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ABSTRACT

ANDREW QUITADAMO. Investigating the Genetic Basis of Gene Expression
Using eQTL Techniques. (Under the direction of DR. XINGHUA SHI)

With advances in genome sequencing technology, datasets with large sample sizes

can be generated relatively quickly and cheaply, especially compared to the past

decade or so. We can utilize this data to analyze the associations between genetic

variants and gene expression, and how that in turn relates to specific phenotypes.

We will explore the impact of structural variants (SVs) on gene expression and mi-

croRNA expression in healthy individuals. This dissertation includes a description of

a new eQTL analysis pipeline package, and an analysis of the impact of SVs on gene

expression using eQTL techniques.
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CHAPTER 1: INTRODUCTION

While generating data for different aspects of cellular mechanics is relatively easy,

the analysis and synthesis of this data is much more difficult. Many techniques and

tools attempt to address these problems. In this dissertation we applied techniques

from expression quantitative trait loci analysis to study how genetic variation im-

pacts gene expression, and how that can translate into phenotypic differences. We

used large, publicly available datasets and combined different data types (e.g genetic

variation, gene expression, microRNA expression etc.) from the same individual to

create a more holistic picture of genetic regulation.

This dissertation focuses on the impact of genetic variation and other cellular reg-

ulatory mechanisms. The first part of this dissertation is a description of an eQTL

analysis software package built around MatrixEQTL. The second part uses the 1000

Genomes data to study the effects of SVs on gene expression and miRNA expression,

as well as the effects of miRNA expression on gene expression.

1.1 Expression Quantitative Trait Loci

Expression quantitative trait loci (eQTL) analysis is a group of methods for analyz-

ing the association between genotypes, or any quantitative trait, and gene expression

[1]. eQTL analysis grew out of QTL analyses, which attempted to find links be-

tween sections of the genome (loci) and a trait, for example the number of bristles in



2

fruit flies [2]. eQTL studies could be compared to genome wide association (GWA)

analysis, with gene expression values used as the factor of interest instead of a single

trait. The introduction of high density genetic variation and gene expression microar-

rays allowed for the development and proliferation of eQTL analysis, and currently

DNA and RNA sequencing are more commonly used. eQTL analysis was pioneered

in yeast in 2001, has subsequently been applied to many other organisms, including

humans starting in 2005 [3]. In humans the use of RNA-Seq data in eQTL analysis

was introduced in 2010, and quickly replaced microarrays, as RNA-Seq can provide

a wider range of data, such as allele specific expression [4]. eQTL analyses have been

used to study both the function of normal and diseased cells, along with many other

biological questions. There are an increasing number of studies that have generated

eQTLs using a large sample size, including the Genome Tissue Expression Project

(GTEx), and the Geuvadis project which used data from the 1000 Genomes Project.

The GTEx group focuses on producing gene expression values, genotypes and eQTLs

for multiple tissues from each individual in the study. Based on the most recent

estimates a significant proportion (up to 80%) of genes are affected by an eQTL [5].

This estimate has increased since early human eQTL studies as methods and, more

importantly, data have improved with the increasing sample size and the number of

genotypes. Generally eQTLs are divided into two categories, cis- and trans-. In eQTL

analyses the definition of cis- is usually based on a distance cutoff, i.e. within 1MB or

250kb, and trans- is anything that is not cis- [2]. This is slightly different than other

definitions of cis- and trans- which can mean same vs. different chromosome. Most

studies have focused mainly on cis-eQTLs due to the large multiple testing burden
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for analyzing trans-eQTLs. It is easier to find eQTLs than to interpret the results

and determine causality.

It has been shown that eQTLs overlap with GWAS SNPs, suggesting that eQTLs

can help narrow down the genetic variant that cause the reproducible signals found

in the GWA analysis [6]. Besides overlapping with GWAS SNPs, eQTLs are also

enriched for regulatory features, including DNaseI hypersensitivity sites, open chro-

matin, and others [7]. Previous studies have repeatedly found that eQTLs cluster

symmetrically around the transcription start site (TSS), and, to a lesser extent, asym-

metrically around the transcription end site (TES) [8, 9]. These studies also indicate

that most eQTLs occur within 100kb of the TSS, and this finding has been replicated

many times. The GTEx analysis found that ∼80% of eQTLs are found in this area.

eQTLs nearer the TSS appear to have stronger effects, and eQTLs shared among

multiple populations occur closer to the TSS. There appears to be a high percentage

of eQTLs that are shared among disparate populations, as well as a large percentage

of eQTLs that are shared among different tissues [10, 9].

eQTL analysis has been extended to look at the impact of genetic variation on the

protein expression. Protein QTLs (pQTLs) studies have also included eQTLs in the

analyses to trace a genetic variant’s effect from gene expression to protein expression.

While there are genetic variants that impact both the gene and protein expression,

many genes appear to have only an eQTL and not a pQTL [11, 12, 13, 14, 15]. This

suggests that eQTL results do not translate directly to protein expression and then

to a phenotype. Several studies have used samples from the 1000 Genomes Project to

look at eQTLs and pQTLs, but these have focused on SNPs and indels and not larger
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structural variants [16, 17]. Due to the realities of generating protein expression data

the sample sizes tend to be smaller than projects that focus just on gene expression.

1.2 Structural Variants

Structural variants (SVs) are a group of genetic variation that includes large in-

sertions, large deletions, mobile elements, duplications and others. There isn’t an

official size definition for a SV vs. an indel, but currently the most common def-

inition is >50bp. This size cutoff is quite arbitrary, and has been reduced as the

technology has improved (previously the consensus was >1000bp). While SVs occur

less frequently than SNPs, they make up a larger proportion of the genetic changes in

humans due to their size. Challenges in identifying SVs using short read technology

means that they have been studied less than easier to identify types of genetic varia-

tions. An early analysis of the impact of copy number variation (CNVs), a type of SV,

on gene expression showed that SNPs which tagged the CNVs were more likely to ef-

fect multiple genes compared to a null set [18]. Groups like the 1000 Genomes Project

and GTEx have started to generate SV genotypes for a large number of individuals.

With the data from these groups it is now possible to analyze the contribution SVs

have on gene expression.

One of the first SV eQTL analysis was developed using CNV data from CGH ar-

rays and gene expression arrays from four of the HapMap populations. They found

323-411 SNP eQTLs, and 44-96 CNV eQTLs depending on the population. In their

analysis only about 20% of the CNV eQTLs could be captured using the SNP geno-

types [19]. In 2011, Schlattl et al. conducted a SV eQTL analysis based on CNV
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genotypes from both arrays and sequencing, and RNA sequencing in two of the 1000

Genomes populations. They were able to capture smaller CNVs than Stranger et

al., as well as ascertain breakpoints for some of the CNVs. They found 50 and 73

CNV eQTLs for 110 unique genes, and a subset of these overlapped with the CNV

eQTLs from Stranger et al., as well as prior studies that focused on a handful of

deletions [20]. Using the breakpoints the authors were able to determine that in

∼20% of the eQTLs the CNV overlapped either part or the complete gene sequence.

The 1000 Genome Project genotyped individuals from a number of populations from

five continental groups [21]. The Structural Variation Analysis Group focused on

genotyping structural variants in the 1000 Genomes Project data. The SVs include

insertion-deletions, CNVs, nuclear mitochondrial insertions (NUMTs), and mobile

element insertions (MEIs) which include Alu, L1 and SVA elements. The Geuvadis

project performed RNA-Seq and miRNA-Seq on 465 lymphoblastoid cell lines (LCLs)

from five 1000 Genomes populations. Four (CEPH/CEU, Finns/FIN, British/GBR,

Toscani/TSI) are from the European super-population, and the last (Yoruba/YRI) is

an African population. The Geuvadis paper included an eQTL analysis using SNPs

and indels, and there was a separate SV eQTL analysis in “An integrated map of

structural variation in 2,504 human genomes”. While a SV eQTL analysis has al-

ready been done using this data, it was not the main focus of the paper. A further

exploration of the results and an in depth look at the potential downstream conse-

quences would add to the work. The GTEx consortium published an eQTL analysis of

SVs which we used as a second dataset for validation and comparison. They analyzed

SV eQTLs from 147 individuals across 12 tissue types [22].
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1.2.1 SV Detection

There have been many algorithms and techniques developed to detect structural

variants from next generation sequencing (NGS) data. Before the rise of NGS both

array comparative genomic hybridization (array-CGH) and SNP based arrays were

used to find SVs. In general there are only a few overall strategies to detect SVs from

NGS reads, including using read depth, using paired end read, using split reads, and

de novo assembly. Read depth algorithms are well suited to finding and genotyping

CNVs, but may not have very good breakpoint resolution. The majority of the

detection algorithms use the information from paired end reads. When a read maps

normally one expects a certain length and orientation. If these expectations are

broken, this is an indication of the presence of a SV. If the insert length differs from

the expected length this could indicate an insertion or a deletion. Differences in

the orientation of the paired ends could indicate a duplication or an inversion. A

split-read strategy can be used to identify SVs when the reads contain the ends, or

breakpoints, of the SV. While de novo assembly is both computationally expensive

and can be error prone, it can find novel and larger variants. Many of the SV detection

algorithms use a combination of these approaches to improve accuracy and precision

[23, 24, 25, 26]. The 1000 Genomes Project Structural Variation Analysis Group used

a combination of Breakdancer, Delly, VariationHunter, CNVnator, GenomeSTRIP,

PINDEL, MELT, dinumt and read depth to detect and genotype SVs [27, 28, 29, 30,

31, 32, 33, 34]. The GTEx consortium relied on LUMPY for detection and genotyping

[35].
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1.2.2 SVs and Disease

The first instances of structural variation described almost 100 years ago were very

large chromosomal changes in fruit flies. Karyotyping and fluorescent in situ hy-

bridization (FISH) were used to find similar rearrangements in humans, all of which

were associated with disease. These can range from chromosomal aneuploidy, like

chromosome 21 triploidy and Down syndrome, to large chromosomal deletions, du-

plications and translocations, which were associated with diseases such as Potocki-

Lupski syndrome and Smith-Magenis syndrome. Chromosomal translocations and

gene fusions were found to be driving mutations in chronic myelogenous leukemia

and Burkitt’s lymphoma respectively. Because these large events were the only ones

detectable, it was thought that SVs were always associated with disease. When array-

CGH was developed multiple CNVs were found in healthy individuals in 2004 [36, 37].

With array-CGH, SNP arrays and then NGS data more SVs, and smaller SVs were

discovered, both in healthy individuals and associated with disease. SVs are now

implicated in neurodevelopmental disorders like autism and schizophrenia, as well as

cancer, but they are also found in healthy individuals [38, 39, 40]. Duplications or

deletions can affect the gene copy number, which can have phenotypic consequences,

but SVs can also impact phenotype when they overlap functional elements like pro-

moters.

1.2.3 1000 Genomes SV Paper

The SV Analysis Group for the 1000 Genomes Project used Illumina reads (100bp

mean, 7.4x coverage) from the 1000 Genomes samples to discover and genotype SVs.
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Because the 1000 Genomes SV analysis relied on low coverage WGS data, it is under

powered rarer and complex SVs. Even with that caveat, the analysis was able to

discover many more SVs, and SV consequences than previous studies. From the

analysis it was estimated that there are 18.4 Mbp of SVs in an individual genome,

mostly made of 11.3 Mbp of mCNVs, and 5.6 Mbp of biallelic deletions. The reads

were mapped using BWA and MrFast, and nine different SV detection algorithms

were used to create the call set. Mapping and genotyping SVs is difficult because

they have a tendency to be found in repetitive regions. The final call set contained

over 60,000 SVs, which included 42,279 biallelic deletions, 6,025 biallelic duplications,

2,929 multi-allelic copy-number variants, and 16,631 mobile element insertions. 71%

of SVs were novel when compared to the previous 1000 Genomes release, and 60%

were novel when compared to the Database of Genomic Variation. By using PacBio

long reads, and combining them with the WGS reads, breakpoints were established

for over half the SVs. Most SVs were found to be shared between population groups.

68% of SVs with a VAF > 0.1% are in LD with a nearby SNP (r2 > 0.6), but this is

highly dependent based on the SV type.

There were statistically fewer CDSs, UTRs, introns and TFBSs found in deletions

than expected by a random model (P ¡ 0.001). There was a direct relationship between

size and rarity of deletions, the larger deletions being rarer: but this relationship

does not hold for duplications. 240 genes were found in homozygous knockouts,

which indicates that they are not crucial for survival. Most of these genes were

novel knockouts, but they tended not to be highly conserved, and quite tolerant to

mutation. The genotyped SVs with breakpoints were analyzed for complex events.
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6% of deletions intersected another deletion, and 16% had an insertion at the deletion

breakpoints. Many SVs showed even more complex situations, often with deletions,

insertions and duplications all occurring in the location.

An eQTL analysis was performed using the SV genotypes, and 462 individuals from

the Geuvadis project. The joint analysis between SNPs, indels and the SVs found

54 eQTLs with a lead association that was a SV. That is compared to the 9,537

eQTLs with a lead SNP/indel association. For 166 of these eQTLs, there was a SV in

LD (r2 > 0.5), which is seven times more than expected when compared to random

variants. SVs were enriched for eQTLs compared to SNPs and indels, up to 50 times

depending on the SV class. Larger SVs tended to have larger effect sizes, and those

that overlapped genes also had the largest effect sizes. 136 SVs were in strong LD (r2

> 0.8) with SNPs that were found to be GWAS hits. All of this suggests that SVs

have a bigger impact on gene expression than SNPs, relative to their frequency.

1.3 MicroRNAs

MicroRNAs (miRNAs) are small (18-22 base pair) nucleotides that are involved in

gene regulation. There is a complex set of cellular mechanisms that take miRNAs

and use them to knockdown gene expression. They were first discovered in 1993,

and thousands of potential miRNAs have been identified in humans. The miRNA

mechanisms appear to be highly conserved among organisms. Mature miRNAs are

used by the RNA-induced silencing complex (RISC) to bind to complementary RNAs,

which then reduces translation, or marks the transcript for degradation [41]. Less

than 10 years after the discovery of miRNAs, their involvement in cancer was first
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identified. miRNA expression changes in cancer have been extensively studied, and

several groups have identified specific miRNA signatures for a variety of tumor types.

Even with all the efforts to study miRNAs it is still unclear the extent of their

involvement in disease, and how other genetic factors play a role [42]. Just as gene

expression is regulated by a host of factors, the same holds true for miRNA expression.

The Geuvadis project conducted miRNA expression sequencing on over 450 sam-

ples, and used the data to analyze how SNPs impacted miRNA expression. They

conducted an eQTL analysis that used miRNA expression in the place of gene ex-

pression. They also analyzed the potential downstream effects by looking at SNPs

that influenced both miRNAs and genes, and miRNAs that repressed gene expression.

The found cases where a SNP that was implicated in an eQTL was also found in the

miRNA eQTL, and that miRNA was a regulator of the gene.

We published a paper that used miRNA expression as the X values, and gene

expression as the Y values in a linear regression association analysis in ovarian cancer

[43]. While we called it an “eQTL analysis” in the paper, what we did was more

of a miRNA-to-gene association analysis. We used expression to analyze pairwise

correlations between miRNA expression and gene expression. We applied a similar

method in other contexts to explore the impact of miRNAs on gene expression.



CHAPTER 2: METHODS

2.1 eQTL Analysis

There are many different methods for finding eQTLs, but in general they can

be divided into two categories, pairwise association methods or statistical/machine

learning methods. The earliest eQTL analysis methods developed were pairwise asso-

ciation methods, and relied on correlation or regression (Figure 1). In these methods

a statistical test, like a linear regression, is performed for each combination of genetic

variant and gene. Because of the number of tests performed, the choice of multi-test

correction method is important. While a family wise error rate method like Bonfer-

roni correction can be used, other less stringent methods such as permutation and

false discovery rate (FDR) tend to be used. A random permutation correction is

based on running the eQTL analysis many (e.g. 10,000 times) while permuting the

genotype and expression values. The permutation p-value is based on the number of

times the SNP and gene combination appears in the permuted results.

There are many pairwise association eQTL methods including Merlin, R/qtl, and

Plink. Merlin is a set of tools for association and linkage studies, which includes

eQTL analysis. Merlin has a focus on pedigrees, and can include this information in

the eQTL analyses [44]. R/qtl is an R based eQTL package that uses Hidden Markov

Models, and Haley-Knott regression to perform a correlation analysis [45, 46]. PLINK
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Figure 1: Pairwise Associations in an example eQTL

is a suite of tools for genome wide association studies, and can perform eQTL analyses.

PLINK can calculate linkage disequilibrium, inbreeding coefficients as well as other

statistics [47]. PLINK uses a binary file format that other eQTL packages have also

used. Merlin, PLINK and R/qtl are older pairwise association methods, and tend

to be computationally and time intensive when used on larger datasets, that are

now standard. MatrixEQTL and FastQTL are among a newer generation of linear

regression software packages [48, 49]. They implement a range of algorithmic methods

in order to run eQTL analyses on a large number of individuals in a reasonable amount

of time.

The second group of eQTL analysis methods are the statistical and machine learn-

ing methods. While linear regression treats each genetic variant/gene pair as inde-

pendent this does not reflect biological reality and some of these methods attempt

to address this. They include MTLasso2G, SCGGM, ICE, PANAMA and others

[50, 51, 52, 53]. ICE is based on a linear regression analysis, but combines it with a

statistical model to correct for complex correlation structures. It can correct for both
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strong and moderate effects, and has been shown to reduce the number of false posi-

tive eQTLs in trans-, as well as increase the number of cis- associations. PANAMA

uses a linear mixed model to jointly learn the confounding factors and the impact

from the genetic variants. SCGGM is a probabilistic graphical model that models

how SNPs perturb a gene network [54]. geQTL is a sparse regression method that

can map single or groups of genetic variants to a single or a group of genes [55]. In the

following sections we will discuss in depth one method from each type, MatrixEQTL

from the pairwise association group, and MTLasso2G from the statistical learning

group.

2.1.1 MatrixEQTL

We use MatrixEQTL to conduct our eQTL analyses. A naive implementation of

linear regression for eQTL would be computational intensive. For example an eQTL

analysis using the 1000 Genomes SNPs and genes has 224,857,198,181 potential pair-

wise associations. To address this MatrixEQTL works on the data in chunks of up

to 10,000 lines. For each pair of 10,000 variable chunks MatrixEQTL calculates a

correlation matrix, and then selects pairs that have a correlation above the defined

threshold, and then MatrixEQTL calculates the linear regression only for those pairs.

This approach drastically reduces the computational burden and time for an eQTL

analysis even when using large datasets. We have written R code that extends Ma-

trixEQTL and simplifies it use. MatrixEQTL requires a genotype matrix, a gene

expression matrix and the positions of both the genes and genotypes. This can be

generalized to a X and Y matrices. While not required by MatrixEQTL we also
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include covariates to remove any potentially confounding effects. While we typically

use a distance cutoff of 1 megabase and limit our analysis to just cis-, MatrixEQTL

can perform both cis- and trans- eQTL analyses, and adjust the distance cutoff. Ma-

trixEQTL outputs a file with eQTLs, and a qq-plot. See Figure 2 for an overview of

the workflow.

2.1.1.1 Data Preprocessing

To obtain the best results the data needs to be preprocessed. This preprocessing

could include a principal components analysis (PCA), quantile normalization and

minor allele frequency filtering. The steps outlined below are what we use for Ma-

trixEQTL, however similar steps are taken for most eQTL analyses. If the X matrix

contains discrete values such as genotypes, then a minor allele frequency (MAF) fil-

ter should be used. This helps insure that there are enough individuals (e.g. 5% of

the sample) with the minor allele so the associations aren’t driven by a handful of

outliers. We normalize the gene expression by using inverse quantile normalization.

This maps the gene expression values onto the standard normal distribution based

on their rank. Importantly this fulfills the assumption of normally distributed data

required by linear regression, and it also helps limit the effect of outlier genes. It

also removes any effects from differences due to the large variation in gene expression

values. We also apply inverse quantile normalization to the X matrix if it contains

continuous values, such as miRNA expression.

For covariates we include gender, population, and principle components on both the

genotypes and the gene expression. We use a screeplot and the percentage variation
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Figure 2: eQTL Workflow

explained to determine how many PCs to include. Instead of including gene expression

PCs in the covariates, we can include PEER factors. This technique is commonly used

in eQTL analyses and has been used in both the Geuvadis project and the GTEx

project. Like PCs, PEER factors help account for some of the unknown covariance in

the data. By removing covariates we hope that we are removing confounding elements

in the data, and leaving only the biological signals. One method for evaluating the

efficacy of the covariates, specifically the number of PCs, is to take a subset of the

data and run multiple trials using it. The number of PCs and PEER factors that

produces the greatest number of eQTLs is then used on the full dataset. Another

approach which has been used by the GTEx project, is to simply set the number of

PCs and PEER factors based on the number of samples.
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2.1.2 MTLasso2G

Multitask Lasso 2G (MTLasso2G) is an orthogonal approach to conducting eQTL

analyses based on a sparse modeling approach using Lasso. MTLasso2G utilizes the

relationships between the genotypes and the relationships between the genes in the

analysis instead of treating each pair as independent. The sparsity in MTLasso2G

and other similar methods, is based on the assumption that there only exists a small

number of associations between genetic variants and traits. MTLasso2G creates a

graph or network based on the correlation matrix for both the genotypes and the

gene expression. This also allows for the association between groups of related ge-

netic variants and a trait. This reduces the dimensonality of the genotypes and gene

expression and induces the sparsity. MTLasso2G uses these two graphs to inform the

lasso portion of the analysis. The output includes the two graphs and the final asso-

ciation matrix. Any non-zero value represents an association between the respective

genotype and gene. The input for MTLasso2G is similar to MatrixEQTL, with a few

modifications. The genotypes are MAF filtered, and the gene expression is inverse

quantile normalized. Instead of including PCs and PEER factors as covariates, they

are regressed out of the respective matrices.

2.1.2.1 Hyperparameter Optimization

In the broadest possible terms machine learning is the process of optimizing a set

of parameters given a set of inputs. Many machine learning methods depend on

the selection of a set of hyperparameters. These hyperparameters include things like

the learning rates in a neural network, and the regularization parameter in Lasso



17

type methods. Given the same dataset and different hyperparameters these methods

will produce different results, which means the selection of the hyperparameters is

a critical step in any machine learning analysis. For MTLasso2G there are three

different hyperparameters (γ1, γ2, and λ) that need to be tuned, and SCGGM has two

hyperparameters. We analyzed three different methods of hyperparameter selection

and optimization. Hyperparamter optimization allows us to select a good set of

hyperparameters without relying on guessing and checking, thus producing better

eQTL results. This also allows us to have some degree of reproducibility in our

hyperparameter selection process.

Hyperparameters can be manually tuned, that is the user can adjust the hyper-

parameters in an attempt to achieve better results. While there is no overhead for

manual tuning the results are dependent on the user and not easily replicated. There

are a few different methods for automatic hyperparameter optimization. The first,

and simplest, is a grid search. Here a set of values for each hyperparameter is speci-

fied, and the analysis is run with every possible combination of the hyperparameter

sets. A grid search is easy to implement, easily run in parallel, and given the same

amount of time as manual tuning a grid search can usually find better hyperpa-

rameters. Another simple to implement technique is a random search. A range of

hyperparameters is specified and an value from this range is randomly selected for

each optimization run. Published results suggest that a random search can find better

hyperparameters in a shorter amount of time, when compared to a grid search[56].

This is due to the fact that a grid search can easily miss sets of hyperparameters that

aren’t specified, where as a random search does not rely on specific values. Snoek et
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al. applied Bayesian optimization to the hyperparameter search question, and found

that it could out perform both grid and random search.

To test the differences between these methods we applied each one to eQTL analyses

using MTLasso2G. The datasets were generated from the gene expression values and

genotype data from the Yoruban population varying the number of samples, the

number of SVs, and the number of genes. For each analysis run we compared the

number of eQTLs, and the cross validation error. We wrote custom code (three

nested loops) for the grid search, and used the Spearmint software package for the

random search and Bayesian optimization. To create a fair comparison we allowed

each method to run for 320 iterations. Figure 3 shows the cross validation error and

number of eQTLs for grid search, random search and Bayesian optimization across 25

different combinations of number of SVs and number of genes. Overall we found that

the Bayesian optimization worked the best, but the grid search was not far behind.

A single eQTL analysis using MTLasso2G can take hours or even days, which makes

hyperparameter tuning computationally intensive and time consuming. Since the

results of each analysis is so highly dependent upon the hyperparameters, the time

taken to optimize the hyperparameters is well spent. While the results from these

tests only apply to MTLasso2G, the principle of using hyperparameter optimization

for any other machine learning based bioinformatics methods is the same.

2.2 Network Analysis

In prior work we constructed integrated networks that combined multiple different

data types and cellular interactions [57]. We start with the eQTL or miRNA-gene
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(a) (b)

Figure 3: Results for grid search, random search, and Bayesian optimization on 10
randomly sampled datasets with the number of SVs J=[75,100,125,150] and the num-
ber of genes K=[75,100,150,200,250]. (a) CV errors; (b) The number of eQTL asso-
ciations.

association results as the seed nodes for the network. We add protein-protein inter-

actions and gene expression correlations using the genes from the results. If we are

starting from miRNA-gene associations we also add miRNA targets from TarBase, or

another similar miRNA target database, and miRNA expression correlations. Using

this method we construct a network comprised of genetic variants, or miRNAs, and

genes. We can apply network analysis methods, like node centrality and connectivity

to analyze these networks and determine the importance of the genes or miRNAs.

Network alignment can be used to compare networks in order to find the similarities

and differences.

2.3 Downstream Analyses

After performing the eQTL analyses we can analyze the results a few different

ways. Gene enrichment analysis can be used to evaluate the eQTL genes, and disease

associations can be performed on both the eQTL genes, as well as the SVs and SNPs.
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We can compare our eQTL results to those generated by other groups who used

the same data. We can also use functional enrichment analysis to see if the genetic

variants in our eQTLs overlap functional elements such as gene promoters. There are

several methods for narrowing down which genetic variant is causal in a set of eQTLs

including CAVIAR and DAP [58, 59].



CHAPTER 3: UTILIZING NETWORKS: OVARIAN CANCER AND DEEP
LEARNING

3.1 Ovarian Cancer miRNA eQTL Analysis

Ovarian cancer is responsible for ∼5% of female cancer deaths. It is estimated that

in 2018 there will be ∼22,240 new cases and 14,070 deaths from ovarian cancer [60].

Previous studies have suggested that miRNA dysregulation plays a role in ovarian

cancer [61, 62]. The overall 5-year survival is below 50%, but it drastically improves

when diagnosed in the earliest stages [63]. The TCGA found miRNA subtypes in

their analysis of serous ovarian cancer. We published a paper in 2015 that analyzed

the associations between miRNA expression and gene expression in ovarian cancer

[57]. In the paper we constructed an integrated network using multiple levels of data

including miRNA-gene associations, protein-protein interactions, and miRNA targets.

In this analysis we conducted an eQTL analysis, a miRNA target search, a protein-

protein interaction search, a miRNA-miRNA correlation and gene-gene correlation

search and then performed a network integration (Figure 4).
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Figure 4: The workflow from “An Integrated Network of microRNA and Gene Ex-
pression in Ovarian Cancer“.

For the analysis we used the miRNA isoform expression and mRNA expression from

the TCGA, which contained 480 samples. Both expression datasets were generated on

the Illumina HiSeq. We removed miRNAs and genes with missing values, giving us 183

miRNAs and 13,536 genes, and then applied between-sample quantile normalization

to both. We used MatrixEQTL to perform the association analysis, with a cis-

distance cutoff of 1 MB, and a FDR cutoff of 0.01. We used the association results as

seed nodes to expand the network in a variety of directions. We used TarBase to add

the genes that the miRNAs target, and DAPPLE to add protein-protein interactions
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[64, 65]. For the DAPPLE expansion we only chose interactions with a corrected p-

value of < 0.05. The initial integrated network contained the overlap of the miRNA-

gene associations, miRNA targets and protein-protein interactions. To this network

we added miRNA-miRNA correlations and gene-gene correlations from MTLasso2G.

MTLasso2G was also used to generate a second set of eQTLs, which were added

to the network. The resultant network demonstrates the potential complexities and

interplay between gene and miRNA expression.

Using this technique we created a network that was composed of 167 nodes and 277

edges (Figure 5). The initial dataset was 44 miRNA-gene associations. We found 310

miRNA targets in TarBase. Of these only 244 could be used as inputs for DAPPLE.

From DAPPLE we found 236 protein-protein interactions, with 145 having a corrected

p-value of < 0.05. We created an initial network from the miRNA-gene associations,

145 protein-protein interactions, and 108 miRNA target interactions. We were able to

add 9 miRNA correlations and 18 gene correlations from MTLasso2G, as well as 8 of

48 miRNA-gene associations. 26 of the 145 genes in the network were associated with

cancer, 11 of which were specifically associated with ovarian cancer. The integrated

network captured more cancer genes and ovarian cancer genes than the DAPPLE

extended network, the miRNA targets or the MTLasso2G network.
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Figure 5: The finale integrated ovarian network containing 167 nodes and 277 edges.

In the integrated network we found ATK1, which has been implicated in tumero-

genesis in ovarian cancer. ATK1 was found in each of the component networks as

well. We also found a subnetwork containing ATK1 that had ESR1 in a central

role. ESR1 has been associated with breast cancer, and its expression has been

suggested to be a predictor of ovarian cancer survival. This subnetwork contained

5 miRNAs and 12 genes, connected by three miRNA-gene associations, six miRNA

target associations and protein-protein interactions.

In our integrated network we found that E2F1 was targeted by three separate

miRNAs. The down regulation of E2F1 has been shown to inhibit ovarian cancer
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growth, and E2F1 has also been studied as a predictor of drug resistance in ovarian

cancer. In both these cases, the ATK1 subnetwork, and the miRNA interactions with

E2F1 the miRNA associations could provide insight into the roles and regulation of

these genes. Studying these miRNA associations, and others like them, could shape

our understanding of these genes role in ovarian cancer.

We used multiple databases to examine the miRNAs and their relation to cancer.

Of the 22 miRNAs in our integrated network, 14 were associated with cancer in

general, and 12 were associated with ovarian cancer specifically. Increased expression

of hsa-miR-200c has been associated with better survival and increased responsiveness

to paxlitacyl, a chemotheraputic. hsa-mir-22 has been associated with survival and

recurrence of ovarian cancer, and in our network targets ESR1.

By combining these different types of data we are able to create a picture that

better captures the interactions that occur in biology. This holistic approach allows

us to analyze changes in miRNA and gene expression simultaneously and to take into

account the impact that they have on each other. Examining the component parts

individually does not have the same results, as each component only provides part of

the picture. This same approach can not only be applied to other types of cancer,

but can be expanded to include even more types of data.

3.2 Predicting Gene Expression from Genotypes Using Deep Learning

In “A deep auto-encoder model for gene expression prediction“ we applied deep

learning techniques to the genotype-to-expression problem [66]. We used a Multi-

Layer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE) to predict gene
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expression of yeast from their genotypes. It has been long established that genetic

variation can lead to phenotypic differences, and we know that some of the differences

in gene expression levels are driven by genetic variation. These two facts are the ra-

tionale behind GWA and eQTL studies respectively. Studies have shown that GWAS

SNPs are enriched for eQTLs, which suggests that both techniques are picking up

a signal from the same mechanism [6]. This also means that eQTL studies can be

used to examine the intermediate layer, i.e. gene expression, between genotype and

phenotype.

One of the benefits of deep learning is that the hidden layers can capture pre-

viously unknown and complicated structures in the data. Another benefit is that,

unlike linear regression based eQTL analyses, deep learning does not treat each in-

dividual genotype-gene expression pair as independent. Deep learning models have

been previously applied to other areas of bioinformatics, including predicting splic-

ing from RNAseq data, the functionality of non-coding variants and many areas in

proteomics.

A multilayer perceptron maps input to output using a feedforward neural network,

and each layer is fully connected to the next. The nodes in the hidden layer use

non-linear activation functions. The model is learned by adjusting the weights of

the connections between the nodes using the backpropagation algorithm. An auto-

encoder is another neural network type which can be used for dimensionality re-

duction. An auto-encoder is also composed of input, output and hidden layers. Like

MLPs, auto-encoders can be trained using backpropagation, where the errors between

the expected and predicted results are used to adjust the weights between the nodes.
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A denoising auto-encoder is an type of auto-encoder which can be used to separate

signal and noise. The MLP-SAE model combines the MLP model and auto-encoders

by using them as the hidden layers. The input layer takes SNP genotypes, and the

output layer is predicted gene expression values.

The MLP-SAE model that we used was made up of four layers, one for each input

and output, and two hidden layers in between. To prevent overfitting of the model, we

employed dropout. To use dropout nodes, and any of its connections are temporarily

removed from the network. This helps prevent overfitting by reducing the dependency

of the network on any individual node. To evaluate how the deep learning model

performs we compared it to other similar machine learning based methods, Lasso

and Random Forests, using genomic data from yeast. We performed a series of

tests varying the hyperparameter values (α for lasso, number of trees for random

forests, and learning rate for MLP-SAE), and compared the cross validation error.

The MLP-SAE model outperforms both Lasso and Random Forests when predicting

gene expression from genotypes using this yeast dataset. The addition of dropout

decreased the cross validation error further.

We used the yeast data generated by Brem et al. for our project [67]. There were

2,956 SNPs and 7,085 genes from 112 samples of a BY4716 and RM11-1a cross. After

removing genes with missing expression values we were left with 6,611 genes. We

used Scikit-Learn to impute and scale the SNP genotypes. When we compared the

predictions from the MLP-SAE model with dropout to the actual gene expression

values we found that they were well correlated. The model captured many of the

features of the real data, as can be seen in Figures 6 and 7.



28

Figure 6: Predicted vs. observed gene expression. The deep learning model recapit-
ulates many of the features that we find in the measured gene expression from the
yeast.

Besides an increased accuracy in prediction from lasso or random forests, a benefit

of a deep learning model is that it can incorporate other data like regulatory and epi-

genetic elements, biological pathways, and environmental conditions. The inclusion

of these factors could lead to a better model, as would using a dataset with a larger

number of samples. Other deep learning architectures, like Recurrent Neural Net-

works, could be applied to this and other similar problems. The MLP-SAE method

could also be applied to other expression datasets beyond yeast, and problems like

tissue specific expression.
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Figure 7: A subset of the predicted vs observed gene expression. Here it is clear that
while the model does not perfectly represent the actual gene expression, it has many
of the features seen in the data.



CHAPTER 4: EQTL ANALYSIS PIPELINE

There are many different eQTL methods available, but only some of the newer

methods can easily handle the sample sizes that the standard today. One of these

methods is MatrixEQTL, and while it is a good eQTL analysis tool, there are im-

provements that could be added, and additional tools that could be included for

ease of use. We developed a pipeline based on MatrixEQTL, that adds function-

ality and tools to aid in the eQTL analysis process from beginning to end. We

have added the ability to normalize the gene expression data, run PEER and per-

form a PCA to create covariates, filter the genotypes based on the minor allele fre-

quency, and create exploratory plots of the results. The software is available at

https://github.com/andrewquitadamo/matrix eqtl pipeline.

4.1 Pipeline Software Description

The pipeline is written in a combination of R and Python. In total it is over 1400

lines of code, 85% Python and 15% R. The Python code is used to wrap the R code,

to parse the input files, and to provide the user interface. The R code is used to

conduct the eQTL analysis and generates the plots and figures. We use rpy2 as a

bridge between R and Python. The use of R was necessitated by MatrixEQTL, but

as R is not the ideal environment for parsing files, Python was chosen to handle those

tasks. The use of Python also allows us to utilize parts of Scikit-Learn.
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There are a few things that need to be done to any raw data before MatrixEQTL

can be used. These preprocessing steps ensure the most accurate results are obtained;

see Methods for a discussion of these steps. The inputs for this pipeline are a VCF

file, a gene expression matrix and gene positions. The overall workflow is documented

in Figure 8

The simplest usage is to rely on the default settings. All the user has to do is

supply the requisite files and specify the number of PEER factors to correct, as in

Listing 1.

Listing 1: The simplest invocation of the eQTL pipeline

python3 matr ix eqt l wrapper . py \

−v data / snp genotypes . vc f \

−g data / gene exp r e s s i on −p data / g e n e p o s i t i o n s −n 5

The first script in the pipeline, remove vcf header.py, removes the meta-informational

lines in the header of the VCF file, i.e. those that begin with ##. This leaves

only the header line with the sample IDs, and the genotype lines. The next script,

vcf overlap.py, overlaps the VCF file and the gene expression matrix file. The output

files only contain the samples found in both files, and in the same order. Matrix-

EQTL will not accept input files that have a differing number of samples, or files

that have samples in a different order. filter snps.py filters the VCF file using a

minor allele frequency (MAF) cutoff. The user can select their desired MAF cut-

off, and SNPs with a minor allele frequency that falls below the cutoff are removed,

and not used in the eQTL analysis. parse.py takes the VCF file and produces a
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singular summed genotype. For example 0|0 becomes 0 and 0|1 or 1|0 becomes 1.

position.py uses the VCF file and creates two different genotype position files, one

that is in MatrixEQTL format, and one that contains the ID, chromosome, start

position, stop position, and type for each genotype. run iqn.py is a Python wrapper

for general iqn py.R, which runs inverse quantile normalization on the gene expres-

sion matrix. pc covariates.py calculates the principal components of the genotypes

using the IncrementalPCA method from Scikit-Learn. The PCs are then used as

covariates in the eQTL analysis. run peer.py is a Python wrapper for peer function.R

which runs PEER on the gene expression matrix. The PEER factors can then used

as covariates for the eQTL analysis. combine covariates.py takes the genotype PCs,

the PEER factors, and any additional covariates that the user supplies and combines

them into one file to be used as input for MatrixEQTL. run matrix eqtl.py is the

Python wrapper for mxeqtl.R, which is code that has the R functions to run Matrix-

EQTL. modify matrix eqtl.py is used as part of the installation process. It downloads

the current MatrixEQTL distributions code, and makes some tweaks to the code that

prints messages, so that it interacts with Python and rpy2 better. CorrBoxPlot.py

is the wrapper for CorrBoxPlotFile.R, which produces both the correlation between

genotype and gene expression for each eQTL and boxplots to represent the gene ex-

pression for each genotype in an eQTL. manhattan.py is the Python wrapper for

manhattan.R which produces a Manhattan plot of the eQTL results. This can be

used to find loci of interest, where there are peaks of significance.

matrix eqtl wrapper.py is the main entrypoint for the pipeline, and will run the

analysis from start to finish. It provides the user control over the options for each
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Figure 8: The workflow for the eQTL pipeline.

step of the process, such as specifying the number of genotype PCs to include, the

cis- p-value, and the cis- distance cutoff. The complete list of options can be seen in

Figure 9. This pipeline requires a Python3, R > 3.3, Numpy, Scipy, Pandas, Scikit-

Learn, rpy2, and PEER. An example of how to install this pipeline on Ubuntu 18.04

can be found in the GitHub repository. Besides using the pipeline as a single tool,

the individual component tools can be used by themselves as well.

4.2 Discussion

This software package provides useful extensions to MatrixEQTL, both pre- and

post- analysis. There are functions to help preprocess the data, generate the required

input files and functions to visualize the eQTL results. The ultimate purpose of this

package is to help others use MatrixEQTL without any overhead or having to write

custom code to preprocess data. This pipeline attempts to codify best practices for

an eQTL analysis. Previously the functions around the periphery of the analysis in
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Figure 9: The options for the eQTL pipeline.
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MatrixEQTL, while essential, were somewhat neglected. This left users to develop

their own scripts and processes to address this. Instead of having every MatrixEQTL

user roll their own solution, a single, previously developed pipeline saves collective

time and effort. For example the pipeline also allow the user to start directly from

a VCF genotype file, which cannot be used as input for MatrixEQTL. The modular

nature of the pipeline could allow for other eQTL analysis tools to be used instead of

MatrixEQTL without retooling the entire workflow. The pipeline also allows novice

users to get started with eQTL analysis using the default settings, and the downstream

visualizations can help users explore the eQTL results. The pipeline has the option to

produce boxplots for each eQTL, as well as a Manhattan plot. These visualizations

bring together different aspects of the data, that the user would have to otherwise

manually compile.



CHAPTER 5: STRUCTURAL VARIANT FUNCTIONAL ANALYSIS

The purpose of this chapter is to analyze the role that structural variants play

in gene and miRNA expression. We produced SV eQTLs, joint SNP/SV eQTLs,

SV miRNA-QTLs, joint SNP/SV miRNA-QTLs, and miRNA-gene associations. We

studied the associations between genetic variation, gene expression and miRNA ex-

pression, and have applied some downstream analyses to the eQTL data.

5.1 SV and SNP eQTL Analyses

We performed an eQTL analysis using structural variants as the genotypes of in-

terest, and a separate analysis which only included SNPs. We used the SV and SNP

genotypes from the 1000 Genomes Project, and the gene expression from the Geuvadis

project, and normalized the data as outlined in the methods. We used 37,172 SVs,

and 9,411,447 SNPs, which we ran against 23,723 genes. At a FDR rate of 0.01, we

found 974 SV-only eQTLs, which involved 488 SVs and 474 genes. We found 794,802

eQTLs which contained 499,212 unique SNPs and 8,010 unique genes. 465 (98.1%)

of the genes in the SV-only analysis were also found in the SNP-only analysis.

5.2 Joint SNP-SV eQTL Analysis

We used both the SV and SNP genotypes to perform a joint eQTL analysis. This

analysis is similar to the one in the 1000 Genomes paper [22].

After filtering and pre-processing this analysis used 9,448,610 genetic variants and
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Table 1: SNP and SV FDR and Beta Distributions

Minimum First Quartile Median Mean Third Quartile Max
SNP FDR 2 2.855 4.442 7.964 8.390 143.8
SV FDR 2.001 2.901 4.555 7.331 8.277 128.8
SNP Beta -2.2 -0.436 0.2947 0.04801 0.4766 2.801
SV Beta -2.528 -.4967 0.3226 0.09828 0.522 3.776

23,723 genes, and found 11,269,037 eQTLs in total. We found 793,654 eQTLs with a

FDR of 0.01 in the joint SV/SNP eQTL analysis, which involved 8,010 unique genes

and 499,555 unique genetic variants. The genetic variants were involved in an average

of 1.59 eQTLs (min. of 1, median of 1, max of 16). Most genes had multiple eQTLs,

with an average of 99 (min. of 1, median of 15 and max of 11,490). The eQTLs could

be broken down into 1,117 SV eQTLs and 793,685 SNP eQTLs. The SV distribution

was similar to the overall genetic variant distribution, with each SV involved in an

average of 1.55 eQTLs (min. of 1, median of 1, max of 13), however they impacted

fewer genes (mean of 5.47, min. of 1, median of 1, max of 536). The FDR distribution

for the SNP and SV eQTLs appears to be similar, but the SVs appear to have slightly

larger effect sizes. (Table 1, Figure 10) In the joint analysis results there were 474/474

(100%) of the genes from the SV-only eQTL analysis, and 7,991/8010 (99.76%) of

the genes from the SNP-only eQTL analysis.

When we look at the Manhattan plot we can see that at most loci the SNPs

dominate, but at several loci there is a SV (or SVs) that are the lead association

(Figure 11). The Manhattan plots for the SNP-only (Figure S1) and SV-only (Figure

S2) are similar to that from the joint analysis.

We can create a similar plot that uses the beta values in place of the FDR. This
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Figure 10: The SNP and SV eQTL FDR and Beta distribution histograms. Both
the SNP and SV FDR distributions are similar, but the beta distribution for the SV
eQTLs is not as symmetric as the SNP distribution, and is also shifted towards larger
effect sizes.

Figure 11: Whole genome FDR Manhattan plot. A Manhattan plot shows areas
of the genome that have significant eQTLs. For most loci there are many genetic
variants due to linkage disequilibrium. Here we can see loci where SVs contribute
significantly.
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plot differentiates between positive and negative effects, that is it separates out the

genetic variants that are associated with an increase in gene expression and those

that are associated with a decrease in expression. In this plot we can see that there

are more loci where the SVs are the lead association when compared to the FDR

plot(Figure 12). Figures S3 and S4 show the beta Manhattan plots for the SNP-only

and SV-only analyses.

Figure 12: Whole genome beta ”Manhattan” plot. This plot shows the effect size of
each genetic variant. Like the traditional Manhattan plot we can see loci of interest,
but in this plot we can also distinguish how the variant effects the gene expression.
Using this we find more locations where an SV has the largest effect.

When the FDR is plotted against the distance to the transcription start site, we see

a similar pattern to the one that was previously described in other eQTL analyses,

where the more significant eQTLs cluster around the TSS (Figure 13).
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Table 2: SVs Shared between Joint and SV-only analyses

Joint SV-only Both
SVs 205 61 913

Table 3: SNPs Shared between Joint and SNP-only analyses

Joint SNP-only Both
SNPs 0 323 793,684

Figure 13: The eQTL FDR plotted against the distance to the TSS. As found by
other groups in prior analyses the more significant eQTLs tend to cluster around the
TSS.

When we compare the joint eQTLs to the SV-only and SNP-only eQTLs, the vast

majority overlap. 913 (77.4%) of the SVs are shared between the Joint and SV-only

analyses, and 793,684 (99.95%) SNPs are shared between the Joint and SNP-only

analyses (Tables 2 and 3). For the highest ranking eQTLs the ordering is either the

same, or very similar between the joint eQTLs and the SV/SNP-only eQTLs.

We found 32 eQTLs that are shared between our results and the GTEx SV eQTLs.
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Because of the different approaches between the studies, there were only 412 potential

eQTLs that shared genes from the GTEx eQTLs.

We found 133 eQTLs with a lead SV based on FDR. When we look for the genotype

with the largest positive, or largest negative effect size we find that 139 eQTLs have

a lead SV. When comparing the largest overall effect size, there are 185 eQTLs with

a lead SV, 130 of which are not found in the FDR set.

By plotting the position of the gene, the SVs and the SNPs with their respective

FDRs we can visualize the eQTLs around each gene. This can provide insights into

how the genetic variants are related and how they impact the gene. We can combine

this information with the linkage disequilibrium values. This is important as the most

significant eQTL may not be causal, but be in LD with another genetic variant that

is. Figures 14 and 15 show an example from ENSG000000184674 (GSTT1), which

has a SV as the lead association. When we plot the SNP-only eQTLs for the same

gene with LD information we can see that there are three other SNPs in very high LD

with the lead SNP, along with other SNPs in high LD as well (Figure 16). However

none of these SNPs are in high LD with the lead SV in the joint analysis.



42

Figure 14: The eQTLs for ENSG00000184674 (GSTT1). The location of the gene
is represented by a purple rectangle, and the SVs are blue rectangles. The lead
association is a SV which overlaps the gene.

Figure 15: The eQTLs for ENSG00000184674 with linkage disequilibrium values. In
this example there aren’t other genetic variants that are highly linked to the SV.
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Figure 16: The SNP-only eQTLs for ENSG00000184674 with linkage disequilibrium
values. There are several SNPs in high LD with the lead association.

5.3 miRNA eQTL Analysis

We performed SV-only, SNP-only and joint SV/SNP miRNA eQTL analyses. For

all analyses we started with 716 miRNAs and 23,723 genes. At a FDR of 0.01 there

were 14 miRNA-eQTLs in the SV-only analysis, which included 8 SVs and 8 miRNAs.

In the SNP-only analysis there were 8,733 miRNA-eQTLs comprised of 6,309 unique

SNPs and 116 unique miRNAs. For the joint SV/SNP analysis there were only 7,059

miRNA-eQTLs with 4,846 genetic variants and 92 miRNAs. We also applied eQTL

analysis methods to study the impact of miRNA expression on gene expression. The

miRNA expression acts as the X values, and the gene expression are the Y values.

At a FDR cutoff of 0.01 there are 250 miRNA-gene associations from 146 miR-

NAs and 163 genes, in the cis- miRNA-gene association analysis We were able to
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find 4,108 triangular associations, like those in Figure 18. Since miRNAs can impact

the expression levels of genes, we looked for instances where a SNP or SV is asso-

ciated with a miRNA and a gene, and the miRNA targets that gene (Figure 18).

This could indicate that the eQTL is a representation of miRNA regulation, where

a genetic marker influences a miRNA, which in turn influences a gene. While we

found 4,108 triangular associations, they only represented 42 distinct miRNA-gene

pairs, from 22 unique miRNAs, and 25 unique genes. Figure 17 shows an example

of several of these associations for hsa-miR-335-3p. There are 13 SNPs that were

involved in an eQTL with the miRNA and also involved in an eQTL with a gene.

Some SNPs were associated with multiple genes in the network, and the three genes

in the eQTLs were also associated with the miRNA. According to GeneHancer pre-

dictions these three genes (MEST/ENSG00000106484, CPA2/ENSG00000158516 ,

CPA4/ENSG00000128510) share two enhancers, GH07J130362 and GH07J130354

[68].
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Figure 17: An example of the associations between hsa-miR-335-3p, 13 SNPs and
three genes. Each SNP in the network not only is an eQTL for a gene, but also for
the miRNA and each gene has an association with the miRNA.

These triangular associations also only represent local influence by the miRNA.

Because we were using a cis- analysis, by definition the genes and miRNA have to

be within a 1MB window of the genetic variant. In order for a triangular association

to occur the miRNA expression and gene expression need to be associated with the

same genetic variant, which means the maximum distance a miRNA could be from

a gene in this analysis is 2MB. miRNA do not simply act in a cis- manner, but can

interact with genes from all over the genome once they are expressed. To explore this

dimension we analyzed instances where a genetic variant impacted a miRNA, and the

miRNA impacted a gene. We conducted a trans- eQTL analysis between the genetic

variants and the genes, as well as a trans- type miRNA-gene association analysis. We

found 96,532 of the genetic variant-miRNA-gene associations from 2,551 miRNA-gene

pairs. However we did not find any triangle associations in the trans- analysis. This

could suggest that we are being too stringent with our FDR cutoff, or the effects of
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Figure 18: A set of associations between a SV, gene and miRNA. The SV impacts
the gene and miRNA directly, and the miRNA impacts the gene.

these associations are too small to be picked out by this analysis, or that they don’t

exist at all.

Because the number of miRNAs is much smaller than the number of genes, the

Manhattan plots for the joint analysis are sparser, but there are still identifiable loci

with eQTL peaks (Figures 19 and 20). Unlike the gene eQTLs there aren’t any loci

that have a SV as the lead association.
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Figure 19: The Manhattan plot for the joint SV/SNP miRNA eQTLs. There are
several loci with significant peaks.

Figure 20: The Manhattan plot for the effect sizes from the SV/SNP miRNA eQTLs.
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Figure 21: Boxplots of eQTL beta values broken down by SV type. While most of the
SV types have both negative and positive beta values, duplications have exclusively
positive effect sizes.

5.4 Downstream and Functional Analysis

To study the results from the eQTL analyses we used a variety of downstream

analyses.

We compared the impact of a SV on eQTLs based on its type. There are not

large differences in the distributions of the FDR by SV type (Figures S6, S7, S8, and

S9), but when we look at the effect size distribution a few things become obvious.

Duplication eQTLs all have a positive effect, and while ALUs, and deletions are

relatively evenly split between negative and positive effect sizes, CNVs have a slight

bias towards positive effect sizes (Figures 21 and 22).
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Figure 22: Violin plots of eQTL beta values broken down by SV type. Here we can
see that CNV eQTLs have a slight bias towards positive effect sizes.

5.5 SV Examples

While a full examination of each of the SV-eQTLs is too extensive to be in-

cluded, there are several examples that are of interest and might merit further study.

APOBEC3B (ENSG00000179750) has been implicated in breast, cervical, lung, and

bladder cancer among others. It is believed to be a DNA mutator in cancer, and the

over expression of APOBEC3B has been consistently found across cancer types [69].

In the joint eQTL analysis, four of the five most significant eQTLs for APOBEC3B

are due to SVs, and the SNP from the fifth, is in high LD with two of the SVs. Two of

the SVs directly impact the gene, YL CN STU 4456 overlaps almost the entire gene,

and DUP gs CNV 22 39359355 39379392 only overlaps the first exon. The other two

SVs fall into an intergenic region. BI GS DEL1 B1 P2885 301 does not appear to
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overlap any regulatory features and is the least significant of the SV eQTLs, but

BI GS DEL1 B5 P2885 346 overlaps some transcription factor binding sites, as well

as some DNAse hypersensativity sites. Aside from the single SNP in LD with two

SVs, no other SNP is able to act as a tag SNP, which highlights the importance of

including SVs in this sort of analysis. This is of extra importance with APOBEC3B,

as changes in its expression have been linked with many cancers.

There are four duplications that were found to be SV-eQTLs for DHTKD1. While

these eQTLs were not the most significant associations, they had the largest effect

sizes. All four SVs directly impact the gene. DUP uwash chr10 12092804 12171370

is a complete gene duplication, but the others are partial gene duplications (Figure

26). Mutations in DHTKD1 have been linked to 2-Aminoadipic and 2-Oxoadipic

Aciduria, as well as Charcot-Marie-Tooth Disease Type 2Q. CMT is a progressive

disease which leads to muscle loss and loss of touch sensation. Dhtkd1−/− mice

had symptoms of CMT. Interestingly mice given feed with 2-Aminoadeipic acid also

showed symptoms similar to CMT [70, 71, 72].

ZFN92 was associated with seven SVs, all of which are deletions, and all were

among the 25 largest negative effect sizes (Figure 27). While only two of the SVs

directly overlapped the gene, they were in LD with each other.

DUP uwash chr7 64695322 64838588 had the largest negative effect size of all the

eQTLs in the joint analysis. It does not overlap ZFN92 directly, but lands directly

upstream. And while it is in LD with the other nearby SVs, it isn’t in high LD. This

could indicate that this deletion is impacting the upstream regulatory region, which

in turn impacts the gene expression, and that the deletion is not just an association
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Figure 23: The gene plot for all eQTLs associated with APOBEC3B. The four SVs
are involved in four of the five most significant eQTLs, and the SNP is in high LD
with two of those SVs. No other SNPs are in LD with these SVs, which means that
there is no way to use them as tag SNPs. The only way to find these relationships
between the SVs and APOBEC3B expression is to interrogate them specifically.
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Figure 25: The boxplot for the relationship between BI GS DEL1 B5 P2885 346
genotype and APOBEC3B expression. One deletion reduces gene expression, but a
homozygous deletion of the regulatory region reduces expression even more.
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because it is in LD with a deletion that impacts the coding region.



56

F
ig

u
re

27
:
Z
F
N

92
h
as

se
ve

n
S
V

s
as

so
ci

at
ed

w
it

h
it

in
ou

r
re

su
lt

s.
E

ac
h

S
V

is
a

d
el

et
io

n
,

an
d

th
e

re
la

te
d

eQ
T

L
s

h
av

e
so

m
e

of
th

e
m

os
t

n
eg

at
iv

e
eff

ec
t

si
ze

s
of

al
l

th
e

eQ
T

L
s.

W
h
il
e

on
ly

tw
o

of
th

e
S
V

s
ov

er
la

p
th

e
ge

n
e

b
o
d
y,

fo
u
r

of
th

e
n
on

-o
ve

rl
ap

p
in

g
S
V

s
ar

e
in

h
ig

h
L

D
w

it
h

th
em

.



CHAPTER 6: CONCLUSION

This proposal is broken down into two main projects, the eQTL pipeline and the

1000 Genomes eQTL analyses. The 1000 Genomes project is composed of sub-projects

including a joint SV/SNP eQTL analysis, miRNA eQTL analysis. By combining

multiple data types we can analyze the impact of genetic variants on gene expression

and also disease phenotypes.

6.1 Discussion

The eQTL pipeline software provides not only an easy way to start performing

eQTL analysis, but a set of tools to thoroughly customize them. The user can go

from start to finish in one command, or they can use the component parts as individual

tools. The pipeline not only provides eQTL results, but also produces visualizations

that can be used to explore the results, or in reports and publications. Often eQTL

analysis tools, like MatrixEQTL, only perform the eQTL analysis itself, and don’t

provide comprehensive start to finish support. This leads to users having to develop

their own supporting software, which in turn leads to a replication of effort. The

eQTL pipeline described in this dissertation attempts to provide a solution for these

problems.

The impact of large alterations to the genome in the form of structural variants can

be seen using eQTL analysis. SNPs are much more numerous than SVs, and while
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the SVs aren’t often the lead association they tend to have larger effect size. Because

of the underlying genetic structure these SV eQTLs often aren’t able to be discovered

using SNPs alone. Many of the SVs involved in eQTLs don’t directly overlap with

the eGene, but are downstream or upstream of the gene. This indicates that the

effects we find from these SV eQTLs are due to changes in the regulatory regions, or

by disruption of another gene.

6.2 Future Work

The deep learning gene expression predictions should be explored further. Another

analysis can be done with an expanded sample size, and using human data. While

this will be more computationally intensive, it is probably closer to an actual use case.

The neural network could then be expanded further to include epigentic markers and

other regulatory features.

The eQTL pipeline can also be expanded further. A permutation analysis function

could be added, as well as more visualizations, like the gene based plots in this disser-

tation. Another eQTL analysis engine, like FastQTL could be added, to complement

MatrixEQTL. Instead of having the user specify the PEER factors, a function could

be added to set the number of factors based on the sample size according to the GTEx

example.

As more data is generated using the 1000 Genomes samples it could be incorporated

into the eQTL analysis. The eQTL analysis could be expanded to include a pQTL

analysis, to study how the changes in gene expression impact protein expression levels.

Currently we use genotypes, gene expression, and microRNA expression, but could
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add methylation, Hi-C data and others.
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Appendix A: Supplementary Figures

Figure S1: The manhattan plot for the SNP-only analysis. Overall it is similar to
that from the joint analysis.

Figure S2: The manhattan plot for the SV-only analysis. While it is much sparser
than that from the SNP-only analysis, there are still discernible loci where SVs are
very significant.
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Figure S3: The manhattan plot for the effect sizes from the SNP-only analysis. Like
the FDR manhattan plot it is similar to that from the joint analysis.

Figure S4: The manhattan plot for the effect sizes from the SV-only analysis.
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Figure S5: The qq-plot for the joint SV/SNP analysis. The horizontal runs are due
to SNPs in perfect LD that share the same significance.

Figure S6: Boxplots of eQTL FDR values broken down by SV type.
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Figure S7: Violin plots of eQTL FDR values by SV type.

Figure S8: Boxplots of -log10(FDR) by SV type. Deletions and CNVs have more
highly significant eQTLs than other types.
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Figure S9: Violin plots of -log10(FDR) by SV type.
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