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ABSTRACT

JOSEPH R. MAYS. Investigations of coherence and structured light. (Under the
direction of DR. GBUR)

The combination of singular optics and partially coherent fields has become increas-

ingly important in the applications of optical communication and optical imaging.

Within this, we focus on the phenomena of optical vortices. We use and study the

properties of these partially coherent vortex beams such as the total angular mo-

mentum, as well as investigate the effects of partial coherence on vortex created

phenomena, namely superoscillations. In this dissertation we use the optical vortices

as observed through the cross-spectral density in a partially coherent field to create

superoscillations and investigate the superoscillatory behavior as the field is random-

ized. It is shown that a decrease in spatial coherence can in some cases strengthen the

superoscillatory behavior, and in others decrease it. We then look at superoscillations

that appear in the phase of the correlation function in partially coherent Talbot car-

pets. Utilizing the Talbot effect, it is shown that superoscillations can be propagated

significant distances, even under a decrease in spatial coherence. It is also shown that

this decrease in spatial coherence can strengthen the superoscillatory behavior at the

primary and secondary Talbot images. We also introduce a modification to the class

of partially coherent vortex beams known as Twisted Vortex Gaussian-Schell Model

Beams through the addition of polarization. These beams have angular momentum

from three different sources: the underlying vortex order of the beam, the "twist"

given to the ensemble of beams, and the polarization of the beam. The combination

of these angular momentum properties allows for unprecedented control over the total

angular momentum of the field and its transverse distribution.
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INTRODUCTION

In recent years, singular optics and the study of structured light has dramatically

grown in significance and practicality. Structured light is light with non-trivial prop-

erties involving phase, coherence, polarization, angular momentum, etc. Singular

optics encompasses studies of structured light with localized and extended singulari-

ties. These singularities encompasses a massive array of different optical phenomena.

One of the most well known of these phenomena, and one that will be thoroughly used

and explored throughout this dissertation, is known as an optical vortex. An optical

vortex in a field is a singular point of zero intensity with a factor of 2π phase shift

around that singularity. These vortices have found relevance in several optical appli-

cations including optical communications[1], coronagraphy [2], coherence filtering [3]

laser detection and ranging systems[4], and optical tweezing[5], to name a few.

With their ever-growing prevalence in practical applications, it is valuable to ex-

plore the structure and use of optical vortices. One facet we are interested in is how to

further control their structure and angular momentum. Beams that possess these op-

tical vortices carry angular momentum that can be broken down into orbital angular

momentum (OAM) and spin angular momentum (SAM). Orbital angular momentum

is dependent on the spatial distribution of the field, thus it arises when there is a

phase singularity. Spin angular momentum is dependent on the polarization handed-

ness of the field. This angular momentum is what is employed in applications such

as optical tweezing [5] and free space optical communications (FSOC)[6].

Another facet we explore is phenomena created through manipulating optical vor-

tices. Due to their unique properties, optical vortices can be positioned such that

they create a phenomena known as superoscillations [7, 8]. Superoscillations are

oscillations of a wavefield that are locally higher than the bandlimit of the field. Ban-

dlimiting is the limiting of a signal’s spectral density to zero above a certain finite

frequency. The local rate of oscillation of a real-valued signal can be characterized by
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the separation of its zeros, with the space between two zeros representing one half of

an oscillation. When the space is less than one half of a wavelength, the field in the

region is said to be superoscillatory. It should be noted that moving said zeros does

not change the bandlimit [9]. Optical vortices, being a point of zero intensity, can

be used to represent this oscillation and thus create superoscillatory behavior. These

superoscillations have been used to create lenses that produce subwavelength spots

[10, 11, 12, 13, 14], thus they have gained practical interest.

We explore these characteristics and phenomena under partially coherent condi-

tions. While there have been investigations into structured light with randomized

field fluctuations, and there are classes of partially coherent beams that are used

for optical communications, it is an area that demands further investigation. Par-

tially coherent fields are of interest because they show promise in several practical

areas from enhancing imaging [15], to laser collimation [16], to resisting turbulence

along propagation [17]. It is through this dissertation that we explore several areas of

partially coherent structured light to provide unique insight into the properties and

behaviors of these phenomena.

Superoscillations have been largely studied under fully coherent conditions. This is

partially because when randomizing the field fluctuations, the points of zero intensity

often disappear [18, 19]. While this suggests that the superoscillatory behavior would

break down, this is only true from the intensity perspective. Though coherent optical

vortices dissipate as the coherence is decreased, analogous structures known as cor-

relation vortices can appear in the correlation functions of partially coherent fields

[20, 21]. This implies, and will be shown, that superoscillations must also appear

in the correlation function of partially coherent fields. Considering the possibilities

superoscillations bring to imaging and the array of applications for partially coher-

ent fields, the exploration of the combination of these two phenomena is an exciting

prospect.
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The backbone of the mathematics used in each chapter involves the correlation

function of the partially coherent fields. The function we employ is the cross-spectral

density. The cross-spectral density is a two-point correlation function at a singular

frequency that represents the spatial correlations at said frequency [22]. We use this

because it allows us to study the average properties of the field and, as discussed pre-

viously, some optical phenomena can only be observed in the phase of the correlation

function when the field is randomized.

In the first paper, we study superoscillations in partially coherent light using a

number of models of partially coherent beams possessing vortex structures. To create

these randomized fields, we use what is known as the beam wander model [23]. In this

model, the axis of propagation of a paraxial beam is treated as a random function of

transverse position. This allows us to control the coherence of the beam through a

wander parameter. The lower the value of the wander parameter, the more coherent

the beam becomes, being fully coherent when it is the smallest parameter in our

model. We also create superoscillatory behavior in our modal coherence model. It

consists of two closely spaced vortices modulated by a Gaussian envelope. We are able

to treat this field as coherent superposition of Laguerre-Gauss (LG) beams which in

turn lets us explore the effects of reducing the spatial coherence between the beams.

It is with these models and variations of them that we show that it is possible in

some cases for a decrease in coherence to decrease the spacing of superoscillatory

zeros, thus increasing the superoscillatory behavior.

Our second paper extends this study of partially coherent superoscillations and

explores a way to propagate these phenomena utilizing the Talbot effect. The Talbot

effect is often described as the “self-imaging” of a diffraction grating. At fixed distances

from the grating, referred to as the Talbot distance, the diffracted light forms an

image of the grating itself. The Talbot effect has been used to study the stability of

superoscillations on propagation when the source illuminating the Talbot grating is
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a superoscillatory function [24]. We use the paraxial form of the Talbot effect and

investigate how superoscillations of the Talbot grating manifest in the correlation

function of the Talbot images as well as how the superoscillatory behavior reacts to

changes in coherence. The superoscillatory function illuminating the grating creates a

group of closely spaced zeros directly after the grating. These can be observed in the

phase of the correlation function. Utilizing the Talbot effect, these superoscillations

are reproduced at the primary and secondary Talbot images. The zeros of the cross-

spectral density move closer together eventually annihilating as the spatial coherence

is decreased. When the annihilation occurs, the superoscillatory behavior disappears.

We show that changes in both the spatial coherence and the observation point can

dramatically affect the superoscillatory behavior at the Talbot distance, therefore

providing flexibility in tailoring these superoscillations for applications. All of the

superoscillatory behavior work has been explored with an eye towards using partially

coherent superoscillations in imaging applications such as superoscillatory lenses and

super-resolution imaging [25].

Our third paper explores modification of the properties of partially coherent vortex

beams in which our previous work utilizes. We are interested in the partially coherent

class of vortex beams as they have shown to be resistant to turbulent fluctuations

[1, 26], thus could be used to solve coupling issues that occur in free space optical

communication [6]. We specifically focus on the twisted vortex Gaussian Schell-model

beam (tvGSM) which can be constructed through the combination of a Rankine vor-

tex beam and a twisted Gaussian Schell-model beam (tGSM) utilizing a superposition

model. It has been shown that one can finely control the OAM of a tvGSM beam. We

now incorporate polarization as an additional parameter alongside the vortex order

and twist parameter to define a vector tvGSM (vtvGSM) beam [27]. This enables

investigation of the control one can have over the SAM and total angular momen-

tum in addition to the OAM. We show that with the addition of polarization there
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is unprecedented control over the total angular momentum of the partially coherent

beam. This control enables the creation of a counter-rotating beam. This is a beam

in which the OAM and SAM rotate in opposite directions at the core and outskirts

of the beam, enabling a positive angular momentum core surrounded by a negative

angular momentum edge and visa versa. In addition, this control allows for a "dead

zone" of angular momentum to be created in the core of the beam. The control

and capabilities exhibited by the vtvGSM beam are useful in applications where the

precise manipulation of angular momentum is a necessity, such as optical tweezing or

free space optical communications.



CHAPTER 1: Superoscillatory Behavior in Partially Coherent Fields

ABSTRACT

Superoscillations are oscillations of a wavefield that are locally higher than the ban-

dlimit of the field. Superoscillations have to date been studied primarily in coherent

wavefields; here we look at superoscillations that appear in the phase of the correlation

function in partially coherent fields. It is shown that a decrease in spatial coherence

can in some cases strengthen the superoscillatory behavior, and in others decrease it.

Superoscillations are studied in a number of model partially coherent fields, and the

influence of coherence on each model is considered.

1.1 Introduction

It is now widely recognized that band-limited signals can possess regions where the

local frequency is arbitrarily larger than the fastest oscillating Fourier component in

the function. The oscillations in these regions are known as superoscillations [1,2].

The local rate of oscillation of a real-valued signal is often dictated by the separation

of its zeros, with the space between two zeros representing one half of an oscillation;

when the space is less than one half of a wavelength, the field in the region is said to

be superoscillatory.

Superoscillations have been demonstrated by a number of mathematical techniques,

but perhaps the simplest of these was done by Chremmos and Fikioris [3], who showed

that zeros can be moved arbitrarily close together in a bandlimited function without

any effect on the bandlimit; a similar construction was used to design superoscillations

in the cross-section of a complex monochromatic optical field [4]. In such complex

fields, superoscillations may be directly connected to the presence of optical vortices,
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lines in three-dimensional space around which the field has a circulating or helical

structure [5]. The creation of superoscillations may therefore be viewed as the control

and manipulation of optical vortices and other field singularities.

As the superoscillatory zeros are moved closer together, the amplitude of the oscil-

lations between them decreases. Furthermore, the superoscillatory region is inevitably

surrounded by regions where the amplitude is significantly larger, becoming orders

of magnitude larger even for modest gains in local frequency. Though at first glance

this would appear to make superoscillations impractical, a number of researchers have

designed and tested superoscillation-based lenses that can improve the resolution of

imaging systems through the creation of subwavelength spots [6,7,8,9,10]. Superoscil-

lations have therefore become of practical as well as scientific interest.

When a field possesses fluctuations in space and time, i.e. it is partially coherent,

zeros of intensity typically disappear [11]. This in turn suggests that the superoscil-

latory behavior breaks down, as has been demonstrated in several studies [12,13].

Though coherent optical vortices disappear as the coherence is decreased, analogous

structures can appear in the correlation functions of partially coherent fields. These

correlation vortices or coherence vortices appear in the phase of a two-point correla-

tion function when one observation point is fixed [14,15]; it has also been recognized

that optical vortices evolve into correlation vortices as the spatial coherence of a

vortex beam is decreased [16].

With these observations in mind, it is clear that superoscillations must also appear

in partially coherent fields and, considering the numerous applications of partially

coherent fields [17], it is natural to wonder whether superoscillations in correlation

functions can also be applied to optical problems. In this paper, we study super-

oscillations in partially coherent light using a number of models of partially coherent

beams possessing vortex structures. We begin by considering the randomization of

a coherent beam possessing superoscillations, and are led to other possibilities. The
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dependence of superoscillations on the correlation length of the source is studied, and

we present some general remarks on the relationship between superoscillations and

coherence.

1.2 Coherence theory and singularities

To characterize fields that possess random fluctuations, it is necessary to study the

average properties of the field, in particular two-point correlation functions. Through-

out this paper we will use the cross-spectral density, which can be defined as [18]

W (r1, r2, ω) = ⟨Ũ(r1, ω)U(r2, ω)⟩ω, (1.1)

where U(r, ω) represents a monochromatic scalar field and ⟨· · · ⟩ω represents an av-

erage over an ensemble of monochromatic fields. For convenience, we use a tilde to

represent the complex conjugate throughout the paper. The spectral density of the

field, or intensity at frequency ω, can be found from the cross-spectral density with

r1 = r2 = r,

S(r, ω) = W (r, r, ω). (1.2)

One particularly important feature of the cross-spectral density is that it satisfies a

pair of Helmholtz equations in the spatial variables r1 and r2,

∆2
1W (r1, r2, ω) + k2W (r1, r2, ω) = 0,

∆2
2W (r1, r2, ω) + k2W (r1, r2, ω) = 0,

(1.3)

where ∆1 represents the Laplacian with respect to r1, and so forth. When r1 is

held fixed, the cross-spectral density will propagate like a monochromatic wave with

respect to r2. As we know that optical vortices are common within monochromatic

fields, the cross-spectral density with one position vector fixed should manifest vortices

as well, which are referred to as correlation vortices. These vortices are generic
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features for the cross spectral density.

We will be displaying and referring to vortex structures throughout the body of this

paper. A vortex, in a field or a correlation function, can be identified as a point where

all phase values converge. Though we have qualitatively described the structure of an

optical vortex, it is convenient to provide a visual example as well. Figure 1.1 displays

the intensity and the phase in the cross-section of a Laguerre-Gauss beam of radial

order n = 0 and azimuthal order m = 1 in the waist plane of the beam; Laguerre-

Gauss beams of non-zero azimuthal order possess a zero line on their propagation

axis and possess a vortex structure around that axis. It can be clearly seen that the

phase increases by 2π as one follows a counterclockwise path around the vortex core.

For a correlation function, the phase represents the absolute position of fringes as

measured in a wavefront splitting interferometer such as Young’s interferometer.

Figure 1.1: The intensity and Phase of a first order vortex within a Laguerre-Gauss
beam of radial order n = 0 and azimuthal order m = 1.

It is to be noted that the strength of superoscillations is often characterized by a

local wavenumber [19], which for the cross-spectral density is defined by the expres-

sion,

k(r1, r2) =
∣∣∣∣Im∇r2W (r1, r2)

W (r1, r2)

∣∣∣∣ . (1.4)

This quantity measures rapid oscillations of the complex phase of a wavefield; however,

the models we will introduce typically produce close-packed zeros, with a constant
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phase between them, and the local wavenumber is not optimal for characterizing the

behavior. Throughout this paper we monitor the superoscillatory behavior through

measuring the separation distance between the singularities.

1.3 Partially coherent superoscillations

We are interested in exploring how altering the spatial coherence of a field affects

any superoscillatory behavior contained in the field. We take the natural first step of

setting up a coherent field that already contains superoscillations and study how this

behavior changes as the spatial coherence is decreased.

We model a randomized superoscillatory field using what is known as the beam

wander model [11]. In this model, the axis of propagation of a paraxial beam is

treated as a random function of transverse position. The cross spectral density of

such a field may be written as

W (r1, r2) =
∫

Ũ(r1 − r0)U(r2 − r0)f(r0)d2r0, (1.5)

with f(r0) being the probability density for the position of the axis and r0 being the

transverse position on the axis, such that

f(r0) =
1

πδ2
exp

[
−(x2

0 + y20)

δ2

]
, (1.6)

with |r0|2 = x2
0 + y20 and δ represents the wander radius of the axis.
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Figure 1.2: Phase of the cross-spectral density of two closely spaced vortices using
the beam wander model. For each of the images above, λ = 500nm, (x1, y1) =
(0.0, 1000)µm, σ = 5mm, and ∆ = 0.1λ. The wander radius δ and corresponding
vortex separation distance α are (a) δ = 1µm and α = 0.1µm, (b) δ = 10µm and
α = 0.27µm, (c) δ = 100µm and α = 28.3µm. The plot range in (c) is increased to
accommodate the very large vortex separation.

To study a partially coherent field possessing superoscillations, we choose for U(r)

the form,

U(r) = (z +∆)(z −∆) exp

[
− r2

2σ2

]
, (1.7)

where z = x + iy, σ is the beam width, and ∆ is the complex spacing of the pair

of vortices built into the function. In this model, δ is inversely related to the field

coherence: a smaller delta corresponds to a more coherent field. We use a Gaussian

beam for mathematical convenience; however, it is to be noted that a Gaussian func-

tion is not strictly bandlimited. Within the context of the paraxial approximation,

a choice of ∆ smaller than one quarter of the wavelength (with less than one half of

a wavelength between the zeros) will accurately approximate superoscillatory behav-

ior. The relationship between such “leaky” functions and superoscillations has been

explored in depth elsewhere [20].

The integral of Eq. (1.5) is evaluated in Appendix A. The final result for the cross-
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spectral density may be written as

W (r1, r2) = Q1

[
1

A3
+

2C̃1C2

A2
+

D̃1D2

2A

]
, (1.8)

where:

A =
1

σ2
+

1

δ2
, (1.9)

D̃1 = C̃2
1 −∆2, D2 = C2

2 −∆2, (1.10)

Ci = Cix + iCiy, (1.11)

C1x = x1 −
x1

σ̃2 +
x2

σ2

2A
, C2x = x2 −

x1

σ̃2 +
x2

σ2

2A
,

C1y = y1 −
y1
σ̃2 +

y2
σ2

2A
, C2y = y2 −

y1
σ̃2 +

y2
σ2

2A
.

(1.12)

The constant Q1 is defined in Eq. (1.38). It is a combination of Gaussian functions

which possess no zeros, and can be neglected in the study of superoscillations.

We now consider how the position of the superoscillatory vortex pair changes as

the spatial coherence of the field is decreased. We study the vortex structure of the

correlation function by holding position vector r1 fixed and evaluating the phase of

the cross-spectral density with respect to r2. This phase is plotted in Fig. 1.2 for

several values of δ, starting with the vortices separated by 0.1λ. As the coherence

is decreased, the separation distance between the two vortices increases, reaching a

half-wavelength separation when the wander radius approaches 10µm. Furthermore,

the vortices transition to being aligned along the y-axis instead of the x-axis, in line

with the reference point. As can be seen in Fig. 1.2(c), the distance between vortices

continues to increase as the wander radius increases.
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Figure 1.3: Phase of the cross-spectral density of two closely spaced vortices using
the beam wander model. For each of the images above, λ = 500nm, δ = 10µm ,
σ = 5mm, and ∆ = .1λ. The reference point position and corresponding vortex
separation distance α are (a) (x1, y1) = (0.0, 1000)µm and α = 0.27µm, (b) (x1, y1) =
(0.0, 2000)µmand α = 0.105µm, (c) (x1, y1) = (0.0, 4000)µm and α = 0.07µm.

Qualitatively similar behavior arises when the reference point r1 is moved to other

locations at a comparable radial distance from the beam axis, though the orientation

of the vortices changes. For example, if the reference point is rotated to the x-axis,

the vortices still separate as the spatial coherence is decreased, but they align along

the x-axis, again in line with the reference point.

Though the preceding example indicates that the superoscillatory behavior is de-

graded as spatial coherence is decreased, it can be at least partly recovered if the

reference point is moved significantly beyond the wander radius. Figure 1.3 shows

the change in the vortex position as r1 is moved further from the axis. It can be seen

that the correlation vortices, which had separated and moved to a vertical line, move

back together along a horizontal line with increasing |r1|, looking very much like the
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Figure 1.4: Phase of the cross-spectral density of two closely spaced vortices as the
spatial coherence is incrementally lowered. For each of the images above, λ = 500nm,
(x1, y1) = (0.0, 1000)µm, σ = 5mm, and ∆ = 0.1λ. The wander radius δ and
corresponding vortex separation distance α are (a) δ = 4µm and α = 0.089µm, (b)
δ = 5µm and α = 0.071µm, (c) δ = 6µm and α = 0.019µm, and d) δ = 7µm and
α = .096µm.

decrease of spatial coherence has been reversed by moving the observation point.

We may interpret this effect as follows. The overall structure of the correlation

function depends on the random fluctuations at both r1 and r2, and the correlations

between them. As we move r1 outside the wander radius, the fluctuations of the

field at this point are greatly reduced, resulting in the overall field appearing more

coherent. This observation indicates that, with an appropriate choice of observation

point, we may maintain the superoscillatory behavior of the field even as the spatial

coherence decreases. It is to be noted that the position of r1 still lies within the beam
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radius of σ = 5mm, so the field intensity at this point is still appreciable.

In both Figs. 1.2 and 1.3, the vortices change their orientation with respect to

the origin. It is natural to ask how the separation distance of the vortices evolves

as this transition occurs, and this is illustrated for a change of δ in Fig. 1.4. As

we incrementally increase the wander radius, the singularities in fact come closer

together at first, meaning that a decrease in partial coherence has enhanced the

superoscillatory behavior. The singularities reach a minimum non-zero separation

before moving along the vertical axis. It is to be noted that this enhancement occurs

only for a small range of wander radii δ; however, this shows that the randomization

of a field, under the right circumstances, can decrease the separation distance between

two singularities.

1.4 Partially coherent superoscillations from higher-order vortex beams

The first example above indicates that, outside of small range of δ values, a decrease

in spatial coherence tends to increase the spacing between correlation vortices in a

wavefield. We may use this observation, however, as a strategy to produce superoscil-

lations in a partially coherent field from a higher-order vortex beam. It is well-known

that higher-order vortices are unstable, non-generic, features of a wavefield that will

break into a collection of first-order vortices under wavefield perturbations. Such

perturbations include a decrease in spatial coherence, as has been shown in Ref. [21].

Thus we can make a superoscilatory partially coherent field by perturbing a higher-

order vortex beam, as we illustrate next.
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Figure 1.5: Phase of the cross-spectral density of a second order vortex and its sub-
sequent first order vortices. For each of the images above, λ = 500nm, (x1, y1) =
(0.0, 1000)µm, σ = 5mm. In the figure: (a) δ = 1µm, (b) δ = 10µm, (c) δ = 100µm.
(d) shows the relationship between the increase in wander radius (decrease in coher-
ence), and the separation distance between the two singularities.

We consider the randomization of a second-order Laguerre-Gauss beam, of order

n = 0, m = 2, of the form

ULG
0,2 (x, y) =

√
2

2πσ2

(√
2

σ

)2

(x± iy)2 exp

[
− 1

σ2
(x2 + y2)

]
, (1.13)

where σ is the beam width at the waist plane z = 0. We use this beam in Eq. (1.5)

to generate the cross-spectral density, which is a special case of the class of beams
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given in [22]. The cross-spectral density may be written as

W (r1, r2) = πF (r1, r2)
{ 1∑

l=0

(
2

l

)2
Γ(l + 1)

A4−l+1

[
1

α2
(x2 ± iy2)−

1

σ2
(x1 ± iy1)

]2−l

×
[
1

α2
(x1 ∓ iy1)−

1

σ2
(x2 ∓ iy2)

]2−l

+
Γ(3)

A3

}
,

(1.14)

where A is the same as in Eq. (1.9), and

1

α2
≡
[
1

σ2
+

1

δ2

]
. (1.15)

The quantity F (r1, r2) represents the envelope of a Gaussian Schell-model beam as

defined by

F (r1, r2) ≡
|C|2

πδ2
exp

[
− r21
Aδ2σ̃2

]
exp

[
− r22
Aδ2σ2

]
exp

[
−|r1 − r2|2

A|σ|4

]
. (1.16)

Figure 1.5 shows the phase of the cross-spectral density as a function of δ. In the

coherent limit, the phase of the cross-spectral density manifests a single second-order

vortex at the origin. As the coherence decreases, the second-order vortex separates

into 2 first-order singularities that are very close together, exhibiting superoscillatory

behavior. As with the previous example, as the coherence is further decreased, the

vortices will separate enough that they no longer represent superoscillations.

One particular point of interest is to look at the rate at which the two first-order

singularities separate while still being superoscillatory. Figure 1.5(d) shows the the

relationship between the wander radius and the separation distance between the sin-

gularities. It is immediately apparent that it only requires a small decrease in co-

herence, with a wander radius much smaller than the beam width, to increase the

separation distance to the point that we would no longer consider the field to be su-

peroscillatory. This limit is shown as the dotted line in Fig. 1.5(d), which represents

a half-wavelength separation distance. We used a wander radius of 1µm to represent



18

the coherent limit. For a wander radius of 9µm, the vortex separation increases to

approximately 250 nm, equal to a half-wavelength.

This example shows we can create superoscillations in a partially coherent field by

decreasing the spatial coherence of a second-order vortex beam. If we use an even

higher-order vortex beam, we can get a line of correlation vortices representing an

extended region of superoscillatory behavior. Again, a change in the position of the

observation point allows one to change the orientation of the line of vortices.

Here we have explicitly used the observation that a decrease of coherence in the

beam wander model results in a decrease in superoscillatory behavior. This brings us

to wonder if there are any scenarios in which a decrease in coherence can bring about

an increase in superoscillatory behavior. This is explored in the next section.

1.5 Modal coherence model

The previous examples showed that superoscillatory behavior tends to decrease as

the spatial coherence of a field is significantly lowered. However, this is not a universal

behavior. It is possible to introduce fields for which the zero spacing decreases as the

coherence is decreased, as we now show.

We again consider a field of two closely-spaced vortices modulated by a Gaussian

envelope, as in Eq. (1.7). Again, ∆ is the separation of the vortices, σ is the width

of the Gaussian, and z = x+ iy. The zeros are aligned along the y-axis for this case,

so that ∆ is pure imaginary.

We now rewrite Eq. (1.7) as a coherent superposition of Laguerre-Gauss (LG)

beams of orders (0,0) and (0,2). The field then takes the form,

U(r) = U02(r)−∆2U00(r) (1.17)

where

U02(r) = z2 exp

[
− r2

2σ2

]
, (1.18)



19

Figure 1.6: Phase of the cross-spectral density of two closely spaced vortices as a
function of r2 with r1 = (0.5, 0). Here ∆ = 0.1iµm and σ = 1µm. The degree of
coherence and the corresponding separation distance α for the first three figures are
(a) µ = 1 and α = 0.2µm,(b) µ = 0.25 and α = 0.1µm, (c) µ = 0 and α = 0.02µm. (d)
shows the relationship between the change in degree of coherence and the separation
distance between the singularities.

and

U00(r) = exp

[
− r2

2σ2

]
. (1.19)

We have left off the traditional normalization of the LG beams for simplicity. By

treating our superoscillatory field as a superposition of LG beams, we can now explore

the effect of reducing the spatial coherence between the beams. If we imagine that

the overall coherence between the beams is characterized by the complex degree of

coherence µ, we can find the cross-spectral density by taking the product of Ũ(r1)
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Figure 1.7: The spectral density S(r,ω) along the y-axis of two closely spaced vortices
as a function of r2 = r1 = r. Here ∆ = 0.1iµm and σ = 1µm.

with U(r2), and introducing the factor µ into the cross terms, giving the result,

W (r1, r2) = exp

[
− r21
2σ2

]
exp

[
− r22
2σ2

] [
z̃21z

2
2 − µ̃∆2z̃21 − µ∆̃2z22 + ∆̃2∆2

]
. (1.20)

Figure 1.6 shows the phase of the cross-spectral density for decreasing values of µ,

taken to be real for simplicity. The vortices, which are already superoscillatory for µ =

1, move closer together as the degree of coherence is decreased: the superoscillatory

behavior becomes stronger. Figure 1.6(d) shows that the zero spacing is 0.08µm for

µ = 0, one sixth of a wavelength. This example demonstrates that a decrease of

coherence can, under the right circumstances, create or strengthen superoscillations.

There is one significant advantage to be found in using partially coherent fields to

produce superoscillations. Figure 1.7 displays the spectral density (intensity) of the

field, as defined in Eq. (1.2), along the y-axis as the degree of coherence is lowered.

The zeros of intensity for the fully coherent field disappear as the spatial coherence

is decreased, resulting in a uniform low, but non-zero, intensity in the region of the

correlation vortices. Because correlation vortices do not have to appear at regions
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of zero intensity, it is possible to have appreciable light in a superoscillatory region,

a strong difference from the coherent case. Though the intensity is still low for this

example, more sophisticated examples might demonstrate superoscillatory correlation

functions in regions of high intensity.

We noted earlier that we have been using beams which are only approximately

bandlimited, i.e. “leaky.” The modal model for a partially coherent superoscillatory

beam presented here, however, is simple enough to be adapted to a true bandlimited

field using Bessel beams. Noting that, for a small argument, a Bessel beam may be

approximated by the form,

Jn(x) ≈
1

n!

(x
2

)n
, (1.21)

we may construct a coherent field with zeros approximately at positions ±∆ using

the expression,

U(r) = −∆2J0(γr) +
8

α2
J2(γr)e

2iϕ, (1.22)

where γ may be identified as the inverse width of the Bessel beam. By assuming

a degree of coherence µ between the zeroth and second order Bessel components of

the field, we can again study how the superoscillations change as µ is decreased. We

again chose r1 = (0.5, 0), ∆ = 0.1iµm, and λ = 500nm as in Fig. 1.6. The quantity

γ = 5µm, which corresponds to a Bessel beam with an opening angle of 23◦. The

evolution of the vortices of the correlation function matched the results of Fig. 1.6

almost exactly, showing that we get the same superoscillatory behavior for a true

bandlimited function.

1.6 Modal coherence: Radial Case

For imaging applications, a superoscillatory spot created with a zero ring is prefer-

able to a superoscillation created with a pair of point zeros. In 2020, for example,

Smith and Gbur [10] demonstrated how to generalize the method of Chremmos and

Fikioris [3] to produce a superoscillatory point-spread function using ring zeros. Here,
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Figure 1.8: Phase of the cross-spectral density of the radial mode of the example
demonstrated in figure 3. : in this case r0 = 0.1µm, σ = 0.5µm, and (x1, y1 =
(0.05, 0.0). In the figure, (a) µ = 1,(b) µ = 0.5,(c) µ = 0.

we explore whether the modal coherence method of the previous section can be used

to produce superoscillatory spots in the cross-spectral density.

We now work with LG modes of different radial order, which possess zero rings,

instead of modes of different azimuthal order. We alter Eqns. (1.17), (1.18), and

(1.19) to instead produce a zero ring at a radial position r0. We have

U(r) =
r20 − r2

2σ2
exp

[
− r2

2σ2

]
= U10(r)−

(
1− r20

2σ2

)
U00(r), (1.23)

U10(r) =

(
1− r2

2σ2

)
exp

[
− r2

2σ2

]
, (1.24)
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U00(r) = exp

[
− r2

2σ2

]
. (1.25)

Taking these adjustments into account and utilizing the same process as the previous

example. The cross-spectral density for the radial case can be show to be:

W (r1, r2) = exp

[
− r21
2σ2

]
exp

[
− r22
2σ2

] [(
1− r21

2σ2

)
×
(
1− r22

2σ2

)
− µ̃

(
1− r20

2σ2

)(
1− r21

2σ2

)
− µ

(
1− r20

2σ2

)(
1− r22

2σ2

)
+

(
1− r20

2σ2

)2
]
.

(1.26)

The radius of the zero ring can be determined the bracketed term of equation 1.26.

If we set that term equal to zero and solve for r22, we find the zero ring has a radius

in r2 given by

r22 = 2σ2

1− µ̃
(
1− r20

2σ2

)(
1− r21

2σ2

)
−
(
1− r20

2σ2

)2(
1− r21

2σ2

)
− µ

(
1− r20

2σ2

)
 . (1.27)

This allows us to determine the spot size of this field for any values of r1, r0, and µ.

Figure 1.8 gives an example of the phase of the cross-spectral density as the co-

herence is decreased; the discontinuous jump represents the zero ring, across which

the phase changes by π. We see that the size of the ring increases as the spatial

coherence is decreased. It should be noted that the spot size rapidly expands to its

limiting value, and thus the ring radii in (b) and (c) are almost identical. Though

we used a modal method for introducing partial coherence, the result is similar to

that of the beam wander model. The difference appears to arise due to the different

functional forms of the modes in the radial ring case and the vortex case. It may

be possible to produce rings that decrease in size as the coherence decreases, if more

complicated combinations of modes are used.
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1.7 Practical considerations

The model sources used in the aforementioned examples can doubtless be produced

by a variety of methods, but it is worthwhile to give an example of how each can be

generated, at least in principle.

A simple method for producing a beam satisfying the beam wander model is shown

in Fig. 1.9(a), and was first described in [21]. A partially coherent illuminating field

of Schell-model form, such as can be produced by passing light through a rotating

ground glass plate, is passed through a vortex phase mask and then focused. The

field in the focal plane will have the form of Eq. (1.5). Recently, it has been noted

that partially coherent fields of the beam wander form possess unique topological

characteristics on propagation [23]. To produce partially coherent superoscillatory

fields, the simple vortex phase mask can be replaced by a mask producing the phase

structure of Eq. (1.7).

The modal coherence model consists of a direct superposition of two Laguerre-

Gauss modes of different orders with a global degree of coherence µ between them.

Such a method could be produced, for example, by using a Mach-Zender interfer-

ometer, as shown in Fig. 1.9(b). In each arm of the interferometer, an SLM can be

used as a mirror and to produce the desired mode. One mirror in one arm of the

interferometer can be vibrated to produce a random phase fluctuation to produce

partial coherence.
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Figure 1.9: Simple experimental schemes for producing (a) the beam wander model,
and (b) a partially coherent mode combination.

1.8 Concluding remarks

In this paper, we have explored the effect of partial coherence on superoscillatory

behavior. Several different models were used to generate partial coherence, which

have shown that it is possible in some cases for a decrease in coherence to decrease

the spacing of superoscillatory zeros. The zeros manifest in the two-point cross-

spectral density instead of the spectral density of the field, which means the rapid

oscillations of the superoscillatory phase can be see even in locations where the light

intensity is not close to zero. Sensing schemes which take advantage of interferometry

to image objects and otherwise detect their structure could potentially benefit from

such partially coherent superoscillations, and it is hoped that this work will stimulate

further investigations into the physical and practical implications of these structures.
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APPENDIX: Cross-spectral Density of the Beam Wander Model

In this appendix, we will evaluate equation 1.5, showing the steps leading to the

cross-spectral density presented in equation 1.8. We begin with a field of

U(r) = (z +∆)(z −∆) exp

[
− r2

2σ2

]
. (1.28)

In this field, σ is the beam width and ∆ is the spacing of the zeros. The beam wander

model is realized with a cross spectral density of

W (r1, r2) =
∫

Ũ(r1 − r0)U(r2 − r0)f(r0)d2r0. (1.29)

f(r0) is the probability density for the position of the axis and r0 is the transverse

position on the axis. In this case, f(r0) is

f(r0) =
1

πδ2
exp

[
−(x2

0 + y20)

δ2

]
. (1.30)

δ is the wander radius, which is the coherence parameter for our model. The cross-

spectral density for our field is thus initially defined as

W (r1, r2) =
1

πδ2

∫
(z̃1 − z̃0 +∆)(z̃1 − z̃0 −∆)(z2 − z0 +∆)(z2 − z0 −∆)

× exp

[
−(r1 − r0)2

2σ2

]
exp

[
−(r2 − r0)2

2σ2

]
exp

[
−r20
δ2

]
d2r0.

(1.31)

We begin simplifying by grouping the r0 terms together, giving

W (r1, r2) =
1

πδ2

∫ [
(z̃1 − z̃0)

2 −∆2
] [
(z2 − z0)

2 −∆2
]
exp

[
− r21
2σ2

]
exp

[
− r22
2σ2

]
× exp

[
(r1 + r2) · r0

σ2

]
exp

[
−
(

1

σ2
+

1

δ2

)
r20

]
d2r0.

(1.32)



29

We introduce a new function Q, defined as

Q =
1

πδ2
exp

[
− r21
2σ2

]
exp

[
− r22
2σ2

]
. (1.33)

In Cartesian coordinates, the cross-spectral density now has the form,

W (r1, r2) = Q

∫ [
[(x1 − x0)− i(y1 − y0)]

2 −∆2
] [
[(x2 − x0) + i(y2 − y0)]

2 −∆2
]

× exp

[
(x1 + x2)x0 + (y1 + y2)y0

σ2

]
exp

[
−
(

1

σ2
+

1

δ2

)
r20

]
d2r0.

(1.34)

Now we complete the square with respect to the x0 and y0 exponents with the intro-

duction of the quantities:

A =
1

σ2
+

1

δ2
, (1.35)

Bx =
x1

σ̃2
+

x2

σ2
, (1.36)

By =
y1
σ̃2

+
y2
σ2

, (1.37)

and the definition of a new function

Q1 = Q exp

[
B2

x

4A

]
exp

[
B2

y

4A

]
. (1.38)

This process reduces the cross-spectral density to the form

W (r1, r2) = Q1

∫ [
[(x1 − x0)− i(y1 − y0)]

2 −∆2
] [
[(x2 − x0) + i(y2 − y0)]

2 −∆2
]

× exp

[
−A

(
x0 −

Bx

2A

)2
]
exp

[
−A

(
y0 −

By

2A

)2
]
d2r0.

(1.39)
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We now do the coordinate transformation,

X = x0 −
Bx

2A
, (1.40)

Y = y0 −
By

2A
, (1.41)

providing us with a cross-spectral density defined as

W (r1, r2) = Q1

∫ [
[(x1 −X − Bx

2A
)− i(y1 − Y − By

2A
)]2 −∆2

]
×
[
[(x2 −X − Bx

2A
) + i(y2 − Y − By

2A
)]2 −∆2

]
× exp

[
−AX2

]
exp

[
−AY 2

]
dXdY.

(1.42)

To evaluate the integrals, we define the terms

−C1x = −x1 +
Bx

2A
,−C2x = −x2 +

Bx

2A
,

−C1y = −y1 +
By

2A
,−C2y = −y2 +

By

2A
.

(1.43)

We additionally define the following complex quantities,

Ci = Cix + iCiy, Z = X + iY, Z̃ = X − iY. (1.44)

Applying all of the above definitions, and plugging them into the cross-spectral den-

sity, we simplify our integral to the form,

W (r1, r2) = Q1

∫
e−A(X2+Y 2)

[
(C̃1 + Z̃)2 −∆2

] [
(C2 + Z)2 −∆2

]
dXdY. (1.45)

We introduce a final pair of constants,

D̃1 = C̃2
1 −∆2, D2 = C2

2 −∆2. (1.46)
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All components of the integrand are now in powers of Z and Z̃. By converting to

polar coordinates, we find that a number of components of the integral evaluate to

zero, and we are left with

W (r1, r2) = Q1

∫ [
r4 + 4C̃1C2r

2 + D̃1D2

]
rdrdϕ. (1.47)

This integral can be readily solved, allowing us to write our final expression for the

cross-spectral density as

W (r1, r2) = Q1

[
1

A3
+

2C̃1C2

A2
+

D̃1D2

2A

]
. (1.48)



CHAPTER 2: Partially coherent superoscillations in the Talbot effect

ABSTRACT

Oscillations of a wavefield that are locally higher than the bandlimit of the field are

known as superoscillations. Superoscillations have to date been studied primarily in

coherent wavefields; here we look at superoscillations that appear in the phase of the

correlation function in partially coherent Talbot carpets. Utilizing the Talbot effect,

it is shown that superoscillations can be propagated into the far field, even under a

decrease in spatial coherence. It is also shown that this decrease in spatial coherence

can strengthen the superoscillatory behavior at the primary and secondary Talbot

images.

2.1 Introduction

It is now widely recognized that band-limited signals can possess regions where

the local frequency is arbitrarily larger than the fastest oscillating Fourier compo-

nent in the function. The oscillations in these regions are known as superoscillations

[1,2,3]. Superoscillations have been rigorously mathematically discussed with their

relation to quantum mechanics and the Schrödinger equation in [4]. In a real-valued

spatial wavefunction, the local rate of oscillation is dictated by the separation of its

zeros, with the space between two zeros representing one half of an oscillation; when

the space is less than one half of a wavelength, the field in the region is said to be

superoscillatory. Superoscillations of this type can be constructed by a variety of

mathematical techniques, but the simplest of these is through the direct placement of

polynomial zeros in a one-dimensional [5] or two-dimensional [6] bandlimited signal,

which can be shown to not affect the bandlimit. In two-dimensional complex fields,
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these superoscillations may be directly connected to the presence of optical vortices,

lines of zero intensity in three-dimensional space around which the field has a circu-

lating or helical structure. The creation of superoscillations may therefore be viewed

as the control and manipulation of optical vortices and other field singularities. Al-

ternatively, superoscillations in a complex field may be characterized by defining a

local wavenumber that directly measures the local rate of oscillation of the field [7].

Superoscillations have already been considered as a method to break the resolution

limit of traditional optical imaging systems, and superoscillatory lenses have been

studied both experimentally and theoretically [8,9,10,11]. The use of superoscillations

in imaging is typically limited, however, by high intensity sidelobes that accompany

the subwavelength superoscillatory spot, and the intensity of the sidelobes increases

as the width of the central spot is decreased.

Much more recently, researchers have begun studying the behavior of superoscil-

lations in fields possessing random fluctuations, i.e. partial coherence. Partially

coherent fields have been studied and shown promise in several applications ranging

from enhancing image quality in microscopy[12], to propagation through turbulent

atmosphere [13], to laser collimation[14]. However, when it comes to superoscillations,

partial coherence is a relatively untouched parameter. When the spatial coherence

of a field is reduced, zeros of intensity typically disappear [15], which suggests that

the superoscillatory behavior breaks down. Several studies have analyzed the effect

of noise on a superoscillatory signal, and have quantified the sensitivity of superoscil-

lations to random fluctuations [16,17].

Though coherent optical vortices disappear as the coherence is decreased, analogous

structures can appear in the correlation functions of partially coherent fields. These

correlation vortices, or coherence vortices, appear in the phase of a two-point corre-

lation function when one observation point is fixed[18,19]; it has also been recognized

that coherent optical vortices evolve into correlation vortices as the spatial coher-
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ence of a vortex beam is decreased, making them, and possibly any superoscillations

associated with them, significantly more robust. Quite recently, researchers showed

theoretically that some methods of randomizing superoscillatory fields will weaken the

superoscillations (i.e. reduce the local frequency), while others will in fact strengthen

the superoscillations [20]. Furthermore, it was shown that the intensity can increase

in the neighborhood of partially coherent superoscillations, potentially making them

more useful for applications.

To continue this analysis of superoscillations in partially coherent fields, it is natural

to examine the effect that propagation has on the superoscillatory behavior; the 2021

paper [20] considered only fields in the source plane. In 2006, Berry and Popescu used

the famous Talbot effect to study the stability of superoscillations on propagation

when the source Talbot grating is the canonical superoscillatory function [21]. In

that work, the authors looked at the survival of superoscillations in the Talbot effect

when non-paraxial contributions to the field are considered.Superoscillations and the

Talbot effect have also been recently studied with their relation to the evolution of

Dirac Combs[22]. Here, we use the paraxial form of the Talbot effect and investigate

how superoscillations of the Talbot grating manifest in the correlation function of

the Talbot images. Previous work studying the effect of partial coherence in the

Talbot effect has focused on the change in the intensity of the Talbot carpet [23].

Using the correlation function, we draw some conclusions regarding the relationship

of superoscillations, propagation, and partial coherence.

We begin by briefly reviewing the relevant physics of the Talbot effect, then discuss

the introduction of superoscillations and partial coherence into the Talbot effect. We

then describe the results of simulations of partially coherent Talbot superoscillations.

2.2 The Talbot effect and superoscillations

This paper primarily focuses on the Talbot effect in the canonical superoscillatory

function, and so we first review both of these phenomena and their combination.
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The Talbot effect is often described as the “self-imaging” of a diffraction grating.

At a multiple of a fixed distance from the grating, referred to as the Talbot distance,

the diffracted light forms an image of the grating itself. Assuming a thin grating, its

effect on an illuminating field can be described by a transmission function t(x), given

by

t(x) =
∞∑

n=∞

cn exp

[
i2πnx

L

]
, (2.1)

where the Fourier coefficients of the grating cn are given by the integral,

cn =
1

L

∫ L

0

t(x′) exp

[
−i2πnx′

L

]
dx′. (2.2)

Let us assume a quasi-monochromatic field of free-space wavenumber k0 is illumi-

nating the grating. For a normally incident plane wave, the field immediately after

the grating is simply given by U0(x) = t(x), and represents the field in a spatial

frequency decomposition.

The field at any propagation distance z can be determined using the angular spec-

trum representation, where each plane wave is propagated separately, with

U(x, z) =
∞∑

n=∞

cn exp

[
i2πnx

L

]
exp [ikzz] , (2.3)

where

kz =
√

k2
0 − (2πn/L)2. (2.4)

Assuming that the grating period is sufficiently large, we may apply the paraxial form

of kz and simplify it to the form,

kz ≈ k0 −
2π2n2z

k0L2
, (2.5)
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resulting in the propagation formula

U(x, z) = exp[ik0z]
∞∑

n=∞

cn exp

[
i2πnx

L

]
exp

[
−i2π2n2z

k0L2

]
. (2.6)

It can be readily seen that the rightmost complex exponential will be unity at dis-

tances which are a multiple of zT , called the Talbot distance, and given by

zT =
k0L

2

π
. (2.7)

At these special distances, the field U(x, zT ) exactly reproduces the field U0(x) at the

grating. It can also be shown that at half the Talbot distance, the field is an exact

copy of the grating field, but shifted half a period.

When the illuminating field is a tilted plane wave, with transverse wavenumber kx,

the Talbot pattern undergoes nontrivial changes [24]. We can incorporate this into

the above formulas by now assuming that the field immediately after the grating is

U0(x) = t(x) exp[ikxx], resulting in the expression

U(x, z) = exp[ik0z] exp[−ik2
xz/2k0] exp[ikxx]

×
∞∑

n=∞

cn exp

[
i2πnx

L

]
exp

[
−i2π2n2z

k0L2

]
exp

[
−4πinkxz

2k0L

]
.

We will have need of this formula in deriving the partially coherent Talbot effect in

the next section.

It is to be noted that the paraxial propagation term exp[ik0z] does not affect the

position of any phase singularities in the field, nor the behavior of superoscillations

in the transverse plane. We will leave this term out of our calculations going forward,

to simplify the phase plots.

We will use the canonical superoscillatory function as our transmission function
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t(x). This canonical function is given by the expression

t(x) =
[
cos(

πx

L
) + ia sin(

πx

L
)
]N

, (2.8)

where a > 1 and N ≫ 1; the quantity N represents the number of oscillations in

the superoscillatory area, and a represents the degree of superoscillation. If N is

even, the period of the function is L. As discussed by Berry and Popescu [21], this

function possesses a maximum spatial frequency Nπ/L, but possesses regions where

the local wavenumber oscillates at Nπa/L, larger than the maximum. Provided

Nπa/L is greater than the free-space wavenumber k0, a field normally incident upon

this superoscillatory grating will produce oscillations beyond the wave bandlimit at

the Talbot distance.

Figure 2.1: The intensity view of the Talbot carpet containing superoscillations di-
rectly after the grating, with a = 8, N = 10, λ = 0.5µm, L = 4µm.

An example of the intensity pattern of a superoscillatory Talbot carpet is shown

in Figure 2.1, for a normally incident plane wave. For this example, and those that

follow, we have taken a = 8, N = 10, λ = 0.5µm, L = 4µm. For these choices,

the maximum Fourier spatial frequency of the grating is kmax = 7.85µm−1, and

the maximum local superoscillatory frequency is kso = 62.8µm−1; the wavenumber

is k0 = 12.6µm−1. It can be seen that the intensity pattern is reproduced at the
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Talbot distance and the half Talbot distance. At other fractional Talbot distances,

higher spatial frequency copies of the original pattern can be seen, corresponding

to the fractional Talbot effect [25]. We will focus on the effect of spatial coherence

on the superoscillations at the Talbot and half Talbot distance. It is valuable to

note that through the Talbot effect, we see replications of the superoscillations along

the propagation axis. This is analogous, though quite different to the revival of

supperoscilations along propagation through an absorbing media shown in [26].

2.3 Partially coherent superoscillations and the Talbot effect

We now consider the effects of spatial coherence on the system and its superoscil-

lations. The standard quantity used to characterize spatial coherence is the cross-

spectral density, defined as [27]

W (r1, r2, ω) = ⟨U∗(r1, ω)U(r2, ω)⟩ω, (2.9)

where ⟨· · · ⟩ω represents an average over a statistical ensemble of monochromatic fields,

and in our case r = (x, z). We will be working with quasi-monochromatic fields, which

can be well-approximated by their behavior at a single frequency, and will suppress

ω as an explicit argument going forward.

We consider a system where the Talbot grating is illuminated by a partially coherent

plane wave with cross-spectral density in the plane z = 0 of the form

W0(x1, x2) = S0 exp[−(x2 − x1)
2/2σ2

g ], (2.10)

where S0 is the average spectral density (intensity) and σg is the correlation length.

This correlation function may be written in a Fourier representation as

W0(x1, x2) =

∫ ∞

−∞
W̃0(kx) exp[ikx(x2 − x1)]dkx. (2.11)
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In this form, the cross-spectral density is expressed as the average over an ensemble

of tilted plane waves, with the probability density

W̃0(kx) =
1

2π

∫ ∞

−∞
W0(x)e

−ikxxdx =
S0σg√
2π

exp
[
−k2

xσ
2
g/2
]
. (2.12)

The constant factor plays no role in the properties of superoscillations. We introduce

σk ≡ 1/σg for convenience, and write

W̃0(kx) = exp[−k2
x/2σ

2
k]. (2.13)

Following Berry and Popescu [21], the transmission function of the superoscillatory

grating may be written in the form,

t(x) =
N∑

m=0

cm exp

[
iNπVmx

L

]
, (2.14)

Cm =
N !

2N
(−1)m

(a2 − 1)N/2
[
a−1
a+1

]NVm
2[

N(1+Vm)
2

]
!
[
N(1−Vm)

2

]
!
, (2.15)

with

Vm = 1− 2m

N
. (2.16)

On propagation, the expression for a field with transverse wavenumber kx may be

found from Eq. (2.8) to be of the form,

U(x, z) =
N∑

m=0

cm exp

[
i

(
NπVm

L
+ kx

)
x

]
exp

[
−i

z

2k0
(NVmπ/L+ kx)

2

]
,

where again we note that the trivial propagation term exp[ik0z] has been neglected.

This field may be substituted twice into Eq. (2.11), and the integral over kx can be

evaluated analytically. The final result for the cross-spectral density may be written

as
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W (x1, x2, z1, z2) =

√
π

1/2σ2
k + i(z2 − z1)/2k0

×
∑
m,n

c∗mcn exp[iNπ(Vnx2 − Vmx1)/L]

× exp[iN2π2(V 2
mz1 − V 2

n z2)/2k0L
2]

× exp

−
[
Nπ
k0L

(z2Vn − z1Vm) + (x1 − x2)
]2

2/σ2
k + 2i(z2 − z1)/k0

 .

This calculation is described in more detail in Appendix A. The main effect of the

source coherence on the field propagation is found in the final exponential in this

expression.

It is to be noted that the introduction of partial coherence stretches the spatial

frequency spectrum of the propagated field, and because that spectrum is Gaussian

it is no longer strictly bandlimited. In this case, the system should be viewed as one

with superoscillations with a “leaky” spectrum, as discussed by Berry [28]. To jus-

tify calling the structures in our system “superoscillations,” we note that the largest

value σk = 0.027µm−1 used in our simulations is significantly smaller than the largest

spatial frequency of the grating, which is 7.85µm−1 for the parameters given be-

low. The amount of energy in the high spatial frequency of the tails of the Gaussian

is therefore negligible and unlikely to contribute to the superoscillations. Further-

more, the structures we see in the partially coherent case can be traced directly to

the superoscillations of the fully coherent case, which is bandlimited. Our partially

coherent oscillations may therefore be considered the natural extension of coherent

superoscillations.
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Figure 2.2: Phase plot of a Talbot carpet containing superoscillations at the primary
and secondary Talbot images, with x1 = 2µm , z1 = 0.5zT , and σk = 0.001µm−1.

2.4 Superoscillations and partial coherence

As noted in the Introduction, the intensity zeros of a coherent wavefield typically

disappear as the spatial coherence of the field is decreased. However, the associated

singularities persist as singularities in the two-point cross-spectral density. These

zeros will appear as edge dislocations in the phase plots of the cross-spectral density

in r2 when observation point r1 is fixed. We now consider how the zeros of the cross-

spectral density evolve as the spatial coherence is decreased, and the relationship to

the superoscillatory nature of the field. In all these examples, we use a = 8, N = 10,

λ = 0.5µm, L = 4µm.

Figure 2.2 shows an example of the phase structure of a field over two Talbot

distances. Here, the observation point is taken as x1 = 2µm , z1 = 0.5zT , and

σk = 0.001µm−1, or σg = 1mm, representing a highly coherent field. Edge dislocations

of the cross-spectral density are located where all the phase colors converge at a point.

The only singularities that exist are located near the Talbot distance and the half-

Talbot distance; we will see that they are important in producing the superoscillatory

behavior.



42

Figure 2.3: Detail of the phase structure of the cross-spectral density around z = zT
as the spatial coherence is decreased, with (a) σk = 0.002µm−1 (b) σk = 0.014µm−1,
(c) σk = 0.027µm−1, (d) σk = 0.04µm−1. Again we have x1 = 2µm , z1 = 0.5zT .

As spatial coherence is decreased, it is expected that the detailed Talbot intensity

pattern will blur on propagation, and the singularities of the cross-spectral density

will change positions, affecting the superoscillatory structure. This behavior will

be distance-dependent: at larger multiples of the Talbot distance, the decrease in

coherence will have a stronger effect than at smaller multiples. Figure 2.3 shows

the detailed phase structure in the neighborhood of the singularities at the Talbot

distance for different values of σk. It is to be noted that the zeros are not in the plane

z = zT ; the rapid change of phase associated with the superoscillations arises from

the rapid change of phase in the vicinity of an edge dislocation.

As the spatial coherence is decreased, the singularities come together and eventually
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Figure 2.4: A comparison of the phase of the cross-spectral density shown in figure 2.3
with their corresponding local wavenumber. with x1 = 2µm , z1 = 0.5zT , and (a,b)
σk = 0.002µm−1, (c,d)σk = 0.014µm−1 (e,f), σk = 0.027µm−1 (g,h), σk = 0.04µm−1.

annihilate. This suggests that the superoscillations become more rapid at first, but

eventually break down when the singularities themselves vanish.

A more quantitative measure of the strength of superoscillations in a complex

wavefield is the local wavenumber. We consider only the transverse local wavenumber,

defined by the expression,

k(r1, r2) =
∣∣∣∣Im∂x2W (r1, r2)

W (r1, r2)

∣∣∣∣ . (2.17)

Figure 2.4 shows a comparison of the phase of the cross-spectral density and the lo-

cal wavenumber as the spatial coherence is decreased. The singularities can be seen to

correspond to regions of high local wavenumber. As the spatial coherence is decreased,

the singularities come together and the local wavenumber becomes correspondingly

larger, but decreases dramatically as the singularities annihilate.

It is worth noting that there seems to be some vagueness in the literature about
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Figure 2.5: The local wavenumber at the Talbot Distance along one grating period.
This plot shows the change in local wavenumber from a fully coherent field to a high
level of spatial incoherence field.

the role of zeros in superoscillations. In some work, such as Refs. [5,10,29], su-

peroscillations are produced by the explicit positioning of zeros and the strength of

superoscillations is defined by the spacing of zeros; in contrast, the canonical super-

oscillatory function possesses no zeros at all and the local wavenumber characterizes

the rate of superoscillation. In our investigations of the Talbot effect, at least, we

can see that these are two different manifestations of the same phenomenon: the high

local wavenumber at the Talbot distance is produced by the nearby off-plane zeros.

Figure 2.5 shows the local wavenumber in the Talbot plane as the spatial coherence

is decreased, and these plots can be compared with the phase images of Fig. 2.3

or 2.4. For a fully coherent field, the maximum value is equal to the value given

by Nπa/L. As the coherence decreases, the maximum of the local wavenumber

decreases, but then rapidly increases again as the singularities of the cross-spectral

density come together and annihilate near the Talbot plane. Once the singularities

have disappeared completely, the local wavenumber is no longer superoscillatory, and

is in fact lower than the grating wavenumber. We therefore see that there is a range

of coherence values for which the cross-spectral density is more superoscillatory than
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Figure 2.6: The phase of the cross-spectral density for different propagation distances
and states of coherence. ( a,b,c,d) z = 0.5zT , (e,f,g,h) z = zT , (i,j,k,l) z = 1.5zT .
First column: σk = 0.002µm−1, second column: σk = 0.012µm−1, third column:
σk = 0.016µm−1, fourth column: σk = 0.02µm−1.

the corresponding fully coherent field.

For partially coherent fields, the superoscillatory behavior also decays with prop-

agation distance. As Eq. (2.11) demonstrates, partial coherence can be interpreted

as an incoherent superposition of plane waves propagating in different directions,

resulting in an incoherent superposition of different tilted Talbot patterns. As the

propagation distance increases and/or the spatial coherence decreases, these different

Talbot patterns become out of step, blurring the overall pattern and eventually anni-

hilating the singularities in the correlation function. In the z = 0 plane, the canonical

superoscillatory function is always present, since the coherence is only a multiplicative
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Figure 2.7: The phase of the cross-spectral density as the observation point is moved.
For these plots x1 = 2µm, σk = .027µm−1, and z1 is (a)0.5zT (b)6.5zT (c)12.5zT and
(d)25.5zT .

factor with the transmission function; at increasing multiples of the Talbot distance,

we expect to see coherence play a stronger role.

Figure 2.6 shows the phase behavior at several primary and secondary Talbot dis-

tances, as a function of decreasing coherence. The trends are clear from the sequence

of images: the singularities move together faster with larger propagation distance

(downward in rows) and/or smaller spatial coherence (rightward in columns).

For all of the previous results, the position of the observation point has remained

fixed. However, the cross-spectral density is a two-point correlation function and the

location of zeros will depend on the choice of r1. This choice can have a significant

effect: in [20], superoscillations in partially coherent beams were studied, and it was

found that as the observation point was moved away from the beam center, the phase
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of the superoscillatory region appeared to regress to its fully coherent state.

Figure 2.7 shows the effect of changing the observation distance z1 further away

from the grating. With the observation distance close to the image plane, the sin-

gularities, and corresponding superoscillations, are not present. As the observation

point is moved very far away, the spatial coherence “revives” and the singularities

reappear, with the final image looking strikingly similar to Fig. 2.3(a).

Changes in the phase structure can also be found by moving the transverse position

x1 along the grating. Due to the periodic nature of the grating, the phase plots repeat

with period L.

2.5 Observations

The manipulation of spatial coherence in the superoscillatory Talbot effect pro-

vides new degrees of freedom for manipulating the strength of superoscillations, and

provides new insight into the phenomenon of superoscillations in partially coherent

fields. These superoscillations appear in the two-point correlation function of the

field, rather than the field itself.

We have seen that, contrary to what rough intuition might suggest, superoscillatory

behavior can increase as spatial coherence decreases, which corresponds to the zeros

of the cross-spectral density moving closer together and annihilating. When the

annihilation occurs, the superoscillatory behavior disappears.

We have seen that changes in both the spatial coherence and the observation point

can dramatically affect the superoscillatory behavior at the Talbot distance. There

is therefore great flexibility in tailoring these superoscillations for applications.

All of these results have been explored with an eye towards using partially coher-

ent superoscillations in imaging applications. The possibility of having appreciable

intensity in the region of superoscillations is a motivating factor. It is to be noted

that an imaging system based on partially coherent superoscillations would need to

be very different from a conventional imaging system, due to the use of the two-point
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correlation function. An interferometric scheme would need to be used, and we are

investigating how such a scheme could be implemented and any benefits it might

provide. Our work on the partially coherent superoscillatory Talbot effect gives us

insight into the expected features of the imaging field.
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APPENDIX: Cross-spectral Density of the Superoscillatory Talbot Effect

In this appendix, we derive the partially coherent cross-spectral density for a su-

peroscillatory Talbot field shown in equation 2.17 beginning at the propagated field

2.17. As stated we can substitute the propagated field into our cross-spectral density

given by:

W (x1, x2, z1, z2) = S0

∫ ∞

−∞
µ̃0(kx0)Ũkx(x1, z1)Ukx(x2, z2)dkx0. (2.18)

With this substitution, we now have our cross-spectral density of the form

W (x1, x2, z1, z2) =
∑
m,n

∫ ∞

−∞
µ̃0(kx)c

∗
mcn

× exp[−ix1(NVmπ/L+ kx)] exp[ix2(NVnπ/L+ kx)]

× exp

[
−iz1
2k0

(NVmπ/L+ kx)
2

]
exp

[
−iz2
2k0

(NVnπ/L+ kx)
2

]
dkx,

(2.19)

where:

µ̃0(kx) = exp

[
−k2

x0

2σ2
k

]
. (2.20)

Pulling out the independent terms, we can establish the integral from the cross-

spectral density to be:

W (x1, x2, z1, z2) =
∑
m,n

c∗mcn exp[iNπ(Vnx2 − Vmx1)/L]

[
exp

iN2π2(V 2
mz1 − V 2

n z2)

2k0L2

]
∫ ∞

−∞
exp

[
−k2

x

2σ2
k

]
exp

[
ik2

x

2k0
(z1 − z2)

]
exp

[
iπkxN

k0L
(z1Vm − z2Vn)

]
exp[ikx(x2 − x1)]dkx.

This is of a similar for to a known integral identity [30]:

∫ ∞

−∞
exp(−p2x2 + qx)dx =

√
π

p2
exp

[
q2

4p2

]
;Rep2 > 0, (2.21)
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where:

p2 = 1/2σ2
k + i(z2 − z1)/2k0, (2.22)

and

q =
iNπ

k0L
(z2Vn − z1Vm) + (x1 − x2). (2.23)

Utilizing this identity, the integral is found to have the form:

√
π

1/2σ2
k + i(z2 − z1)/2k0

exp

−
[
Nπ
k0L

(z2Vn − z1Vm) + (x1 − x2)
]2

2/σ2
k + 2i(z2 − z1)/k0

 . (2.24)

We can now take this integral solution and recombine it back into the cross-spectral

density. Doing this and then combining all of the like terms will give us equation

2.17.



CHAPTER 3: Angular Momentum of Vector Twisted Vortex Gaussian-Schell Model

Beams

ABSTRACT

We generalize a recently-introduced class of partially coherent vortex beams known

as Twisted Vortex Gaussian-Schell Model Beams. Through the addition of spatially-

varying polarization, we create a beam whose angular momentum is provided from

three different sources: the underlying vortex order of the beam, the “twist” given to

the ensemble of beams, and the circular polarization of the beam. The combination

of these angular momentum types allows for unprecedented control over the total

angular momentum of the field and its transverse distribution.

3.1 Introduction

Singular optics is a branch of physical optics that encompasses the study of the

topological singularities of light. This field has grown grown in significance dra-

matically over the past few decades, and in recent years many of these topological

phenomena have begun showing their relevance in practical application [1,2,3]. The

most well known of these phenomena are optical vortices. An optical vortex in a

field is a line in three-dimensional space upon which the intensity is zero and the

phase is consequently undefined, i.e. singular. The phase has a circulating or helical

structure around the zero line, and increases or decreases by a multiple of 2π. In a

cross-section of a field, vortices typically manifest as a point of zero intensity. These

vortices and their structures have found relevance in several optical applications in-

cluding encoding information and overcoming turbulence in optical communications

[4,5], reducing scattering in underwater laser detection and ranging systems [6,7], and
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optical tweezing [8].

A beam with a pure optical vortex in its core has a definite handedness, and conse-

quently possesses orbital angular momentum (OAM); if the polarization properties of

the beam are also considered, it may also possess spin angular momentum (SAM). The

aforementioned optical tweezing uses these beams to impart controlled, small forces

upon particles through momentum transfer. Angular momentum is also employed

in free space optical communication (FSOC) [9]. Information can be encoded and

multiplexed in distinct angular momentum modes, significantly increasing the rate of

data transmission. But over long propagation paths in atmospheric turbulence, the

turbulence distorts the phase structure of the field, causing signal degradation and

mode crosstalk [10].

One possible solution to this degradation is the use of partially coherent beams;

such beams have been shown in many cases to provide resistance to turbulence dis-

tortion [11]. A number of classes of partially coherent beams possessing OAM have

been introduced, including twisted Gaussian Schell-model beams [12] and what are

now called Rankine vortex beams [13]. Much more recently, a new class of beams

was introduced, referred to as twisted vortex Gaussian Schell-model beams (tvGSM),

which possess both a phase vortex and a partially coherent twist [14]. These beams

can be constructed through the combination of a Rankine vortex beam and a twisted

Gaussian Schell-model beam (tGSM) utilizing a superposition model. The super-

position model consists of an ensemble of modes incoherently combined to produce

the cross-spectral density. For the Rankine beam, the ensemble is a set of vortex

modes. For the tGSM beam, the ensemble is a set of tilted Gaussian modes. Both

of these beams have distinct orbital angular momentum properties. The tGSM beam

acts similarly to a rigid body rotator and the Rankine beam behaves like a Rankine

vortex [15].

The tvGSM beams have their OAM arise from two distinct origins: the discrete
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coherent phase vortex and the continuous partially coherent twist. This combination

provides unprecedented control over the OAM, as shown in Ref. [14]. Because an

electromagnetic beam will also possess spin angular momentum, it is natural to next

investigate how the addition of spin can change and enhance the control of angular

momentum in a partially coherent beam.

As will be shown, through the incorporation of adjustable non-uniform polarization

into tvGSM beams, we now have a third degree of freedom for manipulating angular

momentum along with vortex order and twist parameter. With these three tunable

parameters, such vector tvGSM (vtvGSM) beams provide remarkable control over

the distribution of angular momentum in the beam’s cross-section.

3.2 Vector TVGSM Model

To study beams that possess rapid random fluctuations, it is necessary to character-

ize the average properties of the field. We will do this through use of the cross-spectral

density function, which can be defined as [16]

W (r1, r2, ω) = ⟨Ũ(r1, ω)U(r2, ω)⟩ω, (3.1)

where U(r, ω) represents a monochromatic scalar field and ⟨· · · ⟩ω represents an av-

erage over an ensemble of monochromatic fields. For convenience, we use a tilde to

represent the complex conjugate throughout the paper. The cross-spectral density

characterizes the spatial coherence properties of the field at frequency ω; for quasi-

monochromatic fields, the behavior of the beam as a whole can be well-described by

the behavior at the central frequency. We consider such a case, and suppress ω going

forward for brevity.

We consider ensemble averages over a spatial variable r0 of the form

Wpq(r1, r2) =
∫

Ũp(r1, r0)Uq(r2, r0)P (r0)d2r0, (3.2)
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with P (r0) being the probability density and r0 being a transverse position, such that

P (r0) = P0 exp

[
−(x2

0 + y20)

σ2

]
, (3.3)

with |r0|2 = x2
0 + y20 and σ represents the width of the probability function. The

vector r0 effectively labels a member of the ensemble. In this expression, Up and

Uq represent distinct spatial modes of the field that will arise in our electromagnetic

description, as we describe momentarily.

We are interested in constructing a vector partially coherent beam by building upon

the design of a tvGSM beam; the construction of a vtvGSM beam follows closely the

construction of the earlier model. For a more in depth derivation of the propagation

terms and cross-spectral density, one can refer to Ref. [14].

We can construct a tvGSM beam by combining the models of a Rankine vortex

beam and a tGSM beam. For the Rankine beam, one uses Laguerre-Gaussian beam

modes of azimumthal order p,

U(r, r0) =
U0

∆p
exp

[
− [(x− x0)

2 + (y − x0)
2]

2∆2

]
[(x− x0) + i(y − y0)]

p , (3.4)

where ∆ is the width of the Gaussian envelope and p is a non-negative integer. This

model, which treats each member of the ensemble as having a transversely-displaced

axis, was originally referred to as the ’beam wander model’ [17]. For tGSM beams,

one uses fundamental Gaussian modes with a position dependent tilt, of the form [12]

U(r, r0) = U0 exp

[
− [(x− x0)

2 + (y − x0)
2]

2∆2

]
exp [2πiα(x0y − y0x)] , (3.5)

where α is the “twist parameter.” If we merge the two previous ensembles we get a
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tvGSM beam mode of the form

Up(r, r0) =
U0

∆p
exp

[
− [(x− x0)

2 + (y − x0)
2]

2∆2

]
× exp [2πiα(x0y − y0x)] [(x− x0) + i(y − y0)]

p ,

(3.6)

which possesses the vortex core of the Rankine beam and the tilt of the twisted beam.

By substituting from Eq. (3.6) into Eq. (3.2), the tvGSM cross-spectral density can

be determined.

To incorporate non-trivial polarization into this model, we introduce an electric

field ensemble of the form

E(r, r0) = ΨUm(r, r0)ê+ + (1−Ψ)Un(r, r0)ê−, (3.7)

where

ê+ =
x̂+ iŷ√

2
, ê− =

x̂− iŷ√
2

(3.8)

represent the unit vectors for left and right-hand circular polarization, respectively.

The values m and n represent the particular mode orders chosen for our model; they

can in fact be taken to have any non-negative integer values.

It is to be noted that we could have introduced SAM trivially into our model by

making the field uniformly elliptically polarized, with the amount of SAM determined

by the strength of the ellipticity. By instead using different spatial modes and weights

for the circular polarization states, we create a non-trivial spatial distribution of SAM

in the beam cross-section. The quantity Ψ is an adjustable polarization amplitude

parameter, which allows us to emphasize one circular state or another.

Because there are now two distinct polarization states, there are four distinct cor-

relation functions, and we must use a cross-spectral density matrix W to characterize

the properties of the field [18]. In the circular polarization basis, this matrix takes on
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the form

W(r1, r2) =〈 Ψ2Ũm(r1)Um(r2) Ψ(1−Ψ)Ũm(r1)Un(r2)

(1−Ψ)ΨŨn(r1)Um(r2) (1−Ψ)2Ũn(r1)Un(r2)

〉.
(3.9)

It is at this point that we apply Appendix A of Ref. [14] to evaluate the propagation

of Um(r, r0) and Un(r, r0) so that they can be substituted into Eq. (3.2). Following

that Appendix, a mode Up(r, r0) at any distance z can be written as

Up(r, r0, z) =
U0

β
exp[ik0z]

[(x+ iy)− (1 + iγ)(x0 + iy0)]
p

(∆β)p

× exp
[
|r − r0|2/(2∆2β)

]
exp

[
−|r0|2

iπαγ

β

]
× exp

[
(yx0 − xy0)

2iπα

β

]
,

(3.10)

where

β ≡ 1− z

ik∆2
, (3.11)

and

γ ≡ 2παz

k0
. (3.12)

We may substitute from Eq. (3.10) into Eq. (3.2) to get the explicit form of the

cross-spectral density matrix; this derivation is lengthy but straightforward. We find

that each element of the cross-spectral density matrix at any distance z may be

written as

Wpq(r1, r2, z) = Cpq(z)F (r1, r2, z)
min(p,q)∑

k=0

(
p

k

)(
q

k

)
Γ(k + 1)

A2(k−p−q)−2
Dp−k

1 Dq−k
2 , (3.13)

where min(p, q) represents the minimum value of p and q. For consistency, we have
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used functions analogous to those defined in Ref. [14] to simplify our expression. The

function Cpq(z) is of the form

Cpq(z) ≡ (1− γ)p(1 + γ)q
πP0|U0|2

|β|2(∆β̃)p(∆β)q
, (3.14)

and accounts for many of the propagation constants of the beam. The function

F (r1, r2, z) has the form of a twisted GSM beam, and may be written as

F (r1, r2, z) =exp[−N2r21]exp[−Ñ2r22]exp[−M2|r2 − r1|2]

× exp

[
2πiα

A2|β|2∆2
r1 ∧ r2

]
,

(3.15)

where

N2 ≡ β

4σ2∆2A2|β|2
− 2π2α2z

A2|β|2ik0∆2
, (3.16)

M2 ≡ 1

2A2|β|2

[
1

2∆4
+ 2π2α2

]
. (3.17)

We also combine a recurring set of expressions into the new term A2, written as

A2 ≡ 1

∆2|β|2
+

4π2α2z2

k2
0∆

2|β|2
+

1

2σ2
. (3.18)

The vortex properties of the field manifest in the terms D1 and D2, written as

D1(r1, r2) =
[

A2

1− iγ
− 1

2∆2β̃
− πα

β̃

]
(x1 − iy1)−

[
1

2∆2β
− πα

β

]
(x2 − iy2), (3.19)

D2(r1, r2) =
[

A2

1 + iγ
− 1

2∆2β
− πα

β

]
(x2 + iy2)−

[
1

2∆2β̃
− πα

β̃

]
(x1 + iy1). (3.20)

Our vtvGSM model beam has several important parameters we can use for tuning

the total OAM and the spatial distribution of OAM in the beam. These consist of

the wander parameter σ, the twist parameter α, the vortex orders m and n of the

orthogonally polarized modes, and the polarization parameter Ψ.
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The wander parameter has an inverse relationship to spatial coherence. This means

that the fully coherent limit is σ → 0, and as σ gets bigger the beam becomes less

coherent. The wander parameter has an practical upper limit of σ > ∆; once the

wander parameter surpasses the width of the Gaussian envelope, the vortex properties

of the field are effectively “washed out.” Our main interest in this paper is the angular

momentum, so the wander parameter will be set at a value indicative of partial

coherence and remain largely unchanged.

It is important to note that the there is a strict upper limit to the twist parameter

given by

αmax =
k0
2πσ

. (3.21)

This limit reflects that the maximum tilt of any of our modes must have a transverse

wavenumber smaller that the free-space wavenumber.

3.3 Total angular momentum flux density of vtvGSM beams

Now that we have the cross-spectral densities for each term in our cross-spectral

density matrix as defined in Eq. (3.13), we can derive the total angular momentum

flux density of our beam. This density is simply the sum of the total OAM density

and the total SAM density, written as

MTotal(r, z) = MOAM(r, z) +MSAM(r, z). (3.22)

The OAM density satisfies the expression,

MOAM =
ϵ0
2k0

Im
{

∂

∂ϕ2

[Wmm(r1, r2) +Wnn(r1, r2)]
}

r1=r2=r
, (3.23)

and the SAM density satisfies the expression,

MSAM =
ϵ0
2k0

Im [Wmm(r1, r2)−Wnn(r1, r2)]r1=r2=r . (3.24)
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We can use any non-negative values of m and n for our beams, giving us great

flexibility in controlling the total OAM and the spatial distribution of OAM flux.

Going forward, we choose n = 0, making one polarization component of the ensemble

a Gaussian beam.

In Appendix A, we calculate the OAM flux density to be

MOAM =
ϵ0
2k0

exp

[
−r2

σ2
S

]{
C00(z)(1−Ψ)2

[
2πα

A2|β|2∆2

1

A2
r2
]

× Cmm(z)Ψ
2

[
2πα

A2|β|2∆2

m∑
k=0

ak|Q|2(m−k)r2(m−k+1)

+ R
m∑
k=0

ak(m− k)|Q|2(m−k−1)r2(m−k)

]}
.

(3.25)

The expressions are quite long, and a number of constants have been defined to

simply them. The quantities R and Q are defined by Eq. (3.40) and Eq. (3.41)

respectively in Appendix A, and ak is defined by Eq. (3.46) in the same Appendix.

As can be seen in Eq. (3.25), the OAM density has 3 distinct parts. The first

term is the OAM associated with the twist of the right-hand circular component of

the field. The second terms is the OAM associated with the twist of the left-hand

circular component, and the third term is the OAM associated with the vortex phase

of the left-hand circular component. The magnitude of these terms in the source

plane is shown for a set of beam parameters in Figs. 3.1(a)-(c), and it can be seen

that they are all significantly different.

There is also a direct SAM contribution to the total angular momentum. In Ap-

pendix B, we calculate the SAM density to be

MSAM =Ψ2

[
Cmm(z)exp

[
−r2

σ2
S

] m∑
k=0

ak[|G̃−H|2r2]m−k

]

− (1−Ψ)2C00(z)exp

[
−r2

σ2
S

]
1

A2
,

(3.26)
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Figure 3.1: Cross-section plots of the OAM density shown in Eq. (3.25) and the SAM
density shown in Eq. (3.26).These plots represent (a) the cross-term component
of the OAM density, (b) the vortex order component of the OAM density, (c) the
twist component of the OAM density and, (d) the total SAM density. Here m = 1,
σ = 0.01m, ∆ = 0.02m, α = −800m−2 and Ψ = 0.6.

where G and H are also defined in Appendix A. A contour plot of this SAM density

can be seen in Fig. 3.1(d), and it is distinct from the OAM contributions.

With multiple degrees of freedom in the design of our beam, we have the capability

to create interesting beam behavior through a careful choice of parameters. One

possibility is the creation of counter-rotating regions within the beam’s cross-section.

In Ref. [19], it was shown that partially coherent beams can be created where the

OAM is tailored to produce counter-rotating regions. In Fig. 3.2, we show an example
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Figure 3.2: The OAM density, SAM density, and total angular momentum density of
a counter-rotating beam. Here m = 1, n = 0, σ = 0.01m, ∆ = 0.02m, α = −800m−2

and Ψ = 0.6.

of a beam where the OAM density and SAM density are combined to produce counter-

rotation. The SAM density near the center of the beam is negative, while the OAM

density is positive. The total AM density is negative near the beam core, but positive

in the immediate outskirts of the beam.

Figure 3.3: The OAM density, SAM density, and total angular momentum density
of a beam with a positive angular momentum density core. Here m = 1, n = 0,
σ = 0.01m, ∆ = 0.02m, α = −1000m−2 and Ψ = 0.9.
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SAM provides additional flexibility that OAM alone does not. Referring back to

Eq. (3.25), it is to be noted that the OAM flux density has a radial dependence

near the origin with lowest order r2. In the center of the beam, there is no angular

momentum flux; this is a potential problem for trapping and rotation applications.

The SAM flux density has a non-zero component at the origin, however, allowing us

to create a positive total angular momentum density core. An example of this total

flux is shown in Fig. 3.3.

3.4 Angular momentum flux density per photon

The angular momentum flux density considered so far depends not only on the

strength of circulation of the beam but also the local intensity of the beam (photon

flux): the more photons that are present in a location, the stronger the flux density

will be. It is of physical interest, however, to investigate the circulation inherent to

the beam structure by normalizing out the beam intensity. We may define the angular

momentum flux density per photon as

mz(r, z) = h̄ω
Mtotal(r, z)
Sz(r, z)

, (3.27)

where Sz(r, z) is the z-component of the Poynting vector, which takes on the form

Sz(r, z) =
k0
µ0ω

Re{Wmm +Wnn}r1=r2=r. (3.28)

For our case, with n = 0, the Poynting vector is

Sz(r, z) = exp

[
−r2

σ2
S

][
Cmm(z)

m∑
k=0

[
ak|Q|2(m−k)r2(m−k)

]
+

C00(z)

A2

]
. (3.29)

A striking result of Ref. [14] was the demonstration that it is possible to create a

“dead zone” in the core of a tvGSM beam by canceling out the r2 terms from the

two sources of OAM. For vtvGSM beams, we can go a step further and use SAM to
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create a more intense dead zone by canceling out both the r2 and r4 terms of the

total angular momentum, leaving the total AM depending on r6. To do so, we must

use a vortex order of m = 2 in order to even have an r6 term.

We organize the terms of Eqs. (3.25) and (3.26) in powers of r2. We consider the

form of mz in the immediate neighborhood of the origin, where the Gaussian envelope

of the beam may be neglected. This gives the lengthy approximation for the angular

momentum density per photon,

mz =

[
Ψ2C(z)

2πα

A2|β|2∆2

(m− 1)m(m!)

4A2m+6
|Q|4

]
r6

+

[
Ψ2 2πα

A2|β|2∆2

m(m!)

A2m+4
|Q|2 +Ψ2R

(m− 1)m(m!)

4A2m+6
|Q|2

+ Ψ2 (m− 1)m(m!)

4A2m+6
[(G̃−H)(G− H̃)]2

]
C(z)r4

+

[
Ψ2C(z)

2πα

A2|β|2∆2

m!

A2m+2
+ (1−Ψ)2C0(z)

6πα

A2|β|2∆2

1

A2

+Ψ2C(z)R
m(m!)

A2m+4
+ Ψ2C(z)

m(m!)

A2m+4
(G̃−H)(G− H̃)

]
r2

+Ψ2C(z)
m!

A2m+2
− (1−Ψ)2C0(z)

3

A2
.

(3.30)

For clarity, the denominator containing the Poynting vector, Eq. (3.29), has been

omitted; near the origin, the Poynting vector will be approximately constant.

An important feature of this equation is that there are two r0 terms at its end.

This has a direct impact that can be seen when we begin zeroing the other groups in

the approximation. To create a dead zone, we have three independent parameters:

the vortex order m, the twist parameter α, and the polarization amplitude coefficient

Ψ. Our initial goal is to zero out all terms excluding the r6 group; as already noted,

this requires a vortex order of m = 2. We then vary the twist parameter and the

polarization amplitude coefficient to manipulate the strength of the r4 and r2 groups.

In Fig. 3.4, we plot the total angular momentum of the r4 against a range of twist

parameters and select the point at which the total angular momentum is zero, in this
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Figure 3.4: The total angular momentum of the r4 term in Eq. 3.30 as a function of
α. Here m = 2, σ = .01m, ∆ = .02m and Ψ = .5.

case it is at α = −1989.4m−2. This process is repeated for the r2 grouping but instead

of the twist parameter we find the polarization amplitude coefficient that will zero this

group. In Fig. 3.4, the initial chosen value of Ψ must fall within 0 < Ψ ≤ 1. Different

values of Ψ within this range have negligible impacts of the value of α required to

zero the r4 approximation term. Thus the subsequent zeroing of the r2 term and the

plot shown in Fig. 3.5 are effectively unchanged with different values of initial Ψ.

In Fig. 3.5, we can see that there is a significant flat region of the angular momen-

tum density in the core. However, it is not a complete “dead zone” because of the

aforementioned two r0 terms. These two terms are unable to be canceled out with the

r2 and r4 terms and thus there will always be zone of non-zero angular momentum

density per photon in the core. However; we are able to create a consistent “near-dead

zone” of circulation around the core of the beam. This is a natural expansion of what

was accomplished in Ref. [14]. This behavior clearly demonstrates that it that is is

possible to control both the total angular momentum in partially coherent beams as

well as its transverse distribution.
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Figure 3.5: The local angular momentum density per photon as presented in Eq.
(3.30) with r2 and r4 terms zeroed. Here m = 2, α = −1989.4m−2, and Ψ = .565.

3.5 Practical considerations

The vtvGSM beams provide significant control over the transverse angular moment

of the beam, at the cost of significant beam complexity. It is worthwhile to give an

example of how this beam can be generated, at least in principle.

In Fig. 3.6, we propose an experimental optics scheme that will produce the

vtvGSM beam explored in this paper. The scheme begins with a coherent source

incident on a polarizer such that it has an even distribution of horizontal and vertical

polarization. This polarized beam is then split and propagated along separate paths,

each component passing through quarter-wave plates oriented to produce circular po-

larizations of either handedness. We then use a spiral phase plate along one path to

impart the vortex order upon the beam.

Once the beams are recombined we have a vector vortex beam, but the partial

coherence effects must still be imposed. To experimentally produce a tGSM, we follow

the techniques outlined in Ref. [20]. The first step it to convert the beam into an

anisotropic Gaussian-Schell model beam (AGSM). A partially coherent illuminating

field of Schell-model form resembling Eq. (3.2) is created by passing the light through
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Figure 3.6: An experimental scheme to produce the proposed vtvGSM beam. PBS,
polarized beam splitter; QWP1,QWP2, quarter-wave plate; M1, M2, reflecting mirror;
SPP, spiral phase plate; BC, beam combiner; RGGP, rotating ground glass plate; L1,
thin lens; SLM, spatial light modulator; CL1, CL2, CL3, CL4, cylindrical thin lenses.

an off-axis rotating ground glass plate (RGGP) at the Fourier plane of a lens [21,22].

Thus by focusing the beam onto the RGGP with a cylindrical lens we create a partially

coherent beam with an elliptically anisotropic Gaussian degree of coherence. The

collimated beam then propagates through the spatial light modulator (SLM) which

converts the intensity profile to an elliptical Gaussian shape. This procedure yields

a controlled AGSM beam. To impart the twist we utilize a 3 cylindrical lens system.

CL1 and CL3 form a 4f imaging system and CL2 performs a Fourier transform in an

orthogonal direction with respect to CL1. All of this combined produces a vtvGSM

beam with the degrees of freedom discussed in this paper.

This system is quite elaborate, and is provided as a proof of feasibility for gen-

erating vtvGSM beams; it is likely possible to come up with simpler experimental

configurations to produce such beams.

3.6 Conclusion

We have demonstrated how to generalize the class of twisted vortex Gaussian Schell-

model beams to create beams that also possess non-trivial spin angular momentum,

called vector twisted vortex Gaussian Schell-model beams. It was shown that with
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the addition of this new degree of freedom, one can produce beams with unusual

angular momentum structures, including beams with counter-rotating regions, beams

with appreciable angular momentum at the core, and beams with angular momentum

“dead zones.” These results extend the understanding of angular momentum in optical

beams and provide additional control of angular momentum for applications.
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APPENDIX A: OAM Density Calculation

The z component of the OAM density can be expressed as

MOAM =
ϵ0
k0

Im

[
∂

∂ϕ2

W (r1, r2)
]
r1=r2=r

, (3.31)

where W (r1, r2) = Wmm as shown in Eq. (3.13). For mathematical convenience, we

first convert everything into polar coordinates. Beginning with the properties of the

vortex as shown in Eq. (3.19) and Eq.(3.20). When converted they can be written as

D1 = G̃(ρ1exp[−iϕ1])−H(ρ2exp[−iϕ2]), (3.32)

D2 = G(ρ2exp[iϕ2])− H̃(ρ1exp[iϕ1]), (3.33)

where

G =
A2

1 + iγ
− 1

2∆2β
− πα

β
, (3.34)

and

H =
1

2∆2β
− πα

β
. (3.35)

The combined term of the properties, as shown in Wmm in Eq. (3.13) is defined as

(D1D2)
m−k =

[
|G|2ρ1ρ2exp[i(ϕ2 − ϕ1)]

+ |H|2ρ1ρ2exp[i(ϕ1 − ϕ2)]− G̃H̃ρ21 −GHρ22

](m−k)

.

(3.36)

The polar for of the function representing the twisted Gaussian-Schell model beam
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can be written as

F (r1, r2, z) =exp
[
−N2ρ21 − Ñ2ρ22 −M2ρ21 −M2ρ22

]
exp

[
M22(ρ2ρ1cos(ϕ2 − ϕ1))

]
× exp

[
i2πα

A2|β|2∆2
ρ2ρ1sin(ϕ1 − ϕ2)

]
.

(3.37)

Thus the polar form of the cross-spectral density term Wmm is

W (ρ1, ρ2) = Ψ2Cmm(z)exp
[
−N2ρ21 − Ñ2ρ22 −M2ρ21 −M2ρ22

]
× exp

[
(

i2πα

A2|β|2∆2
ρ2ρ1sin(ϕ1 − ϕ2)) + (M22ρ2ρ1cos(ϕ2 − ϕ1))

]
×

m∑
k=0

ak

[
|G|2ρ1ρ2exp[i(ϕ2 − ϕ1)] + |H|2ρ1ρ2exp[i(ϕ1 − ϕ2)]− G̃H̃ρ21 −GHρ22

](m−k)

(3.38)

Now take the partial derivative with respect to ϕ2. we use the product rule on the last

two terms. Once the partial derivative is complete, we set r1 = r2 = r and simplify

the cross-spectral density to be of the form

∂

∂ϕ2

W (r1, r2) =Ψ2Cmm(z)exp

[
−r2

σ2
S

]
×

[
iR

m∑
k=0

ak(m− k)|Q|2(m−k−1)r2(m−k)

+
i2πα

A2|β|2∆2

m∑
k=0

ak|Q|2(m−k)r2(m−k+1)

]
.

(3.39)

where:

R = |G|2 − |H|2, (3.40)

and

Q =
1

1− iγ

1

2σ2
, (3.41)



75

and

σ2
S = 2σ2 +∆2

(
8π2α2σ2

k2
0

+
1

k2
0∆

2

)
z2. (3.42)

Taking the imaginary component gives the Orbital angular momentum density,

written as

MOAM−mm =Ψ2 ϵ0
k0

Cmm(z)exp

[
−r2

σ2
S

]
×

[
2πα

A2|β|2∆2

m∑
k=0

ak|Q|2(m−k)r2(m−k+1)

+ R
m∑
k=0

ak(m− k)|Q|2(m−k−1)r2(m−k)

]
.

(3.43)

For the diagonal terms, set the OAM to the special case of m = 0, this gives

MOAM−00 =
ϵ0
k0

(1−Ψ)2C00(z)exp

[
−r2

σ2
S

] [
2πα

A2|β|2∆2

1

A2
r2
]
. (3.44)

Combining what was calculated previously gives total OAM density, written as

MOAM =
ϵ0
2k0

exp

[
−r2

σ2
S

]{
Cmm(z)

×Ψ2

[
2πα

A2|β|2∆2

m∑
k=0

ak|Q|2(m−k)r2(m−k+1)

+ R

m∑
k=0

ak(m− k)|Q|2(m−k−1)r2(m−k)

]

+ C00(z)(1−Ψ)2
[

2πα

A2|β|2∆2

1

A2
r2
]}

,

(3.45)

where:

ak =

(
m

k

)2
Γ(k + 1)

A4m−2k+2
. (3.46)
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APPENDIX B: SAM Density Calculation

The spin angular momentum for a circular polarization can be defined as

lm
[
< E∗

xEy > − < E∗
yEx >

]
, (3.47)

where

Ex =
E+ + E−√

2
, Ey =

E+ − E−√
2

. (3.48)

Combining the above two equations and expanding, the SAM becomes

lm

[
1

2i
(E∗

+ + E∗
−)(E+ − E−) +

1

2i
(E∗

+ − E∗
−)(E+ + E−)

]
(3.49)

Converting this to be in terms of the cross-spectral density defines the SAM to be

written as

MSAM = Im[E∗
+E+ − E∗

−E−] = Im [Wmm(r1, r2)−Wnn(r1, r2)] . (3.50)

Plugging in the cross-spectral densities as defined in Eq. (3.13) and simplifying the

twisted Gaussian-Schell model beam function gives the total SAM density, shown to

be

MSAM =Ψ2

[
Cmm(z)exp

[
−r2

σ2
S

] m∑
k=0

ak[|G̃−H|2r2]m−k

]

− (1−Ψ)2C00(z)exp

[
−r2

σ2
S

]
1

A2
,

(3.51)
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CONCLUSION

In this dissertation we investigated the properties and uses of structured light

under partially coherent conditions. Specifically we studied the properties of partially

coherent vortex beams, such as the total angular momentum, and investigated the

effects of partial coherence on vortex created superoscillations. We explored the effect

of partial coherence on this superoscillatory behavior through several different models,

and demonstrated that it is possible in some cases for a decrease in coherence to

decrease the spacing of superoscillatory zeros and consequently increase the strength

of superoscillations. It was also shown that since the zeros manifest in the two-

point cross-spectral density instead of the spectral density of the field, the rapid

oscillations of the superoscillatory phase can be seen even in locations where there

is appreciable light intensity. This could provide a possible mechanism to overcome

the low light limitation of coherent superoscillation based imaging systems, such as

in superoscillatory lenses [25].

We further explored partially coherent superoscillatory fields by utilizing the Talbot

effect. The manipulation of spatial coherence in the superoscillatory Talbot effect

provides new degrees of freedom for manipulating the strength of superoscillations.

This further supported our previous findings that showed superoscillatory behavior

increasing in strength as the spatial coherence decreased. For the Talbot effect case,

this corresponded to the zeros of the cross-spectral density moving closer together and

eventually annihilating. When this annihilation occurs, the superoscillatory behavior

subsequently disappeared. In both Chapter 1 and Chapter 2, we have seen that

changes in both the spatial coherence and the observation point can dramatically

affect the superoscillatory behavior. The combination of these two adjustable factors

provides great flexibility in tailoring these superoscillations for applications.

All of these aforementioned results have been explored with an eye towards using

partially coherent superoscillations in imaging applications. The possibility of having
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appreciable intensity in the region of superoscillations is an exciting revelation that

makes incorporating superoscillations much more practical. It is to be noted that

an imaging system based on partially coherent superoscillations would need to be

very different from a conventional imaging system, due to the use of the two-point

correlation function. Sensing schemes which take advantage of interferometry to

image objects and otherwise detect their structure could potentially benefit from

such partially coherent superoscillations.

Additionally, we explored the inclusion of polarization to the class of partially co-

herent vortex beams known as Twisted Vortex Gaussian-Schell Model Beams. It was

shown that with the addition of this new degree of freedom we have great control over

the angular momentum characteristics of the beam, including the creation of "dead

zones" in the core, the creation of counter-rotating beams, and the production of

beams with appreciable angular momentum cores. This unprecedented control could

be a boon for applications that require precise manipulation of a beam’s transverse

distribution of angular momentum, such as optical tweezing or encoding information

in different angular momentum modes for optical communications.

For the continuation of this research, one of the natural next steps would be to

experimentally demonstrate the practical optics schemes proposed in Chapter 1 and

Chapter 3. These schemes would produce the fields outlined in those chapters. The

optical scheme in Chapter 3 would allow for experimental production of the angular

momentum control demonstrated in that paper for comparison. The construction and

characterization of such a system would require intensive analysis and testing of every

optical component. This is to assure that uncertainty introduced is minimal enough

that the control of the the beam characteristics discussed is not made ineffective.

Unfortunately, even though we would be able to produce the desired field detailed in

Chapter 1, in order to practically image the fields, a non-conventional system would

need to be used as discussed previously. Thus a further exploration in the develop-
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ment of a sensing scheme that could observe the phase of the correlation function is

required. This is likely to be an interferometric scheme, and an investigation into how

such a system could be implemented and any benefits it might provide is a necessity

for future imaging applications. Further investigation into a radial variation of our

modal coherence model outlined in Chapter 1 could lead to sub-wavelength spot sizes

that remain or get smaller when the field is randomized, thus having direct impact on

superoscillatory imaging applications. Our work on the partially coherent superoscil-

latory Talbot effect gives us insight into the expected features of the imaging field.

Our main focus was the behavior of superoscillations in a partially coherent Talbot

carpet. There are several aspects of our field that could be expanded upon. These

include how a limited grating size would impact the behavior, the behavior at spe-

cific Talbot distances containing doubled images, and the use of a multi-dimensional

grating. We utilized a one-dimensional grating, thus the natural progression of this

project would include the development of a two-dimensional grating that produces

the similar effects seen throughout Chapter 2. This would require defining a quasi-

periodic grating that produces a Talbot-like effect and supports the superoscillations

produced by the input field [28, 29]. The simulation of this quasi-periodic grating

could then be experimentally tested through the construction of a precisely machined

physical counterpart. This would then open exploration into how a repeated field of

multiple superoscillations behaves under different conditions. These projects will help

push the boundaries of the current knowledge of partially coherent structured light,

enabling exciting prospects for imaging, communications, and other applications yet

to be imagined.
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