
PERFORMANCE ENHANCEMENT OF LORA NETWORKS FOR SMART
CITY APPLICATIONS

by

Shobhit Aggarwal

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2023

Approved by:

Dr. Asis Nasipuri

Dr. Jim Conrad

Dr. Ahmed Arafa

Dr. Yasin Raja

ii

©2023
Shobhit Aggarwal

ALL RIGHTS RESERVED

iii

ABSTRACT

SHOBHIT AGGARWAL. Performance Enhancement of LoRa Networks for Smart
City Applications. (Under the direction of DR. ASIS NASIPURI)

The Internet of Things (IoT) provides unlimited possibilities for smart city applica-

tions. However, energy efficiency and scalability continue to be key considerations for

the development of low-cost wireless networks for meeting the needs of the emerg-

ing world of IoT. Recent developments in low-power wide area networks (LPWAN)

promise to meet these requirements by achieving long communication ranges at low

data rates without increasing the energy cost. Consequently, LPWAN technologies

are rapidly gaining prominence in the development of IoT networks in comparison to

legacy WLANs. LPWANs address the challenges of legacy wireless technologies that

use multi-hop mesh networking for increasing connectivity and coverage. Long Range

(LoRa) technology is receiving increasing attention in recent years for addressing the

challenges of providing wireless connections to a large number of end devices in the

field of IoT. LoRa has become the most prominent LPWAN standard due to its long

transmission range, low power consumption, and large network capacity. Despite

these benefits, LoRa networks may not be able to achieve their full potential unless

additional improvements are achieved in the network scalability domain. Specifically,

the probability of success under heavy network traffic loads or a large number of end

devices needs to be improved.

In this dissertation, we explore the causes of performance degradation of LoRa net-

works and propose several approaches to enhance their performance. Next, we present

a novel MAC layer protocol to employ AI tools to make IoT applications smarter. The

effectiveness of all the proposed approaches is validated using mathematical analysis

as well as via simulations thereby creating the basis for further research in this area.

iv

ACKNOWLEDGEMENTS

I would like to share my heartfelt gratitude to my advisor, Dr. Asis Nasipuri for his

continuous support all through my research. His constant motivation, enthusiasm,

and immense knowledge of the subject aided in significantly developing my logical

and reasoning faculties which are critical for research. If it was not for his continuous

support, this work would not have been a reality.

I would like to again offer my heartfelt appreciation to Dr. Asis Nasipuri, the

Wireless Sensor Networks lab’s principal investigator, for providing the critical in-

frastructure that enabled me to conduct my research. I am grateful to all of my lab

colleagues and co-authors who have always supported and assisted me.

I would also like to extend my sincere appreciation to my committee members Dr.

Jim Conrad, Dr. Ahmed Arafa, and Dr. Yasin Raja. Their feedback, constructive

criticism, and insightful suggestions have been instrumental in improving the quality

of my research.

I would at this point like to express my gratitude to the ECE department of UNC

Charlotte, for providing me with access to resources, facilities, and a supportive

academic environment.

I am also grateful to Mr. Joshua Cox and Mr. Peter O Connor from Oxit LLC for

giving me the opportunity to gather experience and real-world data for my research.

Finally, I would like to thank my family and friends for cheering me up and stand-

ing by me through all times good and bad. Their support and patience have been

invaluable

v

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiv

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 8

2.1. Low Power Wide Area Networks (LPWANs) 8

2.2. The Semtech LoRa Technology 11

2.2.1. LoRa Physical Layer 11

2.2.2. LoRa System Architecture 14

2.2.3. LoRa MAC 15

2.2.4. Adaptive Data Rate (ADR) Mechanism 17

2.3. Artificial Intelligence 18

2.3.1. Machine Learning 19

2.3.2. Data Dimensionality Reduction 23

2.3.3. Model Pruning 25

CHAPTER 3: RELATED WORKS 26

3.1. LoRa and LoRaWAN 26

3.1.1. Communication Range 26

3.1.2. Impact of Interference on LoRa 28

3.1.3. LoRaWAN Improvements 29

3.1.4. Scheduling Based Approaches 32

vi

3.1.5. New MAC Designs for LoRa 34

3.2. IoT Requirements 35

3.3. Artificial Intelligence in IoT 36

CHAPTER 4: PERFORMANCE EVALUATION AND LIMITATIONS
OF LoRaWAN NETWORKS

38

4.1. Introduction 38

4.2. Need of LPWANs 38

4.3. Performance Study 40

4.3.1. Transmission Range 40

4.3.2. Power Consumption 42

4.3.3. Scalability 44

4.4. Conclusions 48

CHAPTER 5: IMPROVING SCALABILITY OF LoRaWAN NET-
WORKS BY SPREADING FACTOR DISTRIBUTION

49

5.1. Introduction 49

5.2. Motivation 49

5.3. Methodology 50

5.3.1. Network Model 50

5.3.2. Principle of Operation 51

5.3.3. Optimum SF Allocation 52

5.4. Results and Discussions 54

5.5. Conclusions 57

vii

CHAPTER 6: QoS BASED SPREADING FACTOR DISTRIBUTION
FOR LoRaWAN NETWORKS

58

6.1. Introduction 58

6.2. Motivation 59

6.3. QoS Based Spreading Factor Allocation 60

6.3.1. Defining QoS Requirements 60

6.3.2. Network Model 61

6.3.3. Principle of Operation 62

6.4. Proposed Approaches 63

6.4.1. Approach-1: SFA-1 Approach 64

6.4.2. Approach-2: SFA-2 approach 65

6.5. Performance Evaluation 66

6.5.1. Mathematical Evaluation 66

6.5.2. Simulation model 66

6.5.3. Results and discussions 67

6.6. Conclusions 71

CHAPTER 7: SHORT TERM TRAFFIC CONGESTION PREDICTION
WITH DEEP LEARNING FOR LoRa NETWORKS

73

7.1. Introduction 73

7.2. Methodology 75

7.2.1. Data source 76

7.2.2. Pre-processing 77

7.2.3. Modeling 78

viii

7.2.4. Evaluation 79

7.3. Results and Discussion 81

7.4. Conclusions 86

CHAPTER 8: FL-LoRaMAC: A NOVEL FRAMEWORK FOR EN-
ABLING ON-DEVICE LEARNING FOR LoRa BASED IoT
APPLICATIONS

88

8.1. Introduction 88

8.2. Machine Learning in IoT Applications 89

8.3. Federated Learning: A viable machine learning alternative 92

8.4. Proposed Framework: FL-LoRaMAC 97

8.4.1. Network Joining 97

8.4.2. Proposed MAC layer 98

8.4.3. Decentralized Training & Model Aggregation 100

8.5. Optimizing Communication Bandwidth 103

8.5.1. Model Pruning 103

8.5.2. QoS-based assignment of SF for differential priorities 104

8.6. Results and Discussions 105

8.6.1. Network Setup and System Model 106

8.6.2. Federated Learning vs Machine Learning 107

8.6.3. Selection of Hyper-Parameters for FL-LoRaMAC 112

8.6.4. Model Performance Vs Communication Loss for FL-
LoRaMAC

114

8.6.5. Model Training Time with FL-LoRaMAC 116

8.6.6. Energy Consumption of FL-LoRaMAC vs Legacy 118

ix

8.6.7. Performance Vs Pruning 120

8.6.8. Performance comparison with and without QoS-based
SF distribution

121

8.7. Conclusions 123

CHAPTER 9: CONCLUSIONS AND FUTURE WORKS 125

9.1. Future Works 126

REFERENCES 129

x

LIST OF TABLES

TABLE 2.1: Comparison of Key LPWAN Technologies 9

TABLE 2.2: LoRa spreading factors 13

TABLE 4.1: Experimental results for range for SF=10 and transmit power
of 14dBm towards the northeast direction from UNCC

40

TABLE 4.2: Lifetime expectancy of LoRa end node for different sleep time
with transmit power of 14dBm

44

TABLE 5.1: Configuration parameters for simulation 55

TABLE 6.1: Time on air for various SFs for a payload of 8 bytes with 8
preamble symbols.

62

TABLE 6.2: Maximum number of devices that can be configured on var-
ious SFs transmitting payload of 8 bytes with more than 90% prob-
ability of success.

63

TABLE 6.3: Configuration parameters for simulation 67

TABLE 7.1: LSTM structure 82

TABLE 7.2: Quantitative comparison of the prediction models 86

TABLE 8.1: Autoencoder model details 106

TABLE 8.2: Federated learning: Training hyperparameters 106

TABLE 8.3: Performance of models trained with different methods 111

TABLE 8.4: Maximum number of devices for various spreading factors
with 90% or greater probability of success

122

xi

LIST OF FIGURES

FIGURE 1.1: Plot of range vs bandwidth and power consumption for
various wireless technologies

2

FIGURE 2.1: Comparison of various spreading factor (source: [1]) 12

FIGURE 2.2: LoRa physical packet (source: [1]) 13

FIGURE 2.3: LoRaWAN architecture 15

FIGURE 2.4: LoRaWAN classes of operation 16

FIGURE 2.5: Generic ML model components 22

FIGURE 4.1: Typical multi-hop scenario 38

FIGURE 4.2: Predetermined positions for end device to take
measurements

40

FIGURE 4.3: Gateway connected to the network server on the roof of
CRI parking deck at UNCC and end device taken to predetermined
locations

41

FIGURE 4.4: (a) Spreading Factor vs LoRa Range with Transmit
power=14dBm (b) Transmit Power vs LoRa Range for SF=10 to-
wards the northeast direction from UNCC

42

FIGURE 4.5: Various operations in LoRa end device seen from
oscilloscope

43

FIGURE 4.6: Network model to evaluate scalability 45

FIGURE 4.7: Plot showing packet delivery ratio vs number of devices
with devices spread uniformly on a circle of 3 km radius

45

FIGURE 4.8: Sources of packet loss at various spreading factors with
devices spread uniformly on a circle of 3 km radius

46

FIGURE 4.9: PDR for a varying number of devices spread on a circular
disc of radius 1000 m with different spreading factors

47

FIGURE 5.1: Network model 50

xii

FIGURE 5.2: Probabilities of success with varying number of devices
placed uniformly over a disc of radius 1700m

51

FIGURE 5.3: Plot of probability of success with α devices on SF7 and
(1− α) devices on SF8 simulated independently and their combined
weighted mean

53

FIGURE 5.4: Probability of success with 5000 devices with varying α 55

FIGURE 5.5: Probability of success with 10,000 devices configured on
spreading factors according to optimum fraction

56

FIGURE 5.6: Network cell divided into various zones with increasing radii 57

FIGURE 6.1: Proposed network model with single gateway serving a cir-
cular area of radius 1700 meters

61

FIGURE 6.2: Probability of success for various approaches with increas-
ing number of total devices in the network as obtained from the
mathematical model with β = 0.1

68

FIGURE 6.3: Probability of success as obtained from simulation of pro-
posed and legacy approaches with β = 0.1.

69

FIGURE 6.4: Probability of success with both proposed allocation
schemes with (a) β=0.2, and (b) β=0.3 with the varying total number
of devices

70

FIGURE 7.1: Block diagram of the proposed traffic congestion prediction
system.

75

FIGURE 7.2: System model. 78

FIGURE 7.3: Confusion matrix for traffic congested and traffic not
congested.

79

FIGURE 7.4: Traffic Flow for 24 Hours, sensor Id=3084071. 83

FIGURE 7.5: Traffic Congestion for 24 Hours. 85

FIGURE 7.6: Loss function with LSTM model. 86

FIGURE 8.1: ECG signal generated in one heartbeat (source: [2]). 90

xiii

FIGURE 8.2: Working model of federated learning. 93

FIGURE 8.3: Approach for global model transmission from gateway 99

FIGURE 8.4: Flow of FL-LoRaMAC on end device side 101

FIGURE 8.5: Flow of FL-LoRaMAC on network server side 102

FIGURE 8.6: Illustration of dataset division 107

FIGURE 8.7: Traffic volume for machine learning (100 Epochs), federated
learning (3 comm. rounds and 100 epochs), and federated learn-
ing with PCA (20 components, 3 comm. rounds and 100 epochs)
approach.

109

FIGURE 8.8: Computation time for machine learning (100 Epochs) and
federated learning (3 comm. rounds and 100 epochs) approach.

110

FIGURE 8.9: Performance of model trained with varying number of
epochs and a) 10 neurons b) 15 neurons c) 25 neurons d) 35 neurons in
hidden layer with 3 communication rounds and 20 PCA components

113

FIGURE 8.10: Performance of model trained with varying number of
PCA components and a) Epochs=20 b) Epochs=40 c) Epochs=60
d) Epochs=80 e) Epochs=100 with 3 communication rounds and 15
neurons in hidden layer

114

FIGURE 8.11: Performance Vs loss 117

FIGURE 8.12: Performance Vs sparsification 121

FIGURE 8.13: Probability of success for high and priority devices for
varying total number of devices

122

FIGURE 8.14: Performance comparison of the trained model with QoS
and legacy (a) Precision (b) Accuracy with the varying total number
of devices in network

123

xiv

LIST OF ABBREVIATIONS

ADR Adaptive Data Rate

AI Artificial Intelligence

BW BandWidth

CR Coding Rate

CSS Chirp Spread Spectrum

DL Downlink

ECG Electrocardiography

ED End Device

FL Federated Learning

GW Gateway

HP High Priority

IoT Internet of Things

LoRa Long Range

LP Low Priority

LPWAN Low Power Wide Area Networks

LSTM Long Short-Term Memory

MAC Medium Access Control

ML Machine Learning

NS Network Server

xv

PAN Personal Area Networks

PCA Principal Component Analysis

PDR Packet Delivery Ratio

PER Packet Error Rate

PLR Packet Loss Rate

PSP Packet Success Probability

QoS Quality of Service

RSSI Received Signal Strength Indicator

SF Spreading Factors

SINR Signal to Interference Noise Ratio

SNR Signal to Noise Ratio

ToA Time on Air

UL Uplink

WLAN Wireless Local Area Network

CHAPTER 1: INTRODUCTION

The Internet of Things (IoT) has had a significant impact on the modern world

by connecting a vast array of devices to the Internet, thereby introducing ambient

intelligence to the physical realm by embedding sensors, processors, and network

connectivity into everyday objects. These devices are capable of gathering data from

their environment, processing it, and making decisions based on the obtained insights.

When connected to the Internet, organizations can leverage this capability to collect

and analyze data, identify inefficiencies, and optimize processes. A significant instance

of IoT implementation is highlighted in [3], which presents the benefits of linking

industrial machinery to the Internet, resulting in increased efficiency, reliability, and

safety. Additionally, IoT devices can be utilized for health and wellness monitoring, as

well as improving quality of life, as highlighted in [4]. Recent advancements in low-cost

sensor and actuator technologies, in conjunction with the emergence of widespread

communication systems, have led to exponential growth in the number of IoT devices.

The application of artificial intelligence (AI) techniques, such as machine learning

(ML), can enhance the capabilities of IoT devices by enabling them to learn from data

and adjust to changing conditions without explicit programming. This ambient intel-

ligence can make IoT devices more proactive and intelligent, instead of being reactive

to predefined commands or rules. For instance, in the domain of energy manage-

ment, [5] proposed a system that employs sensors and machine learning algorithms to

optimize energy consumption in buildings based on user preferences and occupancy

patterns. Additionally, [6] proposes a healthcare system that uses wearable devices

and machine learning algorithms to monitor the health of elderly patients and detect

falls. In the transportation domain, [7] evaluates multiple IoT technologies for Intel-

2

Figure 1.1: Plot of range vs bandwidth and power consumption for various wireless
technologies

ligent Transportation Systems (ITS) in Smart Cities scenarios, while also discussing

the relevance of machine-learning technologies in this field. Furthermore, [8] proposes

a system that integrates IoT sensors and machine learning algorithms to reduce water

usage and optimize crop yields.

However, to enable the widespread implementation of IoT, a variety of network

infrastructure challenges must be addressed. Backhaul networks are required to con-

nect each device directly to the Internet. Both wired and wireless technologies can

be utilized as backhaul networks, but wireless technologies are much more appeal-

ing. There are various standard wireless protocols and technologies such as legacy

non-cellular technologies, wireless local area networks, and cellular networks that can

serve as backhauls. However, the need for low energy consumption for large-scale

network deployment remains a key concern.

As depicted in Figure 1.1, non-cellular wireless technologies such as Wi-Fi, Blue-

tooth, Zigbee, NRF, and ANT are not ideal for connecting low-power devices dis-

tributed over large geographical areas. The transmission range of these technologies

3

is limited to a few hundred meters. Multihop networking principles may be employed

to extend their geographical coverage, but there are challenges in terms of reliability

when deployed over large areas, such as a citywide network [9]. WLANs are character-

ized by shorter coverage areas and higher power consumption. Cellular networks such

as the Global System for Mobile Communications (GSM) and Long-Term Evolution

(LTE) provide wide-area coverage but do not fulfill the energy efficiency requirements

of IoT networks.

Recent advancements in radio technologies such as chirp spread spectrum (CSS)

have led to the emergence of LPWAN (Low Power Wide Area Network) technologies

that have the potential to address the aforementioned challenges. Generally, these

technologies are energy-efficient and offer significantly higher transmission ranges

(several miles) with lower data rates, making them effective in covering wide ar-

eas using a single gateway [10]. These technologies operate in the free unlicensed

ISM (Industrial, Scientific, and Medical) band. LPWAN shares the same band that

is shared by all “Short Range” devices. Examples of protocols that make use of this

band are Z-wave, 802.11ah, 802.15.4g, and 802.15.4 [11]. Due to the prevalence of

the ISM band and multiple technologies using the same band simultaneously, various

regulations are imposed on these devices, which vary depending on the region [12].

Some mandate the use of LBT (Listen-Before-Talk) mechanisms and others impose

duty cycles on communications, thus limiting the throughput of the devices.

LPWAN technologies can be classified into wideband or ultra-narrowband tech-

nologies [13]. To minimize the bandwidth consumed by the control plane of the

network, LPWAN technologies typically use the star topology, where all nodes com-

municate directly with the base station. The same duty cycle restrictions also apply

to the base stations, making LPWAN technologies ideal for applications that require

low downlink traffic without confirmed message delivery [10]. Applications that re-

quire autonomous battery-powered nodes, long communication range, long network

4

lifetime, low throughput, and do not have strict latency requirements are suitable

for LPWAN technologies. SIGFOX, Weightless, RPMA, and LoRa are some of the

most popular LPWAN technologies that have gained significant momentum in recent

years. Among all LPWAN standards, LoRa has several features and characteristics

such as a subscription-free model, no limits on the number of transmissions, and ease

of network deployment that make it the most prominent of all.

LoRa technology developed by Semtech [14], is a proprietary physical layer tech-

nology but offers the flexibility to utilize any of the upper layer protocols. The

technology is further developed by Lora Alliance [15]. They have developed an up-

per layer protocol suite known as “LoRaWAN”. The Medium Access Control (MAC)

layer of LoRaWAN employs an ALOHA-based protocol, making the technology fairly

less complex and simple to implement. However, this simplicity comes at the cost of

network performance. The ALOHA-based MAC protocol makes transmissions from

LoRa devices susceptible to collisions. Since the devices are free to transmit data

without considering transmissions from other devices, this leads to interference under

heavy traffic, resulting in performance degradation and ultimately loss of data. Tech-

nically, LoRaWAN gateways have the capability to handle hundreds of thousands of

devices. However, according to studies in [16][17] the average packet delivery ratio

(PDR) drops drastically in these networks when the number of connected devices

exceeds a few hundred. Interference or collisions among the transmitted packets is

a major reason for this decline. Although LoRa employs the power capture effect

to receive transmissions with the highest signal power in case of collisions, it is not

capable of maximizing network performance to its full potential.

The objective of this research is to investigate the existing challenges of using Lo-

RaWAN networks in large-scale IoT networks and to propose approaches to improve

on those challenges. One of our objectives is to explore the limitations and potential

design considerations for LoRa technology that would enable the development of IoT

5

applications employing AI principles. With these objectives, we focus on the aspects

of network scalability and supporting the communication requirements for employ-

ing AI principles in LoRa networks. We propose multiple strategies for enhancing

the performance of dense LoRa/LoRaWAN networks. The key contributions of this

research are outlined as follows:

1. We present a comprehensive analysis of LoRa networks to evaluate their trans-

mission range, power consumption, and scalability. The analysis presents in-

sights regarding the limitations of the legacy system with respect to network

capacity, probability of packet success at different distances from the gateway,

power consumption, and scalability [18].

2. We propose a solution to improve the scalability of LoRaWAN networks by

implementing a dynamic spreading factor allocation strategy. This approach

utilizes the orthogonality of spreading factors in LoRa networks to effectively

manage collision domains and increase network capacity. Our analysis demon-

strates that by optimizing the distribution of devices across various spreading

factors, the overall network performance can be significantly improved [19].

3. We propose a novel spreading factor allocation approach that is based on the

Quality of Service (QoS) needs of the Internet of Things (IoT) applications.

Many IoT applications have specific QoS requirements that must be met by

the underlying network for proper functioning. The legacy LoRaWAN proto-

col serves all devices indiscriminately, without prioritizing any specific group.

Our proposed QoS-based spreading factor allocation method not only accom-

modates the QoS requirements of IoT applications on LoRaWAN networks but

also enhances the overall network performance [20].

4. The integration of AI principles and IoT technology has the potential to create

highly intelligent systems capable of processing large amounts of data to provide

6

insights. However, the communication requirements for such systems can be

complex and challenging to understand. To gain a better understanding of the

communication requirements for ML-based applications using distributed IoT

devices, we conducted an evaluation of a representative application [21].

5. We propose FL-LoRaMAC, a novel framework for incorporating AI princi-

ples in IoT applications utilizing LoRa-based platforms for smart city deploy-

ments. The application of AI in smart cities can enhance the intelligence of

these systems through the implementation of learning principles in IoT applica-

tions. However, traditional machine learning methods may not be suitable for

the unique constraints and characteristics of IoT and LoRa ecosystems. The

FL-LoRaMAC framework addresses these challenges by enabling decentralized

learning in LoRa-based IoT platforms. The effectiveness of the proposed frame-

work is demonstrated through its application in a healthcare scenario, but it

can be applied to any IoT application.

The structure of this dissertation is as follows:

Chapter 2 provides an overview of the LPWAN technology and delves deeper into

LoRa technology. It discusses the architecture of LoRaWAN networks, the physical

layer, and the legacy MAC layer.

Chapter 3 reviews previous related works done in the field upon which we base

our research. We look at several existing works done to evaluate the performance

of LoRaWAN networks and approaches for improving the performance of LoRa net-

works. It also provides hints captivating the reader to question and argue the current

approaches.

Chapter 4 presents our first contribution to the performance evaluation of Lo-

RaWAN networks. We build on our understanding of LPWANs, especially LoRa

networks to explore the scalability issue.

7

Chapter 5 proposes the second contribution of finding the optimum distribution

of devices for various spreading factors and configuring devices on various spreading

factors based on the optimum distribution to maximize network performance. We

validate our proposed distribution using a network simulator.

Chapter 6 describes proposed approaches for assigning spreading factors to end

nodes to satisfy the QoS requirements for IoT applications.

Chapter 7 presents an evaluation of a representative application that illustrates

the advantages and challenges of incorporating AI in the field of IoT. Specifically, the

study highlights the benefits of AI in IoT applications, as well as the requirement for

large amounts of data for training these models.

Chapter 8 describes the novel challenges of IoT and the LoRa ecosystem for typical

machine learning principles. It also proposes a novel framework to facilitate and

deploy AI tools in LoRa networks. For validation and demonstration of performance,

the proposed framework is applied to an ECG anomaly detection application scenario.

In Chapter 9 we summarize the contributions of this dissertation.

CHAPTER 2: BACKGROUND

2.1 Low Power Wide Area Networks (LPWANs)

Over the last two decades, the emergence of Low Power Wide Area Network (LP-

WAN) platforms has revolutionized the way low-power wireless sensor devices are

connected over extensive geographic areas. Unlike newer wireless communication

technologies that operate in higher frequency bands, LPWAN technologies primarily

operate in the sub-GHz frequency band.

By utilizing the sub-GHz frequency band, LPWAN technologies achieve longer

communication ranges than other wireless communication technologies [10]. Operat-

ing in the sub-GHz band allows LPWAN technologies to leverage better penetration

through obstacles and attenuation, making them ideal for applications in harsh en-

vironments. These technologies can be broadly divided into two categories based on

the type of modulation they use:

• Ultra Narrow Band (UNB): Technologies using 25 kHz channel bandwidth.

• Wide-band: Technologies using channels with bandwidth in the order of 125

kHz or 250 kHz. These also feature multiple-user access within a single channel

by employing some form of spread spectrum multiple access techniques.

Due to its long communication range and low power consumption, LPWAN stan-

dards have been gaining momentum in the past years. A few such LPWAN standards

are discussed below. Table 2.1 provides a high-level comparison of various popular

LPWAN technologies.

SIGFOX is the first LPWAN technology proposed in the IoT market. It is an

ultra-narrowband technology that operates in the ISM band using 868MHz in Europe

9

Table 2.1: Comparison of Key LPWAN Technologies

Technology SIGFOX LoRa Weightless-P RPMA
Topology Star Usually Star;

Mesh Possible
Star Star

Max. Data
Rate per ter-
minal

100bps 50kbps 100kbps 8kbps

Frequency
band

Sub-GHz ISM Sub-GHz ISM Sub-GHz ISM 2.4GHz band

MAC Layer ALOHA
based

ALOHA
based

– RPMA

Range (Miles) Urban:2-6
Rural:12-30

Urban:1-3
Rural:7-18

Urban:1 Urban:2

Modulation
Technique

Ultra Narrow
Band

Spread Spec-
trum

Narrow Band Spread Spec-
trum

Proprietary
Aspects

Physical and
MAC Layers

Physical
Layer

Open Stan-
dard

Full Stack

Nodes Per
Gateway

<1,000,000 <1,000,000 <500,000 –

Encryption Not Built-in AES AES-128 bit –

and 902MHz in the US. This technology makes use of star topology and the base

station is connected to servers using an IP-based network. The end devices employ

Binary Phase Shift Keying (BPSK) modulation to connect to the base stations. As

SIGFOX uses ultra narrowband transmission, very low noise levels are experienced

and bandwidth is utilized efficiently, as a result, the receiver becomes highly sensitive

and consumes ultra-low power.

Initially, SIGFOX supported only uplink communication but evolved into a bidirec-

tional technology later. The number and size of messages over the uplink are limited

to 140 12-byte messages per day and for the downlink, only 4 8-byte transmissions

per day to conform to the regional regulations on the use of license-free spectrum

[22]. That means the base station can not acknowledge each uplink transmission.

Weightless [23] is an open standard managed by the Weightless-Special Interest

Group. Three standards have been proposed by the group namely Weightless-N,

Weightless-W, and Weightless-P. However, we will focus on the most recently defined

10

standard which is Weightless-P.

Weightless-P is a non-proprietary physical layer technology. It uses GMSK and

QPSK for modulating the signal. These modulating schemes are very well known

and are used in various commercial products, hence the end devices do not require a

proprietary chipset. Weightless-P, supports narrowband channels of 12.5 kHz, with

Frequency Division and Time Division Multiple Access modes. It also incorporates

adaptive data rates from 0.2 kbit/s to 100 kbit/s, time-synchronized aggregators, and

low-cost highly energy-efficient modulations. Over-the-air upgrades of the firmware

are enabled by the full support of bidirectional communication.

On-Ramp Wireless [24] came up with Random Phase Multiple Access (RPMA)

which is a spread-spectrum technology operating on the 2.4GHz ISM band instead of

the sub-1GHz band and leverages more relaxed regulations on the spectrum across

different regions. Due to a robust physical layer design, it can still operate over

long-range wireless links and under the most challenging RF environments.

A base station in RPMA’s is capable of receiving transmissions on all the spreading

factors. The devices employ the adaptive data rate (ADR) technique, where the

devices can select optimum spreading factors based on the downlink signal strength.

RPMA uses a form of Viterbi algorithm that allows guaranteed message arrival at the

base station even with the Packet Error Rate (PER) of as high as 50% and security

is employed using encryption.

LoRa uses chirp spread spectrum modulation to achieve long-range communica-

tion of several kilometers in rural and suburban areas. It operates with very low

power consumption, allowing devices to operate for several years on a single battery.

LoRa has a high capacity for connecting a large number of devices, up to millions

of devices per gateway, making it ideal for large-scale IoT applications. It utilizes

the LoRaWAN protocol, which is an open standard developed by the LoRa Alliance

[15]. This open standard allows various manufacturers to develop LoRa-based de-

11

vices, potentially providing more options and lower costs for end-users. LoRa also

offers the advantage of having no restrictions on the number of messages that can be

sent per day. This makes it suitable for IoT applications that require frequent data

transmissions. Combined with its long-range capability, low power consumption, and

high device capacity, LoRa has become one of the most prominent LPWAN standards

available today.

2.2 The Semtech LoRa Technology

In this section, an in-depth discussion of the technical aspects of LoRa is provided,

including its modulation technique, signal structure, and network architecture.

2.2.1 LoRa Physical Layer

LoRa uses a proprietary physical layer RF technology [25]. The modulation scheme

employed by LoRa radio is a derivative of the Chirp Spread Spectrum (CSS) mod-

ulation scheme. The technology enables simpler and more accurate synchronization

both in terms of timing and frequency. This synchronization is achieved by ensuring

the phase continuity among chirp symbols in the preamble of the packet, eliminating

the need for the expensive components to generate a stable local clock in the LoRa

node. The technology also provides the possibility to trade the throughput for energy

consumption, or communication range, while keeping the bandwidth constant.

LoRa operates in the sub-1GHz frequency band and the regional regulations [26]

govern the central frequency for various regions. For instance, in the US it operates

on the band centered at 915 MHz, but in Europe, it works on the band centered at

868 MHz. In addition to the central band, the regional specifications also require

the radio transceivers in Europe to adopt a transmission duty cycle restriction of

1% or 0.1%, depending on the subband used. This duty cycle restriction can be

ignored if the transceiver performs Listen Before Talk, which is essentially a carrier

sensing mechanism to prevent interference among devices. The US doesn’t impose

12

Figure 2.1: Comparison of various spreading factor (source: [1])

any duty cycle restrictions but imposes a packet dwell time restriction of 400ms. In

other words, the LoRa transceivers operating in the US can not send a packet with a

duration longer than 400ms.

There are three parameters that specify the LoRa modulation:

• Bandwidth (BW): 125 kHz or 500 kHz for US;

• Spreading Factor (SF): It ranges from(7–12) and determines the length of

the chirp symbol in the time domain as Ts = 2SF.Tc, where Tc = 1/BW . Figure

2.1 compares various spreading factors.

A lower spreading factor indicates a shorter symbol duration, hence less time-

on-air resulting in a higher data rate, and the higher the spreading factors; the

lower will be the data rates. The spreading factors also affect the sensitivity of

the receiver. A lower spreading factor corresponds to lower sensitivity, hence

a lower range, and vice versa. Table 2.2 [27] tabulates various data rates and

transmission ranges associated with each spreading factor at 125 kHz band-

width.

• Coding rate (CR) It ranges from 0 to 4 and determines the rate of the forward

error correcting code as:

13

Figure 2.2: LoRa physical packet (source: [1])

RateCode = 4/(4 +R).

According to [28], the effective data rate of a LoRa packet is given by:

Rb = SF
CodeRate

2SF

BW

[bits/s] (2.1)

Figure 2.2 shows the physical packet structure of LoRa. LoRa physical packet

starts with a preamble that is typically 8 up-chirps. It helps the receiver to lock

onto the data rate. The preamble is followed by two down-chirps that demarcate the

starting of the payload. The payload is followed by the CRC for error detection and

correction.

All LoRa packets are considered to have a preamble so the receiver can synchronize

Table 2.2: LoRa spreading factors

Spreading factor
(UL for 125 KHz)

Physical bit rate
(bits/sec)

Transmission Range
(Depends on Terrain)

SF7 5470 2 Kms
SF8 3125 4 Kms
SF9 1760 6 Kms
SF10 980 8 Kms
SF11 440 10 Kms
SF12 250 12 Kms

14

its frequency and timing according to the sender. Although the data rate ranges from

0.3-500 kbps approximately, the actual capacity of the system is much larger. The

receiver exploits the orthogonal property of the spreading factors used by LoRa to

detect multiple simultaneous transmissions from the different LoRa transmitters [28].

The LoRa gateways currently available allow for up to 64-channel parallel process-

ing capabilities.

2.2.2 LoRa System Architecture

A typical LoRa network consists of three main network components:

• LoRa End-devices: They are basically sensors or actuators interfaced with the

LoRa radio module.

• LoRa Gateways: Gateways act as sink nodes in the network. They act as a

bridge between end devices and the LoRa Network Server.

• LoRa Network Server: The network server is the central entity in the LoRa

network. It is responsible for controlling the entire network which includes but

is not limited to radio resource management, admission control, security, etc.

The components of the LoRa network are typically configured in a star topology.

Figure 2.3 illustrates a typical LoRa network laid out in a star-of-stars topology.

The end devices are normally connected to one or many gateways via single-hop

LoRa communication. The gateways as described above act as a bridge between

end devices and the network server and are connected to a common Network Server

via standard Internet technologies. The gateways are mainly responsible for relaying

packets between end devices and the Network Server. Any gateway that successfully

decodes the message sent by any of the end-device will forward the packet to the

Network Server after adding link information. The Network Server can communicate

with the end devices by choosing one of the gateways based on some criterion (e.g.,

best radio connectivity).

15

Network Server

Application
Server

Gateways

Pet
Tracking

Fire
Alarm

Water
Meter

Vending
Machine

Trash
Container

Figure 2.3: LoRaWAN architecture

2.2.3 LoRa MAC

As stated earlier, LoRa is a physical layer technology but it provides the flexibility

to implement any of the upper layer protocols. The upper layer protocol suit devel-

oped by LoRa Alliance is called LoRaWAN. According to the specifications[26], the

MAC layer defined under the LoRaWAN protocol suit is basically an ALOHA-based

protocol.

Under LoRaWAN, the end devices can be categorized into one of the three specified

classes that are Class A, Class B, and Class C as shown in figure 2.4. These classes

are specified in [26].

Under the Class A mode of operation, transmissions can only be initialized by the

end devices. These transmissions will occur in a totally asynchronous manner. After

every uplink, the end device will open two receive windows. These receive windows

16

Transmit RX1 RX2Class-A
RX

Delay1
RX

Delay2

Transmit RX1 RX2
RX

Delay1
RX

Delay2

Class-B

Beacon Period

Class-C Transmit RX1 RX2

RX
Delay1

RX
Delay2

RXC
R
X
C

RXC

Extends till
next uplink

Beacon Ping Beacon

Figure 2.4: LoRaWAN classes of operation

are intended for the network server to send any command or data to the end device.

The first receive window is opened according to the uplink channel and spreading

factor but the second receive window is always opened on a channel and spreading

factor preconfigured by the network server. Class A is the default mode of operation

for LoRaWAN and is mainly intended for applications where an application server or

control station collects the data produced by the end devices. In other words, Class

A mode is used for devices that typically do not require downlink commands from a

controller.

Class B mode of operation enables end devices to have limited capability to receive

downlink communication even without having the need to send an uplink. In order

to achieve this capability, the end devices under class B mode must have a tight time

synchronization with the network clock. This synchronization is achieved using bea-

cons that are broadcasted by the GPS-enabled Class B gateways. Once synchronized,

the end devices can receive the downlink communication in specific time slots that

are independent of the uplink traffic. Class B mode of operation is generally intended

for applications that require end devices to receive downlink commands to function

properly.

Finally, under Class C mode of operation, the end devices keep their transceivers

17

in the listen mode whenever they are not transmitting. The network server can

communicate to these devices at any time without the need for any uplink traffic or

time synchronization. This mode of operation is intended for end devices that do not

have any energy constraints and are generally grid powered.

All communication under the LoRaWAN protocol is secured via strong AES-128 en-

cryption. The network and application keys used for encryption and decryption are

generated securely through an Over-The-Air Activation (OTAA) procedure. User-

defined keys can be set using the Activation By Personalization (ABP) procedure.

The procedures for activation and key generation are defined in the LoRaWAN spec-

ification [26].

2.2.4 Adaptive Data Rate (ADR) Mechanism

The MAC layer in the LoRaWAN protocol has a distinguished feature called the

adaptive data rate mechanism. It allows the end devices to dynamically change their

transmission data rate according to the link quality. The network server manages

this mechanism by enabling end devices to change the spreading factor index. The

ADR mechanism tries to find the best trade-off between energy efficiency and link

robustness.

Any LoRaWAN compliant end device can enable the ADR mechanism by setting

the ADR bit in its uplink communication packets. The ADR mechanism runs as

two-part mechanism, running asynchronously at the end node (ADR-NODE) and at

the network server (ADR-NET)

The ADR algorithm running on the end node side is a very simple and effective way

of increasing its packet delivery rate to the network server by increasing the SF index

of the packet. Doing so, the transmission range increases, and hence, the probability

of reaching the gateway increases. The LoRaWAN specification doesn’t specify any

rules or mechanisms for the ADR algorithm running on the network server. This gives

the network providers the flexibility to specify their own version of ADR. The ADR-

18

Net referred to henceforth will be based on the reference rate adaptation algorithm

[29] by Semtech, implemented by the Things Network [30].

ADR-NODE: The end device that has ADR enabled will keep track of two coun-

ters: ADR_ACK_CNT and ADR_ACK_DELAY. For each uplink, the end device

will increment the ADR_ACK_CNT. When the value of ADR_ACK_CNT exceeds

ADR_ACK_LIMIT, which can be configured during device setup time, the end de-

vice requests an acknowledgment from the network server by setting ADRACKReq

bit its subsequent uplink transmissions. The end device then waits for the acknowl-

edgement for the next ADR_ACK_DELAY number of uplink packets. If the end

device does not receive any acknowledgment once the ADR_ACK_DELAY counter

expires, the device first increases its transmit power and if that is not sufficient then

it increases its SF index to improve its probability of reaching the gateway [26].

ADR-NET permits the network server to control the transmit power and data

rates of each node for uplink communication. It calculates the link budget by using

the RSSI and SNR of recevied frames from each device. Based on the minimum SNR

required for demodulation specified by Semtech, the parameters are then calculated.

These parameters are then sent to the node using a downlink frame. The node

configures itself according to the received parameters and uses the same for all future

uplinks unless otherwise instructed.

2.3 Artificial Intelligence

Artificial Intelligence (AI) has experienced a resurgence in recent years, commonly

referred to as the "third wave" of AI. This is due to the availability of faster and

cheaper computation, the abundance of large datasets, and the development of new

algorithms. These factors have enabled the creation of AI systems that can perform

complex tasks and achieve human-like capabilities, leading to significant advance-

ments in various fields, including healthcare, finance, transportation, and manufac-

turing.

19

AI refers to the capacity of a machine to exhibit cognitive abilities such as per-

ception, synthesis, and inference of information, which are indicative of intelligent

behavior. As defined in a 2007 paper [31], AI is the science and engineering of creat-

ing intelligent machines, particularly intelligent computer programs. It is related to

the task of using computers to comprehend human intelligence, but it is not limited to

methods that are biologically observable. The emergence of AI is discussed in another

paper [32], which categorizes AI systems as those that mimic human behavior.

AI is a multidisciplinary field that leverages large datasets and computer science

techniques to solve complex problems. It encompasses subfields such as machine

learning, deep learning, and federated learning, which employ AI algorithms to cre-

ate systems that can perform tasks such as classification and prediction based on input

data. These techniques and algorithms are widely used in various real-world appli-

cations, including speech recognition, computer vision, healthcare, customer service,

and many others.

2.3.1 Machine Learning

Machine learning is a subset of Artificial Intelligence that enables computers to

learn and improve their performance on a specific task, by analyzing patterns in

data without the need for explicit programming. In simple terms, it is a process

of training computer algorithms to automatically improve their performance when

exposed to new data. As described by [33] machine learning is when a computer

program improves its performance on a task, as measured by a performance metric,

through experience gained from the data provided.

It enables the creation of autonomous systems capable of performing tasks with-

out human intervention. Through the use of learning algorithms and continuously

accumulating experience, these systems are able to adapt to the complexity of prob-

lems and make decisions. While human-performed tasks such as cooking, driving,

and speech recognition can also be accomplished by machine learning, the technique

20

is particularly useful for handling tasks that are beyond human capabilities, such

as analyzing large and complex datasets in fields such as remote sensing, weather

forecasting, e-commerce, and web search. With the vastness of data, it becomes

increasingly difficult for humans to extract valuable insights, but machine learning

algorithms are able to handle this complexity and make predictions or decisions based

on the data.

In order to effectively solve a given problem, an appropriate machine learning

approach must be selected. The various categories of machine learning techniques

include [34]:

Classification Problem: It is a type of machine learning problem in which the

goal is to predict the output class of an input based on a set of predefined classes.

The number of classes and the nature of the classes are known in advance. The

classification problem can be of two types: binary, in which the output can only

belong to two classes, and multi-class, in which the output can belong to more than

two classes.

Anomaly Detection Problem: Anomaly detection is a machine learning task

that aims to identify patterns and detect variations or anomalies in these patterns.

This can be used in various domains, for example credit card companies use anomaly

detection algorithms to identify unusual transaction behavior and flag them as po-

tential fraudulent activities. The goal of anomaly detection is to identify data points

that do not conform to the expected pattern of the majority of data points and are

considered outliers. Another example is identifying equipment failures in a manu-

facturing plant by monitoring sensor data from various machines and detecting any

unusual patterns or deviations that may indicate an impending equipment failure.

Regression Problem: Regression algorithms are a category of supervised ma-

chine learning techniques that are used to solve problems where the output is a

continuous and numeric value. These algorithms are typically used for problems that

21

involve making predictions of a numeric value, such as predicting the price of a house,

the number of units to be sold, or the amount of rainfall.

Clustering Problem: Clustering is a type of unsupervised machine learning tech-

nique that groups similar data points together based on their characteristics, in order

to discover the inherent structures in the data. The goal of clustering is to divide

the data into subsets, called clusters, such that the data points in the same cluster

are more similar to each other than to those in other clusters. The clusters are then

labeled, and the trained algorithm can be used to assign new, unseen data points to

one of the identified clusters.

Reinforcement Problem: Reinforcement learning is a machine learning tech-

nique that focuses on training agents to make decisions based on their experiences.

The agent learns by interacting with an environment and receiving feedback in the

form of rewards or penalties. Reinforcement learning allows for the creation of agents

that can learn how to perform a task without being explicitly programmed on how

to do it. It’s widely used in various applications such as game-playing, robotics, and

control systems.

Generic working of ML The process of Machine Learning is composed of six

key components that are independent of the specific problem or algorithm being used.

These components include data collection and preparation, model selection, model

training, model evaluation, model fine-tuning, and model deployment and mainte-

nance. These steps are crucial to achieving successful results with ML and are often

illustrated in a figure, such as figure 2.5.

Each component has a specific task to accomplish:

• Data collection and preparation:: The initial stage of the machine learning

process involves collecting and preparing the data in a format that can be

processed by the chosen algorithm. In many cases, a large amount of data

may be available for a given problem. However, the data from web sources is

22

Data Collection
and Preparation Feature SelectionFeature Selection Choice of

Algorithm

Selection of
Model and
Parameters

Training
Performance

Evaluation

Figure 2.5: Generic ML model components

often unstructured and contains a significant amount of noise, such as irrelevant

and redundant data. Therefore, the data must be cleaned and pre-processed

into a structured format before it can be used for training the algorithm.

• Feature Selection: The data obtained from the previous step may include

numerous features, some of which may not be relevant to the learning process.

These features must be removed, and a subset of the most important features

must be selected for use in the learning process. This process is referred to

as feature selection or dimensionality reduction. The goal of this step is to

improve the performance of the algorithm by reducing the computational cost

and increasing the interpretability of the model.

• Choice of Algorithm: Not all machine learning algorithms are suitable for

all types of problems. Some algorithms are better suited for certain classes of

problems, as discussed above. The selection of the most appropriate machine

learning algorithm for a given problem is crucial in achieving optimal results.

This process is known as model selection, and it involves comparing the perfor-

mance of different algorithms on a specific problem and selecting the one that

performs best.

• Selection of Models and Parameters: Most machine learning algorithms

require some manual tuning of various parameters in order to achieve optimal

23

performance. This process is referred to as hyperparameter tuning, and it in-

volves selecting the most appropriate values for the parameters of the chosen

algorithm. These parameters include, but are not limited to, learning rate,

number of hidden layers, and number of neurons. Hyperparameter tuning can

be a time-consuming process and requires some initial manual intervention.

• Training: After selecting the appropriate algorithm and optimal parameter

values through the process of model selection and hyperparameter tuning, the

model is trained using a portion of the dataset as the training data. This process

is referred to as model training, and it involves using the training data to learn

the underlying patterns and relationships in the data. The trained model can

then be used to make predictions on new, unseen data.

• Performance Evaluation: Prior to the deployment of the system for real-time

use, the model must be evaluated using unseen data to assess its performance.

This process is referred to as model evaluation, and it involves using various

performance metrics such as accuracy, precision, and recall to determine how

well the model generalizes to new data. Model evaluation is crucial for identi-

fying any potential issues with the model and for determining its readiness for

deployment.

2.3.2 Data Dimensionality Reduction

In recent decades, machine learning models have been extensively utilized in a

wide range of complex and data-intensive applications such as meteorology, biology,

astronomy, medicine, economy, and finance. However, current ML-based systems are

not efficient and extensible enough to handle massive and voluminous data. The high

dimensionality of data can be a hindrance for data processing and finding the global

optimum can be computationally expensive. To overcome this challenge, dimension-

ality reduction algorithms have been developed to reduce the number of dimensions

24

of the data by eliminating redundant and irrelevant information, resulting in im-

proved accuracy of results. These algorithms operate in an unsupervised manner

to uncover the underlying structure within the data. Popular dimensionality reduc-

tion techniques include Multidimensional scaling (MDS) [35], Principal component

analysis (PCA) [36], Principal component regression (PCR) [37], and Linear Discrim-

inant Analysis (LDA) [38]. These techniques can be integrated with classification and

regression algorithms to enhance their performance.

PCA: Principal Component Analysis (PCA) is a widely used technique in machine

learning and data analysis for reducing the dimensionality of the data. It is a linear

technique that aims to project the data onto a new lower-dimensional space while

preserving as much of the variation in the data as possible. The algorithm consists

of the following steps:

• Data Preprocessing: The first step is to standardize the data by subtracting the

mean and dividing by the standard deviation. This ensures that all features are

on the same scale and have zero mean.

• Covariance Matrix Calculation: Next, the covariance matrix of the standardized

data is computed. The covariance matrix is a square matrix that contains the

pairwise covariance between all features.

• Eigen Decomposition: The eigenvectors and eigenvalues of the covariance matrix

are calculated and the eigenvectors with the highest eigenvalues are chosen as

the principal components. These eigenvectors define the directions of the new

coordinate system and the eigenvalues indicate the amount of variation in the

data along each direction.

• Data Projection: The original data is projected onto the new coordinate system

defined by the principal components. This is done by taking the dot product of

the data with the matrix of eigenvectors.

25

• Dimensionality Reduction: The data can be reduced to a lower-dimensional

space by keeping only the first k principal components, where k is the number

of dimensions desired in the reduced space.

By following these steps, the PCA algorithm enables us to reduce the dimensionality

of the data while preserving most of the important information that is useful for the

analysis. The result is a new set of uncorrelated features that can be used for further

analysis and modeling.

2.3.3 Model Pruning

Model pruning is a technique used in machine learning to reduce the complexity of

a trained model while preserving its accuracy [39] [40]. It aims to eliminate the un-

necessary parameters or connections in the model that do not contribute significantly

to the model’s performance. This can be achieved by removing parameters with the

smallest magnitude of weights or neurons/layers that have the least impact on the

output.

One common approach for pruning is based on the magnitude of the weights [40].

This process starts by initializing all the weights in the model, then training the model

and evaluating the performance. Next, the weights with the smallest magnitude are

removed, and the model is retrained and evaluated again. This process is repeated

iteratively until a desired level of compression is achieved.

It is important to note that model pruning can result in a trade-off between the

performance of the model and the size of the model [40]. Pruning too aggressively

can lead to a significant drop in accuracy, while pruning too little may not produce

the desired reduction in model size. Therefore, it is essential to find the right bal-

ance between the performance and the size of the model through proper evaluation

methods.

CHAPTER 3: RELATED WORKS

This chapter provides a comprehensive examination of the technical aspects of

LoRa and LoRaWAN, which have received significant attention from the research

community. The studies discussed in this chapter include evaluations of coverage

performance, the effect of interference on communication, the assignment of configu-

ration parameters, advancements in ADR, MAC designs, and IoT requirements. Ad-

ditionally, the chapter also covers research on the implementation of LoRa networks

in smart cities.

3.1 LoRa and LoRaWAN

This section delves into an analysis of various studies focused on evaluating the

communication range of LoRa, as well as the effects of interference on the network.

Additionally, it presents the different approaches taken to mitigate the detrimental

effects of interference in order to optimize the performance of the network.

3.1.1 Communication Range

Like other wireless technologies, the network coverage of LoRa also depends on the

transmission parameters (prominently the spreading factors and transmit power) and

the environmental condition where the network is deployed. To assess the coverage for

both outdoor and indoor environments, several empirical studies have been performed.

A study to measure the coverage of LoRa network range [41] was performed in the

city of Oulu in Finland that has mostly a flat geographical landscape. An antenna

tower that was 24 meters high above sea level was used to mount the gateway. The

results showed that for end devices within the range of 2 km, the RSSI of above -100

dBm with a packet loss ratio (PLR) of 12% was observed. As the end devices are

27

moved to distances of 2 to 5 km, PLR of 15% surges up to 33% for distances between

5–10 km. The network starts to experience huge packet losses with a PLR of 74%

beyond 10 km. These losses were lower when measured in the open sea, being 31% for

a range of 5–15 km, and for a range of 15–30 km a PLR of 38% was observed. During

this study, no ADR or acknowledgment mechanisms were employed. The study shows

that LoRa can achieve long coverage ranges. The long coverage range observed in

this study resulted from mostly flat terrain. In the case of areas with hilly terrains,

LoRa is expected to have comparatively lower coverage but it will still be in terms of

a few km.

A coverage test was conducted in an urban setting with buildings of 5–6 floors, as

stated in [42]. A LoRa gateway was installed on the rooftop of a two-story building,

achieving coverage of approximately 2 km. However, only SF12 could be utilized

beyond the 1.5 km range for coverage. The authors of [42] used this coverage range

to estimate a rough coverage plan for a city of 100 sq. km, requiring only 30 gateways

for complete coverage. In [43], a LoRa gateway was deployed on the second floor of a

house in a suburban environment. Using SF12, coverage could extend up to 2800 m

with a 20% Packet Loss Rate (PLR). SF7 had a coverage of 650 m with 18% PLR,

while SF9 could provide coverage up to 2300 m with a 12% PLR.

Furthermore, studies have investigated the indoor coverage capabilities of LoRa in

addition to outdoor environments [44, 45, 46]. Results have shown that LoRa pro-

vides sufficient indoor coverage with RSSI values higher than -70 dBm, allowing for

communication using all SFs [46]. LoRa has also been demonstrated to offer commu-

nication in large industrial areas, with an area of 34,000 square meters covered using

only SF7 [47]. The coverage area can be extended by utilizing higher SFs. For indus-

trial applications involving mobile or rotating objects, an evaluation was conducted

to account for the impact of Doppler shift and angular velocity on LoRa performance

[48]. Results showed that when the end node moves at a speed of 100 km/h, only one-

28

third of packets are received correctly. Additionally, under angular velocities higher

than 78 rad/s, LoRa communication using SF12 and 125 MHz channel bandwidth

becomes unreliable, resulting in up to 50% packet losses.

3.1.2 Impact of Interference on LoRa

The self-interference of LoRa is a crucial factor affecting network scalability, as it

can occur between transmissions utilizing the same spreading factor (SF) as well as

different SFs.

LoRa communication can experience interference from other co-located LoRa net-

works, which can impact communication even within the same network. Several

research papers, such as [49, 50, 51, 52, 53, 54], have studied LoRa self-interference.

In [52], a simulated network topology with two gateways belonging to different net-

works located at opposite corners of a 1000 m x 1000 m square was studied. Each

network had 60 nodes distributed within the area. Results showed that end nodes at

a distance of 1000 m from the gateway experienced a Packet Loss Rate (PLR) of up

to 50% due to interference, despite SFs being orthogonal in theory. This is because

orthogonality imperfections can lead to interference between SFs.

In [51], the effect of imperfect orthogonality among LoRa’s spreading factors (SFs)

on self-interference was investigated. The results showed that inter-SF interference

can significantly reduce network performance, especially for higher SFs (SF10–SF12),

even under low traffic loads. Log-normal channel fading was found to have a negative

impact on data extraction rate (DER) in single gateway deployments, with up to

a 15% reduction. However, in multi-gateway deployments, the impact of fading was

negligible due to the diversity of gateways. The study in [53] also found similar results

to those in [51] regarding LoRa self-interference.

The paper [51] delves into the impact of inter-SF interference on the LoRa network’s

performance, revealing that it can degrade the network’s performance even when net-

work traffic is low. The study also concludes that inter-SF interference affects higher

29

SFs (SF10-SF12) more severely. Moreover, the study shows that log-normal channel

fading has an adverse effect on Date Extraction Rate (DER) in single gateway scenar-

ios, but this effect is negligible in multi-gateway deployment due to gateway diversity.

Another paper [53] also shows similar results related to LoRa self-interference.

In [49, 50], studies were conducted on the collision behavior of two different LoRa

packets at the link level. The collision behavior is affected by the carrier frequency,

spreading factor, received power, and time difference between the interfering trans-

missions. The authors in [49] demonstrated that LoRa experiences the capture effect,

which means that the stronger signal can suppress the lower one and be correctly

decoded by the receiver. Based on this finding, the authors proposed two solutions

to decrease LoRa self-interference: using multi-gateway deployments and directional

antennas for end nodes. The first solution is beneficial for removing the negative

effects of fading channels [51]. The use of directional antennas for end nodes results

in a stronger received signal and lower interference from other interfering networks.

The study showed that using directional antennas with 8 dBi gain improves the Date

Extraction Rate (DER) by 0.06 compared to cases when omnidirectional antennas

are used [49].

3.1.3 LoRaWAN Improvements

Several studies have addressed the issue of network scalability in LoRaWAN and

proposed improvements to deal with it. These studies include research on improving

adaptive data rate (ADR) for better scalability, as well as different synchronization

and traffic scheduling approaches. Many of these studies, including [41, 55, 56, 57,

58, 59], have highlighted concerns about the impact of downlink traffic on network

scalability. Simulation results show that without addressing these scalability issues,

the network may reach a deadlock stage. As a result, researchers have proposed

various solutions such as optimizing SFs and transmit powers and improving the

ADR mechanism.

30

The study in [16] was one of the first to analyze the scalability of LoRaWAN

networks. The authors derived the capacity of a single gateway deployment under

perfect synchronization, and found that less than 2% of end devices will use SF12

according to the channel attenuation model in [41]. They also found that end devices

located far away from the gateway experience lower throughput due to the near-far

problem. To address this issue, an algorithm for assigning SFs and power levels to

end nodes was proposed in [60]. The algorithm optimizes the fraction of end nodes

using a certain SF to minimize the probability of inter-SF collisions, and then assigns

SFs and power levels based on the path loss of each end node. It was demonstrated

that using this algorithm can decrease Packet Error Rate (PER) by 50% for nodes

at the cell edge in a scenario with one end node per 1000 square meters transmitting

every 10 minutes. Several other studies have also reported on scalability concerns in

LoRaWAN networks and proposed improvements to the Adaptive Data Rate (ADR)

mechanism and synchronization and traffic scheduling approaches to improve network

scalability and reliability [41, 55, 56, 57, 58, 59].

The paper [61] explores the impact of SF distribution on packet success probability

(PSP) among end nodes in a LoRa network. The authors formulate an optimization

problem for assigning SFs to end nodes based on two conditions: (i) ensuring that

the received power from the node at the gateway exceeds the receiver sensitivity

threshold for the assigned SF, and (ii) ensuring that the signal-to-interference ratio

(SIR) for that node exceeds the correctly decoded SIR threshold for that SF. They

determine the regions of SF distribution in the network that maximize the average

PSP by considering the distance covered by each SF. The authors demonstrate that

increasing the lower SF region can improve PSP in networks with numerous end

devices. Their proposed solution outperforms equal-interval and equal-area based SF

distribution schemes in terms of average network PSP.

In [62], the authors propose two new algorithms for SF distribution in a cell. The

31

first algorithm, ExpLoRa-SF, equalizes the number of end nodes using different SFs

by assigning the lowest SF to the first group of end nodes that are closer to the

gateway based on their received signal strength indicator (RSSI) values and so on

until the last group of end nodes. The second algorithm, ExpLoRa-AT, aims to

equalize transmission times between different end nodes by distributing different SFs.

This approach optimizes the usage of different SFs over time, resulting in better

network performance. However, the first approach achieves the same results when all

end nodes have the same traffic patterns and packet lengths.

In addition to SF and transmit power assignment algorithms, other improvements

to the Adaptive Data Rate (ADR) mechanism are proposed in [63, 64]. The authors of

[64] evaluate the performance of the ADR mechanism in terms of its average converge

time, which depends on the network size and channel conditions. Surprisingly, highly

variable channels can decrease the ADR convergence time for large networks by in-

troducing randomness in RSSI values and increasing the impact of the capture effect.

The authors optimize different parameters of the ADR mechanism and demonstrate

that only reducing the ADR_ACK_DELAY parameter improves the ADR conver-

gence time by shortening the duration of individual steps to increase transmit power

and SF.

According to [59], the main factors that result in packet loss in LoRaWANs are

interference, gateway receiver saturation, and network outage. When the LoRaWAN

is highly congested, receiver congestion becomes the main factor for packet loss rather

than network outage. In such cases, using ADR algorithms or retransmission mech-

anisms can further worsen the performance instead of improving it.

In [63], the authors proposed an enhancement to the existing ADR mechanism

deployed at the network server to enhance network performance. Instead of utilizing

the maximum SNR value from a window of past uplink packets, the authors suggested

using the average SNR of that window. This modification helps to mitigate the

32

effect of fluctuating channel conditions. The proposed ADR mechanism was shown

to achieve a packet delivery ratio that is at least 30% better than the basic ADR

mechanism in scenarios with moderate variable channels.

Several studies, including [55, 58, 59], have shown that downlink traffic can have

a negative impact on the overall performance of LoRaWAN networks, particularly in

the case of a large number of end nodes. In [58], it was found that increasing the

ratio of high priority end nodes, which require confirmed uplink traffic, can decrease

the total network throughput and worsen the throughput for low priority end devices.

This same relationship was observed when increasing the number of retransmissions

per packet. In [55], it was shown that the number of missed receive windows increases

with an increase in uplink traffic that requires downlink confirmation, due to gateway

duty cycle.

3.1.4 Scheduling Based Approaches

The ADR mechanism and the use of different spreading factors and transmit power

levels can enhance network scalability. However, the primary limitation of network

scalability is the use of the Aloha-based MAC protocol. Furthermore, the half-duplex

operation of gateways and duty cycle restrictions have further reduced network scal-

ability. As a result, alternative solutions based on low-power time synchronization

and low-overhead traffic scheduling mechanisms are being investigated to coordinate

transmissions.

In [65], a lightweight scheduling mechanism is proposed for specifying the allowed

spreading factors (SFs) and transmit powers for certain communication channels. The

time is divided into frames and each frame is further divided into subframes, where the

number of subframes is equal to the number of channels used. At the beginning of each

subframe, a beacon that contains information about allowed SFs and received signal

strength indicator (RSSI) values for each channel is transmitted. In the second part

of the subframe, end nodes can transmit their uplink data using the Aloha protocol.

33

The main advantage of this approach is that it reduces the impact of the capture

effect and inter-SF collisions by allowing the end nodes to select the minimum SF

and transmit power that reduces negative interference with other devices. The only

constraint is that uplink traffic should not interfere with beaconing traffic. However,

the reliability improvements compared to LoRaWAN are not significant, with only

4-5% fewer packet losses observed for a multi-gateway deployment with 3500 end

nodes.

In tele-measurement applications, accurate time synchronization between end de-

vices and the back-end is crucial. In [66], a low-power time synchronization mecha-

nism is proposed for Class A end devices. The mechanism synchronizes end devices a

posteriori, after sending the event payload to the network. End nodes receive an ACK

packet from the back-end after the main transmission, and then send a second packet

indicating the time when the first packet was sent and when the ACK was received

according to the unsynchronized end node time. The back-end can then calculate

the uncertainty of the time-stamp and determine the actual time of the event. While

this approach requires low power and an additional short packet, it cannot handle

heavy loads or be used for traffic scheduling at specific times. In addition, if any of

the packets are lost, the system will malfunction, and the actual time is only known

at the back-end, not at the end node.

In [67], a low-overhead synchronization and scheduling mechanism is introduced

that divides time into slots that are maintained by a scheduling entity in the network

server. End nodes request synchronization and scheduling of time slots, which can

occur in-band or through a separate channel reserved for synchronization traffic. The

synchronization and scheduling entity responds with the current time slot, offset in

the current time slot, and future time slots for end nodes to transmit. The information

about scheduled time slots is compressed using probabilistic data structure to fit in

one packet payload. Based on the response, end nodes can determine the current

34

time and future time slots to transmit. Synchronization can happen infrequently and

considers end node clock drift. This mechanism increases packet delivery ratio by

30% for single SF deployments, practically utilizing full network capacity. Multi-SF

deployments require SNR-based scheduling or using slotted-Aloha for LoRaWAN, as

proposed in [68]. The proposed ACK-based time synchronization algorithm using

slotted-Aloha decreases collision probability three times compared to pure Aloha.

3.1.5 New MAC Designs for LoRa

There are several MAC designs that were used by researchers on top of LoRa to

overcome the limitations of Aloha. For example, in [69], it is suggested that imple-

menting CSMA-based MAC protocols on top of LoRa can improve its performance.

By incorporating CSMA, the duty cycle can be avoided and the packet delivery ra-

tio (PDR) can be increased significantly. For example, authors found that by using

CSMA, the PDR increased by seven times compared to traditional Aloha-based MAC

in a scenario with 10,000 nodes. The PDR for CSMA-based MAC was over 75%, while

the PDR for Aloha-based LoRaWAN MAC was only 10%. Moreover, implementing

CSMA can decrease the energy consumption per node, as much energy is wasted in

collisions in Aloha-based LoRaWAN MAC.

In [70], a time-power multiplexing approach was proposed to enhance the scala-

bility of downlink traffic in LoRa-based MAC protocols. To achieve this, the uplink

and downlink traffic were decoupled, with both receive windows only using a high

power (27 dBm) and high duty cycle (10%) channel (869.525 MHz) for downlink traf-

fic, while the other channels were reserved only for uplink traffic. Additionally, the

downlink transmission was multiplexed in time and power, utilizing different spread-

ing factors and transmit powers to send multiple packets simultaneously. This method

resulted in decreased retransmissions of confirmed uplink packets and increased up-

link throughput, including for non-confirmed traffic, by eliminating the possibility of

collisions between uplink and downlink traffic.

35

In LoRa networks with mobile nodes, the hidden terminal problem can occur when

end nodes covered by different gateways interfere with each other’s traffic. To address

this, a MAC protocol was proposed in [71] where nodes are always in the listening state

and send a Request-to-Sent (RTS) message when they want to transmit. Multiple

gateways reply with Clear-to-Sent (CTS) messages, but due to the capture effect, only

one CTS succeeds. Both RTS and CTS messages include the reservation time for the

channel. Before actual data transmission, the end node sends a Control CTS (CCTS)

message to inform which gateway it will transmit to, allowing other gateways to serve

other nodes. This MAC protocol improves the data delivery ratio by reducing the

impact of the hidden terminal effect.

3.2 IoT Requirements

This section briefly discusses some of the existing works done on the QoS require-

ments for IoT applications.

The authors of [72] and [73] present the QoS requirements by IoT applications and

network deployments that follow those requirements. In [72], the authors present

a generic QoS architecture for IoT applications. The paper categorizes all the IoT

applications into three categories namely: inquiry task, control task, and monitoring

task. They further state that the task of inquiry (eg. status of smart logistics)

focuses on timeliness and reliability. The control task (eg. remotely controlling some

actuator) relies on timeliness and reliability of the information, and the monitoring

task may require real-time or non-real time data. Different applications have different

QoS requirements.

[74] proposes an analytical model for IoT applications. The authors classified the

network traffic into two levels of priorities i.e. low priority (normal traffic) and high

priority(emergency traffic). They considered the low priority traffic can only be served

in absence of high priority traffic. The service to low priority traffic is immediately

preempted upon arrival of high priority traffic. They assume that the low priority

36

traffic can be entirely sacrificed if required in order to serve to delay sensitive high

priority traffic.

3.3 Artificial Intelligence in IoT

There are numerous IoT applications that have the potential to benefit from AI

tools. This section discusses some of the existing works done in the field of IoT in

collaboration with AI tools. Since most of the IoT applications are enabled by em-

bedded devices, we will also discuss the existing works on AI in resource-constrained

environments.

Human health is one of the fields that has benefited much from the advent of IoT

and AI tools. In [75], the authors proposed a highly reliable method for measur-

ing blood pressure without the need of putting cuffs. The proposed model uses a

combination of information from the ECG signal and photoplethysmography (PPG)

to measure blood pressure. The study first establishes a relationship between blood

pressure and the ECG. This enables the user with ECG sensor to potentially measure

blood pressure not requiring any additional device.

The authors of [76] proposed a novel solution to predict heart diseases using the cas-

caded deep learning model in the fog computing environment. Their solution makes

use of data from multiple sensors that provide data about daily activity that is fed

to an ensemble classifier. The classifier is hosted in the fog environment and compu-

tations are performed in a decentralized manner. The proposed approach achieved a

prediction accuracy of 95%.

A transfer learning methodology to decrease the computational resources needed to

train a deep neural network for a Reinforcement Learning (RL) problem is presented

in [77]. The deep neural network is trained on a varied set of meta-environments to

acquire a broad domain knowledge, which can then be transferred to test environ-

ments, and only the last few fully connected layers are trained. The performance of

the algorithm is evaluated in terms of Mean Safe Flight, and it was observed that

37

the network’s performance is comparable to that of training the network end-to-end,

while significantly decreasing the latency and energy consumption by 1.8 and 3.7

times, respectively.

CHAPTER 4: PERFORMANCE EVALUATION AND LIMITATIONS OF

LoRaWAN NETWORKS

4.1 Introduction

In this chapter, we present our analysis of the performance of LoRa networks.

This work presents a systematic study to gain insights into the limitations of the

LoRa networks. We investigate the transmission range, power consumption, and

scalability of LoRa networks. We further study the impacts of various configuration

parameters on the performance of the LoRa network. We have utilized “mdot” [78]

by “Multitech” along with “Multitech conduit” [79] to carry out experiments in this

part of the dissertation. In addition, we use NS-3 simulations for obtaining important

scalability studies that are difficult to obtain experimentally. Our findings show that

LoRa networks can achieve transmission ranges well above 3 miles and a AA Li-ion

battery can power an end device for more than 7 years. The performance evaluation

also provided insights regarding the limitations of LoRaWAN networks.

4.2 Need of LPWANs

Legacy wireless technologies like Zigbee have limited transmission ranges that can-

not be used to serve a wide area such as an entire city. These devices are usually

configured into a multihop mesh network to cover a larger area, as shown in figure

Figure 4.1: Typical multi-hop scenario

39

4.1. Some of the potential challenges for such networks to meet the coverage and

scalability requirements of IoT networks are as follows:

• Delay: The packets in multihop networks arrive from the source node to the

sink node via multiple hops and each node introduces processing and channel

access delays [80] that become significant with the increasing number of hops.

• Need for robust routing: Multihop communication requires a dynamic routing

protocol that must be implemented in all the nodes. This has been an area of

extensive research, but in general, performance degrades drastically with the

number of hops [81, 82]. Scaling up to thousands of nodes would require a

hierarchical network infrastructure, which increases overhead and complexity.

• Multiple points of failure: Multihop networks need relay nodes for packet de-

livery. If a few of the relay nodes die out due to any reason then a part of the

network will not be able to communicate to the sink.

• More network setup time: Any message from the source node to the sink node

needs to be routed via multiple nodes and hence initial setup time will be

required to make the routing decisions [80].

• Need for highly robust MAC protocol: The MAC protocol must resolve channel

access contention from multiple neighboring nodes, which is challenging.

With an increasing number of devices connected to the Internet, there is a renewed

thrust on developing low-cost and low-data-rate wireless technologies. SIGFOX built

the first modern LPWAN. This came at a time when radio technology was becoming

less expensive, and the tools for integrating applications were becoming easier for

people to use. All these things have driven the emergence of LPWAN technologies.

40

Figure 4.2: Predetermined positions for end device to take measurements

4.3 Performance Study

Long range and low power consumption are the two distinctive features of LPWANs

that make them attractive for IoT deployment. In this section, we present the per-

formance results of LoRa to evaluate its transmission range under various conditions,

power consumption, and scalability.

4.3.1 Transmission Range

The sensor unit used for measuring the transmission range is composed of SX1272

LoRa module [83] that is the transceiver module and Multitech Conduit [79] is used

as a gateway.

Table 4.1: Experimental results for range for SF=10 and transmit power of 14dBm
towards the northeast direction from UNCC

Distance
(Miles)

Total
Packets
Sent

Packets
Sent Suc-
cessfully

ACK Re-
ceived

ACK lost

0.22 100 100 100 0
0.62 100 100 100 0
1.02 100 82 75 7
1.9 100 76 73 3
2.5 100 39 32 6
3 100 53 53 0

41

Transmission Range

10

Figure 4.3: Gateway connected to the network server on the roof of CRI parking deck
at UNCC and end device taken to predetermined locations

The gateway was attached to a laptop (acting as a server) that was placed on

the roof of the CRI parking deck at the University of North Carolina at Charlotte

(UNCC) as shown in figure 4.3. End device with different communication parame-

ters i.e. different spreading factors, transmit powers, and coding rates was taken to

predetermined distances around the UNCC campus area as shown in figure 4.2 and

the corresponding communication links were evaluated. The results with the device

taken to the northeast direction of the campus with an SF of 10 and transmit power of

14dBm are tabulated in Table 4.1. This region represents a semi-urban environment

where the RF signal gets attenuated by buildings, trees, vehicles, etc., a LoRa node

was able to achieve a maximum transmission range of 3 miles with a 53% success rate.

In the northwest direction, a similar transmission range was achieved but the success

rate at 3 miles distance was 70% because of less number of obstructions. However,

in the southwest direction, there are several obstructions such as light-rail tracks and

stations, bridges, buildings, traffic lights, etc. along this direction. The packets were

able to reach a distance of 0.47 miles with a 100% success rate with all spreading

factors but could not reach any further.

42

Figure 4.4: (a) Spreading Factor vs LoRa Range with Transmit power=14dBm (b)
Transmit Power vs LoRa Range for SF=10 towards the northeast direction from
UNCC

1) Effect of SF on Range: As the spreading factor increases, the range of the

network also increases i.e. range of the network increases with the spreading factor

(figure 4.4(a)).

2) Effect of Transmit power on Range: As the transmit power increases

the range of the network also increases i.e. range of the network increases with the

transmit power of LoRa transceiver (figure 4.4(b)).

4.3.2 Power Consumption

The current drawn by the end devices with different communication parameters

was measured in the laboratory. This was done by measuring the voltage drop across

a 1 ohm resistor that was connected in series with the 3.3V power supply for the end

device using a data acquisition board. The power consumption was estimated from

the corresponding current measurements.

1) Lifetime Expectancy of End Device: An effective and widely used mech-

anism for extending the battery life of wireless devices is to intelligently use sleep

modes. After a specified sleep time duration, the node wakes up, performs its tasks

43

Figure 4.5: Various operations in LoRa end device seen from oscilloscope

and then goes back to sleep for the specified interval of time (figure 4.5). The average

current of the node is calculated as:

Iavg =
Itx ∗ Ttx + Iuca ∗ (Tactive − Ttx)

Tactive + Tsleep

(4.1)

where Itx is the current drawn during transmission, Iuca is the active current of

micro controller, Tactive is the total active time of node, Tsleep is the sleep duration of

node, and Ttx is the duration of transmission.

For calculating the lifetime of the node, the average current is divided by a battery

rating of 2800mAH (considering Li-Ion battery). Table 4.2 shows the values of the

life expectancy of the node for different SF and sleep times. When a sleep cycle of

10 seconds is used then the node can have a maximum lifetime of 27 days but if we

increase the sleep time to 5 hours then we get a life expectancy of around 7 and a half

years considering the 2800mAH battery is used (self-decay of battery not included in

the calculation).

44

Table 4.2: Lifetime expectancy of LoRa end node for different sleep time with transmit
power of 14dBm

Battery life for sleep time intervals
SF 10 Sec 1 Hour 5 Hour 24 Hour
7 27.65 5.95 7.47 7.87
8 25.46 5.81 7.43 7.86
9 21.83 5.54 7.34 7.84
10 19.20 5.30 7.25 7.82

(Days) (Years) (Years) (Years)

2) Effect of SF on Consumed Energy: The spreading factor does not affect

the magnitude of the current drawn. By increasing the spreading factor time-on-air

for a data packet increases, which in turn means that the radio transceiver module

will stay ON for a longer duration and hence will increase the power consumption of

the device.

3) Effect of Coding Rate on Consumed Energy: Like the spreading factor,

the coding rate does not affect the magnitude of the current drawn, but as the coding

rate decreases the power consumption will increase. The reason behind this is the fact

that the decrease in CR means a greater number of communication bits per useful

data bit and hence a longer payload. To send a longer packet, more time will be

required as compared to sending a shorter message packet. Hence, the longer the

message packet, the longer the transceiver module will stay ON. This accounts for

the increase in power consumption.

4.3.3 Scalability

We evaluate scalability through simulations using the Network Simulator-3 (NS-

3) [84]. The simulation model considers that end devices are uniformly distributed

over a circular disk of radius r = 3.7km [85] as shown in figure 4.6. The application

running on end devices generates data every 600sec and each simulation was run for a

duration of a hundred times the upstream data generation period. The transmission

time of the first upstream packet for every device is picked randomly. All upstream

45

r

Figure 4.6: Network model to evaluate scalability

packets have an application payload of 8 bytes, which implies a PHY payload of 21

bytes. An unconfirmed upstream data packet is considered delivered if it was received

successfully by a gateway node.

Figure 4.7: Plot showing packet delivery ratio vs number of devices with devices
spread uniformly on a circle of 3 km radius

For all simulations, the average packet delivery ratio (PDR) was measured and

plotted against the number of end devices for different spreading factors in figure 4.7.

It is observed that with a small number of devices, the PDR is highest for the highest

46

0

100000

200000

300000

400000

500000

600000

700000

800000

SF=7 SF=8 SF=9 SF=10 SF=11 SF=12

N
u

m
b

e
r

o
f

P
ac

k
et

s

Interfered (A)

Under
Sensitivity (B)
Total Lost
(A+B)

Figure 4.8: Sources of packet loss at various spreading factors with devices spread
uniformly on a circle of 3 km radius

SF. The PDR decreases with decreasing values of SF when the interference is low.

With the increasing number of devices in the network, the average PDR drops for all

SFs but the effect is most pronounced for higher SF values. This is because a higher

SF implies higher packet lengths, which increases the packet collision probability.

Consequently, for heavy traffic or a higher number of devices a smaller SF works

better. Overall, the performance degrades gracefully for up to 10,000 devices albeit

for PDR of approximately 0.1 and low SF values, the transmission range is smaller.

The plot in figure 4.8 shows the number of packets lost and the corresponding

reasons while considering 10,000 devices spread uniformly across a radius of 3 km

for different spreading factors. The packets are lost due to two major reasons, colli-

sions or interference (A), and packets received under receiver sensitivity (B). It can

be observed from the plot that at lower spreading factors the major packet loss oc-

curred due to under-sensitivity and very few packets were lost due to interference.

As we move towards higher spreading factors, the major packet loss occurred due to

interference, and a negligible amount of packets were lost due to under-sensitivity.

47

These results confirm the properties of spreading factors. The packets configured

with a lower spreading factor are shorter in length as compared to packets configured

with higher spreading factors. As the length of packets increases, the probability of

collision also increases. Hence, more packets were lost due to interference at higher

spreading factors. Transmission with a higher spreading factor also corresponds to

a longer range as compared to a transmission with a lower spreading factor. Hence,

more packets were lost due to under-sensitivity at lower spreading factors.

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

P
D

R

Number of devices

SF=7
SF=8
SF=9
SF=10
SF=11
SF=12

Figure 4.9: PDR for a varying number of devices spread on a circular disc of radius
1000 m with different spreading factors

In order to find the effect of spreading factors on the number of collisions, we

consider a varying number of devices that are uniformly spread in a circular cell.

The radius of the circular cell must be small enough that the packets sent with any

spreading factor with any transmit power can reach the gateway with sufficient power.

The PDR from this experiment are plotted and are shown in figure 4.9. It is evident

from the plot that as the number of devices on any spreading factor increases the

performance of the network degrades. It can also be observed that for a fixed number

of devices, the PDR drops as the spreading factor increases.

48

4.4 Conclusions

Low power consumption, wide area coverage, and license-free channel operation

are important characteristics of LPWAN Technologies that make them attractive for

low throughput IoT applications. LPWAN technology uses single-hop long-range di-

rect communication with the base stations that overcomes the problems of multihop

delays and routing in legacy wireless technologies. LPWANs also have a high capac-

ity, providing connectivity to tens of thousands of devices from each gateway. Key

limitations found by the performance study are as follows:

• LoRa gateways can theoretically serve hundreds of thousands of devices but as

the number of devices increases beyond a few hundred devices, the performance

starts to degrade.

• The performance degradation happens due to two major reasons:

1. Transmission received below the sensitivity threshold

2. Collisions among transmissions

• As the number of devices on any one spreading factor increases the collisions

among packets also increase.

• Lower spreading factors have higher data rates but smaller transmission ranges

and higher spreading factors have lower data rates but longer transmission

ranges.

Since the PDR, transmission range, and a high number of users, are critical for IoT

networks, our research endeavors to investigate techniques for augmenting scalability

beyond the capabilities offered by the legacy protocol.

CHAPTER 5: IMPROVING SCALABILITY OF LoRaWAN NETWORKS BY

SPREADING FACTOR DISTRIBUTION

5.1 Introduction

In this chapter, we present an approach for improving the network capacity of

LoRaWAN networks. The proposed approach is based on reducing the number of

collisions in LoRa networks by allocating multiple spreading factors within the same

network zones. We demonstrate that an optimum allocation of spreading factors

increases the average probability of successful packet transmission to the gateway.

Simulation results show that the proposed approach can substantially improve the

network performance even for dense LoRa networks.

5.2 Motivation

Theoretically, a typical LoRa gateway is capable of connecting hundreds of thou-

sands of end devices but the performance study done in chapter 4 shows that when the

number of devices increases beyond a few hundred devices, the performance degrades.

Hence, scalability is a major challenge for LoRa networks.

As stated in Chapter 4, collisions among the packets is the main reason for per-

formance degradation. A packet collision takes place when two or more devices are

configured on the same channel and the same spreading factor. Hence collisions can

only be avoided if the devices are configured on different spreading factors and/or

different transmission channels.

In LoRa networks, the transmissions on spreading factors are orthogonal to one

another. If the devices in the network are configured on the same channel, the collision

domain can be changed by configuring devices on different spreading factors thereby

50

|---------1700m---------|

End devicesGW

Figure 5.1: Network model

reducing the number of collisions.

The main objective of the proposed solution is to reduce the number of collisions

and thus improving the performance of the LoRaWAN networks by optimally dis-

tributing transmissions on spreading factors.

5.3 Methodology

The idea behind the proposed approach is that as opposed to using the default

ADR mechanism that allocates higher SFs to end devices at increasing distances

from the gateway to meet the required SNR, we allocate a higher SF to a fraction of

the end-devices within shorter ranges as well, in order to reduce the total number of

nodes configured on the smaller SF.

5.3.1 Network Model

It is assumed that a total of ’X’ end devices are present in the LoRa cell that

is considered to be a circular disc of radius R as shown in figure 6.1. The radius

(1700 meters) is small enough that a transmission from a device configured with any

51

SF can reach the single-channel gateway (GW) placed at the center of the disc. At

any moment, the gateway has enough resources available to demodulate any number

of valid receptions. A valid reception means that the received power of the data

packet should be above the sensitivity threshold of the receiver, and there should

be no collisions between packets. Also, it is assumed that data traffic is generated

according to Poisson distribution

5.3.2 Principle of Operation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Number of devices

Devices on SF7

Devices on SF8

Figure 5.2: Probabilities of success with varying number of devices placed uniformly
over a disc of radius 1700m

In the assumed network area, due to the proximity of the devices to the gate-

way, all devices can be configured to the highest data rate or lowest spreading factor

SF7. However, if the number of devices configured on any specific spreading factor

increases, the interference also increases. This results in higher collisions leading to

lower probability of success as shown in Figure 5.2. Note that the packet success

probability for the same offered traffic is lower with SF8 than in SF7, which is due

to lower data rates and longer packet duration at SF8 in comparison to SF7. For

instance, a success probability of 0.38 can be achieved with 10,000 devices configured

on SF7, while the same success probability is only achieved with 5,500 devices config-

ured on SF8. This is due to the fact that packets transmitted with SF8 configurations

52

are longer in length hence are more susceptible to collisions as compared to shorter

length packets transmitted with SF7.

Another point to note is that the success probability can be improved by reducing

the number of devices on the same SF. For instance, a success probability of 0.55 is

achieved with 6500 devices on SF7 or with 3500 devices on SF8. The spreading factors

being orthogonal to each other do not collide with one another. Hence, if 6500 devices

are allocated SF7 and another 3500 devices in the same area are allocated SF8, the

average probability of success will be 0.55, which is higher than that achievable with

all the 10,000 devices on SF7 alone. Note that a lower spreading factor corresponds

to a higher data rate and lower transmission range and vice versa. The end devices

configured on a certain spreading factor may not be configured at a lower spreading

factor, but they can definitely be configured to a higher spreading factor with the

objective of reducing the number of collisions with some reduction in data rate. Using

this principle, if the network is made aware of the number of devices configured on

a certain spreading factor, it can efficiently allocate the spreading factors to the end

devices, thus improving the network performance.

The distributed multiple spreading factor allocation envisions that if a certain frac-

tion of the total number of end devices is configured to higher spreading factors, the

network performance will improve many folds. Section 5.3.3 finds this optimum frac-

tion mathematically as well as using simulations.

5.3.3 Optimum SF Allocation

For simplicity of understanding, we consider only two spreading factors (SF7 and

SF8). The approach can be easily scaled for all allowed spreading factors.

Since LoRaWAN uses ALOHA-based MAC protocol, we can use the probability of

success equation for pure ALOHA networks given in equation 5.1.

P (S) = e−2G (5.1)

53

G =
N ∗ Tair

T
(5.2)

where, ‘N ’ is the number of devices, ’Tair’ is the time on air for the packet, and ’T’

is the total time considered.

Consider that a fraction α of the devices are configured on SF7 and (1−α) fraction

are configured on SF8. Assume that ’i’ and ’j’ be the time on air for payloads of a

specific size on SF7 and SF8 respectively. We can then get the probability of success

from equation 5.3.

P (S) = e
−2iα
T + e

−2j(1−α)
T (5.3)

By maximizing P (S) with respect to α and for total devices N to be 10,000, time

on air for 18-byte payload for SF7 and SF8 be 0.051 seconds and 0.092 seconds, we

get the optimum value of α to be 0.64.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Fraction of devices configured on SF7 (α)

Devices on SF7

Devices on SF8

Combined

Figure 5.3: Plot of probability of success with α devices on SF7 and (1− α) devices
on SF8 simulated independently and their combined weighted mean

We also confirm these findings with simulations. We assume a total of 10,000 end

devices are placed uniformly over a disc of a radius of 1700m. The transmission from

all the end devices can successfully reach the gateway placed on the center of the disc

when configured with SF7. In order to find the optimum fraction of devices ’α’, to be

54

configured on SF7 and the fraction (1−α) to be configured on SF8, the value of α is

increased from 0 to 1 in steps of 0.02. For each value of α the probability of success is

calculated for devices configured on SF7 and SF8. The calculated values are plotted

in Figure 5.3.

As α increases, the number of devices configured on SF7 increases, resulting in

an increase in collisions, and hence, the probability of success decreases for devices

on SF7 as α increases. As α increases, (1 − α) decreases and the number of devices

configured on SF8 decreases hence decreasing the number of collisions and increasing

the probability of success for SF8 devices. In summary, as α increases, the proba-

bility of success for devices on SF7 decreases, and that of devices on SF8 increases.

The point of intersection of the two curves gives the optimum fraction at which the

average probability of success for the whole network is maximum and that optimum

fraction came out to be 0.64. In this case with 10,000 total devices, if 6400 devices are

configured on SF7 and the remaining 3600 devices are configured on SF8, a success

probability of 53% is achieved as compared to 38% with all devices on SF7. Although

the above results were obtained considering the distribution of transmissions over

two adjoining spreading factors, the performance can be further improved by consid-

ering the optimum distribution of transmissions over all spreading factors, which is

presented in the next section.

5.4 Results and Discussions

The effect of the proposed approach on the performance can be studied using the

simulation of the LoRaWAN network. NS-3 tool was used for the purpose of the

analysis. The simulation model used to simulate the LoRa network is available at

[85]. The configuration parameters used for the simulation are tabulated in Table 6.3

To simulate the real-life scenario, the devices were placed uniformly over the circular

disc. Here the power capture effect also plays its role in network performance. The

simulations were conducted for 5000 end devices with increasing values of α from 0

55

Table 5.1: Configuration parameters for simulation

Number of end devices, x 5000
Number of Gateways 1
Number of Channels 1
Spreading factors 7, 8
LoRa cell Circular disc of radius 1700 meters
Simulation time 600 Seconds
Packet generation model Poisson Distribution
Mean packet arrival time 600/x Seconds

to 1. For each simulation probability of success was calculated and plotted in figure

5.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Fraction of devices configured on SF7 (α)

Devices on SF7 only

Devices on SF7 and SF8
combined

Figure 5.4: Probability of success with 5000 devices with varying α

Figure 5.4 shows the probability of success for the fraction of devices configured on

SF7 and SF8 according to α. It can be observed that the maximum probability of

success occurs at α = 0.64. The optimum fraction found in Section 5.3.3 is expected

to improve the network performance for any number of devices in the network. It

can also be inferred that with the optimum fraction, the network can support more

devices for a given probability of success. Hence, the capacity of the network will be

improved.

The optimum fraction was also found considering all spreading factors using simu-

lations. It was found by configuring 34.25% of total devices on SF7, 31.25% on SF8,

56

24.5% on SF9, 6% on SF10, 2% on SF11, and 2% on SF12, the maximum possible

average probability of network can be achieved. The results are shown in figure 5.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

SF7 SF7 & SF8 All SFs

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Figure 5.5: Probability of success with 10,000 devices configured on spreading factors
according to optimum fraction

The approach can also be scaled to a wide area network cell that considers con-

centric discs of increasing radii with gateway situated at the center of the cell as

shown in Figure 5.6. The entire cell can be divided into zones (Z1 to Z6). Due to the

distance from the gateway, the devices in Z6 can only be configured on SF12 and not

any lower spreading factor as it will not be able to reach the gateway with sufficient

power and will be lost. Similarly, devices in Z5 can be configured on SF11 & SF12,

Z4 on SF10, SF11 & SF12 and so on. The above sections calculated the optimum

ratio for Z1 only in which the devices can be configured on any six spreading factors.

In a similar way, an optimum ratio of devices can be found for all the zones. By doing

so, a single gateway will be able to explore its full potential of covering a larger area

and the optimum fractions will make sure of the reduced number of collisions.

57

Z1 Z2 Z3 Z4 Z5 Z6GW

Figure 5.6: Network cell divided into various zones with increasing radii

5.5 Conclusions

We evaluated the possibility of improving the packet success probability in Lo-

RaWAN by allocating multiple spreading factors (SF) to devices in a zone where all

devices could be potentially assigned the smallest SF. The study indicates that there

is an optimum fraction for the allocation of two different SFs in the same zone that

maximizes the packet success probability. The average success probability using the

optimum SF allocation increases significantly. It does so by configuring a fraction of

the total devices to a higher spreading factor thus changing the collision domain and

hence reducing the number of collisions. The optimum fraction at which the improve-

ment is maximized was found both mathematically as well as using simulations and

it came out to be α = 0.64 for SF7 and SF8. The optimum fractions were also found

considering all spreading factors. The results support this claim.

CHAPTER 6: QoS BASED SPREADING FACTOR DISTRIBUTION FOR

LoRaWAN NETWORKS

6.1 Introduction

Recent developments in technology had a great impact on the exponential increase

in the number of IoT applications [86]. One of our interests is with the smart city

scenario, comprising various types of applications such as HVAC control, smart street

lights, smart utilities, smart waste management, etc., running on IoT devices. IoT

devices in such applications are typically embedded devices that are connected to the

Internet using backhaul technologies such as Wi-Fi, Low Power Wide Area Networks

(LPWAN), Zigbee, Cellular technologies, etc. Most embedded devices run a single

application, hence one category of devices will be running a single application and

other categories of devices will be running an entirely different set of applications.

For example, one category of devices that consists of smoke sensors and buzzers can

be running a fire alarm application and another category of devices consisting of a

temperature and humidity sensor can be running an application to control the Heat-

ing, ventilation, and air conditioning (HVAC) system. Each application has different

Quality of Service (QoS) requirements. These QoS requirements may be specified in

terms of packet success rates, latency requirements, data rate requirements, band-

width requirements, etc. Also, some applications have strict QoS requirements and

others have relaxed requirements[72]. In the example application case of fire alarm

and HVAC control discussed above, the fire alarms will have strict QoS requirements

as compared to the HVAC control application. The underlining network must satisfy

these requirements in order for the application to run efficiently on the IoT devices.

LoRaWAN does not differentiate between different types of devices and considers

59

all to be the same. Due to these considerations, specific QoS requirements are not

guaranteed to be satisfied.

In the previous chapter, we exploited the orthogonality property of spreading fac-

tors and calculated an optimum distribution of devices under different spreading

factors that reduced the total number of collisions in the network. This optimum dis-

tribution improves the network performance significantly but does not guarantee to

satisfy the QoS requirements. In this work, we propose a protocol that will guarantee

to satisfy the QoS requirements for the applications. We demonstrate analytically as

well as using simulations that the proposed approach improves the performance of

the network while satisfying the QoS requirements.

6.2 Motivation

The performance of the LoRaWAN network degrades as the number of devices in-

creases and as such the network can not guarantee to satisfy the QoS requirements

for IoT applications. The ADR mechanism is also not able to improve the network

performance. According to the ADR mechanism, all devices start with the highest

spreading factor and at higher traffic loads, this will add to the number of collisions.

The algorithm will either take too long to converge or it will fail to converge due to

the high number of collisions. Different SF assignment schemes that try to improve

the performance of the networks are discussed in chapter 3 but they do not address

the posed QoS requirements. One of the articles, [87] discusses the research gap in

LoRaWAN technology regarding the QoS requirements. Our proposed approach tries

to fill this gap and improve the performance of LoRa networks while satisfying the

QoS requirements posed by IoT applications. The approach exploits the orthogo-

nality property of spreading factors and performs the assignment based on the QoS

requirements.

60

6.3 QoS Based Spreading Factor Allocation

This section describes the proposed mechanism to assign spreading factors accord-

ing to the QoS requirement. The main idea is to assign spreading factors to devices

based on the application QoS requirements as opposed to using the default ADR

mechanism that allocates higher SFs to end devices at increasing distances from the

gateway to meet the required RSSI and SNR thresholds[29].

6.3.1 Defining QoS Requirements

For ease of understanding, we define two levels of QoS requirements considering

two different types of IoT applications running on the application server:

1. High priority (HP) applications: Applications that require a guaranteed

QoS such as those that are characterized by the maximum latency or minimum

delivery rate. Examples of such applications include fire and intrusion alarms.

2. Low priority (LP) applications: Applications that have relaxed latency and

delivery requirements such as environmental monitoring sensors used for HVAC

control, smart agriculture, etc.

Both types of applications consist of sensing devices that transmit their status to

the server via gateway through the LoRa link. We assume that the QoS requirements

can be achieved by a minimum probability of success for packet delivery for the HP de-

vices. This assumption is analogous to the assumptions made in [74], which preempts

the low-priority traffic to serve the high-priority traffic. Preempting the low-priority

traffic to serve the high-priority traffic means sacrificing all the low-priority traffic

for the sake of high-priority traffic. Instead, we consider the high-priority traffic

must have a certain probability of success as the strict QoS requirement but for the

low-priority traffic, there are no such strict QoS requirements.

61

Figure 6.1: Proposed network model with single gateway serving a circular area of
radius 1700 meters

6.3.2 Network Model

We assume a network comprising N devices in the network that are uniformly

distributed over a circular area of radius r, as shown in Figure 6.1. A fraction β

of total devices consists of high-priority devices and the remaining are low-priority

devices. A gateway is placed at the center of this disc. The radius is small enough

that transmission from any device configured with any spreading factor can reach the

gateway. It is assumed that the gateway has enough resources available to demodulate

any number of received transmissions that are above the sensitivity threshold. The

traffic in the network is generated according to Poisson distribution.

62

Table 6.1: Time on air for various SFs for a payload of 8 bytes with 8 preamble
symbols.

Spreading Factors Time on Air (sec)
SF7 0.0361
SF8 0.06195
SF9 0.1239
SF10 0.24781

6.3.3 Principle of Operation

Due to the proximity of devices to the gateway in the assumed LoRa cell, the

fastest data rate or the lowest spreading factor i.e., SF7 can be assigned to all the

end devices. However, as observed in studies such as [18],[19],[88], the probability of

collisions may be reduced by distributing the devices over multiple spreading factors.

The transmissions on different spreading factors being orthogonal to each other do

not collide with one another and by configuring devices on different spreading factors

changes the collision domain of the devices.

Assuming a Poisson arrival model with an average arrival rate of λ, the packet

success probability Ps can be calculated using the analysis applied to the ALOHA

protocol

Ps = P (k = 0) = e−2G (6.1)

where P (k) represents the Poisson probability of k transmissions per packet duration,

and G is the average number of transmission attempts per frame time. In our case,

G can be calculated as

G =
D ∗ ToA

Total time period
(6.2)

where D is the total number of devices attempting to transmit during the total time

period, and ToA is the time-on-air, i.e., the duration for which a packet stays over

the transmission medium.

63

Table 6.2: Maximum number of devices that can be configured on various SFs trans-
mitting payload of 8 bytes with more than 90% probability of success.

Spreading Factors Max. number of devices
SF7 870
SF8 500
SF9 250
SF10 120

Using the values of ToA from Table 6.1 and equations (6.1) & (6.2), and setting

the value of probability according to the QoS requirements of high-priority traffic, the

value D can be calculated. The value D, in this case, will represent the maximum

number of devices that can be assigned to a specific spreading factor satisfying the

QoS requirements. The values were calculated for a 90% probability of success and

are tabulated in Table 6.2.

From Table 6.2 it can be inferred that the maximum number of devices that can be

configured on a spreading factor decreases as we move from a lower spreading factor

to higher one. This corresponds to the fact that as we move from the lower spreading

factor to a higher spreading factor the packet length increases and that increases the

probability of collision.

6.4 Proposed Approaches

In this section, we propose the rules that will be followed to allocate the spreading

factors. Before delving into the proposed algorithm we define some of the variables

that will be used for the remainder of the chapter:

64

N: Total number of devices in network

β: Fraction of high priority devices in network

p: Number of high-priority devices in network

q: Number of low-priority devices in network

x: Probability of success threshold for high-priority devices

a: Number of devices supported by the SF7 satisfying the QoS requirements

b: Number of devices supported by the SF8 satisfying the QoS requirements

c: Number of devices supported by the SF9 satisfying the QoS requirements

d: Number of devices supported by the SF10 satisfying the QoS requirements

6.4.1 Approach-1: SFA-1 Approach

In SFA-1, HP devices are assigned SFs starting with the highest SF first, and

then going down to lower SFs as they get filled up to the limit where QoS can be

guaranteed. SF allocations also take into account optimum distributions as discussed

in Chapter 5. To clarify, we describe SFA-1 by performing SF assignments based on

the following rules:

1. For a given N and β, if 36% of p < d then p devices will be distributed according

to 64% and 36% of p devices among SF9 and SF10 respectively and the q devices

will be distributed among SF7 and SF8 in 64% and 36% respectively.

2. For a given N and β, if 36% of p > d then d number of devices out of p devices

will be configured on SF10 and remaining p-d devices will be configured on SF9,

given that p− d < c. The q devices will be distributed among SF7 and SF8 in

64% and 36% respectively.

3. If p > c+ d but p < b+ c+ d then all the low priority devices will be configured

on SF7 and high priority devices will be configured on SF8, SF9 and SF10

according to optimum distribution.

65

4. If p > b+ c+ d, decrease the x and find the values of b, c, and d for this new x.

5. Configure all p devices on SF8, SF9, and SF10 in optimum fraction. The

thresholds b, c, and d must be maintained at all times.

6.4.2 Approach-2: SFA-2 approach

Contrary to SFA-1, the SFA-2 starts by assigning the lower spreading factors to

HP devices and then going up to higher SFs as they get filled up to the limit where

QoS can be guaranteed. Similar to SFA-1, allocations also take into account optimum

distributions. The rules to allocate the spreading factors to high-priority devices and

low-priority devices under the SFA-2 approach are as follows:

1. For a given N and β, if 64% of p < a then p devices will be distributed according

to 64% and 36% of p devices among SF7 and SF8 respectively and the q devices

will be distributed among SF9 and SF10 in 64% and 36% respectively.

2. For a given N and β, if 64% of p > a then a number of devices out of p devices

will be configured on SF7 and remaining p-a devices will be configured on SF8,

given that p− a < b. The q devices will be distributed among SF9 and SF10 in

64% and 36% respectively.

3. If p > a+ b but p < a+ b+ c then all the low priority devices will be configured

on SF10 and high priority devices will be configured on SF7, SF8 and SF9

according to optimum distribution.

4. If p > a+ b+ c, decrease the x and find the values of a, b, and c for this new x.

5. Configure all p devices on SF7, SF8, and SF9 in optimum fraction. The thresh-

olds a, b, and c must be maintained at all times.

66

6.5 Performance Evaluation

The performance of the proposed allocation schemes have been evaluated mathe-

matically as well as via network simulations. We assume the QoS requirement for the

high priority devices to be defined by a minimum packet success rate of 90% or above.

For comparison, we evaluate the packet success probabilities of the high priority and

low priority devices as evaluated with the proposed SFA-1 and SFA-2 schemes with

that of the legacy LoRaWAN network as well as that using the optimum distribution

of spreading factors as presented in [19].

6.5.1 Mathematical Evaluation

The packet success probabilities of the proposed approaches can be evaluated us-

ing Poisson’s distribution equation. In order to find the performance of proposed

approaches, end devices need to be configured on different spreading factors accord-

ing to the rules stated in section 6.4. Once the configuration is complete for any

number of total devices, the probability of success for each spreading factor can be

found using equations 6.1 and 6.2. A weighted average of the probability of success

for different spreading factors on which high priority devices are configured gives the

probability of success for high priority devices. The same process is followed to get the

probability of success for low priority devices. This process was done for a different

number of total devices in the network.

6.5.2 Simulation model

The Network Simulator-3 (NS-3) [84] simulator was used for the analysis. Details

of the simulation model are presented in [85]. To simulate the real-life scenario, the

model considers uniformly spread end devices on a circular disc of radius 1700 meters.

Selection of HP devices as well as assignment of spreading factors are done randomly,

using uniform distributions. The network traffic is generated according to Poisson

distribution. The simulation is based on the configuration parameters tabulated in

67

Table 6.3: Configuration parameters for simulation

Number of end devices, N 1000-10,000 in increments of 500
Number of Gateways 1
Number of Channels 1
Spreading factors 7, 8, 9, 10
LoRa cell Circular disc of radius 1700 meters
Simulation time 600 Seconds
Application Payload 8 bytes
Packet generation model Poisson Distribution
Transmit Power Default power 14dBm
Mean packet arrival time 600/N Seconds

Table 6.3.

The simulations were conducted for number of end devices varying from 1000–

10,000 devices increasing in steps of 500 devices. We measured the average probability

of success for high priority and low priority devices individually from each simulation.

6.5.3 Results and discussions

This section presents the performance results obtained mathematically as well as

from simulations. The legacy LoRaWAN configures the end devices on spreading

factors based on the RSSI and SNR, whereas the optimum distribution approach

distributes spreading factors that maximize the average packet success rate. Both of

these schemes consider all transmission to have the same level of priority.

Figure 6.2 shows the results from the mathematical evaluation of the packet success

rates for the proposed SFA approaches as well as those obtained for the legacy network

and the optimum distribution approach. It can be observed from the plot that the

legacy approach achieves success rates of about 95% for fewer number of total devices

(500 devices). Even for 1000 devices in the network the legacy approach does not

seem to satisfy the QoS requirement. The optimum distribution approach achieves

better performance than the legacy approach. It achieves a success rate of 97% for

500 devices in the network but this approach also fails to satisfy the QoS requirements

once the number of devices exceeds 1500 devices. SFA-1 and SFA-2 both are able to

68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Total number of devices

Legacy

Optimum
Distribution
SFA-1 HP

SFA-1 LP

SFA-2 HP

SFA-2 LP

Figure 6.2: Probability of success for various approaches with increasing number of
total devices in the network as obtained from the mathematical model with β = 0.1

satisfy the QoS requirements for the given range of the number of devices. In addition

to satisfying the QoS requirements, SFA-1 was also able to achieve better performance

for low priority devices. It can also be observed that for SFA-1, the probability of

success for low priority devices decreases gradually with the increasing number of

devices, except for 4000 total number of devices, where a sudden degradation in

performance is observed. This sudden degradation occurred due to fact that SF10

and SF9 combined could not serve the increasing high priority devices and hence,

according to the rules, they need to be configured on SF8 in addition to SF10 and

SF9, limiting low priority devices to SF7 only. This resulted in the observed sudden

degradation in probability of success.

Both the legacy and the optimum distribution approaches do not differentiate de-

vices on priority levels and hence all the devices will have the same probability of

success irrespective of their priority level. The optimum distribution performs better

than the legacy because it distributes devices on all spreading factors according to an

69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Total number of devices

Legacy

SFA-1 HP

SFA-1 LP

SFA-2 HP

SFA-2 LP

Figure 6.3: Probability of success as obtained from simulation of proposed and legacy
approaches with β = 0.1.

optimum fraction that improves the performance as compared to the legacy.

The proposed allocation schemes consider low priority and high priority devices dif-

ferently. As SFA-2 starts configuring the high priority devices from the lowest spread-

ing factor and significantly higher number of low priority devices on high spreading

factors, the high priority devices enjoy a very high probability of success while the

performance of low priority devices substantially degrades.

The higher spreading factors can serve a lesser number of devices as compared to

lower spreading factors for the same performance levels, hence by configuring high

priority devices in the network, which are fewer in number as compared to low priority

devices, to the higher spreading factors and low priority devices on lower spreading

factors, the SFA-1 approach tries to optimize the performance of both the high and

low priority devices.

As the spreading factors are not perfectly orthogonal, some collisions can occur due

to imperfection in orthogonality among spreading factors [89]. In order to take these

70

collisions into account both of the proposed approaches were simulated. The results

of the simulation, as plotted in figure 6.3, indicate slightly better performance for all

schemes as the simulator considers the power capture effect that is not included in

the mathematical model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Total number of devices

SFA-1 HP
SFA-1 LP
SFA-2 HP
SFA-2 LP

(a) β=0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

Pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

Total number of devices

SFA-1 HP
SFA-1 LP
SFA-2 HP
SFA-2 LP

(b) β=0.3

Figure 6.4: Probability of success with both proposed allocation schemes with (a)
β=0.2, and (b) β=0.3 with the varying total number of devices

Figure 6.4 shows the performance comparison of SFA-1 and SFA-2 for higher values

of β. For both of the allocation schemes, it can be observed that whenever the number

of high priority devices increases more than the respective thresholds, b+ c+ d in the

case of SFA-1 and a + b + c in the case of SFA-2, neither of the allocation schemes

is able to satisfy the QoS requirements, and hence x was reduced. It is also intuitive

that for a fixed N , p is greater when β = 0.3 as compared to when β = 0.2, resulting

in a lesser number of q devices in the former case. Hence, the performance of low

priority devices should improve and the same can be observed for SFA-1 but in the

case of SFA-2, as N exceeds 5000 devices, the performance starts to degrade even

further. This degradation stems from the fact that in SFA-2, lower spreading factors

that have higher thresholds, are allocated to p devices that are lesser in number as

compared to q devices. SFA-2 provides better QoS for high priority devices when

compared with SFA-1 by almost sacrificing the performance of low priority devices.

71

However, SFA-1 tries to optimize the performance of low priority devices while trying

to maintain the requirements of high priority devices. Hence, the SFA-1 approach is

better than SFA-2 in terms of success rates for low priority devices while maintaining

QoS for high priority devices.

This work has considered devices within 1700 meters radius but full coverage po-

tential of LoRa gateway can also be considered. In that case, the devices that are

farther away from the gateway can only be configured to higher spreading factors.

Hence, the high priority devices that are at the maximum coverage distance can only

be configured to SF10, but according to SFA-2, high priority devices will be con-

figured on lower spreading factors so high priority devices that are farther from the

gateway will not be served and hence the QoS requirements may not be satisfied.

However, SFA-1 configures high priority devices on higher spreading factors and low

priority devices on lower spreading factors, hence SFA-1 will be able to scale to the

full coverage potential of the gateway.

Hence, the SFA-1 approach achieves better performance than other approaches.

6.6 Conclusions

In this chapter, we presented design considerations for a LoRaWAN network to

meet specific QoS requirements for IoT applications. Specifically, we proposed spread-

ing factors assignment schemes that try to meet a minimum packet success rate for

end devices that require high-priority service while still providing an adequate packet

success rate for other devices, i.e., those for which the packet success rate is not highly

critical. Such differentiated QoS requirements are typical of IoT applications in smart

city environments.

Legacy LoRaWAN networks typically assign spreading factors depending on the

signal-to-noise ratios of the end devices. A higher spreading factor enables commu-

nication at a lower SINR at the cost of lower data rates. Here, we propose spreading

factor assignment schemes that utilize their orthogonality to limit the number of con-

72

tending end devices using the same spreading factor. Two different spreading factor

allocation schemes are introduced that assign all high-priority devices to spreading

factors such that the packet success probability is within acceptable limits. The ap-

proaches were evaluated mathematically as well as using a network simulator. It was

observed that by assigning the spreading factors according to the proposed SFA-1 ap-

proach the network was able to satisfy the QoS requirements of the IoT applications

that can be deployed in smart cities.

This work considers transmissions on a single channel. In a multi-channel deploy-

ment, the end devices perform frequency hopping for every transmission. They can

select transmission channels randomly.

CHAPTER 7: SHORT TERM TRAFFIC CONGESTION PREDICTION WITH

DEEP LEARNING FOR LoRa NETWORKS

7.1 Introduction

This chapter explores the application of machine learning in an IoT network for traf-

fic monitoring to enhance its services using intelligent transportation systems (ITS).

The objective is to deepen our understanding of the constraints and demands associ-

ated with the communication cost of implementing machine learning in IoT applica-

tions.

The application of IoT technology in ITS enables the development of smart roads

where IoT sensors are embedded across the roadways to deliver real-time traffic data

for learning and monitoring traffic patterns. This data can be fed to machine learning

and deep learning algorithms in the cloud to extract vital information. Such a system

can help in improving the efficiency of the ITS services in terms of modeling, planning,

and management.

With the increase in the number of vehicles and highways, traffic congestion prob-

lems are an increasing concern in most urban areas. In 2020, there were an estimated

286.9 million registered vehicles in the US, which also has the largest road network

in the world, comprising 6.59 million kilometers [90]. Further increase in traffic leads

to critical issues threatening the safety of the drivers and harming the environment.

High traffic congestion leads to delays, drivers’ mental stress, incidents, and pollu-

tion [91]. Real-time traffic congestion prediction information can be exploited by

transportation services to make better decisions and improve traffic rules and infras-

tructures. Predicting traffic patterns involves collecting and periodically recording

vehicles’ speed, position, and traffic flow [92]. With LoRa devices deployed, smart

74

traffic monitoring can provide signal lights adjustment, advance planning to reach a

destination, trip scheduling, and a safer and better driving experience [93].

Most of the existing traffic congestion prediction solutions are video-based, where

data collection is often unstable and computationally expensive in such varying con-

ditions. To capture the dynamic changes in the traffic flow in real-time, advanced

sensors with specific capabilities are required for data acquisition. Moreover, ad-

vanced learning models can be explored for real-time traffic congestion prediction

with labeled and unlabeled data for high accuracy. In this chapter, we consider a

LoRa network using low-power IoT devices, which is motivated by its low-cost and

wide-area coverage capabilities. However, LoRa devices have limited bandwidth for

data transmission, which is restricted to only 125 kHz and 500 kHz in the US [15].

Such bandwidth limitation implies that the system can capture only basic information

about the traffic state for prediction.

This work aims at developing and training machine learning models using site-

specific data that can successfully predict traffic congestion with low bandwidth data

available from the IoT sensors, and evaluate the use of machine learning for smart

city IoT applications. To achieve this objective, we used a dataset with temporal

data collected from a wide range of traffic sensors instead of real-time data from

LoRa sensors. We trained and tested centralized machine learning models using

this dataset in order to evaluate their accuracy. We approached intelligent traffic

congestion prediction as a short-term task to predict the short-term future of 15

minutes to a few hours. We modeled the traffic parameters to learn about the traffic

flow patterns. The long short-term memory (LSTM) algorithm is used for model

training and testing. We present numerical results that indicate that the LSTM-

based traffic congestion prediction model using low-bandwidth data provides better

prediction performance in comparison to other models.

75

Figure 7.1: Block diagram of the proposed traffic congestion prediction system.

7.2 Methodology

The recurrent neural network (RNN model) is suitable for time series processing and

sequence classification and can learn from large datasets of sequential data flow with

long intervals. However, it cannot perform well when sufficient data are unavailable

with input and output gates. LSTM is an improved version of RNN that is able

to deal with missing data as it has an additional gate called forget gate. This gate

allows discarding former values and updating new memories if it determines they

cannot be passed to the output gate. LSTM allows exploiting datasets with missing

data or unavailable data at timestamps, which makes it a suitable algorithm for traffic

congestion prediction [94].

Fig. 7.1 represents a conceptual block diagram of how the traffic data is proposed

to be collected to predict congestion. The IoT end nodes collect data and send them

to the gateways over LoRa links. The gateways then forward the collected data to the

network server through TCP/IP links. An application server receives the collected

data for processing and model training. As illustrated in Fig. 7.2, the proposed

system model of the traffic congestion prediction can be represented in four layers:

data layer, processing layer, serialization layer, and deserialization layer. The data

layer as presented in Fig. 7.1 includes two main units: collection and transmission.

76

It is assumed that at the collection unit, traffic data are collected using LoRa

sensors deployed across the road segments to capture real-time traffic data. These

sensors are dedicated sensors deployed permanently for specific IoT applications. At

the data transmission unit, each sensor node periodically sends the collected data to

one of the gateways, which act as relays between the sensor nodes and the network

server. The processing layer involves two main units: data pre-processing and model

development. Data pre-processing aims at cleaning and preparing the collected data

to feed the machine learning model for training. At the model development unit, the

model is built and trained by applying one or more machine learning algorithms to

the training dataset.

The trained model is then tested with the testing dataset to verify the fitted model

on data that were not involved in its training. The model accuracy is then evalu-

ated by comparing the true values with the predicted values. If the accuracy is not

satisfied, the trained model must be updated by considering more input features or

more training data. Model tuning can be used to improve the model by boosting the

tuning parameters, namely the number of iterations, complexity, and learning rate.

After the trained model is validated, it is serialized and saved in a particular format

for deployment at the serialization layer. At the deserialization layer, the saved model

can be then loaded and applied to new data for future prediction in the production

environment. Intelligent traffic management systems can use the saved model to save

resources instead of re-training the model when new data are available.

7.2.1 Data source

Traffic datasets are classified into two main categories: probe and stationary datasets.

Probe datasets provide GPS data from moving vehicles covering the entire road net-

work. Stationary datasets provide data from sensors installed at known and specific

locations. Stationary sensors include inductive loop detectors, imaging sensors, and

audio-based sensors. Inductive loop detectors are point sensors buried in the road

77

pavement to identify the presence of a vehicle using an induced current. Imaging sen-

sors are video camera systems installed across the road to capture images for traffic

conditions recognition. Audio-based sensors are also fixed sensors used to record vehi-

cle sounds. Stationary sensors are low-cost solutions followed by audio-based sensors.

The imaging-based solution depends on the light conditions for reliable image analysis

and consumes high bandwidth when sending large images to the traffic monitoring

system. GPS-based solution is not appropriate for localization for IoT applications

within a LoRa network.

We consider a system where traffic data are gathered from low-power sensors in-

stalled over the roads. A number of inductive loop detectors are distributed at specific

locations to continuously measure the data traffic and forward them to the central

server at low bandwidth. These sensors can measure traffic flow, vehicle speed, and

road occupancy. The collected data are then explored for further analysis with cen-

tralized machine learning. Since such a system of sensors was not available at this

time, for this work we used a public dataset comprising similar traffic information for

training and testing the models. Our models can be then used for traffic congestion

predictions with real-time data when a real-life system of sensors is available. A num-

ber of datasets from different sources were investigated and extensively evaluated to

find the one that meets our objectives.

7.2.2 Pre-processing

As the efficiency of traffic congestion prediction depends mainly on the quality of

the data and their characteristics, data pre-processing is one of the fundamental steps

before training. It aims at dealing with missing data by applying one of the available

solutions to retrieve the data by excluding these data or replacing them with others.

Some parameters are excluded from the dataset as they do not have any impact on

traffic prediction. Before building the model, the dataset is split into 70% for training

and 30% for testing.

78

Figure 7.2: System model.

7.2.3 Modeling

Traffic congestion prediction can be represented as a classification problem that

aims at classifying the traffic flow into different classes: heavy, moderate, and low.

It can also be represented as congested traffic and no congested traffic. Congested

traffic class corresponds to traffic flow higher than the maximum load capacity, low

average speed, high average occupancy, and high average delay with respect to the

threshold speed. No congested traffic class corresponds to smooth traffic flow with

minimum delays. We explored both cases and adopted the second one for this work.

Based on the training dataset, the model learns how to predict the traffic congestion

output from the extracted features including traveling time (timestamp) and traffic

flow during each 5 minutes interval at different locations.

As a time series model, the LSTM model is used to predict congestion by handling

periodic traffic data at peak hours, weekdays, weekends, nights, and days. With

periodic features, it is expected that the traffic flow is heavy at the commuting time.

To extract the traffic flow pattern during a specific window of the day, previous

window data is considered for temporal dependencies of the traffic data. Time series

clustering is not considered as grouping data points based on similarity is not needed.

79

Figure 7.3: Confusion matrix for traffic congested and traffic not congested.

Long-term dependency is considered to minimize the impact of factors impacting the

congestion prediction.

7.2.4 Evaluation

To evaluate the LSTM model and measure its performance, a number of metrics are

considered, namely accuracy, loss function, confusion matrix, recall, precision, mean

square error (MSE), root mean square error (RMSE), mean absolute error (MAE),

success rate, and computing time. Accuracy refers to the number of times the clas-

sification is correctly performed by the total number of points. It is expressed using

the confusion matrix (see Fig. 7.3), which is a 2-by-2 matrix representing the correct

prediction in classifying the traffic into two classes: congested and not congested. The

confusion matrix represents four metrics corresponding to the outcomes of the ma-

chine learning classifier, namely true positive (TP), true negative (TN), false positive

(FP), and false negative (FN).

True positive refers to the number of times the model correctly predicted the output

as traffic congested. True negative refers to the number of times the model correctly

predicted the output as traffic not congested. False positive refers to the number of

times the model incorrectly predicted the output as traffic congested. False negative

80

refers to the number of times the model incorrectly predicted the output as traffic

not congested. Accuracy is then expressed as

Acc =
TP + TN

TP + TP + FP + FN
(7.1)

Accuracy allows evaluation of the effectiveness of the trained model in predicting

traffic congestion, but it depends on the datasets and may be misleading the re-

sults. The recall metric can be then computed as the number of times the algorithm

predicted congestion by the total number of points and it is expressed as

Rec =
TP

TP + FN
(7.2)

Recall evaluates the sensitivity of the model. High accuracy may indicate that

the algorithm always predicts no congestion and never predicts congestion, which

corresponds to low recall. Precision is also needed as the algorithm can have recall

equal to 1, which indicates the algorithm did not predict any false negative values. It

evaluates the accuracy of the positive predictions and it is expressed as

Prec =
TP

TP + FP
(7.3)

On the other hand, the error in predicting traffic congestion can be measured with

a number of metrics including MSE, RMSE, and MAE. MSE is given as

MSE =
1

n

n∑
i=1

(yi − ỹi)
2 (7.4)

where y and ỹ denote the true values and the predicted value of the target, respec-

tively, n is the total number of data points. RMSE metric allows identifying if the

model is making mistakes in approximating data and it is given as

81

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2

n
(7.5)

MAE is expressed as

MAE =
1

n

n∑
i=1

|yi − ŷi| (7.6)

RMSE and MAE allow identifying any error variation by comparing their corre-

sponding values. As RMSE is equal to or higher than MAE, equal values mean errors

are of equal magnitude and a larger difference means larger error variations. In ad-

dition, RMSE and MAE evaluate the sensitivity to outliers in data where MAE is

robust while RMSE is more sensitive to outliers. Success rate refers to the number

of correct trials to the total number of trials. Computing time evaluates how fast an

algorithm performs.

7.3 Results and Discussion

We implemented the short-term traffic congestion prediction model using real traffic

data from the Caltrans Performance Measurement System (PeMS) [95]. This dataset

is used to train and validate the model to ensure its efficiency for future predictions. A

performance evaluation is conducted by comparing the LSTM model with two other

machine learning models: artificial neural network (ANN) and K-nearest neighbors

(KNN). The prediction models are evaluated and extensively tested based on a num-

ber of metrics, namely accuracy, loss function, confusion matrix, MSE, RMSE, MAE,

precision, recall, computing time, and success rate.

As one of the most used public datasets, the PeMS dataset contains over than ten

years of traffic data collected across the highways of California. The data collection

was performed using 18,711 stations equipped with 45,697 sensors across 41,236.0

mi of directional distance managed by 7001 controllers. In this chapter, we selected

the traffic data reported every 5 minutes on a given day on one of the highways for

82

one month of 2021. At each time stamp of 5 minutes, a number of parameters are

collected, including timestamp, station identifier, district number, route number, the

direction of travel, lane type, station length, the total number of received samples for

all lanes, number of observed points, average occupancy, average speed, and average

delay over the segment length. Timestamp indicates an interval of time and date

(MM/DD/YYYY HH24:MI:SS), station length indicates the segment length in miles,

and traffic flow indicates the number of vehicles passing a given point per unit of

time.

The performance and the simulation setting of the LSTM model depend on a

combination of parameters, including the number of hidden layers, number of hid-

den neurons, batch size, number of epochs, learning rate, activation function, and

optimization algorithm. We performed several experiments to find out the optimal

parameters for maximizing the model’s performance using data with 5 minutes in-

tervals. We used LSTM with two layers for model training with 64 hidden neurons

per layer. We used the Adam algorithm for optimization as it is effective for noisy

data. The number of communication rounds corresponds to the number of epochs.

Table 7.1 summarizes the LSTM structure used for high-performance deep learning

with the TensorFlow framework (TFF).

Table 7.1: LSTM structure

Number of layers 2
Step per epoch 20
Number of epoch 200
Batch size 64
Activation function Sigmoid function
LSTM hidden function tanh function
Optimization algorithm Adam
Learning rate 0.001
Loss function Binary cross-entropy loss

The algorithm for the LSTM-based traffic congestion prediction system is given in

Algorithm 1.

83

Figure 7.4: Traffic Flow for 24 Hours, sensor Id=3084071.

We opt for a graphical residual analysis to check the different models’ fit and

compare their performances. Examples of results are presented in Fig. 7.4 through

Fig. 7.6. Fig. 7.4 represents the traffic flow captured by an observed sensor with

id:308471 for 24 hours on a weekday with no unusual event happening. It can be

observed that the traffic flow is low in the date time window of 00:00-06:00 and the

date time window of 20:00-00:00. The traffic flow is very high from 10:00 to 15:00,

which corresponds to peak hours. The behavior of the traffic flow is almost similar

for all weekdays of the month over the year.

After the traffic is predicted with the LSTM model, the prediction results can then

be used to evaluate how congested the traffic is over time in a given road segment

by considering the congestion level. Congestion level represents the state of the traf-

fic from normal to extremely congested. Not congested prediction corresponds to a

normal level while congested prediction corresponds to three levels heavy, moderate,

and low. Based on the LSTM model with 200 epochs, Fig. 7.5 compares the pre-

84

Algorithm 1: Traffic congestion prediction
Data: Data set

1 training dataset, testing dataset, learning rate, Predicted value of the next
time stamp for training dataset do

2 - Define model as sequential
3 - Add LSTM layer with 64 units as hidden layer, sigmoid as activation

function, input shape
4 - Add Dense layer with 1 unit as output layer
5 - Compile with Adam optimizer and MSE
6 - Reshape input for each sample [timestamp, samples] to [timestamp,

samples, features]
7 for each timestamp in the training dataset do
8 - Fit the model with epochs 200

9 for testing dataset do
10 - Predict with the model using new data
11 - Evaluate the model

dicted values with the true values of the traffic congestion levels for 24 hours of a

weekday with normal traffic conditions. As can be seen, congestion levels indicate

that: 0.0 corresponds to normal traffic, 1.0 and 2.0 correspond to low congestion, 3.0

corresponds to moderate congestion, and 4.0 corresponds to heavy congestion. Low

congestion occurs during the mornings while heavy congestion occurs during the pick

hours. The predicted values are almost correct compared to the actual values of the

congestion and slightly worse in missing some values.

Fig. 7.6 represents the loss function against the number of communication rounds

for the LSTM model. It is observed that the loss function decreases with the increase

of the number of epochs to converge to a minimum of 0.14 for more than 100 epochs.

In Table 7.2, we present a quantitative comparison between LSTM, ANN, and

KNN-based models. The LSTM model reaches 90% of accuracy and outperforms the

other models with 77% and 80%, respectively. It has a low MSE of 2.4 followed by

ANN with an MSE of 5.01. The KNN model reaches the highest MSE with a value

of 11.02. MAE of the LSTM model is reduced by 33% and 45%, respectively. Large

MAE is due to the heavy traffic flow in the used dataset. The LSTM model performs

85

Figure 7.5: Traffic Congestion for 24 Hours.

with a lower RMSE of 28 while ANN and KNN models perform similarly with a high

RMSE. For precision, the LSTM model learns with high precision and achieves 92% of

precise prediction followed by 71% for the ANN model and 33% for the KNN model.

The performance of the three models in terms of recall metric is almost similar to

the precision metric with 97% for the LSTM model, 47% for the ANN model, and

25% for the KNN model. In terms of computation time, traffic congestion prediction

takes only 0.9 minutes to perform with the LSTM model while it takes longer with

ANN and KNN. The LSTM model is faster than the other models, which makes it a

good candidate for time-sensitive predictions. Thus, LSTM-based traffic congestion

prediction can improve the prediction performance compared to other models.

For the success rate, the LSTM model achieves 75% in successfully predicting

congestion with 100 as the total trials. Therefore, the traffic congestion prediction-

based LSTM model can achieve high accuracy, high precision, and high recall. It can

perform faster in predicting traffic congestion with a high success rate and minimal

86

Figure 7.6: Loss function with LSTM model.

Table 7.2: Quantitative comparison of the prediction models

Model LSTM ANN KNN
Accuracy 0.90 0.77 0.80
MSE 2.14 5.01 11.02
MAE 30 89 66
RMSE 28 42 47
Precision 0.92 0.71 0.33
Recall 0.97 0.47 0.25
Computing time 0.9 2.7 5.99

error rate.

7.4 Conclusions

In this chapter, we presented a traffic congestion prediction approach that can be

applied to LoRa networks for ITS in smart cities. It aims at predicting traffic conges-

tion with low-bandwidth data that are typically available from LoRa networks. The

LSTM model is applied as a fast and effective solution to efficiently make proper pre-

dictions and reduce congestion. Training and performance evaluations are performed

using traffic data from an online dataset. The proposed system can be used to ef-

87

ficiently predict congestion leading to intelligent traffic congestion management for

reducing the waiting time and providing drivers with alternative and shortest routes.

However, LoRa is a low-bandwidth technology and the model used in this chapter

requires the sensors to transmit raw data measurements to the central server for

processing. Hence, the same model will face challenges when applied to real-time

traffic data collected through pre-installed sensors over road networks. Sending an

extensive amount of raw data with LoRaWAN technology is not feasible.

In the next chapter, we discuss the communication requirements and the impact of

communication impairments of the LoRa network when using the proposed machine

learning approach. A number of requirements need to be considered when exchanging

data among LoRa network components, including volume of data, data loss, band-

width, data rate, and cost. In the following chapter, we present a proposed approach

for addressing these challenges. Our approach reduces the bandwidth requirements

by using federated learning [96]. The federated learning approach would involve per-

forming model training at the edge devices, also called clients, with limited data

exchange over the LoRa links.

The proposed work involves a decentralized approach, where a central server co-

ordinates with multiple clients by sharing a global model and each client trains the

model locally using only its own data. Clients perform the local training and send

back only their training results to update the global model at the central server by

combining or averaging them. With only a limited amount of data exchanged, the

central server updates the global model and forwards it to all the clients for local

training on their own data. These steps are repeated until the global model con-

verges to the optimal solution. Since legacy LoRaWAN may not be able to support

federated learning requirements, this approach requires developing a MAC protocol

to implement federated learning on LoRa-based sensor networks.

CHAPTER 8: FL-LoRaMAC: A NOVEL FRAMEWORK FOR ENABLING

ON-DEVICE LEARNING FOR LoRa BASED IoT APPLICATIONS

8.1 Introduction

As the IoT revolution continues to gather momentum, we are seeing an unprece-

dented explosion in the amount of data being generated. With estimates predicting

over 55 billion connected devices generating a staggering 80 zettabytes of data by 2025

[97], the potential for Artificial Intelligence (AI) to unlock insights and improve the

management and quality of life is enormous. However, the unique challenges presented

by the IoT and LoRaWAN ecosystems make it difficult to implement traditional AI

tools. In this chapter, we unveil a novel framework that allows for the implementa-

tion of a cutting-edge AI technique known as "federated learning" in LoRa-based IoT

devices, bringing the power of AI to the forefront of the IoT revolution.

In this chapter, we delve into the challenges of implementing traditional machine

learning methods in IoT ecosystems, specifically within the context of LoRaWAN

networks. Due to the vast amounts of data generated by IoT devices, traditional

AI techniques often struggle to be implemented in those ecosystems. To overcome

these challenges, the chapter proposes the use of Federated Learning as an alterna-

tive to traditional machine learning methods. The communication requirements and

limitations of Federated Learning are also examined, leading to the development of

a novel framework for its implementation in a representative healthcare application.

Additionally, the chapter explores potential communication optimization techniques

to enhance the efficiency of the system.

89

8.2 Machine Learning in IoT Applications

Machine learning is a tool that has the ability to demystify hidden patterns in

the data. It can provide hidden insights from the data generated by IoT devices for

improved decision-making and rapid automated responses. Machine learning tools can

be of immense help to project future trends or detect anomalies in IoT applications.

In recent years, IoT and Machine learning are used in conjunction in multiple

domains such as agriculture, manufacturing, healthcare, smart cities, etc. [98][99]. In

healthcare scenarios, the increasingly high costs have been encouraging the masses to

use remote health monitoring systems. Machine learning is applied in a wide range

of use cases such as predicting and treating diseases [100], organizing medical records

[101], providing medical diagnostics, etc. [102]. A large number of organizations such

as Microsoft [103], Tempus [104], Beta Bionics [105], Insitro [106], etc. are using

machine learning tools in the field of healthcare. IoT devices generate data from

the physical world using sensors and transmit this data to the Internet. Machine

learning algorithms use this data to create insights. With the advancements in sensor

technology, the sensors used for getting data such as the electrocardiogram (ECG),

blood sugar, blood pressure, heart rate, SPO2, etc. have become cheaper and smaller

to the extent that they can be embedded into wearable devices such as watches,

pendants, vests, etc.

In this chapter, we use ECG signal monitoring as an example application of ap-

plying AI for detecting anomalous conditions using sensor information. ECG is a

commonly used clinical tool that involves attaching up to twelve sensors or electrodes

to a patient’s chest and limbs to measure the electrical activity of the heart. These

sensors are equipped with wires that transmit electrical signals to a computer or a

monitor which displays the heart’s electrical activity [107] in the form of amplitude

vs time data points as shown in figure 8.1 [2]. In recent times, smartwatches have

been developed that can accurately measure ECG data without requiring the wearer

90

Figure 8.1: ECG signal generated in one heartbeat (source: [2]).

to visit a clinic or hospital, enabling remote monitoring of cardiac health.

Smartwatches utilize photoplethysmography (PPG) technology for heart rate mon-

itoring by using light to detect blood flow. PPG technology uses sensors that emit

light onto the skin and measure the amount of light that is reflected back [108].

This data is then used to determine the heart rate and rhythm. By continuously

monitoring the heart rate and rhythm, smartwatches can predict or detect various

heart conditions such as irregular heart rhythms, heart attacks, and the functioning

of pacemakers, among others.

The easy availability of ECG data from FDA-approved sensors integrated into

smartwatches by manufacturers such as Apple, Google Pixel, Fitbit, and Samsung

has paved the way for machine learning applications. In this chapter, we will leverage

this ECG data for such applications. By training machine learning algorithms with

ECG datasets, they can detect or predict heart conditions. However, the model must

be able to differentiate between healthy (normal) and unhealthy (abnormal) ECG

signals to detect health conditions effectively. This binary classification of ECG data

is known as ECG anomaly detection and serves as a representative application for

this chapter.

There are now a variety of publicly available ECG datasets that are labeled and

91

accessible for use. Rather than needing to collect a large amount of data ourselves, we

can load these datasets onto devices and use them to simulate real-world scenarios.

This saves the time and cost associated with data collection, while still allowing us to

train and test machine learning models on representative data. Using these datasets

can also help ensure that the models we develop are more robust and accurate since

they are based on a diverse range of real-world data. Additionally, the availability

of labeled ECG datasets can facilitate more widespread research and development in

this area, as it makes it easier for others to replicate and build upon our work.

Overall, leveraging publicly available ECG datasets can help accelerate progress

in ECG anomaly detection and other machine learning applications in healthcare,

ultimately leading to better patient outcomes and more efficient medical care.

Challenges faced by machine learning in IoT ecosystem: In a typical ma-

chine learning scenario, the data from all the sources is sent to the central server

where the model resides. The model is trained on the collected data from various

sources. Once the model is trained and is ready to be tested, the test data is sent to

the central server where decisions or predictions are made. It can be inferred that in

both cases whether the testing phase or the training phase, the data must be collected

at the central server.

The IoT ecosystem poses some novel challenges for the implementation of typical

machine learning techniques with respect to sending data to the central server. Some

of the major challenges are:

• Intermitted Internet connection: The Internet connectivity to the central

server is not always available to all IoT devices, hence restricting communica-

tion.

• High data volume: A sensor node may capture data once every few minutes

but the gateway is connected to multiple such sensor nodes. All the data is

92

collected by the gateway and sent to the central server. This can be difficult

and costly to achieve in a real-time environment.

• Data privacy: As discussed earlier, in the case where the data is residing

on the cloud and the training is happening in a batch process or the model is

already deployed, the data is sent in real-time to the cloud, and the trained

model is trying to make the predictions. In both cases, we are providing data

that can be private to an individual. So, we are providing individuals’ private

data to a third-party service provider that hosts the model and the service.

Regulatory organizations like California Consumer Privacy Act (CCPA) in the

US, impose a lot of restrictions in terms of the privacy of sensitive customer

data. We have to comply with a lot of regulations to share the data with a

third party even to provide benefits to the customers themselves.

In IoT applications that involve private user data, the need to send data to a

central server for machine learning purposes can be a challenge. This challenge can

be addressed by using federated learning, which is an artificial intelligence technique

that allows for machine learning to be performed without sending data to a central

server. In the following section, we will discuss the principles of federated learning

and how it can be used as an alternative to traditional machine learning in IoT

applications.

8.3 Federated Learning: A viable machine learning alternative

Federated Learning (FL) is a distributed machine learning approach that allows

training models across decentralized devices without transferring data to a central

server. In FL, each device locally trains a model on its own data, and only the

updated model parameters are transmitted to the central server for aggregation. This

process is repeated iteratively until the model converges to an acceptable accuracy.

The overall architecture of FL is shown in figure 8.2. FL is especially useful in IoT

93

Data

Data

Data

Data

1

2

3

1

2

3

1

2

3

1

2

2

Federated
averaging

Gradient update1
Untrained global
model download

Updated global
model download3

3

Figure 8.2: Working model of federated learning.

applications that involve private user data since it does not require the data to be

sent to a central server, addressing privacy and security concerns.

Typically, federated learning is employed to address privacy concerns in machine

learning. In this context, we aim to explore the possibility of leveraging federated

learning to decrease the amount of data that needs to be transmitted while maintain-

ing comparable performance. The training in federated learning occurs in a decentral-

ized manner, with local model parameters being transmitted from devices to a central

server for aggregation and then sent back to the devices. To support this process, the

network infrastructure should enable independent two-way communication between

the sensor nodes and the central server, provide uplink capabilities for local updates,

and downlink capabilities for the updated global model.

It is important to note that while machine learning relies on transmitting and

processing all sensor data centrally to obtain the trained model, federated learning

aggregates locally trained models. In this chapter, we compare and analyze the

performance of both technologies. Performance was evaluated using three parameters

94

that were experimentally computed by implementing both technologies on an ECG

anomaly detection application.

1. Model Performance: Comparison of model performance metrics.

2. Volume of data traffic: The number of bytes that needs to be communicated

between the end device and the server for training.

3. Computational time: The time it takes to train a model, excluding the commu-

nication time.

To evaluate their performance, both federated learning and machine learning were

implemented on an ECG anomaly detection application using the ECG-5000 dataset.

A dense neural network-based autoencoder was trained on the dataset and was used

to make the predictions. The details for both the dataset as well as the autoencoder

are discussed in section 8.6.1.

It must be noted that we use ECG as an application for evaluation purposes only.

The approach of federated learning to preserve privacy while conserving communica-

tion bandwidth may be applied to a number of different IoT applications that involve

large data sets and artificial intelligence.

In the case of machine learning this model stays on the central server. All sensors

or end devices transmit their data to the central server. Once a sufficient amount of

data is collected at the server, the model is trained on the collected data. However,

prior to training some pre-processing is performed on the data. Typically, the data is

provided to the model in batches. The number of data samples in each batch depends

upon a parameter known as “batch size.” The entire dataset is fed to the model in

batches for one training iteration. This single training iteration is termed an “epoch.”

Hence, the model is trained on the dataset for an appreciable number of epochs.

In each epoch, the data samples are randomized and fed to the model in batches.

Training sets the model’s weights based on the dataset that was used for training.

95

Therefore, the dataset must contain an appreciable amount of all permutations and

combinations of possible outcomes. Once the training is complete the model is then

fed a different set of data samples and its performance is evaluated based on the

predictions it makes. All the computations and predictions are made by the central

server.

Contrary to the centralized machine learning approach, federated learning assumes

a distributed approach. In the case of federated learning, instead of the end devices

transmitting all their data to the central server, the central server sends the global

model (initially untrained) to the participating end devices. Once the untrained model

is received by the end device, it trains the received model based on its locally collected

data. This training is done for a certain number of epochs similar to the training in

the case of machine learning discussed above, but its performed on the edge and based

only on the data collected by the edge itself. Once the local training is complete, the

model weights or parameters are sent to the central server. These local model weights

are numerical vectors that do not provide any information about the type or kind of

data that was used for training. At no point, does the local data leave the end device.

Once, the central server receives the model parameters from all participating end

devices, it performs a federated averaging on all the received model parameters and

outputs an improved global model. This entire cycle of sending the global model, local

training, sending local updates, and getting an updated global model by federated

averaging is termed as “communication round.” Federated learning is performed for

a certain number of communication rounds till the desired performance is achieved.

Once the training is complete the global model is sent to all end devices. It is then

fed with local test samples and its performance is evaluated based on the predictions

it makes. In federated learning under no circumstance does the local data leave the

edge device, hence the data privacy is preserved at all times.

Challenges faced by Federated Learning in LoRaWAN ecosystem: The

96

federated learning mechanism involves four major steps.

1. Federation Construction: Under federated construction, the global model is

downloaded from the server to the end nodes. For this step to be successful,

it is necessary that the end nodes are listening when the server broadcasts the

global model.

2. Decentralized Training: This step does not involve any communication because

under this step the model is trained locally on the end device using the data

collected locally.

3. Model Accumulation: This step involves the transmission of gradient updates

from the end devices to the central server.

4. Model Aggregation: Once the server receives all the gradient updates from

the end devices, this step computes the average of the model parameters and

outputs an improved global model.

To summarize, the major communication design considerations for federated learn-

ing are:

• Reliable transmission of the global model from server to end devices

• Reliable transmission of gradient updates from end devices to the server.

The three classes of operation defined under LoRaWAN pose some challenges to

downlink communication design considerations. Class-A mode of operation prioritizes

uplink communications and only opens two short receive windows for downlink after

the uplink transmission. If the device does not receive any data during these receive

windows, the device goes to sleep. Class-B mode of operation opens additional time

synchronized receive windows but requires additional resources like GPS, and real-

time clocks(RTC) for the synchronization. This adds to the complexity of the system.

97

Class-C is the most power-hungry mode of operation and hence is not advised for

battery-powered devices.

LoRa is a physical layer technology and allows any upper protocols to be imple-

mented. The following section presents the proposed framework. The framework

includes a MAC protocol that enables bidirectional communication between sensor

nodes and the server, without requiring additional resources or complexity.

8.4 Proposed Framework: FL-LoRaMAC

In this section, we will describe the proposed framework FL-LoRaMAC that satis-

fies the communication design considerations for the implementation of various steps

of federated learning. This includes global model downloads, local gradient updates,

and downloading the updated global model. Additionally, we will describe how these

gradients are processed on the end devices as well as on the centralized server and

some mechanisms to optimize communication bandwidth.

8.4.1 Network Joining

Under FL-LoRaMAC, all devices taking part in the training need to join the LoRa

network first. The joining procedure is similar to that of the legacy LoRaWAN

protocol as mentioned in [26] with some additional steps and information in join

messages.

Whenever a device is powered ON, it sends a join request ’J_Req’ to the network

server using via LoRa transceiver. Once the J_Req is sent the device waits for the join

response ’J_Res’. If the end device receives the J_Res, it configures itself according

to the J_Res.

On the network server side, a join timer is started periodically. If the J_Req from

the end device is received before this timer is expired, the network server prepares a

J_Res. The network server has information regarding the AI model architecture, let’s

term this information as ’MODEL_INFO’. It also contains information regarding the

98

downlink channels and spreading factor on which the global model parameters will be

broadcasted (DL_INFO), the information about the data fragments that will be sent

(FRAG_INFO), the information about how frequently the device should perform the

listening and for how much duration (LISEN_INFO). The network server will also

send MODEL_INFO, DL_INFO, FRAG_INFO, and LISTEN_INFO along with the

legacy LoRaWAN J_Res. Once the timer is expired, no J_Res for the end devices

will be sent. This process is also illustrated in figure 8.5.

8.4.2 Proposed MAC layer

In the federation construction phase, a patented model (untrained) is present at

the central server. This model needs to be transmitted to the end devices for training.

In order for end devices to receive this model, they must have their transceivers in

listening mode while the server is transmitting. However, the end devices are not

synchronized to the network clock.

Hence to achieve this, we propose an elongated preamble approach. Under this

approach, the end devices join the network according to the network joining procedure

discussed in section 8.4.1. Once the joining procedure is complete, the end device

will configure itself according to the information received in the J_Res. It will also

generate the local model according to the MODEL_INFO. Once the end device is

configured, it will periodically open receive windows for receiving the global model

parameters according to the DL_INFO, LISTEN_INFO, and FRAG_INFO as shown

in figure 8.3. If the end device does not hear any LoRa preamble, it will close the

receive window and the transceiver will go to sleep till the next period to conserve

power. If the end device finds a preamble, it will continue to listen to the packet.

The gateway will periodically transmit the global model according to the channel

and spreading factor in DL_INFO. The transmission will consist of an elongated

preamble according to the FRAG_INFO. The length of the preamble will be slightly

longer than the periodicity of the end device at which it is opening the receive windows

99

Jo
in

in
g

GW

ED

Rx window on
preselected channel

Long
preamble

Model

Model Transmission

Figure 8.3: Approach for global model transmission from gateway

as shown in figure 8.3. This elongated preamble enables the end devices to receive the

transmission without being synchronized with the gateway. Once all the fragments

of the global model are received by the end device, the fragments will be serialized

according to the frame numbers. If the end device encounters missing frames while

serializing, the retransmission of those frames will be requested otherwise, it will send

an acknowledgment to the gateway indicating the device received all the global model

parameters. After this, the end device will stop opening the receive windows.

Until the model is not received, the end device will keep collecting the data locally

and once the model is received, it will be trained on the data collected by the end

device.

The end device trains the model that it received from the network server. Once

the local training cycle is complete for a certain number of epochs, the local weights

must be sent to the server for averaging. To do so, the model parameters need to be

packed into various data fragments. Once the fragments are created, the end device

transmits these fragments one by one using the uplink transmissions. After fragment

transmission is complete, the end device will follow the elongated preamble approach

to receive the updated global model.

100

8.4.3 Decentralized Training & Model Aggregation

Section 8.4.2 provides the details about the communication of the model parame-

ters. This section explains how those model parameters are generated and processed

when they arrive at the end device or at the network server. The entire process of

FL-LoRaMAC taking place at the end device and the network server is illustrated

using flowcharts in figure 8.4 and figure 8.5.

First, we will look at the decentralized training that happens at the end device as

shown in figure 8.4. The end devices participating in the federated learning process

will receive the MODEL_INFO. This contains detailed information about the model.

For instance, in the case of a neural network, it contains information about the number

of neural layers and the number of neurons in each layer that are present in the model.

The end device compiles a local model based on this information. As soon as the end

device receives all the global model parameters, they are saved into its local model

parameters. The global model is not received as a single frame but as a number of

data fragments. These fragments are saved in a buffer, serialized, and checked for

any missed packets. If there are missing fragments then re-transmission of missing

fragments is requested.

Otherwise, if the device has enough amount of data to train the model, the model

training starts on this local data. Once the training for a certain number of epochs

has elapsed, the updated local model parameters are sent for averaging and local

memory used for saving local model parameters is cleared. As discussed earlier, these

model parameters are sent in fragments. The data frames for the uplink transmission

are constructed by flattening the parameter matrix and packing the pre-determined

number of parameters in the frame. Also, each frame includes a frame number for

identification and serializing purposes.

101

Send Join_Request

Received
Join_Accept?

Perform elongated
preamble according

to the LPL_INFO

Make local model
according to received

information and
collect data

Preamble
detected?

Receive and save the
fragment in a buffer

REMAINING=1?

Serialize and check
for errors or lost

fragments

Lost/Errors?Ask NS to retransmit
the missing fragments

Stop LPL and provide
the constructed

Parameter_Matrix to
the local model

Perform local training
on collected data

Create fragments for
the Parameter_Matrix

Transmit all
fragments one by one

Model
received?

Yes

NoNo

Yes

Yes

No

Yes

No

No

Yes

Figure 8.4: Flow of FL-LoRaMAC on end device side

102

Create parameter
matrix based on
MODEL_INFO

Select DL
transmission channel,

SF, Number of
preamble symbols

Create data
fragments based on

DL_INFO

DL_INFO

FRAG_INFO

Based on
FRAG_INFO,

calculate frequency of
LPL

LPL_INFO

Start JOIN_TIMER

JOIN_TIMER
Expired?

JOIN_REQUEST
Received?

No

Prepare and transmit Join_Accept
along with MODEL_INFO,
DL_INFO, FRAG_INFO,

LPL_INFO

Yes No

Yes

Transmit fragments
according to the

DL_INFO and wait for
acknowledgements

ACK?Retransmit the
missed fragment

No

Wait for EDs to
transmit local
parameters

Received
parameters?

Open as many buffers
as the total number of

EDs

Serialize
and decapsulate

fragments. Get the
parameter matrix for

each the device

Perform FED_AVG on
received weights and

calculate updated Global
model

Yes

No

Figure 8.5: Flow of FL-LoRaMAC on network server side

103

As shown in figure 8.5, when the network server starts receiving uplinks from any

of the end devices, it reserves a buffer for the end device’s local model parameters.

Once all the fragments are received from the end device, the fragments are serialized

based on the frame numbers. It is possible that some of the fragments from the

end devices may be lost in the RF environment due to collisions with other devices’

communication. Using the frame numbers the network server can detect the loss

of fragments. During serialization, all the information except the model parameters

is removed and if any of the frames are missing, the parameters that the lost frame

would have contained are set to zero. After this serialization, we get the same flattened

matrix (with losses) from which the end devices created the uplink frames.

Once the local updates from all the participating end devices are received, the

server performs federated averaging on them. The output of the averaging provides

an updated and intuitively better global model. Following the same procedure of

flattening and creating fragments for transmission, this global model is again sent to

the end devices for subsequent training rounds.

8.5 Optimizing Communication Bandwidth

The artificial intelligence models are quite large, in terms of the number of pa-

rameters in the weight matrix. Since LoRa is a low bandwidth and low data rate

communication technology, transmission of the model parameters to the server will

require a large amount of time and may consume all the network bandwidth. Hence

the total transmission time and communication bandwidth used need to be optimized

without significantly affecting the performance of the model.

8.5.1 Model Pruning

In a neural network, not all parameters are significant. In other words, not all

the connections between neurons of fully connected layers contribute equally to the

model’s prediction. In the ECG anomaly detection scenario explored in section 8.6,

104

the number of model parameters is reduced to 635 using the PCA algorithm. However,

not all of these parameters are significant. The pruning technique can be used to

reduce the complexity and time of execution by removing the insignificant connections

between neurons. This is done by modifying the parameter values related to those

connections to zero. The output of pruning is a sparsified weight matrix.

Typically pruning is accompanied by quantization or compression or both in or-

der to get a smaller parameter matrix in terms of bytes but this also increases the

computation cost. In this particular scenario, training is being performed on resource-

constrained devices. Applying these methods to those devices will result in significant

overhead. Instead, we may choose not to communicate these pruned parameters or

send them with lower priority.

8.5.2 QoS-based assignment of SF for differential priorities

As mentioned in pruning, not all parameters are significant to the model training.

Significance can be established based on the magnitude of the model parameters. The

pruning algorithm sparsifies the parameter matrix by pruning the parameters closer

to zero. Hence, it can be assumed that a higher magnitude means more significance.

If all the parameters are sent using the same priority level, in other words, there is

an equal chance of data being lost for all. If the high-significance parameters are lost,

then either retransmissions or more communication rounds will be required by the

system to reach convergence. In order to reduce the number of collisions, the collision

domain for the packets carrying parameters of high significance can be changed. This

can be achieved by employing the QoS-based SF distribution [20] described in chapter

6.

For ease of understanding, two levels of priorities for the packets carrying model

parameters are considered.

• High priority: High priority is given to the packets carrying any number of

significant parameters in the weight matrix. These parameters must be delivered

105

to the receiver with the highest probability of success (say >90%).

• Low priority: Low priority is given to the packets carrying the non-significant

and less significant parameters in the weight matrix. These parameters can be

delivered with the highest possible probability of success that the network can

provide.

There can be other ambient devices in the network running some other applications,

transmitting packets with higher priorities selected based on some criteria. Using the

network configuration, the maximum number of devices that can be supported by

each spreading factor can be found and the spreading factors can be allocated to

different packets according to the top-down approach mentioned in section 6.4.1.

8.6 Results and Discussions

To evaluate the performance of the proposed framework and the efficiency of feder-

ated learning to make accurate predictions, the approaches were applied to an ECG

anomaly detection application. A LoRa network simulator was used to simulate the

networking layers. Federated learning was implemented in Python which ran on top

of the networking layer.

All the codes for evaluation ran on a machine configured with Intel(R) Core(TM)

i5-8250U CPU clocked at 1.60GHz, no GPU, and a single 8 GB DDR4 RAM. The

ECG-5000 dataset was used for training and testing purposes. The details of the

dataset are discussed in section 8.3.

The training hyper-parameters used are tabulated in table 8.2 unless otherwise

specified. These hyper-parameters were found via experimentation discussed in sec-

tion 8.6.3 and provide the best performance for the representative application. The

model details are provided in table 8.1.

106

Table 8.1: Autoencoder model details

Parameter Value
Number of layers 3

Layers Type Dense
Neurons in Input layer 20

Neurons in Hidden layer & activation 15; ReLU
Neurons in Output layer & activation 20; Sigmoid

Optimizer Adam
Loss Function MAE

Table 8.2: Federated learning: Training hyperparameters

Parameter Value
Number of PCA components 20

Batch Size 10
Communication rounds 3

Epochs per Communication Rounds 100

8.6.1 Network Setup and System Model

A total of ‘X’ number of nodes were considered to be placed uniformly in a circular

LoRa cell of radius ‘R’. The gateway was assumed to be placed at the center of the

circular cell. It was assumed that at any moment the gateway has enough resources

available to demodulate any number of valid receptions. The network server was con-

nected to the application server. The application server was assumed to contain the

patent untrained global model and it is also responsible for performing the federated

averaging on parameters received from the nodes.

Out of the total of X devices, 5 devices were considered to be running the ECG

anomaly detection application. All 5 of those devices will be taking part in the

federated learning process.

As discussed earlier, the ECG-5000 dataset is used for training and testing an au-

toencoder. The original ECG-5000 dataset is a 20-hour-long ECG downloaded from

Physionet. The dataset was then pre-processed to extract each heartbeat and inter-

polation was used to make each heartbeat equal in length [109]. The dataset contains

107

5,000 ECGs,
each with ‘n’
components

Training
dataset
(80%)

Testing
dataset
(20%)

Normal
dataset
(n_train)

Shuffle and
distribute
equally

N ECGs in each device

Figure 8.6: Illustration of dataset division

5,000 labeled samples of ECG data. Each sample consists of 140 data points and a

label. The value of the label is either 0 or 1 representing abnormal or normal heart-

beats respectively. The training dataset consisted of 80% of the whole dataset and the

remaining 20% was used for testing purposes. To simulate the real-world scenario, the

data samples from the training subset were equally and randomly distributed among

the end nodes participating in learning as shown in figure 8.6. In real world scenario,

this data will be collected by the devices themselves.

The autoencoder originally consisted of 3 fully connected layers with 140 neurons in

the input layer, 32 neurons in the hidden layer, and 140 neurons in the output layer.

In this experiment, the Mean Absolute Error (MAE) function was used to compute

the training losses and ADAM was used as the optimizer to update network weights

during training.

8.6.2 Federated Learning vs Machine Learning

This section presents the performance analysis of federated learning compared to

machine learning as discussed in section 8.3.

108

8.6.2.1 Volume of Traffic

Here we evaluate and compare the volume of traffic for machine learning, federated

learning, and federated learning with PCA.

Machine Learning: In this scenario, all the data points need to be sent to the

central server. Each data sample consists of 140 data points (8 bytes each) and a label

(4 bytes) so each data sample is (140∗8+4 =)1124 bytes long. There is a total of 5,000

such data samples. Hence, in the case of machine learning, (5000 ∗ 1124 =)4, 496, 000

bytes or 4.5MB. of data needs to be communicated.

Federated Learning: In federated learning, the data stays on the local machine,

only the model parameters need to be communicated. The model used for this ex-

periment had a total of 9,132 parameters. The dataset was divided equally among

5 devices. Each of these parameters consists of 4 bytes. Hence, each device will

send 36,528 bytes in one communication round. That adds up to 182,640 bytes for

5 devices in one communication round. The model was able to converge to a similar

performance as of machine learning in 3 communication rounds with 100 epochs in

each communication round. Hence, the total data sent by 5 devices in 3 communica-

tion rounds equals 547,920 bytes. The server will also send the updated global model

after performing federated averaging in each communication round. The total data

sent by the server to end devices equals 109,584 bytes. Hence the total volume of

data that needs to be communicated in the case of federated learning is 657,504 bytes

or 657.5 KB.

Federated learning with PCA: PCA was employed as the dimensionality re-

duction algorithm similar to [110] along with federated learning. Using PCA, each

data sample was reduced to 20 components. In other words, each data sample that

earlier consisted of 140 data points was reduced to 20 data points. By doing so, the

number of neurons in the input and output layer also got reduced from 140 to only

20. 32 neurons were kept in the hidden layer (although, they can also be reduced).

109

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ML FL FL with PCA

V
o

um
e

of
 d

a
ta

 (
M

B
)

Figure 8.7: Traffic volume for machine learning (100 Epochs), federated learning (3
comm. rounds and 100 epochs), and federated learning with PCA (20 components,
3 comm. rounds and 100 epochs) approach.

The resultant model comprised of 1,332 model parameters. Following the similar cal-

culations done earlier for federated learning without PCA, the total volume of data

traffic communicated among 5 devices and the server, in 3 communication rounds in

the case of federated learning along with PCA equals 83,916 bytes or 83.9 KB.

The volume of data for all the scenarios is plotted in figure 8.7. It can be observed

that the volume of data traffic in the case of federated learning is significantly reduced

when compared with the typical machine learning approach. The traffic volume was

further reduced using the PCA dimensionality reduction algorithm.

8.6.2.2 Computation Time

The computation time measured in this scenario only consists of model training

time only. It doesn’t include data pre-processing time or communication time. All

experiments were performed on a CPU-based machine with 8 GB of RAM.

Machine Learning: In the case of machine learning, the training took 100 epochs

to converge. The entire training phase took 62 seconds to be completed.

Federated Learning: For federated learning, all devices performed the train-

110

0

10

20

30

40

50

60

70

ML FL

C
om

pu
ta

tio
n

T
im

e
(S

e
co

nd
s)

Figure 8.8: Computation time for machine learning (100 Epochs) and federated learn-
ing (3 comm. rounds and 100 epochs) approach.

ing of model parameters in parallel. During the training phase, one communication

round on average took 5 seconds. The federated averaging algorithm running on the

server took 0.016 seconds. Hence, one communication round took a total of 5.016

seconds for computation. Hence, three communication rounds took 15.048 seconds in

computation. The results are plotted in figure 8.8.

8.6.2.3 Trained Model Performance

The autoencoder was trained individually using typical machine learning as well as

using federated learning principles. Also, since each data sample consists of a large

number of data points. A dimension reduction algorithm can be very employed that

can reduce the number of data points in each data sample and helps to optimize

system performance. Therefore we also implemented Principal Component Analysis

(PCA) along with federated learning in a separate experiment. In the case of machine

learning, the model was trained for 100 epochs. In federated learning, the model was

trained for 3 communication rounds and each communication round consisted of 100

epochs. The performance of models trained with different methods is tabulated in

table 8.3.

111

Table 8.3: Performance of models trained with different methods

TN FP FN TP
Machine learning 404 7 10 579
Federated learning 407 4 16 573

Federated learning with PCA 407 4 20 569

The table provides true positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN). The table below describes their meaning in an ECG anomaly

detection scenario:

TP:
The number of samples that are actually normal and are predicted as

normal

TN:
The number of samples that are actually abnormal, and are predicted as

abnormal

FP:
The number of samples that are actually abnormal but are wrongly

predicted as normal

FN:
The number of samples that are actually normal but are wrongly predicted

as abnormal
It is intuitive that for ECG anomaly detection, TN, and TP should be maximum

and FP should be minimum. FN is not of much importance in this scenario as a false

alarm is better than a missed anomaly but it should also be minimum.

From table 8.3, it can be observed that for the representative application, the model

trained with federated learning outperforms the model trained by machine learning.

When the PCA algorithm is used along with federated learning the performance of

the model is very similar to that of the model trained without the PCA algorithm

with a slight increase in false alarms.

It can be observed from the performance analysis that federated learning takes less

computational time compared to machine learning as it trains models in a decentral-

ized way. Federated learning also provides the benefit of requiring substantially less

amount of data to be communicated while practically providing the same quality of

112

performance.

8.6.3 Selection of Hyper-Parameters for FL-LoRaMAC

This section presents the experiments performed in order to choose the hyperpa-

rameters used for training the model.

As discussed earlier, in order to construct a model we need to know the number

of layers in the model and the number of neurons in each layer. Also for training

purposes, we need to know the number of epochs and communication rounds.

All the hyper-parameters were selected after extensive experimentation. In section

8.6.2, we observed that the dimension reduction algorithm significantly reduces the

volume of data that needs to be communicated while maintaining a similar perfor-

mance level. Hence, PCA is incorporated in FL-LoRaMAC.

Figure 8.9, illustrates the performance of the model for the different numbers of

hidden layer neurons in the model and with varying numbers of epochs on which the

model is trained for. This experiment was conducted with 20 PCA components and 3

communication rounds. It can be observed from the plots that with 15 neurons in the

hidden layer and 100 epochs, the maximum recall of 99.5% can be achieved with 94%

precision and 97.2% accuracy. Similar performance can be observed with the higher

number of neurons in the hidden layer but as we increase the number of hidden layer

neurons the number of parameters in the weight matrix also increases. This increases

the communication cost of the system. However, we can reduce the communication

cost by reducing the number of neurons in the hidden layer to 10. This will reduce

the number of parameters in the weight matrix reducing the communication cost but

sacrificing the performance to have a recall of 98.5% with 95.5% precision and 97.5%

accuracy. Since using 15 neurons in the hidden layer provides us with the optimum

performance in this scenario, hence we will choose 15 hidden neurons in the neural

network.

Figure 8.10, illustrates the performance of the model for different numbers of epochs

113

for which the model is trained with a varying number of PCA components. This

experiment was conducted considering 15 neurons in the hidden layer and 3 commu-

nication rounds. It can be observed from the plots that with 20 PCA components

and 100 epochs, the maximum recall of 99.5% can be achieved with 94% precision

and 97.2% accuracy. It can be further observed that in almost all the experiments

performed with different numbers of epochs, the overall performance is at its peak

with 20 PCA components. Hence, 20 PCA components were selected to be used for

the system in this scenario.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epochs

Recall
Precision
Accuracy

(a) 10 neurons in hidden layer

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epochs

Recall
Precision
Accuracy

(b) 15 neurons in hidden layer

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epochs

Recall
Precision
Accuracy

(c) 25 neurons in hidden layer

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epochs

Recall
Precision
Accuracy

(d) 35 neurons in hidden layer

Figure 8.9: Performance of model trained with varying number of epochs and a) 10
neurons b) 15 neurons c) 25 neurons d) 35 neurons in hidden layer with 3 communi-
cation rounds and 20 PCA components

Similarly, other hyper-parameters were selected via experimentation and are tabu-

lated in table 8.1 and 8.2.

114

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

3 5 7 10 20 30 40
Number of PCA components

Recall
Precision
Accuracy

(a) Epochs=40

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

3 5 7 10 20 30 40
Number of PCA components

Recall
Precision
Accuracy

(b) Epochs=60

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

3 5 7 10 20 30 40
Number of PCA components

Recall
Precision
Accuracy

(c) Epochs=80

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

3 5 7 10 20 30 40
Number of PCA components

Recall
Precision
Accuracy

(d) Epochs=100

Figure 8.10: Performance of model trained with varying number of PCA components
and a) Epochs=20 b) Epochs=40 c) Epochs=60 d) Epochs=80 e) Epochs=100 with
3 communication rounds and 15 neurons in hidden layer

8.6.4 Model Performance Vs Communication Loss for FL-LoRaMAC

In order to evaluate the performance of the system, it was assumed that the devices

had successfully joined the network and were also configured according to specifica-

tions mentioned in section 8.4.2. Also, the end nodes had been supplied with the

training data (collected in the real scenario). The application server transmits the

untrained global model as downlink messages to the end devices taking part in the

training. This transmission of the global model was acknowledged by the end devices.

Hence, all fragments of the global model were received by all the end devices. The

end nodes trained the model based on the local data. The training was performed

for a certain duration and after that, the gradient updates were transmitted to the

115

application server as fragments. Each end device was assumed to transmit one frag-

ment every 60 seconds. Also, each of these fragments was 28 bytes long. Considering

SF7, the time on air for each packet was 62 milliseconds. During this transmission,

fragments would have collided with either data fragments from other participating

devices or data from non-participating devices. The probability of successful trans-

mission was calculated using Poisson’s distribution. If a collision took place then that

fragment was considered to be lost. The system treats these lost fragments according

to the specifications in section 8.4.3. Due to this loss, the model performance would

deteriorate in terms of making predictions on the testing dataset. Recall, precision,

and accuracy metrics were used for evaluating model performance to make predic-

tions. The recall is defined as the ratio between the number of samples correctly

predicted as positive to the total number of positive samples. In the case of ECG

anomaly detection, recall can be formulated as

Recall =
Number of samples correctly predicted as abnormal

Total abnormal samples
(8.1)

Precision is defined as the ratio of positive samples to the total number of positive

predictions that the model made. In the case of ECG anomaly detection, precision

can be formulated as

Precision =
Total number of abnormal samples

Number of samples predicted to be abnormal
(8.2)

Finally, accuracy is defined as the ratio of the total number of correct predictions

to the total number of predictions. In the case of ECG anomaly detection, accuracy

can be formulated as

Accuracy =
Number of samples correctly predicted (abnormal or normal)

Total number of predictions
(8.3)

116

All these evaluation metrics were calculated for varying loss rates from the imple-

mentation. The results are plotted in figure 8.11.

When no packet was lost in communication, the performance of the model was

highest with a recall of 99.27% and a precision of 95.77%. As the loss rate increases

the performance of the model should degrade but till a loss rate of 50%, the system

was able to maintain the recall at 93.6% and precision at 89.5%. The Federated

averaging mechanism was responsible to keep the performance stable and hence it

did not degrade steeply. During communication, even if one of the transmissions of a

certain model parameter was received by the server, the averaging algorithm preserves

the notion of that parameter in the updated global model. Hence, the end devices

instead of getting a ’zero’ due to the lost model parameters, receive the averaged

value. This helps the model to converge faster and reap the benefits of federated

learning. Once, the system starts to lose more packets, meaning that not even a

single transmission for some parameters is able to reach the server, then the model

might need more time to converge or does not converge at all.

8.6.5 Model Training Time with FL-LoRaMAC

The time duration for computing gradient updates during the training phase was

measured experimentally and the communication time was calculated mathematically

for the training hyperparameters used.

TTrain = TDU +N ∗ (TC + TUp + TFAv + TD) (8.4)

Equation 8.4 was used to calculate the total training time. Where TDU is the aver-

age time taken by the server to transmit all the untrained global model parameters,

N is the number of communication rounds used, TC is the average time taken to com-

pute local model updates, TUp is the average time taken by end devices to transmit

local updated model parameters, TFAv is the average time taken by the federated

117

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e

rf
o

rm
a

n
c

e

Loss (1-PDR)

Recall
Precision
Accuracy

Figure 8.11: Performance Vs loss

averaging algorithm to compute the updated global model from local updates, and

TD is the average time taken to transmit the updated global model parameters.

All the calculations for communication time were made considering a spreading

factor of SF7. The same can be calculated if other spreading factors were to be used.

To calculate communication time, the total number of model parameters that need

to be communicated was determined. The model has 635 parameters and which

equates to 2,540 bytes. Each fragment was considered to be 28 bytes long. Hence,

there were 91 fragments that need to be communicated from each end device in each

communication round. Considering, each end device transmits one packet every 60

seconds, TUp will be 5460 seconds.

The size of the frame was chosen to be 28 bytes because, in the US, LoRa technology

has a dwell time restriction of 400 milliseconds. Each packet duration must be at

most the dwell time. In the case of SF10, the duration of a 28 bytes packet is 400

118

milliseconds. Hence, the size of the fragment was chosen to be 28 bytes for the

simplicity of implementation. Although, in the case of lower spreading factors, more

data can be sent in one packet. However, a longer packet means a higher probability

of collision when there are multiple devices transmitting, which is the case during end

devices sending local updates.

When the global model is sent by the server, only one gateway will be transmit-

ting. Hence, the maximum number of bytes that can be packed in a packet and can

be sent more frequently with negligible probability of packet loss due to collisions.

Considering gateway transmits using SF7, each packet can have 200 bytes with 100

ms of the preamble. Hence, the gateway can send all 635 parameters with 13 packets,

transmitting one packet every 10 seconds. Considering no packets were lost during

transmission, TDU as well as TD will be 130 seconds.

The value of TC and TFAv was measured to be 4.95 seconds and 0.016 seconds

respectively. By putting all the values in equation 8.4, the total training in seconds

was calculated to be 16914.9 seconds or 4.7 hours.

TTrain = 130 + (3 ∗ (5460 + 130 + 4.95 + 0.016))Seconds (8.5)

It can be observed that the communication of model parameters takes the most

time in the training phase. This communication time can be reduced if less number of

communication rounds will be used but doing so will deteriorate the performance of

the model. This trade-off can be exploited depending on the nature of the application.

8.6.6 Energy Consumption of FL-LoRaMAC vs Legacy

As discussed earlier, the federated learning can be implemented using legacy Lo-

RaWAN protocol using Class-C mode of operation for end devices. However, doing

so will incur enormous energy costs. This section compares the energy consump-

tion of the proposed FL-LoRaMAC framework to the Class-C operation of the legacy

119

LoRaWAN protocol.

The uplink transmissions for FL-LoRaMAC are similar to that of the legacy pro-

tocol. Hence the energy consumption for uplink transmissions will be the same for

both cases. However, for downlink, the end devices according to FL-LoRaMAC will

conserve energy by putting its radios to sleep.

The energy consumed by the LoRa transceiver in the end device to receive one

downlink packet in FL-LoRaMAC can be calculated using the equation 8.6

ET = ES + EUn + ESl (8.6)

Where, ES is the energy consumed when the device starts listening and actually

receives the downlink packet, EUn is the energy consumed when the device starts lis-

tening and doesn’t receive any data, and ESl is the energy consumed by the transceiver

module in sleep mode.

The energy consumption can be found by knowing the operating voltage of the

transceiver, the current drawn, and the duration for which the current is drawn. The

SX1276 LoRa module operates on 3.3V, draws 10.8 mA (IR) during receive mode and

0.0002 mA (ISl) in sleep mode [111]. The gateway transmits downlinks once every 10

seconds. Consider the end devices opening receive window every 100 milliseconds for

5 milliseconds and then going to sleep if it does not detect any LoRa preamble. ES,

EUn, and ESl can be found according to equations 8.7-8.9.

ES = V ∗ IR ∗ TR = 3.3V ∗ 10.8mA ∗ 400ms (8.7)

EUn = V ∗ IR ∗ TR = 3.3V ∗ 10.8mA ∗ 480ms (8.8)

ESl = V ∗ ISl ∗ TSl (8.9)

= 3.3V ∗ 0.0002mA ∗ (1000− 480− 400)ms

120

Where TR and TSl are the time duration of receiving and duration of sleep re-

spectively. Using equation 8.6, the energy consumption of the LoRa transceiver for

1 downlink packet is 0.0087 mWH. Using SF7, 13 packets need to be sent in the

downlink for transmitting all model parameters in one communication round. Hence

energy consumed by the transceiver to receive all the parameters in one communica-

tion round is 0.1131 mAH.

In the case of legacy Class-C operation, the transceiver module always stays in re-

ceive mode. It will use the standard 8-symbol preamble, not the elongated preamble

so a data packet of SF7 can have 255 bytes. In this scenario, 10 packets will be suffi-

cient to transmit all 635 model parameters. The energy consumed by the transceiver

to receive all model parameters will be 10 ∗ (3.3V ∗ 10.8mA ∗ 10000s) = 0.99 mAH.

Hence, legacy Class-C devices will consume approximately 9 times more energy than

the proposed FL-LoRaMAC for receiving model parameters.

8.6.7 Performance Vs Pruning

While performing model pruning, a sparsification parameter specifies what per-

centage of the model parameters will be pruned. The performance of the model was

evaluated for varying sparsification percentages and plotted in figure 8.12.

From the plot, it can be observed that with the value of recall fixed by varying

the model threshold, as the matrix gets more and more sparse, the model precision

degrades. Sparsity is a hyper-parameter and it can be observed that for the repre-

sentative application, till 60% sparsity, the model performance is not affected much,

hence even if 60% of the model parameters are pruned the model will still perform

well. If the framework chooses not to send those pruned parameters, this will result

in at least 60% savings in bandwidth without compromising the performance of the

system.

121

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90

P
e

rf
o

rm
a

n
c

e

Sparsification (%)

Recall

Precision

Accuracy

Figure 8.12: Performance Vs sparsification

8.6.8 Performance comparison with and without QoS-based SF distribution

For comparing the performance of the system with and without QoS-based SF dis-

tribution principles, ambient devices were also considered in the network to be running

some other applications, transmitting packets with higher priorities selected based on

some criteria. It was assumed that the probability of success requirements for high-

priority packets was 90%. Assuming that other ambient end devices are transmitting

data every 60 seconds, similar to the devices running the representative application.

Also, it can be assumed that at any time the network has 10% high-priority packets

out of the total traffic. Using this network configuration, the maximum number of

devices that can be supported by each spreading factor were found and tabulated in

table 8.4. The spreading factors were then allocated to different packets according to

the top-down approach mentioned in section 6.4.1. The packet delivery ratios were

calculated using Poisson’s distribution for a varying number of total devices in the

network and are plotted in figure 8.13.

Using the PDR values for the varying total number of devices illustrated in figure

122

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 50 100 150 200 250 300 350 400 450 500

P
ro

b
a

b
il

it
y

Total Number of Devices

Low Priority

High Priority

Figure 8.13: Probability of success for high and priority devices for varying total
number of devices

Table 8.4: Maximum number of devices for various spreading factors with 90% or
greater probability of success

Spreading Factors Max. number of devices (D)
SF7 50
SF8 27
SF9 15
SF10 8

8.13, the model for the ECG anomaly detection application was trained and tested.

The significance criteria was chosen to be 80% of the maximum and minimum val-

ues. In other words, if the value of the parameters is greater than 80% value of the

maximum value or less than 80% value of the minimum value, that particular model

parameter is considered to be significant. The performance of the model trained

by applying the pruning technique along with QoS-based distribution and without

applying QoS distribution is plotted in figure 8.14.

For the comparison, the value of recall was kept fixed at 99.02%, and the values

of precision and accuracy were determined against the recall. This was achieved by

varying the threshold for the prediction. It can be observed that the number of

123

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

P
re

ci
s

io
n

Total number of devices

QoS

Legacy

(a) Precision

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

A
c

cu
ra

cy

Total number of devices

QoS

Legacy

(b) Accuracy

Figure 8.14: Performance comparison of the trained model with QoS and legacy (a)
Precision (b) Accuracy with the varying total number of devices in network

devices in the network increases the performance of the model degrades. However,

the model trained by considering the differential priority of packets provides better

performance than the one trained by considering the same priority for all. Providing

better success rates to high-priority packets that contain more significant parameters

helps the model to converge faster when compared to the legacy approach.

8.7 Conclusions

The chapter introduces artificial intelligence tools for IoT applications and a novel

framework to enable on-device learning for LoRa-based devices. Machine learning

principles can prove to be very beneficial for IoT applications but due to the challenges

imposed by IoT and LoRaWAN ecosystems such as data privacy, low bandwidth,

etc., traditional machine learning techniques can not be efficiently applied. However,

a decentralized learning technique known as federated learning can be used while

maintaining data privacy. The performance of models trained via traditional machine

learning and federated learning principles was analyzed. This analysis proves that for

the representative application federated learning can be viably employed in place

of machine learning. However, federated learning requires independent bidirectional

124

communication. The legacy LoRaWAN protocol fails to satisfy the communication

requirements of federated learning, hence FL-LoRaMAC has been proposed to fill

this gap. The performance of the framework was evaluated by implementing the

framework on a representative application. The results show that the framework was

able to successfully support all the design requirements of federated learning even

with communication losses in the system. The proposed framework also incorporates

bandwidth optimization to enable efficient resource utilization.

CHAPTER 9: CONCLUSIONS AND FUTURE WORKS

The main purpose of this research was to improve the performance of LoRa net-

works for smart city deployments.

We proposed several approaches to improve the performance of LoRa networks. We

started by experimentally evaluating the performance of LoRaWAN networks, which

included evaluating the transmission range, power consumption, and scalability of the

LoRa/LoRaWAN networks. We observed a transmission range of more than 3 miles

with over 50% successful transmissions. It was also found that a LoRa end device can

achieve a life expectancy of more than 7 years on a standard Li-ion 2800mAH battery.

The scalability evaluation showed us that although the gateway can theoretically

handle hundreds of thousands of devices, in the real world as the number of devices

increases by a few hundred, the performance degrades. The main reason behind this

performance degradation is collisions among the transmissions.

Based on the fact that collisions are the main reason for performance degradation,

we proposed an approach to improve the scalability of LoRaWAN networks by spread-

ing factor distribution. The proposed approach exploits the orthogonality property of

spreading factors i.e., devices configured on the same channel but different spreading

factors do not collide with each other. This property was used to configure devices

on various spreading factors and performance improvement was determined. We also

found the optimum fraction of devices that when configured on various spreading

factors maximize the network performance.

As the LoRa networks will be deployed in IoT and smart cities scenarios, the

network must be able to satisfy the underlying QoS requirements for such applications.

The LoRaWAN protocol considers all devices to be the same and serves all devices

126

equally. Due to this, QoS requirements are not satisfied at all times. Our proposed

approach extends our previous work and makes use of the orthogonality of spreading

factors. By using the proposed approach, the network was successfully able to satisfy

the QoS requirements. It was also found that by using SFA-1, the average performance

of the network will also improve.

Finally, the dissertation expanded to incorporate AI tools in LoRa-based IoT net-

works. AI tools have the capability to improve and gain more insights into IoT

applications. This can have the potential to enable abundant opportunities for the

research community and industry. In order to understand the implementation, ben-

efits, and communication requirements of machine learning, we developed a traffic

congestion prediction model. The model was able to predict the congestion with 90%

accuracy, which can be of tremendous use to drivers. However, it was found that the

machine learning principles require all sensor data to be sent to the central server

where the training takes place.

Hence, the typical machine learning tools face hindrances to be employed in IoT

and LoRa ecosystems due to low bandwidth available and privacy concerns. Our

proposed framework FL-LoRaMAC enables federated learning principles in IoT and

LoRa ecosystems that are proven to resolve the challenges faced by typical machine

learning principles while achieving similar performance. The framework provided

the necessary communication requirements required to employ federated learning in

LoRa-based IoT platforms. Several approaches to optimize bandwidth usage were also

exploited. The use of QoS-based SF allocation for communicating gradient updates

also proved to improve the performance.

9.1 Future Works

The dissertation considers LoRa networks with all transmissions taking place on a

single channel, assuming a single-channel gateway was used. Typically, LoRaWAN

gateways are available as 1-channel, 8-channel, 16-channel, and 64-channel gateways.

127

When a multi-channel gateway is used, each device performs channel hopping for every

uplink packet in a sequential round-robin fashion. Also, the LoRaWAN networks

deployed in smart city scenarios have multiple gateways connected to the networks

forming a star-of-stars topology. The potential areas of future research in this field

are:

• In a multi-channel gateway scenario, the channels are allocated sequentially

for every uplink transmission. Exploring an efficient channel-hopping approach

based on channel characteristics toward improving the performance of the net-

work could be an interesting research area. AI principles can also be employed

to dynamically allocate the channels for each uplink transmission.

• With the help of the optimum fraction of device distribution on various SFs

(Chapter 5), the average packet delivery rates are improved. By configuring

devices on higher spreading factors, the packets become more susceptible to

interference. Considering a multi-channel gateway scenario, the devices can be

configured on different channels but with spreading factors that are optimum

according to the ADR mechanism.

• In addition to the proposed QoS-based SF allocation approaches discussed in

Chapter 6, allocating different sets of channels to the transmissions according

to the application requirements in a multi-channel gateway scenario is left un-

explored in this work. Such channel allocation schemes have the potential to

benefit smart city IoT applications.

• The framework discussed in Chapter 8, considers all devices running the appli-

cation taking part in the learning process. Typically, only a set of devices have

the most information and should be able to train the learning model. Training

all devices without considering the degree of information content can increase

computational and communication costs. The selection mechanism for devices

128

with the best information and channel conditions for participating in federated

learning is also a much-unexplored territory and can be of significant importance

for federated learning-based smart city applications.

These future works have the potential to further improve the performance of the

LoRa networks.

129

REFERENCES

[1] “LoRa symbol generation (accessed on 11/28/2021).” [Online] Available:
http://www.sghoslya.com/p/lora-is-chirp-spread-spectrum.html.

[2] “ECG waveform (accessed on 11/8/2022).” [Online]. Available:
https://www.ems1.com/ems-products/medical-monitoring/articles/quiz-
interpreting-cardiac-waveforms-r3tCWbZuBkI5Ol9M/.

[3] K. Garg, C. Goswami, R. Chhatrawat, S. Kumar Dhakar, and G. Kumar, “In-
ternet of things in manufacturing: A review,” Materials Today: Proceedings,
vol. 51, pp. 286–288, 2022. CMAE’21.

[4] Sullivan AN, Lachman ME. Behavior Change with Fitness Technology in
Sedentary Adults: A Review of the Evidence for Increasing Physical Activ-
ity. Front Public Health. 2017 Jan 11;4:289. doi: 10.3389/fpubh.2016.00289.
PMID: 28123997; PMCID: PMC5225122.

[5] K. Gnana Sheela and K. Jilna, “An intelligent energy management system using
IoT,” Materials Today: Proceedings, vol. 24, pp. 1903–1908, 2020. International
Multi-conference on Computing, Communication, Electrical Nanotechnology,
I2CN-2K19, 25th 26th April 2019.

[6] O. Ribeiro, L. Gomes, and Z. Vale, “IoT-based human fall detection system,”
Electronics, vol. 11, no. 4, 2022.

[7] A. A. Brincat, F. Pacifici, S. Martinaglia, and F. Mazzola, “The internet of
things for intelligent transportation systems in real smart cities scenarios,” in
2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 128–132,
2019.

[8] K. Bakthavatchalam, B. Karthik, V. Thiruvengadam, S. Muthal, D. Jose,
K. Kotecha, and V. Varadarajan, “IoT framework for measurement and preci-
sion agriculture: Predicting the crop using machine learning algorithms,” Tech-
nologies, vol. 10, no. 1, 2022.

[9] C. Rosenberg, “Challenges in multi-hop networks,” in 2006 2nd Conference on
Next Generation Internet Design and Engineering, 2006. NGI ’06., pp. 1 pp.–
xvii, 2006.

[10] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks:
An overview,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 855–
873, 2017.

[11] S. Andreev, O. Galinina, A. Pyattaev, M. Gerasimenko, T. Tirronen, J. Torsner,
J. Sachs, M. Dohler, and Y. Koucheryavy, “Understanding the IoT connectivity
landscape: a contemporary m2m radio technology roadmap,” IEEE Communi-
cations Magazine, vol. 53, no. 9, pp. 32–40, 2015.

130

[12] “RP002-1.0.2 LoRaWAN regional parameters (accessed on 11/28/2021).” [On-
line]. Available: https://lora-alliance.org/wp-content/uploads/2020/11/RP2 −
1.0.2.pdf.

[13] B. Reynders, W. Meert, and S. Pollin, “Range and coexistence analysis of long
range unlicensed communication,” in 2016 23rd International Conference on
Telecommunications (ICT), pp. 1–6, 2016.

[14] “Semtech: Analog and Mixed-Signal Semiconductors (Accessed on
03/14/2023).” [Online] Available: https://www.semtech.com/.

[15] “LoRa Alliance (accessed on 11/28/2021).” [Online]. Available: https://lora-
alliance.org/.

[16] K. Mikhaylov, J. Petaejaejaervi, and T. Haenninen, “Analysis of capacity and
scalability of the LoRa low power wide area network technology,” in European
Wireless 2016; 22th European Wireless Conference, pp. 1–6, 2016.

[17] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and
M. Sorensen, “Coverage and capacity analysis of Sigfox, LoRa, GPRS, and
NB-IoT,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring),
pp. 1–5, 2017.

[18] S. Aggarwal and A. Nasipuri, “Survey and performance study of emerging LP-
WAN technologies for IoT applications,” in 2019 IEEE 16th International Con-
ference on Smart Cities: Improving Quality of Life Using ICT IoT and AI
(HONET-ICT), pp. 069–073, 2019.

[19] S. Aggarwal and A. Nasipuri, “Improving scalability of lorawan networks by
spreading factor distribution,” in SoutheastCon 2021, pp. 1–7, 2021.

[20] S. Aggarwal and A. Nasipuri, “QoS based spreading factor assignment for lo-
rawan networks in iot applications,” in SoutheastCon 2022, pp. 46–53, 2022.

[21] F. Salahdine, S. Aggarwal, and A. Nasipuri, “Short-term traffic congestion pre-
diction with deep learning for LoRa networks,” in SoutheastCon 2022, pp. 261–
268, 2022.

[22] “P.M. John Burns, Selcuk Kirtay, “Future use of licence exempt ra-
dio spectrum”, Plum Consulting, Tech. Rep., 2015.” [Online]. Available:
http://www.plumconsulting.co.uk/pdfs/Plum July 2015 Future use of Licence
Exempt Radio Spectrum.pdf.

[23] “Weightless SIG. (accessed on 11/28/2021).” [Online]. Available:
https://www.weightless-alliance.org/.

[24] “Inegu formerly known as On-Ramp (accessed on 11/28/2021).” [Online]. Avail-
able: https://www.ingenu.com/technology/rpma/lpwa/.

131

[25] “Communications system, us patent 8,406,275.” Inventor: Francois Sforza Avail-
able: https://patents.google.com/patent/US8406275B2/en.

[26] “LoRaWAN specification (accessed on 10/10/2022).” [Online]. Available:
https://lora-alliance.org/lorawan-for-developers/.

[27] “LoRa and LoRaWAN: Technical overview (accessed on 03/14/2023).” [On-
line]. Available: https://lora-developers.semtech.com/library/tech-papers-and-
guides/lora-and-lorawan/.

[28] A. Berni and W. Gregg, “On the utility of chirp modulation for digital signaling,”
IEEE Transactions on Communications, vol. 21, no. 6, pp. 748–751, 1973.

[29] “Semtech’s simple rate adaptation recommended algo-
rithm (accessed on 11/28/2021)..” [Online]. Available:
https://www.thethingsnetwork.org/forum/uploads/default/original/2X/7/7480
e044aa93a54a910dab8ef0adfb5f515d14a1.pdf.

[30] “The Things Network (accessed on 11/28/2021)..” [Online]. Available:
https://www.thethingsnetwork.org/.

[31] “What is artificial intelligence?.” Accessed on 03/14/2023 https://www-
formal.stanford.edu/jmc/whatisai.pdf.

[32] “Computing machinery and intelligence.” A. M. Turing (1950)
https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf.

[33] T. M. Mitchell, “Machine learning,” 1997.

[34] J. Alzubi, A. Nayyar, and A. Kumar, “Machine learning from theory to al-
gorithms: an overview,” in Journal of physics: conference series, vol. 1142,
p. 012012, IOP Publishing, 2018.

[35] I. Borg and P. J. Groenen, Modern multidimensional scaling: Theory and ap-
plications. Springer Science & Business Media, 2005.

[36] T. Kurita, “Principal component analysis (PCA),” Computer Vision: A Refer-
ence Guide, pp. 1–4, 2019.

[37] I. T. Jolliffe, Principal component analysis for special types of data. Springer,
2002.

[38] “Linear discriminant analysis, explained.” Accessed on 03/14/2023
https://towardsdatascience.com/linear-discriminant-analysis-explained-
f88be6c1e00b.

[39] Choudhary, T., Mishra, V., Goswami, A. et al. A comprehensive survey on
model compression and acceleration. Artif Intell Rev 53, 5113â5155 (2020).
https://doi.org/10.1007/s10462-020-09816-7.

132

[40] Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J. (2016). Prun-
ing Convolutional Neural Networks for Resource Efficient Inference. ArXiv.
/abs/1611.06440.

[41] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pettissalo,
“On the coverage of LPWANs: Range evaluation and channel attenuation model
for LoRa technology,” in 2015 14th International Conference on ITS Telecom-
munications (ITST), pp. 55–59, 2015.

[42] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communica-
tions in unlicensed bands: the rising stars in the IoT and smart city scenarios,”
IEEE Wireless Communications, vol. 23, no. 5, pp. 60–67, 2016.

[43] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A study of LoRa: Long
range low power networks for the internet of things,” Sensors, vol. 16, p. 1466,
Sep 2016.

[44] P. Neumann, J. Montavont, and T. Noel, “Indoor deployment of low-power
wide area networks (LPWAN): A LoRaWAN case study,” in 2016 IEEE 12th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 1–8, 2016.

[45] J. Petajajarvi, K. Mikhaylov, M. Hamalainen, and J. Iinatti, “Evaluation of
LoRa LPWAN technology for remote health and wellbeing monitoring,” in
2016 10th International Symposium on Medical Information and Communi-
cation Technology (ISMICT), pp. 1–5, 2016.

[46] S. Hosseinzadeh, H. Larijani, K. Curtis, A. Wixted, and A. Amini, “Empirical
propagation performance evaluation of LoRa for indoor environment,” in 2017
IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 26–
31, 2017.

[47] J. Haxhibeqiri, A. Karaagac, F. Van den Abeele, W. Joseph, I. Moerman, and
J. Hoebeke, “LoRa indoor coverage and performance in an industrial environ-
ment: Case study,” in 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8, 2017.

[48] J. Petajajarvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J. Iinatti, “Per-
formance of a low-power wide-area network based on LoRa technology: Doppler
robustness, scalability, and coverage,” International Journal of Distributed Sen-
sor Networks, vol. Vol. 13, pp. 1–16, 03 2017.

[49] T. Voigt, M. Bor, U. Roedig, and J. Alonso, “Mitigating inter-network interfer-
ence in LoRa networks,” in Proceedings of the 2017 International Conference
on Embedded Wireless Systems and Networks, EWSN â17, (USA), p. 323â328,
Junction Publishing, 2017.

133

[50] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power wide-
area networks scale?,” in Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM
’16, (New York, NY, USA), p. 59â67, Association for Computing Machinery,
2016.

[51] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello, “Im-
pact of LoRa imperfect orthogonality: Analysis of link-level performance,”
IEEE Communications Letters, vol. 22, no. 4, pp. 796–799, 2018.

[52] B. Reynders, W. Meert, and S. Pollin, “Range and coexistence analysis of long
range unlicensed communication,” in 2016 23rd International Conference on
Telecommunications (ICT), pp. 1–6, 2016.

[53] K. Mikhaylov, J. Petajajarvi, and J. Janhunen, “On LoRaWAN scalability:
Empirical evaluation of susceptibility to inter-network interference,” in 2017
European Conference on Networks and Communications (EuCNC), pp. 1–6,
2017.

[54] L. Feltrin, C. Buratti, E. Vinciarelli, R. De Bonis, and R. Verdone, “LoRaWAN:
Evaluation of link and system-level performance,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 2249–2258, 2018.

[55] F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Scalability
analysis of large-scale LoRaWAN networks in NS-3,” IEEE Internet of Things
Journal, vol. 4, no. 6, pp. 2186–2198, 2017.

[56] A.-I. Pop, U. Raza, P. S. Kulkarni, and M. Sooriyabandara, “Does bidirec-
tional traffic do more harm than good in LoRaWAN based LPWA networks?,”
GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6,
2017.

[57] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa scalabil-
ity: A simulation model based on interference measurements,” Sensors, vol. 17,
no. 6, 2017.

[58] M. Centenaro, L. Vangelista, and R. Kohno, “On the impact of downlink feed-
back on LoRa performance,” in 2017 IEEE 28th Annual International Sympo-
sium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–
6, 2017.

[59] M. Capuzzo, D. Magrin, and A. Zanella, “Confirmed traffic in LoRaWAN: Pit-
falls and countermeasures,” in 2018 17th Annual Mediterranean Ad Hoc Net-
working Workshop (Med-Hoc-Net), pp. 1–7, 2018.

[60] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor control
in low power wide area networks,” in 2017 IEEE International Conference on
Communications (ICC), pp. 1–6, 2017.

134

[61] J.-T. Lim and Y. Han, “Spreading factor allocation for massive connectivity
in LoRa systems,” IEEE Communications Letters, vol. 22, no. 4, pp. 800–803,
2018.

[62] F. Cuomo, M. Campo, A. Caponi, G. Bianchi, G. Rossini, and P. Pisani, “EX-
PLoRa: Extending the performance of lora by suitable spreading factor allo-
cations,” in 2017 IEEE 13th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pp. 1–8, 2017.

[63] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive configuration of
LoRa networks for dense IoT deployments,” in NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, pp. 1–9, 2018.

[64] S. Li, U. Raza, and A. Khan, “How agile is the adaptive data rate mechanism
of LoRaWAN?,” in 2018 IEEE Global Communications Conference (GLOBE-
COM), pp. 206–212, 2018.

[65] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin, “Improving
reliability and scalability of LoRaWANs through lightweight scheduling,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1830–1842, 2018.

[66] M. Rizzi, A. Depari, P. Ferrari, A. Flammini, S. Rinaldi, and E. Sisinni, “Syn-
chronization uncertainty versus power efficiency in LoRaWAN networks,” IEEE
Transactions on Instrumentation and Measurement, vol. 68, no. 4, pp. 1101–
1111, 2019.

[67] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low overhead scheduling of LoRa
transmissions for improved scalability,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 3097–3109, 2019.

[68] T. Polonelli, D. Brunelli, and L. Benini, “Slotted ALOHA overlay on LoRaWAN
- a distributed synchronization approach,” in 2018 IEEE 16th International
Conference on Embedded and Ubiquitous Computing (EUC), pp. 129–132, 2018.

[69] T.-H. To and A. Duda, “Simulation of LoRa in NS-3: Improving LoRa perfor-
mance with CSMA,” in 2018 IEEE International Conference on Communica-
tions (ICC), pp. 1–7, 2018.

[70] M. Centenaro and L. Vangelista, “Boosting network capacity in LoRaWAN
through time-power multiplexing,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pp. 1–6, 2018.

[71] R. Almeida, R. Oliveira, D. Sousa, M. Luis, C. Senna, and S. Sargento, “A
multi-technology opportunistic platform for environmental data gathering on
smart cities,” in 2017 IEEE Globecom Workshops (GC Wkshps), pp. 1–7, 2017.

135

[72] R. Duan, X. Chen, and T. Xing, “A QoS architecture for IoT,” in 2011 Inter-
national Conference on Internet of Things and 4th International Conference on
Cyber, Physical and Social Computing, pp. 717–720, 2011.

[73] A. Dvornikov, P. Abramov, S. Efremov, and L. Voskov, “QoS metrics measure-
ment in long range IoT networks,” in 2017 IEEE 19th Conference on Business
Informatics (CBI), vol. 02, pp. 15–20, 2017.

[74] I. Awan, M. Younas, and W. Naveed, “Modelling QoS in IoT applications,”
in 2014 17th International Conference on Network-Based Information Systems,
pp. 99–105, 2014.

[75] Simjanoska M, Gjoreski M, Gams M, Madevska Bogdanova A. Non-Invasive
Blood Pressure Estimation from ECG Using Machine Learning Techniques. Sen-
sors (Basel). 2018 Apr 11;18(4):1160. doi: 10.3390/s18041160. PMID: 29641430;
PMCID: PMC5949031.

[76] Raju KB, Dara S, Vidyarthi A, Gupta VM, Khan B. Smart Heart Disease
Prediction System with IoT and Fog Computing Sectors Enabled by Cascaded
Deep Learning Model. Comput Intell Neurosci. 2022 Jan 10;2022:1070697. doi:
10.1155/2022/1070697. PMID: 35047027; PMCID: PMC8763532.

[77] A. Anwar and A. Raychowdhury, “Autonomous navigation via deep reinforce-
ment learning for resource constraint edge nodes using transfer learning,” IEEE
Access, vol. 8, pp. 26549–26560, 2020.

[78] “Multitech mDot long range LoRa modules (mtdot series).” Accessed on
03/14/2023 https://www.multitech.com/brands/multiconnect-mdot.

[79] “Datasheet of multitech conduit (accessed on 03/14/2023).” [Online]. Available:
https://www.multitech.com/documents/publications/datasheets/86002193.pdf.

[80] N. Bisnik and A. A. Abouzeid, “Queuing network models for delay analysis of
multihop wireless ad hoc networks,” Ad Hoc Networks, vol. 7, no. 1, pp. 79–97,
2009.

[81] S. Lee, B. Han, and M. Shin, “Robust routing in wireless ad hoc networks,” in
Proceedings. International Conference on Parallel Processing Workshop, pp. 73–
78, 2002.

[82] C. Schurgers and M. Srivastava, “Energy efficient routing in wireless sensor net-
works,” in 2001 MILCOM Proceedings Communications for Network-Centric
Operations: Creating the Information Force (Cat. No.01CH37277), vol. 1,
pp. 357–361 vol.1, 2001.

[83] “Datasheet of SX1272 LoRa module by semtech (accessed on 03/14/2023).” [On-
line]. Available: https://www.semtech.com/uploads/documents/SX1272 DS
V4.pdf.

136

[84] “Documentation of network simulator-3 (accessed on 03/14/2023).” [Online].
Available: https://www.nsnam.org/documentation/.

[85] “LoRaWAN simulation model for NS-3 (accessed on 01/24/2021).” [Online].
Available: https://github.com/signetlabdei/lorawan.

[86] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communi-
cations in unlicensed bands: the rising stars in the iot and smart city scenarios,”
IEEE Wireless Communications, vol. 23, no. 5, pp. 60–67, 2016.

[87] A. Dvornikov, P. Abramov, S. Efremov, and L. Voskov, “QoS metrics measure-
ment in long range IoT networks,” in 2017 IEEE 19th Conference on Business
Informatics (CBI), vol. 02, pp. 15–20, 2017.

[88] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and
T. Watteyne, “Understanding the limits of LoRaWAN,” IEEE Communications
Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[89] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello, “Im-
pact of lora imperfect orthogonality: Analysis of link-level performance,” IEEE
Communications Letters, vol. 22, no. 4, pp. 796–799, 2018.

[90] “US vehicle registration statistics.” Accessed on 03/14/2023
https://hedgescompany.com/automotive-market-research-statistics/auto-
mailing-lists-and-marketing/.

[91] J. C. Falcocchio and H. S. Levinson, “The costs and other consequences of
traffic congestion,” in Road Traffic Congestion: A Concise Guide, pp. 159–182,
Springer, 2015.

[92] M. Akhtar and S. Moridpour, “A review of traffic congestion prediction using
artificial intelligence,” Journal of Advanced Transportation, vol. 2021, 2021.

[93] S. A. A’ssri, F. H. Zaman, and S. Mubdi, “The efficient parking bay allocation
and management system using LoRaWAN,” in 2017 IEEE 8th Control and
System Graduate Research Colloquium (ICSGRC), pp. 127–131, IEEE, 2017.

[94] Y. Tian, K. Zhang, J. Li, X. Lin, and B. Yang, “LSTM-based traffic flow pre-
diction with missing data,” Neurocomputing, vol. 318, pp. 297–305, 2018.

[95] “California department of transportation.” Accessed on 03/14/2023
https://pems.dot.ca.gov/.

[96] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated learning
for internet of things: Recent advances, taxonomy, and open challenges,” IEEE
Communications Surveys & Tutorials, 2021.

137

[97] “Future of industry ecosystems: Shared data and in-
sights (accessed on 03/14/2023).” [Online]. Available:
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-
and-insights/: :text=IDC%20estimates%20there%20will%20be,the%20importan
ce%20of%20expanding%20their.

[98] N. Majumdar, S. Shukla, and A. Bhatnagar, “Survey on applications of internet
of things using machine learning,” in 2019 9th International Conference on
Cloud Computing, Data Science Engineering (Confluence), pp. 562–566, 2019.

[99] P. P. Shinde and S. Shah, “A review of machine learning and deep learning
applications,” in 2018 Fourth International Conference on Computing Commu-
nication Control and Automation (ICCUBEA), pp. 1–6, 2018.

[100] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease prediction by
machine learning over big data from healthcare communities,” IEEE Access,
vol. 5, pp. 8869–8879, 2017.

[101] “Rajkomar, a., oren, e., chen, k. et al. scalable and accu-
rate deep learning with electronic health records. npj digi-
tal med 1, 18 (2018). https://doi.org/10.1038/s41746-018-0029-1.”
https://www.nature.com/articles/s41746-018-0029-1citeas.

[102] K. Shailaja, B. Seetharamulu, and M. A. Jabbar, “Machine learning in health-
care: A review,” in 2018 Second International Conference on Electronics, Com-
munication and Aerospace Technology (ICECA), pp. 910–914, 2018.

[103] “Microsoft: AI for health (accessed on 03/14/2023).” [Online] Available:
https://www.microsoft.com/en-us/ai/ai-for-health.

[104] “Tempus: Data-driven precision medicine (accessed on 03/14/2023).” [Online]
Available:https://www.tempus.com/.

[105] “Beta bionics (accessed on 03/14/2023).” [Online] Avail-
able:https://www.betabionics.com/.

[106] “Insitro (accessed on 03/14/2023).” [Online] Available:https://insitro.com/.

[107] “Electrocardiogram (ECG or EKG).” [Online]
Available:https://www.mayoclinic.org/tests-procedures/ekg/about/pac-
20384983: :text=During%20an%20ECG%20%2C%
20up%20to,a%20monitor%20or%20on%20paper.

[108] “Can a smartwatch with ECG capability really warn you about an
irregular heartbeat? (accessed on 03/14/2023).” [Online] Avail-
able: https://www.houstonmethodist.org/blog/articles/2022/jan/can-
a-smartwatch-with-ecg-capability-really-warn-you-about-an-irregular-
heartbeat/: :text=The%20ECG%20technology%20in%20a,sense%20of%20your%
20heart’s%20rhythm.

138

[109] “ECG-5000 dataset (accessed on 11/8/2022).” [Online]. Available:
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000.

[110] R. J. Martis, U. R. Acharya, K. Mandana, A. Ray, and C. Chakraborty, “Appli-
cation of principal component analysis to ECG signals for automated diagnosis
of cardiac health,” Expert Systems with Applications, vol. 39, no. 14, pp. 11792–
11800, 2012.

[111] “SX1276 datasheet (accessed on 03/14/2023).” [Online] Available:
https://www.mouser.com/datasheet/2/761/sx1276-1278113.pdf.

