads in example multiple outage case with 3 predicted
outages

Scenario
Topology

T1 T2 T3

S1 L11 L21 L31

S2 L12 L22 L32

S3 L13 L23 L33

Table 5.5: Additional out-of-service loads in example multiple outage case with 3
predicted outages

Scenario
Topology

T1 T2 T3

S1 ∆L11 ∆L21 ∆L31

S2 ∆L12 ∆L22 ∆L32

S3 ∆L13 ∆L23 ∆L33

Average Cost
1
3 (∆L11 + ∆L12 +

∆L13)

1
3 (∆L21 + ∆L22 +

∆L23)

1
3 (∆L31 + ∆L32 +

∆L33)

Table 5.5, ∆L21 is the difference between L21 and L11, ∆L31 is the difference between

L31 and L11, ∆L12 is the difference between L12 and L22, ∆L32 is the difference

between L32 and L22, ∆L13 is the difference between L13 and L33, and ∆L23 is the

difference between L23 and L33.

The diagonal terms, ∆L11,∆L22, and ∆L33 are all equal to 0. This is because

operating in the optimal topology does not result in additional loads being left out

of service. For example, T1, which is optimal for outage scenario, S1, has the least

amount of loads unserved (compared to T2 and T3) when outage scenario S1 occurs.

Thus, in the event of outage scenario S1, ∆L11 = 0, since no additional load is left

out of service in topology T1.

The off-diagonal terms, ∆Lij ∀ i 6= j, in Table 5.5 represent the additional unserved

loads due to operating in a suboptimal topology, Ti in the event of outage scenario Sj.

For example, ∆L21 represents the additional load left out of service in T2 when outage

scenario S1 occurs, while ∆L12 represents the additional load left out of service in T1
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when outage scenario S2 occurs. The optimal topology, Topt across all three scenarios

is the topology with the least average cost, Ci, calculated as shown in (5.26) and

Table 5.5. Since diagonal terms are equal to zero, they may be excluded in the

calculation of average cost as shown in (5.27).

5.4.3 Weighted Multiple Outage Case

The multiple outage case presented in the previous subsection assumed that the

predicted outage scenarios had equal likelihood of occurrence; however, this is un-

likely to be the case. As a result, the weighted multiple outage case presented in

this subsection extends the multiple outage case by finding a network topology that

minimizes the impact of predicted outage scenarios weighted based on their likelihood

of occurrence. Specifically, the weighted multiple outage case assigns weights to each

outage scenario Sj based on its likelihood of occurring. In this work, the weights are

chosen randomly to demonstrate how the weighted multiple outage case works. How-

ever, the weights can be derived from the output of a probabilistic outage prediction

model (OPM). The weights, wj assigned to the predicted outage scenarios sum up to

1 as shown in (5.28), with n representing the number of predicted outage scenarios.

n∑
j=1

wj = 1 (5.28)

As in the multiple outage case, the optimal topology, Ti for each outage scenario

Sj is derived from the MILP formulation presented in Section 5.3.2. The diagonal

terms, Lij ∀ i = j, in Table 5.6, represent the loads left out of service (in kilowatts) in

topology Ti when outage scenario Sj occurs. In each scenario, these terms correspond

to the values of the objective function from the proactive topology optimization stage.

On the other hand, the off-diagonal terms, Lij ∀ i 6= j, are obtained by estimating

the loads left out of service due to outage scenario Sj while operating in topology Ti.

Next, ∆Lij is calculated for each topology Ti and each outage scenario Sj as shown
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Table 5.6: Computing additional out-of service loads to determine the optimal topol-
ogy in the weighted multiple outage case

Scenario
Topology

T1 T2 · · · Tn

S1 w1 ·∆L11 w1 ·∆L21 · · · w1 ·∆Ln1

S2 w2 ·∆L12 w2 ·∆L22 · · · w2 ·∆Ln2

...
...

...
. . .

...
Sn wn ·∆L1n wn ·∆L2n · · · wn ·∆Lnn

Weighted
Cost

w1 ·∆L11 +
w2 ·∆L12 +
· · ·+ wn ·∆L1n

w1 ·∆L21 +
w2 ·∆L22 +
· · ·+ wn ·∆L2n

· · ·
w1 ·∆Ln1 +
w2 ·∆Ln2 +
· · ·+ wn ·∆Lnn

in (5.25), after which the weighted cost, wj ·∆Lij is computed as shown in Table 5.6.

The optimal topology across the n outage scenarios is then determined by calculating

the total weighed cost, wCi for each topology as follows:

wCi =
n∑

j=1

wj ·∆Lij ∀ Ti (5.29)

where n represents the number of outage scenarios, wj is the weight assigned to outage

scenario Sj, and ∆Lij represents the cost of operating in a suboptimal topology, Ti

when outage scenario j happens.

Since the diagonal terms, ∆Lij = 0 ∀ i = j, (5.29) can be rewritten as follows to

exclude the zero terms:

wCi =
∑
j=1
j 6=i

wj ·∆Lij ∀ Ti (5.30)

The topology, Ti with the lowest weighted cost, wCi is chosen as the optimal topol-

ogy, Topt across the n predicted outage scenarios.

To demonstrate how the weighted multiple outage case works, the same distribu-

tion network from the multiple outage case is considered. There are three predicted
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Table 5.7: Additional out-of-service loads in example weighted multiple outage case
with 3 predicted outages

Scenario
Topology

T1 T2 T3

S1 w1 ·∆L11 w1 ·∆L21 w1 ·∆L31

S2 w2 ·∆L12 w2 ·∆L22 w2 ·∆L32

S3 w3 ·∆L13 w3 ·∆L23 w3 ·∆L33

Weighted Cost
w1 ·∆L11 +
w2 ·∆L12 +
w3 ·∆L13

w1 ·∆L21 +
w2 ·∆L22 +
w3 ·∆L23

w1 ·∆L31 +
w2 ·∆L32 +
w3 ·∆L33

outage scenarios from an OPM as shown in Table 5.4. The optimal topologies, T1, T2

and T3 are obtained from the topology optimization stage. The out-of-service load

values, L11, L22 and L33 in the diagonal, correspond to the values of objective func-

tion OF1 when scenarios S1, S2, and S3 occur. The off-diagonal terms, Lij ∀ i 6= j,

(L21, L31, L12, L32, L13 and L23) are obtained by estimating the loads left out of service

due to outage scenario Sj while operating in topology Ti.

In Table 5.7, the weights, w1, w2, and w3, are the respective probabilities of outage

scenarios S1, S2, and S3, occurring in the distribution network. The three weights sum

up to 1. For each scenario Sj, the weight wj, is multiplied by ∆Lij. For example,

w1 ·∆L21 represents the weighted cost in kilowatts of operating in topology T2 when

outage scenario S1 occurs.

Similar to the multiple outage case, the diagonal terms in Table 5.7 are also equal

to zero since ∆Lij = 0 ∀ i = j. The optimal topology, Topt, across all three scenarios

is the one with the least total weighted cost, wCi, calculated using (5.30) as shown in

Table 5.7.

The following is a summary of how to apply the proactive topology optimization

framework in the multiple and weighted multiple outage cases:

1. Obtain the predicted outage scenarios, Sj ∈ {1, 2, ..., n} from the OPM results.

(a) For the multiple outage case, the predicted outages are assumed to have



61

the same weights or probabilities of occurrence.

(b) For the weighted multiple outage case, the weights wj associated with each

outage scenario is also obtained from the OPM.

2. Using the MILP formulation for the proactive topology optimization stage, ob-

tain the following

(a) Ti: Optimal topologies for each predicted scenario

(b) Lij: Unserved demand (kW) in topology Ti if outage scenario j occurs

3. Compute ∆Lij for all combinations of topologies Ti and outage scenario, j.

(a) ∆Lij represents the cost associated with operating in topology Ti when

outage scenario Sj occurs. In other words, ∆Lij represents the additional

load left out of service due to not operating in the optimal topology. Recall

that ∆Lij is equal to zero for all i = j. The topology Ti is optimal for all

i = j.

(b) For the weighted multiple outage case, ∆Lij is multiplied by wj for each

scenario, Sj.

4. For the multiple outage case, calculate the average cost for each topology. For

the weighted outage case, calculate the total weighted cost for each topology.

(a) The topology with the lowest average cost or total weighted cost is the

optimal topology, Topt to operate in for the outage scenarios considered.

5.5 Summary

This chapter began with a brief overview of distribution system optimization fol-

lowed by a detailed description of the proposed proactive topology optimization and

service restoration framework.
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The objective of the proactive topology optimization stage was to minimize the

loads that would be left out of service in the event of a predicted outage in the dis-

tribution network. To accomplish this, the original network topology is reconfigured

before the outage, so that the power flowing through the predicted outage locations

is minimized. In the service restoration stage, the goal was to maximize the loads

restored in the system following the predicted outage(s). The MILP formulation for

the two stages including details of the problem constraints were also presented in this

chapter.

Furthermore, three outage optimization cases were presented: single outage, mul-

tiple outage, and weighted multiple outage. In each case, it is assumed that the

predicted outage locations were derived from an outage prediction model (OPM). In

the single outage case, the aim is to find the optimal topology that would result in

the least amount of out-of-service loads when the predicted outage occurs. In the

multiple outage case, the goal is to find the topology that results in the least amount

of out-of-service loads across two or more outage scenarios with equal probabilities.

On the other hand, the goal of the weighted multiple outage case is to find a network

topology that minimizes the impact of predicted outage scenarios weighted on their

likelihood of occurrence.



CHAPTER 6: CASE STUDIES AND RESULTS

6.1 Overview

In this chapter, the proposed proactive topology optimization and service restora-

tion framework presented in Chapter 5 is tested and validated using modified versions

of the IEEE 13-bus and 123-bus test feeders [121]. The three optimization cases pre-

sented in the previous chapter, single outage, multiple outage, and weighted multiple

outage, are applied to both test systems. The MILP model is implemented using Py-

omo, a Python-based, open-source optimization software package [122,123] it is solved

with the CPLEX 20.1.0.1 solver on an Intel R© CoreTM i7-8565U CPU, 1.80GHz, 16GB

RAM and 64-bit operating system PC.

6.2 Test Feeders

This work uses modified versions of the IEEE 13-bus feeder and IEEE 123-bus

feeder adapted from [121] and [124] to demonstrate the proposed proactive network

reconfiguration and service restoration framework. Both systems are assumed to be

three-phase balanced systems. Data for the 13-bus feeder are presented in detail in

the following section while data for the 123-bus feeder are presented in Appendix A.

6.2.1 Modified IEEE 13-bus Feeder

The IEEE 13-bus test feeder [121, 125] is modified into a balanced system with a

total load of 1150 kW and 700 kVar. To allow for topological flexibility, it is assumed

that all the lines in the feeder are switchable as shown in Fig. 6.1 and are thus available

for network reconfiguration purposes. Three lines, 633–692, 646–611 and 675–680 are

assumed to be normally-open, while the remaining twelve lines are assumed to be

normally-closed. Additionally, the system includes capacitors at nodes 611 and 675



64

and a voltage regulator on line segment 650–632. Tables 6.1 to 6.5 provide details

of the system parameters, including line and load parameters, which were adapted

from [64,121].

650

632645646

671

680

684611

633

692

634

675

652

Substation

Figure 6.1: Modified IEEE 13-bus feeder showing normally-closed switches (green
dotted lines) and normally-open switches (orange dotted lines)

Table 6.1: Line parameters for modified IEEE 13-bus feeder

Line From To Length Capacity Config.No. Node Node (ft) (kVA)
1 650 632 2000 1500 601
2 632 633 500 1000 602
3 633 634 200 500 XFM-1
4 632 645 500 1000 603
5 645 646 300 800 603
6 632 671 2000 1500 601
7 671 692 10 800 Switch
8 692 675 500 800 606
9 671 684 300 800 604
10 684 611 300 800 605
11 684 652 800 800 607
12 671 680 1000 1500 601
13 633 692 2000 1000 602
14 646 611 2000 800 603
15 675 680 1500 1000 601
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Table 6.2: Line impedances for modified IEEE 13-bus feeder

Config. Resistance Reactance
(Ohms/mi) (Ohms/mi)

601 0.3418 1.0335
602 0.7479 1.1970
603 1.3266 1.3520
604 1.3266 1.3520
605 1.3292 1.3475
606 0.7952 0.4322
607 1.3425 0.5124

XFM-1 1.0051 1.8274
Switch 0.0001 0.0001

Table 6.3: Load parameters for modified IEEE 13-bus feeder

Load P Q
Name (kW) (kVar)
L632 65 40
L634 135 95
L645 55 40
L646 75 45
L671 385 220
L692 55 50
L675 280 155
L611 55 25
L652 45 30

Table 6.4: Transformer and regulator data for modified IEEE 13-bus feeder

kVA kV-high kV-low Tap Position
Substation 5000 115 4.16 –
XFM-1 500 4.16 0.48 –

RG 650-632 – 4.16 4.16 1

Table 6.5: Capacitor data for modified IEEE 13-bus feeder

Node kVar
675 200
611 30
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6.2.2 Modified IEEE 123-bus Feeder

Fig. 6.2 shows a one-line diagram of the modified IEEE 123-bus feeder, which is

used to test and demonstrate the scalability of the proposed topology optimization

and service restoration framework. The three-phase feeder is assumed to be balanced

with a load of 1185 kW and 610 kVar. Additionally, there are twelve switchable

lines in the feeder used for network reconfiguration as follows: 1–7, 13–18, 13–152,

18–135, 23–25, 54–94, 60–160, 76–77, 87–89, 97–197, 150–149, and 151–300. Two of

the switchable lines, 54–94 and 151–300, are assumed to be normally open while the

remaining ten are assumed to be normally closed. In the one-line diagram in Fig. 6.2,

the green dotted lines represent normally closed switchable lines while the orange

dotted lines represent normally open switchable lines. Green solid lines represent

non-switchable lines in the system. Four voltage regulators are connected to the

following line sections: 150–149, 9–14, 25–26 and 160–67 and four capacitors are

connected at nodes 83, 88, 90 and 92 respectively. Details of the line parameters,

load parameters, voltage regulator tap settings and capacitor ratings in the system

are presented in Appendix A.1.
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Figure 6.2: Modified IEEE 123-bus feeder showing normally-closed switches (green
dotted lines) and normally-open switches (orange dotted lines)
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6.3 Case Studies

This section presents case studies based on the three optimization cases discussed

in Chapter 5.

6.3.1 Case I: Single Outage Case

6.3.1.1 Case I.A: IEEE 13-bus Feeder

For the single outage case in the modified IEEE 13-bus feeder, three cases are

considered with predicted outage locations in the test feeder listed in Table 6.6; the

number of allowed switching operations, ns in (5.16a) of the MILP formulation is

limited to four. Table 6.6 presents the results of proactive network reconfiguration

and service restoration for each case.

In Case A, branch 671–684 is the predicted outage location as shown in Fig. 6.3(a).

If an outage were to occur at this location, 100 kW of loads (L611 and L652) would

be left out of service as shown in Fig. 6.3(b). In the first stage of the proposed

framework, the network is proactively reconfigured, resulting in the network displayed

in Fig. 6.3(c). The new topology is achieved in four switch operations by switching

off lines 671–692 and 684–611 and switching on lines 675–680 and 646–611.

An outage at branch 671–684 would leave 45 kW (load at 652) unserved in the new

topology as shown in Fig. 6.3(d). Reconfiguring the network to minimize the power

Table 6.6: Single Outage Case: Results from modified IEEE 13-bus feeder

Case Predicted Stage 1 Stage 2 Comp.
Outage Unserved Loads Unserved Loads Time

Location(s) (kW) (kW) (s)
Original Proactive
Config. Config.

A 671–684 100 45 0 0.45
B 632–633 135 135 0 0.49
C 671–684 | 671–692 435 100 0 0.51
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(a) Original topology with predicted
outage location 671–684 shown in red
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(d) Proactive topology with predicted
outage locations 671–684 shown in red
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that would be impacted by predicted
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(f) New topology after the predicted
outage location is isolated

Figure 6.3: Case A: One-line diagrams of modified IEEE 13-bus test feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework
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flowing through branch 671–684 reduces the loads that would be left out of service by

55%, from 100 kW to 45 kW. Therefore, minimizing the power flowing through line

671–684 results in a reduction in the load impacted on the network in the event of a

predicted outage on line 671–684.

It is worth mentioning that due to the flexibility of the distribution feeder (all the

lines are assumed to be switchable), other topologies may result in the same objective

function value of 45 kW for the topology optimization stage. Topology options can

be limited by expanding the objective function in (5.7) to minimize the number of

switching operations allowed or to minimize the maximum deviation in node voltage

along the feeder. It is important to note that if line 671–684 were turned off in the new

topology, the out-of-service loads be 0 kW, the lowest possible value of the objective

function; however, this would be a trivial solution since in reality, the predicted outage

locations may not always be switchable.

The next step is the service restoration process. This stage assumes that the outage

has occurred and the faulted branch has been disconnected, as shown in Fig. 6.3(e);

hence the feeder is reconfigured to maximize the load restored after the outage. In

this case, all the loads (1150 kW) in the feeder are restored as shown in Fig. 6.3(f).

In Case B, the outage is predicted to occur on line 632–633; in the original topology

shown in Fig. 6.1, the power flow, PBR
ij through this line is 135 kW. An outage on

line 632–633 would leave load L634 (135 kW) out of service in the original network

topology. In the topology optimization stage, branch 671–680 is opened and branch

675–680 is closed to reconfigure the network. The value of objective function, OF1

is 135 kW; the unserved load due to the outage is also 135 kW (load L634). Since

there is no other path in the network to node 634 from the substation besides 650–

632–633–634, the predicted outage would leave 135 kW out of service in the new and

original topologies. Hence, the network can be operated in either topology prior to

the outage. In the service restoration stage, branch 632–633 is isolated following the
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Table 6.7: Single Outage Case: Switch operations in modified IEEE 13-bus feeder

Case POL(s)
Stage 1 Stage 2

No. of Opened Closed No. of Opened Closed
Sw. ops Switches Switches Sw. ops Switches Switches

A 671–684 4
671–692 646–611

3 671–680
671–692

684–611 675–680 684–611

B 632–633 2 671–680 675–680 3 675–680
671–680
633–692

C
671–684

4
692–675 646–611

2 –
692–675

671–692 684–611 675–680 684–611

outage, and the network is reconfigured. The resulting topology restores all loads

in the system. The new topology is achieved in three switch operations as shown in

Table 6.7 by opening line 675–680 and closing lines 671–680 and 633–692.

In Case C, the number of predicted outage locations is increased to two: branches

671–684 and 671–692. If the outage occurs as predicted, topology optimization re-

duces the unserved loads from 435 kW in the original topology to 100 kW in the new

topology in the first stage. The new topology is achieved by opening lines 692–675 and

684–611 and closing lines 646–611 and 675–680 in four switching operations. Loads

L611, L652, L675 and L692 would be out of service in the original topology, while only

loads L652 and L692 are affected in the new topology in the event of the predicted

outage. In the second stage, we assume that the outage occurs as predicted, and

service restoration proceeds by isolating the predicted outage locations (671–684 and

671–692) and reconfiguring the system to restore the maximum loads possible. All

loads are restored in two switching operations (closing lines 692–675 and 684–611).

In the three cases presented, it can be seen that the value of objective function

OF1 from (5.7) is equal to the sum of loads left out of service if the outage occurred

as predicted. However, this may not be the case when predicted outage locations are

located on the same lateral in the distribution network, or in a larger distribution

network with fewer switchable lines.



71

A B C
0

100

200

300

400

O
ut

-o
f-

se
rv

ic
e 

Lo
ad

s (
kW

)
100

135

435

45

135
100

Original Topology
Proactive Topology

Figure 6.4: IEEE 13-bus feeder: Out-of-service loads in Stage 1 due to predicted
outages in original and proactive network topologies

Fig. 6.4 compares the out-of-service loads that resulted from predicted outages in

the original and proactive topologies of the three cases discussed. The plot shows that

proactive topology optimization reduces the loads that would be impacted by outages

at predicted outage locations in cases A and C. For case B, the unserved loads are

the same for both the original and proactive topologies. In all three cases, proactive

topology optimization yields a reduction between 0% and 75% in the out-of-service

loads. One-line diagrams of the feeder showing the original and proactive topologies

for Cases B and C are provided in Appendix B.1.

6.3.1.2 Case I.B: IEEE 123-bus Feeder

In this section, four cases are tested to demonstrate the scalability of the proposed

framework using the modified IEEE 123-bus feeder presented in Section 6.2.2. The

same MILP formulation presented in Chapter 5 is used, but the number of switching

operations allowed, ns in (5.16a) is increased to six to provide more topological flexi-

bility in this larger system with fewer switchable lines. The results for the four cases

are presented in Table 6.8 and discussed in the following paragraphs.

In Case A, the predicted outage locations are branches 67–72 and 67–97, both non-

switchable lines, as shown in Fig. 6.5(a). An outage at these locations would leave 455

kW of loads out of service as shown in Fig. 6.5(b). The sum of power flowing through
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Table 6.8: Single Outage Case: Results from modified IEEE 123-bus feeder

Case Predicted Stage 1 Stage 2 Comp.
Outage Unserved Loads Unserved Loads Time

Location(s) (kW) (kW) (s)
Original Proactive
Config. Config.

A
67–72

455 85 0 1.28
67–97

B
13–18

1000 505 485 1.25
57–60

C
26–27 | 72–76

510 145 145 1.26
97–197 | 160–67

D
13–18 | 30–250

630 555 355 1.23
49–50 | 72–76

both lines in the original topology shown in Fig. 6.2 is also 455 kW. To minimize the

impact of an outage on both lines, the network is proactively reconfigured in the first

stage resulting in the topology shown in Fig. 6.5(c). The new topology is achieved

by opening switchable lines 60–160 and 97–197 and closing switchable lines 54–94

and 151–300. In the event of the outage in the new topology, the unserved demand

is reduced from 455 kW in the original topology to 85 kW (an 81% reduction) as

illustrated in Fig. 6.5(e). Power flowing through branches 67-72 and 67-97 is also

reduced to 130 kW. It is important to point out that the value of OF1 (130 kW) is

not the same as the out-of-service loads (85 kW) because branches 67-72 and 67-97

are located on the same lateral of the distribution network. In the second stage,

service restoration is carried out and the network is reconfigured to maximize the

loads restored in the network by closing lines 60–160 and 97–197. All the loads are

restored as shown in Fig. 6.5(f).

In Case B, the predicted outage locations are lines 13–18 and 57–60. An outage

affecting these lines will have a significant impact on the network since they are among

the longest and highest capacity lines in the network. In the original topology, an

outage affecting lines 13–18 and 57–60 would impact 1000 kW of loads (almost 85% of
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(a) Original topology with predicted outage
locations 67–97 and 67–72 shown in red
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(b) Original topology showing loads that
would be impacted by predicted outage at
branches 67–97 and 67–72
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(c) Proactive topology
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(d) Proactive topology with predicted out-
age locations 67–97 and 67–72 shown in red
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(e) Proactive topology showing loads that
would be impacted by predicted outage at
branches 67–97 and 67–72
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(f) New topology after the predicted outage
locations are isolated

Figure 6.5: Case A: One-line diagrams of modified IEEE 123-bus feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework
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the system load). Optimizing the network topology reduces the loads impacted to 505

kW. In this case, both values (1000 kW and 505 kW) also correspond to the loads left

out of service in the original and proactive topologies, respectively. Hence, topology

optimization reduced the out-of-service loads by almost 50% as shown in Fig. 6.6.

The proactive topology is achieved in two switch operations by opening line 60–160

and closing line 54–94. In the second stage, the network is again reconfigured during

service restoration to maximize the amount of loads restored after the outage affecting

lines 13–18 and 57–60 occurs. By closing line 60–160 and opening line 97–197, 700

kW of loads are restored, leaving 485 kW of loads unserved in the system.

To further test the robustness of the proposed proactive topology optimization and

service restoration framework, the number of predicted outage locations is increased

to four in cases C and D.

In Case C, a potential outage at lines 26–27, 72–76, 97–197 and 160–67 would leave

510 kW out of service. By optimizing the network topology in the first stage, the

unserved loads are reduced by 72% to 145 kW in four switch operations by opening

lines 60–160 and 97–197 and closing lines 54–94 and 151–300. The sum of power

flowing through these lines (that is, the value of OF1) is reduced from 875 kW to 145

kW.

In the second stage, the predicted outage locations are isolated during service

restoration; however, the topology remains the same since none of the switchable

lines are operated. Loads L68, L69, L70, L98, L99 and L100 remain unrestored since

lines 97–197 and 160–67 are affected by the outage, leaving no alternative path to

reconnect these loads to the network. Also, load L33 which is downstream of line

26–27, one of the predicted outage locations, is left out of service for a similar reason.

Thus, it may be beneficial to have DGs connected at end nodes in the network or to

have more switchable lines connecting different laterals in the network.

In Case D, the outage is predicted to occur at lines 13–18, 30–250, 49–50 and 72–
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76. Outages at these locations would result in 630 kW of load left out of service in

the original topology; this number is reduced to 555 kW by implementing proactive

topology optimization (opening lines 18–135 and 87-89 and closing lines 54–94 and

151–300). A further reduction in the unserved loads (especially those downstream

of node 18 in the original topology) cannot be achieved since line 49–50 is one of

the potential outage locations. A potential outage at line 49–50 would restrict power

flowing from the substation through switchable line 151–300. By installing more

switchable lines in the network that bypass the predicted outage location (such as

one connecting nodes 51 and 250), there could be a further reduction in power flowing

through 13-18, and therefore lower out-of-service loads. In the second stage, 830 kW

of loads are restored by closing line 87–89; an additional 200 kW of loads are picked

up, leaving 355 kW of loads unrestored. As in the first stage, loads downstream of

node 50 in the post-outage topology are left unrestored due to the isolation of line

49–50.

The plot in Fig. 6.6 shows the out-of-service loads due to the predicted outages

in the four cases presented for the modified IEEE 123-node test feeder. In the four

cases, out-of-service loads are compared between the original and proactive topologies.

Operating in the proactive topologies reduces the amount of out-of-service loads due

to the predicted outages by at least 10% in all four cases. Table 6.9 shows the number

of switch operations in both stages of the proposed framework for all four cases. In

each case, the maximum number of switch operations is four even though the number

of switching operations, ns is limited to six. Also, all proactive topologies in the first

stage were achieved by closing either 54-94 or 151-300 or both switchable lines. One-

line diagrams of the feeder showing the original and proactive topologies for cases B,

C and D are provided in Appendices B.3 to B.5.
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Table 6.9: Single Outage Case: Switch operations in modified IEEE 123-bus feeder

Case POL(s)
Stage 1 Stage 2

No. of Opened Closed No. of Opened Closed
Sw. ops Switches Switches Sw. ops Switches Switches

A
67–72

4
60–160 54–94

2 –
60–160

67–97 97–197 151–300 97–197

B
13–18

2 60–160 54–94 2 97–197 60–160
57–60

C
26–27 | 72–76

4
60–160 54–94

0 – –
97–197 | 160–67 97–197 151–300

D
13–18 | 30–250

4
18–135 54–94

1 – 87–89
49–50 | 72–76 87–89 151–300
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Figure 6.6: IEEE 123-bus feeder: Out-of-service loads due to predicted outages in
original and proactive topologies

6.3.2 Case II: Multiple Outage Case

In the multiple outage case, the proposed topology optimization and service restora-

tion framework is applied to minimize the impact of predicted outages across different

outage scenarios. Each outage scenario could involve one or more predicted out-

age locations. Topology optimization involves finding an optimal topology, Topt that

minimizes the total out-of-service loads across several predicted outage scenarios,

{S1, S2, ..., Sn}. The service restoration stage involves determining the topology that

maximizes the loads restored across predicted outage scenarios after the outages have

occurred.

In this section, the multiple outage case is demonstrated in the following subsections
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using modified versions of the IEEE 13-bus and 123-bus feeders.

6.3.2.1 Case II.A: IEEE 13-bus Feeder

The multiple outage case is applied to the modified IEEE 13-bus feeder by con-

sidering two cases involving three predicted outage scenarios. The lines affected in

each outage scenario are listed in Table 6.10. Each outage scenario is assumed to

have an equal probability of occurrence. With three outage scenarios, this represents

a 33.33% chance of occurrence for each scenario.

In Case A, three outage scenarios are considered, each with equal probability of

occurrence on the following lines in the network: 671–684, 671–692 and 632–645.

As presented in Section 5.4.2, the optimal topologies, T1, T2 and T3 for the outage

scenarios are first determined. The status of each line in the three topologies is listed

in Table 6.11. Then the out-of-service loads, Lij in each topology, Ti is determined

for each predicted outage scenario Sj. Table 6.12 presents the out-of-service loads

(in kilowatts) when each scenario occurs while operating in topologies T1, T2 and T3,

respectively. T1 is the optimal topology to operate in if outage scenario S1 occurs at

line 671–684. Outage scenario S1 (predicted outage at 671–692) leaves 45 kW of loads

out of service in topology T1; this is represented as L11 in Table 6.12. If scenario S2

(predicted outage at 671–692) occurs while operating in T1, 335 kW (L12) of loads

are left unserved, and so on. For scenario S1, the unserved loads, L11 and L21 in

topologies T1 and T2 are the same (45 kW). Load L652 would be left unserved in both

Table 6.10: Modified IEEE 13-bus feeder: Outage scenarios and predicted outage
locations

Case Scenarios
Scenario 1 Scenario 2 Scenario 3

A 671–684 671–692 632–645

B 692–675
671–684 632–633
671–692 632–645
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Table 6.11: Status of switchable lines in multiple outage cases: Modified IEEE 13-bus
feeder

Line
No.

From
Node

To
Node

Line Status
Case A Case B

T1 T2 T3 T1 = T3 T2

1 650 632 ON ON ON ON ON
2 632 633 ON ON ON ON ON
3 633 634 ON ON ON ON ON
4 632 645 ON ON ON ON ON
5 645 646 ON ON OFF OFF ON
6 632 671 ON ON ON ON ON
7 671 692 ON ON ON ON ON
8 692 675 ON OFF ON ON ON
9 671 684 ON ON ON ON ON
10 684 611 OFF OFF ON ON OFF
11 684 652 ON ON ON ON ON
12 671 680 ON ON OFF ON OFF
13 633 692 OFF OFF OFF OFF OFF
14 646 611 ON ON ON ON ON
15 675 680 OFF ON ON OFF ON

Table 6.12: Multiple Outage Case A: Out-of-service loads (kW) in modified IEEE
13-bus feeder

Scenario
Topology

T1 T2 T3

S1 L11 = 45 L21 = 45 L31 = 175

S2 L12 = 335 L22 = 55 L32 = 335

S3 L13 = 185 L23 = 185 L33 = 55

topologies due to scenario S1. The diagonal terms, L11, L22 and L33 in Table 6.12

represent the unserved loads in the optimal topologies, and they are the least for

scenarios S1, S2, and S3, respectively. Also, L12 = L32 since scenario S2 would leave

loads L675 and L692 out of service in topologies T1 and T3. Similarly, L13 = L23 since

scenario S3 would leave loads L611, L645 and L646 unserved in topologies T1 and T2.

The costs ∆Lij of not operating in the optimal topologies are estimated from

Equation (5.25) as shown in Table 6.13. ∆Lij = 0 for the optimal topologies for each

scenario, that is when i = j. Also, ∆Lij = 0 if the considered topology leaves the

same amount of loads unserved as the optimal topology. For example, ∆L21 is the
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Table 6.13: Multiple Outage Case A: Additional out-of-service loads (kW) in modified
IEEE 13-bus Feeder

Scenario
Topology

T1 T2 T3

S1
∆L11 = L11 − L11 ∆L21 = L21 − L11 ∆L31 = L31 − L11

= 45− 45 = 0 = 45− 45 = 0 = 175− 45 = 130

S2
∆L12 = L12 − L22 ∆L22 = L22 − L22 ∆L32 = L32 − L22

= 335− 55 = 280 = 55− 55 = 0 = 335− 55 = 280

S3
∆L13 = L13 − L33 ∆L23 = L23 − L33 ∆L33 = L33 − L33

= 185− 55 = 130 = 185− 55 = 130 = 55− 55 = 0

Average 1
3 (0 + 280 + 130) = 1

3 (0 + 0 + 130) = 1
3 (130 + 280 + 0) =

Cost 136.67 kW 43.33 kW 136.67 kW

same as ∆L11 since scenario S1 results in the same amount of loads left unserved

in topologies T1 (the optimal topology) and T2. Hence, the additional loads left

unserved in both topologies are zero. On the other hand, topologies with higher costs

are suboptimal. For example, topology T3 is the least optimal topology to operate in

if predicted outage scenario S1 occurs, since it has a higher cost of 130 kW compared

to T1 and T2 which both have a cost of 0 kW.

The average cost, Ci for each topology is then calculated by taking the average

of the costs ∆Lij across the three outage scenarios. T2 is the optimum topology for

the three predicted outage scenarios as shown in Table 6.13 since it results in the

lowest average cost (43.33 kW). On average, the additional out-of-service loads in T2

(43.33 kW) due to the predicted outages would be three times less than the additional

out-of-service loads (136.67 kW) in either T1 or T3. Therefore, it is recommended to

operate in T2 if the three scenarios have equal likelihood of occurring.

In case B, the three scenarios are predicted outages at lines 692–675 (S1), 671–

684 and 671–692 (S2), and 632–633 and 632–645 (S3), respectively. The topologies

that minimize the unserved loads in these three scenarios are listed as T1 to T3 in

Table 6.14 along with the corresponding values of the unserved loads. It is important
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Table 6.14: Multiple Outage Case B: Out-of-service loads (kW) in modified IEEE
13-bus Feeder

Scenario
Topology

T1 = T3 T2

S1 L11 = 280 L21 = 280

S2 L12 = 510 L22 = 380

S3 L13 = 190 L23 = 320

Table 6.15: Multiple Outage Case B: Additional out-of-service loads (kW) in modified
IEEE 13-bus Feeder

Scenario
Topology

T1 = T3 T2

S1
∆L11 = L11 − L11 ∆L21 = L21 − L11

= 280− 280 = 0 = 280− 280 = 0

S2
∆L12 = L12 − L22 ∆L22 = L22 − L22

= 510− 380 = 130 = 380− 380 = 0

S3
∆L13 = L13 − L33 ∆L23 = L23 − L33

= 190− 190 = 0 = 320− 190 = 130

Average 1
3 (0 + 130 + 0) = 1

3 (0 + 0 + 130) =

Cost 43.33 kW 43.33 kW

to note that topologies T1 and T3 are the same in this case; this is denoted as T1 = T3.

The status of each line in these topologies is listed in Table 6.11. This means that

∆L13 = ∆L11, ∆L32 = ∆L12 and ∆L33 = ∆L13. The results show that scenario

S1 would result in the same amount of unserved loads in topologies T1 and T2 even

though both topologies are different.

Next, the costs ∆Lij are computed as displayed in Table 6.15. Since there is no

additional load left unserved when scenario S1 occurs while operating in T1 or when

scenario S2 occurs while operating in T2, ∆L11 and ∆L22 are both equal to 0 kW.

Similarly, ∆L13 is also equal to 0 kW since T1 = T3. In scenario S1, ∆L21 is also equal

to zero, since the same amount of load, 280 kW, is left unserved in topologies T1 and

T2. The average cost of each topology is computed; T1 and T2 have the same average
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cost (43.33 kW). Hence, the network can be operated in either topology when the

predicted outage scenarios have the same probability of occurring.

6.3.2.2 Case II.B: IEEE 123-bus Feeder

In this section, the multiple outage case is implemented on the modified IEEE 123-

bus test feeder by considering two cases involving three predicted outage scenarios

with the outage locations presented in Table 6.16. It is assumed that each outage

scenario has an equal likelihood of occurrence (33.33%).

In case A, three outage scenarios are considered, each with an equal probability of

occurrence on the following lines in the network: lines 67–72 and 67–97 (S1), 13–18

and 57–60 (S2) and lines 49–50 and 93–94 (S3). First, the optimal topologies, T1, T2

and T3 for each outage scenario are determined during the topology optimization

stage. Table 6.17 lists the status of the switchable lines for each topology, and Ta-

ble 6.18 shows the out-of-service loads (in kilowatts), Lij for each topology Ti and

scenario Sj. As expected, the diagonal terms, L11, L22 and L33 are the lowest for each

outage scenario.

Table 6.19 presents the costs or additional out-of-service loads, ∆Lij. ∆Lij repre-

sents the difference between unserved loads in suboptimal topology Ti and unserved

loads in the optimal topology Tj in case of outage scenario Sj. Therefore, the diagonal

terms ∆L11,∆L22 and ∆L33 are all 0 kW. In scenario S1, T3 has a cost of 370 kW;

this means that an additional 370 kW of loads (L31) are left unserved in T3 compared

Table 6.16: Modified IEEE 123-bus Feeder: Outage scenarios and predicted outage
locations

Case Scenarios
Scenario 1 Scenario 2 Scenario 3

A 67–72 | 67–97 13–18 | 57–60 49–50 | 93–94

B
13–18 | 30–250 26–27 | 72–76 67–72 | 67–97
49–50 | 72–76 97–197 | 160–67 13–18 | 57–60
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Table 6.17: Status of switchable lines in multiple outage cases: Modified IEEE 123-
bus feeder

Line
No.

From
Node

To
Node

Line Status
Case A Case B

T1 T2 T3 T1 T2 = T3

1 1 7 ON ON ON ON ON
2 13 18 ON ON ON ON ON
3 13 152 ON ON ON ON ON
4 18 135 ON ON ON OFF ON
5 23 25 ON ON ON ON ON
6 54 94 ON ON OFF ON ON
7 60 160 OFF OFF ON ON OFF
8 76 77 ON ON ON ON ON
9 87 89 ON ON ON OFF ON
10 97 197 ON OFF ON ON OFF
11 150 149 ON ON ON ON ON
12 151 300 OFF ON OFF ON ON

Table 6.18: Multiple Outage Case A: Out-of-service loads (kW) in modified IEEE
123-bus feeder

Scenario
Topology

T1 T2 T3

S1 L11 = 85 L21 = 195 L31 = 455

S2 L12 = 615 L22 = 505 L32 = 1000

S3 L13 = 500 L23 = 500 L33 = 35

Table 6.19: Multiple Outage Case A: Additional out-of-service loads (kW) in modified
IEEE 123-bus feeder

Scenario
Topology

T1 T2 T3

S1 0 110 370
S2 110 0 495
S3 465 465 0

Average Cost 191.67 kW 191.67 kW 288.33 kW

to the unserved loads in optimal topology T1.

Similarly, operating in T3 results in the highest amount of additional unserved

loads, L32 when outage scenario S2 occurs. In scenario S3, the additional unserved

loads are the same for T1 and T2, that is, ∆L13 = ∆L23 = 465 kW; this is because
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the same loads are affected in both topologies during outage scenario S3. Next, the

average costs for each topology across the three scenarios are computed, and the

results in Table 6.19 show that T1 and T2 have the least average costs (191.67 kW).

On average, the three scenarios would leave 1.5 times more addional loads unserved in

T3 compared to T1 or T2. Therefore, if the three scenarios have the same probability

of occurrence, it would be optimum to operate in either topology T1 or topology T2,

since on average, they would have the minimum loads left unserved or out of service

during the predicted outages.

Case B considers three outage scenarios, each with four lines as predicted outage

locations as shown in Table 6.16. Using the MILP formulation, the optimal topology

Ti for each scenario is determined in the proactive topology optimization stage. The

optimal topologies for scenarios S1, S2 and S3 are topologies T1, T2 and T3, respec-

tively. In this case, topologies T2 and T3 are the same, and this is denoted as T2 = T3.

The status of the switchable lines for each topology is presented in Table 6.17.

Table 6.20 presents the out-of-service loads, Lij in each topology Ti in the event

of each scenario Sj. In scenario S1, the unserved loads are lowest when operating in

topology T1. In scenarios S2 and S3, the unserved loads are lowest when operating in

topology T2 = T3. Next, the additional unserved loads, ∆Lij in each topology during

each scenario are estimated and shown in Table 6.21. As expected, ∆L11 and ∆L22

are both 0 kW since there are no additional unserved loads when operating in the

optimal topology. Similarly, ∆L23 is also 0 kW since T2 is the optimal topology for

scenario S3. The results show that T2 has a lower average cost (20 kW) compared

to T1 (266.67 kW). Operating in T1 prior to the predicted outages would result in

about ten times additional unserved loads compared to T2. Hence, it is more optimal

to operate in T2 ahead of the predicted outages when they have equal probability of

occurring.

Overall, the multiple outage cases presented could assist distribution system op-
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Table 6.20: Multiple Outage Case B: Out-of-service loads (kW) in modified IEEE
123-bus feeder

Scenario
Topology

T1 T2 = T3

S1 L11 = 555 L21 = 615

S2 L12 = 700 L22 = 145

S3 L13 = 945 L23 = 700

Table 6.21: Multiple Outage Case B: Additional out-of-service loads (kW) in modified
IEEE 123-bus feeder

Scenario
Topology

T1 T2 = T3

S1 0 60
S2 555 0
S3 245 0

Average Cost 266.67 kW 20.00 kW

erators in deciding which topology to operate in when faced with a set of outage

scenarios with equal probability or likelihood of occurring. The chosen topologies in

the cases considered resulted in the lowest additional out-of-service loads compared

to the other topologies. Although the multiple outage case presented in this work has

been limited to just three outage scenarios, it can be expanded to include more sce-

narios. This could result in more topologies depending on the number of switchable

lines and the topological flexibility of the system. Alternatively, a topology may be

optimal for more than one outage scenario, as shown in cases B in both feeders. This

reduces the computation required to determine the optimal topology.

6.3.3 Case III: Weighted Multiple Outage Case

A limitation of the multiple outage case is that it assumes each outage scenario

has the same chance of occurring; however, this is unlikely to be the case. Hence,

the weighted multiple outage case extends the multiple outage case by finding a

network topology that minimizes the impact of predicted outage scenarios weighted



85

based on their likelihood of occurring. Each predicted scenario is assigned weights

corresponding to its probability of occurring in the distribution network. In the

following sections, the weighted multiple outage case is tested on the modified IEEE

13-node and 123-node test feeders. In addition, a sensitivity analysis is carried out

by changing the weights assigned to each scenario to see how that affects the optimal

topology chosen.

6.3.3.1 Case III.A: IEEE 13-bus Feeder

The weighted multiple outage case is applied to the modified IEEE 13-bus feeder

using the same scenarios from the multiple outage case presented in Table 6.10. Each

outage scenario is given a weight based on its likelihood of occurring, and the weights

for all scenarios sum up to 1. In the two cases considered in this section (Cases A and

B), the three scenarios are randomly assigned weights of 68%, 17% and 15% respec-

tively as shown in Table 6.22. Therefore, scenario S1 is assumed to have the highest

chance of occurring (68% probability), followed by scenario S2 (17% probability) and

then scenario S3 (15% probability). The most likely scenario is scenario S1 (68%

probability), followed by scenario S2 (17% probability) and finally scenario S3 (15%

probability). The out-of-service loads, Lij and additional out-of-service loads, ∆Lij

are estimated as in the multiple outage case (see Tables 6.12 and 6.13). Then, the

weights are multiplied by the additional unserved loads in each scenario as shown in

Table 6.22. The product of each scenario weight and the out-of-service loads in each

topology is summed to obtain the weighted cost of each topology, wCi, as represented

in (5.30).

In Case A, the results show that T2 is the optimum topology since it has the lowest

weighted cost compared to the other two topologies.

Furthermore, a sensitivity analysis is performed by varying the weight for each

outage scenario between 0 and 1 in increments of 10% (0.1) for a total of 66 possible

scenarios. The analysis also includes the case where each outage scenario has the
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Table 6.22: Weighted Multiple Outage Case A: Computing weighted cost for modified
IEEE 13-bus feeder

Scenario
Weight Topology

(w) T1 T2 T3

S1 0.68
w1 ·∆L11 w1 ·∆L21 w1 ·∆L31

= 0.68(0) = 0 = 0.68(0) = 0 = 0.68(130) = 88.40

S2 0.17
w2 ·∆L12 w2 ·∆L22 w2 ·∆L32

= 0.17(280) = 47.60 = 0.17(0) = 0 = 0.17(280) = 47.60

S3 0.15
w3 ·∆L13 w3 ·∆L23 w3 ·∆L33

= 0.15(130) = 19.50 = 0.15(130) = 19.50 = 0.15(0) = 0

Weighted
67.10 kW 136.00 kW

Cost
19.50 kW
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Figure 6.7: IEEE 13-bus Weighted Multiple Outage Case A: Sensitivity analysis

same likelihood of occurring (33.33%). Fig. 6.7 shows a 3D scatterplot of the optimal

topologies chosen as the weights for the three outage scenarios in case A are varied

between 0 and 1. Based on the plot, T2 (represented by the orange dots) is the

optimal topology for most scenarios (over 70%), while T3 (represented by the green

dots) is chosen as optimal in 18% of the scenarios. For 7% of the scenarios, operating

in either T1 or T2 would be optimal. In the scenario where w1 = 0.5, w2 = 0 and

w3 = 0.5 (represented by the pink dot), it would be optimal to operate in any of the

three topologies. The point denoted by the black star corresponds to when the three
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outage scenarios have the same probability of occurrence (33.33%) as demonstrated

in the multiple outage case.

The results for Case B are presented in Table 6.23. T2 has the lower weighted cost,

and is therefore the optimal topology to operate in prior to the predicted outages.

Fig. 6.8 shows the results of sensitivity analysis in the weighted multiple outage

for case B of the modified IEEE 13-node test feeder. T1 and T2 are chosen as the

optimal topologies for the same number of cases, about 45% , respectively. Recall from

Table 6.14 that topologies T1 and T3 are the same (hence the notation T1 = T3). In

Table 6.23: Weighted Multiple Outage Case B: Computing weighted cost for modified
IEEE 13-bus feeder

Scenario
Weight Topology

(w) T1 = T3 T2

S1 0.68
w1 ·∆L11 w1 ·∆L21

= 0.68(0) = 0 = 0.68(0) = 0

S2 0.17
w2 ·∆L12 w2 ·∆L22

= 0.17(130) = 22.10 = 0.17(0) = 0

S3 0.15
w3 ·∆L13 w3 ·∆L23

= 0.15(0) = 0 = 0.15(130) = 19.50

Weighted
22.10 kW

Cost
19.50 kW
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Figure 6.8: IEEE 13-bus Weighted Multiple Outage Case B: Sensitivity analysis
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the remaining 10% of the cases, it is optimum to operate in either T1 or T2 (indicated

by the red dots in the scatterplot in Fig. 6.8); these points form the boundary between

cases where operating in T1 is optimal and cases where operating in T2 is optimal. A

list of the weighted costs for each topology for all combinations of w1, w2, and w3 can

be found in Table C.1 of Appendix C.1.

6.3.3.2 Case III.B: IEEE 123-bus Feeder

In this section, the weighted multiple outage case is demonstrated with the modified

IEEE 123-bus feeder using the same scenarios presented in Table 6.16 for the multiple

outage cases. For the three outage scenarios considered, the same weights of 68%,

17%, and 15% from the modified 13-bus feeder are used. As previously described, this

corresponds with the assumption that the first outage scenario, S1 has a probability

of 68% while scenarios S2 and S3 have probabilities of 17% and 15%, respectively.

As described in the previous section, the optimal topology for each outage scenario

is first determined from the topology optimization stage as shown in Section 6.3.1.2.

Then, the out-of-service loads, Lij and additional out-of-service loads, ∆Lij are esti-

mated as shown in Table 6.18 from the multiple outage case. In each topology, the

additional out-of-service loads are multiplied by the weights, wj, of each scenario.

The weighted cost, wCi for each topology, Ti, is calculated by summing the products

from the previous step.

In Case A, the weighted costs are presented in Table 6.24. Since T1 has the lowest

weighted cost, it is chosen as the optimal topology. In the multiple outage case,

which assumed equal weights for each outage scenario, T1 and T2 were chosen as the

optimal topologies. In contrast, the higher weight (68%) assigned to scenario S1 in

the weighted case gives its optimum topology, T1 a higher preference (and reduces its

weighted cost). Hence, T1 is chosen as the optimum in the weighted case.

A sensitivity analysis is performed by varying the weight of each outage scenario

from 0 to 1 in 10% increments. Fig. 6.9 displays a 3D scatterplot of the optimal
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Table 6.24: Weighted Multiple Outage Case A: Computing weighted cost for modified
IEEE 123-bus feeder

Scenario
Weight Topology

(w) T1 T2 T3

S1 0.68 0 74.80 251.60
S2 0.17 18.70 0 84.15
S3 0.15 69.75 69.75 0

Weighted Cost 88.45 kW 144.55 kW 335.75 kW
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Figure 6.9: IEEE 123-bus Weighted Multiple Outage Case A: Sensitivity analysis

topologies chosen as the weights for the three outage scenarios are varied from 0 to

1. T1 (blue dots) is optimal in approximately 30% of weight combinations. This is

also true for T2 (orange dots) and T3 (green dots). Furthermore, T1 is the optimal

topology for at least 95% of the weight combinations in which w1 ≥ 0.5. T2 is the

optimal topology (or at least one of the optimal topologies) chosen when w2 ≥ 0.5,

while T3 is the optimal topology chosen when w3 ≥ 0.5. In about 6% of the weight

combinations, where w1 = w2 and 0.3 ≤ (w1, w2) ≤ 0.5, T1 and T2 have the same

weighted costs; hence it is possible to operate in either T1 or T2 in these cases.

In case B, the optimal topologies for outage scenarios S2 and S3 are the same and

this is denoted as T2 = T3 in Table 6.25. Topology T2 = T3 is the chosen optimal
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Table 6.25: Weighted Multiple Outage Case B: Computing weighted cost for modified
IEEE 123-bus feeder

Scenario
Weight Topology

(w) T1 T2 = T3

S1 0.68 0 40.80
S2 0.17 94.35 0
S3 0.15 36.75 0

Weighted Cost 131.10 kW 40.80 kW
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Figure 6.10: IEEE 123-bus Weighted Multiple Outage Case B: Sensitivity analysis

topology for the three outage scenarios since it has the lower weighted cost (40.80

kW) compared to T1 (131.10 kW). This case shows that the optimal topology for

the scenario with the highest probability is not automatically selected as the optimal

topology across the outage scenarios considered. The additional loads left out-of-

service in each topology are taken into consideration when determining the overall

optimal topology.

Again, a sensitivity analysis is conducted by varying the scenario weights as previ-

ously described. Fig. 6.10 displays a 3D scatterplot of the selected topologies based

on combinations of the outage scenario weights w1, w2 and w3. For 97% of the weight

combinations considered, topology T2 = T3 (orange dots) is selected, while T1 (blue
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dots) is selected for just two cases (w1 = 0.9, w3 = 0.1) and (w1 = 1.0). This is

because on average, T2 = T3 has less additional out-of-service loads compared to T1.

Hence, in the given outage scenarios, if prior knowledge about the probability of each

outage is unknown, then the network can be operated in topologies T2 = T3. This

would result in a lower amount of out-of-service loads on average.

The points denoted by the black star in Figures 6.9 and 6.10 represent the case

where the three outage scenarios have the same probability of occurrence as shown

in Tables 6.19 and 6.21 for the multiple outage case. Table C.2 in Appendix C.2

provides the values of weighted costs and selected topologies for the combinations of

w1, w2 and w3 considered in the cases presented for the modified IEEE 123-bus feeder.

6.4 Validation of MILP Power Flow Model

The linear power flow model used in the MILP formulation presented in this work

(in (5.9a) to (5.9g)) is based on the DistFlow equations presented in [80,113]. In this

section, the linear power flow model is validated by comparing power flow results from

the MILP model to power flow results from OpenDSS, an electric power distribution

system simulator [126]. This is done using the modified IEEE 13-bus and 123-bus

feeders that were presented earlier in this chapter in Section 6.2. A comparison of

power flow results is also performed with different loading conditions for each feeder.

6.4.1 Modified IEEE 13-bus Feeder

For the modified 13-bus test feeder, Tables 6.26, 6.27 and 6.28 compare voltage

magnitude (p.u.), active power (kW) and reactive power (kW) values, respectively,

from the linear power flow model with values from OpenDSS.

Overall, the node voltages from OpenDSS are lower than those from the MILP.

A maximum error of 0.0168 p.u. was recorded at bus 675, and an average error of

0.0092 p.u. was recorded across all buses. The average errors for real and reactive

power are approximately 0.55% and 3.52%, respectively. The OpenDSS line flows are
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all higher than the MILP line flows, primarily because line losses are not considered

in the MILP model. As a result, the MILP model error in power flowing from the

substation (19.01 kW + j50.91 kVar) is approximately equal to the OpenDSS total

feeder losses (19.0 kW + j52.2 kVar).

In addition, the loading conditions are varied by adjusting every load in the modi-

fied 13-bus feeder from 30% to 110% of its rated value. All node voltages are main-

tained between 0.95 p.u. and 1.05 p.u., while the substation bus voltage (bus 650)

is maintained at 1.05 p.u. Fig. 6.11 shows a plot of OpenDSS line apparent power

(kVA) versus MILP line apparent power (calculated from values of PBR
ij and QBR

ij ).

The data points in the plot are colored based on the load multipliers used (from 30%

to 110%). The plot shows a high positive correlation (R2 = 0.9979) between the

MILP and OpenDSS line apparent power results (kVA).

Overall, the results show that the MILP model provides a reasonable approximation

of the nonlinear power flow model.

Table 6.26: Power flow results for modified IEEE 13-bus feeder: Voltage magnitude
(p.u.)

Node
Voltage Magnitude Error

(p.u.) (p.u.)
MILP OpenDSS

650 1.0500 1.0499 0.0001
632 1.0435 1.0429 0.0006
633 1.0419 1.0395 0.0024
634 1.0412 1.0375 0.0037
675 1.0200 1.0032 0.0168
645 1.0420 1.0383 0.0037
646 1.0415 1.0368 0.0047
671 1.0203 1.0065 0.0138
680 1.0203 1.0065 0.0138
684 1.0199 1.0049 0.0150
611 1.0199 1.0043 0.0156
652 1.0191 1.0029 0.0162
692 1.0203 1.0065 0.0138
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Table 6.27: Power flow results for modified IEEE 13-bus feeder: Real power (kW)

Line From To Real Power (kW) Error
No. Node Node MILP OpenDSS (kW)
1 650 632 1150 1169.01 19.01
2 632 633 135 135.48 0.48
3 633 634 135 135.17 0.17
4 632 645 130 130.58 0.58
5 645 646 75 75.09 0.09
6 632 671 820 837.65 17.65
7 671 692 335 336.05 1.05
8 692 675 280 281.05 1.05
9 671 684 100 100.28 0.28
10 684 611 55 55.04 0.04
11 684 652 45 45.10 0.10
12 671 680 0 0 0
13 633 692 0 0 0
14 646 611 0 0 0
15 675 680 0 0 0

Table 6.28: Power flow results for modified IEEE 13-bus feeder: Reactive power
(kVar)

Line From To Reactive Power (kVar) Error
No. Node Node MILP OpenDSS (kVar)
1 650 632 470 520.91 50.91
2 632 633 95 95.80 0.80
3 633 634 95 95.30 0.30
4 632 645 85 85.59 0.59
5 645 646 45 45.09 0.09
6 632 671 250 298.62 48.62
7 671 692 5 4.31 0.69
8 692 675 -45 -45.69 0.69
9 671 684 25 24.97 0.03
10 684 611 -5 -5.21 0.21
11 684 652 30 30.04 0.04
12 671 680 0 0 0
13 633 692 0 0 0
14 646 611 0 0 0
15 675 680 0 0 0
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Figure 6.11: Correlation between MILP power flow results and OpenDSS results:
Line apparent power (kVA) in modified IEEE 13-bus feeder

6.4.2 Modified IEEE 123-bus Feeder

The MILP model is also validated using the modified IEEE 123-bus feeder to

demonstrate its performance on a larger system. Detailed results of voltage magnitude

(p.u.) and line flows (kW and kVar) from the MILP power flow and OpenDSS are

presented in Tables A.6 to A.8 in Appendix A.1.1.

The MILP and OpenDSS voltage results show that all the node voltages lie within

the required limits of 0.95 p.u. and 1.05 p.u. For voltages, the maximum error is

0.0321 p.u. at bus 66, and the average error is 0.0215 p.u. The node voltages from

OpenDSS are all lower than those from the MILP. For real power, the average error

is 0.40% (2.47 kW) while the average error for reactive power line flow is 1.59%. Line

flows from OpenDSS are all higher than MILP line flows for this system, due to line

losses that are not included in the MILP model. The error in power flowing from the

substation in the MILP model (46.78 kW + j95.578 kVar) corresponds to the total

feeder losses in the OpenDSS model (46.8 kW + j105.8 kVar). The larger error in

reactive power flow may be a result of the higher number of voltage regulators and

capacitors in the system compared to the modified IEEE 13-bus system.

Additionally, the loading conditions in the feeder are varied by adjusting the feeder
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Figure 6.12: Correlation between MILP power flow results and OpenDSS results:
Line apparent power (kVA) in modified IEEE 123-bus feeder

loads from 100% to 120% of their rated values. Fig. 6.12 shows the relationship

between the line apparent power values from the MILP and OpenDSS models. The

plot shows a high correlation between the MILP and OpenDSS line apparent power

results (kVA) (R2 = 0.9995).

6.5 Summary

In this chapter, the proposed proactive topology optimization and service restora-

tion framework was applied to modified versions of the IEEE 13-bus and IEEE 123-bus

test feeders. Both systems were assumed to be balanced. For topological flexibility

in the distribution network, all the lines in the 13-bus system were assumed to be

switchable. Both systems were tested with three optimization cases: single outage,

multiple outage and weighted multiple outage.

For the single outage cases, the proposed framework was applied to determine the

optimal topology that minimizes the impact of a given predicted outage scenario. The

results in the single outage cases showed that reducing the power flowing through the

predicted outage locations also reduced the loads that would be left unserved if the

outages occurred as predicted. In both stages, the new topologies led to a decrease

in the unserved loads in most of the cases considered. Additionally, these topologies

were achieved within the specified number of switching operations. The computation
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time was less than 2 seconds in each case. The proposed method was able to find

feasible topologies even for the 123-bus system, which had fewer switchable lines than

the 13-bus system.

For the multiple outage cases, the proposed topology optimization and service

restoration framework was applied to minimize the impact of outages across different

outage scenarios. The out-of-service loads and additional loads left out of service were

estimated for each combination of topologies and scenarios considered. The topology

(or topologies) with the lowest average cost was selected as the optimal topology to

operate in prior to the predicted outage.

The weighted multiple outage cases extended the multiple outage cases by mini-

mizing the impact of the predicted outage scenarios weighted on their likelihood of

occurrence. The optimal operating topology was determined by selecting the topol-

ogy (or topologies) with the lowest weighted costs. Furthermore, sensitivity analyses

were performed by assigning different weights to each outage scenario. The results

showed that the optimal topology for the scenario with the highest weight may not

be the overall optimal; it is important to consider the loads left out of service for

each topology during each outage scenario. Based on the results of the sensitivity

analyses, the operating topology may be selected even without prior knowledge of

the probability of each outage scenario.

Lastly, the linear power flow model used in the MILP formulation of the proposed

framework was validated using results from OpenDSS, an open-source simulation tool

for electric power distribution systems. In both test systems, the values of voltage

magnitude (p.u.), active power (kW), and reactive power (kVar) through the lines

from the MILP power flow were compared with OpenDSS results. The errors in the

results were within acceptable limits.



CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Overview

This chapter summarizes the contributions and key findings of this dissertation,

followed by recommendations and ideas for future research.

7.2 Concluding Remarks

The work presented in this dissertation addresses the need for a more proactive

approach to outage management in distribution systems. To improve current outage

management practices, which are largely reactive, it would be beneficial to imple-

ment a holistic approach that integrates outage forecasts into the service restoration

process.

As a first step, this work presented a detailed analysis of outage data to determine

what features have the most impact on outage frequency and average duration in a

distribution network. Two machine learning methods, random forest and gradient

boosting, were used to rank the importance of each outage variable with regard to

average outage duration. Climatic description, failed equipment and wind speed were

found to be the top three features explaining the variability of outage duration for

the distribution network considered.

Furthermore, this dissertation presented a proactive topology optimization and ser-

vice restoration framework that leveraged outage forecasts to mitigate the impacts

of distribution system outages. The proposed framework was formulated as a mixed

integer linear programming (MILP) problem with two stages: a topology optimiza-

tion stage that minimized the loads left out of service prior to the predicted outage,

and a service restoration stage that maximized the loads restored in the network af-
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ter the predicted outage occurred. The resulting network topology from each stage

was derived by changing the status of switchable lines in the network to achieve

each objective subject to the specified problem constraints. The results of topology

optimization showed that by minimizing power flow through the predicted outage

locations, the loads left out of service as a result of the outage were minimized.

To implement the proposed framework, three optimization cases were considered

as follows: single outage, multiple outage and weighted multiple outage. Also, a sen-

sitivity analysis was performed by assigning different weights to each outage scenario

to assess how the weights affected the selected optimal topology.

In most of the single outage cases considered, the proposed framework was able to

determine an optimal topology that led to a reduction of at least 10% in the loads left

out of service due to the predicted outage compared to the original network topology.

In the multiple outage cases, it was observed that more than one topology may be

optimal across the predicted outage scenarios considered. Based on results from the

weighted multiple outage cases, the optimal topology for the outage scenario with

the highest weight may not necessarily be the overall optimum for all the scenarios

considered. So, it is crucial to take into account the loads left out of service in

each topology during each outage scenario. Furthermore, using plots from sensitivity

analysis results, the optimal operational topology may be selected even without prior

knowledge of the weights assigned to each outage scenario.

In general, this dissertation provides a method for improving situational awareness

within the distribution system. Using the proposed approach, distribution system

operators can determine what topology to operate in ahead of predicted outages,

thereby reducing the loads left out of service.

7.3 Summary of Contributions

The contributions of this work are summarized as follows:

• A topology optimization and service restoration framework was proposed for
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proactive outage management in the distribution system. The framework was

formulated using mixed integer linear programming (MILP) with the following

objectives: 1) minimize the loads left out of service prior to the outage and

2) maximize the restorable load when the outage occurs as predicted. The

proposed framework was implemented by considering three sets of optimization

cases as follows: single outage, multiple outage and weighted multiple outage

cases.

• A sensitivity analysis based on the weighted multiple outage case was presented

in order to determine the optimal topology to operate in given a range of prob-

abilities for the outage locations in the distribution system.

• The frequency and duration of power system outages in a distribution system

were analyzed based on several features in an outage management dataset. The

following features were considered in this analysis: outage cause, interrupted

phase, voltage level of the affected circuit, climatic description, and calendar

variables. Two machine learning techniques, random forest and gradient boost-

ing were used to rank these features based on their significance in predicting

average outage duration.

7.4 Future Work

This section discusses some ideas to extend the work presented in this dissertation

as well as its limitations.

• The test feeders used to demonstrate the proposed framework in this disserta-

tion were assumed to be balanced three-phase systems. Real-world distribution

networks, however, are inherently unbalanced. The proposed MILP formulation

can thus be extended to accommodate unbalanced three-phase power flows. To

further test the scalability of the framework, it can be applied to larger test
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systems such as the EPRI Test Circuits and [121]. The proposed method may

be further investigated by including distributed energy resource (DER) in the

test feeders.

• Similarly, the problem could be formulated as a robust optimization model that

incorporates the uncertainty associated with outages occurring in the distribu-

tion network. In this case, outage locations would be predicted using actual

forecasts. Moreover, a robust optimization model would better capture the

variations in the system due to changing load demand.

• Another consideration is the issue of priority or critical customers such as hos-

pitals, fire departments, airports, etc. The MILP formulation in this work as-

sumed that all loads in the distribution network have the same priority during

the service restoration process. It is possible to prioritize critical loads in the

service restoration stage by assigning weights to all loads, with higher weights

assigned to critical loads. This would involve incorporating the weights into

the load constraints of the MILP problem. Furthermore, the objective func-

tion would be modified so that it maximizes the amount of critical loads that

can be restored while also maximizing the amount of overall load that can be

restored in the distribution system. In the resulting multiobjective problem,

critical loads would be prioritized during service restoration.

• Reliability is of critical importance in distribution systems. In this work, power

system reliability indices such as SAIDI, SAIFI and CAIDI could be considered

by modifying the objective function in either stage of the proposed framework so

that outage duration or number of customers affected by an outage is minimized.

• Finally, distribution system operators can gain even deeper and more action-

able insights into proactively managing outages by combining modeling and

simulation results from this work with interactive visualizations.



101

REFERENCES

[1] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine,
vol. 8, pp. 18–28, Jan/Feb 2010.

[2] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “A Survey on smart grid potential applications and communication
requirements,” IEEE Transactions on Industrial Informatics, vol. 9, pp. 28–42,
Feb 2013.

[3] J. W. Busby, K. Baker, M. D. Bazilian, A. Q. Gilbert, E. Grubert, V. Rai,
J. D. Rhodes, S. Shidore, C. A. Smith, and M. E. Webber, “Cascading risks:
Understanding the 2021 winter blackout in texas,” Energy Research & Social
Science, vol. 77, p. 102106, 2021.

[4] M. Puleo, “Damages from Feb. winter storms could be as high as $155 billion.”
[Online], March 2021. Accessed: Sep 3, 2021.

[5] W. A. Wulf, “Great Achievements and Grand Challenges,” The Bridge, vol. 30,
no. 3 & 4, pp. 5–10, 2000.

[6] G. Constable and B. Somerville, eds., A Century of Innovation: Twenty En-
gineering Achievements that Transformed our Lives. Washington, DC: The
National Academies Press, 2003.

[7] “Resilience Framework, Methods, and Metrics for the Electricity Sector,” tech.
rep., IEEE Power & Energy Society Industry Technical Support Leadership
Committee Task Force, Oct 2020.

[8] W. Scott, “Automating the restoration of distribution services in major emer-
gencies,” IEEE Transactions on Power Delivery, vol. 5, pp. 1034–1039, Apr
1990.

[9] C. L. Benner, R. A. Peterson, and B. D. Russell, “Application of DFA Technol-
ogy for Improved Reliability and Operations,” 2017 IEEE Rural Electric Power
Conference (REPC), 2017.

[10] T. Nielsen, “Improving outage restoration efforts using rule-based prediction
and advanced analysis,” in 2002 IEEE Power Engineering Society Winter Meet-
ing. Conference Proceedings (Cat. No.02CH37309), vol. 2, (New York, NY),
pp. 866–869, IEEE, Jan 2002.

[11] C. Chen, J. Wang, and D. Ton, “Modernizing Distribution System Restoration
to Achieve Grid Resiliency Against Extreme Weather Events: An Integrated
Solution,” Proceedings of the IEEE, vol. 105, pp. 1267–1288, Jul 2017.



102

[12] R. Mitra, R. Kota, S. Bandyopadhyay, V. Arya, B. Sullivan, R. Mueller,
H. Storey, and G. Labut, “Voltage Correlations in Smart Meter Data,” in Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’15, (New York, NY, USA), pp. 1999–2008,
Association for Computing Machinery, Aug 2015.

[13] T. A. Short, “Advanced Metering for Phase Identification, Transformer Identi-
fication, and Secondary Modeling,” IEEE Transactions on Smart Grid, vol. 4,
pp. 651–658, Jun 2013.

[14] “Electric Power Annual 2019,” tech. rep., U.S. Energy Information Administra-
tion (EIA), Washington DC, Feb 2021.

[15] N. Yu, S. Shah, R. Johnson, R. Sherick, M. Hong, and K. Loparo, “Big data
analytics in power distribution systems,” in 2015 IEEE Power & Energy Soci-
ety Innovative Smart Grid Technologies Conference (ISGT), (Washington DC),
pp. 1–5, IEEE, Feb 2015.

[16] H. Tram, “Technical and operation considerations in using Smart Metering
for outage management,” in 2008 IEEE/PES Transmission and Distribution
Conference and Exposition, pp. 1–3, IEEE, Apr 2008.

[17] G. Pritchard, “Reading Deeper,” IEEE Power and Energy Magazine, vol. 8,
pp. 85–87, Nov 2010.

[18] “Advanced Metering Infrastructure and Customer Systems - Results from the
Smart Grid Investment Grant Program,” tech. rep., Office of Electricity Delivery
and Energy Reliability, U.S. Department of Energy, Sep 2016.

[19] Z. Li, F. Yang, S. Mohagheghi, Z. Wang, J. Tournier, and Y. Wang, “Toward
smart distribution management by integrating advanced metering infrastruc-
ture,” Electric Power Systems Research, vol. 105, pp. 51–56, Dec 2013.

[20] M. Doostan and B. H. Chowdhury, “Power distribution system equipment fail-
ure identification using machine learning algorithms,” in 2017 IEEE Power &
Energy Society General Meeting, pp. 1–5, IEEE, Jul 2017.

[21] D. Cerrai, D. W. Wanik, M. A. E. Bhuiyan, X. Zhang, J. Yang, M. E. B.
Frediani, and E. N. Anagnostou, “Predicting Storm Outages Through New
Representations of Weather and Vegetation,” IEEE Access, vol. 7, pp. 29639–
29654, Mar 2019.

[22] M. Yue, T. Toto, M. P. Jensen, S. E. Giangrande, and R. Lofaro, “A Bayesian
Approach-Based Outage Prediction in Electric Utility Systems Using Radar
Measurement Data,” IEEE Transactions on Smart Grid, vol. 9, pp. 6149–6159,
Nov 2018.



103

[23] M. S. Bashkari, A. Sami, and M. Rastegar, “Outage Cause Detection in Power
Distribution Systems Based on Data Mining,” IEEE Transactions on Industrial
Informatics, vol. 17, pp. 640–649, Jan 2021.

[24] M. Sullivan, J. Schellenberg, and M. Blundell, “Updated Value of Service Re-
liability Estimates for Electric Utility Customers in the United States,” Tech.
Rep. LBNL-6941E, Lawrence Berkeley National Laboratory (LBNL), Berkeley,
CA (United States), Jan 2015.

[25] M. Matousek, “Delta says it lost up to $50 million because of the Atlanta airport
power outage.” [Online], December 2017. Accessed: Sep 6, 2021.

[26] P. M. Curtis, Energy and Cyber Security and its Effect on Business Resiliency,
ch. 2, p. 39. John Wiley & Sons, Ltd, 2020.

[27] “IEEE Guide for Collecting, Categorizing, and Utilizing Information Related to
Electric Power Distribution Interruption Events,” IEEE Std 1782-2014, pp. 1–
98, Aug 2014.

[28] American Public Power Association, “Infographic: Top causes for power out-
ages.” [Online], March 2017. Accessed: Sep 29, 2021.

[29] Mo-Yuen Chow and L. Taylor, “A novel approach for distribution fault analysis,”
IEEE Transactions on Power Delivery, vol. 8, no. 4, pp. 1882–1889, 1993.

[30] L. Xu and M. Y. Chow, “Power distribution systems fault cause identification
using logistic regression and artificial neural network,” in Proceedings of the 13th
International Conference on Intelligent Systems Application to Power Systems,
ISAP’05, pp. 163–168, IEEE, 2005.

[31] L. Xu, M. Y. Chow, and J. Timmis, “Power distribution outage cause identifi-
cation using Fuzzy Artificial Immune Recognition Systems (FAIRS) algorithm,”
in 2007 IEEE Power Engineering Society General Meeting, PES, pp. 1–8, IEEE,
Jun 2007.

[32] L. Xu and M. Y. Chow, “Distribution fault diagnosis using a hybrid algorithm
of Fuzzy classification and Artificial Immune systems,” in IEEE Power and
Energy Society 2008 General Meeting: Conversion and Delivery of Electrical
Energy in the 21st Century, PES, pp. 1–6, IEEE, Jul 2008.

[33] M. Doostan, R. Sohrabi, and B. Chowdhury, “A data-driven approach for pre-
dicting vegetation-related outages in power distribution systems,” International
Transactions on Electrical Energy Systems, vol. 30, Jan 2020.

[34] D. Radmer, P. Kuntz, R. Christie, S. Venkata, and R. Fletcher, “Predicting
vegetation-related failure rates for overhead distribution feeders,” IEEE Trans-
actions on Power Delivery, vol. 17, pp. 1170–1175, Oct 2002.



104

[35] T. Dokic and M. Kezunovic, “Predictive Risk Management for Dynamic Tree
Trimming Scheduling for Distribution Networks,” IEEE Transactions on Smart
Grid, vol. 10, pp. 4776–4785, Sep 2018.

[36] M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian,
and P.-C. Chen, “Predicting Spatiotemporal Impacts of Weather on Power Sys-
tems Using Big Data Science,” in Data Science and Big Data: An Environment
of Computational Intelligence (W. Pedrycz and S.-M. Chen, eds.), vol. 24 of
Studies in Big Data, pp. 265–299, Springer, Cham, 2017.

[37] H. Liu, R. A. Davidson, D. V. Rosowsky, and J. R. Stedinger, “Negative Bi-
nomial Regression of Electric Power Outages in Hurricanes,” Journal of Infras-
tructure Systems, vol. 11, pp. 258–267, Dec 2005.

[38] H. Liu, R. A. Davidson, and T. V. Apanasovich, “Spatial generalized linear
mixed models of electric power outages due to hurricanes and ice storms,” Re-
liability Engineering & System Safety, vol. 93, pp. 897–912, Jun 2008.

[39] D. W. Wanik, E. N. Anagnostou, B. M. Hartman, M. E. B. Frediani, and
M. Astitha, “Storm outage modeling for an electric distribution network in
Northeastern USA,” Natural Hazards, vol. 79, pp. 1359–1384, Nov 2015.

[40] J. He, D. W. Wanik, B. M. Hartman, E. N. Anagnostou, M. Astitha, and
M. E. B. Frediani, “Nonparametric Tree-Based Predictive Modeling of Storm
Outages on an Electric Distribution Network,” Risk Analysis, vol. 37, pp. 441–
458, Mar 2017.

[41] M. Doostan and B. Chowdhury, “Statistical Analysis of Animal-Related Out-
ages in Power Distribution Systems - A Case Study,” in 2019 IEEE Power &
Energy Society General Meeting (PESGM), (Atlanta, GA), pp. 1–5, IEEE, Aug
2019.

[42] S. Sahai and A. Pahwa, “A Probabilistic Approach for Animal-Caused Out-
ages in Overhead Distribution Systems,” in 2006 International Conference on
Probabilistic Methods Applied to Power Systems, pp. 1–7, IEEE, Jun 2006.

[43] P. Kankanala, A. Pahwa, and S. Das, “Estimating Animal-Related Outages on
Overhead Distribution Feeders Using Boosting,” IFAC-PapersOnLine, vol. 48,
pp. 270–275, Jan 2015.

[44] M. Gui, A. Pahwa, and S. Das, “Bayesian network model with Monte Carlo
simulations for analysis of animal-related outages in overhead distribution sys-
tems,” IEEE Transactions on Power Systems, vol. 26, pp. 1618–1624, Aug 2011.

[45] M.-Y. Chow, S. O. Yee, and L. S. Taylor, “Recognizing Animal-Caused Faults
in Power Distribution Systems Using Artificial Neural Networks,” IEEE Trans-
actions on Power Delivery, vol. 8, pp. 1268–1274, Jul 1993.



105

[46] M. Gui, A. Pahwa, and S. Das, “Analysis of animal-related outages in overhead
distribution systems with wavelet decomposition and immune systems-based
neural networks,” IEEE Transactions on Power Systems, vol. 24, pp. 1765–
1771, Nov 2009.

[47] “IEEE Guide for Electric Power Distribution Reliability Indices,” IEEE Std
1366-2012 (Revision of IEEE Std 1366-2003), pp. 1–43, May 2012.

[48] M.-Y. Chow, L. S. Taylor, and M. S. Chow, “Time of outage restoration analysis
in distribution systems,” IEEE Transactions on Power Delivery, vol. 11, no. 3,
pp. 1652–1658, 1996.

[49] M. Doostan and B. H. Chowdhury, “A data-driven analysis of outage duration
in power distribution systems,” in 2017 North American Power Symposium,
NAPS 2017, pp. 1–6, IEEE, Sep 2017.

[50] A. Jaech, B. Zhang, M. Ostendorf, and D. S. Kirschen, “Real-Time Prediction
of the Duration of Distribution System Outages,” IEEE Transactions on Power
Systems, vol. 34, pp. 773–781, Jan 2019.

[51] R. Eskandarpour and A. Khodaei, “Machine Learning Based Power Grid Out-
age Prediction in Response to Extreme Events,” IEEE Transactions on Power
Systems, vol. 32, pp. 3315–3316, Jul 2017.

[52] P. Kankanala, A. Pahwa, and S. Das, “Regression models for outages due to
wind and lightning on overhead distribution feeders,” in 2011 IEEE Power and
Energy Society General Meeting, (Detroit, MI), pp. 1–4, IEEE, Jul 2011.

[53] P. Kankanala, A. Pahwa, and S. Das, “Exponential regression models for wind
and lightning caused outages on overhead distribution feeders,” in NAPS 2011
- 43rd North American Power Symposium, pp. 1–4, IEEE, Aug 2011.

[54] R. Eskandarpour, A. Khodaei, and A. Arab, “Improving power grid resilience
through predictive outage estimation,” in 2017 North American Power Sympo-
sium (NAPS), pp. 1–5, IEEE, Sep 2017.

[55] H. Sun, Z. Wang, J. Wang, Z. Huang, N. Carrington, and J. Liao, “Data-Driven
Power Outage Detection by Social Sensors,” IEEE Transactions on Smart Grid,
vol. 7, pp. 2516–2524, Sep 2016.

[56] K. Aoki, K. Nara, M. Itoh, T. Satoh, and H. Kuwabara, “A new algorithm
for service restoration in distribution systems,” IEEE Transactions on Power
Delivery, vol. 4, pp. 1832–1839, Jul 1989.

[57] S. Ćurčić, C. Özveren, L. Crowe, and P. Lo, “Electric power distribution network
restoration: a survey of papers and a review of the restoration problem,” Electric
Power Systems Research, vol. 35, pp. 73–86, Nov 1995.



106

[58] S. Singh, G. Raju, G. Rao, and M. Afsari, “A heuristic method for feeder
reconfiguration and service restoration in distribution networks,” International
Journal of Electrical Power & Energy Systems, vol. 31, pp. 309–314, Sep 2009.

[59] B. J. D. Costa, L. R. de Araujo, and D. R. R. Penido, “A Heuristic Method
of Restoring Distribution Systems Using Field Measurements,” IEEE Systems
Journal, vol. 13, pp. 1841–1850, Jun 2019.

[60] A. Morelato and A. Monticelli, “Heuristic search approach to distribution sys-
tem restoration,” IEEE Transactions on Power Delivery, vol. 4, pp. 2235–2241,
Oct 1989.

[61] T. Nagata, H. Sasaki, and R. Yokoyama, “Power system restoration by joint us-
age of expert system and mathematical programming approach,” IEEE Trans-
actions on Power Systems, vol. 10, pp. 1473–1479, Jun 1995.

[62] H. Fudo, S. Toune, T. Genji, Y. Fukuyama, and Y. Nakanishi, “An applica-
tion of reactive tabu search for service restoration in distribution systems and
its comparison with the genetic algorithm and parallel simulated annealing,”
Electrical Engineering in Japan, vol. 133, pp. 71–82, Aug 2000.

[63] Y. Fukuyama and Y. Ueki, “Application of genetic algorithms to service restora-
tion in distribution systems,” Electrical Engineering in Japan, vol. 115, pp. 30–
38, Jun 1995.

[64] B. Chen, C. Chen, J. Wang, and K. L. Butler-Purry, “Multi-Time Step Service
Restoration for Advanced Distribution Systems and Microgrids,” IEEE Trans-
actions on Smart Grid, vol. 9, pp. 6793–6805, Nov 2018.

[65] S. Poudel and A. Dubey, “A two-stage service restoration method for electric
power distribution systems,” IET Smart Grid, vol. 4, pp. 500–521, Oct 2021.

[66] J. Wang, N. Zhou, and Q. Wang, “Data-driven stochastic service restoration in
unbalanced active distribution networks with multi-terminal soft open points,”
International Journal of Electrical Power & Energy Systems, vol. 121, p. 106069,
Oct 2020.

[67] Y. Li, J. Xiao, C. Chen, Y. Tan, and Y. Cao, “Service Restoration Model With
Mixed-Integer Second-Order Cone Programming for Distribution Network With
Distributed Generations,” IEEE Transactions on Smart Grid, vol. 10, pp. 4138–
4150, Jul 2019.

[68] N. C. Koutsoukis, P. A. Karafotis, P. S. Georgilakis, and N. D. Hatziargyriou,
“Optimal service restoration of power distribution networks considering voltage
regulation,” in 2017 IEEE Manchester PowerTech, Powertech 2017, Institute
of Electrical and Electronics Engineers Inc., Jul 2017.



107

[69] Z. Wang and J. Wang, “Service restoration based on AMI and networked MGs
under extreme weather events,” IET Generation, Transmission & Distribution,
vol. 11, pp. 401–408, Jan 2017.

[70] H. Ahmadi and J. R. Marti, “Distribution System Optimization Based on a Lin-
ear Power-Flow Formulation,” IEEE Transactions on Power Delivery, vol. 30,
pp. 25–33, Feb 2015.

[71] R. Romero, J. F. Franco, F. B. Leao, M. J. Rider, and E. S. de Souza, “A New
Mathematical Model for the Restoration Problem in Balanced Radial Distribu-
tion Systems,” IEEE Transactions on Power Systems, vol. 31, pp. 1259–1268,
Mar 2016.

[72] Z. Wang and J. Wang, “Self-Healing Resilient Distribution Systems Based
on Sectionalization into Microgrids,” IEEE Transactions on Power Systems,
vol. 30, pp. 3139–3149, Nov 2015.

[73] C. Ucak and A. Pahwa, “An analytical approach for step-by-step restoration of
distribution systems following extended outages,” IEEE Transactions on Power
Delivery, vol. 9, pp. 1717–1723, Jul 1994.

[74] V. Widiputra, F. H. Jufri, and J. Jung, “Development of service restoration
algorithm under cold load pickup condition using conservation voltage reduc-
tion and particle swarm optimization,” International Transactions on Electrical
Energy Systems, Jul 2020.

[75] Wen-Hui Chen, “Quantitative Decision-Making Model for Distribution System
Restoration,” IEEE Transactions on Power Systems, vol. 25, pp. 313–321, Feb
2010.

[76] Qin Zhou, D. Shirmohammadi, and W.-H. Liu, “Distribution feeder reconfigu-
ration for service restoration and load balancing,” IEEE Transactions on Power
Systems, vol. 12, pp. 724–729, May 1997.

[77] Y. Kumar, B. Das, and J. Sharma, “Multiobjective, Multiconstraint Service
Restoration of Electric Power Distribution System With Priority Customers,”
IEEE Transactions on Power Delivery, vol. 23, pp. 261–270, Jan 2008.

[78] F. Wang, C. Chen, C. Li, Y. Cao, Y. Li, B. Zhou, and X. Dong, “A Multi-Stage
Restoration Method for Medium-Voltage Distribution System With DGs,”
IEEE Transactions on Smart Grid, vol. 8, pp. 2627–2636, Nov 2017.

[79] M. Mahdavi, H. H. Alhelou, N. D. Hatziargyriou, and A. Al-Hinai, “An Efficient
Mathematical Model for Distribution System Reconfiguration Using AMPL,”
IEEE Access, vol. 9, pp. 79961–79993, 2021.

[80] M. Baran and F. Wu, “Network reconfiguration in distribution systems for loss
reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4,
pp. 1401–1407, Apr 1989.



108

[81] W. Chen, X. Lou, X. Ding, and C. Guo, “Unified data-driven stochastic and ro-
bust service restoration method using non-parametric estimation in distribution
networks with soft open points,” IET Generation, Transmission & Distribution,
vol. 14, pp. 3433–3443, Sep 2020.

[82] V. Kumar, H. Kumar, I. Gupta, and H. Gupta, “DG Integrated Approach for
Service Restoration Under Cold Load Pickup,” IEEE Transactions on Power
Delivery, vol. 25, pp. 398–406, Jan 2010.

[83] A. Sharma, D. Srinivasan, and A. Trivedi, “A Decentralized Multi-Agent Ap-
proach for Service Restoration in Uncertain Environment,” IEEE Transactions
on Smart Grid, vol. 9, pp. 3394–3405, Jul 2018.

[84] S. Ma, S. Li, Z. Wang, A. Arif, and K. Ma, “A Novel MILP Formulation for
Fault Isolation and Network Reconfiguration in Active Distribution Systems,”
in 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–5,
IEEE, Aug 2018.

[85] B. Chen, C. Chen, J. Wang, and K. L. Butler-Purry, “Sequential Service
Restoration for Unbalanced Distribution Systems and Microgrids,” IEEE Trans-
actions on Power Systems, vol. 33, pp. 1507–1520, Mar 2018.

[86] S. Zhu, H. Wang, Y. Xie, and H. M. Stewart, “Data-Driven Optimization for
Atlanta Police Zone Design,” Mar 2021.

[87] S. Ma, B. Chen, and Z. Wang, “Resilience Enhancement Strategy for Distribu-
tion Systems Under Extreme Weather Events,” IEEE Transactions on Smart
Grid, vol. 9, pp. 1442–1451, Mar 2018.

[88] S. Ma, S. Li, Z. Wang, and F. Qiu, “Resilience-Oriented Design of Distribution
Systems,” IEEE Transactions on Power Systems, vol. 34, pp. 2880–2891, Jul
2019.

[89] T. Lawanson, V. Sharma, V. Cecchi, and T. Hong, “Analysis of outage frequency
and duration in distribution systems using machine learning,” in 2020 52nd
North American Power Symposium (NAPS), pp. 1–6, 2021.

[90] Mo-Yuen Chow, L. Taylor, and Mo-Suk Chow, “Time of outage restoration anal-
ysis in distribution systems,” IEEE Transactions on Power Delivery, vol. 11,
pp. 1652–1658, Jul 1996.

[91] M. Doostan and B. H. Chowdhury, “A data-driven analysis of outage duration
in power distribution systems,” in 2017 North American Power Symposium,
NAPS 2017, pp. 1–6, IEEE, Sep 2017.

[92] L. Xu, M.-y. Chow, and L. Taylor, “Data Mining and Analysis of Tree-Caused
Faults in Power Distribution Systems,” in 2006 IEEE PES Power Systems Con-
ference and Exposition, (Atlanta, GA), pp. 1221–1227, IEEE, 2006.



109

[93] Mo-Yuen Chow and L. Taylor, “Analysis and prevention of animal-caused faults
in power distribution systems,” IEEE Transactions on Power Delivery, vol. 10,
pp. 995–1001, Apr 1995.

[94] “OpenWeatherMap.” Accessed: May 13, 2020.

[95] J. D. Glover, M. S. Sarma, and T. J. Overbye, “Unsymmetrical faults,” in Power
System Analysis and Design, ch. 9, p. 471, Stamford, CT: Cengage Learning,
5th ed., 2012.

[96] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[97] S. Ronaghan, “The Mathematics of Decision Trees, Random Forest and Feature
Importance in Scikit-learn and Spark,” Nov 2019.

[98] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[99] B. Wolff, O. Kramer, and D. Heinemann, “Selection of Numerical Weather
Forecast Features for PV Power Predictions with Random Forests,” in Data
Analytics for Renewable Energy Integration (W. L. Woon, Z. Aung, O. Kramer,
and S. Madnick, eds.), (Cham), pp. 78–91, Springer International Publishing,
2017.

[100] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics &
Data Analysis, vol. 38, no. 4, pp. 367 – 378, 2002. Nonlinear Methods and
Data Mining.

[101] S. B. Taieb and R. J. Hyndman, “A gradient boosting approach to the kag-
gle load forecasting competition,” International Journal of Forecasting, vol. 30,
no. 2, pp. 382 – 394, 2014.

[102] A. Soroudi, Power System Optimization Modeling in GAMS. Cham: Springer
International Publishing AG, 1st ed., 2017.

[103] “American National Standard for Electric Power Systems and Equipment - Volt-
age Ratings (60Hz),” 2020.

[104] R. A. Jabr, R. Singh, and B. C. Pal, “Minimum Loss Network Reconfigura-
tion Using Mixed-Integer Convex Programming,” IEEE Transactions on Power
Systems, vol. 27, pp. 1106–1115, May 2012.

[105] H. Ahmadi and J. R. Martí, “Mathematical representation of radiality con-
straint in distribution system reconfiguration problem,” International Journal
of Electrical Power & Energy Systems, vol. 64, pp. 293–299, Jan 2015.



110

[106] S. Lei, C. Chen, Y. Song, and Y. Hou, “Radiality Constraints for Resilient
Reconfiguration of Distribution Systems: Formulation and Application to Mi-
crogrid Formation,” IEEE Transactions on Smart Grid, vol. 11, pp. 3944–3956,
Sep 2020.

[107] M. Lavorato, J. F. Franco, M. J. Rider, and R. Romero, “Imposing Radiality
Constraints in Distribution System Optimization Problems,” IEEE Transac-
tions on Power Systems, vol. 27, pp. 172–180, Feb 2012.

[108] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.

[109] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van
Doornmalen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald,
C. Graczyk, K. Halbig, A. Hoen, C. Hojny, R. van der Hulst, T. Koch,
M. Lübbecke, S. J. Maher, F. Matter, E. Mühmer, B. Müller, M. E. Pfetsch,
D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano, B. Sofranac,
M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J. Witzig,
“The SCIP Optimization Suite 8.0,” technical report, Optimization Online, De-
cember 2021.

[110] J. Forrest, T. Ralphs, H. G. Santos, S. Vigerske, J. Forrest, L. Hafer, B. Krist-
jansson, jpfasano, EdwinStraver, M. Lubin, and et al., “coin-or/cbc: Release
releases/2.10.8,” May 2022. COIN-OR Branch-and-Cut solver.

[111] Z. Yang, K. Xie, J. Yu, H. Zhong, N. Zhang, and Q. X. Xia, “A General
Formulation of Linear Power Flow Models: Basic Theory and Error Analysis,”
IEEE Transactions on Power Systems, vol. 34, pp. 1315–1324, Mar 2019.

[112] M. Li, Y. Du, J. Mohammadi, C. Crozier, K. Baker, and S. Kar, “Numerical
Comparisons of Linear Power Flow Approximations: Optimality, Feasibility,
and Computation Time,” in 2022 IEEE Power & Energy Society General Meet-
ing (PESGM), pp. 1–5, IEEE, Jul 2022.

[113] M. Baran and F. Wu, “Optimal sizing of capacitors placed on a radial distribu-
tion system,” IEEE Transactions on Power Delivery, vol. 4, pp. 735–743, Jan
1989.

[114] K. Bauman, A. Tuzhilin, and R. Zaczynski, “Virtual Power Outage Detection
Using Social Sensors,” NYU Working Paper No., Sep 2015.

[115] K. Bauman, A. Tuzhilin, and R. Zaczynski, “Using Social Sensors for Detecting
Emergency Events: A Case of Power Outages in the Electrical Utility Industry,”
ACM Trans. Manage. Inf. Syst, vol. 8, Jun 2017.

[116] H. Mao, G. Thakur, K. Sparks, J. Sanyal, and B. Bhaduri, “Mapping near-real-
time power outages from social media,” International Journal of Digital Earth,
vol. 12, pp. 1285–1299, Nov 2019.



111

[117] Y. Zhou, A. Pahwa, and S. S. Yang, “Modeling weather-related failures of
overhead distribution lines,” IEEE Transactions on Power Systems, vol. 21,
pp. 1683–1690, Nov 2006.

[118] H. P. Williams, Model Building in Mathematical Programming. West Sussex:
John Wiley & Sons Ltd, 5th ed., March 2013.

[119] W. H. Kersting, Distribution System Modeling and Analysis. Electric Power
Engineering, Boca Raton, FL, USA: CRC Press LLC, 1st ed., Aug 2001.

[120] H. Ahmadi and J. R. Martí, “Linear current flow equations with application to
distribution systems reconfiguration,” IEEE Transactions on Power Systems,
vol. 30, no. 4, pp. 2073–2080, 2015.

[121] “IEEE PES Test Feeder.” [Online]. Accessed: Mar 23, 2022.

[122] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, and J. D. Siirola, Pyomo — Optimization Modeling in Python, vol. 67
of Springer Optimization and Its Applications. Cham: Springer International
Publishing, 2017.

[123] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and solving
mathematical programs in Python,” Mathematical Programming Computation,
vol. 3, no. 3, pp. 219–260, 2011.

[124] B. Chen, Black Start Restoration for Electric Distribution Systems and Micro-
grids. PhD dissertation, Texas A&M University, 2017.

[125] W. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engi-
neering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194),
vol. 2, pp. 908–912, 2001.

[126] “OpenDSS: EPRI Distribution System Simulator,” 2008.



112

APPENDIX A: FEEDER DATA

A.1 Modified IEEE 123-bus Test Feeder

Table A.1: Line parameters for modified IEEE 123-bus feeder

Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
1 1 2 175 960 Non-switchable 10
2 1 3 250 960 Non-switchable 11
3 1 7 300 2200 Switchable 1
4 3 4 200 960 Non-switchable 11
5 3 5 325 960 Non-switchable 11
6 5 6 250 960 Non-switchable 11
7 7 8 200 2200 Non-switchable 1
8 8 12 225 960 Non-switchable 10
9 8 9 225 960 Non-switchable 9
10 8 13 300 2200 Non-switchable 1
11 9 14 425 960 Non-switchable 9
12 13 34 150 960 Non-switchable 11
13 13 18 825 2200 Switchable 2
14 13 152 10 3700 Switchable 13
15 14 11 250 960 Non-switchable 9
16 14 10 250 960 Non-switchable 9
17 15 16 375 960 Non-switchable 11
18 15 17 350 960 Non-switchable 11
19 18 19 250 960 Non-switchable 9
20 18 21 300 2200 Non-switchable 2
21 18 135 10 3700 Switchable 13
22 19 20 325 960 Non-switchable 9
23 21 22 525 960 Non-switchable 10
24 21 23 250 2200 Non-switchable 2
25 23 24 550 960 Non-switchable 11
26 23 25 275 2200 Switchable 2
27 25 26 350 2200 Non-switchable 7
28 25 28 200 2200 Non-switchable 2
29 26 27 275 2200 Non-switchable 7
30 26 31 225 960 Non-switchable 11
31 27 33 500 960 Non-switchable 9
32 28 29 300 2200 Non-switchable 2
33 29 30 350 2200 Non-switchable 2
34 30 250 200 2200 Non-switchable 2
35 31 32 300 960 Non-switchable 11
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Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
36 34 15 100 960 Non-switchable 11
37 35 36 650 2200 Non-switchable 8
38 35 40 250 2200 Non-switchable 1
39 36 37 300 960 Non-switchable 9
40 36 38 250 960 Non-switchable 10
41 38 39 325 960 Non-switchable 10
42 40 41 325 960 Non-switchable 11
43 40 42 250 2200 Non-switchable 1
44 42 43 500 960 Non-switchable 10
45 42 44 200 2200 Non-switchable 1
46 44 45 200 960 Non-switchable 9
47 44 47 250 2200 Non-switchable 1
48 45 46 300 960 Non-switchable 9
49 47 48 150 2200 Non-switchable 4
50 47 49 250 2200 Non-switchable 4
51 49 50 250 2200 Non-switchable 4
52 50 51 250 2200 Non-switchable 4
53 51 151 500 2200 Non-switchable 13
54 52 53 200 2200 Non-switchable 1
55 53 54 125 2200 Non-switchable 1
56 54 55 275 2200 Non-switchable 1
57 54 57 350 2200 Non-switchable 3
58 54 94 10 3700 Switchable 13
59 55 56 275 2200 Non-switchable 1
60 57 58 250 960 Non-switchable 10
61 57 60 750 2200 Non-switchable 3
62 58 59 250 960 Non-switchable 10
63 60 61 550 2200 Non-switchable 5
64 60 62 250 730 Non-switchable 12
65 60 160 10 3700 Switchable 13
66 61 610 10 150 Non-switchable 13
67 62 63 175 730 Non-switchable 12
68 63 64 350 730 Non-switchable 12
69 64 65 425 730 Non-switchable 12
70 65 66 325 730 Non-switchable 12
71 67 68 200 960 Non-switchable 9
72 67 72 275 2200 Non-switchable 3
73 67 97 250 2200 Non-switchable 3
74 68 69 275 960 Non-switchable 9
75 69 70 325 960 Non-switchable 9
76 70 71 275 960 Non-switchable 9
77 72 73 275 960 Non-switchable 11
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Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
78 72 76 200 2200 Non-switchable 3
79 73 74 350 960 Non-switchable 11
80 74 75 400 960 Non-switchable 11
81 76 77 400 2200 Switchable 6
82 76 86 700 2200 Non-switchable 3
83 77 78 100 2200 Non-switchable 6
84 78 79 225 2200 Non-switchable 6
85 78 80 475 2200 Non-switchable 6
86 80 81 475 2200 Non-switchable 6
87 81 82 250 2200 Non-switchable 6
88 81 84 675 960 Non-switchable 11
89 82 83 250 2200 Non-switchable 6
90 84 85 475 960 Non-switchable 11
91 86 87 450 2200 Non-switchable 6
92 87 88 175 960 Non-switchable 9
93 87 89 275 2200 Switchable 6
94 89 90 225 960 Non-switchable 10
95 89 91 225 2200 Non-switchable 6
96 91 92 300 960 Non-switchable 11
97 91 93 225 2200 Non-switchable 6
98 93 94 275 960 Non-switchable 9
99 93 95 300 2200 Non-switchable 6
100 95 96 200 960 Non-switchable 10
101 97 98 275 2200 Non-switchable 3
102 97 197 10 3700 Switchable 13
103 98 99 550 2200 Non-switchable 3
104 99 100 300 2200 Non-switchable 3
105 100 450 800 2200 Non-switchable 3
106 101 102 225 960 Non-switchable 11
107 101 105 275 2200 Non-switchable 3
108 102 103 325 960 Non-switchable 11
109 103 104 700 960 Non-switchable 11
110 105 106 225 960 Non-switchable 10
111 105 108 325 2200 Non-switchable 3
112 106 107 575 960 Non-switchable 10
113 108 109 450 960 Non-switchable 9
114 108 300 1000 2200 Non-switchable 3
115 109 110 300 960 Non-switchable 9
116 110 111 575 960 Non-switchable 9
117 110 112 125 960 Non-switchable 9
118 112 113 525 960 Non-switchable 9
119 113 114 325 960 Non-switchable 9
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Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
120 135 35 375 2200 Non-switchable 4
121 149 1 400 2200 Non-switchable 1
122 150 149 10 3700 Switchable 13
123 151 300 10 3700 Switchable 13
124 152 52 400 2200 Non-switchable 1
125 160 67 350 2200 Non-switchable 6
126 197 101 250 2200 Non-switchable 3

Table A.2: Line impedances for modified IEEE 123-bus feeder

Config. Resistance Reactance
(Ohms/mi) (Ohms/mi)

1 0.4619 1.0638
2 0.4619 1.0638
3 0.4619 1.0638
4 0.4619 1.0638
5 0.4619 1.0638
6 0.4619 1.0638
7 0.4576 1.0780
8 0.4596 1.0716
9 1.3292 1.3475
10 1.3292 1.3475
11 1.3292 1.3475
12 1.5249 0.7401
13 0.0100 0.0100

Table A.3: Load parameters for modified IEEE 123-bus feeder

Load P Q Load P Q Load P Q
Name (kW) (kVar) Name (kW) (kVar) Name (kW) (kVar)

L1 15 5 L43 15 5 L79 15 5
L2 5 5 L45 5 5 L80 15 5
L4 15 5 L46 5 5 L82 15 5
L5 5 5 L47 35 25 L83 5 5
L6 15 5 L48 70 50 L84 5 5
L7 5 5 L49 45 30 L85 15 5
L9 15 5 L50 15 5 L86 5 5
L10 5 5 L51 5 5 L87 15 5
L11 15 5 L52 15 5 L88 15 5
L12 5 5 L53 15 5 L90 15 5
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Load P Q Load P Q Load P Q
Name (kW) (kVar) Name (kW) (kVar) Name (kW) (kVar)
L16 15 5 L55 5 5 L92 15 5
L17 5 5 L56 5 5 L94 15 5
L19 15 5 L58 5 5 L95 5 5
L20 15 5 L59 5 5 L96 5 5
L22 15 5 L60 5 5 L98 15 5
L24 15 5 L62 15 5 L99 15 5
L28 15 5 L63 15 5 L100 15 5
L29 15 5 L64 25 10 L102 5 5
L30 15 5 L65 45 35 L103 15 5
L31 5 5 L66 25 10 L104 15 5
L32 5 5 L68 5 5 L106 15 5
L33 15 5 L69 15 5 L107 15 5
L34 15 5 L70 5 5 L109 15 5
L35 15 5 L71 15 5 L111 5 5
L37 15 5 L73 15 5 L112 5 5
L38 5 5 L74 15 5 L113 15 5
L39 5 5 L75 15 5 L114 5 5
L41 5 5 L76 80 60
L42 5 5 L77 15 5

Table A.4: Capacitor data for modified IEEE 123-bus feeder

Node kVar
83 180
88 15
90 15
92 15

Table A.5: Transformer and regulator data for modified IEEE 123-bus feeder

kVA kV-high kV-low Tap Position
Substation 5000 115 4.16 –
XFM-1 150 4.16 0.48 –
RG 150-149 – 4.16 4.16 -7
RG 9-14 – 4.16 4.16 1
RG 25-26 – 4.16 4.16 1
RG 160-67 – 4.16 4.16 -4
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A.1.1 Power Flow Results

Table A.6: Power flow results for modified 123-bus feeder: Voltage magnitude (p.u.)

Node
Voltage Magnitude

Error
Node

Voltage Magnitude
Error

(p.u.)
(p.u.)

(p.u.)
(p.u.)

MILP OpenDSS MILP OpenDSS
150 1.0000 1.0000 0.0000 65 1.0117 0.9800 0.0318
149 1.0458 1.0500 0.0042 66 1.0116 0.9795 0.0321
1 1.0389 1.0366 0.0023 18 1.0197 1.0012 0.0185
2 1.0389 1.0365 0.0024 135 1.0196 1.0012 0.0184
3 1.0387 1.0360 0.0027 35 1.0175 0.9977 0.0198
4 1.0387 1.0359 0.0028 36 1.0171 0.9971 0.0201
5 1.0386 1.0356 0.0030 37 1.0171 0.9968 0.0203
6 1.0386 1.0354 0.0032 38 1.0170 0.9968 0.0202
7 1.0340 1.0271 0.0069 39 1.0170 0.9967 0.0203
8 1.0308 1.0209 0.0099 40 1.0163 0.9956 0.0206
12 1.0307 1.0208 0.0099 41 1.0162 0.9955 0.0207
13 1.0261 1.0121 0.0140 42 1.0151 0.9937 0.0214
152 1.0260 1.0121 0.0139 43 1.0149 0.9932 0.0217
52 1.0232 1.0061 0.0171 44 1.0142 0.9922 0.0219
53 1.0218 1.0032 0.0186 45 1.0141 0.9921 0.0221
54 1.0210 1.0015 0.0195 46 1.0141 0.9919 0.0221
55 1.0209 1.0013 0.0196 47 1.0132 0.9906 0.0226
56 1.0208 1.0013 0.0195 48 1.0129 0.9902 0.0227
57 1.0187 0.9968 0.0219 49 1.0128 0.9900 0.0228
58 1.0186 0.9966 0.0221 50 1.0127 0.9898 0.0229
59 1.0186 0.9965 0.0221 51 1.0127 0.9897 0.0229
60 1.0141 0.9874 0.0268 151 1.0127 0.9897 0.0229
160 1.0141 0.9874 0.0267 300 1.0383 1.0124 0.0259
67 1.0401 1.0156 0.0245 108 1.0383 1.0124 0.0259
68 1.0400 1.0150 0.0250 105 1.0386 1.0129 0.0257
69 1.0398 1.0144 0.0254 101 1.0389 1.0136 0.0253
70 1.0397 1.0140 0.0257 102 1.0388 1.0131 0.0257
71 1.0396 1.0138 0.0258 103 1.0387 1.0125 0.0262
72 1.0401 1.0151 0.0250 104 1.0385 1.0119 0.0266
73 1.0399 1.0144 0.0255 197 1.0394 1.0144 0.0250
74 1.0398 1.0138 0.0260 106 1.0385 1.0125 0.0260
75 1.0397 1.0134 0.0263 107 1.0383 1.0120 0.0263
76 1.0402 1.0150 0.0252 109 1.0379 1.0111 0.0268
77 1.0415 1.0166 0.0249 110 1.0377 1.0104 0.0273
78 1.0418 1.0170 0.0248 111 1.0376 1.0101 0.0275
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Node
Voltage Magnitude

Error
Node

Voltage Magnitude
Error

(p.u.)
(p.u.)

(p.u.)
(p.u.)

MILP OpenDSS MILP OpenDSS
79 1.0418 1.0169 0.0249 112 1.0376 1.0102 0.0274
80 1.0435 1.0193 0.0242 113 1.0374 1.0095 0.0279
81 1.0453 1.0217 0.0236 114 1.0373 1.0094 0.0279
82 1.0463 1.0232 0.0231 19 1.0196 1.0007 0.0189
83 1.0474 1.0247 0.0227 20 1.0195 1.0005 0.0190
84 1.0451 1.0208 0.0243 21 1.0192 1.0003 0.0189
85 1.0449 1.0204 0.0245 22 1.0191 0.9999 0.0192
86 1.0399 1.0142 0.0257 23 1.0188 0.9997 0.0191
87 1.0398 1.0138 0.0260 24 1.0187 0.9992 0.0195
88 1.0398 1.0138 0.0260 25 1.0185 0.9991 0.0194
89 1.0397 1.0136 0.0261 26 1.0122 0.9863 0.0259
90 1.0398 1.0136 0.0262 27 1.0121 0.9862 0.0259
91 1.0397 1.0134 0.0263 33 1.0120 0.9857 0.0262
92 1.0397 1.0134 0.0263 31 1.0121 0.9861 0.0260
93 1.0395 1.0132 0.0263 32 1.0120 0.9860 0.0261
94 1.0395 1.0130 0.0265 28 1.0183 0.9989 0.0195
95 1.0394 1.0131 0.0263 29 1.0182 0.9986 0.0196
96 1.0394 1.0130 0.0264 30 1.0181 0.9985 0.0197
97 1.0395 1.0144 0.0251 250 1.0181 0.9985 0.0197
98 1.0393 1.0141 0.0252 34 1.0260 1.0117 0.0143
99 1.0390 1.0136 0.0254 15 1.0260 1.0116 0.0144
100 1.0390 1.0135 0.0255 16 1.0259 1.0113 0.0146
450 1.0390 1.0135 0.0255 17 1.0259 1.0115 0.0144
61 1.0141 0.9874 0.0268 9 1.0306 1.0204 0.0102
610 1.0141 0.9874 0.0268 14 1.0242 1.0071 0.0171
62 1.0135 0.9854 0.0281 10 1.0242 1.0070 0.0172
63 1.0131 0.9841 0.0290 11 1.0242 1.0069 0.0173
64 1.0124 0.9820 0.0305
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Table A.7: Power flow results for modified 123-bus feeder: Real power (kW)

From To Real Power Error From To Real Power Error
Node Node (kW) (kW) Node Node (kW) (kW)

MILP OpenDSS MILP OpenDSS
150 149 1185 1231.78 46.78 64 65 70 70.17 0.17
149 1 1185 1231.77 46.77 65 66 25 25.01 0.01

1 2 5 5.00 0.00 13 18 375 378.84 3.83
1 3 35 35.03 0.03 18 135 245 246.34 1.34
3 4 15 15.00 0.00 135 35 245 246.34 1.34
3 5 20 20.01 0.01 35 36 25 25.01 0.01
5 6 15 15.00 0.00 36 37 15 15.00 0.00
1 7 1130 1167.13 37.13 36 38 10 10.00 0.00
7 8 1125 1155.56 30.56 38 39 5 5.00 0.00
8 12 5 5.00 0.00 35 40 205 205.83 0.82
8 13 1085 1111.21 26.21 40 41 5 5.00 0.00

13 152 675 691.33 16.33 40 42 200 200.59 0.59
152 52 675 691.32 16.32 42 43 15 15.01 0.01
52 53 660 673.38 13.38 42 44 180 180.36 0.36
53 54 645 656.98 11.98 44 45 10 10.00 0.00
54 55 10 10.00 0.00 45 46 5 5.00 0.00
55 56 5 5.00 0.00 44 47 170 170.21 0.21
54 57 635 646.14 11.14 47 48 70 70.02 0.02
57 58 10 10.00 0.00 47 49 65 65.02 0.02
58 59 5 5.00 0.00 49 50 20 20.00 0.00
57 60 625 633.87 8.87 50 51 5 5.00 0.00
60 160 495 498.40 3.39 51 151 0 0.00 0.00

160 67 495 498.39 3.39 151 300 0 0.00 0.00
67 68 40 40.04 0.04 108 300 0 0.00 0.00
68 69 35 35.03 0.03 105 108 45 45.10 0.10
69 70 20 20.01 0.01 101 105 75 75.14 0.14
70 71 15 15.00 0.00 101 102 35 35.04 0.04
67 72 300 301.72 1.72 102 103 30 30.02 0.02
72 73 45 45.05 0.05 103 104 15 15.01 0.01
73 74 30 30.02 0.02 197 101 110 110.23 0.23
74 75 15 15.00 0.00 97 197 110 110.23 0.23
72 76 255 256.28 1.28 105 106 30 30.02 0.02
76 77 85 85.89 0.89 106 107 15 15.01 0.01
77 78 70 70.72 0.72 108 109 45 45.09 0.09
78 79 15 15.00 0.00 109 110 30 30.03 0.03
78 80 55 55.67 0.67 110 111 5 5.00 0.00
80 81 40 40.47 0.47 110 112 25 25.02 0.02
81 82 20 20.24 0.24 112 113 20 20.01 0.01
82 83 5 5.12 0.12 113 114 5 5.00 0.00
81 84 20 20.02 0.02 18 19 30 30.01 0.01
84 85 15 15.01 0.01 19 20 15 15.00 0.00
76 86 90 90.17 0.17 18 21 100 100.15 0.15
86 87 85 85.08 0.08 21 22 15 15.01 0.01
87 88 15 15.00 0.00 21 23 85 85.09 0.09
87 89 55 55.03 0.03 23 24 15 15.01 0.01
89 90 15 15.00 0.00 23 25 70 70.05 0.05
89 91 40 40.02 0.02 25 26 25 25.01 0.01
91 92 15 15.00 0.00 26 27 15 15.01 0.01
91 93 25 25.01 0.01 27 33 15 15.01 0.01
93 94 15 15.00 0.00 26 31 10 10.00 0.00
54 94 0 0.00 0.00 31 32 5 5.00 0.00
93 95 10 10.00 0.00 25 28 45 45.01 0.01
95 96 5 5.00 0.00 28 29 30 30.01 0.01
67 97 155 155.35 0.35 29 30 15 15.00 0.00
97 98 45 45.02 0.02 30 250 0 0.00 0.00
98 99 30 30.01 0.01 13 34 35 35.02 0.02
99 100 15 15.00 0.00 34 15 20 20.01 0.01

100 450 0 0.00 0.00 15 16 15 15.00 0.00
60 61 0 0.00 0.00 15 17 5 5.00 0.00
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From To Real Power Error From To Real Power Error
Node Node (kW) (kW) Node Node (kW) (kW)

MILP OpenDSS MILP OpenDSS
61 610 0 0.00 0.00 8 9 35 35.03 0.03
60 62 125 125.79 0.79 9 14 20 20.01 0.01
62 63 110 110.53 0.53 14 10 5 5.00 0.00
63 64 95 95.39 0.39 14 11 15 15.00 0.00

Table A.8: Power flow results for modified 123-bus feeder: Reactive power (kVar)

From To Reactive Power Error From To Reactive Power Error
Node Node (kVar) (kVar) Node Node (kVar) (kVar)

MILP OpenDSS MILP OpenDSS
150 149 385.00 480.58 95.58 64 65 45.00 45.08 0.08
149 1 385.00 480.57 95.57 65 66 10.00 10.01 0.01

1 2 5.00 5.00 0.00 13 18 210.00 218.76 8.76
1 3 15.00 15.03 0.03 18 135 160.00 163.05 3.05
3 4 5.00 5.00 0.00 135 35 160.00 163.05 3.05
3 5 10.00 10.01 0.01 35 36 15.00 15.02 0.02
5 6 5.00 5.00 0.00 36 37 5.00 5.00 0.00
1 7 360.00 433.39 73.39 36 38 10.00 10.00 0.00
7 8 355.00 413.28 58.28 38 39 5.00 5.00 0.00
8 12 5.00 5.00 0.00 35 40 140.00 141.89 1.88
8 13 335.00 383.28 48.28 40 41 5.00 5.00 0.00

13 152 110.00 135.62 25.62 40 42 135.00 136.34 1.34
152 52 110.00 135.62 25.62 42 43 5.00 5.01 0.01
52 53 105.00 123.85 18.85 42 44 125.00 125.81 0.81
53 54 100.00 115.61 15.61 44 45 10.00 10.00 0.00
54 55 10.00 10.00 0.00 45 46 5.00 5.00 0.00
55 56 5.00 5.00 0.00 44 47 115.00 115.47 0.47
54 57 90.00 103.68 13.68 47 48 50.00 50.04 0.04
57 58 10.00 10.00 0.00 47 49 40.00 40.06 0.06
58 59 5.00 5.00 0.00 49 50 10.00 10.00 0.00
57 60 80.00 88.46 8.46 50 51 5.00 5.00 0.00
60 160 10.00 7.28 2.72 51 151 0.00 0.00 0.00

160 67 10.00 7.27 2.73 151 300 0.00 0.00 0.00
67 68 20.00 20.04 0.04 108 300 0.00 0.00 0.00
68 69 15.00 15.03 0.03 105 108 25.00 25.11 0.11
69 70 10.00 10.01 0.01 101 105 35.00 35.19 0.19
70 71 5.00 5.00 0.00 101 102 15.00 15.03 0.03
67 72 -75.00 -81.33 6.33 102 103 10.00 10.02 0.02
72 73 15.00 15.04 0.04 103 104 5.00 5.01 0.01
73 74 10.00 10.02 0.02 197 101 50.00 50.35 0.35
74 75 5.00 5.00 0.00 97 197 50.00 50.35 0.35
72 76 -90.00 -97.29 7.29 105 106 10.00 10.02 0.02
76 77 -145.00 -151.94 6.94 106 107 5.00 5.01 0.01
77 78 -150.00 -157.35 7.35 108 109 25.00 25.08 0.08
78 79 5.00 5.00 0.00 109 110 20.00 20.03 0.03
78 80 -155.00 -162.45 7.45 110 111 5.00 5.00 0.00
80 81 -160.00 -167.93 7.93 110 112 15.00 15.02 0.02
81 82 -170.00 -178.42 8.42 112 113 10.00 10.01 0.01
82 83 -175.00 -183.69 8.69 113 114 5.00 5.00 0.00
81 84 10.00 10.02 0.02 18 19 10.00 10.01 0.01
84 85 5.00 5.00 0.00 19 20 5.00 5.00 0.00
76 86 -5.00 -5.86 0.86 18 21 40.00 40.31 0.31
86 87 -10.00 -11.05 1.05 21 22 5.00 5.01 0.01
87 88 -10.00 -10.41 0.41 21 23 35.00 35.18 0.18
87 89 -5.00 -5.75 0.75 23 24 5.00 5.01 0.01
89 90 -10.00 -10.40 0.40 23 25 30.00 30.10 0.10
89 91 5.00 4.63 0.37 25 26 15.00 15.02 0.02
91 92 -10.00 -10.40 0.40 26 27 5.00 5.01 0.01
91 93 15.00 15.01 0.01 27 33 5.00 5.01 0.01
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From To Reactive Power Error From To Reactive Power Error
Node Node (kVar) (kVar) Node Node (kVar) (kVar)

MILP OpenDSS MILP OpenDSS
93 94 5.00 5.00 0.00 26 31 10.00 10.00 0.00
54 94 0.00 0.00 0.00 31 32 5.00 5.00 0.00
93 95 10.00 10.00 0.00 25 28 15.00 15.03 0.03
95 96 5.00 5.00 0.00 28 29 10.00 10.01 0.01
67 97 65.00 65.63 0.63 29 30 5.00 5.00 0.00
97 98 15.00 15.04 0.04 30 250 0.00 0.00 0.00
98 99 10.00 10.02 0.02 13 34 15.00 15.02 0.02
99 100 5.00 5.00 0.00 34 15 10.00 10.01 0.01

100 450 0.00 0.00 0.00 15 16 5.00 5.00 0.00
60 61 0.00 0.00 0.00 15 17 5.00 5.00 0.00
61 610 0.00 0.00 0.00 8 9 15.00 15.03 0.03
60 62 65.00 65.38 0.38 9 14 10.00 10.01 0.01
62 63 60.00 60.26 0.26 14 10 5.00 5.00 0.00
63 64 55.00 55.19 0.19 14 11 5.00 5.00 0.00
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APPENDIX B: SINGLE OUTAGE CASE: FEEDER IMAGES

B.1 Modified IEEE 13-bus Test Feeder Case B
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Figure B.1: Case B: One-line diagrams of modified IEEE 13-node test feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework



123

B.2 Modified IEEE 13-bus Test Feeder Case C
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Figure B.2: Case C: One-line diagrams of modified IEEE 13-node test feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework
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B.3 Modified IEEE 123-bus Test Feeder Case B
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(a) Original topology with predicted outage
locations 13–18 and 57–60 shown in red
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(b) Original topology showing loads that
would be impacted by predicted outage
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(c) Proactive topology
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(d) Proactive topology with predicted out-
age locations 13–18 and 57–60 shown in red
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(e) Proactive topology showing loads that
would be impacted by predicted outage

150 1

Substation

7149 8 13 152 52 53 54 55 56

2

3

4

10

14

27

33

11

20

5

9

12

19

24

22

26

31

32

6
15

16

18

21

23

25

28

29

34

17

30

48

135 35

40

250

47

59

42

44

58

49

43

41

45

95

96

46

57

93

94

36

37

38

39

50

51

65

66

91

92

61

90

151

64

62

60

63

89

610

87

88

160 67

72

76

86

97

101

105

108

197

300

98

106

102

77

68

73

99

109

103

69

81

78

80

82

107

74

100

79

83

70

104

110

112

75

113

111

114

84

85

71

450

(f) New topology after the predicted outage
locations are isolated

Figure B.3: Case B: One-line diagrams of modified IEEE 123-node test feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework
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B.4 Modified IEEE 123-bus Test Feeder Case C
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(a) Original topology with predicted outage
locations 26–27, 72–76, 97–197 and 160–67
shown in red
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(b) Original topology showing loads that
would be impacted by predicted outage
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(c) Proactive topology
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(d) Proactive topology with predicted out-
age locations shown in red
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(e) Proactive topology showing loads that
would be impacted by predicted outage
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(f) New topology after the predicted outage
locations are isolated

Figure B.4: Case C: One-line diagrams of modified IEEE 123-node test feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework
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B.5 Modified IEEE 123-bus Test Feeder Case D
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(a) Original topology with predicted outage
locations 13–18, 30–250, 49–50 and 72–76
shown in red)
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(b) Original topology showing loads that
would be impacted by predicted outage
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(c) Proactive topology
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(d) Proactive topology with predicted out-
age locations shown in red
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(e) Proactive topology showing loads that
would be impacted by predicted outage
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(f) New topology after the predicted outage
locations are isolated

Figure B.5: Case D: One-line diagrams of modified IEEE 123-node test feeder showing
network topology before and after implementing the proactive topology optimization
and service restoration framework
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APPENDIX C: WEIGHTED MULTIPLE OUTAGE CASE: DETAILED RESULTS

OF SENSITIVITY ANALYSIS

C.1 Modified IEEE 13-bus Test Feeder

Table C.1: Weighted costs for weighted multiple outage case: IEEE 13-bus feeder
cases A and B

Weights Case A Case B
w1 w2 w3 T1 T2 T3 T1 = T3 T2

0.0 0.0 1.0 130 130 0 0 130
0.0 0.1 0.9 145 117 28 13 117
0.0 0.2 0.8 160 104 56 26 104
0.0 0.3 0.7 175 91 84 39 91
0.0 0.4 0.6 190 78 112 52 78
0.0 0.5 0.5 205 65 140 65 65
0.0 0.6 0.4 220 52 168 78 52
0.0 0.7 0.3 235 39 196 91 39
0.0 0.8 0.2 250 26 224 104 26
0.0 0.9 0.1 265 13 252 117 13
0.0 1.0 0.0 280 0 280 130 0
0.1 0.0 0.9 117 117 13 0 117
0.1 0.1 0.8 132 104 41 13 104
0.1 0.2 0.7 147 91 69 26 91
0.1 0.3 0.6 162 78 97 39 78
0.1 0.4 0.5 177 65 125 52 65
0.1 0.5 0.4 192 52 153 65 52
0.1 0.6 0.3 207 39 181 78 39
0.1 0.7 0.2 222 26 209 91 26
0.1 0.8 0.1 237 13 237 104 13
0.1 0.9 0.0 252 0 265 117 0
0.2 0.0 0.8 104 104 26 0 104
0.2 0.1 0.7 119 91 54 13 91
0.2 0.2 0.6 134 78 82 26 78
0.2 0.3 0.5 149 65 110 39 65
0.2 0.4 0.4 164 52 138 52 52
0.2 0.5 0.3 179 39 166 65 39
0.2 0.6 0.2 194 26 194 78 26
0.2 0.7 0.1 209 13 222 91 13
0.2 0.8 0.0 224 0 250 104 0
0.3 0.0 0.7 91 91 39 0 91
0.3 0.1 0.6 106 78 67 13 78
0.3 0.2 0.5 121 65 95 26 65
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Weights Case A Case B
w1 w2 w3 T1 T2 T3 T1 = T3 T2

0.3 0.3 0.4 136 52 123 39 52
0.333 0.333 0.333 136.667 43.333 136.667 43.329 43.329

0.3 0.4 0.3 151 39 151 52 39
0.3 0.5 0.2 166 26 179 65 26
0.3 0.6 0.1 181 13 207 78 13
0.3 0.7 0.0 196 0 235 91 0
0.4 0.0 0.6 78 78 52 0 78
0.4 0.1 0.5 93 65 80 13 65
0.4 0.2 0.4 108 52 108 26 52
0.4 0.3 0.3 123 39 136 39 39
0.4 0.4 0.2 138 26 164 52 26
0.4 0.5 0.1 153 13 192 65 13
0.4 0.6 0.0 168 0 220 78 0
0.5 0.0 0.5 65 65 65 0 65
0.5 0.1 0.4 80 52 93 13 52
0.5 0.2 0.3 95 39 121 26 39
0.5 0.3 0.2 110 26 149 39 26
0.5 0.4 0.1 125 13 177 52 13
0.5 0.5 0.0 140 0 205 65 0
0.6 0.0 0.4 52 52 78 0 52
0.6 0.1 0.3 67 39 106 13 39
0.6 0.2 0.2 82 26 134 26 26
0.6 0.3 0.1 97 13 162 39 13
0.6 0.4 0.0 112 0 190 52 0
0.7 0.0 0.3 39 39 91 0 39
0.7 0.1 0.2 54 26 119 13 26
0.7 0.2 0.1 69 13 147 26 13
0.7 0.3 0.0 84 0 175 39 0
0.8 0.0 0.2 26 26 104 0 26
0.8 0.1 0.1 41 13 132 13 13
0.8 0.2 0.0 56 0 160 26 0
0.9 0.0 0.1 13 13 117 0 13
0.9 0.1 0.0 28 0 145 13 0
1.0 0.0 0.0 0 0 130 0 0
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C.2 Modified IEEE 123-bus Test Feeder

Table C.2: Weighted costs for weighted multiple outage case: IEEE 123-bus feeder
cases A and B

Weights Case A Case B
w1 w2 w3 T1 T2 T3 T1 T2 = T3

0.0 0.0 1.0 465.0 465.0 0.0 245.0 0.0
0.0 0.1 0.9 429.5 418.5 49.5 276.0 0.0
0.0 0.2 0.8 394.0 372.0 99.0 307.0 0.0
0.0 0.3 0.7 358.5 325.5 148.5 338.0 0.0
0.0 0.4 0.6 323.0 279.0 198.0 369.0 0.0
0.0 0.5 0.5 287.5 232.5 247.5 400.0 0.0
0.0 0.6 0.4 252.0 186.0 297.0 431.0 0.0
0.0 0.7 0.3 216.5 139.5 346.5 462.0 0.0
0.0 0.8 0.2 181.0 93.0 396.0 493.0 0.0
0.0 0.9 0.1 145.5 46.5 445.5 524.0 0.0
0.0 1.0 0.0 110.0 0.0 495.0 555.0 0.0
0.1 0.0 0.9 418.5 429.5 37.0 220.5 6.0
0.1 0.1 0.8 383.0 383.0 86.5 251.5 6.0
0.1 0.2 0.7 347.5 336.5 136.0 282.5 6.0
0.1 0.3 0.6 312.0 290.0 185.5 313.5 6.0
0.1 0.4 0.5 276.5 243.5 235.0 344.5 6.0
0.1 0.5 0.4 241.0 197.0 284.5 375.5 6.0
0.1 0.6 0.3 205.5 150.5 334.0 406.5 6.0
0.1 0.7 0.2 170.0 104.0 383.5 437.5 6.0
0.1 0.8 0.1 134.5 57.5 433.0 468.5 6.0
0.1 0.9 0.0 99.0 11.0 482.5 499.5 6.0
0.2 0.0 0.8 372.0 394.0 74.0 196.0 12.0
0.2 0.1 0.7 336.5 347.5 123.5 227.0 12.0
0.2 0.2 0.6 301.0 301.0 173.0 258.0 12.0
0.2 0.3 0.5 265.5 254.5 222.5 289.0 12.0
0.2 0.4 0.4 230.0 208.0 272.0 320.0 12.0
0.2 0.5 0.3 194.5 161.5 321.5 351.0 12.0
0.2 0.6 0.2 159.0 115.0 371.0 382.0 12.0
0.2 0.7 0.1 123.5 68.5 420.5 413.0 12.0
0.2 0.8 0.0 88.0 22.0 470.0 444.0 12.0
0.3 0.0 0.7 325.5 358.5 111.0 171.5 18.0
0.3 0.1 0.6 290.0 312.0 160.5 202.5 18.0
0.3 0.2 0.5 254.5 265.5 210.0 233.5 18.0
0.3 0.3 0.4 219.0 219.0 259.5 264.5 18.0

0.333 0.333 0.333 191.667 191.667 288.33 266.667 20.0
0.3 0.4 0.3 183.5 172.5 309.0 295.5 18.0
0.3 0.5 0.2 148.0 126.0 358.5 326.5 18.0
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Weights Case A Case B
w1 w2 w3 T1 T2 T3 T1 = T3 T2

0.3 0.6 0.1 112.5 79.5 408.0 357.5 18.0
0.3 0.7 0.0 77.0 33.0 457.5 388.5 18.0
0.4 0.0 0.6 279.0 323.0 148.0 147.0 24.0
0.4 0.1 0.5 243.5 276.5 197.5 178.0 24.0
0.4 0.2 0.4 208.0 230.0 247.0 209.0 24.0
0.4 0.3 0.3 172.5 183.5 296.5 240.0 24.0
0.4 0.4 0.2 137.0 137.0 346.0 271.0 24.0
0.4 0.5 0.1 101.5 90.5 395.5 302.0 24.0
0.4 0.6 0.0 66.0 44.0 445.0 333.0 24.0
0.5 0.0 0.5 232.5 287.5 185.0 122.5 30.0
0.5 0.1 0.4 197.0 241.0 234.5 153.5 30.0
0.5 0.2 0.3 161.5 194.5 284.0 184.5 30.0
0.5 0.3 0.2 126.0 148.0 333.5 215.5 30.0
0.5 0.4 0.1 90.5 101.5 383.0 246.5 30.0
0.5 0.5 0.0 55.0 55.0 432.5 277.5 30.0
0.6 0.0 0.4 186.0 252.0 222.0 98.0 36.0
0.6 0.1 0.3 150.5 205.5 271.5 129.0 36.0
0.6 0.2 0.2 115.0 159.0 321.0 160.0 36.0
0.6 0.3 0.1 79.5 112.5 370.5 191.0 36.0
0.6 0.4 0.0 44.0 66.0 420.0 222.0 36.0
0.7 0.0 0.3 139.5 216.5 259.0 73.5 42.0
0.7 0.1 0.2 104.0 170.0 308.5 104.5 42.0
0.7 0.2 0.1 68.5 123.5 358.0 135.5 42.0
0.7 0.3 0.0 33.0 77.0 407.5 166.5 42.0
0.8 0.0 0.2 93.0 181.0 296.0 49.0 48.0
0.8 0.1 0.1 57.5 134.5 345.5 80.0 48.0
0.8 0.2 0.0 22.0 88.0 395.0 111.0 48.0
0.9 0.0 0.1 46.5 145.5 333.0 24.5 54.0
0.9 0.1 0.0 11.0 99.0 382.5 55.5 54.0
1.0 0.0 0.0 0.0 110.0 370.0 0.0 60.0
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