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ABSTRACT

AUSTIN W. BLOOM. Extending Topological Constraint Theory to Glass Networks
with Hydrogen Bonding. (Under the direction of DR. DONALD JACOBS)

Topological constraint theory has been successful in providing a simple model for

the liquid-glass transition in covalent bond bending networks. However, it is lim-

ited to networks where all bonds are quenched and possess equivalent potential well

depths. This limitation makes it difficult to model glass networks with heterogeneous

bonds such as hydrogen bond networks. By adding a single adjustable parameter

to model hydrogen bonds, topological constraint theory can be extended to model

glass networks with both quenched (covalent) and flickering (hydrogen) bonds. This

parameter is the time scale of observation, and it is implemented by calculating hy-

drogen bond probabilities by time averaging over the recent past using data from

molecular dynamics simulation. The rigidity properties are quantified with the peb-

ble game algorithm for body-bar networks to identify rigid subgraphs. Molecular

dynamics trajectory data is mapped into a generic graph topology for a rigidity anal-

ysis. The hydrogen bond dynamics are characterized with correlation functions, and

a method is presented for determining the optimal geometrical hydrogen bond defini-

tion. Further, it will be shown that spatial-temporal correlations present in molecular

dynamics simulations shift the rigidity percolation threshold to lower mean coordina-

tion numbers. It is found from rigidity percolation and scaling theory that a second

order rigidity transition is driving the liquid-glass transition, and an analysis of the

β critical exponent suggests that covalent bond bending networks belong to the same

universality class as thermal phase transitions.
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CHAPTER 1: Introduction

Since the first X-ray diffraction (XRD) studies, considerable progress has been made

in untangling the phenomenology of the glassy, or vitreous, state. It has been known

since Kauzmann that the liquid-glass transition is largely a relaxation phenomenon,

not a thermodynamic phase transition [3]. Zachariasen noted that certain oxides

experienced a glass transition while others did not. He postulated that compositions

of the form, AmOn, would be an economical route for systematically studying the

glassy state by modulating the constituent components [4]. This insight - coupled

with Kauzmann’s view that the glass transition is an entropy crisis - would later lead

Phillips to propose a topological constraint theory (TCT) of glasses which focuses

solely on counting degrees of freedom. Despite its almost naive simplicity, TCT is

in excellent agreement with experiment [5]. The collaborations between Thorpe and

Phillips utilized Maxwell’s research in rigidity theory and furnished the mathematical

methods of percolation theory to extend TCT [6] [7] [8]. An important contribution

to TCT is a graph-theoretic algorithm known as the pebble game (PG) which was

developed by Jacobs and Thorpe [1]. The PG is built on Laman’s theorem in graph

theory which allows one to unambiguously identify rigid subgraphs in two dimensions

(the pebble game algorithm was then generalized further to three dimensions). The

PG has been successful in elucidating the effects of rigidity in two dimensional lattices

[1] [9] [10] [11] [12] [13], chalcogenide glasses [5] [2], the dynamics of proteins [14] [15],

and in suggesting a possible mechanism for the Boson peak [16].

The foregoing represents a small fraction of the work done in understanding the

liquid-glass transition. Other theoretical efforts involve free volume theory [17] and

mode coupling theory [18] [19]. Experimentally, the mechanical and thermodynamic
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properties are of great interest and are commonly measured via dynamic mechanical

analysis (DMA) and differential scanning calorimetry (DSC), respectively. These

measurements capture a multitude of out-of-equilibrium effects, such as hysteresis

and nonexponential relaxation, in the vicinity of the glass transition temperature, Tg.

Heat capacity measurements made through DSC are one of the most cited techniques

for identifying Tg. Cp curves as a function of temperature will exhibit a drop as the

sample is quenched, and the inflection point of this heat capacity curve corresponds

to Tg. After the rapid quench, and if the sample is reheated, hysteresis effects cause

the heat capacity to take a slightly different path in the vicinity of the inflection

point before Cp increases to its value in the liquid state. In addition, the thermal

expansion coefficient also shows hysteresis upon reheating and cooling of the sample.

While a reduction in Cp upon cooling is usually evidence of a thermodynamic (first

order) phase transition, this is not the case with vitrification. Instead, the reduction

in Cp may be attributed to a reduction in configurational entropy which consequently

freezes degrees of freedom so that they may no longer contribute to the heat capacity.

Figure 1.1: This sketch shows the typical hysteresis behaviour of the heat capacity of
vitrified liquids. The inflection point is defined to be the glass transition temperature.

The relaxation time can be measured from the viscosity and the shear modulus,

via τ = η/G∞ [20], refractive index measurements [21], Brillouin scattering studies



3

[22], and others. There are a number of equations which link together the viscosity,

relaxation time, shear modulus, fragility, and other quantities of interest [18]. Among

the most commonly used is the Vogel-Fulcher equation which is typically successful

in accounting for small to intermediate deviations from Arrhenius behavior [18]. The

extent of this deviation can be seen with Angell’s classification of strong and frag-

ile glasses (see figure 1.2), with the former representing Arrhenius glasses and the

latter non-arrhenius glasses. This classification provides an excellent framework in

which to model different glass forming materials. In particular, all glasses belonging

to a specific category will generally exhibit the same relaxation functional form, me-

chanical properties, and thermodynamic properties. For instance, the Vogel-Fulcher

equation tends to fail for fragile glasses, but successfully models strong glasses. In

addition, fragile glasses will experience a greater deformation to a shear stress than

strong glasses, and fragile glasses experience a sharper change in heat capacity at Tg

as compared to strong glasses. The extent to which a glass is deemed fragile may be

quantified by its fragility index [23],

M =

(
dlogη
dTg/T

)∣∣∣∣
T=Tg

, (1.1)

which is the derivative of the log of viscosity with respect to Tg/T and evaluated at

the glass transition temperature. One can see from figure (1.2) that the slope near

Tg becomes large for fragile glasses, but remains invariant for strong glasses. Thus,

large values for equation (1.1) indicate fragile glasses.

Before proceeding, it should be noted that the determination of Tg, and the related

mechanical and thermodynamic quantities is not absolute. Kauzmann pioneered the

recognition that the liquid-glass transition is actually a failure of the experiment for

not making measurements on the appropriate time scales. Extending the time scale of

the experiment, then, will often "improve" the data since the system has been given

additional time to relax to equilibrium. The data that is measured in experiment
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Figure 1.2: This sketch demonstrates the strong/fragile classification of glass form-
ing materials. Linearity indicates arrhenius behaviour and deviations from linearity
indicate non-arrhenius behaviour (or non-exponential relaxations).

depends on the cooling rate, so the determination of Tg is ultimately arbitrary. For

consistency, most researchers use a cooling rate of 10 K/min. This commonly used

value has resulted in general agreement of Tg to within 2 K among different labs [20].

While the exact value of Tg may be arbitrary, there is still a maximum and minimum

allowable Tg. This is because Tg asymptotically approaches an upper bound and lower

bound as quench rates approach infinity and zero, respectively [24]. The time scale

dependence of the liquid-glass transition will be an important consideration later on

in this work.

Certainly, a great deal of effort has been expended to characterize and to identify

the mechanism of the glass transition; yet, there still remain many questions after

decades of study. The central question in this work is "to what extent does rigidity

contribute to structural arrest in the liquid-glass transition of fragile glasses?" In

the case of strong glass formers such as chalcogenide glasses, there is overwhelming

theoretical and experimental evidence that network rigidity is a key factor. Will the
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same be true of multi-component solutions with hydrogen bonding (H-bonding) and

ionic interactions?

Previously, ternary sugar/salt solutions of trehalose, choline monohydrogen or di-

hydrogen phosphate (CMHP or CDHP), and water as well as binary sugar/salt mix-

tures of trehalose and sodium or phosphate have been studied in molecular dynamics

(MD) simulation because of their promising biological applications [25] [26]. Inter-

est in these systems, however, extend beyond the preservation of biologics because

they pose intriguing questions in fundamental physics. In ternary systems containing

water, it was discovered that the percolation threshold of water is a lower bound

to the glass transition concentration, Cg. Interestingly, the oft-disputed free volume

theory accounts well for this observation because it considers the percolation of free

volume to be responsible for the onset of the glass transition. The problem encoun-

tered with free volume theory is the difficulty in defining free volume, but this was

circumvented by regarding all water molecules as liquid-like in CDHP systems, while

only water molecules which do not neighbor phosphate are considered liquid-like in

CMHP systems.

There has been considerable interest in the glass transition of trehalose/water so-

lutions since Angell first observed that the cryoprotective ability of various disaccha-

rides exactly matched the ranking of their glass transition temperatures. Like any

glass, there is experimental evidence for a broad spectrum of relaxation time scales

involving trehalose-solvent interactions. The mean squared displacement (MSD)

in such systems can be decomposed into vibrational and relaxational components,

〈u2〉 = 〈u2〉v + 〈u2〉r, which represents dynamics on fast and slow time scales, re-

spectively [27] [28]. In this paradigm, particles which jump rapidly between two sites

of different free energy constitute the vibrational term, while the relaxational term

arises when the jumping process exceeds a certain displacement. While this model is

corroborated by experiment, there is still a continuous range of time scales which are
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relevant in the glassy state. This observation is important for considering how em-

pirical measurements of glass depend on time scale. The work in CMHP and CDHP

systems already gave hints that this would be a good direction in which to proceed,

as evidenced by volume hysteresis effects observed in CDHP and CMHP systems that

were attributed to frozen-in strain in the trehalose matrix. This work will extend the

previous studies of CMHP and CDHP systems by analyzing their rigidity proper-

ties. However, complications arise in applying TCT to fragile glass forming materials

with H-bonding. The ambiguity inherent in the definition of an H-bond requires us

to regard it as an adjustable parameter. Unlike the covalent bond network that is

quenched, the network formed by H-bonds is not static but is subject to thermal

energy fluctuations. The problem of accounting for the formation and breaking of H-

bonds will be addressed through a careful examination of H-bond lifetimes. This work

differs in significant ways from previous applications of the PG. The PG is typically

run on lattices that have undergone random site or bond dilution until a specified

fraction of sites and bonds remain. This approach fails to account for the tendency

of glasses to self-organize in order to minimize energy cost, so self-organization or

equilibration algorithms have been developed to remedy this [12] [10] [29]. A natural

extension of this line of research is through MD simulation so that we let "nature"

equilibrate the lattice. The PG has already been applied to MD-equilibrated systems

in two dimensions [30], to strong glasses in three dimensions [31] [32], and to protein

systems with H-bond networks, but to our knowledge, it has never been applied to

bulk multi-component H-bonded systems in three dimensions.

We propose to address these problems by incorporating a time scale dependence

into the PG by time averaging over the recent past with a sliding window. Whereas

all bonds are regarded as "equally rigid" in a covalent bond bending network, this

approach, which uses the probability that an H-bond is present, makes it possible

to account for the heterogeneity of H-bonds with respect to the time scale on which
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observations are made. Because all H-bond data originates from MD simulations, the

spatial-temporal correlations which are experimentally present in glass networks may

now be reproduced within the theoretical framework of rigidity theory.

1.1 The Ergodic Hypothesis

There are many ways of characterizing and defining a glass. At a minimum, a glass

must lack long-range order, as determined by XRD. One may also rely on mechanical

measurements, to wit, a glass must have a viscosity greater than 1012 poise [17]; it

must experience a sharp drop of the shear modulus at the glass transition [24]; and a

glass experiences large amplitude molecular motion on picosecond time scales, while

the macroscopic response is on a time scale of milliseconds to seconds [24]. Perhaps

the most fundamental feature of a glass is that a glass violates the ergodic hypothesis.

Originated by Boltzmann, the ergodic hypothesis states that the time average of an

observable equals its ensemble average in the limit that time goes to infinity [33]. An

ergodic system will explore the entire phase space after a sufficiently long amount of

time, while systems which are not ergodic will remain confined to a "compartment"

within the phase space. This difference can be envisioned by considering many differ-

ent independent microstates (which occupy a compartment within the phase space)

of the same system and taking this set of microstates as a set of initial conditions. In

an ergodic system, each of these initial microstates are free to evolve (and will evolve)

into any of the other microstates given enough time. In a non-ergodic system, each

of the initial microstates are trapped within their respective compartments and are

separated from other microstates by an energy barrier.

This description is reminiscent of how one might describe a glass [3] [18], and

indeed, the notion of ergodicity-breaking is quite useful in understanding the glassy

state. Ergodicity-breaking can be invoked in free volume theory which states in simple

terms that a glass network experiences a reduction in mobility because there is not

a percolating cluster of free volume (liquid-like molecules) which allows molecules
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to freely move past each other without an energy cost [17] [25]. Likewise, from the

perspective of rigidity theory, ergodicity is broken due to formation of large, extended

rigid clusters, and in particular, a percolating rigid cluster which prevents the system

from exploring its phase space. At a conceptual level, free volume theory and rigidity

theory (as applied to glass networks) complement each other, for the former attributes

the glass transition to the loss of percolation of free volume, while the latter attributes

the glass transition to the percolation of a rigid cluster of molecules. Using both

viewpoints, one arrives at the same conclusion that there is a threshold at which

degrees of freedom become frozen out and the ergodic hypothesis is thus violated.

1.2 Molecular Dynamics Simulation

MD simulations solve the many-body problem of an ensemble of molecules by

applying Newton’s equations of motion. As opposed to Monte Carlo methods which

only compute the equilibrium properties of a system, MD simulations reveal the time

evolution of a system as well. The leapfrog or Verlet algorithms are usually used to

numerically solve the equations of motions in MD simulations because they provide

stable calculations over an indefinite amount of time and are relatively fast. According

to the Verlet algorithm, the position and velocity for each particle in the system is

updated as [34],

xi(n+ 1) ≈ 2xi(n)− xi(n− 1) + ai,x(n)(∆t)2 (1.2a)

vi,x ≈
xi(n+ 1)− xi(n− 1)

2∆t
, (1.2b)

where xi, vi,x, and ai,x are the position, velocity, and acceleration of the ith particle,

respectively. The time step, ∆t, is usually small (on the order of femtoseconds) in

order to obtain physically realistic trajectories. The acceleration is calculated from the

gradient of the potential energy which is divided into bonded and non-bonded terms.
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The bonded terms are divided into bond stretching, bond bending, and dihedral angle

forces, while the non-bonded terms are the short-range Lennard-Jones interactions

and long-range coulombic force. The general form of the potential is given by [35],

U(rN) =
∑
d

kd(d− d0)2

+
∑
θ

kθ(θ − θ0)2

+
∑
χ

(1 + cos(nχ− δ))

+
∑
φ

kφ(φ− φ0)2

+
∑
i,j

εi,j

((
r0
i,j

ri,j

)12

−
(
r0
i,j

ri,j

)6

+
qiqj
εlri,j

)
,

(1.3)

where d is the distance between two covalently bonded atoms, θ is the angle associated

with three covalently bonded atoms, χ is the proper dihedral angle, and φ is the

improper dihedral angle. The last term contains the Lennard-Jones and Coulombic

interactions where εi,j is related to the Lennard-Jones potential well depth, ri,j is the

separation distance between two atoms, and r0
i,j is the equilibrium separation. The

last term in the last sum is the Coulombic potential where qi and qj are the charges of

atoms i and j and εl is the effective dielectric constant. The first, second, and fourth

sums come from Hooke’s law, while the third sum models the potential energy of a

dihedral angle between two planes which are free to rotate.

Most experiments seek to ascertain the glass transition temperature by rapidly

quenching the sample. Indeed, a rapid quench is necessary in order to form a glass,

but the simulations performed in this work are at constant temperature. Instead of

running MD simulations which have different initial and final temperatures to form

the glass, the glass is formed during energy minimization which represents a quench
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from infinite temperature. This is because the starting the configuration is generated

by randomly placing molecules in the simulation box. Molecules which have an equally

likely chance of occupying any location, irrespective of their neighboring molecules,

can be said to be at a very high temperature. The role of energy minimization is to

reshape the potential energy surface by rearranging the molecules so as to achieve

a starting configuration which is physically realistic. Without energy minimization,

the system will "explode" due to the unphysical starting configuration which could

only exist at very high temperatures. Energy minimization iteratively adjusts atomic

coordinates until the maximum force falls below an acceptable threshold, and the

resulting system is in a local energy minimum. The ability to escape from that

minimum during the following NPT and NVT equilibrations will determine if the

system is a glass or liquid (non-ergodic or ergodic).



CHAPTER 2: Theory

This chapter will provide a brief and cursory exposition of the relevant theory.

First, Landau’s theory will briefly be discussed, and the connection will be made to

percolation theory. Then, rigidity theory will be introduced which is necessary for

understanding the pebble game algorithm.

2.1 Theory of Phase Transitions

Among the first phase transitions discovered which do not involve a latent heat,

but still exhibit critical phenomena, is that of liquid helium when it transitions to a

superfluid at a critical temperature. This anomalous result prompted Ehrenfest to

devise a classification scheme of phase transitions which are defined based on the ex-

istence of singularities in the derivatives of free energy [36]. Soon thereafter, Landau

generalized this idea to include any transition between a symmetrical and unsym-

metrical phase [37]. Landau’s phenomenological theory expresses the free energy as

a power series in even powers of an order parameter. The order parameter may itself

be a function of temperature or some other quantity which has a critical value that

distinguishes between two phases. In this theory, the order parameter, m0, is zero in

the symmetric phase and non-zero in the unsymmetric phase. The manner in which

m0 approaches zero is of great importance, as this will determine crucial properties of

the system, such as the universality class to which a transition belongs in the case of

second order transitions. When m0 discontinuously approaches zero, the transition is

said to be first order, while the transition is second order if it continuously approaches

zero. The first order phase transition is the "usual" transition which involves a latent

heat. In contrast, the thermodynamic potentials vary continuously over the transi-
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tion point in a second order transition and therefore involve no latent heat. The free

energy can be expanded as,

ψ(t,m0) = q(t) + r(t)m2
0 + s(t)m4

0 + ..., (2.1)

where t = (T − Tc)/Tc, and |t| << 1. The coefficients are themselves power series in

t,

q(t) =
∑
k≥0

qkt
k (2.2a)

r(t) =
∑
k≥0

rkt
k (2.2b)

s(t) =
∑
k≥0

skt
k (2.2c)

but only the first one or two terms will be retained in the asymptotic expression for

free energy. Equation (2.1) is an expansion of the free energy around the critical point,

so it is only valid for small deviations of temperature from the critical temperature.

The first order term is absent because it represents the perturbation Hamiltonian

associated with an ordering field, but equation (2.1) assumes there is no external

perturbation. The equilibrium value of the order parameter is found by minimizing

the free energy by taking the derivative of ψ with respect to m0. Doing so yields,

r(t)m0 + 2s(t)m3
0 = 0. (2.3)

There are only two physical solutions: one corresponds to the symmetrical phase,

m0 = 0 (t > 0), and the other corresponds to the unsymmetrical phase,

|m0| =
(
−r(t)
2s(t)

)1/2

≈
(
r1|t|
2s0

)1/2

, (2.4)
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for t < 0. The exponent in equation (2.4) is physically significant and is known as

a critical exponent because it describes the power law behavior in the vicinity of the

second order transition. In particular equation 2.4 gives the β critical exponent which

describes order parameter in the vicinity of the transition.

2.1.1 Connection to Percolation Theory

Consider a periodic lattice where each site on this lattice may either be occupied

or unoccupied with a probability p. On this lattice, clusters of occupied sites will

form. A cluster is defined as a continuous set of occupied sites such that there exists

at least one path between any two sites in the cluster which does not pass through

an unoccupied site. The aim of percolation theory is to mathematically characterize

the clusters which form as the lattice topology and probability are varied.

Percolation theory is built on simple axioms, but in terms of characterizing a phase

transition it bears great similarities to Landau theory. As the site occupation proba-

bility increases, the cluster sizes in the lattice will also increase, and there is a critical

probability, pc, where the lattice will experience a transition. When p < pc, all of the

clusters are finite, but when p > pc, there exists an infinite (percolating) cluster (or a

cluster which spans the length of the lattice in the case of a finite lattice). The range

of probabilities around pc will accordingly display critical phenomena.

The cluster number, ns, is defined as the probability that a cluster of size s exists

in the lattice. Percolation theory is typically concerned with the scaling relations of

the kth moment of ns,

Mk =
∑
s

skns, (2.5)

and in particular, the first three moments are given considerable interest. M0, M1,

and M2, represent the number of clusters, the strength of the infinite cluster, and the

average cluster size, respectively. The strength of the infinite cluster is denoted by
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P and represents the probability for any arbitrary site to be in the infinite cluster,

while the mean cluster size is, S ∝M2.

The manner in which the order parameter, P , goes to zero at the percolation

threshold depends on the scaling exponents which usually belong to a university class

that is in turn determined by the dimensionality of the lattice. One lattice which

admits exact solutions is the Bethe lattice which is a tree where each site has the

same coordination number, z. For the Bethe lattice when z = 3, it can be proven

that P ∝ (p− pc), giving a critical exponent of β = 1. The Bethe lattice is amenable

to exact analytical solutions because it has no closed loops. Therefore, each branch

of the lattice is statistically independent of other branches, and the probability of a

site not being connected to a branch in the percolating cluster can be calculated. The

Bethe lattice is a special case because it is infinite dimensional. For finite dimensions,

the order parameter has the general form,

P ∝ (p− pc)β. (2.6)

The discussion thus far has focused on connectivity (or scalar) percolation. Rigid-

ity (or vector) percolation implies connectivity percolation, but also imposes an addi-

tional requirement. This will be discussed in the next section. It is also important to

note that generic rigidity percolation must not take place on a geometrically periodic

lattice (topologically periodic is okay). Such non-periodic systems are convenient to

study computationally.

2.2 Rigidity Theory

Quantitatively characterizing rigidity in networks dates back to Maxwell who was

interested in assessing the structural stability of trusses [23]. In the theory of net-

work rigidity, one considers an idealized framework of completely rigid bars which are

connected at frictionless joints so that the only possible motion arises from rotations
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about a joint or bar. Given an infinite lattice in two dimensions, it is not always obvi-

ous if deformations of the framework are permitted. By considering a d-dimensional

bar and joint framework with N joints (nodes) and Nc bars (constraints), Maxwell

demonstrated that the number of floppy modes is given by F = dN−NC−d(d+1)/2.

For d = 2, such a framework becomes rigid when Nc = 2N−3 [8]. This result is exact

for a homogeneous lattice, but it is approximately true if each joint has on average

Nc constraints. This mean field approximation is known as Maxwell counting.

Colloquially, the concept of rigidity is self-explanatory and implies some resistance

to elastic deformation. Mathematically, rigidity is a well defined concept by employing

linear algebra. For certain types of rigidity (first order stable and structures with

generic positions of joints) the linear algebra can be formalized in terms of constraint

counting using graph theory in two dimensions. A graph, G, consists of a vertex set

V and an edge set E which is comprised of unordered pairs from V . A framework,

(V,E,p), may be constructed by embedding G into an m dimensional Euclidean

space such that each vertex is assigned a coordinate in space using p = p1, ...,pn. A

deformation or finite flexing of the framework is a continuous family of realizations

such that the coordinate of each vertex is a differentiable function of time and the

distance between two edge sharing vertices at pi and pj remains fixed, according to

[38]

(pi(t)− pj(t)) · (pi(t)− pj(t)) = cij. (2.7)

A deformation of the framework is said to be trivial if the distance between any

two points remains fixed regardless if they share an edge. If all deformations are

trivial, the framework is said to be rigid. These trivial motions correspond to one

rotational and two translational degrees of freedom in R2 and three rotational and

three translational degrees of freedom in R3. It is often easier to work with the



16

derivative of equation 2.7,

(p′i(t)− p′j(t)) · (pi(t)− pj(t)) = 0, (2.8)

whence one may define the notion of infinitesimal rigidity and introduce the rigidity

matrix. The solutions to equation 2.8 define the set of all infinitesimal motions,

and a framework is said to be infinitesimally rigid if there exist only m(m + 1)/2

solutions (corresponding to the rigid body motions). The rigidity matrix has E rows

and mV columns and thus encapsulates the relative locations of all vertices and their

connections within a framework. Each row corresponds to an edge and has 2m non-

zero entries which are the difference in coordinates of the adjoining vertices. The

number of linearly independent edges is the rank of the matrix. An edge is said to

be redundant if the rank of the rigidity matrix is invariant upon its removal, while an

edge is said to be independent if removing it decreases the rank. The foregoing linear

algebra approach will always be sufficient to determine the rigidity of a framework.

A graph, unlike a framework, contains only connectivity information and requires a

graph-theoretic approach. A graph is generically rigid in m-dimensional space if there

exists an embedding p such that all frameworks, (V,E,p), in the neighborhood of p

are infinitesimally rigid. Therefore, infinitesimal rigidity implies generic rigidity.

The concept of an independent or redundant edge is integral to the analysis methods

presented here, but they are defined within a somewhat abstruse formalism. In two

dimensions, the difference between a redundant and independent edge can be easily

seen with a few illustrative examples. Figure 2.1 shows some of the possible generic

graph representations for a graph with four vertices. Panels (a) and (b) both have

more than zero floppy modes (not including the three rigid body motions in the plane),

while (c) and (d) have zero floppy modes and are therefore rigid. The redundant

constraint is specified in panel (d) as the heavy dashed line, but in principle one could
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Figure 2.1: Panels (a) through (d) show the evolution from floppy to rigid of a simple
generic graph. In panel (a), there are two independent motions associated with the
horizontal bars which can pivot around the joints connected by the vertical bar. The
addition of an independent constraint in (b) removes one floppy mode. The addition
of the dashed edge in (c) now turn the four vertices into a single rigid cluster. The
thick dashed line in (d) is redundant because the graph has already undergone a
rigidity transition.

remove any edge without adding floppy modes. The heavy dashed line is identified

as redundant because it was the last edge added to the graph. In the mean field

approximation, the number of floppy modes is found with, F = mN − C, where N

is the number of nodes in the graph and C is the number of constraints. Applying

this equation to the graph realizations in figure 2.1 (and subtracting out three trivial

degrees of freedom), one can easily calculate that (a) has two floppy modes, (b) has one

floppy mode, and (c) has zero floppy modes. While calculating (d), however, one can

see that this equation has an obvious flaw because the constraints cannot be increased
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after the isostatic point, for then F becomes negative. This problem is addressed in

the mean field approximation by taking max(F, 0) which is reasonably accurate if

constraints are approximately homogeneously distributed. Strictly speaking, finding

max(F, 0) is a combinatorial problem which must be applied to all subgraphs, but

it can be applied globally if most constraints are uniformly distributed. If a precise

count of floppy modes is desired, one must proceed by identifying the R redundant

constraints in the framework so that the number of floppy modes becomes F = mN−

C+R. Numerical methods exist for this purpose, but they usually involve calculating

the rank of the rigidity matrix which can become computationally expensive for large

frameworks. The PG algorithm was designed to solve this problem. The PG is

built on Laman’s theorem in graph theory which states that a graph embedded in

two dimensions does not have a redundant bond iff no subgraph containing n sites

and b bonds violates b ≤ 2n − 3. Thus, any graph with more than two nodes can

be recursively checked for redundant bonds. Because this result is true for a generic

framework, it is not necessary to embed a graph in R2 and compute a rigidity matrix.

It is only necessary to know the topology of a generic graph representation which

makes the PG is substantially faster than other algorithms. The mechanics of the

PG will be discussed in the methods section.

Covalent bond bending networks may be modeled with central force constraints

having a harmonic potential, and bond bending constraints associated with the dihe-

dral angle twist which have a Kirkwood or Keating potential. From the perspective

of the PG, the central force covalent bonds form the graph G, and the bond bend-

ing constraints (not explicitly in G) are found in G2. A body-bar multi-graph can

be constructed from nodes which have six degrees of freedom (representing bodies)

which are connected by sets of five bars (instead of one bar). It has been proven that

the body-bar multi-graph G is isomorphic to the graph G2. This convenient result

makes it possible to construct the square of G without having to manually input
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the edges connecting next nearest neighbors. Moreover, this mapping will enable the

assignment of fractional weight to central force connections in the VPG.

One of the most important quantities in rigidity percolation is the rigid cluster

susceptibility (RCS), for this indicates the bond or site concentration where the lattice

transitions from floppy to rigid. This transition occurs when a percolating rigid cluster

spans the system. Following standard percolation theory, the RCS is expressed as [39],

χ =
1

Nc − 1

Nc−1∑
c=1

(Nv(c)− 〈Nv〉reduced)2, (2.9)

were Nc is the number of rigid clusters, Nv(c) is the number of vertices within the

c-th cluster, and 〈Nv〉reduced is the average cluster size, subtracting out the largest

cluster. Likewise, the largest rigid cluster is not included in the sum. The rigidity

transition can be located by plotting equation (2.9) as a function of the fluctuating

edge probability or another parameter which controls the connectivity and edge weight

(e.g., concentration). The peak in this plot corresponds to the rigidity transition. A

similar quantity is defined in the case of connectivity percolation. The effectiveness of

equation (2.9) in identifying the existence of a percolating cluster can be understood

by considering the cluster distributions before, during, and after the transition. Before

the transition, there are many small clusters distributed throughout the network, but

none are percolating so that the variance in cluster size is close to zero. During the

transition, there is a more heterogeneous distribution of cluster sizes (and therefore

a large variance), and the largest clusters are "competing" to be the percolating

cluster. After the transition, all of the largest clusters have been consolidated into

the percolating cluster which is now embedded in a "sea" of floppy inclusions made of

smaller clusters. Because equation (2.9) subtracts out the largest cluster, the variance

in the cluster size again becomes approximately zero.

While locating the peak in the RCS gives an accurate estimate of the rigidity
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transition, Maxwell counting is still a useful approximation which can be used as a

reference for the results of the PG. Three dimensional chalcogenide glasses have the

form GexAsySe1−x−y where Germanium, Arsenic, and Selenium represent atoms which

are 4-, 3-, and 2-fold coordinated, respectively. For an r-fold coordinated atom, each

central force constraint is shared by two atoms giving r/2 central force constraints,

and there are 2r − 3 angular constraints. The total number of constraints is [7],

nc =
4∑
r=2

nr[r/2 + 2r − 3], (2.10)

where nr is the number of r-fold coordinated atoms. The total degrees of freedom in

a chalcogenide glass with N atoms is 3N , so Maxwell counting predicts the number

of floppy modes to be (normalized by degree of freedom),

f =
3N −

∑4
r=2 nr[r/2 + 2r − 3]

3N
. (2.11)

Simplifying this equation, one obtains f = 2 − 5〈r〉/6. The lattice becomes globally

rigid when f = 0 which implies 〈r〉 = 2.4 at the rigidity transition. Typically, there

are correlations in the lattice which cause the transition to occur slightly below 2.4.

TCT agrees very well with experiment [40] [41], and it has become a useful tool

because it offers a simple way to conceptualize the loss of ergodicity in the glassy state

by balancing degrees of freedom with constraints. TCT is a course-grain approach

which subsumes the complexities of the system under a single parameter – namely,

the mean coordination number which acts as a topological order parameter. A more

comprehensive approach would involve investigating the potential energy hypersurface

or using the full machinery of statistical mechanics. TCT demonstrates that it is

possible to ignore these complexities while still arriving at a physically coherent (but

incomplete) description of the glassy state.

An objection which is commonly raised against TCT is that it is valid only at
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zero Kelvin (all constraints are unbroken). Several methods have been proposed

to include a temperature dependence in TCT, the simplest of which uses a two-

state thermodynamic function, q(t), so that all bonds are intact at low temperature

(q(t) = 1), and all bonds are broken at high temperature (q(t) = 0). By treating the

thermal fluctuations which break and form bonds as an equilibrium reaction, a form

for q(t) at finite temperature may be derived [23],

lnKe =
∆G∗

T
= ln

q(t)

1− q(t)
, (2.12)

whence,

q(t) =
e∆G∗/T

1 + e∆G∗/T
, (2.13)

where ∆G∗ is the equilibrium Gibb’s free energy, and Ke is the equilibrium constant.

Other attempts to expand the scope of TCT include incorporating the effects of

water [42]. In silicate glass networks, it has recently been suggested that water cannot

percolate rigidity [41], so water must act as a network modifier. This occurs when

water reacts with silica and forms hydroxyl groups between network forming atoms

thereby breaking constraints in the network. However, in networks with proteins,

water molecules bonded to the surface of proteins may be rigid. In this work, it will

be shown that water molecules can act as rigid constraints in network glasses, but

there is a dependence on time of observation and time correlations within the H-bond

network.



CHAPTER 3: Methods

3.1 Simulation Protocols

The simulation protocols are similar to those that were used in the work of Nikulsin,

et al [25]. CDHP and CMHP systems were studied at 270 and 300 Kelvin each in a

2:1 stoichiometric ratio of trehalose to salt. All simulations used GROMACS and the

OPLS-AA forcefield in conjunction with the Transferable Intermolecular Potential

4-point (TIP4P) water model. A time step of 2 fs is used, and data is saved every

3000 steps for the data collection runs and 500 steps for the equilibration runs. The

systems were initialized with Packmol which randomly placed all molecules within a

1331, 1728, or 2197 nm3 simulation box (corresponding to side lengths of 11, 12, or 13

nm, respectively). The number of molecules for each concentration is determined by

requiring that the sum of the specific volumes of all molecules is approximately 1000

nm3. The specific volumes were calculated from experimental densities. Following

Packmol, an energy minimization was performed with a steepest descent algorithm

until the greatest force in the system converged to below 500 kJ mol−1 nm−1. If

the energy minimization trapped the system in a local minimum without converging,

the simulation is restarted from the initial step with Packmol. Following the energy

minimization, an NPT (constant pressure) equilibration was performed by coupling

the system to a velocity rescaling thermostat set to either 270 K or 300 K with a

coupling constant of 0.1 ps. The system was coupled to a constant pressure bath

via a Parrinello-Rahman barostat set to 1 bar with a coupling constant of 2 ps or

10 ps for the 2016 and 2020 versions of GROMACS, respectively and an isothermal

compressibility of 4.5 × 10−5 bar−1 (the isothermal compressibility of water). This

equilibration was performed until the volume converged. The NPT equilibration is
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said to converge if a linear regression of the last 100 ps of volume data has a slope

whose absolute value is less than or equal to 0.02 nm3 ps−1. If this condition is

not met, another simulation is started which uses the final condition of the previous

simulation as its initial condition. In this manner, the simulation can be extended

until convergence is reached. After convergence, the barostat was removed and an

NVT (constant volume) equilibration run was performed for 3 ns. The final data was

collected from a 30 ns production run. The pressure coupling constant was again

chosen to be 2 ps or 10 ps depending on the version of GROMACS.

3.1.1 Volume Hysteresis

Due to the presence of non-ergodicity, hysteresis is a hallmark of the glassy state

[24], [33]. In CMHP and CDHP systems, a volume hysteresis effect has been observed

which has been used to identify the glass transition [25]. The volume hysteresis

method works as follows. During equilibration in the NPT ensemble, the final volume

(after an elapsed time) is dependent on the initial volume if the system is a glass,

but this is not true in the liquid state. That is to say, a system is a liquid when

many different, independent initial microstates at different volumes are prepared,

and each of these microstates converge to the same macrostate at the end of the

equilibration (e.g., they converge to the same volume). If the system is a glass, then

the system will converge to different final volumes for different initial volumes. This

volume relaxation or hysteresis effect is analogous to what is observed experimentally

in dynamic mechanical analysis.

Moreover, hysteresis is one implication of non-ergodic systems. Such systems are

history dependent because the set of possibilities for the current microstate is limited

by the initial microstate. This occurs when a system is confined to within a compart-

ment of its phase space. Thus, when many different samples of the same system are

initialized to different volumes, each of these initial configurations remain separated

in phase space for the duration of the simulation.
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3.2 Hydrogen Bond Analysis

The nature of hydrogen bonding has been an elusive and controversial subject

for decades [43]. Only recently has it generally become accepted that hydrogen

bonds are inherently quantum mechanical and not only electrostatic interactions [44]

. However, it is often sufficient to regard them as electrostatic interactions of vary-

ing strength. This is a useful approximation to make as most MD simulations only

consider Lennard-Jones interactions and coloumbic forces when applying the equa-

tions of motion. Experimental techniques to analyze H-bond networks have steadily

progressed and continue to yield new insights [44]. XRD data are sensitive to the po-

sitions of electronegative acceptors and donors [45]. Neutron diffraction and Raman

scattering respectively give information about the positions of individual nuclei, and

the local geometry of molecules participating in H-bonds [46]. In studies involving

water, it is common to use deuterium substitution in combination with Raman scat-

tering in order to probe the subtle local structure of water and its interactions with

solute. X-ray absorption experiments excite core electrons of donor or acceptor atoms

to probe the local micro-environment. Empirical potential structure refinement is a

computational approach which works by iteratively adjusting partial structure factors

until a fit to experimental data is achieved in order to make an improved estimate

of the potential from the forcefield in MD simulations [47]. This technique has been

used to probe fine grain water-trehalose interactions. Clearly, a great deal of effort has

been invested in just the study of pure water (and interactions with solute) which still

remains somewhat of a mystery. It is then not difficult to understand and appreciate

that studies of multi-component solutions are experimentally onerous.

The aforementioned experimental methods are useful for a static analysis of hydro-

gen bond networks such as understanding the geometrical arrangement of molecules

participating in H-bonds. Understanding the dynamics of H-bonds remains an ex-

perimental challenge [48]. Some efforts include the measurement of the mean square
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Figure 3.1: θ is the HDA angle. H-Bonds are restricted within a cone with cutoff
angle θc. HDA angles outside of this cone are not considered H-Bonds.

displacement which can be measured indirectly via the Debye-Waller factor in neutron

scattering [49], the re-orientational auto-correlation function which can be measured

from NMR, and ion-solvation shell lifetimes which have been measured with ultrafast

mid-infrared spectroscopy [50]. Experiments which make indirect dynamical measure-

ments tend to be sources of controversy because of the difficulty of interpretation. In

light of the experimental difficulty in discerning the complex interactions involving

H-bonds in multi-component solutions, the utility of MD simulation becomes readily

apparent.

There exist many attempts to characterize and define hydrogen bonds in the litera-

ture including geometrical, topological, energetic, and occupancy definitions [44] [51]

[52] [43]. This study uses a geometrical definition with both an angle and distance

cutoff and is shown in figure 3.1. The cutoffs (discussed later) are in general agree-

ment with those reported elsewhere [53] [51]. Rigidity percolation is a long range

phenomenon and can suddenly occur with the placement of just one bond, so it is

necessary to have H-bond definitions which are representative of the underlying sys-

tem dynamics. Increasing an angle cutoff by just a few degrees can allow many more

H-bonds to be included and therefore radically shift the rigidity transition. There is

evidence that all hydrogens participate in a bond, and definitions have been proposed

to record all such bonds [52]. Intuitively, the weak H-bonds would not appreciably
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act as a hard constraint for network rigidity, and it is more sensible to ignore them.

Thus, a geometric criteria provides a simple and rational way to control the selection

of relevant H-bonds while filtering out weak H-bonds which are too far from linearity.

Moreover, it has been shown that a geometrical criterion gives better agreement with

experimental H-bond lifetimes than an energetic criterion [54]. Though HA distances

and HDA angles tend to be highly correlated [55], one must still include a reasonable

distance cutoff in order to avoid sampling distant hydrogen bonds which happen to

be close to linearity. Arbitrary cutoffs are undesirable in this study since one could

choose where the rigidity transition occurs, irrespective of the physics which drives

the transition.

Table 3.1: Listed in the table are the H-bonds considered in the system. Donors are
rows, and acceptors are columns. "Y" means that the H-bonds between those species
are counted, while "N" means they are not counted.

Choline Phosphate Trehalose Water

Choline N Y Y Y

Phosphate N N N N

Trehalose Y Y Y Y

Water Y Y Y Y

Before performing any calculations, it is wise to rule out those species which can-

not participate in an H-bond. The nitrogen atoms in choline are bonded to four

carbons and cannot form H-bonds. All H-bonds are therefore between oxygen donors

and acceptors in choline, phosphate, trehalose, and water. Because of the impor-

tance of choosing non-arbitrary geometrical cutoffs, each pairwise H-bond was cate-

gorized based on the molecules involved. This gives 16 possible combinations of donors

and acceptors between the four molecules. One could consider even more types by

sub-categorizing oxygens in trehalose and phosphate, but this route quickly becomes

bogged down by details which are not necessarily important to rigidity calculations.
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Table 3.1 summarizes the H-bonds considered in CMHP and CDHP systems.

The hydrogen bond analysis given here has been reported elsewhere in the liter-

ature using the reactive flux method (RFM), but the current work differs in some

important ways. First, as opposed to the RFM, we only define a simple hydrogen

bond correlation function [56],

C(t) =
〈h(0)h(t)〉
〈h(0)〉

, (3.1)

which has the usual definition that h(t) = 1 if an H-bond is present and h(t) = 0 oth-

erwise. We also impose no criteria on h(t) which requires, for example, that a bond

must first exist for a pre-defined amount of time before it is counted. This is also

known as an intermittent correlation function. In this sense, the correlation function

defined here is in its simplest form, but this is adequate for the current work since the

objective is not to perform a rigorous analysis of the hydrogen bond dynamics. To

ensure equation 3.1 is calculated for an equilibrated system, we calculate the corre-

lation functions backwards in time starting from the final frame to the initial frame.

Doing this will prevent out-of-equilibrium effects at the beginning of the simulation

(e.g. volume relaxation) from dominating C(t). The hydrogen bond lifetime is given

as,

τ =

∫ ∞
0

C(t)dt. (3.2)

The calculation of τ is crucial to this H-bond analysis, as it will guide in the determi-

nation of a non-arbitrary cutoff and give insight into the apparent persistence times of

H-bonds. It must be emphasized that the H-bond lifetimes should not be interpreted

as a measure of the relative strengths of different H-bonds because this definition

neglects the effect of diffusivity on the persistence of an H-bond. That is to say,

large molecules may remain neighboring for a long period of time because of their low
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diffusivity and not because they are connected by a strong H-bond. Likewise, small

molecules with otherwise high diffusivity may appear to have a long lifetime only be-

cause they are trapped in cages formed by neighboring large molecules. The RFM is

designed to accommodate for the competing effects of diffusivity and hydrogen bond

strength which undoubtedly occur in ternary sugar/salt solutions. Nevertheless, the

objective here is not to provide a detailed description of the H-bond network but to

determine the role of rigidity in driving the glass transition. The lifetime as defined

here can be regarded as a first approximation to characterize when a constraint is

present or not without distinguishing between the diffusivity and hydrogen bond po-

tential well depth. This is still a good approximation to make because the question

of why an H-bond is persistent is not relevant to the rigidity properties. All that

matters is that the H-bond exists and restricts the flexibility of the network.

Similar to the procedures used in other work which use the RFM [48] [57], an angle

cutoff was determined by plotting H-bond lifetimes on the ordinate against different

angle cutoffs on the abscissa. It is hypothesized that these plots should have H-bond

lifetimes which are monotonically increasing to a maximum and then monotonically

decreasing. This is because H-bonds which are too close to linearity are entropically

unfavorable, and a cutoff angle which is too restrictive will neglect persistent H-

bonds which ought to be counted. Similarly, a cutoff which is not restrictive enough

is energetically unfavorable and will record too many transient bonds. Both of these

scenarios will drive down the lifetime; thus the maximum lifetime is a natural indicator

of the maximum allowable HDA angle. Data will be shown in the next chapter which

confirms this hypothesis. One advantage of the lifetime definition provided here

over the RFM is the ease of interpretation which allows one to predict that there

should indeed be a maximum lifetime. In order to separate the effects of the angle

and distance cutoffs, lifetimes were calculated by varying the angle cutoff with no

restriction on distance, and then the angle cutoff was varied with a distance cutoff
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of 2.9 angstroms. The 2.9 angstrom cutoff was determined by varying the distance

cutoff with no angle restriction. These results will be elaborated on in the preliminary

data section.

The angle cutoffs for each concentration are determined by performing a weighted

average over all of the allowed H-bonds,

θc =

∑
iNiθi∑
iNi

, (3.3)

where Ni is the number of H-bonds recorded for the cutoff angle, θi, which maximizes

equation 3.2. The sum is over the ith H-bond pair recorded in table 3.1 for a given

concentration. The H-bond lifetime over all H-bonds is also calculated as a weighted

average,

〈τ〉 =

∑
iNiτi∑
iNi

. (3.4)

H-bond distributions were also found from a single frame at different concentra-

tions. These were informative, but they could not be used to determine a cutoff since

we could not rule out underlying distributions resulting from random packing, van

der waals interactions, or other effects. They were calculated using a PDF estimator

[58] and will be presented in the results section.

3.3 Pebble Game algorithm

The inspiration for the name, "pebble game algorithm", comes from how it op-

erates. In two dimensions, two pebbles are attached to each node (one for each

translational degree of freedom) and must remain attached to their initial nodes for

the duration of the game. While on a node, a pebble is considered to be free, and

it can be placed on any edge incident to that node. Once an edge has been covered

by a pebble, a pebble must remain on that edge for the duration of the game. The

game is played by trying to cover each independent edge in the graph with one free

pebble until all independent edges are covered or no more free pebbles can be found.
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Before a pebble can be placed on an edge, the edge must be tested for independence.

An edge is independent if all four pebbles can be freed in order to cover the edge;

otherwise, the edge is redundant. The number of remaining pebbles is the number

of floppy modes in the network. Though each pebble must remain tethered to its

initial node, a free pebble on one end of the network can be used to cover an edge on

the other end by shuffling pebbles along a connecting path while ensuring that each

covered edge along that path remains covered. This is possible because each edge

has two adjoining nodes, but only one node can donate a pebble to cover the edge.

Thus, the donating node can reclaim its pebble if and only if the opposing node can

donate one of its pebbles to cover that edge. Figure 3.2 is an illustration of the PG

algorithm. In it, a bond is being tested for independence, and a search is conducted

Figure 3.2: A demonstration of the pebble game on a generic network. Independent
(redundant) bonds are shown with solid (dashed) lines that are (are not) covered by a
pebble. Large (filled, open) circles denote (anchored, free) pebbles on (bonds, sites).
The two closest pebbles to a given site are tethered to that site. Small (filled, open)
circles denote sites belonging to (one, more than one) rigid cluster. Overconstrained
bonds are shown with heavy dark lines. Shaded regions denote 2d rigid bodies. (a)
Five free pebbles indicate five floppy modes until a new bond is added and tested for
independence. A fourth free pebble is found via the path traced by arrows. (b) The
added bond is independent and thus covered. There are now six rigid clusters and
four floppy modes. Figure and caption reproduced from reference [1]

to free up a fourth pebble across the test bond. Since a fourth pebble could be found,

the bond is independent and then covered with a pebble.
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In two dimensions, all floppy motions arise from bars pivoting around vertices in

the plane, and the PG is able to detect these floppy modes. The extension to three

dimensions is more complicated because then there are floppy modes which arise from

rigid clusters pivoting around a shared bar. Panel (c) in figure 2.1, for instance, would

not be rigid in three dimensions because there are two rigid clusters (the upper and

lower triangle) which can pivot out of the plane of the page about the dashed diagonal

line. The addition of the heavy, dashed line in figure (d) would constrain this floppy

mode, and the graph in panel (d) is rigid in both two and three dimensions. An edge

which is shared by two separate rigid clusters that have no other connecting edges

is said to be a hinge joint. It is not hinge joints which cause Laman’s theorem to

break down in three dimensions; rather, Laman’s theorem fails to account for implied

hinge joints. An implied hinge joint exists between two vertices not connected by an

edge, but which share any two rigid clusters. As such, the two vertices remain a fixed

distance apart while the surrounding rigid clusters behave as if they are connected by a

hinge joint between the two vertices. This is demonstrated by the so-called "banana

graphs" illustrated in figure 3.3. The three dimensional pebble game (with three

Figure 3.3: Figure reproduced from [2]

pebbles per node) would incorrectly predict this banana graph to be rigid. However,

there are three rigid clusters which are free to rotate about implied hinges, and the

three subgraphs are connected at vertices 1, 2, and 3 to form a fourth rigid cluster. It



32

has been proven that the only violations of Laman’s theorem in three dimensions are

due to implied hinge joints [2], so the three dimensional PG can still be used under

special conditions. While figure 3.3 is an obvious example of implied hinge joints,

banana graphs are not so easily identified in general. It would seem that the PG is

only useful in three dimensions if it is possible identify those graphs in advance which

prohibit implied hinge joints. Fortunately, there exists a class of graphs where this is

always true. Given a graph G, its square is denoted by G2 and includes the vertex and

edge set of G plus edges between all next nearest neighbors. Laman’s theorem will

always extend to three dimensions for this special class of squared graphs. Thus, any

graph can be constructed to satisfy Laman’s theorem in three dimensions by taking

the square of any other graph G with more than two vertices. This may seem like a

restrictive requirement with sparse applications, but squared graphs are in fact bond

bending networks and are fortuitously used to model covalent and hydrogen bonds.

3.4 Procedure

Rigidity theory has been applied to covalent bond bending networks at zero tem-

perature, and some progress has been made in incorporating a temperature depen-

dence. Recently, the heterogeneity of some covalent bonds has been recognized and

accounted for by analyzing the variance of bond angles from MD simulations. How-

ever, all work which analyzes glass networks using the framework of rigidity theory

has been confined to glasses with covalent bond bending networks. The purpose of

the H-bond analysis is to definitively identify all H-bonds and then to appropriately

weight them by how rigid they are with respect to a given time scale of observation.

This is accomplished by calculating an edge weight for each H-bond in the system

such that 0 ≤ eij ≤ 1 and then performing a Monte Carlo simulation to obtain the

average rigidity properties from the generated graph realizations. The edge weight

represents the probability of an H-bond existing over a window of time, where the

window acts acts as a probe across time scales. A small window size will include the
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vibrational term of the MSD while a large window size will include both the vibra-

tional and relaxational terms. That is, as the window size becomes smaller, rapidly

fluctuating H-bonds will be assigned greater probabilities, and the fast dynamics of

the system will be included in the system topology; conversely, a large window size

will only include H-bonds with a long lifetime thereby filtering out the vibrational

term. Modulating the window size, then, will reveal the time scale of importance in

order to affect a rigidity transition.

The procedure can be divided into two parts: (i) raw MD simulation data must be

converted to a generic graph representation, and (ii) the PG will analyze this topology

to output the rigidity properties. Part (i) is the purpose of the H-bond analysis, while

part (ii) will address the central question posed in the introduction.

The first step of part (i) is iterating over the coordinate data frame by frame and

finding the nearest neighbors of every H-bond capable atom. The nearest neighbors

are found by partitioning the simulation box into 3.5 angstrom boxes and iterating

over all atoms within each box. This cutoff is quoted very frequently in the literature

and comes from the radial distribution function calculated from XRD. The next step

involves iterating over neighboring atoms and checking if they satisfy the distance and

angle cutoffs. In this model, the only requirement for an H-bond to exist is that it

satisfies the H-bond angle and distance cutoff for at least one frame of the simulation.

Once an H-bond between donor atom i and accepting atom j has been detected,

hij(tn) = 1 if the H-bond exists at time tn and hij(tn) = 0 otherwise. Therefore, for

a hydrogen bond recorded at time step tn, the edge weight is given by,

eij(tn) =
1

w

n∑
k=n−w

hij(tk), (3.5)

for a window size of w frames. The step size is one frame as implied by the sum in

equation 3.5, but the window size is left as an adjustable parameter in order to probe
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the structural relaxation on different time scales.

After the edge weights (H-bond probabilities) have been calculated for every H-

bond over all frames under consideration, the inter-molecular connections can then

be input into the network. All constraints have five bars, and a Monte Carlo simula-

tion must be performed in which many different graph realizations (microstates) are

generated, and the H-bonds for each trial are input with a probability eij.

The PG which is performed on graphs which are generated from H-bond prob-

abilities according to equation (3.5) shall be referred to as the time-correlated PG

(TCPG). Another mean field approximation involves uniformly assigning probabilities

to all H-bonds in the system and thus removing any time-correlations introduced by

the sliding window. This shall be referred to as the uniform-probability PG (UPPG).

The motivation for this is to sweep across a wide range of probabilities which may

not be accessible from simulation data in order to identify if the transition is possible,

and to approximate the H-bond probability in order to affect a transition. In addi-

tion, the UPPG will be used to test for the effect of temporal correlations which are

introduced by the TCPG. Because of the high resolution afforded by a sweep across

probabilities, it is possible to compute critical exponents from the UPPG. For the

TCPG and UPPG, the data for each window size and probability is generated from

5000 and 500 Monte Carlo simulations, respectively.



CHAPTER 4: Results and Analysis

This chapter will present the results of the volume hysteresis simulations, the hy-

drogen bond data, and the rigidity calculations. From this, new insights into the

molecular clustering of CMHP and CDHP systems will be gleaned, and evidence

for rigidity percolation as an additional mechanism in the glass transition will be

presented.

Figure 4.1: The number of trehalose and water molecules as a function of concentra-
tion. Solid (dashed) lines refer to CDHP (CMHP) while black (red) curves refer to
water (trehalose). The water and trehalose curves intersect at ∼ 96 percent solute by
weight.

4.1 Volume Hysteresis

As described in the methods chapter, the glass transition concentration can be

identified by initializing several different systems at different volumes and then run-

ning those systems in the NPT ensemble until each one converges. According to

this volume hysteresis method, a particular concentration is said to be a glass if all
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separately prepared systems converge to different final volumes; if they converge to

the same final volume, that concentration is predicted to be a liquid. This is quanti-

fied by averaging together the final volumes and calculating the standard deviations.

Figure 4.2 shows the volume hysteresis results for CMHP and CDHP at different

temperatures. The glass transition concentration occurs when the the standard de-

viation (error bars) increase suddenly which indicates variation in the final volumes.

Moreover, the average volume tends to decrease until Cg, at which point it begins to

non-monotonically increase thereby resulting in a volume minimum.

(a) CMHP (b) CDHP

Figure 4.2: Volume hysteresis data for (a) CMHP and (b) CDHP at different tem-
peratures.

Figure 4.2 plots the average final volume as a function of concentration. From this

it can be seen that CMHP experiences a transition at 69.5 and 72.5 percent solute by

weight for 270 K and 300 K, respectively. In CDHP the transitions occur at 71, 81.5,

and 85 percent solute by weight for 270 K, 300 K, and 330 K, respectively. These

values are determined to within 1.5 percent solute by weight.
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(a) Water-Choline (b) Water-Phosphate

(c) Water-Trehalose (d) Water-Water

Figure 4.3: Shown above are the H-Bond donor-acceptor angle distributions taken
from a single frame. The number at the red dot is the angle of the first minimum of
the distribution. Note the prominent peaks succeeding the first which correspond to
the non-participatory water hydrogen.

4.2 Hydrogen Bond Analysis

4.2.1 Hydrogen Bond PDF distributions

H-Bond distributions for 72.5 percent solute by weight are given in figures 4.3, 4.4,

and 4.5. The distributions for phosphate donors (not shown) indicated no preferential

angle, and were monotonically increasing in a Gaussian-like distribution. Choline-

choline interactions are not shown because there were too few instances to generate

a detailed distribution, and this is indeed expected of cation-cation interactions. All
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(a) Trehalose-Choline (b) Trehalose-Phosphate

(c) Trehalose-Trehalose (d) Trehalose-Water

Figure 4.4: See caption of figure 4.3. Notice the absence of prominent secondary and
tertiary peaks as compared to when water is a donor.

other distributions displayed interesting features, and seemed to indicate a preference

for linearity. Distributions involving water tend to show a prominent second peak

which is due to the opposing hydrogen in water (not participating in the bond).

PDFs at other concentrations showed similar trends except at very low solute

concentrations where there were too few instances of some H-bonds between solute

molecules. Though these distributions seem to indicate that a cutoff angle between

25 and 45 degrees is appropriate, we can not rule out underlying distributions. The

H-bond lifetime data shown below, however, will corroborate the results of the PDF

distribution because τmax occurs in the range 25 < θc < 45 degrees in almost all cases.
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(a) Choline-Phosphate (b) Choline-Trehalose

(c) Choline-Water

Figure 4.5: Choline-Choline interactions are excluded because the PDF is generated
from too few data points to make any meaningful inferences.

4.2.2 Hydrogen Bond Correlation Functions

Cutoff angles and distances were found from the method described in section 2.4.

In all cases, with a few exceptions, the H-bond lifetime plots monotonically increased

to a maximum distance or angle cutoff and then decreased. The lifetime plots were

bumpy at low concentrations, but this is a result of statistical noise because there

were too few solute molecules. This noise can be smoothed out by calculating the

correlation functions (shown in figure 4.6) starting at tf −nτmax, where tf is the time

of the final frame in the simulation, τmax is the maximum lifetime calculated for the

plot being smoothed, and n is an integer. Correlation functions are then calculated
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for different values of n so that multiple lifetimes can be obtained for the same H-

Bond pair at a given concentration and cutoff angle, and the smoothed lifetime plots

are calculated from averaging these new lifetimes. The temporal difference of τmax

between initial states of equation 3.1 will ensure that each h(tf−nτmax) is statistically

independent for each additional C(t) (for smoothing) calculated. This procedure will

tend to cause a decrease in τ because equation 3.2 is calculated over a smaller time

interval, but this effect is small compared to the fluctuations in the lifetime plots,

and in all cases, the plots were sufficiently smoothed to definitively identify a cutoff

angle.

(a) Choline-Phosphate (b) Water-Phosphate

Figure 4.6: The log correlation functions for choline-phosphate and water-phosphate
donor-acceptor H-Bond pairs at 72.5 percent solute by weight are shown as a function
of time over the entire simulation for different angle cutoffs. The insets show the
middle of the plots where the decay is exponential. One can see that there is a slight
angle dependence which allows a geometric cutoff to be made. Also note the faster
decay in (b) compared to (a) despite the fact that water neighboring phosphate is
not considered a plasticizer in CMHP systems. These plots were calculated with no
distance cutoff.

The only other exceptions to this trend are for instances of phosphate donors,

choline-choline interactions and for lifetime plots with HA distance on the abscissa.

Phosphate is rarely a donor [59] and therefore lacks a preferential angle, and phosphate-

phosphate as well as choline-choline interactions can be ruled out because we would
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not expect anion-anion or cation-cation clustering. These plots are only monoton-

ically increasing which indicates that a less restrictive cutoff angle counts H-Bonds

which are just as transient as the H-bonds for a smaller θc. This supposition is con-

firmed by the relatively short lifetimes (not shown). The last exception was observed

in H-bond lifetime plots for variable distance with no angle restriction. These tended

to be smoother because H-bonds were sampled within a sphere of expanding radius

instead of a cone with expanding apex angle. For these plots, an uptick was observed

around 2.9 angstroms (see panel (b) of figures 4.7 and 4.8) which is due to the oppos-

ing hydrogen in water. A reasonable HA distance cutoff would then be 2.9 angstroms

in order to exclude the opposing hydrogen in water. As HDA angles and HA distances

are strongly correlated, this analysis will focus only on the HDA angle.

(a) Angle cutoff (b) Distance cutoff

Figure 4.7: The lifetimes calculated from equation 3.2 are shown for the CMHP
system at 300 K and 72.5 percent solute by weight. (a) shows the lifetime for each
H-Bonded donor-acceptor pair as a function of cutoff angle with no HA distance
restriction. (b) shows the lifetimes with no angle restriction. Notice the uptick in the
inset of (b) at around 2.9 angstroms which corresponds to the second hydrogen in
water being incorrectly sampled as an H-Bond.

An important result from this data is that the maximum lifetime occurs at approx-

imately the same cutoff angle at all concentrations and for all H-bond pairs. Using

equation 3.3 for all concentrations, it was found that θc = 37 is the optimal angle
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cutoff. Though it is common to use a single geometrical cutoff in H-bond analyses,

such close agreement of θc was not expected across all concentrations and H-bond

pairs. This greatly simplifies the analysis because now the same angle and distance

(rc = 2.9 angstroms) cutoffs can be used in all systems.

(a) Angle cutoff (b) Distance cutoff

Figure 4.8: See the caption of 4.7. Shown are the lifetime plots for the CMHP system
at 300 K and 89 percent solute by weight.

It is interesting that at low concentrations, choline-water donor-acceptor pairs are

less strongly bound than water-water H-bonds while choline-water lifetimes surpass

water-water lifetimes at high concentrations. The RFM may account for this be-

haviour because choline (104.17 g/mol) is larger and heavier than water, so its diffu-

sivity should be lower than bulk water at low concentrations. At high concentrations,

there is less bulk water and more interfacial water which limits the mobility of water

molecules so that they may remain neighboring to choline for longer. Because choline

has only one hydroxyl group to form H-bonds, it is incapable of forming closed loops in

the rigid network, and the effects of choline on network rigidity will not be manifested

in the usual way whereby regions rich with H-bonds will locally form closed loops. In-

stead, choline may hinder rigidity percolation due to disruptions of the local H-bond

network. The conclusions from previous work [25] that the local micro-environment

affects the character of inter-molecular interactions and clustering are corroborated
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by these results.

(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.9: H-bond lifetime data as a function of cutoff angle is shown for CMHP
and CDHP at 270 K and 300 K each. The concentration (in % solute by weight) for
each panel is: (a) 62 %; (b) 65 %; (c) 60 %; and (d) 65 %. These concentrations are
all below the glass transition concentration.

Because of the difficulty in making a one-to-one comparison between CMHP and

CDHP systems according to the concentration alone, comparisons will be made de-

pending on if C < Cg, C ≈ Cg, and C > Cg, which are shown in figures 4.9, 4.10, and
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4.11, respectively. Each figure compares CMHP and CDHP at 270 K and 300 K. A

cursory inspection of the data shows that H-bond lifetimes depend on temperature,

and CDHP systems are more mobile than CMHP. Moreover, H-bonds involving water

molecules tend to be short lived compared to interactions between solute only. These

observations follow the same trends as most laws such as the Stokes-Einstein relation,

the arrhenius equation, and the Vogel-Fulcher equation, among others, and the RFM

may again be invoked to justify the inhomogeneity of H-bond lifetimes.

Previous results indicated a propensity for water and monohydrogen phosphate to

cluster, but the data in figures 4.9, 4.10, and 4.11 do not seem significantly different

from other water-solute interactions. In the context of the RFM, this is not surprising

because most water molecules have very fleeting interactions with phosphate which

drives down the lifetime. Nevertheless, there is still a fraction of water molecules which

remain neighboring to phosphate for significantly longer than 10 ps. Going from low

to high concentrations and high to low temperatures, there is an appreciable increase

in the H-bond lifetimes. This trend holds true for all concentrations, temperatures,

and systems, as expected. Trehalose-trehalose and trehalose-phosphate H-bonds are

the most persistent interactions at all concentrations which corroborates previous

claims that volume hysteresis arises from strain being released in the trehalose matrix.

Notably, trehalose-phosphate H-bonds surpass the lifetimes of trehalose-trehalose H-

bonds at higher concentrations. This suggests that the phosphate anion plays a

key part in facilitating the liquid-glass transition beyond its interactions with water.

However, it will be shown later that the cause of rigidity percolation cannot be so

easily adduced from molecular clustering, as phosphate does not appear with the

expected abundance in the percolating cluster.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.10: H-bond lifetime data as a function of cutoff angle is shown for CMHP
and CDHP at 270 K and 300 K each. The concentration (in % solute by weight) for
each panel is: (a) 71 %; (b) 71 %; (c) 69.5 %; and (d) 74 %. These concentrations
are all in the vicinity of the glass transition concentration.

At concentrations below Cg, the longest lived H-bonds occur between trehalose

molecules and trehalose hydroxyl groups donating to phosphate anions. All H-bonds

between solute and water molecules are short-lived due to the high diffusivity of water

prior to structural arrest. Towards intermediate concentrations in the vicinity of Cg
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(figure 4.10), there is a broadening spectrum of H-bond lifetimes as degrees of freedom

are frozen out. Indeed, these additional relaxations are illustrated in panels (a) and

(b) of figure 4.10 which show CMHP at 270 K and 300 K, respectively, but both with

a constant concentration of 71 %. One can surmise from this data the system at 270

K is closer to the transition than the same system at 300 K simply by comparing

the variance in H-bond lifetimes. Not only does this suggest what the clustering

propensities of the various species might be, but it guides our expectations for what

ought to be present in the percolating cluster and what species may be primarily

responsible for the onset of structural arrest. Another interesting feature of panels

(a) and (b) of figure 4.10 is that all H-bond lifetimes scale with approximately the same

factor in going from 270 K to 300 K, except for trehalose-phosphate H-bonds which

drop significantly. This is likely because phosphate is a smaller molecule compared to

trehalose which implies that its diffusivity is more sensitive to temperature variation,

as one may conclude from the RFM.

Figure 4.11 shows H-bond lifetimes above Cg where the lifetimes for water-water

H-bonds are 100 ps for CMHP and 100 ps for CDHP at 270 K and 50 ps for CDHP

at 300 K. The H-bond lifetime plots for each donor-acceptor interaction have clearly

become vertically separated in CMHP at high concentrations while the separation

is present but not as pronounced in CDHP (panels (c) and (d)). Panels (b) and

(d) of figure 4.11 show CMHP and CDHP at 89 % at 300 K, respectively. Though

this is not strictly a one-to-one comparison, it is clear that CDHP systems have a

higher diffusivity compared to CMHP systems at similar concentrations. It is evident

that the H-bond lifetimes alone are informative and may be used to approximate

the location of the liquid-glass transition, and to predict which species are most

important in the transition. In particular, one may expect trehalose and phosphate

to be primarily responsible for rigidity percolation based on the high lifetimes for

trehalose-trehalose and trehalose-phosphate H-bonds. In contrast, H-bonds involving
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water usually have lower lifetimes than H-bonds between two solute molecules, so one

may predict that water should not be present in the percolating cluster.

(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.11: H-bond lifetime data as a function of cutoff angle is shown for CMHP
and CDHP at 270 K and 300 K each. The concentration (in % solute by weight) for
each panel is: (a) 80 %; (b) 89 %; (c) 84.5 %; and (d) 89 %. These concentrations
are all above the glass transition concentration.
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Table 4.1: Results of the H-bond analysis for CMHP at 270 K. The left three columns
and right three columns are calculated from simulations which output data every 6
ps and 0.1 ps, respectively. θc and τ are the cutoff angle and H-bond lifetime defined
in the text. The number of H-bonds, Nh, refers to 〈h(0)〉 defined in the H-bond
correlation function (equation 3.1).

CMHP at 270 K

∆t=6.0 ps ∆t=0.1 ps

Concentration

(% solute by

weight)

θc (◦) 〈τ〉 (ps) Nh θc (◦) 〈τ〉 (ps) Nh

10 39.76 1.08 36968 37.52 0.63 36133

20 37.48 2.02 33717 37.42 1.22 34020

62 36.35 293.61 24656 37.18 35.5 24791

63.5 35.12 343.04 24420 36.25 40.19 24428

65 35.09 463.49 23852 36.10 46.08 23956

66.5 35.44 567.65 23733 35.60 50.28 23738

68 35.43 628.01 23364 36.69 56.37 23590

71 36.88 748.57 23359 35.86 66.75 23010

72.5 35.83 938.45 23003 34.75 71.11 22689

74 34.58 1189.05 22479 35.71 75.53 22594

80 36.41 1976.12 21565 36.18 99.98 21541
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Table 4.2: Results of the H-bond analysis for CMHP at 300 K. The left three columns
and right three columns are calculated from simulations which output data every 6
ps and 0.1 ps, respectively. θc and τ are the cutoff angle and H-bond lifetime defined
in the text. The number of H-bonds, Nh, refers to 〈h(0)〉 defined in the H-bond
correlation function (equation 3.1). A – indicates that data was not collected.

CMHP at 300 K

∆t=6.0 ps ∆t=0.1 ps

Concentration

(% solute by

weight)

θc (◦) 〈τ〉 (ps) Nh θc (◦) 〈τ〉 (ps) Nh

40 38.06 2.90 28771 – – –

65 36.77 113.59 23876 – – –

68 36.27 184.38 23392 – – –

71 36.15 298.22 23105 35.76 39.45 22796

72.5 35.51 418.58 22763 35.51 6.98 22763

74 35.81 462.92 24436 36.73 51.07 22200

77 36.98 973.95 21903 – – –

80 36.55 1165.43 22194 36.28 78.41 21554

86 36.88 1826.06 19756 – – –

89 37.02 2709.45 18374 – – –
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Table 4.3: Results of the H-bond analysis for CDHP at 270 K. The left three columns
and right three columns are calculated from simulations which output data every 6
ps and 0.1 ps, respectively. θc and τ are the cutoff angle and H-bond lifetime defined
in the text. The number of H-bonds, Nh, refers to 〈h(0)〉 defined in the H-bond
correlation function (equation 3.1). A - indicates that data was not collected.

CDHP at 270 K

∆t=6.0 ps ∆t=0.1 ps

Concentration

(% solute by

weight)

θc (◦) 〈τ〉 (ps) Nh θc (◦) 〈τ〉 (ps) Nh

40 37.50 11.08 31890 37.46 4.95 31626

60 36.35 116.49 28115 37.69 21.01 28518

65 37.04 203.62 27761 37.82 29.59 27768

69.5 36.47 420.47 27129 36.46 43.36 26940

71 37.10 513.03 26879 37.08 48.54 26710

72.5 37.88 566.37 26538 38.47 27.83 26521

74 36.57 739.70 26054 37.73 60.75 26332

81.5 38.87 1349.57 25115 38.11 84.21 24814

83 37.69 1486.12 24457 38.54 92.68 24629

84.5 38.18 1815.38 24110 37.59 100.30 23704
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Table 4.4: Results of the H-bond analysis for CDHP at 300 K. The left three columns
and right three columns are calculated from simulations which output data every 6
ps and 0.1 ps, respectively. θc and τ are the cutoff angle and H-bond lifetime defined
in the text. The number of H-bonds, Nh, refers to 〈h(0)〉 defined in the H-bond
correlation function (equation 3.1). A – indicates that data was not collected.

CDHP at 300 K

∆t=6.0 ps ∆t=0.1 ps

Concentration

(% solute by

weight)

θc (◦) 〈τ〉 (ps) Nh θc (◦) 〈τ〉 (ps) Nh

65 38.32 48.73 27505 – – –

68 36.36 74.29 26447 38.33 17.54 26889

72.5 37.64 148.49 25952 38.95 26.27 26669

77 37.49 360.67 25443 39.28 40.76 25663

81.5 39.68 707.39 24880 39.03 58.70 24623

83 37.59 863.17 24013 38.47 63.46 24246

84.5 39.05 1028.94 23935 39.62 72.61 23902

89 40.51 1517.72 22476 39.14 88.11 21997

Tables (4.1), (4.2) (4.3), and (4.4) show the weighted average HDA angle cutoff

defined in equation (3.3), the weighted average H-bond lifetime in equation (3.4),

and the number of H-bonds recorded in the last frame of the simulation. Across all

systems, the number of H-bonds decreases for increasing concentrations while the

H-bond lifetimes become longer at high concentrations. This indicates that most

H-bonds are between highly mobile water molecules at low concentrations. These

rapidly flickering H-bonds have a low probability of existence across any window of

time so they are likely not included in the generic graph topology. The individual

lifetimes which enumerate each type of interaction (table 3.1) show that H-bonds

involving water tend to become more persistent at high concentrations and thus show
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a dependence on the local micro-environment. The lengthening average lifetime is

expected for glasses which have a continuous spectrum of relaxation times. As water

content is removed, there is a broadened spectrum of relaxations which is associated

with an increase in dynamical heterogeneity and a concomitant reduction in entropy

which are hallmarks of the glassy state [60].

An important result to notice in the H-bond analysis is that the optimal cutoff

angle is remarkably consistent across four dimensions of variability: temperature,

chemical composition (CMHP or CDHP), concentration, and time scale of observation

(∆t). Though it is known that a uniform geometrical cutoff tends to be good at

identifying H-bonds, it is not a priori evident that a single geometrical cutoff can be

used in complex, multi-component solutions. The H-bond analysis herein suggests

a universality with respect to θc. A cutoff angle of θc = 37 degrees is thus used to

determine the existence of all H-bonds.

4.3 Rigidity Analysis

This section will show the results of the PG algorithm for CMHP and CDHP

systems at 270 K and 300 K each. First, the results of the time-correlated PG with

a time dependence incorporated via a sliding window will be presented. The rigid

cluster distributions will then be examined with an emphasis on the dynamics of the

largest or percolating rigid cluster. Following this, data for the uniform-probability

PG will be presented, and the beta critical exponents will be extracted. For both

the TCPG and UPPG, the data will be presented as a function of window size or

probability, respectively, and then data will be presented as a function of the MCN.

4.3.1 Time-Correlated Pebble Game

Data for the number of vertices, floppy modes, RCS, MCN, and largest cluster size

will be shown as a function of window size. The same data will again be shown, but

as a function of the MCN, with the exception of the number of vertices and MCN.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.12: Data for the number of vertices (atoms) in the network after pruning is
shown as a function of window size for various concentrations.

Figure 4.12 shows the number of vertices left in the network after pruning as a

function of window size. It is important to note the effect that the window size has

on the network, because all dangling ends are removed from the network by pruning.

The resulting network consists only of closed loops which may be connected by chains

of atoms. A larger window size will result in low-probability H-bonds and in turn,
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more broken connections which lead to more dangling ends. For this reason, there are

fewer atoms in the network as window size increases. Pruning the network is crucial

for this rigidity analysis, as dangling ends or chains contribute degrees of freedom

which result in the inaccurate determination of the rigidity transition.

The insets in panels (a) - (d) of figure 4.12 show the same data on a logarithmic scale

revealing a power law which is due to the decay of H-bonds. Thus, the properties of the

pruned network are directly related to the underlying H-bond dynamics. Comparing

panels (a) and (b) against (c) and (d), one observes that there are more atoms which

contribute to rigidity percolation in CDHP systems than CMHP systems. From

this, one may hypothesize that CDHP has more opportunities to form bonds which

would increase the MCN. However, the glass transition actually occurs at a higher

concentration in CDHP than in CMHP.

Figure 4.13 shows the effect on the floppy modes as window size increases. A larger

window size results in more broken bonds, which reduces the number of redundant

bonds. Therefore, the number of floppy modes increases as the time scale of obser-

vation increases. Again, the insets show a power law behavior which can possibly be

attributed to the the decay of H-bonds though it is not obvious that this should be

the case.

Figure 4.14 shows the RCS as a function of window size. Percolation theory predicts

that there should be a peak in the RCS at the rigidity transition. An important result

here is that there are some concentrations which never experience a rigidity transition.

For CMHP the lowest concentration at which there is a rigidity transition is between

68 and 71 percent solute by weight for 270 K and 71 percent for 300 K. For CDHP,

the lowest concentrations which experience a transition are 69.5 and 74 percent solute

by weight for 270 K and 300 K, respectively. Below these concentrations, no rigidity

transition will occur for a sampling rate of 6 ps. By using 0.1 ps, the rigidity transition

can be shifted to slightly lower concentrations, but the effect is modest. While these
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.13: Data for the number of floppy modes normalized per degree of freedom is
shown as a function of window size for various concentrations. The number of degrees
of freedom is defined as three times the number of vertices.

concentrations do not align exactly with the value of Cg as predicted by volume

hysteresis, they are close for CMHP and for CDHP at 270 K. In fact, they align

quite well with the volume minimums observed in figure 4.2. From this, a compelling

narrative emerges: due to the low isothermal compressibility of water, removing water

content enables the system to contract during equilibration in the NPT ensemble.

There is a threshold, however, where the entropy has been reduced so much that the
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.14: Data for the RCS is shown as a function of window size for various
concentrations.

system can no longer be regarded as a liquid but has now become a glass. It is at

this threshold that there is a volume minimum, and as more solute is added (and

water removed), the volume must begin to expand to accommodate the increased

strain in the system. It is also at this volume minimum that rigidity percolation is

first detected in the glass network. That the volume minimum should coincide with

the rigidity percolation threshold is evidence that the latter has a crucial role in the
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liquid-glass transition in these systems. Though there is not perfect agreement, the

volume minimums and percolation thresholds agree to within 5 percent solute by

weight in all cases. There are many possible explanations for this discrepancy. When

the percolating cluster first appears in a second order transition, it is typically highly

ramified so that there are still many floppy inclusions in the network. Therefore, the

emergence of a percolating cluster does not necessitate a global reduction in mobility,

especially if the percolating cluster is transient and constantly being reformed.

(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.15: Data for the mean coordination number is shown as a function of window
size for various concentrations.
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Figure 4.15 plots the MCN as a function of window size. From figure 4.12 which

plots the number of remaining vertices as a function of window size, the MCN should

decrease for increasing window sizes. The insets again show a power law decay,

which is consistent with all prior data. Though there is a definite dependence on

concentration, the vertical shift between concentrations is in the hundredth decimal

place. Because 〈r〉 is accurate to the thousandth decimal place, this shift is significant.

(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.16: Data for the fraction of sites in the largest cluster is shown as a function
of window size for various concentrations.
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The fraction of sites in the largest cluster is the order parameter of interest in a

rigidity transition, and this is plotted in figure 4.16. The trends here are consistent

with the trends seen in the number of vertices, floppy modes, and MCN. A larger

window size reduces the size of the largest cluster making it more difficult for rigidity

to percolate. It is conceivable that a system with strong enough correlations can

percolate rigidity at low MCNs, however, CMHP and CDHP simulated in the stoi-

chiometric ratios and temperatures in this work do not appear to have particularly

strong correlations. This point is clarified by comparing the TCPG with the UPPG.

Panel (b) of 4.16 shows a crossover between 86 % and 89 %, and panel (c) shows a

crossover between 81.5 % and 83 %. This effect is possibly due to frustration of the

network. Water molecules which occupy equally favorable states both in and out of

the percolating cluster will result in a greater variance over all Monte Carlo trials

as seen in the figure. Indeed, it will be shown that water is not only present in the

percolating cluster but exists in abundant quantities. The presence of frustration

is a likely consequence for molecules which are typically liquid-like but forced into

configurations which severely limit local mobility.

Figure 4.17 plots the number of floppy modes as a function of the MCN which is

the parameter of interest in TCT. Comparing this to figure 4.13, we see a spectacular

collapse of the data onto a single curve. Each value of the MCN corresponds to

a different window size so that as the window size decreases, the MCN increases.

The slope of the curve in the floppy region is the same for all concentrations and is

approximately the same between CMHP and CDHP irrespective of the temperature.

This shows there is a characteristic universality in the floppy modes with respect to

the mean coordination number in CMHP and CDHP systems as observed in other

systems [15]. By observing the insets, one can see that that the curves of the individual

concentrations slightly depart from one another. This is especially pronounced in

panel (b). One possible explanation is that in the floppy region where r〉2.4, there are
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.17: Data for the number of floppy modes normalized per degree of freedom
is shown as a function of mean coordination number for various concentrations. Each
point along each curve corresponds to a different window size.

no correlations in time because they have been averaged out over the longer period

of observation. If floppy modes are removed at the same rate for all systems in the

liquid phase, then the curves should appear the same for all liquid systems, and they

should intersect the abscissa at approximately 2.4 as predicted by Maxwell constraint

counting. After the transition, however, time correlations are more important which

will cause some deviation from the mean field approximation.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.18: Data for the RCS is shown as a function of mean coordination number
for various concentrations. Each point along each curve corresponds to a different
window size.

Figure 4.18 shows the RCS as a function of the MCN. Again, the data collapses

onto a single curve as compared to the same data plotted as a function of window size

in figure 4.14. While Maxwell’s mean field approximation would predict the peaks

to be centered at 〈r〉 = 2.4, they are all centered at approximately 2.38. Because of

the precision in calculating 〈r〉, this is not an insignificant shift. Evidently, spatial-

temporal correlations are present which shift the rigidity transition to lower MCNs.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.19: Data for the fraction of sites in the largest cluster is shown as a function
of mean coordination number for various concentrations. Each point along each curve
corresponds to a different window size.

The size of the percolating cluster when plotted as a function of the window size

does not show a clear transition, but figure 4.19 which plots the fraction of sites in

the largest cluster as a function of MCN gives a clear phase transition from floppy

to rigid. Panels (b) and (c) show anomalous behavior at 89 and 83 percent solute by

weight, respectively. As already mentioned, this is believed to indicate frustration in

the network related to the behavior of water molecules.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.20: Data for the mean coordination number is shown as a function of con-
centration for various window sizes.

Figure 4.20 shows the dependence of the mean coordination number on concen-

tration. It is interesting that the dependence is linear, as the value of 〈r〉 ought to

depend on changes in enthalpy-entropy competition as concentration increases for a

given temperature. At most concentrations (up until ∼ 96 % solute by weight) there

is an excess of water, so the addition of more solute molecules will result in bonds

with a greater potential well depth and increase the enthalpy of the system. Con-
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versely, the presence of larger solute molecules will reduce the overall mobility of the

system and reduce the entropy. The concentration is increased by removing water

molecules while adding solute; the number of water molecules decreases non-linearly

with concentration while the number of solute molecules increases approximately lin-

early. Because all of the concentrations simulated have an excess of water molecules,

this trend would suggest that it is solute which controls the MCN of the system. It

has already been made clear that the MCN is the "good" parameter to use in order to

clearly observe the transition from floppy to rigid. Therefore, it would be interesting

to observe the effect that substituting different disaccharides would have on the MCN

for different concentrations.

The result of figure 4.20 is important because the concentration also becomes a good

parameter for analyzing the rigidity properties via a linear mapping. Figure 4.21 plots

the floppy modes normalized per degree of freedom as a function of concentration. It

is clear from this that there is a region where degrees of freedom become frozen out,

and where this occurs varies slightly between temperatures and even more so between

CMHP and CDHP.

4.3.2 Cluster Distributions

In this section, the distribution of rigid clusters and the constituents of the largest

or percolating cluster will be examined. This information is quite revealing because

it shows the capability of a system to support a percolating cluster, and it elucidates

which components are primarily responsible for rigidity percolation.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.21: Data for the number of floppy modes normalized per degree of freedom
is shown as a function of concentration for various window sizes.
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.22: Data for the fraction of sites in the largest cluster is shown as a function
of concentration for various window sizes.
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(a) 62 % (b) 63.5 %

(c) 68 % (d) 72.5 %

(e) 74 % (f) 80 %

Figure 4.23: Data for the number of sites in the largest rigid cluster is shown as a
function of window size on a semi-log scale for various concentrations of CMHP at
270 K. The histograms are broken down by the type of molecule participating in the
largest cluster, but only atoms within molecules are counted not whole molecules.
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(a) 68 % (b) 72.5 %

(c) 77 % (d) 80 %

(e) 86 % (f) 89 %

Figure 4.24: Data for the number of sites in the largest rigid cluster is shown as a
function of window size on a semi-log scale for various concentrations of CMHP at
300 K. The histograms are broken down by the type of molecule participating in the
largest cluster, but only atoms within molecules are counted not whole molecules.
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(a) 65 % (b) 69.5 %

(c) 71 % (d) 74 %

(e) 81.5 % (f) 84.5 %

Figure 4.25: Data for the number of sites in the largest rigid cluster is shown as a
function of window size on a semi-log scale for various concentrations of CDHP at
270 K. The histograms are broken down by the type of molecule participating in the
largest cluster, but only atoms within molecules are counted not whole molecules.
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(a) 65 % (b) 68 %

(c) 72.5 % (d) 74 %

(e) 84.5 % (f) 89 %

Figure 4.26: Data for the number of sites in the largest rigid cluster is shown as a
function of window size on a semi-log scale for various concentrations of CDHP at
300 K. The histograms are broken down by the type of molecule participating in the
largest cluster, but only atoms within molecules are counted not whole molecules.
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(a) 62 % (b) 65 %

(c) 68 % (d) 72.5 %

(e) 74 % (f) 80 %

Figure 4.27: Data for the distribution of rigid clusters for various concentrations and
window sizes of CMHP at 270 K.
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(a) 68 % (b) 72.5 %

(c) 74 % (d) 77 %

(e) 80 % (f) 89 %

Figure 4.28: Data for the distribution of rigid clusters for various concentrations and
window sizes of CMHP at 300 K.
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(a) 65 % (b) 71 %

(c) 72.5 % (d) 74 %

(e) 81.5 % (f) 84.5 %

Figure 4.29: Data for the distribution of rigid clusters for various concentrations and
window sizes of CDHP at 270 K.
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(a) 65 % (b) 74 %

(c) 81.5 % (d) 83 %

(e) 84.5 % (f) 89 %

Figure 4.30: Data for the distribution of rigid clusters for various concentrations and
window sizes of CDHP at 270 K.
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Figures 4.23, 4.24, 4.25, and 4.26 are histograms for the average number of atoms

belonging to each species in the largest cluster for various window sizes. In all systems,

trehalose occurs in the greatest quantity. Surprisingly, water is also abundant in the

rigid cluster, and occurs in greater quantities than phosphate or choline. This is

seemingly in contradistinction to the H-bond lifetime plots which show that trehalose

and phosphate tend to cluster, while most H-bonds involving water are transient. As

figure 4.1 shows, there is an excess of water molecules at all simulated concentrations.

This implies that water has a space filling tendency which makes it unlikely for any

trehalose hydroxyl group to not be participating in a hydrogen bond. The lifetime

plots for trehalose-water (donor-acceptor) H-bonds also show that these bonds can

persist for ∼ 2000 ps at high concentrations. The conclusion from this argument is

that water becomes trapped in trehalose cages towards higher concentrations, but it

is still not obvious how water appears so prevalently in the percolating rigid cluster.

The ability for water to percolate rigidity depends on the geometry of water and

the solute to which it is H-bonded, but the data here is insufficient to deduce the

mechanism. At the moment, however, we can assume that the mechanism to rigidify

water exists and use this fact to glean subtle insights into what drives the liquid-

glass transition. The trends in the makeup of the largest cluster are very similar

between CMHP and CDHP for both 270 and 300 K. At higher concentrations, the

largest cluster persists for longer periods of time. If the observation time scale were

increased to infinity but the size of the largest cluster remained constant, the system

would in fact be a crystal and not a glass. This observation is crucial to understanding

the interpretation of the time window defined in this work. Empirically, it is known

that a glass will crystallize if the observation time scale is made to be adequately

long; the failure of crystallization (as indicated by a decrease in the size of the largest

cluster) reveals that the system is a glass because it is not able to crystallize over

the given window of observation. Stated a different way, the number of sites in the
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largest cluster can be taken as an order parameter which differentiates between an

ordered and disordered phase. This order parameter is controlled by the observation

window, and increasing the time scale of observation will cause a transition to the

disordered state if the system is a glass. However, no such transition will occur for a

crystal owing to its long range order.

It is already known from prior work that the additional charge on the monohydro-

gen phosphate anion drastically alters the clustering of molecules when comparing

CMHP and CDHP. In CMHP, a third category of water is introduced for water

molecules which neighbor phosphate because of the reduced diffusivity of those water

molecules. It is this reduction in diffusivity which causes a global loss of mobility in

CMHP systems which shifts the liquid-glass transition to lower solute concentrations

as compared to CDHP. Upon inspection of the largest cluster histograms, there are

few differences between CMHP and CDHP, except for the prevalence of the phos-

phate anion in the percolating cluster. In CMHP, monohydrogen phosphate appears

in the rigid cluster in similar quantities to CDHP until higher concentrations. In

panel (e) of figure 4.24 (CMHP at 300 K), the number of choline atoms present in

the largest cluster exceeds the number monohydrogen phosphate atoms. This oc-

curs at relatively high solute concentrations (86 %) in CMHP but does not occur in

CDHP. This indicates that the clustering characteristics in CMHP are chiefly due to

the interaction between water and phosphate. Furthermore, H-bonds between water

and phosphate have similar persistence times in both CMHP and CDHP at low and

intermediate concentrations (figures 4.9 and 4.10). At high concentrations (figure

4.11), there is a marked difference, and CMHP water-phosphate H-bonds are 6 to 8

times more persistent than the same H-bonds in CDHP. This suggests that at high

concentrations, the remaining water is clustering around phosphate in such a way

that it is unable to bond to trehalose. This is possibly due to steric hindrance at high

solute concentrations.



77

Figures 4.27, 4.28, 4.29, and 4.30 show the distribution (on a semi-log scale) in size

of all rigid clusters detected over the length of the simulations. These figures indicate

that the evolution characteristics for CMHP and CDHP are qualitatively the same,

and furthermore there is weak (if any) temperature dependence.

4.3.3 Uniform-Probability Pebble Game

The UPPG assigns each H-bond with the same probability as a mean field ap-

proximation so that the average probability required for the rigidity transition at any

concentration can be approximately determined. This neglects temporal correlations

which are captured by the TCPG, but it is still useful to know what probabilities are

required in order to affect a transition or if a rigidity transition is possible at all. In

addition, comparisons between the TCPG and UPPG will reveal the effect that tem-

poral correlations have on the rigidity transition. It is known that correlations can

significantly alter the MCN at the transition point and that these correlations may be

traced back to the ring distributions [7]. Therefore, a comparative analysis between

the TCPG and UPPG can provide insight into the underlying mechanism of the rigid-

ity transition. In this section, data as a function of uniform H-bond probability will

be examined, followed by the same data as a function of the MCN.

Figure 4.31 plots the MCN as a function of the uniform H-bond probability. Note

these curves are approximately linear which suggests that the H-bond probability

may also be a "good" parameter to use (in addition to the MCN). Higher solute

concentrations also tend to have slightly higher MCNs for a given probability. This is

in spite of the fact that tables 4.1, 4.2, 4.3, and 4.4 show that there are fewer available

H-bonds at high concentrations. Because all H-bonds are identified before pruning,

this suggests that significantly more atoms are pruned at lower concentrations while

more H-bonds are preserved at higher concentrations.

Figure 4.32 plots the number of floppy modes normalized per degree of freedom

against the H-bond probability. Here, the floppy modes exhibit the characteristic
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.31: Data for the mean coordination number is shown as a function of H-bond
probability.

curve where there are two slopes connected in a piece-wise fashion. This is in contrast

to the floppy modes plotted as a function of window size which displayed a power

law increase. The reason for this is that there is a linear mapping from probability

to MCN. Note that low concentrations tend to deviate from this characteristic shape.

This is likely because the PG is not strictly being run in the canonical ensemble

(i.e., the number of particles is not preserved) due to the pruning algorithm. At
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.32: Data for the number of Floppy modes normalized per degree of freedom
is shown as a function of H-bond probability.

very low concentrations, most atoms are removed from the network, so the process of

normalizing by degree of freedom may give unusual results.

The RCS plotted as a function of H-bond probability is shown in figure 4.33.

These are quite informative, as they indicate which concentrations are not capable of

affecting a rigidity transition even when p = 1 (at 0 K) when all bonds are intact. For

instance, the concentrations at 10 and 20 percent solute by weight in panel (a) never
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.33: Data for the RCS is shown as a function of H-bond probability.

show a transition. In panels (b) and (c) 40 percent solute by weight is able to undergo

a rigidity transition at very high H-bond probabilities. Also note that the 40 % peak

is much higher compared to other concentrations which could indicate a transition

which is more first order in character. Also note that higher concentrations transition

at lower probabilities which indicates again that there are more constraints left in

high concentrations after pruning. Conversely, low concentrations require a higher

average H-bond probability in order to experience a transition despite the fact low
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concentrations have more H-bonds due to the H-bond network of bulk water. This

suggests that bulk water possesses a tree-like structure, and in turn, more constraints

are pruned from the network at low concentrations. While it may be obvious that

high concentrations should have more constraints, this is not necessarily the case if

the solute is a network modifier which has the effect of breaking rigid constraints and

introducing floppy modes in their place. Because there are fewer H-bonds at higher

concentrations, the H-bonds which do exist must act as hard constraints in order to

percolate rigidity.

Figure 4.34 plots the fraction of sites in the largest cluster as a function of the

H-bond probability. Because of the high resolution afforded by a sweep over proba-

bilities, it is possible to more clearly determine the order of the transition. A more

detailed calculation will be presented later in which the β critical exponent will be

calculated for CMHP systems at 300 K. Interestingly, the curve corresponding to 63.5

percent weight solute in panel (a) shows a similar anomaly at around p = 0.9 to what

was observed in the TCPG in which the network appears to be frustrated.

By plotting the data as a function of MCN, we again see a spectacular collapse of

the data onto a single curve in figure 4.35. As in the TCPG, the number of floppy

modes begins to approach zero at around 〈r〉 = 2.4. Again, the insets show a slight

departure from this data collapse which is likely due to the fact that the system is

not as well approximated by Maxwell’s mean field approximation at high MCNs as

compared to low MCNs.

Figures 4.36 and 4.37 respectively plot the RCS and fraction of sites in the largest

cluster as a function of MCN. The insets show that there is a slight dependence on

solute concentration, as lower (higher) concentrations experience a rigidity transition

at lower (higher) MCNs. This implies the existence of spatial correlations irrespective

of the observation time scale. Indeed, if a significant number of bonds are removed at

low concentrations, the remaining bonds must transmit stress along structures which
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.34: Data for the fraction of sites in the largest rigid cluster is shown as a
function of H-bond probability.

naturally arise due to spatial correlations.

Figure 4.38 compares the TCPG and UPPG for various concentrations. The moti-

vation for this comparison is to test the hypothesis that temporal correlations in the

network will shift the rigidity transition to lower mean coordination numbers. Tem-

poral correlations originate from inhomogeneous clustering between different H-bond

species so that some bonds are preferred over others. Various models and algorithms
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.35: Data for the number of floppy modes normalized per degree of freedom
is shown as a function of mean coordination number. Each data point along each
curve corresponds to a different uniform H-bond probability.

to introduce specific correlations already exist and have been shown to have an appre-

ciable effect on the location of the rigidity transition. In particular, such algorithms

may impose the requirement that all redundant bonds must be avoided when building

the network or the probability of a bond existing at a site depends on the coordination

number of neighboring sites. The effect of such requirements is that a transition may

occur at lower MCNs (or volume fractions, probabilities, etc). Instead of constructing
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.36: Data for the RCS is shown as a function of mean coordination num-
ber. Each data point along each curve corresponds to a different uniform H-bond
probability.

an algorithm or model to input these correlations, it is hypothesized that the MD

simulation itself will provide correlations as it progresses towards a local energy min-

imum. Thus, the enthalpy-entropy competition intrinsic to soft matter systems will

shape a generic graph topology which acts as a simplified, course-grain representation

of the actual system.

It can be seen from figure 4.38 that there is a definite shift in the MCN between
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.37: Data for the fraction of sites in the largest cluster is shown as a function
of mean coordination number. Each data point along each curve corresponds to a
different uniform H-bond probability.

the TCPG and UPPG. The only difference between the TCPG and UPPG is that

the former has heterogeneous H-bond probabilities which are calculated from MD

simulation while the latter assigns H-bond probabilities uniformly. Therefore, it can

be concluded that the presence of time correlations enables rigidity to percolate with

fewer constraints. While it has been known that correlations can have this effect,

it has never been confirmed in three dimensional bond bending networks consisting
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.38: Comparison between the time-correlated PG and the uniform probability
PG. The fraction of sites in the largest cluster are shown for various concentrations
for CMHP and CDHP at 270 K and 300 K each. There is a distinct shift in the
rigidity percolation threshold with time correlations causing rigidity to percolate at
lower MCNs.

of both covalent and hydrogen bonds which are constructed from MD simulation

data. The shift tends to become slightly greater for increasing concentration which is

clearly seen in panel (c) where 72.5 and 81.5 percent weight solute shows almost no

shift between TCPG and UPPG data.

One of the difficulties in understanding the liquid-glass transition is that the prop-
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(a) CMHP at 270K (b) CMHP at 300K

(c) CDHP at 270K (d) CDHP at 300K

Figure 4.39: Hydrogen bond probabilities calculated from simulation data. The dif-
ference between the uniform H-bond probability at the percolation threshold (as de-
termined by the RCS peak) of the UPPG and the average H-bond probability from
simulation data is plotted. When phb > pt (phb < pt), the average H-bond probability
is higher (lower) than the percolation threshold and the system is predicted to be
rigid (floppy). The large (small) symbols refer to simulation data sampled every 6 ps
(0.1 ps).

erties of a glass depend on the time scale of observation. This was incorporated into

TCT as an adjustable parameter, but it is still difficult to definitively identify the

rigidity transition because the time scale we choose is ultimately arbitrary. Experi-
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mentally, a similar problem exists because the chosen quench rate is also arbitrary,

though there is a minimum quench rate which, if lengthened, would result in crystal-

lization. In order to better address this problem, the average H-bond probability, phb,

was calculated from MD simulations for various window sizes and subtracted from

the rigidity percolation threshold probability (identified as the probability at the RCS

peak), pt, determined from the UPPG as shown in figure 4.39. When pt−phb becomes

negative, the average H-bond probability is greater than the probability needed to

affect a rigidity transition for that concentration. Conversely, when pt − phb becomes

positive, the average H-bond probability is not high enough to cause a rigidity tran-

sition. It can be seen that there are some concentrations for which pt − phb is always

positive which suggests that a transition cannot occur for any time scale. However,

the MD simulation data is output with a sampling rate of 6 ps, so a smaller sampling

rate may force the difference to become negative. Figure 4.39 plots both data for sam-

pling rates of both 6 ps and 0.1 ps which are represented by large and small symbols,

respectively. While the higher sampling rate does cause the systems to appear more

vitreous, the effect is generally modest. Therefore, the determination of the rigid-

ity transition is not arbitrary and very closely coincides with the volume minimums

observed in the volume hysteresis data.

4.3.4 Critical Exponents

The β critical exponent has been calculated for CMHP at 300 K. Table 4.5 shows

the threshold critical probability pc, critical exponent β, and Pearson correlation

coefficient for each concentration. The exponents are calculated from the UPPG

because of the fine resolution in the sweep over probabilities. The values of β all

tend to be around 0.5 which is in agreement with the value predicted by Landau

theory. This suggests that rigidity percolation on three dimensional bond bending

networks belongs to the same universality class as thermal phase transitions such as

the paramagnetic to ferromagnetic transition.
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Figure 4.40: Data for the fraction of sites in the percolating rigid cluster is shown as
a function of p−pc on a logarithmic scale, where p is the uniform H-bond probability,
and pc is the approximate cutoff for the existence of the percolating cluster as deter-
mined from the peaks of the RCS in figure (4.33) . Each data point along each curve
corresponds to a different uniform H-bond probability.

Figure 4.40 plots the percolating cluster strength as a function of p − pc on a

logarithmic scale. One can see a power law scaling in the vicinity of the of the

transition point. Thus, we can conclude that the liquid-glass transition is driven by

an underlying second order rigidity transition which belong to the same universality

class as thermal phase transitions.
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Table 4.5: Critical exponents for CMHP at 300 K. The critical exponent β is calcu-
lated from a linear regression of P ∼ (p− pc)β plotted on a logarithmic scale. r is the
Pearson correlation coefficient for the fit. Only the first 20 data points after pc were
used in the fit.

Concentration pc β r
(% solute by weight)

65 0.830 ± 0.005 0.434 ± 0.026 0.968
68 0.815 ± 0.005 0.431 ± 0.022 0.961
71 0.780 ± 0.005 0.507 ± 0.038 0.979
72.5 0.775 ± 0.005 0.502 ± 0.032 0.964
74 0.770 ± 0.005 0.538 ± 0.041 0.963
77 0.750 ± 0.005 0.501 ± 0.034 0.975
80 0.728 ± 0.005 0.596 ± 0.034 0.983
86 0.702 ± 0.005 0.484 ± 0.035 0.964
89 0.704 ± 0.005 0.547 ± 0.033 0.956



CHAPTER 5: Conclusion

Covalent bonded topological constraint theory has been used as a simple model for

modelling glass networks for the past four decades. The notion of rigidity percolation

is essential for a simple, microscopic analysis of glass networks, but its use has been

confined to two dimensional central force networks or three dimensional covalent bond

bending networks. Nevertheless, such networks have been the subject of vast amounts

of research, and there now exists a large body of both experimental and theoretical

evidence for the utility of rigidity theory. To fully appreciate any theory, however,

requires knowledge of when it fails. Until the present, the question as to whether or

not TCT can be applied to glasses with hydrogen bond networks has remained open.

In this thesis, it has been demonstrated that TCT can successfully model glasses

with H-bonds by incorporating a single adjustable parameter. This parameter is the

time scale of observation which has a natural interpretation in the context of glass

networks because the glass transition itself can be thought of as an experimental

artifact which arises from taking measurements on time scales which are shorter than

the time required to reach equilibrium. That there is a time scale dependence of the

liquid-glass transition is an inescapable fact, but this is true of many other phenomena

we measure. If one were to observe the evolution of earth’s crust from Pangaea to

present day, it would appear to be liquid. Likewise, liquid water appears to be solid

on short enough time scales.

Fundamentally, the problem solved in this thesis is mapping MD trajectory data to

a generic graph representation on which the pebble game algorithm can be employed

for a rigidity analysis. This mapping is nontrivial and requires an analysis of the

H-bond network. To this end, the H-bond network was characterized using H-bond
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correlation functions across CMHP and CDHP systems at 270 K and 300 K each.

In order to test for any dependence on the time scale of observation, the correlation

functions were calculated from simulation data sampled every 6 ps and every 0.1 ps.

The optimal cutoff angle can be calculated from the correlation function using the

method prescribed in this thesis, and there is no significant difference between the

geometry of the H-bond network at these two time scales. Moreover, it was found that

a single cutoff angle can be used in all systems and between all H-bonds, and the cutoff

angle of 37 degrees generally agrees with values reported in the literature; however,

unlike most analyses appearing in the literature, a rigorous rationale was given for

our cutoff angle. In the process of determining this mapping, a possibly universal

trait of H-bond networks has been uncovered in that a cutoff angle of approximately

37 degrees serves as a good definition for any H-bond.

From the H-bond analysis, it was found that there are fewer H-bonds at higher

solute concentrations, yet there are more overall constraints present in the network

at higher concentrations. This is due to the pruning algorithm which removes all

tree-like structures leaving only rings of atoms and chains which connect those rings.

The observed dynamics can be attributed to enthalpy-entropy competition. As an

entropy crisis, the transition to the glassy state removes degrees of freedom so that

the H-bonds which are present are unlikely to be pruned. At the same time, the

increased strain also increases the enthalpy contribution. The net result is structural

arrest which was quantified in this work via a rigidity analysis.

The H-bond analysis is crucial in constructing a generic graph representation on

which the PG algorithm can be run. After all H-bonds have been identified, MD

trajectory data is mapped to this representation and the PG algorithm is run. The

topology can be constructed in one of two ways: (i) the H-bond probabilities calcu-

lated over a window in time for every H-bond in the system are input into a 5000

trial Monte Carlo simulation and (ii) a uniform H-bond probability is assigned to
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all identified H-bonds for 500 Monte Carlo trials. The former has time correlations

because the MD simulation is heterogeneously assigning H-bond probabilities so that

some bonds are more persistent than others with respect to a given window of time.

The nature of these correlations ultimately depend on enthalpy-entropy compensa-

tion and the tendency of the system to settle into a local minimum. On the other

hand, assigning all H-bonds an equal probability removes temporal correlations, but

spatial correlations still remain due to clustering preferences of the various species.

The floppy modes, RCS, and fraction of sites in the rigid cluster were plotted as a

function of window size for the TCPG and uniform H-bond probability for the UPPG.

They were also plotted as a function of MCN and doing so resulted in a collapse of the

data onto a "master curve". This collapse suggests that CMHP and CDHP systems

at various temperatures and concentrations all belong to a universality class. The

likely cause of this universality is that all systems simulated are three dimensional

bond bending networks. It would therefore be interesting to test other bond bending

networks for this universality.

Choline ions are not expected to facilitate a percolating rigid cluster because they

can not form closed loops due to the inability of the Nitrogen in choline to form

H-Bonds. Despite this, it was found that choline is present in the percolating cluster,

but it does not appear to be crucial for rigidity percolation. Choline ions are dangling

rigid clusters which do not seem to significantly participate in any interactions. Nev-

ertheless, they may still play an important role in disrupting the H-Bond network,

but the extent of this disruption is difficult to understand from CMHP and CDHP

systems alone. This can be tested by replacing Choline ions with smaller cations such

as sodium.

The largest cluster histograms show that rigidity primarily percolates within the

trehalose matrix, but the next most abundant species is water. This surprising result

suggests that water is being trapped in trehalose cages but this alone does not imply
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that water should be rigid. The respective geometries of water and trehalose must

also fit together in such a way that they can form rigid clusters together. It would

therefore be interesting to substitute water with a different solvent which is known

to bond to trehalose but has a different geometry which may not be conducive to

the formation of rigid clusters. Glycerol may be a suitable candidate for such an

investigation.

Another important result of this work is that the presence of temporal correla-

tions cause a shift in the rigidity transition to lower MCNs. This has already been

shown to occur in two dimensional central force networks which are generated using

self-organization or equilibration algorithms. These algorithms attempt to simulate

enthalpy-entropy compensation which occurs in physical systems. It has been shown

here that the correlations present in MD simulations do result in a better glass-

forming ability as compared to the mean field approximation (UPPG). This suggests

that glasses naturally self-organize in order to percolate rigidity at low MCNs.

Overall, there appear to be few differences between CDHP and CMHP based on

rigidity data alone. The fact that rigidity percolation closely coincides with volume

minimums from volume hysteresis data suggests that rigidity is a mechanism in the

liquid-glass transition. There are additional mechanisms, however, relating to the

clustering of water and phosphate which cause the liquid-glass transition to occur

at lower solute concentrations in CMHP as compared to CDHP. This thesis also

presents evidence that the underlying mechanism for the liquid-glass transition is, in

part, a second order rigidity transition which belongs to the same universality class

as thermal phase transitions (β = 1/2).

As an exploratory investigation, this thesis posed more questions than it answered

but has cleared many paths for future inquiry. Some of the most interesting questions

which deserve attention are related to the role of water in rigidity percolation. It is

clear that there are correlations present in the TCPG which do not exist in the UPPG.
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To what extent does water introduce correlations and is the network frustrated?

Rigidity can only percolate off of rings, so what are the most important rings for

rigidity percolation in this system? Are the ring distributions responsible for the

subtle shift in the percolation threshold seen in the UPPG data? What will be the

effect of substituting trehalose with another disaccharide which is a less effective glass

former?

These questions are left to future work. In particular, an analysis of the ring

structure may be the best route to elucidate the onset of rigidity percolation as well

as the transmittance of stress above the percolation threshold.
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