
PHYSICS INFORMED MACHINE LEARNING MODELS FOR PDES WITH
APPLICATIONS TO LASER BIOEFFECTS

by

Matthew Seman

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Applied Physics

Charlotte

2023

Approved by:

Chairperson, Dr. Donald Jacobs

Dr. Taufiquar Khan

Dr. Greg Gbur

Dr. Robert Thomas

©2023
Matthew Seman

ALL RIGHTS RESERVED

ii

ABSTRACT

MATTHEW SEMAN. Physics Informed Machine Learning Models For PDEs with
Applications to Laser Bioeffects. (Under the direction of DR. TAUFIQUAR KHAN)

Recently, advances in the efficiency of gradient calculation algorithms have sparked an

expansion of neural network applications, particularly in the field of approximating par-

tial differential equation (PDE) solutions. Among the most novel and effective approaches

is the Physics-Informed Neural Network (PINN) which enforces the PDE residual onto

the network’s loss function by sampling the gradients of the network with respect to its

inputs. This allows PINNs to learn PDE solutions through data-driven discovery with-

out requiring input-output training pairs. In addition to PINNs this work also explores

operator networks that build off of the lesser-known universal operator approximation

theorem to learn the differential operators of PDEs as a nonlinear mapping from inputs

to the solution. These operator networks are able to learn efficiently from relatively small

datasets and accurately predict solutions for untrained instances of the target PDE. Im-

plementations of deep operator networks (DeepONets), Fourier neural operators (FNO),

and PINNs are used to learn solutions to the heat diffusion PDE for short pulse laser

interactions incident on multi-layer skin and ocular tissue models. The high-frequency

components inherent to the heat diffusion solution within these models provide the op-

portunity to examine the spectral bias of neural networks to learn the low-frequency

components of the solution, which is theoretically supported in Neural Tangent Kernel

(NTK) theory. Fourier feature embedding and FNO, which learn parameters directly in

Fourier space, overcome this spectral bias by shifting eigenvalues for the network’s NTK,

demonstrating significant reductions in network convergence times for high-frequency

solution components.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Khan for connecting me to research opportunities where I

could explore my research interests and always offering guidance and support. I want to

offer special thanks to the members of the 711th Human Performance Wing Air Force

Research Laboratory Bioeffect lab, particularly Dr. Robert Thomas, Brett Bowman,

and Chad Oian as well as Dr. Jason Kurz for offering their expertise, resources and

allowing me to be a small part their research. I would also like to thank Dr. Donald

Jacobs whose passion for research would inspire the curiosity of even the most indifferent

student. Finally I would like to the thank the Consortium of Research Fellows program

for funding my research and experience with the Air Force Research Lab.

iv

TABLE OF CONTENTS

List of Figures vi

List of Tables vii

List of Abbreviations viii

Chapter 1: Overview 1
1.1 Objective . 1
1.2 Motivation . 1

Chapter 2: Background 3
2.1 Fully Connected Neural Networks . 3
2.2 Network Optimization . 8

2.2.1 ADAM . 8
2.2.2 LBFGS . 10

Fourier Transform . 12

Chapter 3: Machine Learning Methods for Solving PDEs 15
3.1 Physics Informed Neural Networks . 15

3.1.1 Residual Adaptive Refinement . 16
3.1.2 Fourier Feature Networks . 17

3.2 Deep Operator Networks . 21
3.3 Fourier Neural Operators . 24
3.4 Physics Informed Operator Networks . 27

Chapter 4: Implementations 31
4.1 Problem Setup . 31
4.2 Physics Informed Data-Driven Discovery 33
4.3 Learning Differential Operator Mapping 37

4.3.1 Learning Inverse Operator Mapping 42

Chapter 5: Conclusion 46

v

LIST OF FIGURES

1 Visualization of Fully-Connected Neural Network. 5
2 Visualization of (a) Multi-scale Fourier Feature Network and (b) Spatio-

Temporal Multi-scale Fourier Feature Network. Figure adapted from [51]. 22
3 Visualization of DeepONet Architecture. Figure adapted from [30]. . . . 23
4 Visualization of FNO Architecture. Figure adapted from [25]. 27
5 Visualization of Physics Informed DeepONet Architecture. Figure adapted

from [50]. 28
6 Visualization of Physics Informed FNO Architecture. 28
7 Visualization of (a) three layer skin model and (b) eight layer ocular model. 31
8 DeepONet and FNO temperature plots [K] for YZ slices from learning

differential operator mapping for SESE skin model at source power 1750
[W]. Slices are for time values {1.25,3.75,6.25,8.75} seconds from left to
right. 42

9 DeepONet and FNO temperature plots [K] for XZ slices from learning
differential operator mapping for SESE skin model at source power 1750
[W]. Slices are for time values {1.25,3.75,6.25,8.75} seconds from left to
right. 43

vi

LIST OF TABLES

1 Plots of PINN network predictions with L2 relative percent error with
respect PAC1D simulation results. Note that percentage errors are scaled
relative for each plot. 36

2 PINN Results for PAC1D simulation . 37
3 Plots of PINN w/ RAR network predictions with L2 relative percent error

with respect PAC1D simulation results. Note that percentage errors are
scaled relative for each plot. 38

4 PINN w/ RAR results for PAC1D simulation 39
5 Plots of DeepONet and FNO network predictions, for the final test instance

of irradiance 23 [MW
m2], with L2 relative percent error with respect PAC1D

simulation results. Note that percentage errors are scaled relative for each
plot. 40

6 DeepONet and FNO results learning the differential operator for PAC1D.
L2 error is measured as an average across test instances. 41

7 DeepONet and FNO results from learning the differential operator for
SESE. L2 error is measured as an average across test instances. 42

8 Plots of DeepONet and FNO network predictions of inverse mappings, for
the final test instance of irradiance 23 [MW

m2], with L2 relative percent error
with respect PAC1D simulation results. Note that percentage errors are
scaled relative for each plot. 45

9 DeepONet and FNO results learning inverse mapping for PAC1D. L2 error
is measured as an average across test instances. 46

vii

LIST OF ABBREVIATIONS

AD Automatic Differentiation

ADAM Adaptive Moment Estimation (Optimizer)

DeepONet Deep Operator Network

FNO Fourier Neural Operator

L-BFGS Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm

MLP Multi-Layer Perceptron

MsFFN Multi-Scale Fourier Feature Network

NN Artificial Neural Network

PAC1D Python Ablation Code Simulation Software

PDE Partial Differential Equation

PINN Physics Informed Neural Network

RAR Residual Adaptive Refinement

SESE Scalable Effect Simulation Environment

viii

CHAPTER 1: OVERVIEW

1.1 Objective

Recent advances in deep learning have revolutionized the ability to numerically approxi-

mate solutions to partial differential equations (PDE). Physics informed neural networks

have provided a general framework to solve PDEs, enforcing physical constraints by in-

cluding the PDE residual within the network’s loss function. Expanding beyond single

instance solutions, operator networks have theoretical basis in learning a family of param-

eterized solutions to PDEs. By replacing operator network components with deep neural

networks this method has become computationally feasible and named the deep operator

network (DeepONet). Neural operators also have theoretical basis in learning infinite

dimensional nonlinear operators with the ability to transfer learned operators across dif-

ferent instances of the PDE. By forcing the kernel function of the integral operator to

take the form of a convolutional operator, this method can be parametrized directly in

Fourier space leading to the Fourier Neural Operator (FNO). This work aims to explore

these methods for providing solutions to the heat-diffusion equation in modeling short

pulse laser tissue interactions in three layer skin and eight layer retina models. Training

and testing data for the heat diffusion model is generated using Python Ablation Code

(PAC1D) for 1D spatial domains and Scalable Effect Simulation Environment (SESE)

for 3D spatial domains.

1.2 Motivation

The main focus of this proposed thesis work is to provide surrogate models to Python

Ablation Code (PAC1D) and Scalable Effects Simulation Environment (SESE) simula-

tion softwares in modeling heat-diffusion of laser-tissue interactions [1, 56]. Training and

testing data for neural network implementations are obtained from PAC1D and SESE

simulation runs. Both simulation softwares perform time-dependent analysis of material

response to incident radiation in which time-steps are adaptive to ensure error stability.

For each time step an iterative algorithm is used to solve the non-homogenous heat equa-

1

tion based on the physical material and enforcing appropriate boundary conditions on the

solution. PAC1D simulates over a 1D spatial domain applying the Crank-Nicolson finite

difference method to numerically solve the heat-diffusion equation [10]. SESE solves the

heat equation over 3D spatial domains utilizing parallelized red-black successive over-

relaxation methods [55]. Radiative transport is handled by relevant material character-

istics in PAC1D, while SESE uses a Monte Carlo method. Material properties across the

domain vary discontinuously as represented by different material layers. These material

properties determine the amount of radiation absorbed across d-dimensional spatial do-

mains represented by a radiative dose term denoted I(t,x) [W
m3]. PAC1D and SESE are

used to produce data for three layer skin and eight layer ocular models by which neural

network models are trained and tested.

The diffusion equation that represents these physical models is defined by

∂

∂t
u(t,x)− κ

ρ · cρ
∆u(t,x) =

1

ρ · cρ
I(t,x) (1)

where κ denotes the thermal conductivity, ρ denotes the density and cρ denotes the

specific heat capacity of the material. For convenience we use the thermal diffusivity

terms α = κ
ρ·cρ and ν = 1

ρ·cρ . The values of these terms are dependent on the physical

characteristics of the layer materials which are represented by discontinuous regions. In

practice these regions are implemented by creating vectors for each term α = {α1, ..., αl}

and ν = {ν1, ..., νl} such that their values can be extracted utilizing the Heaviside step

function defined for each layer’s domain. I(t,x) denotes the radiative dose term that

represents the amount of radiation absorbed by the material. The values of the dose

term are dependent on input coordinates and are generated by PAC1D and SESE.

2

CHAPTER 2: BACKGROUND

2.1 Fully Connected Neural Networks

Artificial Neural Networks (NN) originated in attempts to replicate biological informa-

tion processing using mathematical representations [33]. Among the earliest and most

prominent implementations of artificial neurons is called the perceptron which acts as a

linear discriminant model for binary classification [42]. The output of a perceptron is

represented in equation (2).

y(x) = h(w · ϕ(x)) h(x) =

 1 x ≥ 0

0 x < 0
(2)

First the input vector x is transformed using a fixed nonlinear transformation resulting

in a feature vector ϕ(x). This feature vector is then dot-producted with a parameter

vector w, which we shall call weights. The result of this product is then transformed by

a discontinuous nonlinear activation function, in this case the step function, resulting in

binary classification.

Determination of the perceptron weights is performed through the minimization of

an error function known as the perceptron criterion shown in equation (3). M represents

the set of all misclassified patterns and tn is used as a coding scheme such that for each

correct classification of a pattern n, the equation w⃗ · ϕ⃗ntn > 0 is satisfied.

E(w) = −
∑
n∈M

w · ϕntn tn ∈ {−1, 1} (3)

The parameter or weight vector is then updated iteratively through stochastic gradient

descent as shown in (4). Here τ denotes the current iteration and η, which we will call

the learning rate, determines the size of each step in the gradient descent.

w(τ+1) = w(τ) − η∇E(w(τ)) (4)

This algorithm will continue indefinitely until each pattern is correctly classified meaning

3

the set of input patterns x must be linearly seperable for the perceptron to converge.

This idea can be expanded into a network of fully connected artificial neurons, known

as the multi-layer perceptron (MLP), where each fixed nonlinear basis function ϕ(x⃗) is

represented by a nonlinear function of a linear combination of inputs, each with their

own weight parameters w and bias that can be optimized. This leads to the feed-forward

neural network model of fully connected layers that can be thought of as a series of

functional transformations from an input vector x to an output vector y. Equation (5)

shows a two layer neural network with an input vector x of size D, a single hidden layer

of size L, and output vector y of size K.

yk =
L∑
l=1

wklσ(
D∑

d=1

wldxd + bl) + bk) (5)

An arbitrary number of hidden layers with arbitrary widths can be defined for any

neural network as equation (5) can easily be generalized. It should be noted that although

neural networks are referred to as multi layer perceptrons, perceptrons require discon-

tinuous step activation functions while neural networks implement continuous nonlinear

activation functions in their hidden layers. This feed-forward neural network model, when

containing at least one hidden layer, can approximate any Borel measurable function from

some finite dimensional space to another with arbitrarily small error [11, 18, 24].

For the sake of clarity, fully connected feed-forward neural networks can be represented

visually as a network of nodes. Assume we have a fully-connected neural network with xn

inputs, l hidden layers each with width j denoted hl where each node within the hidden

layer transforms the output by a nonlinear activation function σ and k outputs denoted

yk. This neural network can be visually represented by figure 1. The output to each layer

4

Figure 1: Visualization of Fully-Connected Neural Network.

is represented by the following system of equations

x = {x1, x2, ..., xn}

h1 = σ(W0 · x+ b0)

h2 = σ(W1 · h1 + b1)

...

hl = σ(Wl−1 · hl−1 + bl−1)

y = {y1, y2, ..., yk} = Wl · hl + bl

(6)

where Wl represents the weight matrix of connections between each layer. Note that in

practice it is not necessary to include bias term bl since for each node, x0 = 1 can be

included within the input vector such that bl = Wl · x0 = w0,0.

Network parameters in feed-forward neural networks are determined by minimizing

an error function, referred to as the network’s loss function, which can be chosen based

on the problem being solved. Since our focus will be on using neural networks as efficient

models in solving regression problems, specifically in finding numerical solutions to partial

differential equations (PDEs), we will assume a mean squared error (MSE) loss function

5

as shown in equation (7). Network outputs y(xn,w) are compared to expected outputs

ŷ for each input xn.

L(w) =
1

N

N∑
n=1

∥y(xn,w)− ŷ∥2 (7)

Parameter optimization is then performed through stochastic gradient descent using equa-

tion (4). The gradient of the loss function is taken with respect to each node’s weight

parameters in a process known as error back propagation [43].

To understand the process of back propagation let us examine the loss function for a

single training data point xn.

Ln(w) =
1

N

∑
j

∥yn,j − ŷn,j∥2 =
1

N

∑
j

∥(
∑
i

wjixni + bj)− ŷnj∥2 (8)

In regression models the output is often a simple weighted linear combination of the final

hidden layers output with no activation function as shown in (8). Taking the gradient of

this loss function with respect to a specific weight parameter wji results in

∂Ln

∂wji

=
2

N

∑
j

(ynj − ŷnj)xni (9)

Now we must determine gradients for the hidden nodes with activation functions.

In a feed-forward network each hidden node computes a weighted sum of inputs from

the previous layer’s outputs which we shall label aj. In equation (10), zi is the activation

output of a previous hidden layer’s node, connected to node j by weight parameter wji.

zj = σ(aj), aj =
∑
i

wjizi (10)

zj is the output activation of the current node j. Equation 7 can now be redefined for

the error of node j using the chain rule for partial derivatives.

∂Ln

∂wji

=
∂Ln

∂aj

∂aj
∂wji

= δjzi δj =
∂Ln

∂aj
zi =

∂aj
∂wji

(11)

For output nodes in our regression model δk is simply δk = yk−ŷk, but for hidden nodes δj

6

must take the derivative of an activation function. For this reason hidden layer activation

functions must be continuous and locally differentiable with common choices being the

logistic sigmoidal function and hyperbolic tangent.

To define δj for hidden units we can again apply the chain rule for partial derivatives.

δj =
∂Ln

∂aj
=

∑
k

∂Ln

∂ak

∂ak
∂aj

(12)

The sum contains all k nodes in the next layer that node j is connected to. by substituting

(10) into δj we obtain

δj = σ′(aj)
∑
k

wkjδk (13)

This demonstrates that obtaining δj for particular hidden nodes is obtained by propogat-

ing backwards from the output nodes. By recursively applying (13) the gradient of the

loss function with respect to each network parameter can be obtained for all hidden nodes.

Back propagation can also be used to efficiently calculate the network’s outputs with

respect to its inputs. The result of this evaluation will form the elements of the Jacobian

Matrix defined in (14). The sum here runs over nodes j that node i sends connections to.

Jki =
∂yk
∂xi

=
∑
j

∂yk
∂aj

∂aj
∂xi

=
∑
j

∂yk
∂aj

wji (14)

We can now write a recursive back-propagation formula for ∂yk/∂aj in the same form as

(13). The sum runs over all nodes l that node j sends connections to.

∂yk
∂aj

=
∑
l

∂yk
∂al

∂al
∂aj

= σ′(aj)
∑
l

wlj
∂yk
∂al

(15)

This back-propagation procedure can be extended to calculate the second derivative of a

networks output with respect to any two of its weight parameters or inputs. This results

in an exact calculation of the Hessian Matrix for a fully connected neural network [4].

7

2.2 Network Optimization

The equation for stochastic gradient decent defined in (4) aims to find the global minimum

of the error function. The gradient of this error always points toward its deepest descent

for each iteration and must be controlled by the learning rate η. Choice of the η is

non-obvious, often needing to be experimentally determined, as when it is too large

the algorithm diverges and when it is too small the algorithm may take unnecessarily

long to converge or fall into local minima. Despite this, Stochastic gradient descent is

central to the success of machine learning due to its unparalleled success in generalization

optimization [5, 17].

2.2.1 ADAM

ADAM is an optimizer that aims to efficiently perform stochastic gradient optimization by

computing adaptive learning rates for separate parameters derived from first and second

moments of the gradient. ADAM was designed to combine the advantages of two other

optimization algorithms Adagrad and RMSProp[14, 48]. The name ADAM alludes to

the adaptive moment estimation performed in this method’s algorithm.

Let our objective function be denoted f(θ) parametrized by θ. The objective of

stochastic gradient descent is to optimize the expected value of this fucntion E[f(θ)]

where stochasticity occurs from random subsampling of the function or inherent noise in

the function f(θ). We then denote the vector of gradients for this function at each step

t as gt = ∇θft(θ).

The ADAM algorithm calculates exponential moving averages of the gradient mt and

squared gradient vt with hyperparameters β1, β2 ∈ [0, 1) controlling the exponential decay

rates.

mt = β1 ·mt−1 + (1− β1) · gt, vt = β2 · vt−1 + (1− β2) · g2t (16)

These moving averages mt and vt are initialized to vectors of zeroes biasing the moment

estimates toward zero especially during initial steps t and when decay rates are small, β

is close to 1. This initialization bias is corrected using bias correction estimates m̂t and

8

v̂t.

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(17)

To understand the reason for this initialization bias correction we can derive the expected

values of these moving averages E[mt] and E[vt] as they relate to the true first E[gt] and

second moments E[g2t]. Since we initialize m0 = 0 and v0 = 0 we can rewrite equation

(16) as a sum of previous iterations i

mt = (1− β1)
t∑

i=1

βt−i
1 gi, vt = (1− β2)

t∑
i=1

βt−i
2 g2i . (18)

Then taking the expected values of each side and we get

E[mt] = E[gt] · (1− βt
1) + ζ1, E[vt] = E[g2t] · (1− βt

2) + ζ2. (19)

Here ζ1 and ζ2 are approximately zero if the true moments are stationary. This leaves

the terms (1−βt
1) and (1−βt

2) caused by initialization bias which can easily be corrected

by dividing by these terms as shown in (17).

The parameters are then updated iteratively using the following equation

θt = θt−1 − α · m̂t√
v̂t + ϵ

(20)

Here parameters α can be viewed as analogous to our learning rate denoted by η in (4).

ADAM has been experimentally shown to outperform other optimization methods in a

variety of large scale high dimensional machine learning applications especially as a first

order optimization method. Parameters when initialized as α = 0.001, β1 = 0.9, β2 =

0.999 and ϵ = 10−8 have experimentally shown great results when tested for most machine

learning problems, but these initializations can also be experimentally determined based

on application.

9

2.2.2 LBFGS

Quasi-Newton methods are also popular in minimizing an unconstrained function and is

widely applied in machine learning applications to minimize error functions [13]. Let’s

first describe Newtonian methods in optimization by analyzing the stochastic gradient

descent method shown in (4). Taylor expanding our error function about the point ωt+ϵ,

we obtain the approximation

E(ωt + ϵ) = E(ωt) + E ′(ωt)ϵ+
1

2
E ′′(ωt)ϵ

2. (21)

The Taylor approximation is then minimized when

∂

∂ϵ
E(ωt + ϵ) = E ′(ωt) + E ′′(ωt)ϵ = 0 (22)

which corresponds to a step size ϵ = −E ′(ωt)/E
′′(ωt) meaning that (4) can be rewritten

as

ωt+1 = ωt − η · E
′(ωt)

E ′′(ωt)
(23)

Notice that the second derivative of the error function needs to calculated in this op-

timization method. This corresponds to the Hessian matrix and the equation can be

written as

ωt+1 = ωt − η · [H(ωt)
−1]∇ωE(ωt) (24)

In Quasi-Newton methods instead of calculating the Hessian and taking its inverse,

the inverse to the Hessian matrix is approximated by a positive definite matrix B. The

form and update of B is dependent on the Quasi-Newton method being implemented,

but all Hessian approximations B must follow the secant condition

Bt+1[ωt+1 − ωt] = ∇E(ωt+1)−∇E(ωt) (25)

We will focus on the BFGS quasi-newton method of optimization named for each of

its independent creators Broyden, Fletcher, Goldfarb, and Shanno [7, 15, 16, 44]. For

10

dimensions n > 1 equation (25) is not defined and so additional constraints must be

applied to the Hessian B. Symmetry and positive-definiteness of B must be preserved

after each update as well as minimizing ∥Bt+1 − Bt∥. Since in equation (24) we are

interested in calculating the inverse Hessian we can directly calculate the inverse Hessian

estimate B−1 and the constraints become

min
B−1

t+1

∥B−1
t+1 −B−1

t ∥ subject to B−1 T
t+1 = B−1

t+1 and ∆xt = B−1
t yt (26)

Applying these constraints results in each update of the approximate Hessian B being

equivalent to adding two symmetric rank one matrices U = auuT and V = bvvT . Here

u and v are linear independent non-zero vectors. The approximate Hessian update then

becomes

Bt+1 = Bt + auuT + bvvT . (27)

Since each update includes the sum of two rank one matrices this is referred to as a

rank-two update. Imposing the quasi-Newton condition Bt∆xt = yt and choose u = yt

and v = xt to get

Bt∆xt + ayty
T
t ∆xt + bBt∆xt∆xT

t B
T
t ∆xt = yt. (28)

Solving for a and b results in

a =
1

yT
t ∆xt

, b = − 1

∆xT
t Bt∆xt

(29)

Plugging these constants back into (27) to obtain the BFGS method for Hessian approx-

imation B

Bt+1 = Bt +
yty

T
t

yT
t ∆xt

− Bt∆xt∆xT
t Bt

∆xT
t Bt∆xt

. (30)

Each update to the approximate Hessian only requires gradient information from the

previous iteration. Since we are interested in directly calculating the inverse Hessian

11

approximation we can then apply Woodbury’s formula [53] to obtain

B−1
t+1 = B−1

t − 1

yT
t ∆xt

[B−1
t yt∆xT

t +∆xty
T
t B

−1
t − (1 +

yT
t B

−1
t yt

yT
t ∆xt

)∆xt∆xT
t]. (31)

Equation (32) defines the BFGS method of iteratively approximating the inverse Hessian

matrix B−1. Apply BFGS directly requires O(n2) storage for the approximate Hessian

and O(n2) operational complexity for each iteration. For large scale optimization this

operational storage and complexity is prohibitve, but since the BFGS method is a sum

of rank-one updates one could store the most recent update rather than the matrix such

that

B−1
t+1 ≈ B0 +

m∑
i=1

ujv
T
j (32)

stores the m most recent updates. This is known as the L-BFGS method for its low

memory requirements for updates when compared to directly applying BFGS optimiza-

tion [36]. This L-BFGS method greatly accelerates optimization when compared to other

second order methods and efficiently utilizes available storage to speed up convergence

[28].

Fourier Transform

The Fourier transform is a frequently used tool in solving differential equations through

spectral methods. The Fourier transform F and its transform F−1 are defined for a

periodic function f as

F{f(x)} =

∫ ∞

−∞
f(x)e−ixωdx F−1{F (x)} =

1√
2π

∫ ∞

−∞
F (x)eixωdω (33)

where ω denotes the angular frequency of the function f . The Fourier Transform can

also be discretized by replacing the integral with a sum over the domain of N points

transforming sequence of xn points into another sequence of points Xλ being called the

12

discrete Fourier transform (DFT).

Fd{xn} = Xλ =
N−1∑
n=0

xne
−i 2πnλ

N F−1
d {Xλ} = xn =

N−1∑
n=0

Xλe
− 2πnλ

N (34)

It may be of interest to some to recognize that the discrete Fourier transform can be

represented exactly by a single layer linear network with no activation function and a

weight matrix of Fourier weights. Redefining this equation using matrix multiplication

we can see Xλ is our network output and assuming calculation of the full frequency

spectrum λ ∈ {0, 1, ..., N − 1} the equation becomes

X = xWFourier = [x0, x1, ..., xN−1]

e0 e0 e0 . . . e0

e0 e−i 2π
N e−i 4π

N . . . e−i
2π(N−1)

N

e0 e−i 4π
N e−i 8π

N . . . e−i
4π(N−1)

N

...
...

...
. . .

...

e0 e−i
2π(N−1)

N e−i
4π(N−1)

N . . . e−i
2π(N−1)2

N

(35)

which is the same equation as a single layer linear model with a predefined weight matrix

known as the Fourier weights.

In Neural networks the Fourier transform is present in proving the universal approx-

imation theory [18]. Fourier transforms are also utilized to significantly increase the

speed of convolutional neural networks by computing convolutions as point-wise multi-

plications in the Fourier domain [32]. To truly take advantage of performing convolution

in the Fourier domain one can also take advantage of a faster method of calculating the

DFT.

Looking at the equation for the discrete Fourier transform in equation (37) we can

divide the DFT of xn into two sums over the even numbered indices n = 2m and odd

13

numbered indices n = 2m+ 1 to obtain

Xλ =

N/2−1∑
m=0

x2me
−i

2π(2m)λ
N +

N/2−1∑
m=0

x2m+1e
−i

2π(2m+1)λ
N =

N/2−1∑
m=0

x2me
−i

2π(2m)λ
N + e−i 2πλ

N

N/2−1∑
m=0

x2m+1e
−i

2π(2m)λ
N =

Eλ + e−i 2πλ
N Oλ

(36)

where Eλ and Oλ denote the DFT for even and odd indexed inputs respectively. While

this equation holds for all λ ∈ {0, 1, ..., N − 1}, advantages can be obtained by only

calculating this for λ ∈ {0, 1, ..., N/2− 1}. Values for Xλ+N
2
can then be calculated using

the same Eλ and Oλ values due to the periodicity of the complex exponential.

Xλ+N
2
=

N/2−1∑
m=0

x2me
−i

2π(2m)
N

(λ+N
2
) + e−i 2π

N
(λ+N

2
)

N/2−1∑
m=0

x2m+1e
−i

2π(2m)
N

(λ+N
2
) =

N/2−1∑
m=0

x2me
−i

2π(2m)λ
N − e−i 2πλ

N

N/2−1∑
m=0

x2m+1e
−i

2π(2m)λ
N =

Eλ − e−i 2πλ
N Oλ

(37)

This results in the DFT of an input size N being calculated by two DFT algorithms

with size N/2 sharing the computation of Eλ and Oλ. This is known as the Radix-2

Cooley–Tukey FFT algorithm and is performed recursively as a divide and conquer algo-

rithm [9]. In practice the FFT algorithm revolutionized signal processing, able to achieve

an operational complexity of O(NlogN) compared to the standard DFT’s operational

complexity of O(N2) [6]. It should be noted that there are many implementations of the

FFT, but none are faster than O(NlogN) and Cooley–Tukey FFT is the most commonly

used implementation.

14

CHAPTER 3: MACHINE LEARNING METHODS FOR SOLVING PDES

3.1 Physics Informed Neural Networks

Leveraging deep neural networks as universal function approximators allows nonlinear

problems to be solved without prior assumptions or local time stepping. Recent advances

in gradient estimation has introduced a more generalized approach to back propagation,

called automatic differentiation (AD), that has only recently been applied to machine

learning applications [3]. Taking advantage of AD to calculate a neural network’s out-

puts with respect to its inputs and model parameters, the loss function can be constructed

as a PDE residual. If this PDE represents some physical system then the numerical ap-

proximations of the network are automatically constrained to the physical laws governing

this PDE resulting in a Physics Informed Neural Network (PINN) [39, 40].

Consider a parameterized nonlinear differential equation of the general form.

∂

∂t
u(t, x)−N (t, x, u,

∂

∂x
u,

∂2

∂x2
u, ...) = 0 (38)

Here u(t, x) represents the latent solution to the PDE and N (·) is a function of inputs and

nonlinear differential operators acting on u(t, x). We can then define a function f(t, x)

set equal to the left hand side of equation (38).

f(t, x) := ut(t, x)−N (t, x, u, ux, uxx, ...) (39)

By approximating u(t, x) with a fully connected neural network, f(t, x) becomes a PINN.

The network parameters shared by u(t, x) and f(t, x) are trained by minimizing a

MSE loss function defined in (40). Each value in this loss function is determined by the

MSE of initial conditions, boundary conditions and the PDE residual.

LMSE = MSE0 +MSEb +MSEf (40)

15

where

MSE0 =
1

N0

N0∑
i=1

∥u(0, xi
0)− ûi

0∥2 (41)

MSEb =
1

Nb

Nb∑
i=1

∥u(tib, xi
b)− ûi

b∥2 (42)

MSEf =
1

Nf

Nf∑
i=1

∥f(tif , xi
f)∥2 (43)

Initial training data is denoted by {0, xi
0, û

i
0}

N0
i=1, boundary training data is denoted by

{tib, xi
b, û

i
b}

Nb
i=1 and collocation data is denoted by {tif , xi

f}
Nf

i=1. N0, Nb and Nf determine the

number of training samples for each training data set. Initial and Boundary conditions are

enforced by minimizing MSE0 and MSEb while minimizing MSEf enforces the physical

laws governed by the PDE defined in f(t, x). This PINN approach closely resembles the

finite element method, replacing the local span of a finite set of local basis functions with

the neural network space.

3.1.1 Residual Adaptive Refinement

Collocation points Nf are usually sampled in a psuedo-random distribution across the

domain in order to capture the physical characteristics constrained by the PDE residual

of a PINN model. While choice of distribution is highly important to network predic-

tion accuracy, the best sampling distribution may not be efficient in providing desired

results especially in PDE solutions with steep gradients. While it is ideal to place a

disproportionate amount of sample points along areas of steep gradient it is impossible

to predict a good distribution of sample points without knowledge of the solution. In

order to confront this issue Lu et al. proposed a residual adaptive refinement algorithm

(RAR) [31].

The idea of the algorithm is similar to the Finite Element Method (FEM). First the

PINN network is trained normally using a chosen sampling distribution for a specified

number of collocation points Nf . The mean PDE residual |f(x,N (x), θ)| of the PINN

model is calculated using the following equation

16

Er =
1

V

∫
Ω

|f(x,N (x), θ)| (44)

where V denotes the volume of the domain Ω. In practice this residual is difficult to

calculate and requires estimation by Monte Carlo integration on a subset of points within

the domain represented by

Er ≈
1

|S|
∑

|x|∈|S|

|f(x,N (x), θ)|. (45)

This approximation is calculated from a set of randomly sampled locations along the

domain S = |x1, ...,x|S|| ∈ Ω. After training the network again for a specified number of

iterations, if the mean PDE residual Er is above a target error E0 then m points within

set S, corresponding to the highest PDE residuals, are added to the training distribution

as training anchors that will be sampled for PDE residual loss each iteration. Once the

target error E0 is reached then the algorithm ends.

3.1.2 Fourier Feature Networks

Assume we have a fully connected neural network that is near the infinite width limit.

We can define the network with input dimensions d0 = d and output dimension dL+1 = 1

with inputs x ∈ Rd. The equation for this fully connected neural network is then defined

for each hidden layer h = 1, ..., L by

f (h)(x) =
1√
dh

W(h) · g(h) + b(h) (46)

g(h)(x) = σ(W(h−1) · f (h−1)(x) + b(h−1)) (47)

where W(h) ∈ Rdh+1×dh and b(h) ∈ Rdh+1 are the weight matrices and bias parameters

for each h-th hidden layer respectively. We can then define the output of this neural

network as

f(x, θ) = f (L)(x) =
1√
dL

W(L) · g(L) + b(L). (48)

17

Here θ represents the parameters of the FCNN.

Initializing the weights and biases of the network to be independent and identically

distributed as a normal distribution of random variables and noting that the limit of

the hidden widths approach infinity it can be shown that for all coordinates of f (h) for

each hidden layer converge to a centered Gaussian distribution of random variables with

covariance defined by Ch−1 : Rdh−1×Rdh−1 → R defined by the following equations [12, 22]

Σ(h)(x,x′) = E(u,v)∼N (0,C(1))[σ(u)σ(v)] + 1 (49)

C(h)(x,x′) =

Σ(h−1)(x,x) Σ(h−1)(x,x′)

Σ(h−1)(x′,x) Σ(h−1)(x′,x′)

 ∈ R2×2 (50)

Following the derivation by Jacot et. al. [19] we can define the network parameters

of as a function θ(t) in time steps where these parameters update according to gradient

descent methods during training. This results in a neural tangent kernel defined in the

following equation.

K(x,x′) = ⟨∂f(x, θ(t))
∂θ

,
∂f(x′, θ(t))

∂θ
⟩ (51)

Neural Tangent Kernel (NTK) Theory shows that as the width of the network’s hid-

den layers and under an infinitesimally small learning rate this NTK K converges to a

deterministic kernel that does not change. This means that a properly randomly initial-

ized and appropriately deep neural network trained by gradient descent is equivalent to

a kernel regression with a deterministic kernel. With this in mind we can analyze the

spectral bias present in neural networks.

Following the constraints of asymptotic conditions it is derived in [23] that

∂f(Xtrain, θ(t))

∂t
≈ −K · (f(Xtrain, θ(t))−Ytrain) (52)

where Xtrain and Ytrain correspond to the input and output pairs of the discretized

training dataset of size N such that f(Xtrain, θ(t)) = f(xi, θ(t))
N
i=1. Solving this first order

differential approximation results in the following where I represents the identity matrix.

18

∂f(Xtrain, θ(t))

∂t
≈ (I − e−Kt) ·Ytrain (53)

Since the NTK K is positive semi-definite it is possible to take its spectral decompo-

sition such that K = QTΛQ where Q is an orthogonal matrix with eigenvectors qi in the

i-th columns and Λ is a diagonal matrix whose entries λi are corresponding eigenvalues.

Plugging this into (53) we can then decompose training error into the eigenspace of the

NTK K.

f(Xtrain, θ(t))−Ytrain =
N∑
i=1

(f(Xtrain, θ(t))−Ytrain,qi)qi =
N∑
i=1

(e−λitqT
i Ytrain)qi (54)

The equation (54) clearly shows a bias in the network to learn the target function

along eigendirections of the NTK in order from the largest corresponding eigenvalues to

the least. Since the eigenvalues of the NTK decrease monotomically as the frequency of

the corresponding eigenfunctions increase there is significantly lower convergence rate for

high frequency components of the target function and explain spectral bias found in deep

neural networks [38].

This shows that the learnability of a target function is characterized by the eigenspace

of its NTK. We can then leverage the NTK to significantly lower convergence rate in

learning different frequencies of a target function. This can be done by implementing

random Fourier Feature embeddings formulated by Tancik et. al. [47]. The random

Fourier mapping is defined as

γ(x) =

cos(Bx)

sin(Bx)

 (55)

where B is sampled from a Gaussian distribution N (0, σ2) with σ being a network hyper-

parameter. Using the definition of the NTK found in equation (51), the NTK of the

19

Fourier Feature network becomes

K(x,x′) =
1

m

cos(Bx)

sin(Bx)

T

·

cos(Bx′)

sin(Bx′)

 =
1

m

m∑
k=1

cos(b(x− x′)). (56)

The eigenvalues of this kernel are directly proportional to the choice of σ for which b is

sampled from N (0, σ2). This means that choices of σ allow the network to converge at

equal rates toward the corresponding frequency components within the target solution

overcoming spectral bias.

Fourier feature networks are then constructed by embedding the Fourier features from

the equation (55) into the input of a FCNN. Note that the values of σ determine the

frequency of the eigenvectors of the NTK and therefore choosing an appropriate σ value

such that the frequency of the leading NTK eigenvector corresponds to the frequency of

the target function is needed to not only accelerate convergence, but also increase the

accuracy of network outputs.

The NTK can also be derived for PINNs by considering general PDEs as shown in

(38) described by the boundary condition operator B[·] and differential operator N [·].

By following the derivation by Wang et. al. [52] we can define the NTK of a PINN as a

matrix of kernels dependent on the differential and boundary operators such that

K(t) =

Kuu(t) Kur(t)

Kru(t) Krr(t)

 (57)

where individual kernels are defined in the following equations

Kuu(t) = ⟨dB[u](xb, θ(t))

dθ
,
dB[u](x′

b, θ(t))

dθ
⟩

Kur(t) = ⟨dB[u](xb, θ(t))

dθ
,
dN [u](x′

r, θ(t))

dθ
⟩

Krr(t) = ⟨dN [u](xr, θ(t))

dθ
,
dN [u](x′

r, θ(t))

dθ
⟩

(58)

and Kru(t) = KT
ur(t). Using a similar analysis as above and under some assumptions

one can understand that the eigen system of the NTK for PINNs are determined by the

20

eigenvectors of Kuu(t) and Krr(t) [51]. A multiscale Fourier feature architecture is then

proposed with i Fourier features initialized with separate σi values to accommodate multi-

scale convergence. The network layers of this multiscale Fourier feature neural network

(MsFFN) are defined by the following equations

γ(i)(x) =

cos(2πB(i)x)

sin(2πB(i)x)

 , for i = 1, ...,M

H
(i)
1 = ϕ(W1 · γ(i)(x) + b1), for i = 1, ...,M

H
(i)
ℓ = ϕ(Wℓ · γ(i)(x) + bℓ), for ℓ = 2, ..., L

fθ(b) = WL+1 · [H(1)
L , ...,H

(M)
L] + bL+1

(59)

where M Fourier feature mappings γ(i) are embedded into the input x with B(i)

sampled from a Gaussian distribution N (0, σi). ϕ denotes the activation functions of the

hidden layers H
(i)
ℓ . The choice of σi will correspond to the frequencies that the PINN

will prefer to learn and result in slower convergence for other frequencies. This leads to

a linear layer of M input embeddings such that all desired frequency components for the

target function can be learned with equivalent convergence rates.

Since multi-scale behaviour also exists across time in time dependent PDE problems

a similar approach can be applied by applying separate temporal Fourier feature embed-

dings to the time input t then passed to the FCNN with the embedded spatial inputs.

Merging the spatial and temporal outputs is done through point-wise multiplication be-

fore the output of the linear layer. This results in a similar network architecture called a

Spatio-Temporal Multi-scale Fourier Feature Network (STMsFFN).

3.2 Deep Operator Networks

While neural networks, of at least a single layer hidden layer, have been shown to be

universal function approximators, they have also been shown to universally approximate

any nonlinear continuous operator [8]. Suppose g ∈ the set of all Tauber-Wiener functions,

X represents Banach Space, K1 ⊆ X and K2 ⊆ Rd are compact sets, V is a compact set

in some continuous function operating in Banach Space C(K1), G is a nonlinear operator

21

Figure 2: Visualization of (a) Multi-scale Fourier Feature Network and (b) Spatio-
Temporal Multi-scale Fourier Feature Network. Figure adapted from [51].

mapping V into C(K2), then for any error ϵ > 0

|G(u)(y)−
p∑

k=1

M∑
i=1

cki g(
m∑
j=1

ξkiju(xj) + θki)g(ωk · y + ζk)| < ϵ (60)

holds for all u ∈ V and y ∈ K2. Here cki , ξ
k
ij, θ

i
k, ζk ∈ R, ωk ∈ Rd and xj ∈ K1.

In applying this theorem to a neural network approximation, G(u)(y) and u(xj) can

be expressed by discrete data sets {us(xj), s = 1, ..., n, j = 1, ...,m} and {G(us)(yl), s =

1, ..., n, l = 1, ..., L}. The network is represented by a fully connected neural network

taking the function us(xj), sampled for xj points, and y as input coordinates for which

function us(xj) is evaluated. Function g(·) will be represented by an activation func-

tion denoted σ(·). The parameters of the network cki , ξ
k
ij, θ

i
k, ζk, ωk are determined by

minimizing the loss function defined in equation (62) through back-propagation.

L =
L∑
l=1

n∑
s=1

|G(us)(yl)−
p∑

k=1

M∑
i=1

cki σ(
m∑
j=1

ξkijus(xj) + θki)σ(ωk · yl + ζk)|2 (61)

After training these network parameters we obtain an approximation to the nonlinear

continuous operator G denoted G†

G†(us)(yl) =

p∑
k=1

M∑
i=1

cki σ(
m∑
j=1

ξkijus(xj) + θki)σ(ωk · yl + ζk) (62)

This network can be split into two single layer sub-networks multiplied together; The

Branch which takes the input function us(xj) and the Trunk taking input y which specifies

22

the location to evaluate the output function. The outputs of these sub-networks are

defined in (63) and (64) respectively.

Branch =
M∑
i=1

cki σ(
m∑
j=1

ξkijus(xj) + θki) (63)

Trunk = σ(ωk · yl + ζk) (64)

This theorem lays the foundation for a general approach to learning functional map-

pings, but does not provide insight into the efficiently of learning operators. The accuracy

of a neural networks can be characterized by its error in approximation, optimization and

generalization [5, 20, 29]. Universal approximation theorems only provide guarantees for

sufficiently small errors ϵ in approximation provided sufficiently large networks, but do

not address generalization or optimization which contribute heavily to implementation

errors. Replacing the branch and trunk components of the operator network with deep

neural networks demonstrates significant improvement in generalization error [30]. This

high level architecture for operator networks is called a Deep Operator Network (Deep-

ONet).

Figure 3: Visualization of DeepONet Architecture. Figure adapted from [30].

Although DeepONet is a high level neural network architecture that does not specify

the architecture of its two sub-networks, our focus will be on implementing the branch

and trunk networks using fully-connected neural networks. DeepONet’s success in gen-

eralization is conducive to its strong inductive bias imposed by training the branch and

23

trunk networks explicitly. In solving for parameterized families of PDE solutions, Deep-

ONet has demonstrated up to exponential error convergence with respect to the training

dataset size.

3.3 Fourier Neural Operators

Methods like the PINN model directly parameterize the solution to a PDE as a neural

network approximation for a single instance. The PINN method is mesh independent

and accurate but requires training a new network for different instances. The DeepONet

like many recent proposed methods in neural networks aim to learn mesh-free, inifinite

dimensional operators [37, 35]. Neural operators offer a solution to mesh dependent

and finite dimensional operator learning methods by learning a single set of operator

parameters with the ability to transfer solutions between meshes and across different

instances of a PDE [26].

Neural operators learn a mapping between two infinite dimensional spaces by sampling

from a finite set of input-output pairs. Let D ⊂ Rd be a bounded open set, A = A(D;Rda

and U = U(D;Rdu) be separable Banach spaces with functions that accept values from

Rda and Rdu respectively. Let G : A → U be a nonlinear mapping where we shall

focus on G as a mapping of solutions to parametric PDEs. Neural operators build an

approximation of G by constructing the parametric map

G† : A×Θ → U or G†
θ : A → U , θ ∈ Θ (65)

where Θ represents some finite dimensional parameter space such that G†(·, θ) ≈ G.

This provides a natrual framework for learning in infinite dimensional spaces where a

cost function could be defined C : U × U → R with parameters denoted θ learned by

minimizing the following error function

min
θ∈Θ

Ea∼µ[C(G†(a, θ), G(a))] (66)

Here {aj, uj}Nj=1 makes up the set of observations where aj ∼ µ is an independent and

24

identically distributed random variables sequence on A and uj = G(aj) may be corrupted

by noise. The minimization of this error function parallels the classical finite dimensional

minimization problem in statistical learning theory [49].

The neural operator is implemented as an iterative architecture containing a sequence

of functions denoted vj taking values from Rdv . In the first function v0, input a ∈ A

is lifted to a higher dimensional representation by v0(x) = P (a(x)) where P is a local

transformation represented by a fully connected neural network. Then several iterations

of functional updates denoted vt → vt+1 are applied as defined in equation (67). The

output of the neural operator is the projection of vT by local transformation Q : Rd
v → Rd

u

such that u(x) = Q(vT (x)).

vt+1(x) := σ(Wvt(x) + (K(a, ϕ)vt)(x)), ∀ x ∈ D (67)

Here K : A×ΘK maps to bounded linear operators on U(D;Rdv) with parameters ϕ ∈ ΘK.

W is a linear transformation and σ is a nonlinear activation function.

K(a;ϕ) can now be chosen as the kernel integral transformation and parameterized

by a neural network implementation. The kernel function kϕ : R2(d+da) → Rdv×dv is

approximated by a neural network with parameters ϕ ∈ ΘK learned from data.

(K(a;ϕ)vt)(x) :=

∫
D

k(x, y, a(x), a(y);ϕ)vt(y)dy, ∀ x ∈ D (68)

New instances of a PDE solution are obtained by calculating another forward pass through

the network meaning the network needs only be trained once. The neural operator also

requires no underlying information about the PDE learning only from training data.

The two equations (67) and (68) provide a general approach for neural networks to

learn in infinite dimensional spaces. If the dependence on a is removed from the kernel

function and forcing k(x, y) = k(x−y) then (68) takes the form of a convolution operator.

This method can be exploited to directly parameterize the kernel function in Fourier

space and efficiently computing the resulting integral kernel operator using the FFT.

This results in an operator network architecture known as the Fourier Neural Operator

25

(FNO) [25].

Let F define the Fourier transform of a function and F−1 be its inverse for a function

f : D → Rdv . By forcing the kernel function k(x, y, a(x), a(y);ϕ) = k(x − y;ϕ) and

applying convolution theory then (68) becomes

(K(a;ϕ)vt)(x) = F−1(F(kϕ) · F(vt))(x), ∀ x ∈ D. (69)

The kernel function kϕ could therefore be directly parameterized in Fourier space by

assuming it is periodic and defining Rϕ(λ) = F(kϕ)(λ).

(K(a;ϕ)vt)(x) = F−1(Rϕ · F(vt))(x), ∀ x ∈ D. (70)

Here λ ∈ D denotes the frequency modes. Since kernel function kϕ is assumed to be

periodic we can use a Fourier series expansion and assume a discrete number of modes

λ ∈ Zd. The finite-dimensional parameterization of the FNO is chosen by truncating the

discrete number of modes at some maximum λmax = |Zkmax|. Rϕ is therefore parame-

terized as a complex-valued tensor comprised as a collection of truncated Fourier modes

becoming Rλ.

Assuming in implementation, the domain D is defined by a discretization of n ∈

N points then vt ∈ Rn×dv and F(vt) ∈ Cn×dv . Since vt is convolved with a function

of λmax Fourier modes, the higher modes are truncated such that F(vt) ∈ Cλmax×dv .

Multiplication by the weight tensor R ∈ Ckmax×dv×dv becomes

(R · F(vt))k,l =
dv∑
j=1

Rk,l,j(Fvt)k,j, λ = 1, ..., λmax, j = 1, ..., dv. (71)

If the discretization of the n points is uniform then the Fourier transform F and its inverse

F−1 can be replaced by the fast Fourier transform F̂ and its inverse F̂−1. The general

fourier transform has an operation complexity of O(n2) however with the Fourier series

being truncated complexity becomes O(nλmax) and further with uniform discretization

and implementing the FFT complexity becomes O(nlog(λmax)). Another benefit to note

26

is that since parameters are learned in Fourier space they are discretization-invariant and

resolving function to physical space simply requires a projection on basis e2πi<x,λ> which

is well defined everywhere in Rd.

Figure 4: Visualization of FNO Architecture. Figure adapted from [25].

It should be noted that neural operators, as a class of neural network architectures,

are the only models that guarantee discretization-invariance and universal approximation

[21].

3.4 Physics Informed Operator Networks

Enforcing the PDE residual into a network’s loss function as demonstrated in the PINN

model can also be implemented in operator network models. This results in deep learning

models able to learn nonlinear differential operator mappings corresponding to solutions

of PDEs without input-output paired trained data. By enforcing the physical knowledge

of governing PDE equations and initial/boundary conditions in a deep operator network

the model becomes a physics informed DeepONet (PI-DeepONet) [50].

Similary this physics informed enforcement on the loss function can also be applied

to neural operators and in the case of FNO becomes the phyiscs informed FNO (PINO)

[27]. These physics informed implementations overcome the challenge of purely data-

driven approaches which can fail without large amounts of high quality data from which

to learn from. While both models are able to learn with or without available training

data, due to FNO’s discretization-invariance, PINO is able to learn from data and enforce

physical constraints at different resolutions.

27

Figure 5: Visualization of Physics Informed DeepONet Architecture. Figure adapted
from [50].

Figure 6: Visualization of Physics Informed FNO Architecture.

In both PI-DeepONet and PINO we are trying to approximate a solution operator

G which maps solutions from an input function space a ∈ A to a solution space u ∈ U

using a parameterized neural network model Gθ. Assume we have a data set of points

{aj, uj}Nj=1 where uj denotes the true solutions at points aj ∼ µ which are independent

and identically distributed variables from a distribution µ in Banach space A such that

G(aj) = uj. Referencing the PINN method in equations (38) - (40) we can define the

PDE residual loss for Gθ.

LPDE(a,Gθ(a)) = ∥ ∂

∂t
Gθ(a)(t,x)−N [Gθ(a)(t,x)]∥2 + α∥Gθ(a)(t,x)− g(t,x)∥2

+β∥Gθ(a)(t,x)− u(0,x)∥2
(72)

28

Here Gθ(a) = uθ representing the parameterized network model’s approximate solution

for u and α and β are hyper-parameters to control contribution from initial/boundary

condition losses. Boundary conditions are defined by the function g(t,x) and the initial

condition is defined by u(0,x). N denotes a function of inputs and/or nonlinear partial

differential operators acting on uθ.

For the PI-DeepONet implementation, calculating ∂
∂a
Gθ(a) for some input a ∈ A is

trivial since DeepONet’s output is a product of fully connected neural networks whose

derivatives are well defined through back propagation. Computing these derivatives for

PINO is nontrivial and not well defined through back propagation since FNO utilizes

FFT within its network layers. Recall the structure of FNO architecture shown in figure

4 by which we define our solution operator approximator as

Gθ := Q ◦ (WT +KT) ◦ · · · ◦ (W1 +K1) ◦ P ◦ a(x) (73)

and the output u(x) is defined by

u(x) = Q(vT)(x) = Q((WTvT−1)(x) + (KTvT−1)(x)). (74)

Since WT is defined as a linear transform its derivatives are trivially computed through

backpropagation and our focus will be on computing the derivative of the Fourier con-

volution integral kernel KTvT−1(x). In equation (70) we defined this integral kernel in

Fourier space such that our output becomes

u(x) = Q ◦ F−1
d (R · FdvT−1)(x) = Q(

1

λmax

λmax∑
λ=0

(Rλ(FdvT−1)λ)e
i 2πλ

D
(x)) (75)

where λmax denoted the number of truncated frequency modes and Fd denotes the DFT.

We can see that the inverse DFT is simply the sum of λmax Fourier series with coefficients

(Rλ(FdvT−1)λ) coming from the previous network layer. Taking the derivative of the

29

output now results in

u′(x) = Q′(vT (x)) · i
2πλ

Dλmax

λmax∑
λ=0

(Rλ(FdvT−1)λ)e
i 2πλ

D
(x). (76)

This defines an exact method for automatic differentiation which is often time consuming

and memory expensive. Instead using (76) we can explicitly write out the derivative to

calculate u′(x) in Fourier space.

u′(x) = Q′(vT (x)) · F−1
d (i

2πλ

D
· (FdvT)). (77)

This means calculating the exact derivative of FNO can be done through Fourier dif-

ferentiation which is especially efficient when query points x are uniform and one can

utilize the FFT. Since Q is a point-wise transformation, it is often parameterized by a

fully connected neural network whose derivative are efficiently calculated through back-

propagation and derivatives of vT are calculated in Fourier domain using equation (77).

30

CHAPTER 4: IMPLEMENTATIONS

4.1 Problem Setup

The neural network models proposed in the previous sections were implemented to act

as surrogate models for PAC1D and SESE simulations of heat diffusion for short pulse

laser-tissue interactions. The models of interest consist of a three layer skin and eight

layer retina models. The layers of the skin model consists of the epidermis, dermis and

hypo-dermis while the retina model contains the cornea, aqueoushumor, iris, lens, vitre-

oushumor, retina, choroid and schlera layers. For both models, physical characteristics

of the layer materials are discontinuous across a single axis of the domain. We will orient

the axes such that layers change only across the x-axis of the domain.

(a) Skin Model

(b) Ocular Model

Figure 7: Visualization of (a) three layer skin model and (b) eight layer ocular model.

The boundary present along the plane containing the origin is heat convective with

the surrounding air which is simulated at constant ambient room temperature TA =

293.15[K]. This boundary is represented by Robin boundary conditions on points where

the x coordinate value is zero. The surrounding boundaries at treated as connecting

tissue enforced with Dirichlet boundary conditions where the temperature is simulated

as constant body temperature TB = 310.15[K]. This temperature is also used as the

31

initial temperature in both simulation models u(0,x) = TB.

The driving force for PINN models is obtained from the irradiated dose simulated

by PAC1D and SESE. This source term is calculated by simulating a laser with fixed

wavelength λl = 633 [nm] incident on the origin of the model. In PAC1D simulations,

the dose term is then calculated by setting an irradiance value which ranges from 1 to

23 [MW
m2] for PDE instances considered in this work. The domain is then split into a

set number of cells and radiation transport or dose is calculated for each cell across the

domain. The length of the spatial domain of the skin model is Lskin = 1.2 [cm] while the

Retina model has a spatial domain length of Locular = 2.5465 [cm], both models are split

into 240 and 200 evenly spaced cells respectively. The incident laser reaction with the

material is calculated through half of the 1000 steps of a 1 [s] simulation representing the

incident laser being turned on for half of a second.

SESE simulates the radiative dose through radiative transport models using Monte

carlo methods. This is done by specifying a power for the incident laser measured in

watts. This is simulated for eight instances for both the skin and ocular models. The

corresponding wattage values are defined as follows:

Retina : {10.16667, 10.5, 14.0, 15.166667, 15.94444, 16.041667, 16.333, 17.5} [W]

Skin : {250, 500, 750, 1000, 1250, 1500, 1750, 2000} [W].

The spatial domain of SESE data consists of (400, 150, 150) points for coordinates (x, y, z)

which are evenly spaced along domains 10 [mm] in length for both the y and z axes while

the x-axis depends on the model being simulated. These x-axis lengths match the model

length simulated in PAC1D Lskin = 1.2 [cm] and Locular = 2.5465 [cm]. Due to data

size constraints the simulation only records values for 11 time slices across one second.

The incident laser has matching characteristics with PAC1D simulations with wavelength

λl = 633 [nm] and is active for half of a second.

32

4.2 Physics Informed Data-Driven Discovery

Using the physics informed neural network architecture defined in (39), setting up the

desired problem for the desired equation (1) is rather straightforward. First we must

define the each part of the equation. The thermal diffusivity terms α = κ
ρ·cρ and ν = 1

ρ·cρ

are dependent on the physical characteristics of the layer materials which are represented

by discontinuous regions. Since our results will be focused on three layer skin and eight

layer retina models, these terms are implemented by piece-wise continuous equations

dependent on the length lℓ of each layer represented in equation (78). Since the material

characteristics for our models will only change on the x-axis of the spatial dimension, this

is equally valid when implementing SESE or PAC1D simulation models.

α(x) =

α0, if x ≤ l0

αℓ, if lℓ−1 < x ≤ lℓ

αL−1, if x ≤ lL−1

 ν(x) =

ν0, if x ≤ l0

νℓ, if lℓ−1 < x ≤ lℓ

νL−1, if x ≤ lL−1

 (78)

Computationally, these piece-wise functions are implemented using the Heaviside step

function whose gradient is forced to zero at all points for model training since they are

not dependent on network parameters. Next we must define how to implement the source

term νI(t,x), specifically the radiative dose term I(t,x). This term represents the amount

of radiation absorbed at each point across the spatial domain and is obtained through

Monte Carlo simulations of radiative transport in both PAC1D and SESE simulations.

This means that values must be sampled from a data set, but since we want to continu-

ously sample we can transform the simulated data set into a function using interpolation.

Since this interpolated dose function is not a function of network parameters we can also

force its gradient to zero during network training. Using a parameterized neural network

implementation uθ(t,x) for the solution u(t,x) and plugging into (39) we obtain

f(t,x) :=
∂

∂t
uθ(t,x)− α(x)∆uθ(t,x)− ν(x)I(t,x). (79)

33

Follow the model set up in the previous section we ca set up the boundary conditions

for both models. The convective boundary where x = 0 is dependent on the free flow

convection coefficient for air at room temperature κair = 10[W
m2K

]. This leads to the

Robin boundary condition ∂
∂x
uθ(t,x)|x=0 = κair(uθ(t,x)−TA). The remaining boundaries

including initial conditions are enforced with Dirichlet boundary conditions at the average

body temperature uθ(t = 0, x, y, z) = uθ(t, x, y = 0, z) = uθ(t, x, y, z = 0) = TB.

Applying this directly into a PINN model performs poorly and often result in the

neural network converging on a local minimum that doesn’t resemble the simulation. This

is due to the distribution of temperature values being highly skewed toward values above

300. Since neural network initialization is equivalent to a Gaussian distribution process

centered at zero [34] the network will struggle to learn outputs not following a distribution

near zero. We must reformulate the problem in order to ensure the distribution of outputs

will follow a Gaussian distribution near zero in order to improve network convergence.

Looking at the boundary conditions a fairly simple and elegant transformation of the

neural network output will ensure the output is distributed close to zero. We can denote

the output of the neural network as yθ and transform this output to obtain the correspond-

ing temperature value with uθ = TA ∗ (yθ + 1). This output transformation changes the

boundary conditions into ∂
∂x
yθ(t,x)|x=0 = κair(yθ(t,x)) and yθ(t = 0, x, y, z) = yθ(t, x, y =

0, z) = yθ(t, x, y, z = 0) = TB

TA
− 1 = 0.05799. This also transforms the PINN model’s loss

residual (79) into

f(t,x) :=
∂

∂t
yθ(t,x)− α(x)∆yθ(t,x)−

ν(x)

TA

I(t,x). (80)

Results of implementing (80) can be found in tables 1 and 2. The PINN models for

predicting PAC1D were implemented by sampling N0 = 120 initial points, Nb = 240

boundary points and Nf = 10000 collocation points to evaluate the MSE loss function as

defined in equation (40). Choice of sampling for the collocation determines the precision

of the network prediction and whether this prediction accurately represents the PDE

contraints defined within the loss function. Several methods of distribution sampling were

attempted including psuedo-random, Latin Hypercube sampling [46], Hammersley [41]

34

and Sobol sequences [45]. It was found that Hammersley and Sobol performed similarly

obtaining the lowest PDE residual for both models in PAC1D which agrees with another

study performed on sampling strategies in PINN implementations across various PDEs

[54]. To decrease the computational cost of sampling Hammersley sequencing was chosen

for all implementations of PINN. To improve the representation of the PDE loss across

the domain, the collocation points Nf for which the PDE residual loss is calculated is

re-sampled every 1000 iterations to capture as many features of the diffusion as possible.

Leveraging NTK theory derived in the Fourier Feature Networks section the inputs were

embedded with Fourier Features defined in equation (59). Two sigmas chosen for the

random Gaussian distributed in a linear map of two Fourier feature embeddings. The

values were set to 1 and 10 to capture any higher frequency components of the target

solution. These results shown shown in tables 1 and 2 can then be compared with

standard PINN implementations to detect any low frequency spectral bias present within

the problem.

By visual inspection MsFFN reduces the mean PDE residual as well as the mean and

point specified L2 error with respect to the PAC1D simulation in both the skin and ocular

models. The network still, however, struggles to capture accurate diffusion behavior

around areas of steep gradients, especially those near the material layer boundaries. To

combat this we can use the residual adaptive refinement (RAR) algorithm derived in

section (3.1.1). By implementing this algorithm we can place sample anchors along the

areas of highest residual error and retrain the model repeating this process until the

desired error or number of anchors is reached. It should be noted that these anchors

are placed relative to PDE residual and therefore the network is still not training on

any labeled data although one could choose anchor locations based on L2 relative error

instead at equivalent computational cost. The subset chosen across the domain was given

a size of |S| = 100000 and 200 points corresponding to the highest PDE residuals were

chosen as anchors. This algorithm was repeated until mean residual error of the network

was below 0.01, Er < E0 = 0.01. The results of this RAR implementation for PAC1D

models can be found in tables 3 and 4.

35

FCNN MsFFN PAC1D

Skin

Error

Retina

Error

Table 1: Plots of PINN network predictions with L2 relative percent error with respect
PAC1D simulation results. Note that percentage errors are scaled relative for each plot.

36

Model Network Depth/Width ADAM/LBFGS Iters Mean PDE Residual L2 Error

PAC1D Skin FCNN 4/64 20000/19390 0.0237 0.0389
PAC1D Retina FCNN 4/64 10000/23718 0.0518 0.0116
PAC1D Skin MsFFN 4/64 20000/16023 0.0166 0.0465
PAC1D Retina MsFFN 4/64 10000/16313 0.0339 0.0138

Table 2: PINN Results for PAC1D simulation

According to tables 3 and 4 the mean PDE residual for all models are reduced sig-

nificantly however the relative L2 error increases for the skin model on both network

architectures. This may be due to the heat diffusion equation (1) setup for this problem

not accurately representing the radiative transport that PAC1D simulates for the three

layer skin model. The ocular model, however, demonstrates vastly increased prediction

accuracy, particularly for the MsFFN network architecture. This supports the presence

of high frequency components in the target solution of the ocular model for which a

standard FCNN will struggle to converge onto.

4.3 Learning Differential Operator Mapping

The aim of implementing DeepONet and FNO architectures is to leverage their ability

to learn differential operators as non-linear mappings to solutions of parametric PDEs.

While PINN implementations have demonstrated success in the heat diffusion problem,

they can only learn on a single instance at a time. Operator networks, however, can

apply the learned differential operator mapping to different instances of a PDE. In our

application we aim to learn a nonlinear mapping N from an input space defined for the

radiative dose I to the temperature solution space U so that N : I → U . In practice

the network minimizes to an approximation of this nonlinear mapping denoted N †
θ ≈ N

where θ denotes the parameters of the neural network which exist in parameter space Θ.

It was experimentally found that DeepONet architecture performs optimally for this

application when the depth of the Trunk sub-network is a multiple of two of the Branch

sub-network. In implementation we found the best depths of these sub-networks to be

two and four for the Trunk and Branch respectively with each hidden layer consisting

of 128 hidden nodes. Evaluations of the irradiative dose term I(t,x) were sampled and

input into the Branch sub network with the corresponding location points being input

37

FCNN MsFFN PAC1D

Skin

Error

Retina

Error

Table 3: Plots of PINN w/ RAR network predictions with L2 relative percent error with
respect PAC1D simulation results. Note that percentage errors are scaled relative for
each plot.

38

Model Network Depth/Width Iterations Mean PDE Residual L2 Error

PAC1D Skin FCNN 4/64 132292 0.00361 0.05078
PAC1D Retina FCNN 4/64 53798 0.00465 0.00897
PAC1D Skin MsFFN 4/64 92999 0.00718 0.0565
PAC1D Retina MsFFN 4/64 52732 0.00660 0.00606

Table 4: PINN w/ RAR results for PAC1D simulation

into the Trunk sub-network.

FNO architecture is implemented with four Fourier layers described in section 3.3. R

andW operators are represented by FCNNs and convolution neural networks respectively,

each with hidden layer widths of 200 nodes. The input of the network is given evaluations

of the irradiative dose term I(t,x) The frequency modes are truncated in R to the 20

lowest frequency modes. The operator Q that transforms the network output to a single

temperature prediction value is implemented with two FCNN hidden layers with width

of 200 and 128 hidden nodes.

Both DeepONet and FNO network implementations for PAC1D are trained through

input-output data pairs across 15 training instances of the PDE. Prediction accuracy

of each network is measured through mean L2 relative error which is averaged across 5

test instances of the PDE. These instances of the PDE correspond to irradiance values

ranging from 1 to 23 [MW
m2]. As outlined in the PINN implementation section, neural

network initialization is similar to a Guassian distribution process such that the network

attempts to learn values distributed near zero following this distribution. In order to

improve prediction accuracy and reduce training time both input and output values for

both functions are normalized. For all implementation irradiative dose and temperature

values are normalized so that the maximum value is 10. Results for DeepONet and FNO

can be found in tables 5 and 6.

Both operator network architecture perform well and similarly for the three layer

skin model, however, FNO surpasses DeepONet when predicting the diffusion differential

operator for the ocular model. Visually inspecting the DeepONet figures in table 5

reveals that the network struggles in learning temperature spikes of interest. In fact,

DeepONet only begins to learn reasonable mapping that resembles the target solution

39

DeepONet FNO PAC1D

Skin

Error

Retina

Error

Table 5: Plots of DeepONet and FNO network predictions, for the final test instance of
irradiance 23 [MW

m2], with L2 relative percent error with respect PAC1D simulation results.
Note that percentage errors are scaled relative for each plot.

40

Model Loss Network Architecture ADAM Iterations Train/Test Instances L2 Error

PAC1D Skin Data-Driven DeepONet 10000 15/5 0.00748
PAC1D Retina Data-Driven DeepONet 50000 15/5 0.0263
PAC1D Skin Data-Driven FNO 100 15/5 0.00529
PAC1D Retina Data-Driven FNO 100 15/5 0.01215

Table 6: DeepONet and FNO results learning the differential operator for PAC1D. L2

error is measured as an average across test instances.

after approximately 25000 training iterations. We propose this is due to the spectral

bias of DeepONet network explained by NTK theory [19] since the target solution of

the oculer model largely consists of higher frequency components. Further supporting

this proposition is the FNO implementation’s ability to learn temperature spikes without

substantially more training iterations. This is most likely due to FNO learning network

parameters directly in Fourier space for the first 20 frequency modes in which these higher

frequency components of the ocular model solution lie. Notice that FNO converges in

much fewer training iterations than DeepONet in both model predictions. While this is

due in part to spectral bias, the computational complexity of each training iteration for

FNO is far more expensive than DeepONet’s training iteration.

We can expand this implementation of DeepONets and FNO architectures to learn

the diffusion reaction differential operator across three spatial domains plus one time

domain. The architecture for DeepONet is identical to the one trained for learning the

PAC1D differential operator mapping. Implementing FNO requires an expansion of the

architecture which vastly increases the memory requirements for computational graphs

in tensorflow. Due to this, the width of network implementations for R, W and Q

were reduced to widths of 16 hidden nodes. The domain of the problem was also sub-

sampled with evenly spaced points changing the spatial dimension of the problem from

(400, 150, 150) to (30, 30, 80). The input output pairs for training were normalized so

that the maximum values were equal to 10. The results of DeepONet and FNO training

on skin SESE data can be found in table 7 and visually inspected in figures 8 and 9.

The sparse temperature spikes that define the characteristics of heat diffusion within the

ocular model are removed when sub-sampling its data for training so network models were

not able to capture the temperature behavior of interest. Higher resolution training on

41

this data requires parallelization of the model across multiple GPUs due to large memory

requirements even on HPC platforms. This parallelization has been performed for FNO

architectures [2] but was not implemented in this work.

(a) DeepONet

(b) FNO

(c) SESE

Figure 8: DeepONet and FNO temperature plots [K] for YZ slices from learning differen-
tial operator mapping for SESE skin model at source power 1750 [W]. Slices are for time
values {1.25,3.75,6.25,8.75} seconds from left to right.

Model Loss Network Architecture ADAM Iterations Train/Test Instances L2 Error

SESE Skin Data-Driven DeepONet 100000 5/3 0.00463
SESE Skin Data-Driven FNO 600 5/3 0.003657

Table 7: DeepONet and FNO results from learning the differential operator for SESE.
L2 error is measured as an average across test instances.

4.3.1 Learning Inverse Operator Mapping

With the implementations of DeepONet and FNO learning some nonlinear mapping from

input-output data pairs one could trivially swap the inputs and outputs for each operator

42

(a) DeepONet

(b) FNO

(c) SESE

Figure 9: DeepONet and FNO temperature plots [K] for XZ slices from learning differen-
tial operator mapping for SESE skin model at source power 1750 [W]. Slices are for time
values {1.25,3.75,6.25,8.75} seconds from left to right.

43

network to learn the nonlinear mapping N−1 from output space U to input space I so

that N−1 : U → I. The network architectures for FNO and DeepONet implemented

to learn this inverse mapping are identical to those defined in the previous section. The

15 training and 5 test data instances for the PDE are also the same corresponding to

irradiance values ranging from 1 to 23 [MW
m2]. To vastly increase prediction accuracy and

reduce convergence times input and output data were normalized identically as the case

for learning the differential operator such that the maximum value for each data set was

10. Results for learning the inverse operator with DeepONet and FNO for the three layer

skin and eight layer ocular models can be found in tables 8 and 9.

Similar to results for the differential operator mapping, DeepONet struggles to capture

high frequency components of both skin and ocular models. This is compounded by the

large difference in values ranging from zero to numbers on the order of magnitude of 1e11

which is not completely combated by input and output normalization. DeepONet fails to

converge on the inverse mapping for the ocular model after 50000 iterations achieving an

L2 relative error of 0.559. FNO does not face the same issues even achieving near zero L2

relative error in feature of interest for the skin and ocular models. This suggests that the

inverse mapping for both models contains a larger amount of high frequency components

when compared to the differential operator mapping.

44

DeepONet FNO PAC1D

Skin

Error

Retina

Error

Table 8: Plots of DeepONet and FNO network predictions of inverse mappings, for the
final test instance of irradiance 23 [MW

m2], with L2 relative percent error with respect
PAC1D simulation results. Note that percentage errors are scaled relative for each plot.

45

Model Loss Network Architecture ADAM Iterations Train/Test Instances L2 Error

PAC1D Skin Data-Driven DeepONet 10000 15/5 0.0505
PAC1D Retina Data-Driven DeepONet 50000 15/5 0.559
PAC1D Skin Data-Driven FNO 100 15/5 0.00930
PAC1D Retina Data-Driven FNO 100 15/5 0.08201

Table 9: DeepONet and FNO results learning inverse mapping for PAC1D. L2 error is
measured as an average across test instances.

CHAPTER 5: CONCLUSION

The aim of this work was to explore the efficacy of neural networks to learn parameterized

PDE solutions to the heat diffusion for short pulse laser interactions with multi-layer skin

and ocular tissue models and lead toward a surrogate model for large scale simulations.

Accuracy of network predictions were measured through L2 relative error with respect

to PAC1D and SESE simulation data. High frequency components of the heat equation

solution revealed the spectral bias of the standard PINN implementation according to

NTK theory and Fourier features were embedded into the input to improve convergence in

areas of interest. The domain of the tissue models, especially near material boundaries,

contained steep gradients for heat diffusion which PINN models struggled to learn so

RAR was used to place training anchors on points with the largest PDE residual. The

efficacy of these implementations is particularly profound in the ocular model for PAC1D

in which PINNs were able to learn very short temperature spikes across a near constant

domain.

Deep operator networks and Fourier neural operator networks were applied to learn

the differential operator for both models with the aim of providing accurate predictions for

instances of the heat diffusion PDE that the network was not trained on, corresponding to

different powers [W] for the incident laser. These operator network converged with similar

results for the three layer skin model, but DeepONet struggled converging for the ocular

model due to the network’s spectral bias. FNO, similarly to Fourier feature embedding for

PINN, did not suffer from spectral bias since it is biased to learn frequency components

directly in Fourier space determined by the selected number of truncated modes. While

standard neural network architectures are biased toward certain frequency components

46

of a target solution they will eventually converge on larger frequency components after

enough training iterations. From this work, especially shown in the four dimensional

SESE approximation, it seems large Fourier neural operator networks, or similar models

that learn differential operators, avoid spectral bias and offer fast surrogate modeling

to physical simulations even expanding to approximating multiple instances of a PDE

problem at notably low training iterations. Due to the memory requirements to train

on large data-sets the FNO model implementation must be parallelized, which has been

implemented by Grady et. al. [2], but not included in this work.

The FNO training and model is computationally expensive, however, and requires

large amounts of memory and high quality training data. Another route is in imple-

menting physics informed loss constraints as seen in PINO architecture to act as a sup-

plement to low availability of high quality training data [27]. The same could be said

for DeepONet, but a method for diminishing spetral bias seems necessary for DeepONet

to effectively solve real problems. Further research into implementations of physics in-

formed constraints for which high quality data is not available could expand upon this

work such as physics informed weight initialization. A further understanding of neural

network learning and weight distribution could lead to more efficient methods of instill-

ing PDE constraints as the network could perturb from a similar problem for which a

solution is known. This leads to an obvious route for further research in NTK theory

[19] as it suggest theoretical motivations for many experimentally found features of neu-

ral networks such as early stopping and convergence analysis in functional space rather

than network parameter space. NTK theory has already inspired studies in eigenvector

bias and proposed MsFFN architectures [51] that combat the spectral bias of standard

network implementation. Analyzing neural networks through their central kernel is key

to analyzing their generalization behavior which is necessary if PINN networks are ever

to compete with traditional PDE solvers.

47

REFERENCES

[1] Jeff Arata, Carter Dodd, Tristan Lee, Sebastian Liska, Byron G. Zollars, and
Robert J. Thomas. Python ablation code – one dimension (pac1d) v3.5. Technical
Report: 711th Human Performance Wing, Airman Systems Directorate, Bioeffects
Division, Optical Radiation Bioeffects Branch, 2019.

[2] Thomas J. Grady II au2, Rishi Khan, Mathias Louboutin, Ziyi Yin, Philipp A.
Witte, Ranveer Chandra, Russell J. Hewett, and Felix J. Herrmann. Model-parallel
fourier neural operators as learned surrogates for large-scale parametric pdes, 2023.

[3] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. Automatic differentiation in machine learning: a survey. 2015.

[4] Chris Bishop. Exact calculation of the hessian matrix for the multilayer perceptron.
Neural Computation, 4(4):494–501, 1992.

[5] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Pro-
cessing Systems, volume 20. Curran Associates, Inc., 2007.

[6] E. O. Brigham and R. E. Morrow. The fast fourier transform. IEEE Spectrum,
4(12):63–70, 1967.

[7] C. G. BROYDEN. The Convergence of a Class of Double-rank Minimization Algo-
rithms 1. General Considerations. IMA Journal of Applied Mathematics, 6(1):76–90,
03 1970.

[8] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its applications to dynamic
systems. Neural Networks, IEEE Transactions on, pages 911 – 917, 08 1995.

[9] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19:297–301, 1965.

[10] J. Crank and P. Nicolson. A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type. Mathematical Proceedings
of the Cambridge Philosophical Society, 43(1):50–67, 1947.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, Dec 1989.

[12] Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, and
Zoubin Ghahramani. Gaussian process behaviour in wide deep neural networks,
2018.

[13] John Dennis and Jorge Moré. Quasi-Newton Methods, Motivation and Theory.
SIAM Review, 19(1):46–89, 1977.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12(61):2121–2159, 2011.

48

[15] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal,
13(3):317–322, 01 1970.

[16] Donald Goldfarb. A family of variable-metric methods derived by variational means.
Mathematics of Computation, 24(109):23–26, 1970.

[17] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

[19] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. 31, 2018.

[20] Pengzhan Jin, Lu Lu, Yifa Tang, and George Em Karniadakis. Quantifying the
generalization error in deep learning in terms of data distribution and neural network
smoothness. Neural Networks, 130:85–99, oct 2020.

[21] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps
between function spaces, 2021.

[22] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pen-
nington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes,
2018.

[23] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Ro-
man Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neu-
ral networks of any depth evolve as linear models under gradient descent
sup∗/sup. JournalofStatisticalMechanics : TheoryandExperiment, 2020(12) :
124002, dec2020.

[24] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6(6):861–867, 1993.

[25] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for
parametric partial differential equations, 2020.

[26] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel
network for partial differential equations, 2020.

[27] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede
Liu, Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural
operator for learning partial differential equations, 2021.

[28] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical Programming, 45(1):503–528, Aug 1989.

49

[29] Lu Lu. Dying ReLU and initialization: Theory and numerical examples. Communi-
cations in Computational Physics, 28(5):1671–1706, jun 2020.

[30] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators. Nature Machine Intelligence, 3(3):218–229, mar 2021.

[31] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep
learning library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

[32] Michaël Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional
networks through ffts. CoRR, abs/1312.5851, 2013.

[33] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.

[34] Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin,
Heidelberg, 1996.

[35] Nicholas H. Nelsen and Andrew M. Stuart. The random feature model for input-
output maps between banach spaces. SIAM Journal on Scientific Computing,
43(5):A3212–A3243, jan 2021.

[36] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics
of computation, 35(151):773–782, 1980.

[37] Ravi G. Patel, Nathaniel A. Trask, Mitchell A. Wood, and Eric C. Cyr. A physics-
informed operator regression framework for extracting data-driven continuum mod-
els. Computer Methods in Applied Mechanics and Engineering, 373:113500, 2021.

[38] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred
Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural
networks. 97:5301–5310, 09–15 Jun 2019.

[39] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[40] Maziar Raissi, Paris Perdikaris, and George Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential equations.
11 2017.

[41] W. Reiher. Hammersley, j. m., d. c. handscomb: Monte carlo methods. methuen
& co., london, and john wiley & sons, new york, 1964. vii + 178 s., preis: 25 s.
Biometrische Zeitschrift, 8(3):209–209, 1966.

[42] F. Rosenblatt. Principles of neurodynamics: Perceptions and the theory of brain
mechanism. Spartan Books, Washington, DC, 1961.

[43] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323:533–536, 1986.

50

[44] D. F. Shanno. Conditioning of quasi-newton methods for function minimization.
Mathematics of Computation, 24(111):647–656, 1970.

[45] I.M Sobol’. On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–
112, 1967.

[46] Michael Stein. Large sample properties of simulations using latin hypercube sam-
pling. Technometrics, 29(2):143–151, 1987.

[47] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
Fourier features let networks learn high frequency functions in low dimensional do-
mains, 2020.

[48] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

[49] V.N. Vapnik. An overview of statistical learning theory. IEEE Transactions on
Neural Networks, 10(5):988–999, 1999.

[50] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of
parametric partial differential equations with physics-informed deeponets. Science
Advances, 7(40):eabi8605, 2021.

[51] Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of
fourier feature networks: From regression to solving multi-scale pdes with physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineer-
ing, 384:113938, 2021.

[52] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A
neural tangent kernel perspective, 2020.

[53] Max A Woodbury. Inverting Modified Matrices. Princeton, NJ, 1950.

[54] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A compre-
hensive study of non-adaptive and residual-based adaptive sampling for physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineer-
ing, 403:115671, 2023.

[55] Irad Yavneh. On red-black sor smoothing in multigrid. SIAM Journal on Scientific
Computing, 17(1):180–192, 1996.

[56] Byron G. Zollars, Gabriel J. Elpers, Austin L. Goodwin, Edward A. Early, and
Robert J. Thomas. Scalable effects simulation environment (sese) version 2.2.1.
Technical Report: 711th Human Performance Wing, Airman Systems Directorate,
Bioeffects Division, Optical Radiation Bioeffects Branch, 2016.

51

