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ABSTRACT

MARYAM HASHEMITAHERI. Machining and Chatter Avoidance: Predictive
Analytics and Uncertainty Analysis. (Under the direction of DR. HARISH

CHERUKURI)

The main focus of this study is on chatter avoidance during machining. Self-excited

regenerative vibration or “chatter" is a significant obstacle in machining which results

in poor surface quality and damage to the tool, workpiece, and even machine. To avoid

chatter, usually, a 2D diagram called Stability Lobe Diagram (SLD) is constructed

to plot the depth of cut limit vs. the spindle speed. The SLD depends on the cutting

parameters such as start and exit angle, the number of flutes, cutting force coefficients,

and structural dynamics parameters such as the natural frequencies, stiffness, and

damping ratios. Here, a few sub-problems on the chatter problem are investigated,

as follows. This study covers the prediction of the specific cutting force and the

maximum tool temperature during machining. Assuming the machine is working

under stable conditions and has parameters like rake angle, chip thickness, and cutting

speed, is it possible to build a Machine Learning (ML) model to predict the cutting

force and the tool temperature? Here, different ML algorithms e.g. Support Vector

Machine (SVM) and Gaussian Process Regression (GPR) are utilized and the results

are compared for performance evaluation. In addition, this dissertation focuses on the

inverse problem in chatter avoidance. Having the cutting and structural dynamics

parameters, one can construct the SLD. But having the SLD, and fixing the cutting

parameters, is it possible to get structural dynamics parameters such as frequency,

stiffness, and damping ratio? The main motivation here is that theoretically, chatter

can be avoided using the optimal values of spindle speed and depth of cut based on

physic-based SLD. But in practice, there is a gap between the empirical results and

what the theory supports. This happens because there are discrepancies between

the structural dynamics parameters in idle (zero speed) and the dynamic states of
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the machine. Thus, to address this issue, in-process structural dynamics parameters

are extracted using a multivariate Newton method approach and the empirical data

sets. Finally, this work includes defining and measuring the uncertainty of each

structural dynamics parameter derived through the inverse approach. In other words,

this study investigates to what extent does each input parameter’s uncertainty lead

to the uncertainty in the SLD? The results derived from the algorithm were used

to discover the sensitivity of the stability boundary with respect to each parameter.

Two different methods were utilized for this purpose. Although the stability border

shifts as any structural dynamics parameter changes, the results show that the natural

frequency is the most influential parameter.
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CHAPTER 1: INTRODUCTION

During milling operations, material removal rates are affected by the selection of

spindle speed and depth of cut. Poor selection of these parameters can result in

chatter or suboptimal material removal rates. Stability lobe diagrams (SLDs) are

often used to select appropriate values for spindle speed and depth of cut to avoid

chatter during milling. Figure 1.1 shows an example of the SLD.

Figure 1.1: Stability Lobe Diagram.

The stability lobe diagram distinguishes the stable and unstable regions by the

stability boundary. As this boundary is a plot of the axial depth of cut versus the

spindle speed, any combination of these two machining parameters below the bound-

ary represents the stable cut situation while those above reflect the possible unstable

settings.

To generate the analytical stability boundary, the Zero-Order Approach (ZOA) on
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the frequency domain is used. In this approach, the cutting forces are transformed

from the time domain into the frequency domain using Fourier transformation and

only the mean component of the Fourier series is utilized in the calculation. The

dynamic milling expression depends on cutting force coefficients, start and exit im-

mersion angles of the tool to and from the cut, and frequency response function of the

structure at tool tip. Assuming a system is critically stable at each chatter frequency

value around the structural modes, the critical depth of cut can be derived.

Then, the spindle speed corresponding to each real-valued critical depth of cut

can be calculated. Having the pairs of spindle speeds and depths of cut, the SLD is

generated by selecting the minimum value of depth of cut for each spindle speed. The

details of SLD generation are discussed in Section 2.1.

The stability lobe diagram is defined by knowing the structural dynamics and cut-

ting parameters. Structural dynamics parameters include natural frequency, stiffness,

and damping ratio for each mode in feed and cross-feed direction. And cutting param-

eters include number of flutes, start and exit angle of tool, and specific cutting force

coefficients. Structural dynamics parameters or modal parameters are calculated in

the idle state of the machine (zero speed) by impact hammer test. However, discrep-

ancies are observed between the structural dynamics parameters calculated at zero

speed and during machining conditions, as they vary during the machine operation.

As a result of such discrepancies, the stability lobe diagram generated based on the

knowledge of the idle state of the machine is not reliable. To generate an in-process

stability lobe diagram, the in-process structural dynamics parameters are needed.

Since measuring structural dynamics parameters under cutting conditions is difficult,

a new method is proposed to determine in-process structural dynamics parameters

based on a multivariate Newton-Raphson method. The idea of this hybrid approach

is to combine a physics-based process model with the experimental results. By fixing

the cutting parameters, the structural dynamics parameters are determined using the
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proposed inverse approach.

To formulate the governing delay differential equations, the structural dynamics

and cutting parameters are needed. The analytical solution for the delay differential

equation in frequency domain provides the stability limit. However, any uncertainty in

the input parameters (structural dynamics and cutting parameters) results in placing

uncertainty on the stability boundary. In this study, the effect of the uncertainty of

the structural dynamics parameters on the stability boundary is investigated.

This work also covers the feasibility of machine learning algorithms for the predic-

tion of cutting force and the maximum tool temperature during orthogonal machining.

It is important to predict specific cutting forces prior to the actual machining process,

since these are used to calculate torque and estimate the power. Also, improving the

surface quality and tool life requires the knowledge of tool temperature. Although the

finite element method is commonly used to estimate these parameters, simulation-

based studies are computationally expensive and it is impractical to conduct them

for a wide range of parameters. Thus, here some machine learning algorithms are

implemented to predict cutting force and maximum tool temperature. Two meth-

ods, namely the Support Vector Regression and the Gaussian Process Regression, are

presented in this study.

This thesis contains five chapters, with this chapter including a brief introduction.

Chapter 2 (background), discusses regenerative chatter in milling operation and how

structural dynamics and cutting parameters are used to provide an analytical so-

lution in the frequency domain for the governing delay differential equation of the

systems and develop a stability lobe diagram to avoid chatter. Chapter 3 contains

the literature review. Chapter 4 describes, in brief, the methodology for the following

sub-problems.

1. Machine Learning (ML) models: Specific cutting forces and maximum tool tem-

peratures prediction during orthogonal machining by Support Vector regressor
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(SVR) and Gaussian Regression Process (GPR).

2. A multivariate Newton method for the inverse problem: Usually the stability

lobe diagram is constructed having the machining structural parameters. But

this study covers the inverse problem: Having the SLD, is it possible to retrieve

the structural parameters? Here the possibility of extracting the in-process

structural dynamics parameters is examined, given the SLD.

3. Uncertainty and Sensitivity Analysis in Stability Lobe Diagram: This work

includes defining and measuring the uncertainty of each structural dynamics

parameter derived through the inverse approach. Here the main question is: To

what extent, the uncertainty of each input parameter leads to the uncertainty

in the SLD?

The results for each of the sub-problems are presented in each section right after

the methodology is explained. This is followed by Chapter 5 where the work is

summarized and conclusions are provided.



CHAPTER 2: BACKGROUND

Machine tool vibrations or chatter have been always been the principal obstacle

to productivity in machining industry, since it results in non-smooth surface of the

workpiece (Figure 2.1), tool wear or even damage to the tool. Chatter can be avoided

by choosing proper values for spindle speed and depth of cut using the stability lobe

diagram. Based on the Stability lobe diagram, at each value of spindle speed, there is

a specific value of depth of cut which exceeding that value will result in an unstable

cut, that unfavorably affects the surface quality, causes excessive or uneven tool wear,

causes damage to dynamically moving parts of the machine, and impacts the optimum

material removal rate, and leads to loss of productivity.

Figure 2.1: The workpiece surface with and without chatter marks [3].

Regenerative chatter is the most common type of chatter that happens during
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most machining cases. During milling, cutting forces could cause displacement be-

tween the tool and the workpiece, and result in tool vibration. Due to the tool’s

structural vibration, a wavy surface is created on the workpiece surface, as shown

in Figure 2.2. Therefore, during the next tooth passing period, the tool faces the

wavy surface imprinted by the previous teeth and creates a new wavy surface. The

waviness imprinted on the surface could make the cutting force change rapidly, as the

chip thickness changes. The chatter built up based on the phase difference between

waves is named regenerative chatter.

Figure 2.2: Regeneration in milling [4].

The dynamics of the milling process for chatter prediction is defined by the delay

differential equations to include the regenerative effect in the model. A significant

amount of research has been conducted to obtain the proper stability properties for

milling. The stability properties can be calculated in the time domain. Although

many details can be included in the calculation in time domain simulations, the

computational time and cost can be high. Thus, the frequency domain solution is

the fastest solution to determine the stability properties. The stability lobe diagram

is generated based on knowing two different categories of parameters: structural

dynamics and cutting parameters. Cutting parameters are comprised of number of

teeth, start and exit angle, and tangential and radial coefficients. Structural dynamics

parameters can be determined by modal analysis experimentally on the combination
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of tool, tool-holder, and spindle. A common approach is performing impact hammer

test at the tip of the tool. Vibration signals resulting from the tool excitement

are collected by an accelerometer. Structural dynamics parameters are extracted by

frequency response function (FRF) analysis. These parameters include the natural

frequency, stiffness, and damping ratio.

There are two physics-based models to derive analytical solutions in the frequency

domain, namely the average tooth angle and the Fourier series approach. The average

tooth angle approach is introduced by Tlusty [11, 12, 13] as an analytical solution

in the frequency domain to obtain the stability boundary. In this method, they

considered an average angle of the tooth in the cut to overcome the issue of time-

variant cutting force direction. In addition, direction orientation factors were defined

to project the cutting forces onto the surface normally. The directional orientation

factors are used to calculate the oriented frequency response function.

Altintas and Budak [14] represented another method in the frequency domain,

named the Fourier series approach, to analyze the stability of the milling process.

They suggested a different approach to solving the issue of the time dependency of

the cutting forces. In their method, Fourier series expansion of the time-dependent

coefficients in the dynamic equations is implemented. In the following, a brief review

of analytical stability equations using the Fourier series approach is presented, since

this approach will be used in the present work to determine the stability boundary.

2.1 Fourier Approach to Calculate Stability Lobe Diagram in Milling

In the following, the calculation of the stability lobe diagram in milling based on

the Fourier approach is explained [5]. It is assumed that the tool is non-rigid. The

milling system is considered as a 2 degree-of-freedom system in directions X and Y

as shown in Figure (2.3).
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Figure 2.3: 2-DOF milling system [5].

The chip thickness during the milling can be expressed as

h(ϕj) = ft sinϕj(t)− [−x(t) sinϕj(t)− y(t) cosϕj(t)]

+ [−x(t− T ) sinϕj(t)− y(t− T ) cosϕj(t)]

(2.1)

where instantaneous immersion angle of tooth j varies with time ϕj(t) = Ωt. Also, ft

is feed per tooth which is defined by feed rate (f), spindle speed (Ω) and number of

teeth (N):

ft =
f

ΩN
(2.2)

The first term in the Equation (2.1) can be dropped, as it explains the static chip
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load and does not contribute to the dynamic chip load calculation. Therefore, the

dynamic chip load can express as:

h(ϕj) = [∆x sinϕj +∆y cosϕj]g(ϕj)
g(ϕj) = 1 ϕst < ϕj < ϕex

g(ϕj) = 0 ϕj < ϕstorϕj > ϕex

(2.3)

where ∆x and ∆y are the differences between the dynamic displacement of the current

and previous teeth in X and Y directions, respectively. The tangential (Ftj)and radial

(Frj) cutting forces on tooth j are determined as follows

Ftj = ktbh(ϕj)

Frj = krFtj

(2.4)

where b is depth of cut, and kt and kr are tangential and radial cutting coefficients,

respectively. So the cutting forces in X and Y directions are given by

Fxj = −Ftj cosϕj − Frj sinϕj

Fyj = +Ftj sinϕj − Frj cosϕj

(2.5)

Total dynamic force is determined by summing forces by all the teeth in each

direction.

Fx =
N−1∑
j=0

Fxj(ϕj)

Fy =
N−1∑
j=0

Fyj(ϕj)

(2.6)

Cutting forces expression can be rearrenged by substituting Equations (2.4) and

(2.3) into Equation (2.5):
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 Fx

Fy

 =
1

2
bkt

αxx αxy

αyx αyy


 ∆x

∆y

 (2.7)

where α terms are directional dynamic milling force coefficients are defined as

αxx =
N−1∑
j=0

−gj[sin 2ϕj + kr(1− cos 2ϕj)]

αxy =
N−1∑
j=0

−gj[(1 + cos 2ϕj) + kr sin 2ϕj]

αyx =
N−1∑
j=0

−gj[(1− cos 2ϕj)− kr sin 2ϕj]

αyy =
N−1∑
j=0

−gj[sin 2ϕj − kr(1 + cos 2ϕj)]

(2.8)

Since the angular position of parameters varies with time, Equation 2.7 can be

defined in the time domain as follows:

{F (t)} = 1

2
bkt[A(t)]{∆(t)} (2.9)

By taking the Fourier transform of Equation (2.9), the time domain equation can

be expressed in the frequency domain as follows

F{F (t)} = 1

2
bktF{[A(t)]{∆(t)}} = 1

2
bktF{[A(t)]}∗F [{∆(t)}]

{F (ω)} = 1

2
bkt{[A(ω)]∗{∆(ω)}}

(2.10)

The vibration vectors in time domain at current time (t) and the previous tooth

period (t− T ) are determined as

{Q} = {x(t) y(t)}T

{Q0} = {x(t− T ) y(t− T )}T
(2.11)

The vibration vectors in frequency domain can be expressed as
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{Q(ω)} = [Φ(iω)]{F (ω)}

{Q0(ω)} = e−iωT{Q(iω)}
(2.12)

where [Φ(iω)] is frequency response function of tool and described as

[Φ(iω)] =

Φxx(iω) Φxy(iω)

Φyx(iω) Φyy(iω)

 (2.13)

Substituting Equation (2.12) into {∆} = {(x− x0) (y − y0)}T yields

{∆(iω)} = {Q(iω)} − {Q0(iω)} = [1− e−iωT ][Φ(iω)]{F (ω)} (2.14)

Substituting Equation (2.14) into Equation (2.10) gives the rearranging of the

dynamic milling force equation in the frequency domain:

{F (ω)} = 1

2
bkt{[A(ω)] ∗ [1− e−iωT ][Φ(iω)]{F (ω)}} (2.15)

[A(t)] is periodic at tooth passing frequency ωT = NΩ or tooth period T = 2π/ωT .

That means [A(t)] = [A(t− T )]; thus, it can be expressed by Fourier series as

[A(ω)] = F [A(t)]
+∞∑

r=−∞

[Ar]δ(ω − rωT ) =
+∞∑

r=−∞

[Ar]e
irωT t (2.16)

where δ and F represent Direct delta function and Fourier transformation, respec-

tively. So, Fourier coefficients are defined as

[Ar] =
1

T

∫ T

0

[A(t)]e−irωT tdt =
N

2π

α(r)
xx α

(r)
xy

α
(r)
yx α

(r)
yy

 (2.17)
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2.2 Zero-Order Solution of Stability lobe diagram in Milling

To remove the time-dependent terms of Fourier coefficients, only the average com-

ponent of the Fourier expansion is considered. In other words r = 0 in Equation 2.17.

Therefore,

[A0] =
1

T

∫ T

0

[A(t)]dt =
N

2π

αxx αxy

αyx αyy

 (2.18)

where the α (integrated functions) are given by

αxx =
1

2
[cos 2ϕ− 2krϕ+ kr sin 2ϕ]

ϕex

ϕst

αxy =
1

2
[− sin 2ϕ− 2ϕ+ kr cos 2ϕ]

ϕex

ϕst

αyx =
1

2
[− sin 2ϕ+ 2ϕ+ kr cos 2ϕ]

ϕex

ϕst

αyy =
1

2
[− cos 2ϕ− 2krϕ− kr sin 2ϕ]ϕex

ϕst

(2.19)

So the dynamic milling equation in Equation (2.15) is reduced as following

F (ω) =
1

2
bkt{[A0][1− e−iωT ][Φ(iω)]{F (ω)}} (2.20)

The roots of characteristic equations are calculated from the determinant:

det[[I]− 1

2
bkt(1− e−iωcT )[A0][Φ(iω)]] = 0 (2.21)

det[[I] + Λ[Φ0(iωc)]] = 0 (2.22)

where ωc is chatter frequency. The eigenvalue of characteristic function (Equation

2.22) is

Λ = −N
4π
bkt(1− e−iωcT ) (2.23)



13

where the frequency response function (FRF) is

[Φ0(iωc)] =

αxxΦxx(iωc) + αxyΦyx(iωc) αxxΦxy(iωc) + αxyΦyy(iωc)

αyxΦxx(iωc) + αyyΦyx(iωc) αyxΦxy(iωc) + αyyΦyy(iωc)

 (2.24)

Since the FRF is complex, the eigenvalue is complex. By substituting Λ = ΛR+iΛI

and e−iωcT = cosωcT − i sinωcT in Equation 2.23, the critical depth of cut at chatter

frequency is calculated as following

blim = − 2π

Nkt
[
ΛR(1− cosωcT ) + ΛI sinωcT

(1− cosωcT )
+ i

ΛI(1− cosωcT − ΛR sinωcT )

(1− cosωcT )
] (2.25)

Since the depth of cut is a real value, the imaginary part of Equation (2.25) should

be zero. Thus, given the chatter frequency, the critical depth of cut can be calculated

by

blim = −2πΛR

Nkt
(1 + κ2) (2.26)

where

κ =
ΛI

ΛR

=
sinωcT

1− cosωcT

=
cos(ωcT/2)

sin(ωcT/2)

= tan[π/2− (ωcT/2)]

(2.27)

The phase shift of the eigenvalue is ψ = tan−1 κ, and tooth passing period can be

expressed as T = 1
ωc
(π − 2ψ + 2kπ), where k is the integer number of waves between

teeth (i.e. lobes) imprinted on the cut. Also, the phase shift between the inner and
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outer modulation (present and previous marks) is ϵ = π− 2ψ. Therefore, the spindle

speed (rev/min) can be calculated by knowing the tooth passing period (T ) as follows:

T =
1

ωc

(ϵ+ 2kπ) (2.28)

and

Ω =
60

NT

=
60 ωc

N (ϵ + 2k π).

(2.29)



CHAPTER 3: Literature Review

During the machining process, the primary obstacle is the chatter phenomenon,

which negatively impacts the surface finish quality, causes uneven or excessive tool

wear, damages the machine’s moving parts, affects the optimal material removal rate,

and ultimately results in decreased productivity. There have been numerous research

studies conducted to introduce dynamic models to identify stability properties of the

cutting process, and also to develop technologies that can detect and prevent chatter

in machining processes.

Tlusty [15] introduced a stability law to calculate stability boundary considering

the structural dynamics parameters and cutting force coefficients. Tobias [16] applied

a similar approach, taking into account the regenerative chatter effect in orthogonal

cutting. However, the stability of milling operations cannot be solved by the previous

studies, as milling has coupled dynamics in two directions with periodic coefficients.

Budak and Altintas [17, 18, 14] introduced an analytical solution in frequency domain

to predict the stability properties of the cut as a function of spindle speed and depth

of cut. In addition to the frequency domain, some studies have also explored the

time domain for calculating stability properties in milling [19, 20, 21]. Altintas et al.

[22] provided an overview of numerical simulations and analytical methods used in

both time and frequency domains to determine the stability boundary in milling and

turning operations.

3.1 The Inverse Problem of Stability Lobe Diagram

Although significant studies have been dedicated to introducing stability law for

predicting chatter in both frequency and time domains, there is still a gap between
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these solutions and reality. To calculate stability boundaries using SLD, it is neces-

sary to measure the dynamic properties of the machining structure accurately. This

includes the natural frequency, stiffness, and damping values. While these parameters

can be obtained by conducting impact hammer tests on the tip of the cutting tool,

studies have shown that these parameters vary significantly during machine loads and

lead to inaccurate prediction. Moriwaki and Iwata[23] conducted experiments which

demonstrated that the dynamics of the machine change during the cut, and the char-

acteristic parameters of the machine’s dynamics differ from those of its idle state.

Their experiments showed that these parameters vary due to changes in cutting force

loads, which are the result of changes in the depth of cut. A similar study was carried

out by Kwiatkowski and Al-Samarai [24] earlier in 1986. Zaghbani and Songmen[25]

reported a significant deviation from the stability boundary in static conditions due

to changes in stiffness. Numerous studies have been made to derive the in-process

structural dynamics parameters, with the aim of obtaining more accurate stability

predictions.

Cao et al. [26] showed that the effect of rotational speeds needs to be considered

in structural dynamics parameters. They used finite element method to show that

the centrifugal forces significantly decrease the stiffness as the speed increases. Cao

and Altintas [27] utilized finite element simulations and also carried out some exper-

iments to study the effect of applying preloads and also process loads on machine

behavior. Rantatalo et al. [28] measured the structural dynamics parameters of a

rotating tool by performing some experiments and using inductive sensors and an

electromagnetic actuator. Their results were compared to finite element simulations.

The primary challenge in these approaches is modeling the spindle system accurately,

which necessitates obtaining the precise geometries of spindle assembly.

Matsubara [29] investigated the changes in the stiffness during the machine opera-

tions utilizing magnetic actuators at low spindle speed. Cheng et al. [30] performed
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an impact hammer test on a standard during rotation to measure the frequency re-

sponse function. The main drawback of measuring the in-process structural dynamics

parameters during machine operation is that artificially exciting the tool may not ac-

curately represent the actual cutting process. This means that the obtained data may

not fully reflect the true behavior of the structure and may result in incorrect or mis-

leading conclusions. Frequency Response Function (FRF) at different spindle speeds

by the application of the Operational Modal Analysis (OMA) technique is calculated

in [31, 25]. However, the OMA-based method is only effective for low spindle speeds.

The inverse stability solution is a possible method to overcome some of the lim-

itations of measuring the in-process structural dynamics during machining loads.

Özşahin et al. [32] proposed an inverse approach to identify in-process structural

dynamics parameters. They provide analytical solutions by measurement at two dif-

ferent spindle speeds, and calculate changes in damping ratio natural frequency due

to the cutting loads. In this study, they used the measurements at zero speed and

assumed that the stiffness remains constant during machine loads, which may not

always hold true. Grossi et al. [33] also calculated in-process structural dynam-

ics parameters by combining experimental results with the physics-based model. In

their proposed method, the difference between the analytical and experimental chat-

ter frequencies and depth of cut are minimized using a Genetic Algorithm (GA). In

this study, Similar to [32], it is assumed the stiffness measured in stationary spindle

remains constant during material removal and only computes the in-process natu-

ral frequency and damping ratio. Suzuki et al. [34] proposed an iterative method

to identify in-process machine tool dynamics. For this purpose, they minimize the

error between experimental and analytical results by comparing the depth of cuts

and phase shifts in each iteration of the algorithm. The phase shift is a function

of chatter frequency, number of flutes, and spindle speed. By assigning weights to

each difference, the objective function calculates a sum of the error between the pre-
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dicted chatter frequencies and depth of cuts, and the corresponding values obtained

through experimentation. Here, to obtain desirable results, it is essential to include

cutting tests with vibration frequencies both above and below the in-process natural

frequency (which is not known) to ensure that the calculation of the parameters relies

on interpolation rather than extrapolation. Grossi et al. [35] introduced an inverse

solution with similar assumptions in [34].

There are also other studies in the literature addressing the inverse problem using

either supervised learning or time-series analysis, e.g. Postel et al.[36] built a neu-

ral network to identify the cutting coefficient and structural dynamics parameters in

milling operations. Their algorithm is trained on experimental cuts to predict un-

derlying parameters. A time-series technique was used by Burney et al.[37, 38] to

extract the in-process structural dynamics parameters. In this study, the displace-

ment signal during the cut is analyzed for the ARMA time-series [39] for different

cutting operations.

3.2 The Application of Machine Learning in Machining

Many researchers have examined supervised learning methods to determine or pre-

dict the system properties and behavior during machining processes. Cho et al. [40]

introduce a detection system utilizing Support Vector Regressors (SVRs) to detect

the process abnormalities during the milling process given the power consumption

and the cutting force. Their study demonstrates that the support vector machine

model provides higher accuracy compared to the multilinear regression method. The

author concluded that using the support vector regressors can potentially lead to the

reduction of production costs and machine downtime. In [41], Jurkovic et al. stud-

ied and compared three machine learning models predicting the cutting parameters

during high-speed turning operations. They used polynomial (quadratic) regression,

support vector regressor, and Artificial Neural Networks (ANNs). In their study, the

input parameters included the cutting force and the surface roughness. Their work
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shows that the polynomial regression and SVR models outperform ANN when pre-

dicting surface roughness and cutting force and provide more accurate predictions.

Their neural network model only provided higher accuracy in the prediction of the

tool life.

The impact of the cutting parameters e.g. the depth of cut and the cutting speed on

surface roughness during the face milling process was investigated by Lela et al. [42].

They compared their results from three different machine learning methods, namely

support vector regressor, regression analysis, and the Bayesian neural network. The

study demonstrated that the Bayesian neural network was the best method in terms

of accuracy. However, the other models provided fairly close accuracy. Huseh and

Yang in [43] introduced a new diagnosis method for tool breakage during face milling

utilizing a support vector machine. Krizek et al. [44] utilized evolutionary computing

methods (Genetic Algorithm (GA) & Genetic Programming (GP)), support vector

regression, and artificial neural networks to predict the cutting force given input

variables such as the cutting depth, the feed rate, and the spindle speed. Kong et

al. [45] suggested a new method of predicting tool wear using Gaussian Process

Regression (GPR). As their work suggests, the Gaussian process model provided

more accurate predictions compared to the artificial neural networks and support

vector machines. Zhang et al. [46] worked on a Gaussian process model to predict

the surface roughness in end-face milling given different cutting conditions. They

achieved an accuracy of 84.3%. Their model reduces of the high cost of the trial-

and-error approach to select the appropriate cutting parameters. Liu[47] studied

the sequential designs for the quantification of the stability during the machining

operation. He achieved a Gaussian process regression model that can predict the

stability boundary with 98% accuracy. Lamraoui et al. [48] predicted chatter by

analyzing the accelerometer signals during machining process. Two nonlinear neural

network models are implemented to learn the dynamic behavior of cutting. Their
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method predicts chatter accurately, though the algorithm requires massive data.

An online learning approach is proposed by Friedrich et al. [49, 50] to determine

the stability boundary during the milling process. In their studies, a multidimensional

stability lobe diagram (MSLD) was derived considering depth of cut, width of cut,

and spindle speed.The approach, which is a combination of reinforcement learning and

the nearest-neighbor-classification model, is able to continuously improve with new

input data. The model is validated by analytical solution and capable of predicting

with high accuracy. Cherukuri et al. [51] developed a neural network model to

classify the stability condition of the turning process. The accuracy obtained with

the neural network model shows that the model is well-trained. A Bayesian learning

approach is proposed by karandikar et al. [52] to identify the stability boundary.

They used an adaptive experimental strategy to optimize operating parameters and

maximize the material removal rate. In their method, the model is capable of learning

without information regarding the tool frequency response function and cutting force

coefficient.

Significant research effort [48, 53, 54, 55, 56, 57, 58, 59] also has been done in

chatter detection based on different signals collected during cutting process such as

force signal, vibration signals, sound signal, etc. In some of these studies, the features

extracted through signal processing methods like wavelet analysis, Hilbert-Huang, etc.

are combined with a machine learning algorithm such as neural network, support

vector machine, genetic algorithm, etc. to classify stable and unstable cuts. The

feasibility of predicting stability boundary in the milling process using support vector

machines (SVM) and Artificial neural networks (ANN), and a new method based

on kernel interpolation is examined by Denkena et al. [60]. Cutting width, cutting

depth, and spindle speed are considered as the inputs for these algorithms. The data

was generated with a 10 mm in diameter four-flute tool. The results show that all the

models achieved accuracies over 88%. However, the model with kernel interpolation
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obtained the highest accuracy (94%).



CHAPTER 4: Methodology

The following sub-problems are addressed in this Chapter.

1. Machine Learning (ML) models: Specific cutting forces and maximum tool tem-

peratures prediction during orthogonal machining by Support Vector Regressor

(SVR) and Gaussian Regression Process (GPR).

2. A multivariate Newton method for the inverse problem: Usually the stability

lobe diagram is constructed having the machining structural parameters. But

this study covers the inverse problem: Having the SLD, is it possible to retrieve

the structural parameters?

3. Uncertainty and Sensitivity Analysis in Stability Lobe Diagram: This work

includes defining and measuring the uncertainty of each structural dynamics

parameter derived through the inverse approach. Here the main question is: To

what extent, does the uncertainty of each input parameter lead to uncertainty

in the SLD?

4.1 Machine Learning Predictive Models

This work includes the prediction of the specific cutting force and the maximum

tool temperature during machining [10]. Assuming the machine is working under

stable conditions, and having the parameters like rake angle, chip thickness, and

cutting speed (as shown in 4.1), is it possible to build a Machine Learning (ML)

model to predict the cutting force and the tool temperature? To do that, different

ML algorithms e.g. Support Vector Machine (SVM) and Gaussian Process Regression

(GPR) are utilized and the results are compared. SVM is a well-known ML method
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utilized on non-linear numeric data. GPR is an ML model known for its ability to

work with small training samples.

The specific cutting force is defined as the cutting force needed to remove the

unit area of the workpiece. Here, the prediction of specific cutting forces before

the physical machining operation is important to estimate the torque and power

requirements. Simultaneously, the knowledge of the maximum tool temperatures will

be essential to improving the tool life and the machining operation. For any given

cutting tool material and workpiece material, many parameters including but not

limited to the rake angle, the cutting speed, and the thickness of the uncut chip

can affect those two quantities (tool temperature and the cutting force). A practical

model that can incorporate all these parameters and provides reasonably accurate

predictions for maximum tool temperature and also the specific cutting force in a real-

time scenario is of high practical importance. To do that, one approach is to utilize

the finite element method. But, a drawback of that is the significant running time for

simulations. Therefore, FE-based approaches are not really practical if the solution

is of immediate need. Here, machine learning methods are an attractive alternative,

since once ML models are built, they can provide fast or even real-time predictions.

Many experts in the field have already applied machine learning techniques to address

a variety of problem statements in manufacturing, as discussed in Section 3.2.

Here, two different machine-learning methods are proposed to predict the max-

imum tool temperature and the cutting forces during orthogonal machining. The

main objective in this work is to examine the feasibility of machine learning meth-

ods in machining predictive analytics. The two above-mentioned models are utilizing

Gaussian Process Regression (GPR) and Support Vector Regression. GPR and SVR

are both considered feasible ML models when only a small data sample is available.

The synthetic data to train the two models were simulated utilizing the finite element

method on orthogonal machining simulations. The details of the finite element simu-
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lations are summarized in the next section. The theory behind SVMs and Gaussian

Processes is explained in Section 4.1.2 followed by the training of the models, results,

and discussion presented in Section 4.3.3.

4.1.1 Generating the data for the Machine Learning methods

Here, only a summary of the finite element model utilized to simulate the training

and testing data of the machine learning methods is presented. A more detailed

explanation is given in [61].

4.1.1.1 Description of the finite element model

The commercial general-purpose finite element tool (ABAQUS/ EXPLICIT) [62]

was utilized to model orthogonal machining of the workpiece made of Aluminum

alloy A2024-T351 with the Tungsten Carbide cutting tool. Figure 4.1 illustrates a

schematic of the computational model. For the purpose of the model verification, the

material properties and the geometry are identical to those utilized by Mabrouki et al.

[63]. The cutting tool and the workpiece are meshed utilizing quadrilateral elements

(CPE4RT), plane-strain, and triangular elements (CPE3RT) with reduced integration

where 22447 total elements are used. The left and bottom nodes in the boundaries of

the workpiece are fully constrained. Also, the tool is only given horizontal Vc in the

negative x direction. The tool nose radius and the clearance angle are 20 µm and 7◦,

respectively.

This study assumes that the workpiece constitutive response is governed by the

Johnson-Cook constitutive model [63, 64].

The penalty stiffness contact formulation defines the interaction between the chip

and the tool. Here, the chip is considered as the slave surface and the tool is considered

as the master surface. Moreover, the chip self-contact is also defined using the penalty

contact formulation. Inspired by the experimental studies from various experts, the

contact region between the cutting tool and the workpiece is divided into two distinct
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Figure 4.1: Finite element model setup [6].

regions, the slip region and the stick region. The slip region is characterized based on

the model proposed by Yang and Liu [65] and the stick region is characterized based

on the Zorev friction model [66].

For the chip separation, serration, and breakage, the Johnson-Cook damage model

[67] was used. Based on the Johnson-Cook damage model, the overall damage in a

material occurs in two steps, namely (1) damage initiation and (2) damage evolution.

In a material, the damage initiates when/if the damage parameter exceeds or equals

one. In ABAQUS [62], the damage evolution may be modeled either as exponential

evolution or linear evolution. In this study, the damage evolution method is adopted

from Patel & Cherukuri in [68]. The specific cutting force obtained from FEA sim-

ulations was compared to the available experimental results from the literature [69]

with similar cutting parameters, similar material properties, and similar geometry to

validate the model.

4.1.1.2 Finite Element simulations to generate data

The required data for the machine learning methods were generated using the FE

model as explained in subsection 4.1.1.1 by changing the cutting parameters, namely

the cutting speeds, the uncut chip thickness, and the rake angle. Here, seven cutting

speed values, fthe uncut chip thickness values, and seven rake angles are considered as

illustrated in Table 4.2. The different parameters resulted in 196 different simulations
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Table 4.1: Material properties of the tool and the workpiece
Physical property Tool Workpiece

(WC) (Al 2024-T351)

Density: ρ 11900 2700

(Kg/m3)

Young’s Modulus: E 534 73

(Gpa)

Poisson’s ratio: ν 0.22 0.33

Specific heat: 400 Cp = 0.557 T+877.6

(J/Kg/◦C)

Thermal exp. coeff.: αd NA α = (8.9e−3 T + 22.6)e−6

(◦C−1)

Thermal conductivity: λ for: 25 ≤ T < 300

(W/(m-◦C)) 50 λ = 0.247T + 114.4

for: 300 ≤ T ≤ Tmelt

50 λ = 0.125T + 226

(7 × 4 × 7 = 196). The clearance angle and the tool nose radius were kept constant

in all simulations. The results were captured for every 1 µs. The total running time

of all the simulations was 2352 hrs, indicating that on average, each simulation took

around 12 hrs. The output parameters (the maximum tool temperature and the

specific cutting force) were obtained in all the simulations.

The generated data set was used to train the proposed machine learning models as

follows.

4.1.2 Machine Learning Background

Two machine learning models were considered and examined, namely Gaussian

Processes Regression and Support Vector Regression models.
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Table 4.2: Parameter choices used for the simulations.

Rake angle Uncut chip thickness Cutting speed

(deg) (mm) (m/min)

-3.0 0.1 100

0.0 0.2 200

5.0 0.3 400

8.0 0.4 600

15.0 800

17.5 1000

20.0 1200

4.1.2.1 Support Vector Regression (SVR)

In SVR, the objective is to derive a hyperplane in the space that has the most ϵ

deviation from all the actual target values for all training data records, while balancing

the trade-off between the prediction error and the complexity. (ϵ is a hyperparameter

in SVM loss function as illustrated in Figure 4.2.) A convex ϵ−insensitive loss function

is adopted as illustrated in Figure 4.2. As shown in the figure, a symmetric tube is

defined around the estimated hyper-plane function. It is assumed that any absolute

error less than a small pre-specified threshold ϵ is tolerated. Such small errors are

ignored for the records above or below the estimated hyper-plane (function) for the

purpose of reducing complexity [70]. Note that the One-dimensional form of the SVR

is illustrated in Figure 4.3, where the geometrical perspective is easy to understand.

The SVR estimated function can be expressed as:

f(x) =< w, x > +b =
M∑
j=1

wjxj + b

f(x), b ∈ R

x,w ∈ RM

(4.1)
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Figure 4.2: Linear ϵ−insensitive loss function for SVR.

Figure 4.3: One-dimensional regression using SVR.

In the equation, M stands for the order of the polynomial used to construct the

hyper-surface (function). The SVR algorithm tries to minimize the errors (for high

accuracy) and simultaneously widen the tube centered around the function hyper-

plane (to reduce the complexity and provide more stable predictions). Therefore,

SVR tries to minimize the objective function as in the Equation 4.2:

objective_function :=
1

2
||w||2

s.t. |f(xi)− yi| ≤ ϵ

(4.2)
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where y stands for the ground truth (target value). Here, the linear ϵ−insensitive

loss function tries to minimize the difference between the prediction using the model

and the actual ground truth. Note that in SVR, one may adopt many different loss

functions such as the linear function, the quadratic function, or Huber. [71].

In most cases in SVR, small errors are tolerated. However, deviations larger than

ϵ are not to be ignored. Hence, nonnegative slack variables (ξ and ξ∗) are utilized in

the objective errors [72]:

objective_function :=
1

2
||w||2 + C

N∑
i=1

ξ + ξ∗

s.t. yi − f(xi) ≤ ϵ+ ξ∗, i = 1, . . . , N

f(xi)− yi ≤ ϵ+ ξ, i = 1, . . . , N

(4.3)

In most real-case data sets, the records cannot be linearly separated by a simple

hyperplane. To address the issue, a common technique called kernel trick is utilized.

The goal of using the kernel trick is to handle nonlinearity in complicated data sets.

The kernel function can map low-dimensional data to a high-dimensional space so

that a linear separation will be possible. Usually, the Radial Basis Function (RBF)

is considered the most commonly used kernel function for SVR, defined as:

k(x, xi) = exp{−γ||x− xi||2}

where γ is called the RBF kernel hyperparameter and controls the impact of any

single data record on all the other data points located far from it.

4.1.2.2 Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a statistical method designed for supervised

learning. GPR proposes many probabilistic predictive functions to interpolate all

the training records. Then the probabilistic functions are validated over the training

records. Compared to many other supervised learning models, GPR is considered the
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method that can work with small training data. Moreover, the output of GPR can

be the distribution of the predicted values, not only the final number. In practice,

those distributions easily provide a confidence interval for each final prediction. GPR

extends the common idea of considering a probability space over the numbers to a

more sophisticated idea of defining the probability space over the functions. Usually,

it is assumed that in a data set, the records are drawn from a distribution character-

ized by an average vector and a variance-covariance matrix. In GPR’s sophisticated

setting, one may look for a distribution over functions characterized by an average

function and a variance-covariance matrix function. Having a training data sample

and a family of the candidate functions, one may fit a distribution of the functions

over them. To do that it is needed to choose/find the parameters of the distribution

that justify or almost agree with the given function values. Finally, the Gaussian

process is characterized by its average function and also its covariance function. For

the Gaussian process regression, this covariance function will be characterized by the

chosen kernel function which describes how strong is any single data record when

impacting all other records. Note that this process can efficiently control how smooth

the functions in the distribution will be[73, 74].

Assume that n data points are in the training data X. Also, suppose m points are

given as the test data X∗. Moreover, assume the records are normalized. (They have

zero-means.)

X =< x1, x2, . . . , xn >

X∗ =< x∗1, x
∗
2, . . . , x

∗
m >

Suppose, the training labels and the test labels are:

Y =< y1, y2, . . . , yn >

Y ∗ =< y∗1, y
∗
2, . . . , y

∗
m >
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Figure 4.4: Graphical model of the GPR [7][8].

In Gaussian process regression, the core task is finding a set of latent functions

F = {f1, f2, . . . , fn} whose joint distribution can match the data the best. Figure 4.4

illustrates this process in the Gaussian process model. As illustrated in figure 4.4,

all of the latent functions are fully connected to each other by a covariance function

that is characterized by their influence on each other. Every latent function fi is here

corresponding to a training record xi. Also, note that having fi and xi will suffice

for the prediction of yi. Nonetheless, every fi is here related to all the other latent

functions, meaning that each fi is also related to all the other values as well [7].

The Gaussian process is intended to be an approach for describing and then deriv-

ing the above-mentioned unknown latent functions. Even before observing the data

points, a prior distribution is assigned over the functions. The prior distribution is

updated when observing the data. The posterior distribution is calculated using the
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Bayes theorem. In the Bayes theorem, it is assumed that the combination of data

and prior distribution will provide the posterior. Having all the fitted distributions

of the functions, one may predict the target y∗i for any test data record x∗i . Also,

for each prediction, the empirical confidence interval is provided. This will give the

upper band and the lower band, in addition to the final prediction.

Assuming a set of latent functions like F = {f1, f2, . . . , fn}, their joint distribution

can be defined as:

F|x ∼ N (0,K)

where N stands for Normal (Gaussian) distribution. Usually, the mean in the prior is

considered to be zero. Then, for the multivariate normal distribution, the covariance

matrix K characterizes the relations among all the inputs. This symmetric covari-

ance matrix may be computed under different assumptions. Note that the covariance

matrix determines the distribution shape along with the predicting functions’ charac-

teristics. A popular way to calculate the covariance matrix is to utilize Radial Basis

Function (RBF) [74] defined as:

Ki,j = K(xi, xj) = σ2
f exp{−

1

2l2
(xi − xj)2}

where the amplitude σf and length scale l are the hyperparameters. When the length

parameter is increased, the influence of the data records on each other is increased,

even if they are far away. The kernel function assumes that the data records with

close proximity are highly covariant, while the records at a far distance from each

other are low covariant.

It is needed to link all the expected test labels Y ∗ to the train labels Y by assuming

a joint distribution over them as:
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Y ∗

 ∼ N (0, K̃)

assuming

K̃ =

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)


where the top-left K(X,X) is the covariance of the training data records, bottom-

right K(X∗, X∗) is the covariance matrix of the test data points, and also K(X,X∗)

represents the covariance matrix measuring the similarity between the train and the

test data records. Note that the kernel function was previously defined for any pair

of data points. But here, the kernel function K(P ,Q) is defined on of any given two

sets of data points P = {p1, p2, . . . } and Q = {q1, q2, . . . } as K(P ,Q)i,j = K(pi, qj).

Now, the models are ready for predicting labels of the test data Y ∗ conditioned on

the labels of the training data using the probability distribution:

Y ∗|Y ∼ N (µ,Σ)

where mean µ and covariance Σ are computed using the kernel function:

µ = K(X∗, X)K(X,X)−1Y

Σ = K(X∗, X∗)−K(X∗X)K(X,X)−1K(X,X∗)

Note that here, to tune the hyperparameters l and σf used in kernel function K, the

log-marginal likelihood function logP(Y |X) needs to be maximized.

logP(Y |X) = − 1

2
Y TK(X,X)−1Y − 1

2
log |K(X,X)| − n

2
log 2π
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Figure 4.5: Relation between the ground truth and the SVR prediction for the max-
imum temperature (left) and the specific cutting force (right).

Figure 4.6: Relation between the ground truth and the GPR prediction for (a) the
maximum tool temperature (left) and the specific cutting force (right).

4.1.3 Results & Discussion

4.1.3.1 Predicting the response using Support Vector Machine

To predict the maximum tool temperate and the cutting force, two different SVR

models are utilized. In both cases, the input variables are cutting speed (Vc), the

uncut chip thickness (f), and the rake angle (α). The inputs are normalized to be in

the 0-1 range before hyperparameter tuning. The Scikit-learn package in Python is

used to develop the SVR models. The data set consisted of 196 observations split into
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80% training and 20% testing. The linear ϵ–insensitive as the loss function was used

for the model. Also, the regularization parameter C, ϵ, and RBF kernel parameter

γ were tuned via grid search for this study. Moreover, cross-validation was used

considering 10 folds to minimize the mean square error (MSE) and maximize the

coefficient of determination (R2):

MSE =
1

n

n∑
i=1

(yi − ypi )2 (4.4)

R2 = 1−
∑n

i=1(yi − y
p
i )

2∑n
i=1(yi − ȳ)2

(4.5)

Here, yi, ȳ, and ypi represent the ground truth, mean ground truth, and the pre-

diction, respectively. The goal of SVR here is to achieve the model with the largest

R2 and the smallest value of MSE. To predict maximum temperature, the hyperpa-

rameters ϵ = 0.001, C = 20, and γ = 0.4 were found to achieve the best performance.

The R2 and the MSE for this model are mentioned in Table 4.3. The model resulted

in values 0.0012 and 0.0015 of MSE for the test and train data, respectively. The

negligible values of MSE are confirming that the SVR model predictions are highly

accurate. Comparing the MSE values on test and train data shows that the model

is performing well since it is observed that the MSE on test data is less than that of

the training data, meaning that the model did not overfit.

Similarly, the grid search was done to optimize the hyperparameters for the SVR

model that was designed to predict the specific cutting force. It was observed that

the hyperparameters C = 15, ϵ = 0.001, γ = 0.4 will let us achieve the best model.

Table 4.4 shows the R2 and MSE results for the SVR model. As observed in the

table, the MSE on both test and train data is fairly small. Also, the MSE on the test

data is smaller than that of the train data. This is confirming that the model did
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not overfit. Also, the R2 on both test and train data is close to 1, meaning that the

model has learned the data well.

Table 4.3: The results from SVR predicting the maximum tool temperature.
R2 MSE

Train Data 0.9680 0.0015

Test Data 0.9748 0.0012

Table 4.4: The results from SVR predicting the specific cutting force.
R2 MSE

Train Data 0.9400 0.0029

Test Data 0.9635 0.0014

Figure 4.5 illustrates the relation between the ground truth and predictions for the

specific cutting force and also the maximum tool temperature using the SVR model.

As the figure suggests, for the test data dots are very close to the plot bisector line,

meaning that the predictions are very close to the ground truth.

4.1.3.2 Predicting the response using Gaussian process regression

Here, two GPR models were developed to predict the specific cutting force and the

maximum tool temperature. The objective here is to maximize the R2 and minimize

the MSE. Again the cross-validation was utilized using 10 folds.

First, the hyperparameter tuning was performed to optimize l and σf for the model

predicting the maximum tool temperature. Before hyperparameter tuning, the data

was normalized to be in the range of 0-1. Similar to the SVR models, the data was

split into 20% for testing and 80% for training. In hyperparameter tuning, while

maximizing the log marginal likelihood on the train data, it was found that the best

model will be achieved using l = 0.21 and σf = 0.324. Table 4.5 contains the results

applying GPR model on test and train data records. As Table 4.5 suggests, the

MSE on the train data is zero. This is justified by the fact that the data is noise

free. Hence, the prediction distribution function can exactly fit data records, so the
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predictions on train data will be exactly equal to the ground truth. As shown in the

table, the MSE on the test data is around 0.0027 confirming that the GPR model is

performing well on the data set.

A similar procedure was also applied for the prediction of the specific cutting force

using a GPR model. the results from hyperparameter tuning on train data showed

that l = 0.196 and σf = 0.287 will lead us to the best model setting. The GPR model

performance results (R2 and MSE) are shown in Table 4.6. Here, the MSE is zero

on the train data, and 0.0021 on the test data. Note that the R2 values are fairly

close to one, in both GPR models. Thus, one may conclude that the GPR models are

accurately predicting the maximum tool temperature and the specific cutting force.

Also, Figure 4.6 provides the visual interpretation of the GPR models. In the figure,

for both models, the predictions are plotted against the ground truth. In such a

figure, having most dots close to the bisector means that the models are performing

well in terms of accuracy.

Table 4.5: The results from GPR predicting the maximum tool temperature
R2 MSE

Train Data 1.0000 0.0000

Test Data 0.9533 0.0027

Table 4.6: The results from GPR predicting the specific cutting force.
R2 MSE

Train Data 1.0000 0.0000

Test Data 0.9423 0.0021

To conclude this section, two machine learning models were examined to predict

the maximum tool temperature and the specific cutting force during orthogonal ma-

chining. Here, Gaussian Processes Regression and Support Vector Regression were

utilized. To examine the machine learning methods, the data simulated with the

finite element method using ABAQUS/EXPLICIT were utilized. In the results, it
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was observed that the SVR outperforms the GPR in the prediction of both the spe-

cific cutting force and the maximum tool temperature. Still, the GPR results (MSE

and R2) are fairly close to the corresponding results from SVR for both prediction

purposes.

From “No Free Lunch Theorem” [75], it is known that before testing different models

e.g. SVM and GPR, it is not possible to certainly determine which one will outperform

the other models. Also, once different models are tried, trying to justify the best

model, would be more rationalizing than effective interpretation. Thus, without any

intention to provide reasoning, this study concludes that SVR slightly outperformed

GPR, but both provided reasonably good predictions.
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4.2 The Inverse Problem of Stability Lobe Diagram

While there are some conventional methods to construct analytical stability lobe

diagrams given the structural parameters, here the research problem is to do the

“inverse problem”. The goal of this research is to examine the possibility of deriv-

ing those structural dynamics variables out of the in-process stability lobe diagram.

Here, a multivariate Newton method approach is used and through the algorithm,

physics-based and in-process stability lob diagrams are compared to each other in

each iteration. A pre-defined objective function measuring the disturbance is cal-

culated and updated in each iteration so the success of the algorithm in providing

acceptable guesses for the structural parameters is quantified at the end of each it-

eration. Thresholding such an objective, the algorithm may stop when the updated

guessed parameter set is optimized to justify the empirical stability lobe. The details

of the algorithm are explained in Section 4.2.1.

4.2.1 A Brief Sketch of Multivariate Newton Approach

The stability lobe diagram in general is a real-valued function of structural dynam-

ics and cutting parameters. Fixing the cutting parameters, one may assume only the

structural parameters are determinants of the stability lobe. The goal of this research

is to examine the possibility of deriving the structural dynamics variables, given the

empirical stability lobe diagram. Assuming that SLDexp denotes the experimental

SLD which is given based on the data points collected during the milling operation.

So the target here is to extract the structural dynamics parameters out of SLDexp

using a multivariate Newton method. It is assumed that the SLDexp is comprised of

n data points (n pairs of (Ω, b)):

Ωexp = {Ωexp
1 , · · · ,Ωexp

n }

bexp = {bexp1 , · · · , bexpn }
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where Ω is spindle speed and b is depth of cut. Having m structural dynamics pa-

rameters, the SLDexp is assumed to be a function of those m parameters. Those

parameters are the unknowns of the problem and are to be found through the inverse

approach.

SLDexp = SLDexp(p1, p2, · · · , pm)

The approach is summarized as follows:

STEP 1. To calculate unknown parameters, a multivariate Newton method is used,

which starts with an initial guess for the variables. Then, the analytical stability

diagram can be generated based on the Fourier series approach.

initial_guess = (p∗1, · · · , p∗m)

SLD∗ = SLD(p∗1, · · · , p∗m)

Hence, there are two stability boundaries, the given one called empirical SLD

(SLDexp), and the one built upon the physics-based model based on some initial

guess (SLD∗). Then, for the same values of spindle speed in the experimental data

set, the values of depth of cut are calculated according to SLD∗:

b∗ = {SLD∗(Ωexp
1 ), · · · , SLD∗(Ωexp

n )}

STEP 2. After building the analytical SLD based on the initial guess (SLD∗), the

guess needs to be evaluated by being compared with the reference stability lobe

diagram (SLDexp). Here, Mean squared error is used as the objective function.

MSE =MSE(p∗1, · · · , p∗m) =
Σn

i=1(b
exp
i − b∗i )2

n

STEP 3. Here, the sensitivity of the objective function with respect to each parameter
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p∗i is calculated. For this purpose, the partial derivative of the objective function with

respect to each parameter is calculated numerically as follows:

1. Generate SLD∗
i = SLD(p∗1, · · · , p∗i + ϵ, p∗m) ; i = 1, 2, · · · ,m

2. Generate MSEi =MSE(p∗1, · · · , p∗i + ϵ, p∗m) ; i = 1, 2, · · · ,m

3. Get the sensitivity of MSE to p∗i :

Si =
∂MSE

∂p∗i
=
MSEi −MSE

ϵ

STEP 4. The last step in the method is to update the values for each unknown

parameter based on the objective function and its sensitivity calculated in the previous

step:

p∗i ← p∗i −
MSE × Si

||S||2
× α ; i = 1, 2, · · · ,m.

Here, α controls the pace (α ∈ (0, 1]). It is assumed that α = 1 for simplicity in

this work.

Through the repetitive algorithm, physics-based and given empirical stability lobe

diagrams are compared to each other in each iteration. To evaluate the parameters,

a pre-defined objective function measuring the disturbance is calculated and updated

in each iteration, so the success of the algorithm in providing acceptable guesses for

the parameters is quantified at the end of each iteration. Hence, by repeating this

algorithm several times and using the updated parameters each time, the method

would converge to the right answer for unknown parameters. Thresholding such an

objective, the algorithm may stop when the parameter set is optimized enough to

justify the empirical stability lobe diagram.

4.2.2 Adjustments & Improvements

Using the multivariate Newton method, one may face some challenges to facilitate

the algorithm convergence.
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1. The first possible improvement is to find a proper objective function that can

evaluate the results effectively. The convergence of the algorithm is extremely

sensitive to the choice of the objective function, especially when dealing with

the multivariate function.

In some cases for example, it is observed that replacing MSE (Eq. 4.6) with

mean log absolute error (Eq. 4.7) would be helpful since the log is a concave

function and is less sensitive to big changes comparing the quadratic function.

MSE =MSE(p∗1, · · · , p∗m) =
1

n
Σn

i=1(b
exp
i − b∗i )2 (4.6)

Objective_function = Obj_func(p∗1, · · · , p∗m)

=
1

n
Σn

i=1 log(1 + |b
exp
i − b∗i |)

(4.7)

2. The other issue in the Newton method is getting stuck in the local minima.

So to overcome this issue, one may add some random jumps, to have a chance

of passing the local minima. For example, if in 10 consequent steps, the algo-

rithm did not make good progress, one may add some e.g. 1% or 5% jumps in

each/some parameters if it improves the results.

The jumps may be set to occur after every few steps of the Newton method.

Alternatively, the jumps may be set not to occur unless the algorithm is not

making good progress during the consecutive steps. For, instance if the algo-

rithm cannot decrease the value of the objective function by a certain threshold

during a certain number of consecutive steps, one may assume it is stuck in a

local minimum and a jump should follow the Newton steps.

3. Also, looking at the progress of the approach in each step, it seems that some-

times the algorithm failed at the critical points on the Stability boundary. So,
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the algorithm will be improved if it is made more sensitive to the evaluation

of the critical points. An example of SLD along with the critical points is

illustrated in Figure 4.7.

Figure 4.7: Capturing the critical points.

Let C be the set of the critical points on the SLD.

C = {c1, · · · , cl} (4.8)

with

cj = (ωj, bj), j = 1, · · · , l. (4.9)

Then, Eq. 4.7 can be modified to make the objective function more sensitive to

the error terms on the critical points:

Objective_function =
1

n
Σn

i=1 log(1 + |b
exp
i − b∗i |)

+
β

l
Σl

j=1 log(1 + |b
exp
j − b∗j |)

(4.10)

The parameter β in Eq. 4.10 controls the sensitivity of the objective function to

the error terms on the critical points. Setting β = 0 will remove the proposed
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modification while using a large β makes the algorithm to focus on the critical

points and mostly ignore the other points.

4. Since the behavior of the SLD function is not linear with respect to the different

parameters, the convergence of the algorithm highly depends on the chosen

initial guess. While the algorithm may converge fast using a good initial guess, it

may take much longer, or even fail to converge, if another initial guess is utilized.

In practice, to overcome the abovementioned issue, one may use different initial

guesses and attack the problem from a diverse set of initial guesses.

Note that in this synthetic example, the data set covered around 1000 pairs of the

depth of cut and spindle speed. In contrast, there were only 6 unknown parameters

found through the Newton method approach. A large number of observations vs. a

small number of parameters (inputs of the SLD function) implies that overfitting will

not be a serious issue when finding the parameters.
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4.2.3 Results & Discussion on Synthetic Data

Here the inverse method is evaluated using synthetic data sets and the results are

discussed. Note that the results and discussion on empirical data are discussed in

section 4.2.4.

In this example, synthetic data is used. That is, having the structural dynamics

parameters and cutting parameters, listed in Table 4.7, the target SLD is generated.

Then, it is assumed that structural dynamics parameters are unknown, and are to be

found through the inverse method. The cutting parameters are fixed and do not get

updated through the iterations.

Table 4.7: Cutting parameters and structural dynamics parameters used to generate

synthetic data.

Parameter Value

Number of flutes: Nt 3

Exit angle: ϕe (deg) 180

Start angle: ϕs (deg) 126.87

Tang. force coef. kt (MPa) 2173.3

Normal force coef. kn 0.267

Natural freq. fnx (Hz) 900

Stiffness: kx (MN/m) 9

Damping ratio: ξx 0.02

Natural freq. fny (Hz) 950

Stiffness: ky (MN/m) 10

Damping ratio: ξy 0.01

The blue SLD in Figure 4.8 is the target SLD, and the orange SLD is the guessed

SLD which is being updated in each iteration. Some of the iterations of the Newton

method are visualized in Figure 4.8 to illustrate how gradually the guessed SLD gets
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close to the target SLD. As shown in the figure, the guessed parameters improve

through iterations and the algorithm converges and finds the parameters that can

build the given SLD. The predicted values in Table 4.8, are the calculated structural

dynamics parameters in step 74. The identified parameters in the last step can be

used as the answer to our problem statement, as the calculated error is small enough.

In practice, a pre-specified threshold may be used, e.g. 0.1% of the depth of cut (b)

range (max - min) in the empirical SLD.

Table 4.8: In-process Structural dynamics parameters calculated using the inverse

method for synthetic data.

Parameter Target Value Predicted Value

Natural frequency: fnx (Hz) 900.0 895.3

Stiffness: kx (MN/m) 9.0 9.2019

Damping ratio: ξx 0.0200 0.0211

Natural frequency: fny (Hz) 950.0 947.6

Stiffness: ky (MN/m) 10.0 9.9809

Damping ratio: ξy 0.0100 0.0105
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Figure 4.8: Results Using Newton method on synthetic data. The blue curve is the

target SLD, while the orange curve represents the guessed SLD at each step.
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4.2.4 Results & Discussion on Experimental Data

The inverse method is examined in chatter tests with a three-flute carbide (ZrN)

end mill and also another two-flute carbide end mill tool. Also, a data set with a

four-flute tungsten end mill reported by Eynian [1] is investigated, and the results are

evaluated.

4.2.4.1 Slot milling using a four-flute end mill

To evaluate the Newton method, also an experimental data set presented in [1,

2] was utilized. This experiment was performed with a four-flute tungsten carbide

end mill. The workpiece is a plate made of aluminum 7075-T651. The data set

contains 21 chatter tests of slot milling on the boundary at spindle speed between

5500 and 6500 rpm, which are illustrated by red points in Figure 4.9. That is,

any point below these points is recognized as stable and any point above them is

recognized as chatter. The tangential cutting force, calculated in static conditions

is 1110 MPa, and the radial cutting force coefficient is 0.22. The modal parameters

measured by applying the impact test in the static state of the machine are reported

in Table 4.9, where x and y are feed and cross-feed directions, respectively. Stability

lobes in zero spindle speed are generated using the information in Table 4.9. This

boundary is shown by the black dashed curve in Figure 4.9, which predicts many

chatter cuts as stable incorrectly. To capture the in-process structural dynamics

parameters, the Newton-Raphson method was applied to the experimental data set.

These experimental records are considered as the target SLD. However, there are fewer

data points making the boundary comparing the target SLD in synthetic examples.

Table 4.10 shows the results derived from the Newton-Raphson method. In this

case, it is assumed that the tool-spindle assembly is asymmetric, so the structural

dynamics parameters have equal properties in the feed and cross-feed directions. The

stability boundary generated using these values is shown in Figure 4.9 with the blue
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Table 4.9: Structural dynamics parameters in zero spindle speed for the four-flute

tool as reported in [1].
Parameter Mode.1 Mode.2

Natural frequency: fnx (Hz) 3890.0 4182.0

Stiffness: kx (MN/m) 22.60 15.40

Damping ratio: ξx 0.0196 0.0170

Natural frequency: fny (Hz) 3872.0 4127.0

Stiffness: ky (MN/m) 23.40 25.10

Damping ratio: ξy 0.0220 0.0177

solid curve. The natural frequency value decreases notably to 4103.4 Hz compared

to the results of the impact test (4182 Hz). Thus, the experimental chatter records

are shifted to the left-hand side of the stability lobe diagram on stationary speed.

The stiffness value reaches 11.65 MN/m which is considerably less than the results

of the impact test (15.40 MN/m) while the damping ratio increases from 0.0170 in

stationary condition to 0.0269. Table 4.10 also includes the results from two methods

used in [1] (Method 1: Two-point Method, Method 2: Regression Method). As the

table suggests, the results are almost consistent with the results extracted from these

two methods, but as Figure 4.9 shows, the SLD generated based on the results of the

Newton-Raphson method covers more chatter records. As mentioned in Table 4.10,

the error measured in terms of MSE for the Newton-Raphson method is around 3

times lower than the error from Method 1, and around 20% lower than Method 2.

This will be discussed further in Section 4.3.
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Table 4.10: In-process structural dynamics parameters calculated using Newton-

Raphson method and the methods used in [1].
Parameter Newton-Raphson Method.1 Method.2

Natural frequency: fn (Hz) 4103.4 4124 4103

Stiffness: k (MN/m) 11.65 10.63 8.90

Damping ratio: ξ 0.0269 0.0307 0.0379

Final MSE 0.000459 0.001406 0.000574

Figure 4.9: Stability lobe diagram on empirical data for Newton-Raphson method

and methods used in [1].
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4.2.4.2 Slot milling using a three-flute end mill

The second set of experimental data [76] considered in this work consists of full-

engagement milling of aluminum 7075 plates with a three-flute carbide (ZrN-coated)

end mill. The tool has 0.5 in diameter with a flute helix angle of 30◦. The tool

was mounted with a 2.4 in stick-out. The tool dynamics flexibility is calculated by

performing an impact hammer test on the tip of the tool. The frequency response

function in X (feed direction) and Y (cross-feed direction) directions are shown in

Figure 4.10.

Figure 4.10: Real and Imaginary parts of dynamic flexibility of the 3-flute tool in X

and Y directions.
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Table 4.11: Modal parameters for the 3-flute end mill at the stationary spindle.
Feed (X) Cross-Feed (Y)

fn (Hz) k (MN/m) ξ fn (Hz) k (N/m) ξ

Mode#1 866.93 33.881 0.03 989.04 30.761 0.04

Mode#2 1702.94 68.463 0.02 1702.94 48.481 0.02

Mode#3 2082.79 8.005 0.02 2088.96 7.197 0.02

Mode#4 2658.86 29.770 0.02 2663.40 30.604 0.02

Mode#5 2857.40 113.048 0.01 2860.84 83.683 0.01

Mode#6 3575.20 131.662 0.01 3584.82 141.736 0.01

Mode#7 3804.29 223.404 0.01 3801.07 211.882 0.01

Modal parameters extracted from these tests are listed in Table 4.11. The cutting

force coefficients are measured by conducting some experiments in the stable region.

The radial and tangential are 0.176 and 787.8 MPa, respectively.

Three different data sets are collected during the cutting tests. For each data set

spindle speed increases from 6000 rpm to 12000 rpm by a step size of 100, and the

depth of cut increases from 0.2 mm to 1.6 mm with the step size of 0.1. Data set 1

includes 305 data points and data sets 2 and 3 include 278 data points each. The data

points are labeled and classified as chatter and stable points for each data set that are

shown in Figure 4.11. The values of chatter frequency for the chatter observations on

the boundary (chatter point with the minimum depth of cut at each spindle speed

value) show that mode 3 in Table 4.11 is the dominant mode and results in chattering

in this case. Therefore, only this mode was used in the calculations to generate the

stability lobe diagram. Figure 4.11 obviously shows that the stability lobe diagram

generated based on the modal parameter measured in static conditions can not justify

the experimental observations. It is also observed that some points that are labeled

as stable in one data set have turned to chatter, and vice versa. In the study, the

inverse approach was used for each data set separately. The identified values for

modal parameters for each data set are presented in Table 4.12.
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Figure 4.11: Experimental results with 3-flute end mill for three data sets and stability

lobe diagrams from impact test on the stationary spindle using zero-order solution.
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Figure 4.12: Stability lobe diagrams from Newton-Raphson methods on three exper-

imental data sets with 3-flute end mill in the spindle speed range 6000-12000 rpm.

The stability lobe diagrams generated using the in-process modal parameters in
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Table 4.12 are illustrated in Figure 4.12 for each data set. This figure shows that the

in-process stability lobe diagrams are located on the right-side of the stability lobe

diagrams in Figure 4.11 in which the modal parameters in static conditions are used.

This happens because of the reduction in natural frequency in dynamic conditions.

Comparing the results from Table 4.11 with Table 4.12, it can be seen that stiffness

and damping ratio increase during cutting operations.

Table 4.12: In-process Structural dynamics parameters calculated using the inverse

method for 3-flute end mill for three sets of experimental data in the spindle speed

range of 6000-12000 rpm.

Set.1 Set.2 Set.3

Natural frequency: fn (Hz) 2000.7 2000.8 2010.9

Stiffness: k (MN/m) 8.4559 8.1668 8.1256

Damping ratio: ξ 0.030524 0.034030 0.035857

The stability lobe diagrams derived from the inverse approach in Figure 4.12 show

that some chatter points are still located in stable regions in some data sets, especially

in data set 2 and 3. For example in data set 3, some points with spindle speed in the

range of 6500 to 6700 rpm, 7700 to 8000 rpm, and 10200 to 11100 rpm are classified

under the stability boundary while they need to be in chatter region. As it is known

that the stability lobe diagram generated using the zero-order solution, always has

a constant minimum depth of cut for all the lobes. But The experimental results in

Figure 4.11 show a different depth of cut for each lobe. To overcome this issue and

also calculate more accurate structural dynamic parameters, the spindle speed range

was divided into two ranges of 6000-8000 rpm and 8000-12000 rpm and applied the

inverse approach to each of these speed ranges separately. The modal parameters

derived using the Newton-Raphson method for the speed range of 6000-8000 rpm
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for three data sets are listed in Table 4.13. The stability lobe diagrams generated

based on the results from this table are presented in Figure 4.13. It should be noted

that although the stability lobe diagram is plotted for the speed range of 6000-12000

rpm, only the data point in the speed range of 6000-8000 rpm is used as the input of

the Newton-Raphson method algorithm for each data set. Table 4.13 shows that the

natural frequency increases notably in comparison with the results reported in Table

4.12. As a result, the stability lobe diagrams shifted to the right in Figure4.13. The

values of stiffness and damping ratio increase slightly except for the stiffness in data

set 3.

Table 4.13: In-process Structural dynamics parameters calculated using the inverse

method for 3-flute end mill for three sets of experimental data in the spindle speed

range of 6000-8000 rpm.

Set.1 Set.2 Set.3

Natural frequency: fn (Hz) 2020.8 2020.8 2030.7

Stiffness: k (MN/m) 8.6261 8.3147 8.0848

Damping ratio: ξ 0.033963 0.036014 0.036548

The results of the inverse approach for the spindle speed range of 8000-12000 rpm

for each data set are reported in Table 4.14. The stability lobe diagrams calculated

using the results from this Table are plotted in Figure 4.14. It should be noted that

although the stability lobe diagram is plotted for the speed range of 6000-12000 rpm,

only the data point in the speed range of 8000-12000 rpm is used as the input of

the Newton-Raphson method algorithm for each data set. Table 4.14 shows that the

natural frequency is the same as the results listed in Table 4.12 except for the data

set 3 which shows a reduction in natural frequency. As a result of such reduction, the

stability lobe diagram shits to left, as shown in Figure 4.14.
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Figure 4.13: Stability lobe diagrams from Newton-Raphson methods on three exper-

imental data sets with 3-flute end mill in the spindle speed range 6000-8000 rpm.
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Figure 4.14: Stability lobe diagrams from Newton-Raphson methods on three exper-

imental data sets with 3-flute end mill in the spindle speed range 8000-12000 rpm.

The results for the data set 1 in Table 4.14 show that the stiffness increases while
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the damping ratio decrease in comparison with the values reported in Table 4.12. It

is also observed that the calculated natural frequency values in the speed range of

8000-12000 rpm for each data set are approximately the same.

Table 4.14: In-process Structural dynamics parameters calculated using the inverse

method for 3-flute end mill for three sets of experimental data in the spindle speed

range of 8000-12000 rpm.

Set.1 Set.2 Set.3

Natural frequency: fn (Hz) 2000.7 2000.6 2000.6

Stiffness: k (MN/m) 9.0666 8.1668 8.0850

Damping ratio: ξ 0.026443 0.033660 0.035645

The stability lobe diagrams for all the cases for each data set are illustrated in

Figure 4.15. The results indicate that the stability lobe diagrams generated for the

speed range of 8000-12000 rpm are so close to the stability lobe diagrams generated

for the speed range of 6000-12000 rpm, particularly in data set 2. Also, the stability

lobe diagrams generated using the identified values in the speed range of 6000-8000

rpm tend to the right side which shows less reduction in natural frequency at low

speed than at high speed.
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Figure 4.15: Stability lobe diagrams from Newton-Raphson methods using three ex-

perimental data sets with 3-flute end mill for different ranges of speed.

Another approach to calculating in-process structural dynamics parameters is to
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combine all the data sets. Therefore, at each spindle speed, the chatter point with

the minimum depth of cut is chosen as the critical chatter point on the stability

boundary. So any point above this critical point is chatter, and points below it are

stable. The inverse method is applied to this combined data set for three different

cases; First on the whole range of speed which is 6000-12000 rpm, then for the low-

speed range of 6000-8000 rpm, and finally for the high-speed range of 8000-12000

rpm. The in-process modal parameters derived from the Newton-Raphson algorithm

are listed in Table 4.15. The stability lobe diagrams generated based on the extracted

modal parameters in this table are illustrated in Figure 4.16. The results in Table

4.15 show that the stiffness increases for the cases in the speed range of 6000-8000

rpm and 8000-12000 rpm in comparison with the identified values considering all the

data points in the speed range of 6000-12000 rpm, while the damping ratio slightly

decreases. As Figure 4.16 shows the stability lobe diagram generated for the speed

range of 6000-8000 rpm tends to shift to the right side of the figure in comparison

with the other two in-process stability lobe diagram. This happens since the highest

value for natural frequency occurs in the case of the speed range of 6000-8000 rpm.

Figure 4.16: Stability lobe diagrams from Newton-Raphson methods combined ex-

perimental data set with 3-flute end mill for different ranges of speed.
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Table 4.15: In-process Structural dynamics parameters calculated using the inverse

method for 3-flute end mill for the combined experimental data set for different spindle

speed ranges.
6000-12000 (rpm) 6000-8000 (rpm) 8000-12000 (rpm)

Natural frequency: fn (Hz) 2010.9 2030.8 2000.8

Stiffness: k (MN/m) 8.3724 8.4143 8.7564

Damping ratio: ξ 0.030440 0.03407 0.028321

Stability lobe diagrams generated using inverse approach data set 1, 2, 3, and

also the combined data set are plotted in Figure 4.17. Since the combined data set

includes the least value of depth of cut for the critical chatter points on the boundary

at each spindle speed, the stability lobe diagram generated based on this data set

can justify data sets 1,2, and 3. Figure 4.17 also shows that SLD generated using the

combined data set is so close to the SLD generated using data set 1, while this SLD

is a conservative boundary for the data set 2 and 3.



63

Figure 4.17: Stability lobe diagrams from Newton-Raphson methods using fthe ex-

perimental data sets with 3-flute end mill for speed ranges of 6000-12000 rpm.
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4.2.4.3 Slot milling using a two-flute end mill

The third set of experimental data [76] considered in this work consists of full-

engagement milling of aluminum 7075 plates with a two-flute carbide (ZrN-coated)

end mill. The tool has a 0.5-inch diameter with a flute helix angle of 30◦. The tool

was mounted with a 2.7-inch stick-out. The tool dynamics flexibility is calculated by

performing an impact hammer test on the tip of the tool. The frequency response

function in X (feed direction) and Y (cross-feed direction) directions are shown in

Figure 4.18. Modal parameters calculated from these tests are listed in Table 4.16.

Table 4.16: Modal parameters for the 2-flute end mill at the stationary spindle.
Feed (X) Cross-Feed (Y)

fn (Hz) k (MN/m) ξ fn (Hz) k (MN/m) ξ

Mode#1 989.79 23.525 0.04 866.93 26.293 0.03

Mode#2 1215.45 53.863 0.04 1242.66 49.959 0.03

Mode#3 1704.37 11.988 0.02 1712.33 9.206 0.02

Mode#4 1845.40 3.457 0.03 1824.44 5.513 0.02

Mode#5 2626.79 79.974 0.02 1984.74 36.044 0.01

Mode#6 2813.83 188.933 0.01 2604.70 77.025 0.02

The cutting force coefficients are measured by conducting some experiments in the

stable region. The radial and tangential are 0.176 and 787.8 MPa, respectively. Three

different data sets are collected during the cutting tests. For each data set spindle

speed increases from 6000 rpm to 12000 rpm by the step size of 100, and the depth of

cut increases from 0.2 mm to 1.2 mm with the step size of 0.1. Each data set includes

238 data points that are labeled and classified as chatter and stable points which are

shown in Figure 4.19.
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Figure 4.18: Real and Imaginary parts of dynamic flexibility of the 2-flute tool in X

and Y directions.
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Figure 4.19: Experimental results with 2-flute end mill for three data sets and stability

lobe diagrams from impact test on the stationary spindle using zero-order solution.

The values of chatter frequency for the chatter observations on the boundary (chat-
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ter point with the minimum depth of cut at each spindle speed value) show that

mode 4 in Table 4.16 is the dominant mode and results in an unstable cut in this

case. Therefore, only this mode was used in the calculations to generate the stability

lobe diagram. Figure 4.19 shows that the stability lobe diagram generated based on

the modal parameter measured in stationary spindle can not justify the experimental

observations. Similar to the results of the 3-flute case, some points that are labeled as

stable in one data set have turned to chatter, and vice versa. So the Newton-Raphson

method approach was used to calculate in-process modal parameters for each data

set separately. The results for modal parameters for each data for chatter points on

the boundary in the spindle range of 6000-12000 rpm are presented in Table 4.17.

Table 4.17: In-process Structural dynamics parameters calculated using the inverse

method for 2-flute end mill for three sets of experimental data in the spindle speed

range of 6000-12000 rpm.

Set.1 Set.2 Set.3

Natural frequency: fn (Hz) 1891.9 1882.4 1882.3

Stiffness: k (MN/m) 5.4890 5.3969 5.5055

Damping ratio: ξ 0.020639 0.024479 0.024605

The stability lobe diagrams generated using the in-process modal parameters in

Table 4.17 are illustrated in Figure 4.20 for each data set. This figure shows that,

unlike the case of 3-flute end mill, the in-process stability lobe diagrams are located

on the left-side of the stability lobe diagrams in Figure 4.19 in which the modal

parameters in the stationary spindle are used. This happens because the natural

frequency increases during the cutting operations in this example. This result is the

opposite of the commonly observed trend of decreasing the natural frequency with

increments in the speed. Comparing the results from Table 4.17 with the modal
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parameters in zero speed condition indicates that the stiffness notably increases in

each set while the damping ratio decreases.

The stability lobe diagrams derived from the inverse approach in Figure 4.20 show

that some chatter points are still located in stable regions in some data sets partic-

ularly in data set 2 and 3 in the speed range of 8000-12000 rpm. Moreover, some

stable points are located in the chatter region at low spindle speed. Similar to the

case of 3-flute end mill, it is observed that there are different minimum depths of

cut for different lobes at low and high speeds. For example in data set 2 and 3, the

minimum depth of cut for lobes located in the speed range of 6000-8000 rpm is 0.4

mm while this value is 0.3 mm in the speed range of 8000-12000 rpm. However, it

is expected to have the same minimum depth of cut for all the lobes in the stability

lobe diagram. To overcome this issue and also calculate more accurate structural

dynamic parameters, the spindle speed range was divided into two separate ranges of

6000-8000 rpm and 8000-12000 rpm, and applied the inverse approach to each of these

speed ranges separately. The modal parameters derived using the Newton-Raphson

method for the speed range of 6000-8000 rpm for three data sets are listed in Table

4.18.

Figure 4.21 shows the stability lobe diagrams generated based on the results from

Table 4.18 for the low spindle speed. It should be noted that although the stability

lobe diagram is plotted for the speed range of 6000-12000 rpm, only the data points

in the speed range of 6000-8000 rpm are used as the input of the Newton-Raphson

method algorithm for each data set. Table 4.18 shows that natural frequency increases

in each data set compared to the results derived in the speed range of 6000-12000

rpm. Also, the damping ratio and stiffness increase in each data set except for data

set 3 where the stiffness is almost the same value.
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Figure 4.20: Stability lobe diagrams from Newton-Raphson methods on three exper-

imental data sets with 2-flute end mill in the spindle speed range 6000-12000 rpm.
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Figure 4.21: Stability lobe diagrams from Newton-Raphson methods on three exper-

imental data sets with 2-flute end mill in the spindle speed range 6000-8000 rpm.
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Table 4.18: In-process Structural dynamics parameters calculated using the inverse

method for 2-flute end mill for three sets of experimental data in the spindle speed

range of 6000-8000 rpm.

Set.1 Set.2 Set.3

Natural frequency: fn (Hz) 1901.4 1901.2 1891.8

Stiffness: k (MN/m) 5.5718 5.6157 5.5048

Damping ratio: ξ 0.021329 0.027752 0.028603

To calculate the modal parameters at high speed, the inverse method is applied to

points in the speed range of 8000-12000 rpm for each data set. Table 4.19 contains

the modal parameters for each data set only considering the data points in the speed

range of 8000-12000 rpm. The stability lobe diagrams calculated using the results

from Table 4.19 are plotted in Figure 4.22. Again, here only the data points in the

speed range of 8000-12000 rpm are used as the input of the Newton-Raphson method

algorithm for each data set. However, the data points in the whole range of speed are

visualized. Table 4.19 shows that the natural frequency is approximately the same

as the results calculated in the speed range of 6000-12000 rpm for each data set. It

is also observed that the stiffness values tend to increase while the damping ratio

decrease.

Table 4.19: In-process Structural dynamics parameters calculated using the inverse

method for 2-flute end mill for three sets of experimental data in the spindle speed

range of 8000-12000 rpm.

Set.1 Set.2 Set.3

Natural frequency: fn (Hz) 1891.9 1882.4 1882.3

Stiffness: k (MN/m) 5.5718 5.5605 5.9030

Damping ratio: ξ 0.019711 0.021437 0.020775
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Figure 4.22: Stability lobe diagrams from Newton-Raphson methods on three exper-

imental data sets with 2-flute end mill in the spindle speed range 8000-12000 rpm.
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Figure 4.23: Stability lobe diagrams from Newton-Raphson methods using three ex-

perimental data sets with 2-flute end mill for different ranges of speed.

The stability lobe diagrams for different speed ranges for each data set are illus-
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trated in Figure 4.23. For data set 1, stability lobe diagrams generated for different

speed ranges are so close to each other, since the experimental data points have the

same minimum depth of cut of the speed range of 6000-12000 rpm. However, the sta-

bility lobe diagram for the speed range of 6000-8000rpm is located on the right-side

of the other two stability lobe diagrams. The results for data set 2 and 3 follow a

similar trend. The stability lobe diagrams for the speed range of 6000-12000 rpm and

8000-12000 rpm are close to each other. However, the stability lobe diagrams for the

speed range of 8000-12000 rmp have a smaller depth of cut for each speed value. In

the case of low-speed range, although the stability lobe diagram generated using the

modal parameters in the speed range of 6000-12000 rpm cover most of the chatter

points, the objective function value is smaller if the modal parameters extracted for

the speed range of 6000-8000 rpm are used to generate the stability lobe diagram for

this range of speed.

As discussed before, some of the chatter points located on the stability boundary in

one data set turn out to be stable in another one. So another approach to calculating

in-process structural dynamics parameters is to combine all the data sets. In this case,

the chatter points with the minimum depth of cut are considered critical chatter points

on the boundary for each spindle speed. That means if a point is stable in one data

set but is labeled as chatter in another data set, that point will be labeled as chatter

in the combined data set. Thus, the stability boundary is made by selecting the

critical chatter points. It is assumed that any point above this boundary is chatter,

and any point below that is stable. The modal parameters calculated through the

inverse approach for the combined data set for three different speed range are listed

in Table 4.20, and the stability lobe diagram generated based on these results for each

set of data are plotted in Figure 4.24.
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Figure 4.24: Stability lobe diagrams from Newton-Raphson methods combined ex-

perimental data set with 2-flute end mill for different ranges of speed.

The results in Table 4.20 show that the calculated natural frequency values are

the same for the speed range of 6000-12000 rpm and 8000-12000 rpm. But this

value increases in the case of 6000-8000 rpm which results in shifting the stability

lobe diagram to the right as shown in Figure4.24. It is also observed a reduction in

damping ratio values while the stiffness values rise in these two cases in comparison

to the results derived for the speed range of 6000-12000 rpm.

Table 4.20: In-process Structural dynamics parameters calculated using the inverse

method for 2-flute end mill for the combined experimental data set for different spindle

speed ranges.
6000-12000 (rpm) 6000-8000 (rpm) 8000-12000 (rpm)

Natural frequency: fn (Hz) 1891.9 1901.4 1891.9

Stiffness: k (MN/m) 5.0674 5.4063 5.2211

Damping ratio: ξ 0.022817 0.022491 0.020899

Figure 4.25 visualizes the stability lobe diagram generated by the identified values
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of modal parameters for three sets of data for the speed range of 6000-12000 rpm. It

also shows the Stability lobe diagram for the case of combined data set for the same

range of speed. It can be seen that the stability lobe diagram generated using the

modal parameters extracted from the combined data set is so close to the stability

lobe diagram of data set 1. this is because data set 1 has the minimum critical depth

of cut of all the lobes. The SLD for the combined data set also covers the most chatter

points in data sets 2 and 3.

Note that in the three different empirical examples, the data set covered 21, 57, and

61 pairs of the depth of cut and spindle speed. In contrast, there were only 3 unknown

parameters found through the Newton method. A large number of observations vs.

a small number of parameters (inputs of the SLD function) implies that overfitting

will not be a serious issue when finding the parameters.
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Figure 4.25: Stability lobe diagrams from Newton-Raphson methods using combined

and three sets of experimental data with 2-flute end mill for speed ranges of 6000-

12000 rpm.
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4.3 Uncertainty and Sensitivity Analysis in Stability Lobe Diagram

This work includes defining and measuring the uncertainty of each structural dy-

namics parameter derived through the inverse approach. Here the main question is:

To what extent, the uncertainty of each input parameter leads to the uncertainty in

the SLD? For instance, if the first parameter is measured as p1 = 10.0±0.2, then how

much the SLD would be shifted based on the standard deviation of p1 (here 0.1), and

how that shift can be quantified?

In this study, first, the in-process structural dynamics parameters are extracted,

given in-process SLD. Conventionally, the SLD is built having the structural dynam-

ics parameters using either frequency-domain or time-domain methods. However, the

calculated SLD is not reliable as these parameters change during cutting operations,

and the experimental results do not follow the stability boundary. To overcome this

issue, the method presented in Section 4.2 is used. Three examples based on syn-

thetic data are presented to illustrate the approach. Also, the algorithm is evaluated

on an empirical data set and verified its ability to improve the stability boundary.

Furthermore, results from sensitivity analyses performed to calculate the exposure

of the stability lobe diagram to each structural dynamics parameter are presented.

Although there are some studies in the literature to calculate in-process structural

dynamics parameters, they only focus on a few points on the boundary. In this work,

a wide range of spindle speed values is covered by using more data points on the

boundary.

4.3.1 Newton-Raphson Method with Adjustments

In this study, Mean Log Absolute Error (MLAE) is used as the objective function

for the evaluation of each iteration in the Newton method. MLAE is less sensitive

to high differences between the reference and the guessed SLDs and therefore may
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result in smoother convergence of the iterative algorithm.

MLAE =MLAE(p∗1, · · · , p∗m)

=
1

n
Σn

i=1 log(1 + |b
exp
i − b∗i |)

(4.11)

Here, (p∗1, · · · , p∗m) indicates the initial guess set. bexpi ’s are the set of the depth of

cut in the reference SLD and b∗i ’s are the set of the depth of cut in the guessed SLD.

Then, the guessed value for each unknown parameter is updated using Eqn. 4.12:

p∗i ← p∗i −
MLAE × Si

||S||2
× α ; i = 1, 2, · · · ,m. (4.12)

Here, α controls the pace (α ∈ (0, 1]), and one may assume α = 1 for simplicity of

the notation. Si denotes the sensitivity of the objective function with respect to each

parameter which is calculated as follows:

Si =
∂MLAE

∂p∗i

=
MLAE(p∗1, · · · , p∗i + ϵ, · · · , p∗m)−MLAE

ϵ

(4.13)

where ϵ is a small value added to a guessed parameter (p∗i ) to derive the partial

derivative of the objective function with respect to that parameter.

Some adjustments were also applied to enhance the Newton method and acceler-

ate its convergence, as dealing with multivariate functions in the Newton method is

sometimes challenging. In Particular, using the Newton-Raphson method, there is

a possibility of getting stuck in the local minima. To overcome this issue, a specific

threshold is set for the objective function. If the algorithm was not able to improve

the objecting function at least by that threshold after a certain number of consecutive

iterations, some e.g. 5% jumps are added in each/some parameters. However, adding

random jumps does not necessarily improve the results. Thus, the jumps are tried,
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Table 4.21: Values used to generate synthetic data set for the three different examples.
Parameter Ex.1 Ex.2 Ex.3

Natural frequency: fnx (Hz) 903.0 500.0 900.0

Stiffness: kx (MN/m) 12.53 8.00 9.000

Damping ratio: ξx 0.0300 0.0200 0.0200

Natural frequency: fny (Hz) 903.0 500.0 950.0

Stiffness: ky (MN/m) 12.53 8.00 10.00

Damping ratio: ξy 0.0300 0.0200 0.0100

Tangential cutting force: kt (MPa) 556.31 695 2173

Normal cutting force: kn 0.404 0.404 0.268

Start angle: ϕs (deg) 0.000 0.000 126.9

Exit angle: ϕe (deg) 180.0 180.0 180.0

Number of flutes: Nt 2 4 3

but only applied if they can successfully improve the objective function. This way

the algorithm gets a chance to run away from local minima. Moreover, during the

experiments, it is observed that sometimes the algorithm fails on the critical points of

the stability lobe diagram. Therefore, the algorithm needs to be made more sensitive

to the SLD errors at those critical points. That is achievable by giving more weights

to the critical points rather than equal weights that are implied in Eq.4.10.

Three different examples were studied to derive the structural dynamics param-

eters using the multivariate Newton-Raphson method approach. For each example,

synthetic data is generated using the Fourier series approach (Zero-Order solution

[77]). Each data set includes values of spindle speed and the corresponding depth of

cut on the stability boundary. Table 4.21 shows the structural dynamics parameters

and cutting parameters used to generate these data sets.

In each example, the SLD made using the information provided in Table 4.21 is

considered as the reference SLD. The guessed SLD is made through the Newton-

Raphson algorithm and then compared to the reference SLD.

It is assumed that the synthetic data set for each case comes from an experiment,
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Table 4.22: Results using Newton method approach for the three examples.
Exp Value fnx kx ξx fny ky ξy

Ex.1
Target 903.0 12.53 0.0300 903.0 12.53 0.0300

Predicted 910.4 13.44 0.0287 910.4 13.44 0.0286

Ex.2
Target 500.0 8.00 0.0200 500.0 8.00 0.0200

Predicted 503.5 8.66 0.0196 503.5 8.66 0.0196

Ex.3
Target 900.0 9.00 0.0200 950.0 10.00 0.0100

Predicted 906.8 9.49 0.0183 947.7 9.56 0.0104

and the values for cutting parameters, i.e., normal and tangential cutting forces,

number of flutes, and start and exit angles are known. Thus, only the structural

dynamics parameters are unknowns, and the goal here is to derive them through the

Newton-Raphson approach. It is assumed that there is only one dominant mode in

each direction for each example. Therefore, there are totally six unknown parame-

ters for each example. The Newton-Raphson approach is applied for each example

separately.

Table 4.22 presents the results derived from the Newton-Raphson algorithm. The

predicted values are the results found using the algorithm and the target values are

the parameters used to build the reference SLD. The results show that the algorithm

converges and finds the parameters that can justify the reference SLD for all the

cases, as the predicted values are fairly close to their targets. Figure 4.26 shows the

reference and the predicted stability lobe diagrams. The blue curves are generated

based on target values and are called the reference SLDs, and the orange curves are

generated based on the predicted values after 60 iterations and are called the guessed

SLDs. As shown in Figure 4.26, in each example, the two boundaries are very close

to each other after 60 iterations. Some of the Newton-Raphson method iterations are

visualized for example 3 in Figure 4.27. As Figure Figure 4.28 and 4.27 show, the

iterative process does not necessarily imply a monotone convergence. Nevertheless,

after enough iterations, the guessed SLD is similar to the reference SLD. Note that
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Figure 4.26: Final SLDs for the three examples. Blue curves are the target SLDs
while the orange curve shows the calculated SLD in each example.
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Figure 4.27: Some of the steps in Newton-Raphson approach for example 3. The blue
curve is the empirical SLD while the orange curve is the guessed SLD at each step.

the algorithm may keep iterating more to reduce the errors. However, that may also

imply more computational cost, while the errors are already negligible, and the results

might be already acceptable.
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Figure 4.28: The objective function (MLAE) measures the error terms through iter-

ations.

4.3.2 Methodology of Sensitivity Analysis

To analyze the sensitivity of the stability lobe diagram with respect to different

parameters, two different approaches are utilized. First, three different examples of

SLD using three different parameter sets are tried. For each SLD, the parameters are

changed one-by-one by ϵ% and a modified SLD is generated each time for different

values of ϵ ∈ [−25, 25]. Then the modified SLD is compared with the original SLD

using Mean Squared Error (MSE) for different values of ϵ. Note that when each

parameter is changed, the other parameters are kept constant. The different MSE

plots will help to analyze the sensitivity of the SLD to each parameter, when that

parameter is changed by different ratios. The above-mentioned steps are summarized

in Algorithm 1. The predicted parameter sets (fnx, kx, ζx, fny, ky, ζy) as specified in

Table 4.22 were used for the three examples.

Figure 4.29 visualizes the results. As shown in the figure, the sensitivity of the SLD

with respect to different parameters differs from one example to another. However,

generally, the SLD appears to be much more sensitive to fnx and fny than to the

other structural dynamics parameters. Note that the vertical scale for these two
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Algorithm 1 Sensitivity analysis on exact parameter set
Input: Parameters={p1, · · · , pm}
Output: MSE in SLD when changing each parameter

Make the original SLD: SLD∗ = {(Ω∗
i , b

∗
i )| i = 1, · · · , n}

for j in 1, · · · ,m do

for ϵ in {−0.20,−0.15, · · · ,+0.20} do

Change the parameters to P ′:

P ′ = {p1, · · · , (1 + ϵ)pj, · · · , pm}
Make modified SLD using P ′:

SLD′ = {(Ω∗
i , b

′
i)| i = 1, · · · , n}

Compute MSE: MSEj,ϵ =
1
n

∑n
i=1(b

∗
i − b

′
i)
2

end for

end for

parameters is 20 times larger than other subplots in Figure 4.29 to cover a different

range of changes.

The variations in sensitivity plots of different examples as reflected in Figure 4.29,

inspire us to use a more generalized approach to aggregate the observations of the

sensitivity in different cases with a large number of simulations.

In Figure 4.29, it is noted that the plots are convex in most cases. This is expected.

For most iterative algorithms, convexity helps the convergence. However, there are

some exceptions, e.g. frequency in example 3, where the sensitivity curve is not

convex. Note that all the adjustments and improvements introduced in Section 4.2.2

are to help the algorithm convergence.

In the second approach, the analysis is not confined within the specific parameter

set P = (p1, · · · , pm) based on which the original SLD is generated. Instead, one

may search and measure the sensitivity of SLD in the neighborhood around a given

parameter set. In a Monte Carlo simulation, one may repeatedly choose a new pa-

rameter set P ∗ = (p∗1, · · · , p∗m) where each parameter p∗i is randomly chosen from the

uniform distribution e.g. from [0.9pi , 1.1pi] or generally from [(1 − t)pi , (1 + t)pi]
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Figure 4.29: Sensitivity of the stability lobe diagram to the changes in structural
dynamics parameters.

where t defines the width of the neighborhood. Then the sensitivity of the SLD to

each corresponding parameter pi is measured, using MSE between the SLD using P ∗

and its modified version where the corresponding parameter is again changed by a

small ratio, e.g. ϵ = 1%. Finally, different results from different Monte-Carlo paths

over each parameter are aggregated using aggregators such as mean and standard

deviation. The steps are summarized in Algorithm 2. Table 4.23 shows the results

of the Monte Carlo simulation with N = 10, 000 iterations aggregating the sensitiv-

ities by the means and the standard deviations. The predicted values in example 1

were used as the given parameter set around which the neighborhood of parameters

is constructed.

It is immediately observable from Table 4.23 that SLD sensitivities show large

variations in different simulations. But generally, the SLDs are much more sensitive

to fnx and fny than the other structural dynamics parameters.

Also, the Algorithm 2 was applied to empirical data from [2] as discussed in Section

4.2.4.1 using the same setting as used for example 1. Here, the Newton-Raphson
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Algorithm 2 Monte Carlo based sensitivity analysis
Input: Parameters={p1, · · · , pm}, Neighborhood width t, Number of paths N

Output: MSE in SLD when changing each parameter

for path in 1, · · · , N do:

for j in 1, · · · ,m do

upperbound← (1 + t)× pj
lowerbound← (1− t)× pj
p∗j ← uniform[lowerbound , upperbound]

end for

Make the reference SLD using P ∗:

SLD∗ = {(Ω∗
i , b

∗
i )| i = 1, · · · , n}

for j in 1, · · · ,m do

Modify the parameters to P ′ changing p∗j :

P ′ = {p∗1, · · · , (1 + ϵ)p∗j , · · · , pm∗}
Make modified SLD using P ′:

SLD′ = {(Ω∗
i , b

′
i)| i = 1, · · · , n}

Compute MSE:

MSEj,path = 1
n

∑n
i=1(b

∗ − b′)2

end for

end for

for j in 1, · · · ,m do

Aggregate the results over parameter j:

meanMSEj =
1
N

∑N
path=iMSEj,path

stdMSEj = { 1
N

∑N
path=i(MSEj,path −meanMSEj)2}1/2

end for
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results from Table 4.10 were used as target parameters. The results are mentioned

in Table 4.24. As Table 4.24 shows, again the SLD has the highest sensitivity to

the natural frequency. That is why in Table 4.10 where the derived frequencies from

the Newton-Raphson method and Method 2 are quite similar, the MSEs are close

as well. As Table 4.24 suggests, the SLD is less sensitive to the other parameters,

k and ζ. That is why the difference between the derived parameters from the two

above-mentioned methods, only results in 20% difference in the Final MSEs (0.000574

in Method 2 vs. 0.000459 in Newton-Raphson).

Table 4.23: Results of Monte Carlo simulation measuring the sensitivity of SLD with

respect to different structural dynamics parameters on example 1.
Measure fnx kx ζx fny ky ζy

Mean Sensitivity 0.06610 0.00080 0.00025 0.06798 0.00078 0.00026

SD of Sensitivity 0.03202 0.00029 0.00012 0.03174 0.00026 0.00013

Table 4.24: Results of Monte Carlo simulation measuring the sensitivity of SLD with

respect to different structural dynamics parameters on empirical data from [2].
Measure fn k ζ

Mean Sensitivity 7.92E-04 3.29E-06 1.86E-06

SD of Sensitivity 1.34E-04 5.45E-07 3.24E-07

4.3.3 Results & Discussion

In this work, the sensitivity of the stability boundary with respect to machine

dynamics parameters is investigated. Generally, these parameters are calculated by

applying an impact hammer test in the idle state of the machine which results in

generating an unreliable stability boundary. This happens because these parameters

vary during the cutting process. Thus, a hybrid approach was introduced to finding

the in-process structural dynamics parameters under which the physics-based models

can support the empirical data. In this approach, a multivariate Newton-Raphson

method was utilized to combine the theory with the experimental results. Three
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synthetic data sets were used to replace the experimental boundary in this study.

The algorithm was evaluated as it converged to the correct answers in those three

cases and successfully found the underlying structural dynamics parameters. Also,

the algorithm was evaluated on an empirical data set, and its ability to improve the

stability boundary was verified. The results derived from the algorithm were used to

discover the sensitivity of the stability boundary with respect to each parameter. Two

different methods were utilized for this purpose. Although the stability border shifts

as any structural dynamics parameter changes, the results showed that the natural

frequency is the most sensitive parameter.



CHAPTER 5: CONCLUSIONS

In this dissertation, a multivariate Newton method was introduced for the inverse

problem. While usually the stability lobe diagram is constructed having the machin-

ing structural parameters, this study discusses how one may retrieve the structural

parameters, having the SLD. The physics-based stability lobe diagram is usually gen-

erated using the structural dynamics and the cutting parameters. However, since the

machine dynamics are measured in the stationary spindle, the generated SLD is not

reliable as the machine behavior may vary during the cutting operations. Besides,

measuring structural dynamics parameters under cutting conditions is difficult and

needs new equipment. This study provides a new approach to determining in-process

structural dynamics parameters based on a multivariate Newton-Raphson method.

The physics-based model is combined with empirical records to extract reliable struc-

tural dynamics parameters inversely. Some examples based on synthetic data are

presented to illustrate this inverse approach. Also, the algorithm is evaluated on an

empirical data set and its ability to improve the stability boundary is verified.

In addition, this work includes defining and measuring the uncertainty of each

structural dynamics parameter derived through the inverse approach. Here the main

question is that to what extent, the uncertainty of each input parameter leads to the

uncertainty in the SLD? The results derived from the algorithm were used to discover

the sensitivity of the stability boundary with respect to each parameter. Two different

methods were utilized for this purpose. Although the stability border shifts as any

structural dynamics parameter changes, the results showed that the natural frequency

is the most sensitive parameter.

Furthermore, this work investigated the feasibility of Machine Learning methods
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to predict tool temperature and maximum cutting force. Support Vector Regressor

(SVR) and Gaussian Regression Process (GPR) were utilized in this study. The

training/test data for building the ML models are generated from Finite Element (FE)

simulations. The FE-generated data consists of cutting speed, uncut chip thickness,

and rake angle as the input parameters. The response variables are the cutting force

and maximum tool temperature. The optimal SVR and GPR models are selected

using a grid search on the training data. The predictions on the test data sets show

that both models perform well with high accuracy in predicting cutting force and

maximum tool temperature. Between the two models, the mean square errors (MSE)

for SVR are less than those for GPR.



CHAPTER 6: FUTURE WORK

A possible future direction of the presented work is to modify and examine the

inverse approach during the machining process where more than one dominant mode

is involved. Chatter in machining systems can arise from various vibration modes. In

the presented study, the inverse method is examined under the condition that chatter

originated from only one mode. However, it is possible to face a situation where more

than one mode contributes to chatter. Future work could be conducted to explore

this situation, and additional modifications might be needed to guarantee the success

of the Newton-Raphson inverse method.

In another future direction, the impact of the feed rate may be investigated. The

productivity of metal cutting is greatly influenced by the depth of cut, spindle speed,

and feed rate. To ensure chatter-free cutting, it is important to determine the optimal

values for these parameters. The cutting force required to generate chips increases

as the feed rate increases. Consequently, changes in cutting forces could alter the

dynamic behavior and stability properties of the machine. Further research could be

done to examine how the feed rate impacts in-process structural dynamics parameters.

This research would require a larger set of cutting test data at various feed rates.

Additionally, the tool stick-out has a significant impact on the structural dynamics

parameters. While the modes behave independently, certain modes are extremely

influenced by the tool stick-out. It is worthwhile to examine how the tool stick-

out affects the in-process structural dynamics parameters. This investigation would

necessitate gathering comparable data sets for different stick-out lengths.

The presented study explains how the observed in-process parameters differ from

the idle spindle parameters in milling. Also, as mentioned in the presented work, even
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for the same machine, three slightly different data sets were generated from three

identical experiments. So a related question may be worth investigating: Comparing

two different machines, if their cutting parameters and the idle spindle structural

parameters are the same, are the in-process structural dynamics parameters the same

in practice? In other words, to what extent the results would be different? This

question requires a separate study in the future.
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