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ABSTRACT

ABDULLAH-AL-RAIHAN NAYEEM. Interactive exploratory visual analytics
approach for distributed spatiotemporal data. (Under the direction of DR. ISAAC

CHO)

Spatiotemporal visual analysis research is rapidly emerging and evolving, as scien-

tists engaging in cross-domain research efforts, introducing novel systems to perform

data-driven spatiotemporal analysis in several domains such as astronomy, clima-

tology, environmental science, urban planning, etc. However, due to the increasing

volume and complex nature of the spatiotemporal data, scientists encounter chal-

lenges to hypothesize, investigate, and compare the spatiotemporal variables. Often

the spatiotemporal data are stored in disparate and fragmented forms in distributed

data sites. Therefore, important insights may not reside in a single spatiotempo-

ral dataset but rather distributed in multiple remote data sites. Such a scenario

introduces a massive overhead in terms of acquiring the data, preparing the compu-

tational environment, and conducting exploratory spatiotemporal analysis. Moreover,

our literature review and surveying the domain researchers suggest that exploratory

visual analysis of spatiotemporal data still significantly relies on static visualizations

to present specific data stories. An interactive visual analytics system obtain the

potential to benefit in this context, providing a dynamic platform for scientists in

performing distributed spatiotemporal data exploration.

In this dissertation, we address these challenges to outline the design requirements

for a cloud-based visual analytics approach that serves distributed spatiotemporal

data exploration. The interactive exploratory spatiotemporal visual analytics ap-

proach consists of three major components. First, we present a distributed data

mining architecture in a visual analytics framework that supports unified spatiotem-

poral data access, transformation, and analysis. Next, we present an interactive

contour-based geospatial visualization that supports exploratory and comparative
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geo-spatiotemporal visual analysis. Finally, we present a pipeline for a visual ana-

lytics interface that sources distributed spatiotemporal data using the data mining

architecture. To support the scientists in exploratory analysis, the pipeline provides

interactive contour visualization in coordinated multi-views. To demonstrate the

scalability and scientific value of the analytical workflows, we conducted qualitative

and quantitative user studies. Results from the user intervention study and domain

experts’ feedback suggest that the proposed interactive visual analytics approach sig-

nificantly improves users’ performance in performing exploratory analysis over the

distributed spatiotemporal data.
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CHAPTER 1: INTRODUCTION

In recent years, visualization researchers have made significant advances in spa-

tiotemporal visual analysis. Interactive visualizations, today, enable scientists to

hypothesize, investigate, and compare spatiotemporal variables in innovative ways

leading to deeper, more insightful understandings. However, the breadth of earth

science and its diversity with numerous branches and sub-disciplines [5, 6] demand

visual analytic capabilities that can meet diverse sets of requirements [7, 8]. To create

cognitively efficient visual analytic solutions for spatiotemporal data - data that are

frequently high dimensional and complex - researchers often propose use-case spe-

cific approaches for visualizations and user interactions [9]. One emerging subarea of

spatiotemporal analysis that embodies this characteristic is the visual exploration of

spatiotemporal data from distributed data sources.

To support decision-making in a spatiotemporal data-driven society, researchers

seek to exploit the power of big data and the benefits of derived insights, scientific

discoveries, and enhanced understanding. The advance and convergence of methods

and technologies - including advances in machine learning and deep learning methods;

increased storage capacities and reduced storage costs; higher network speeds and

larger network bandwidth; more economical and powerful high-performance com-

puting; and a growing prevalence of sensor networks and smart technologies - are

essential enablers to enhanced sense-making over big data. However, it is often the

case for spatiotemporal data that important insights and discoveries do not reside

within a single dataset, but instead are embedded within and across multiple and

distributed datasets. Therefore, utilizing the maximal potential for data-driven in-

sights necessitates analyses and sense-making, that occur across these distributed,

disparate datasets - analyses and sensemaking that, thereby, enable accurate and

reliable revelation of latent, complex correlations, patterns, relationships, and such

other knowledge that may not be revealed from a single dataset alone.
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Spatiotemporal data illustrates spatial change over time, studied in several re-

search domains such as astronomy [10, 11], environmental science [12, 13, 14], ur-

ban planning [15], medical science [16], etc. Climate science is also discovered as a

concentration that produces a wealth of complex, high dimensional data stored in

a distributed environment which are critical for understanding climate change and

its social impacts, as well as for effective decision-making for adaptations. Climate

scientists are continuously assessing the spatiotemporal climate variables such as pre-

cipitation, temperature, and air quality to develop global climate models [17, 18, 19].

Exploratory visual analytics systems have the potential to significantly reduce [20]

the burden of traditional spatiotemporal analysis workflows for climate scientists. In

addition, technology and infrastructure advancements are providing greater public

access to climate projection data [21]. In fact, researchers today can access climate

data in distributed analytic environments [22] and render exploratory visualizations

for analyses. Scientists are also working to optimize the computational efficiency of

these analyses to enable real-time exploration of spatiotemporal data [23, 24]. These

advances unfold opportunities for us, the visualization researchers to innovate over

the full landscape of challenges and requirements to support interactive, in-situ visual

analysis [25, 26] for the exploration of spatiotemporal climate data.

1.1 Thesis Statement & Contributions

In spatiotemporal analysis, data movement and variable extractions come at the

expense of huge memory capacity, computational resources, and processing time.

Advancements in technology and infrastructure over the last decade help to acquire

more granular levels of spatiotemporal data. Earth science and geographical scientists

are tirelessly working to develop novel analyses that help understand the changes

in climate, their potential impact on the earth, and mitigation strategies. We have

conducted a comprehensive literature review, domain expert survey, and collaboration

with climate scientists to identify a few research gaps in the distributed spatiotemporal



3

analysis which we can contribute with an exploratory visual analytics approach. We

outline the thesis statements based on finding answers to the following questions.

1. Can a cloud-based architecture support exploratory spatiotemporal

data analysis?

We hypothesize that a cloud-based architecture can facilitate data preparation

without the overhead of massive data downloads. Additionally, it can enable

standardized accessibility of massive data, mediating redundant user interaction

with the distributed servers.

2. Can a web-based visual analytics system support analysis of dis-

tributed spatiotemporal data?

We hypothesize that a web-based visual analytics approach can enable scientists

and analysts to visually explore and compare spatiotemporal data. The inter-

active visualizations outlined in the visual analytics interface can facilitate the

exploration and logical reasoning of the primary and resulting data. Moreover,

domain researchers working in a common platform can enhance collaboration

and foster knowledge sharing among the research community.

3. Can interactive and coordinated multi-views support the users in

visually performing their spatiotemporal analysis tasks?

We hypothesize that comprehensive user interactions and coordinated multiple

views can reduce the completion time as well as the accuracy of estimation while

performing the exploratory analytical tasks. These interactive visualization

techniques can cater to the scientists and researchers in identifying not only the

trends and unknown patterns in the spatiotemporal data but also the structural

information and characteristics of the disparate and fragmented datasets.

In this dissertation, we address the research gaps in spatiotemporal data analy-

sis and interactive visual exploration. We present our supporting research efforts,
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comprehensive literature reviews, and obtained domain knowledge in developing ex-

ploratory visual analytics systems for distributed spatiotemporal data. In turn, we

demonstrate a visual analytics approach that supports the scientists in performing

their exploratory analysis tasks with distributed spatiotemporal data. This disserta-

tion presents three major components - data mining architecture facilitating a frame-

work for visual analytics systems, a contour-based interactive geospatial visualization,

and a visual analytics interface.

1.2 Dissertation Outline

This dissertation is organized as follows. Chapter 2 summarizes related works

in spatiotemporal visualization approaches and distributed visual analytics systems.

We studied the data structures, storage formats, and exploratory analysis approaches

that uncover insights from disparate data sources. Moreover, we discuss the recent

upward trends of interactive visualizations in analyzing spatiotemporal data.

In chapter 3, we present a visual analytics framework (VAF), that facilitates dis-

tributed spatiotemporal data analysis in a visual analytics environment. We present

usage scenarios from Sustainable Human Building Ecosystem (SHBE) and climate

science research domains to establish the scientific value of the framework. Chapter

3 also includes a distributed data mining architecture that addresses the research

problem of assisting scientists and researchers with their data acquisition, extraction,

and scientific analysis tasks.

In chapter 4, we present an interactive geospatial visualization that facilitates

exploratory analysis of the geospatial data. We demonstrated a set of interactive

features, developed to cater to traditional geospatial visualization. In addition, we

report a quantitative evaluation of the interactive geospatial view compared to the

traditional view in performing seven exploratory analytical tasks including data as-

sociation, clustering, ranking, etc.

In chapter 5, we illustrate the research effort in developing a visual analytics system
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for distributed spatiotemporal data where we provide three use cases for the down-

scaled climate projections over the contiguous US. We leverage the distributed VAF

in Chapter 3 to illustrate a pipeline for the visual analytics system for large-scale

spatiotemporal datasets. In addition, we present coordinated multiple views (CMV)

and interactive visual workflow for exploratory spatiotemporal analysis.

This dissertation contributes to distributed spatiotemporal data analysis, an ob-

jective that corresponds to multiple research domains such as atmospheric science,

meteorology, political science, urban planning, and the human-building ecosystem. It

provides a platform to learn underlying knowledge in disparate and fragmented data,

extract insights, and collaborate with domain scientists and researchers. This in-

terdisciplinary work includes comprehensive background research, to design scalable

interactive pipelines that involve cross-domain experts, and the implementation of

a visual analytics approach that facilitates the exploratory analysis over distributed

spatiotemporal data.
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CHAPTER 2: BACKGROUND & LITERATURE REVIEW

In this chapter, we provide a survey of literature on geo-spatiotemporal data min-

ing and visual analysis. The structure of the literature review is as follows: section

2.1 provides an overview of distributed spatiotemporal data and its various trans-

formations. We also reflect on different aspects of storing and encoding large-scale

spatiotemporal data sets. In section 2.2, we discuss analytics and applications of spa-

tiotemporal data sources. In turn, we introduce the analysis techniques and different

applications of distributed spatiotemporal variables. In section 2.3, we survey the vi-

sual analytics systems for the geo-spatiotemporal data. We provide a comprehensive

review of the visualization techniques and corresponding user interactions employed

for spatiotemporal visual analyses. Finally, in section 2.4, we discuss the limitations

of the existing systems in the exploration and comparative analysis of the distributed

geo-spatiotemporal data for identifying trends and patterns.

2.1 Spatiotemporal Data

In this section, we present the definition of spatiotemporal data and its different

transformations. To contextualize the definition, we often leverage climate science as

a scenario where we scope the exploratory spatiotemporal analyses that are employed

to study climate change, its impact and possible adaptations.

2.1.1 Data Definition

Events in spatiotemporal data consist of space and time. In simple terms, spa-

tiotemporal data denotes events related to location that occurs over time. Data

items related to a location or space are the geospatial or spatial data, traditionally

represented by raster data, vector data or network data [9]. Raster data encodes

a collection of pixels that each pixel represents a specific geographic location. This

form of continuous spatial data illustrates information related to climate science (e.g.,

temperature, precipitation, and elevation). In contrast, vector data is represented by
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Figure 2.1: A conceptual illustration of different data types classified in [1]. He et al.
[2] illustrated the concept of the data type classification: (a) Multidimensional: 0D,
1D, 2D, and 3D; (b) Multivariate: scalar, 2-tuple, and n-tuple. (c) Network and (d)
Tree data types are illustrated from the view diagram presented by Tominski et al.
[3].

a specific point, line or polygon to denote a geographical area such as region, state,

and building. The spatial network data generally represents road transport and its

connected area where each edge may point to a spatial raster. The spatial data, on

the other hand, is often vary on the time and tagged with a timestamp, called spa-

tiotemporal data. The application of spatiotemporal data is found in many research

domains such as climatology [21, 13], astronomy [10, 11], medical science [16], urban

planning [15], etc.

2.1.2 Data Types

Research domain discussed above produce diverse spatiotemporal data based on

the dimensions, events and structure. We categorize different data types and sources

employed in the visual analytics interfaces according to the data type taxonomy dis-

cussed by Shneiderman [1]. This taxonomy was later utilized by Afzal et al. [27] for

the ocean and atmospheric datasets. The data type taxonomy proposed by Shneider-

man includes 1-2-3 dimensional, temporal, multivariate, tree, and network data [1].

He et al. [2] presented a conceptual illustration of multidimensional and multivariate

data among other types as shown in Fig. 2.1a and b. In addition, we leveraged the

data representation diagram presented by Tominski et al. [3] to illustrate the tree

and network data types as shown in Fig. 2.1c and d.

1-Dimensional: This data type represents linear data such as textual documents,
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a list of names, and source codes. The data are organized in a sequential layout,

generally consisting of unstructured information. As a result, it is particularly chal-

lenging to design visualization for this data type. We did not find any instance of

this type in context to spatiotemporal variables.

2-Dimensional (2D): This data type represents the planar data (i.e., x and y)

that includes a geographic map, floorplans, or layouts. Datasets in this type generally

have additional attributes such as name, value, etc. 2D climate data often represents

the spatial distribution of a variable [28, 14]. Visual analytics interfaces often visualize

these datasets with a multi layer approach on a 2D map. The user can toggle the

layers of the map based on the variable of interest [29, 30, 31].

3-Dimensional (3D): This data type includes 3D models of real-world objects

(e.g., buildings, Computer Aided Design (CAD) models) and scientific datasets (e.g.,

computed tomography scan). The data often obtain attributes with volume and com-

plex interrelation with other data items. Volumetric rendering is a popular technique

to visualize 3D scientific data [32, 33, 34]. Most modern climate models produce 3D

data to study cross-correlation map among climate variables [35]. Climate change

impact and adaptions related analysis also produce this type of data [36].

Temporal: This data type denotes the datasets that obtain time-varying vari-

ables. Temporal data denotes the changes in climate variables over time such as

temperature, precipitation, humidity, etc. Data sources utilized in most of the visual

analytics interfaces discussed in this paper relate to this data type [24] as temporal

dimension obtains an essential portion of spatiotemporal data. Temporal data gener-

ally visualized using a standard 2D technique such as area plot [37], scatter plot [38],

animation [39], timesliders [40, 41], etc. based on the data transformation.

Multi-dimensional: This data type includes datasets with multiple dimensions

and attributes. Multidimensional data denotes multiple dimensions in the dataset

whereas multivariate data denotes the multiple attributes associated with each di-
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mension. Scientists and researchers study a wealth of multivariate data [3] to analyze

variable association [36], distribution [42], path ensemble [14], etc. Multidimensional

data is usually visualized using different 2D techniques such as integrated multiple

visualization setup [43], small multiples [42, 44], color/glyph stylization [45, 46], or

summarized form with fewer dimension [47]. Parallel coordinates are widely used for

visualizing multidimensional and multivariate dataset [36, 14].

Tree: This data type represents the hierarchically structured data where each item

in the collection has a link to the parent item except for the root. The data items

are often linked based on multiple attributes. These datasets are visualized using

the different representation of tree/hierarchical visualizations (e.g., edge-bundling,

treemap). Kappe et al. [48] detailed a hierarchical clustering based on the climate

states and time-dependent ensembles. They used dendogram and hierarchical clus-

tering to visualize the data. In another work, we summarized the spatiotemporal

precipitation and temperature data to produce hierarchical seasonal-regional mean

[44]. However, we understand that tree structured data are not very common for

spatiotemporal analyses as we found only a few examples of this data type.

Network: This data type includes the links among the data attributes that cannot

be represented using a tree structure. Network data items often obtain an arbitrary

number of relationships with other items that are commonly visualized using a node-

link diagram and matrix representations. Kalo et al. [24] studied spatiotemporal

interpolation of air pollution based on the data collected at measurement sites across

the United States. They used a node-link diagram to visualize the triangulation of

air pollution data. Analysis of path ensemble [49], spatiotemporal trajectory [50],

variable similarity [42], data flow [51] etc. derive network data for climate variables.

2.1.3 Data Storage

Storing the spatiotemporal data has been a challenge for the analyst and research

community due to its volume and complex nature [52]. Spatiotemporal data are often
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characterized as complex because of high dimensionality, mutlivariability, and multi

resolution factors [36]. Advancement in infrastructure and equipment has made it

possible to acquire a more granular level of spatiotemporal data, the demands vast and

faster storage units. For faster transaction, spatiotemporal data are frequently stored

in a structured relational database (e.g., PostgreSQL [53], PostGIS [54]). However,

the large volume of data from multiple sources is often convenient to store in a non

structured format, known as NoSQL (e.g., Redis [55], MongoDB [56]). Storage is still

a concern for spatiotemporal data for efficient data encoding and retrieval.

In climate science, the increasing resolution of the geospatial data and the frequent

temporal records makes Network Common Data Form (NetCDF) [57], a well accepted

data storing format in the research community for multidimensional spatiotemporal

variables such as temperature, precipitation, and air quality. [58, 52]. NetCDF pro-

vides an encoding convention for the researchers to store the multidimensional data

in a relatively smaller space [59]. Moreover, NetCDF allows appending streaming

data without copying or defining the structure from the scratch. Individual data files

are simultaneously accessible by one writer and multiple readers [57]. Climate scien-

tists have established metadata conventions for storing climate variables in NetCDF

file [60]. The conventions include the acceptable data types, naming convention, di-

mensions, unit of measurement, etc. The metadata container should also describe

the title, data source, institute, and necessary references for the data [60]. Hence,

NetCDF becomes one of the widely used formats for storing earth science data these

days [61].

Besides, based on the general use case and characteristics of the data, spatiotempo-

ral datasets are also stored as fragmented, partitioned clusters in distributed servers

[51, 44]. As a result, the exploratory analysis performed by researchers and scien-

tists does not always reside in a single data server. Important insight and knowledge

base often reside in distributed and disparate datasets. Spatiotemporal data frag-



11

mented across multiple remote data hosts are identified as distributed spatiotempo-

ral datasets. Big data computing infrastructure such as Hadoop supports large-scale

data encoding in Hadoop Distributed File System (HDFS) [62] to enable distributed

analysis [39].

2.2 Exploratory Analysis Tasks

Diversified exploratory tasks are employed to scrape the underlying insights from

the distributed spatiotemporal data in context to the research domains. In this sec-

tion, we contextualize the exploratory spatiotemporal analytical tasks in terms of

climate science. A core element of future weather (or air quality) forecasts and cli-

mate projections is numerical models that not only provide a foretelling of physical

indicators of future climate but also indirectly provide information on societal impacts

and thus provide a key resource for addressing adaptation and mitigation questions.

Because of the critical spatiotemporal data such models offer, it is a high priority

to bring as much observational scrutiny to the output from the numerical models as

possible. This requires the systematic application of observational datasets from var-

ious sources. As such, enabling spatiotemporal analysis of observational datasets and

evaluation of the spatial temporal output from numerical models are all necessary for

visual analytic systems to provide a reliable characterization of future weather/air

quality/climate that can lead to an informed decision-making process.

Data Exploration: There are visual analytic systems whose data processing and

exploration leverage various statistical techniques. Piltner et al. primarily focused

on spatiotemporal interpolation of irregularly spaced air quality observations for the

contiguous US [24]. Their spatiotemporal interpolation and its validation are con-

ducted in the stage of data processing, so users of the visual analytic system explore

the interpolated data via a web interface. Similarly, DDLVis [37] applies three ad-

vanced statistical techniques (a peak-based kernel density estimation, a dictionary

learning method, and a peak-based variation generation model) to store, visualize,
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and query climate data efficiently. Climate Engine [43] offers calculation of basic

statistics including mean, median, maximum, minimum, and total only. However,

this cloud-based web application uses a variety of observations at high spatial and

temporal resolutions. Moreover, with special emphasis on the United States (US) Na-

tional Climate Assessment (NCA), the National Climate Change Viewer (NCCV; [13])

provide various summary statistics for various geographical regions, such as counties,

states, and NCA regions, over the contiguous US. The summary statistics include

spatially averaged time series and percentile tables of temperature and precipitation

from 30 models for present and future climate.

Multivariate Analysis: In most analysis tasks, climate scientists analyze multiple

variables which are associated with certain phenomena. For example, concentrations

of ozone, nitrous oxides, and particulate matters from observations and numerical

models are analyzed in air quality studies. In multi-variate analyses of climate data,

it is always important to figure out a normal state, which is usually defined as averages

of individual variables over a certain period. Wang et al. [36] applied an association

rule-learning algorithm to study the relationship of multiple variables in climate data.

To facilitate the rule-learning algorithm and parallel coordinate plotting, they also

applied a categorization algorithm to group each variable’s values into five categories.

Moreover, Poco et al. [42] demonstrated an inter-comparison among simulated climate

models leveraging multifaceted data. CrossVis [63] provides a visual analytics system

to explore large-scale heterogeneous multivariate data with a use case of historical

hurricane observations.

Anomaly Detection: Anomalous events, such as heatwaves, cold surges, heavy

precipitation, drought, and severe air pollution, can be detected by analyzing the

deviation of spatiotemporal data from their averages. Using the Scalable online vi-

sual analytic system (SOVAS; [14]), climate scientists can detect anomalous events

such as extreme heat events. SOVAS also enables the calculation of correlation coef-
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ficients between two meteorological variables and spatial means. Voila [64] presented

a tensor-based analysis algorithm in interactively detecting anomalies in spatiotem-

poral data. Moreover, the phenomena portal [38] provides a map-based user interface

to visualize certain anomalous events detected by their convolutional neural network

(CNN) model. Users of the portal can provide feedback on the detected events.

Uncertainty Analysis: The evaluation of numerical models against observations

aims to quantify uncertainty for future projections from the models. This uncertainty

quantification process is key to informing climate model development and providing

actionable climate information to support decision-making [65]. To visualize forecast

output from multiple simulations and their uncertainty, Noodles [66] applies two vi-

sualization techniques, uncertainty glyphs and an uncertainty ribbon. The authors

compared these two techniques with conventional spaghetti plots and show the advan-

tages of the new techniques. Herring et al. [40] presents a context switching technique

in ClimateData.US to explore low and high emission scenarios of climate variables

such as temperature and precipitation. It essentially enables the uncertainty analysis

of climate risks.

Trajectory & Flow Analysis: The trajectory analysis featured in several visual

analytic systems is widely used to track hurricanes or air pollutants including volcanic

ashes and dust storms. Kim et al. [51] developed a novel flow analysis technique to

extract the flow map from the non-directional spatiotemporal data. EnsembleGraph

[67] utilizes graph visualization of ensemble simulations. In the graph, nodes are

subregions with similar simulation output and edges represent spatial overlap. The

Hawaii Rainfall Analysis and Mapping Application (HI-RAMA, [12]) applies a random

forest model for quality control of rainfall station data and two different weighting

approaches for gap filling of missing data. Again, these statistical techniques are not

applied to users’ data exploration.
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2.3 Visualization Techniques

In this section, we discuss various visualization techniques that have been employed

to visualize distributed spatiotemporal data. We investigated these visualization tech-

niques from different aspects to report a categorization and mapping to spatiotem-

poral data types and analysis tasks discussed respectively in previous sections. We

reviewed the taxonomy for visualization techniques defined by Keim [68] and extended

further by Afzal et al. [27]. In their work, the visualization techniques are classified

as standard 2D/3D displays, geometrically transformed displays, icon-based displays,

dense pixel displays, and stacked displays. Spatiotemporal visualizations generally

leverage multiple visualization techniques to illustrate the spatiotemporal data due

to its high dimensional and multivariate attributes. Hence, display design is also a

crucial aspect of visualization for spatiotemporal data.

In our review, we provide a classification of the visualization techniques inspired

by [68] albeit based on the display design instead of visual encoding. The classifi-

cation focuses more on the different approaches of integrated visualization methods

for visualizing spatiotemporal data. For the geo-spatiotemporal data, most visualiza-

tion techniques leverage a layered satellite map to visualize the geospatial portion of

the data. Choropleth maps are also widely used for the spatiotemporal data where

the spatial portion includes vector data [69, 13]. Moreover, the temporal portion of

the data is generally mapped either to a linear timeline representation [70, 3] or a

third display dimension [42, 47]. To characterize the visualization techniques for spa-

tiotemporal data, we first discuss the different standard 2D/3D visualizations such as

time series plots [38], bar charts, parallel-coordinates [42, 63], volumetric rendering

[36, 34], map visualizations [31, 71], etc. Then, we discuss different display designs

for integrated spatiotemporal visualizations such as temporal transition, path ensem-

bles [72, 73], color coding [34], space-time cube [74], radial map [69], and coordinated

multiple views [44, 37]. These integrated visual representations assist scientists in
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performing exploratory visual analysis such as sensemaking [12], anomaly detection

[64], trajectory analysis [51], and visual query [37].

2.3.1 Standard Visualization Techniques

Spatiotemporal variables generally contain timestamps and geolocation, so geospa-

tial visualization and time series charts are widely used by scientists to analyze their

data [75]. Geospatial visualization provides an interface to inspect and explore spatial

variables with geographic location [76, 13, 44] whereas time series charts are essential

to perceive the temporal trends of the spatial features. The most commonly used

techniques to visualize the spatiotemporal data are a combination of standard charts,

such as a line chart, a scatter plot, and their variations, [77, 27] along with a map

visualization (i.e., satellite [71], choropleth [29]). These standard visualizations are

illustrated in 2D and 3D. The basic idea of 2D visualizations in this context is to

present the data variable against time in x-y axes. In contrast, 3D visualization in-

cludes another dimension essentially supporting the analysis of trends and patterns

in spatiotemporal data with x-y-z axes. However, leveraging standard charts often

create occlusion on the visual interface that challenges cognition efficiency [78].

2D visualizations are the most commonly used technique to illustrate spatiotem-

poral data. This category includes basic charts such as line graphs, scatter plots, bar

charts, etc. [29, 66, 69, 43, 64, 38]. Li et al. [14] time series plot to present temporal

trend and correlation between temperature and precipitation. Sharma et al. [39]

leverage a combination of a line graph and a scatter plot in their work to study the

temperature anomalies in ocean and land surfaces.

Other 2D charts besides line and scatter plots are also utilized to visualize the

spatiotemporal variables. Parallel coordinates are popularly leveraged to analyze the

association in multivariate spatiotemporal data. Poco et al. [42] studied the multi-

model distribution of spatiotemporal climate variables in a parallel coordinates visu-

alization. Steed et al. [63] demonstrated interactive parallel coordinates consisting of
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categorical and numerical axes to explore large-scale heterogeneous multivariate data.

Wang et al. [36] and Li et al. [14] also used a multifaced parallel coordinate plot

to illustrate the association of climate variables near a cyclone center. Bar charts

are also leveraged to compare the multi-model, seasonal and yearly distribution of

spatiotemporal variables in [13, 43, 44]. In addition, Shu et al. [67] introduced a 2D

temporal graph that provides spatiotemporal behaviors in ensemble simulation data.

Similarly, there are other 2D visualization techniques utilized for exploring spatiotem-

poral variables such as node-link diagram [3], area plot [23], hierarchical clustering

[48], etc.

2.3.2 Integrated Visualization Techniques

The display design for the spatiotemporal visual analytics interfaces is crucial as

complex spatiotemporal data often challenges human cognition. Several studies inves-

tigated the design factors that impact the human ability to comprehend the illustrated

data [79, 77, 70]. In this section, we discuss the integrated visualization techniques

employed to explore distributed spatiotemporal data.

Temporal Transition: The transition technique in spatiotemporal visualization

mostly consists of a geospatial or contour-based visualization to plot the spatial inten-

sity along with a secondary visualization to stream through the temporal dimension.

It provides a dynamic representation as the temporal events appear and disappear on

the spatial map controlled by time or user’s selection [70, 39]. The spatial dimension

is illustrated in a 2D/3D geospatial map often layered with a base map or choro-

pleth. The temporal progression of the data variables is summarized using standard

visualization techniques such as line graphs, area charts, scatter plots, or a series of

geospatial depictions of the temporal data [23, 38, 44, 37]. Time sliders are also a

popular choice to demonstrate the temporal transition on a geospatial visualization

for spatiotemporal data [80, 66, 81, 40, 14]. Display transition and animation have

also been employed in CORNEA [71] where sliders are implemented to control the
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time speed, rotation, and altitude on the 3D globe.

Maskey et al. [38] demonstrated a spatiotemporal depiction using the display

transition of geospatial visualization. Pahins et al. [23] designed an integrated visu-

alization to explore large-scale spatiotemporal data using a geospatial view and area

chart. The transition view allows the user to perceive the subtle temporal change

of events in space. However, the fast progression of events can overwhelm the user

to explore the data variables. The user attention is also split between the geospatial

and timeline view which might lead to missing the non-salient changes over time.

Mayr et al. [70] discussed several studies to compare the animation speed and user

interactions for spatiotemporal transition to find cognitive efficiency.

Space-time Cube: Space-time cube is an integrated 3D visualization technique

leveraged in visualizing various spatiotemporal variables. To answer the question of

where (space) and when (time) from the spatiotemporal data, Kraak [82] presented

this technique combining specific visualizations for space and time. In a space-time

cube, the cube’s bottom represents space whereas the height represents time with

temporal cutting operations. A spatial map is generally used to denote the space

followed by multiple layers of standard visualizations to illustrate the spatiotemporal

variables in different timestamps in the dataset [83, 84, 85]. We have reviewed the

use of bar plots, scatter plots, volume rendering, and spatial maps on the temporal

axis in space-time cube visualizations.

Schroth et al. [80] conducted a case study on the existing tools for understand-

ing the spatiotemporal climate scenarios where they presented a space-time cube for

resolving the multi-dimensional data visualization problem. Eaglin et al. [47] pro-

vided a web-based interface illustrating a space-time cube where the temporal axis

consists of a volume rendering. The user can interact with the 3D view to visualize a

time layer from the volume in a 2D heatmap. Poco et al. [42] demonstrated the use

of a space-time cube in the SimilarityExplorer to visualize the complexity of multi-
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faceted data variables. Hadlak et al. [45] presented various illustrations of space-time

cubes using colored links, pencils, and helix glyphs to visualize temporal patterns

in spatiotemporal variables. Visual encodings for the temporal axis are able to in-

clude multivariate data in a space-time cube visualization. Rober et al. [86] utilized

space-time cube representation while demonstrating in-situ visualization [87] process-

ing with spatiotemporal data. Ferstl et al. [74] presented an approach to visualize

time-varying iso-contours in a time-hierarchical clustering using juxtaposition. The

stacked iso-contours in the space-time cluster essentially form a volumetric rendering

of the weather forecast ensembles.

Space-time cube visualizations are able to encode high-dimensional spatiotemporal

data in an integrated display design. Hence, this visualization is utilized to provide

an overview of the spatiotemporal events to the users. However, with an increasing

number of time steps and variables in the data, the visual occlusion can challenge the

user’s cognition in conducting the exploratory analysis.

Trajectory Visualization: Trajectory visualization approach generally plots mul-

tiple temporal layers into an integrated map where transparency and intensity derive

the position of the object or event. This technique encodes the temporal dimension

with different variations of colors. To denote the spatial boundary, the color cod-

ing technique is often merged with a geospatial visualization [51, 24] or choropleth

[29, 88]. Various transformations of this technique are leveraged to visualize the data

flow, path ensembles, and trajectory in the spatiotemporal data.

Trajectory visualizations illustrate the temporal movement of spatiotemporal at-

tributes in geographical or abstract space. These visualizations can assist scientists

to identify valuable patterns and trends from the spatiotemporal data. Various illus-

trations are employed to explore the underlying patterns in the moving object/event

data [89]. Liu et al. [49] demonstrated trajectory visualizations for ensemble represen-

tations and position prediction of the storm path. They employed the ensemble path
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visualization to denote the hurricane direction and smoothly interpolating hotspots

to denote the storm-strike position. Kim et al. [51] leveraged similar techniques to vi-

sually interpret the flow map in spatiotemporal data without trajectory information.

Wang [90] published a software suite for meteorological data visualization, MeteoInfo,

where the wind trajectory is demonstrated with ensemble path visualization over spa-

tial contour from the station data.

Coordinated Multiple Views: Coordinated multiple views (CMV) is an ex-

ploratory visualization technique that enables the user to explore the data using mul-

tiple visualizations integrated into a window [91]. CMVs are employed to interactively

visualize the complex high dimensional spatiotemporal data [92]. In spatiotemporal

visualizations, CMV visualize the spatial and temporal aspect of the data by combin-

ing multiple visualization techniques. A geospatial map is often used to visualize the

spatial portion and a linear representation is used to visualize the temporal portion

of the spatiotemporal data [70]. The goal is to allow the users to identify the facts

from complex structured data variables by providing an integrated set of standard

visualizations without cluttering the window. Visualizations in CMV are integrated

through rich user interaction and view manipulation [91].

Wang et al. [36] demonstrated CMV for conducting association rule-based multi-

variate analysis of spatiotemporal climate data. They employed a 3D volume render-

ing and parallel coordinates to identify multivariate correlations among spatiotem-

poral climate variables. Parallel coordinates are leveraged with geospatial spatial

heatmap to compare multifaceted spatiotemporal variables in SimilarityExplorer [42].

Li et al. [69] presented CMV in Vismate to visualize the station-based observation

data on climate change. Moreover, Voila is a visual anomaly detection and moni-

toring system where Cao et al. [64] presented a CMV compatible for visualizing the

spatiotemporal variables. Li et al. [37] recently published a visual analytics system,

DDLVis, for the real-time visual queries of spatiotemporal data. They designed the
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interface with a geospatial map and area chart to navigate through the summarized

spatiotemporal data. Based on their interaction with these visualizations the results

are presented in a streaming view side-by-side.

CMV often cases leverages the standard visualizations that fall under the visual

literacy of the domain users. With rich user interactions and view manipulations,

CMV overcomes the shortcomings of standard visualizations in extracting underlying

knowledge from the data. However, depending on the visual encoding techniques,

the hierarchical number of view manipulations, and user interactions, CMV can be

overwhelming for the users. Several analytical reviews [93, 92, 91] reported diversity

in visual encoding and consistency in context switching are essential in visualizing

spatiotemporal attributes in CMV.

2.3.3 User Interactions

User interaction in the visual analysis approaches is essential to facilitate the user

with exploratory functionalities [94]. What user interactions mean for visual analysis

differs based on systems, tasks, and users’ intents [95]. In visual analytics systems,

the user interactions affect the pipeline, transform raw and processed data, and al-

ter the mapping and view [95]. In this section, we discuss different user interaction

methods demonstrated in spatiotemporal visual analytics. We categorize the inter-

action techniques based on the interaction methods taxonomy discussed in [94, 96].

These user interactions are often correlated and overlapped while implementing the

visualizations.

Select “Select” interaction enables users to mark or tag specific data based on

their point of interest. The selection allows to keep a certain set of data visible on the

interface or explore a specific set of related data. Moreover, this interaction method

can be essential to remove outliers from the viewport.

In visual analytics systems, select interaction is found as the most common user

interaction method. Panoply and NCCV [13, 97] both render visualizations for climate
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projections where they offer selecting parameters for altering the time entity. NASA’s

Giovanni [98] provides interaction with the interface to select variables, time range,

and an analytical plot that essentially renders a static visualization. Select interaction

is extensively leveraged in the CMVs as it allows the user to select an area of interest

to update other visualizations accordingly [69, 48, 44]. McLean et al. [12] employ

select interaction on the map markers to display information about rainfall station

and volume. Select interaction essentially enables other interaction methods on the

visualization such as explore, connect, or abstract [66, 42, 47].

Explore “Explore” interaction provides users the control to include new items in

the view, usually by superimposing on the interactive view. In the context of spa-

tiotemporal climate variables, the data is often large in volume, and particularly

challenging to display all the details in a single window. Explore interaction is lever-

aged in such cases to allow the user to interact with a view to include an additional

item on the window that provides more detailed information. It enables the user to

examine and identify interesting data subsets. As a result, explore interaction method

is very useful for the exploration of high-dimensional feature spaces.

Explore is a widely used interaction method for integrated visualizations, especially

for the map visualizations to support identifying anomalies [64], uncertainties [66],

or patterns [48] of the data. Quinan et al. [88] leveraged explore interaction to

enable isocontour features on the ensemble map visualization. Johansson et al. [41]

implemented explore interaction in their tool where users can explore the risks for

flooding and sea level rise interacting with the climate scenarios for a selected location.

Reconfigure “Reconfigure” interaction enables the user to change the arrangement

of visualization by sorting or re-arranging. Reconfigure also helps the user remove

the occlusion from the window to get a clear visualization of the data. Moreover, the

reconfigure interaction can benefit the user performing multivariate visual analysis.

Reordering the axis in parallel coordinates visualization can be an example of the
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reconfigure interaction method. This user interaction is utilized to support time-

varying large-scale multivariate analysis using parallel coordinates [42, 14]. Steed

et al. [63] demonstrated parallel coordinates visualization reconfigured with focus

and context range selection for the temporal and numerical axes. Wang et al. [36]

leveraged the reconfigure interaction in 3D spatial volume rendering to demonstrate

the rule-based multivariate analysis.

2.3.3.1 Encode

“Encode” interaction fundamentally alters the visual representation by changing

the number of dimensions, colors, and sizes in visualizations. It helps the user gain a

deeper understanding of the properties of data. Encode interaction can be particularly

essential in multivariate analysis where the user can map the attributes to different

colors and shapes. This interaction allows the user to find insight from the data

analysis from a different perspective. Eaglin et al. [47] employed encode interaction

that allowed the user to select a 2D temporal slice from the space-time cube. Li et al.

[34] allowed the user to colorize the trajectories based on the variable and length of

the trajectory. Moreover, interfaces employing parallel coordinates also demonstrate

the use of encode interaction [63] as it often changes the color based on the selected

range of multifaceted attributes.

Filter “Filter” interaction helps the user to analyze data by applying conditions

to the rendering. This interaction allows the user to specify a range or condition to

visualize a subset of the data. The filter also works for exploring information from the

dataset. In general, searching and querying data are the common use cases of filter

interaction as it excludes the data from the view that does not satisfy the conditions.

We reviewed a handful of visual analytics systems employed in spatiotemporal

analysis that supports interaction to filter the sample space (Task requirement R4).

DDLVis [37] employed filter interaction for the user to draw an area of interest on

the map visualization. Li et al. [14] allowed the user to write a textual query to
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visualize spatial heatmap and temporal trends. Moreover, spatiotemporal data such

as in climate projections produces complex and high dimensional data that often

create occlusion in the view. This interaction is utilized in those scenarios to allow

the user to focus on the data of interest [29, 64, 38]. Sanyal et al. [66] allowed the

user to filter the glyphs and ribbons presenting ensemble uncertainty on the geospatial

visualization. Climate Data Analysis Tool (CDAT) provides scope for user interaction

to filter the data selection range that essentially reflects on the visualization [99].

Abstract “Abstract” (or elaborate) interaction allows the user to view data from

various levels of granularity. This method is useful for working with large datasets,

as it can provide an overview of different stages according to the user’s preference.

It also provides an explanation of why the sample belongs to a particular cluster.

User interaction with the data points to see details on a tooltip and zooming over

the map are the common use cases of abstract interaction. Huntington et al. [43]

employed abstract interaction in Climate Engine to allow the user to zoom on the

time series and view values at the data points. Castruccio et al. [71] utilized abstract

interaction in a portable virtual reality environment to explore the spatiotemporal

variables across the globe and selected surfaces. [39]

Connect “Connect” interaction enables the user to find relationships between the

views and highlight features that are similar or relevant. This interaction is applicable

for both single-view and multiple views visualizations. In a single view, connect

interaction highlights the related nodes or data points within the visualization. In

multiple views, the user interacts with a record to effectively highlight all the related

records across multiple views. Spatiotemporal visual analytics interface generally

consists of multiple views [34, 38] as spatiotemporal data is often split into spatial

and temporal dimensions to separate plots. VisAdapt [41] presents connect interaction

where users interact with the geospatial contour to visualize the area detail on the

other coordinated views. Wang et al. [36] demonstrate connect interaction where the
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spatial volume rendering updates based on the user’s interaction with the multivariate

parallel coordinate plot.

Shepherd “Shepherd” interaction is the final interaction method that allows users

to guide the modeling process. Such guidance can be direct or indirect. Direct guid-

ing enables the user to set or update different parameters for the modeling whereas

Indirect guiding includes providing constraints and thresholds. This interaction is not

a common method in spatiotemporal visual analytics. Kappe et al. [48] demonstrated

decadal climate prediction where they allowed the user to toggle the parameters to

refine the ground truth in order to get the most accurate prediction. Cao et al. [64]

enables the user to provide context-guided input for ranking anomalous patterns in

streaming spatiotemporal data. Li et al. [37] allowed the users to guide real-time

queries in spatiotemporal data distributions using density dictionary learning.

2.4 Visual Analytic Systems

Visual analytics include data preparation, pre-processing, analytical workflow, in-

teractive visualization, and usability metrics of exploratory analysis. In this section,

we review the visual analytics approaches from the aspect of tools that are lever-

aged in the implementation process, system accessibility, and exploratory analysis

workflow.

Cashman et al. [100] presented a user-based visual analytics workflow for ex-

ploratory analysis that enables the users to discover underlying knowledge from the

given dataset. The workflow consists of several fundamental steps such as data in-

teraction, problem exploration, generating problem specification, and model explo-

ration. Cui [101] provided a comprehensive analytical review on the visual analytics

systems that summarizes the analytics process in 6 steps - data pre-processing, analy-

sis method, visualization, knowledge generation, interactive hypothesis building, and

visual reflection of users’ perception. Sacha et al. [102] illustrated a knowledge gen-

eration model for visual analytics that represents both computer and human-centric
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Figure 2.2: Spatiotemporal visual analytics workflow for exploratory analysis [4]. We
contextualized the workflow for climate science by labeling it with our identified task
requirements for exploratory spatiotemporal visual analytics.

approaches through exploration, verification, and sensemaking loop. Andrienko et al.

[4] described a visual analytics framework for spatiotemporal analysis and modeling.

In addition to the conventional exploratory visual analytics workflow, this research

addressed the user’s perception of data and control flow from a spatiotemporal analy-

sis and visualization perspective. Based on our extensive literature review, we believe

Andrienko’s visual analytics illustration [4] more accurately outlined the visual ana-

lytics workflow for spatiotemporal exploratory analysis in climate science.

While reviewing the implementation process, we found that visual analytic sys-

tems often leverage other data analytic tools to run the exploratory analysis. These

tools mostly enable scientists and researchers to run analytical scripts and visual-

ize the result with basic visualizations. It is popular among scientists to leverage

tools such as MATLAB [103], GrADS [104], or NCAR Command Language (NCL)

[105]. Moreover, exploratory analyses for spatiotemporal data frequently leverage

the capabilities of distributed computing [13, 51, 64, 106], to overcome the complex
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and time-consuming analysis. Several systems such as UV-CDAT [28], DataONE

[107, 108], SciServer [109], and Open Science Grid [110] are widely used by the analyst

and research community that provides shared computing resources to run analyses

in the spatiotemporal data. These analysis tools often lack interactive exploratory

visualizations and are unable to satisfy use-case-specific visualization requirements.

In contrast, visual analytics systems enable scientists to perform their analysis

tasks and explore complex spatiotemporal data with the support of an interactive

interface. We label the spatiotemporal visual analytics systems into two categories -

general purpose and case-specific. General-purpose visual analytics systems support

analysis for numerous use cases and data set. These systems generally demand the

dataset according to a pre-defined structure. Climate Engine [43], SOVAS [14], and

WebGlobe [39] are some of the leading examples of general-purpose visual analytics

systems. However, these systems often fall short of satisfying specific analytics or

visualization requirements for case-specific visual analytics systems. Scientists work

with heterogeneous data that frequently demand custom features to analyze and ex-

plore the underlying trends and patterns. Most special purpose systems have been

developed with the involvement of the domain experts injecting their specific require-

ments [111]. In our review, we also observed domain researchers collaborating with

visualization researchers to develop visual analytics systems that support case-specific

exploratory analysis of spatiotemporal data. Noodles [66], VisAdapt [41], DDLVis [37]

demonstrate examples of case-specific visual analytics systems. While these systems

demonstrate components and functionalities for case-specific analysis, the analytics

interface and system infrastructure share the common challenges of accommodating

distributed large-scale spatiotemporal data sets. There are plenty of research gaps to

be addressed by visualization researchers in this context.
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2.5 Discussion

In this dissertation, we organized the literature identifying key aspects of ex-

ploratory spatiotemporal visual analytics systems using our diverse domain knowledge

from experts and understanding gained from the literature review [68, 112]. Six di-

mensions were identified. Analysis Techniques - Where scientists propose novel

analysis techniques to explore the potential impacts of climate change [113], health

fairness [114], urban planning [15], etc. The proposed techniques use visual analyses

to study spatiotemporal variables such as precipitation, temperature, and air qual-

ity [115, 19]. Data Source & Definition - Where data scientists generate high

resolution geospatial projections [17, 81]. We organize this dimensional according

to data structures and formats utilized in the context of climate science. [52, 59].

Analytic Systems - Where novel analytics pipelines are presented for visual ana-

lytics systems (e.g. [116, 24]) to identify key features and limitations in supporting

data analysis for the exploration of spatiotemporal data. Visualization Approach -

Where novel exploratory visualization approaches [72, 117, 46] are presented to create

a map and compare it against corresponding analysis tasks. Interaction Approach

- Where interactive features facilitate the scientists’ efforts to explore, reconfigure,

and compare the visual renderings of spatiotemporal data. This dimension empha-

sizes the approach’s potential to unfold knowledge from multivariate spatiotemporal

attributes, e.g. [118, 3]. Evaluation - Where the challenge of defining quantitative

and qualitative metrics to evaluate visual analytics systems is the focus [119]. We

organize this dimension according to performance metric, analysis task, and target

user group [120, 70] to close the gap between usability and task efficiency.
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CHAPTER 3: DISTRIBUTED VISUAL ANALYTICS FRAMEWORK

In this chapter, we present a visual analytics framework that addresses the com-

plex user interactions required through a command-line interface to run analyses in

distributed data analysis systems. The visual analytics framework facilitates the user

to manage access to the distributed servers, incorporate data from the source, run

data-driven analysis, monitor the progress, and explore the result using interactive

visualizations. We provide a UI embedded with generalized functionalities and access

protocols and integrate it with a distributed analysis system. To demonstrate our

proof of concept, we present two use cases from the earth science and Sustainable

Human Building Ecosystem research domain.

3.1 Introduction

In support of sensemaking, users require a visual analytic interface that seamlessly

supports data discovery, exploration, and analysis. In other words, the visual ana-

lytic interface should support the full extent of the sensemaking loop [121, 122] from

foraging to hypothesizing to analyzing. Current solutions, however, often emphasize

specific aspects of sensemaking â for example, data exploration or data analyses - and

fail to support the full analytical lifecycle adequately. In addition, it is infeasible to

access large and remote datasets using traditional pipelines for data transformation,

conversion, and presentation. Such pipelines are commonly preceded by massive data

downloads, which are infeasible or impractical for many remote datasets. Thus, new

pipelines are required, pipelines that are not predicated on massive data downloads.

Finally, to generalize the visual analytic interface for distributed fragmented data,

new APIs and data access protocols are necessary. In particular, these APIs and

protocols must account for the full analytical lifecycle and must not be predicated on

massive, upfront data downloads.

In this chapter, we present an interactive VAF for distributed data analysis systems
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Figure 3.1: Visual analytic system pipelines for distributed analysis systems.

(DAS). VAF enables analyses over distributed, fragmented data without the move-

ment of massive data. Significant advancements in distributed data analysis over the

past decade [123, 109, 124, 125, 126] make our proposed framework a feasible can-

didate to accelerate the analysis tasks of researchers and analysts. To demonstrate

our framework, we leveraged the Virtual Information-Fabric Infrastructure (VIFI)

[123, 127, 128, 129, 130, 131, 132], which is a computational infrastructure that en-

ables analyses across distributed, fragmented data without the movement of massive

data. Within VIFI, analyses migrate to the distributed data, and only derived data -

e.g., result sets - migrate from the data hosts. The main contributions in this chapter

are:

• We define a VAF for distributed, fragmented data as well as design goals and

associated implementation tasks.

• We present a generalized pipeline for data transformation, conversion, and pre-

sentation - one that is not predicated on massive, upfront data downloads.

• We provide a demonstration version of the visual analytic UI to support dis-

tributed analysis.
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• We present generalized APIs and data access protocols to enable proper inte-

gration with infrastructures that enable analytics over distributed fragmented

data.

• We demonstrate VAF with two analytic systems (i.e., VIFI and simple file-based

systems) and illustrate its benefits using two use cases from earth science and

Sustainable Human Building Ecosystem (SHBE) research domains.

3.2 Related Work

There is an abundance of previous research (e.g., [107, 108, 110, 109, 133, 134, 135,

123]) spanning many disciplines that demonstrates the potential value and impact

of enabling analyses and sensemaking across distributed, complex, and fragmented

data. Yet, significant challenges remain. In particular, to support sensemaking across

such data, new visual analytic interfaces are needed, new pipelines for optimized dis-

tributed data interaction and visualization are required, and new data access protocols

and application programmer interfaces (APIs) must be developed. We highlight these

challenges in Figure 3.1.

Current data-driven applications often require the identification and mitigation of

relevant data from multiple locations to a common storage location, prior to perform-

ing analysis. To overcome what is often a difficult, time-consuming, and laborious

task, some alternate solutions have been proposed for data sharing using high-speed

networks and cloud-based hosting, while other alternative solutions focus on providing

shared computing resources. DataONE [107, 108] is a project focused on providing

easier access, search and discovery to earth and environmental science data repos-

itories. The Open Science Grid [110, 136] enables scientific research by providing

distributed computing resources. SciServer [109, 137] is a cyber-infrastructure sys-

tem that provides a suite of tools and services (including storage, access, query, and

processing) for big data analyses from various disciplines leveraging data with dif-
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ferent format and structure. While SciServer collects all data at a common storage

location, it attempts to minimize data movement by collecting data at the location

that contains the majority of the required data. SciServer also migrates the analyses

by sending Jupyter Notebook [138] to the common storage location.

Other data-driven applications aim to develop research infrastructures that in-

tegrate storage, high-performance computing, and analytic tools (e.g., XSEDE [124,

139], NeCTAR [140], PRACE [141], and EGI [142]). The applications allow end-users

to share distributed computing resources and data repositories. The solutions may

be used by Science Gateways (SGs) [143, 133, 144, 145, 146] to provide (web) portals

and UIs that enable scientists (e.g., chemists, biologists) to access, build and execute

analytic workflows. SGs relieve scientists of the burden and needed the expertise to

set up and maintain the underlying distributed cyberinfrastructure. SG services can

be shared and reused by different end-users. SGs can be classified into SG frameworks

like WS-PGRADE/gUSE [143], and SG instances like the computational neuroscience

gateway [126]. SG frameworks are generic SGs that provide low-level services for sci-

entists from different domains. While SG frameworks provide high-level abstractions

for computing specialists, SG frameworks require additional learning from scientists

to leverage their full potential of the frameworks. SG instances provide high-level

services for scientists in a specific domain. Thus, SG instances simplify scientific

operations for end-users but limit flexibility when more functionalities are needed

from the SG instance. Some of the SG features and services (e.g., security, data

and workflow management) depend on the underlying technology. Thus, it becomes

challenging to port an SG from one infrastructure to another [147, 148]. Gugnani

et al. [149] suggest a generic approach to integrate infrastructure-aware workflows,

(e.g., WS-PGRAD/gUSE [143]) with bigdata parallel processing tools (e.g., Hadoop).

This work [149] uses the CloudBroker platform [150] to provide required cloud-based

computational resources.
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SGs can be accessed through different middleware like Airavata [151], Agave [152],

and Globus [153, 154, 155]. Airavata [151] allows users to manage applications and

workflows on the provided resources (e.g., clouds, cluster, grids) through component

abstraction of major tasks. The system components are indirectly accessed through

component APIs. Agave [152] provides web access, through Representational State

Transfer (RESTful) APIs [156], to given resources (e.g., HPC, cloud) to run analyses

and to manage data. Globus [153, 154, 155] is software-as-a-service designed to make

it easier to discover, replicate, and access big data resources at different locations.

Globus is used to deliver scalable research data management services in a secure

manner to a variety of stakeholders. Some Globus features, like data publication and

managed endpoints, include licensing fees.

In contrast to existing solutions, our VAF aims to support “truly distributed analyt-

ics” where analytics are executed at data sites without the massive movement of data.

Our framework avoids huge data transfer times while complying with owner-defined

authentication and authorization policies for data access. Our framework does not

add new infrastructure for additional data and/or computational operations; rather,

it aims to integrate with existing data site infrastructure. The framework utilizes

containerization technology (e.g., Docker [157, 158, 159, 160]), rather than tools like

Jupyter notebooks [138], to migrate analyses. This provides more flexibility over the

analytics tools and analytic environments that can be used by the scientists in con-

ducting data-driven inquiries (i.e., analyses are not limited to the tools provided by

Jupyter). In addition, unlike some related work, our framework depends entirely on

open source technology. For example, our pipeline uses only open-source components

(e.g., Apache NiFi [161] and Docker Swarm [162]) with free access to all features.

Thus, users can develop, reuse, and customize our framework for their needs.
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Figure 3.2: Proposed VAF pipeline for DAS: A) UI, B) Middleware, C) DAS site, and
D) Data site are the main modules in our framework. a) Workflow Preparation, b)
Workflow Execution, c) Task Management, and d) Visual Exploration show the flow
of interactions within the VAF components.

3.3 System Design

This chapter illustrates an interactive VAF to simplify user interactions and en-

hance the user experience with a DAS. To design a pipeline for the VAF, we reviewed

numerous distributed analytic systems (e.g., [123, 109, 99, 163]) to identify the key

user interactions required to operate these systems. We discovered that many systems

utilized command-line interfaces. Nonetheless, we extracted the following fundamen-

tal interactions: managing access to distributed servers, preparing analytic scripts

and runtime environments, importing data from remote sources, executing analyses,

monitoring the execution progress, and inspecting and exploring the analytical re-

sults. DAS commonly maintains data-site to data-site communication using cloud

infrastructures to run analyses [123, 99, 127]. Operating a DAS from a command

line interface requires access for a user to multiple remote servers. Access control

for such interaction with the data sites and DAS sites can be complex for the data

owners. Consequently, the entire procedure to run a data analysis can be similarly

challenging for the data analysts and the end users. Moreover, to explore the results,

users from different domain areas were required to pull the resulting data from the
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server. Rather than using command line interfaces, DAS often provides a visual-

ization toolkit [99, 164]. However, users are responsible for generating exploratory

visualizations or necessary artifacts to measure the performance of the analysis [165].

Given all of these need interactions and associate limitations of current solutions,

we identified associate design requirements and implementation tasks and mitigate

current complexities for user-DAS interaction.

3.3.1 Design Requirements

In this section, we outline the requirements for an interactive VAF to provide more

seamless user interaction with distributed analysis systems. Related work reveals the

following design requirements for our VAF:

DR1 To mediate user interaction with distributed servers. The framework

should provide sufficient features to allow users to execute analyses in DAS

without requiring direct user access to the distributed servers and data hosts.

DR2 To provide a unified model for authentication and access control for

distributed servers. The framework should provide proper access to data

and analytic workflows according to data site policies. The framework should

integrate with existing authentication and authorization mechanism to the com-

puting servers and various data sites.

DR3 To enable the exploration of data and resulting analyses using inter-

active visualizations The framework should utilize interactive visualizations

to support the sensemaking loop (i.e., foraging, hypothesizing, and analyzing)

while not requiring massive data downloads as a means to enable accurate and

reliable revelation of latent, complex correlations, patterns, relationships, and

such other knowledge.
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3.3.2 Implementation Requirements

To address the above design requirements, we identify the following implementation

requirements for our framework:

R1 To provide an interface to manage analytical scripts and Portable An-

alytic Containers (PACs). Framework users must be able to access, specify,

and manage analytical scripts that are stored in an external repository â e.g., at

a DAS data host. As such, the framework should offer an end-to-end synchro-

nization with the available analytic scripts and PACs in DAS (DR1).

R2 To enable user efforts to configure analytical scripts and workflows. To

conduct analysis across distributed, fragmented data, coordinated execution of

analytical scripts is often required (hypothesizing). Workflows often contain a

set of configurations that points to the dataset, analysis scripts, required access

credentials, etc. The framework should provide affordances for users to modify

analytical workflow configurations (DR1).

R3 To support user-initiated execution of analytical workflows in DAS. Af-

ter enabling the preparation analysis scripts and configuring an analytical work-

flow, the framework should allow the user to initiate workflow execution. In

addition, the framework should minimize the need for the user to authenticate

directly to each data host (e.g., mediate authentication via single sign-on) (DR1,

DR2).

R4 To mediate and comply with data host authentication requirements

and authorization policies for datasets, analysis scripts, and workflows.

The framework should manage compliance with authentication requirements and

authorization policies for end users. Users should be able to view, modify, and

execute analysis scripts and workflows on permitted datasets according to data

host authorization policies (DR2).
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R5 To maintain user awareness of workflow execution status. Workflows

often require significant time to queue and execute. The framework should main-

tain user awareness of workflow execution status so that users may accurately

track their progression in the DAS (DR1).

R6 To provide access to the runtime and error logs. Runtime logs are useful

for the users to understand DAS performance and anticipate expected runtimes

of analytical workflows. Similarly, error logs are helpful to trace script and work-

flow execution, particularly in exceptional circumstances. The framework should

effectively present runtime and error logs to users (DR2, DR3).

R7 To provide an interactive visual analytic interface to support data dis-

covery and explore analytical results. The framework should provide users

with interactive visualizations to discover data (foraging) and explore workflow re-

sults (analyzing). The visualizations may be general-purpose or analysis-specific.

Thus, the framework should be extensible to accommodate analysis-specific visu-

alizations (DR3).

To satisfy the design and implementation requirements for the proposed VAF for

DAS, we developed: interactive, web-based, visual analytic interfaces; a visual ana-

lytic pipeline; and, an API / data access protocol.

3.4 Visual Analytic Framework

In this section, we present the three main components of the proposed visual an-

alytic framework. The components include a middleware service, a visual analytic

interface, and a distributed analysis system where we utilized both file-based and

cloud-based information fabric infrastructure.

3.4.1 Middleware

The middleware for the VAF is one of two major components of the visual analytics

pipeline as well as the implementer of the data access API and protocol (Figure 5.3B).
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Figure 3.3: DAS Middleware Architecture

It orchestrates use case (R1), workflow/task (R1-3, R5-6), and script (DR1, DR2)

management as well as authentication (R4) and authorization integration (R4) with

DAS. The primary component is the Task Manager that mediates communications

between the VAF and DAS. Figure 3.3 summarizes the primary functions of the VAF

middleware. Each is discussed in greater detail in the following.

Use Case Management: Use case management provides methods for creating,

modifying, and projecting use cases. A use case organizes a collection of analytical

workflows and results. The Task Manager creates a unique key for each new use case.

The user, then, specifies a name and one or more workflows (Figure 5.3B1). Results

from executed workflows are also collected in a use case. As such, use cases provide

a means to organize analyses.

Workflow/Task Management: Workflow/task management provides methods



38

for the creation, mutation, execution, and projection of workflow specifications and

execution instances. Executing workflows is called tasks. Each task is attributed

with script identifiers, user identifiers, use cases, and workflow. When a user submits

a request to execute a workflow, a new task is created and scheduled for execution

via the DAS (R2, R3). The Task Manager collects the required information and

relates the information to a unique identifier corresponding to its workflow and use

case, respectively. The task along with its related scripts are, then, sent to the DAS

for execution (Figure 5.3a). Task information, including execution steps and status

updates, is captured in the runtime and error logs (R5, R6). Once a task completes,

the Task Manager retrieves the analytical results from the DAS.

Script Management: Script management provides methods for the creation,

mutation, and projection of scripts. Scripts and their related configurations are asso-

ciated with each workflow/task. The script identifier is used during the task creation

process to ensure all relevant analyses are properly identified and subjected to the

DAS for execution (R1). The analytics interface leverages use case, workflow/task,

and script management collectively in the Task Manager to support hypothesizing

activities as part of the sensemaking loop.

Results Management: Result management provides methods for the projection

of analytical results (e.g., task results). Results for each workflow are associated with

a task identifier. When the execution of a workflow completes, the DAS signals the

completion status to the Task Manager (R5). The Task Manager, then, retrieves

results from the DAS so that these may be projected to the user via the visual

analytics interface (R7).

Authentication: To meet the VAF authentication requirements, the middleware

uses InCommon [166] and WSO2 [167] for identity management. The VAF, leveraging

these services, implements key-based authentication to enable trusted communication

between VAF and DAS components (R4).
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InCommon is a federated identity management service provided to education and

research institutions using the Shibboleth single sign-on architecture. Given a large

number of participating institutions and simplicity of setup, VAF integrates with

InCommon-based authentication services [166].

For users whose institution is not a member of the InCommon federation, the WSO2

Identity Server (IS) is utilized for authentication. The WSO2 IS integrates with any

IAM-compliant architecture. For users with no IAM-compliant architecture, WSO

IS provides a built-in IAM architecture. While WSO2 integrates with Shibboleth

SSO and thus may be integrated with InCommon, the current VAF implementation

leverages InCommon outside of WSO2 IS to simplify configuration [167]. For VAF

configurations that leverage WSO2 IS, the middleware authorization service uses the

WSO2 API to handle user authorization requests. In such implementations, user

authorizations are configured using the WSO2 IS Administration application.

Within VAF, key-based authentication enables trusted communication among VAF

components and between VAF and DAS. For WSO2 implementations of VAF, key-

based authentication also is enabled between middleware services and WSO2 services.

Key-based authentication leverages Hypertext Transfer Protocol Secure (HTTPS)

and requires valid certificates for communication between endpoints.

Authorization: The middleware provides two options for authorization support,

either a proprietary solution or a WSO2 implementation. For VAF configurations

that leverage WSO2, a proprietary authorization solution is provided via a middleware

authorization service. Setting up user authorizations using the service requires manual

database updates.

We defined three user roles for VAF: a data owner, workflow designer, and data

analyst (R4). A data owner manages the user’s access control in DAS data sites.

A Workflow designer set up an initial configuration and orchestration path for a

new workflow. While a data analyst is authorized to tweak certain configurations
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Figure 3.4: Analytic workflow management through our visual analytics systems.
Workflow management view provides A) File Browser - to configure the workflow,
B) Code Editor - to prepare and run the analytic workflows, and C) Terminal - to
stream raw outputs.

according to need, the designer’s role is to use the workflows to conduct analyses.

3.4.2 Visual Analytic Interface

The visual analytics interface is the second major component of the visual analytic

pipeline. It provides coordinated views [92] to support user actions for workflow

execution and result exploration in DAS. To satisfy the design requirements, the UI

introduces three main panels: workflow management, task management, and result

exploration. These panels assist users in three different phases of sensemaking: 1) data

exploration (foraging); 2) analytical workflow and script development and execution

(hypothesizing); and, 3), exploring and analyzing workflow results (analyzing). In the

following sections, we illustrate support for each phase by presenting VAF support

for workflow/script management (hypothesizing), task management (hypothesizing),

and interactive visual exploration (foraging and analyzing).
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3.4.2.1 Workflow/Script Management

The workflow/script management view consists of a File Browser, a Code Editor,

and a Terminal View (Figure 3.4A,B and C). In the File Browser, the available use

cases and workflows are listed according to user access privileges to the PAC repos-

itory (R1, R4). By default, the view provides access to two types of directories:

shared directories and user directories. The shared directories contain all use cases

and workflows that are shared with other users. The user directories contain the use

cases and workflows (created or cloned) that are private to the user. The File Browser

is synchronized with the middleware’s Task Manager component via RESTful API.

The workflow/script management view presents only those use cases and workflows

that are configured in the DAS and flagged as enabled in the Task Manager. We

require hierarchical presentation of PACs in the associated DAS as shown in Fig-

ure 3.4A. The hierarchy is set in a manner that always gives an ordered path (/[

root-directory ]/[ use-case ]/[ workflow ]/[ w-version ]/) when users se-

lect a workflow to execute. For example, if the user decides to execute the version 1

of the user workflow shown in Figure 3.4A, the conceptual path to the script direc-

tory would be /shared/lsu_ann1/user/v1/. The hierarchical abstract organization

is adopted for its familiarity and ease of use. Moreover, it provides an encoding that

facilitates interface middleware communications.

We added operations to the File Browser (Figure 3.4A) to create, duplicate, or

modify the workflows (R1). To keep the integrity of the file structure, each operation

is implemented with a set of constraints (Figure 5.3a). The "Duplicate" operation

allows the user to clone a selected workflow. It also allows users to clone scripts. For

example, in Figure 3.4A1, ive2.py is duplicated (or cloned) from ive1.py. However,

this operation does not allow users to clone use cases or the root directory. Similarly,

"Add folder" only allows users to create new version folders under a selected workflow,

rather than creating a folder at an arbitrary location in the hierarchy. The "Upload"
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and "Download" actions allow the user to migrate analysis to and from the local

machine and the DAS.

In the Code Editor (Figure 3.4B), the user can modify the workflow, and create

and modify scripts according to their hypotheses for the corresponding use case. By

selecting a script, users are allowed to modify and execute the script within the Code

Editor for testing purposes (Figure 3.4B). The File Browser also provides access to

workflow configurations, which users can select to modify in the Code Editor (R2). In

the File Browser (Figure 3.4A), the scripts and workflow configurations are validated

prior to execution to assess whether modifications are permitted. The conf.yml file

associated with each workflow version contains the workflow specification and iden-

tifies the appropriate DAS for execution. This file includes, among other things, the

DAS credentials (Figure 3.4B1), dataset identifiers, and the location where workflow

results are to be transferred after task execution completes (Figure 3.4B2). The Ter-

minal (Figure 3.4C) reflects the output from an associated command line interface

to the DAS (when such an interface exists). It also shows log files and the output of

test script executions.

To execute a workflow in a DAS, the user selects the conf.yml file for the workflow

in the File Browser (shown in Figure 3.4A1) and clicks the "Run" button located

at bottom right in the Code Editor (Figure 3.4B) (R3). The interface, then, passes

the command to the middleware and switches to the Task Management view once

execution is launched in the DAS (Figure 5.3b).

3.4.2.2 Task Management

The task management view contains a Scheduled Task panel that lists the workflows

(i.e., tasks) that are currently executing for the given user as shown in Figure 3.5.

The Scheduled Task panel provides graphical indicators of task progression. A unique

task ID is generated for each workflow execution (R5). While executing the workflow,

the task identifier is linked to all runtime data, including the runtime environment,
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Figure 3.5: The UI for submitted analysis task management in our visual analytics
system. Task management interface allows the user to interact with the scheduled
tasks for inspecting logs, tracking progress, visual exploration of the results or re-
running the workflow.

script directory, logs, results files, etc (R6).

A task may take anywhere from fractions of a second to hours or days to execute

depending on the size of the data, the complexity of the analysis, the computational

resources available, and the shared demand for the data and computing resources.

While a task is executing, the user can interact with any tasks to inspect execution

logs or view the results of completed tasks (Figure 5.3c). The execution logs accessible

from the Task Manager are not the output logs from the given script. Rather, these

logs, retrieved from the middleware, capture workflow progression checkpoints for a

given task, such as: a) queued â execution request sent to middleware; b) queuing -

middleware retrieving relevant scripts, preparing for task execution, generating the

unique task identifier, etc.; c) created â the workflow execution request has validated

the request and the task is properly created; d) sending - transferring the task to

the appropriate DAS; e) sent - the task is successfully sent to the DAS and awaiting

execution, and f) complete - the DAS completed the task execution and results are

returned to the middleware for user access.

The progress bar aligned with each task in the table (Figure 3.5) depicts an es-

timation of overall execution progression. The Scheduled Task panel provides users

with several operations that may be applied to a given task, including a) ‘Cancel’ â

this operation allows a user to cancel task execution by the DAS, b) ‘Rerun’ â this

operation allows a user to rerun a task, possibly with updated parameters, after first
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Figure 3.6: The variable exploration panel on the UI for analysis results. A) Meta-
data, B) Triangle matrix-variable correlation, and C) Data variable properties to
familiarize the user with the results.

canceling the current execution; and, c) ‘Result’ â this operation, available after task

completion, takes a user to interactive visual interfaces to explore the data that result

from task execution.

3.4.2.3 Visual Exploration

The interactive, visual exploration views provide a threefold means to explore both

data/datasets (foraging) and task results (analyzing). In this section, without loss of

generality, we focus our presentation on results exploration (Figure 5.3d). The inter-

active, visual exploration views include two principal panels: the variable exploration

panel and the visual exploration panel (R7).

The variable exploration panel provides a view that allows users to explore the

properties of resulted data. Figure 3.6 shows a sample illustration of the variable

exploration panel using this data [168]. The data variable exploration panel initially

provides the data dimension (Figure 3.6A), a triangle matrix (Figure 3.6B), and a
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data table containing the variable properties (Figure 3.6E). We implemented this

panel recognizing that users may not always be familiar with the data variables.

This panel provides the data type for each variable in the data. In addition, for

numeric data variables, the table provides some statistical data (e.g., range, mean, and

standard deviation), though this may not always be relevant or useful. For categorical

data, the panel provides count and frequency information. For example, hovering

over categorical data presents a bar chart providing the frequency distribution of

the categorical data. Additionally, the matrix (Figure 3.6B) provides the correlation

among data variables, which may help users during analyses. The matrix cells are

color-coded and denote the correlation -1 to +1 using a red-yellow-green color scheme.

The user can explore the correlation between two variables by hovering the mouse over

the corresponding cell in the triangle matrix. The scatter plot and bar chart (Figure

3.6C, D) based on the respective interactions with variable properties (Figure 3.6B1,

E1) allow users to identify and explore patterns or outliers in the data.

The data transformation capabilities include scaling the data variables, applying

statistical summary or formula to transform data variables, and injecting domain

knowledge to nudge the exploration panel in identifying relevant visualizations. Ad-

ditionally, the UI allows the user to input thresholds such as good, moderate, and

poor correlations, standard deviations, and minimum and maximum factors for the

unique values that are perceived as the user’s domain knowledge. The user can save

the action items as a transformation profile to apply in the future resulting data from

the workflow.

The interactive, visual exploration panel provides a view that recommends visu-

alization methods to users based on the data type and format. Users may also in-

dependently select relevant visualizations from the palette of available visualization

methods. This palette is also extensible to allow users to add highly tailored vi-

sualizations for specialized data or analysis tasks. This latter feature is provided
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in recognition of anticipated unconventional visualization requirements for different

varying use cases (R7). To support interactive, visual exploration, we modularized

the exploration panel based on the use case. As such, the visual exploration panel

for each use case inherits the common visualizations and includes (optional) custom

visualizations. For example, to support the sensemaking in one use case (discussed

in Section 3.5.2), we implemented the interactive custom scatter plot shown in Fig-

ure 3.10. The inherited visualization library includes line charts, standard scatter

plots, parallel coordinates, box plots, heat maps, geospatial maps, and tabular data

presentations.

3.4.3 Distributed Analysis System: VIFI

To evaluate VAF, we integrate VAF with two DAS: a simple file-based DAS and the

Virtual Information Fabric Infrastructure (VIFI) DAS. In this section, we describe the

latter DAS which serves as the foundation of most of our VAF evaluation activities.

VIFI [123, 127, 128, 132] is a DAS that enables analyses across distributed, frag-

mented data without the movement of massive data. Within VIFI, analyses migrate

to the distributed data and only derived data â e.g., result sets â migrate from the

data hosts. VIFI supports research and analysis in multiple domains including astron-

omy [132], earth science [123], and sustainable human-building ecosystems (SHBE)

[128]. The current implementation of VIFI consists of the following components:

Portable Analytic Containers, Registry Services, Orchestrator, User Node, and Data

Sites. Each is described briefly in the following.

Portable Analytic Containers (PACs): A PAC is a lightweight virtual ma-

chine, called a container, that hosts software, libraries, and the operating system

needed by end users to analyze data. A PAC can receive and execute analysis pro-

grams (e.g., scripts) if the required programs are not already contained in the PAC.

Leveraging container technology (e.g., Docker [157, 158, 159, 160]). A PAC is portable

to migrate and execute on heterogeneous host platforms. A PAC facilitates reusability
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by hosting and utilizing different analytical libraries and programs pulled from shared

repositories (e.g., Docker hub [169]). Container technology enables the movement of

analytics rather than the movement of data; thus, alleviating problems related to the

transfer of big data. PACs offer a number of affordances for distributed analytics:

i) they can be easily transmitted over the network due to their limited size; and ii)

they simplify analytics development for inexperienced users. The VIFI infrastruc-

ture is scalable as it enables the integration of various VIFI nodes at different sites.

The ability for VIFI workflows to access fixed sites allows VIFI to cooperate with

non-open-source resources, assuming that a VIFI user has the proper credentials.

Currently, VIFI researchers are extending VIFI to use Singularity [170, 171, 172] to

run on High Performance Computing (HPC) clusters at different sites.

Registry Services: Distinctive PACs are stored, searched, utilized and shared

through Registry Services. Currently, VIFI uses Docker hub [169] to implement the

Registry Services. We expect future VIFI versions to incorporate additional services

to advance the download and transfer times of PACs.

Orchestrator: The Orchestrator automatically coordinates workflow (i.e., task)

execution across multiple VIFI sites (i.e., distributed datasets). Each analysis step in

a workflow is implemented by a script running in a PAC at a data site. Although initial

VIFI implementations used NiFi [163, 161] as its orchestrator, current implementation

use RESTful APIs to improve orchestrator customizability.

User Node: The user node is the means by which users interact with the VIFI

framework. The user node provides a UI, communication, and basic computation

capacities.

Data Site: Data Sites are locations in the VIFI infrastructure where distributed,

fragmented data reside. Each VIFI Data Site interacts with the Orchestrator (i.e.,

NIFI and/or RESTful APIs) and runs PACs (e.g., by Docker Swarm [173]). VIFI

uses Docker Swarm to execute parallel analytics. Each Data Site runs a VIFI server
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supported by a configuration file that configures hosted data sets and log files at this

site. Metadata Server: The Metadata Server stores and lists gathered metadata

about datasets at each Data Site. These metadata are used to support data discovery

(foraging).

Crawler: The Crawler is used by the Metadata Server to automatically collect

metadata at each Data Site.

Watchdog: The Watchdog updates the Metadata Server when modifications to

the metadata are detected at any of the associate Data Sites.

VIFI workflows are either launched from the command line interface of the VIFI

server running at each Data Site or via the User Node. The VAF reported in this

paper functions as the VIFI User Node for the use case evaluations reported in the

following section that used VIFI.

VIFI workflows can be launched from the command line interface by python

vifi.py –-sets [list of VIFI sets that should be initiated on current VIFI

Node] –-vifi_conf [local VIFI Server configuration file] on each VIFI Node

that participates to the workflow. The –-sets option specifies which VIFI Sets should

be launched on the current VIFI Node, while the –-vifi_conf option specifies the

VIFI Server configuration file. The VIFI Server configuration file contains information

about all VIFI Sets hosted at the current VIFI Node including the data (e.g., XML,

NETCDF, CSV, etc.) path for each set, the data exposed name to be discovered and

used by end-users, the allowed container images to run within each VIFI Set and their

locations, and other configurations. Additionally, the VIFI Server configuration file

contains information related to logging, variables specifications used for each VIFI

Set directory structure and reserved file names. The VIFI Server configuration file is

a YAML file that can be extended for future development of VIFI. Each VIFI Node

will be ready to accept users’ requests using RestAPI. The workflow designer can use

different VIFI Sets hosted on remotely distributed VIFI Nodes. Thus, the end-user
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will be able to analyze accessible data at each VIFI Node using the designed workflow

without moving the data to the end-user location.

3.5 Use cases

To evaluate the affordances of our VAF, we implemented the framework leveraging

the VIFI DAS. As part of our evaluation, we present two use cases: one from the earth

sciences and the other from the SHBE domain [174]. Guided by researchers from these

domains, we implemented workflows that integrated the researcher’s analytic scripts.

The earth sciences use case included two workflows and the SHBE use case included

three workflows.

Implementing a new use case in VAF includes three steps. First, we use the work-

flow/script management view to create the new use case in the use case management

middleware repository. This step generates a unique use case key and associates it

with a user-specified name. All subsequent workflows and their execution results will

be associated with this key. The user also specifies the DAS data site(s) or hosts that

will be leveraged by the workflows.

The second step involves reviewing the DAS configuration data. For VIFI, these

data, stored in the conf.yml file and submitted to VIFI during task execution, specify

the constraints that govern VIFI communications.

The third and final step for use case creation involves verifying that proper infras-

tructure constraints are satisfied. For example, proper firewall and security standards

need verification with the organizations that will be hosting the VIFI infrastructure.

Once a use case is created, workflows may be specified and executed, and results may

be explored. In the following sections, we illustrate VAF through workflows from

each evaluation use case. Figure 5.3 denotes the technologies we leveraged for our

implementation.
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Figure 3.7: The data mining architecture for distributed spatiotemporal data. The
deciding factors for resulting data storage are based on usage frequency, analysis
runtime, and required storage memory.

3.5.1 Earth Science: Exploring Climate Projections

We used our VAF, leveraging the VIFI DAS, on NASA Earth Exchange published

downscaled climate projections (NEX-DCP30) [175]. The United States National

Climate Assessment (NCA) [176] reports the future projections of the various climate

variables from NEX-DCP30 to assess changing climate scenarios [21, 13]. Recogniz-

ing its importance, the NASA Earth Exchange project released NEX-DCP30 data

(observed and projected) that contain monthly averaged precipitation and tempera-

ture data for the contiguous US from 1985 to 2099. The projection data are stored

in Network Common Data Form (NetCDF) [52] format and provide access to the

projection output for 36 climate models [175].

To perform demonstration evaluations of our VAF integrated with VIFI, we worked

with a NASA climate scientist to develop workflows for analyzing NEX-DCP30. These
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Figure 3.8: The visual analytic interface for the earth science use case, leveraging
VIFI. Interactive geospatial visualization and trends for seasonal regional temperature
and precipitation assist climate scientists in their analytic tasks.

workflows extracted the NetCDF data files and summarized monthly averaged spa-

tiotemporal data for interactive, visual exploration as illustrated in Figure 3.7. The

first workflow executes data extraction analyses based on user-provided parameters,

such as projection model(s), climate variable(s), and year(s). An analytic script uses

these parameters to find the corresponding NetCDF data and extracts geospatial

contours for each month of the given year. The script and workflow configuration

were authored and stored in the middleware using the Code Editor. The configura-

tion file identifies the dataset (e.g., NEX-DCP30) and links via the middleware to

authorization credential required for execution. In fact, the workflow configuration

file contains all of the required parameters to execute this workflow. Hence, each

time users execute a workflow, they update the parameters in the configuration file

to extract the projection model of interest. The resulting data are formatted as Geo-

JSONs [177], subsequently stored in the middleware repository (e.g., an S3 bucket).

Once data extraction is complete, the user can visualize and interactively explore the
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results as shown in Figure 3.8C. Recall that the VAF visualization library provides a

generic map view that renders the geospatial contour visualizations. The geospatial

navigator in Figure 3.8C is coordinated with the geospatial view, rendered using a

configurable slider built in the visualization library.

The second earth sciences workflow summarizes the spatiotemporal climate projec-

tions from NEX-DCP30 for exploration and analysis. This workflow contains multiple

analytic scripts to summarize data from different perspectives while using different

statistical techniques. Multiple scripts are included in this workflow since they share

similar analysis goals. Users can reconfigure the workflow to use different scripts

based on preference and interest. Workflow results contain monthly, seasonal, and

yearly summaries of precipitation and temperature grouped by season and region.

We created custom visualizations for this workflow as depicted in Figure 3.8. The

requirement for this custom visualization was identified and co-designed by the par-

ticipating climate scientist. Figure 3.8A shows multiple bar charts, sharing similar

axes, illustrating the mean precipitation from 1985 to 2098, for each season. Figure

3.8B provides small multiples of precipitation and temperature trends for the 21st

century. Each small multiple denotes a region and season correspondingly from top

to bottom and left to right. In this use case, the custom visualization can be used for

exploration and analyses independent of the script that configures the workflow.

3.5.2 SHBE: Light Switching in Smart Buildings

The SHBE domain is a multidisciplinary field that explores the interplay of human

behaviors and the built environment with the goal of a more sustainable future.

Multiple workflows have been explored in collaboration with SHBE researchers. For

space consideration, we highlight just one of these workflows to illustrate how more

complex workflow designs are supported and enabled by VAF. The analytical purpose

of the highlighted SHBE workflow is to explore the use and efficacy of Artificial Neural

Networks (ANN) for the prediction of light on-off switching probabilities for the work
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Figure 3.9: Workflow implementation for SHBE light switch on-off probability in
smart buildings.

area illuminance in a smart building as shown in the interactive VAF visualization

presented in Figure 3.10. To illustrate the complexity of the analyses, we summarize

the workflow implementation in VIFI below.

As shown in Figure 3.9, the workflow involves analysis over three distributed

datasets at three different VIFI Data Sites. The data at each VIFI Data Site is

used by the ANN model for training and prediction. The third VIFI Data Site col-

lects the updated ANN model and determines whether further model refinement is

required using any of the other 2 VIFI Nodes. Thus, the third VIFI Node sends a

different command file to each Node to specify what to do in the next step (e.g., fit

the ANN model using existing data, use the ANN model to make predictions, etc.).

Finally, when the third VIFI Node decides that the model is "good enough", the

stopping condition is reached. The VIFI Orchestrator terminates the workflow and
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Figure 3.10: The SHBE use case result exploration for the smart building workflow.
The scatterplot illustrates the light switching on-off probabilities based on the work
area illuminance using the ANN model.

results are returned to the VAF middleware.

The ANN model, as well as other intermediate results, are sent between the VIFI

Data Sites using RESTful API-based VIFI Orchestrator. The RESTful API is also

used by each VIFI Data Site to accept incoming requests for analyses from users

launching workflow. Similar to the earth science use case, each request for analyses

contains the required scripts, parameters, and workflow configuration. The config-

uration contains important information for proper workflow execution including the

dataset(s), PAC(s), and input parameters as well as operation settings such as where

to send intermediate and final results, whether to keep a local copy of the (interme-

diate) results for further analysis, whether to add timestamps to results for potential

time-series analyses and other similar settings. In this workflow, analysis at each

VIFI Data Site consists of two steps (or scripts). The output of each step is stored

locally and transferred to other VIFI Data Sites for further processing. The first

step in each Data Site in this workflow executes only once but its output is used in

multiple subsequent steps at this and other Data Sites. In other words, the initial



55

ANN model is created at one of the VIFI Data sites as step one and it is used to

predict outcomes and/or to train models at subsequent steps. Thus, it may execute

any number of times until it is decided that the ANN model is âgood enoughâ and the

workflow is terminated. As mentioned previously, VAF supports the specification of

the workflow and renders the output as a scatter plot as depicted in Figure 3.10. This

interactive visualization is customized so that square and diamond-shaped glyphs de-

note switch-on and switch-off operations while color is used to denote independent

workflow runs. The visualization describes the probability of light switch behavior

for work area illuminance.

3.6 Discussion

We presented a VAF for DAS to assist the data owners, researchers, and analysts

to manage the infrastructure and conduct analysis through a web-based graphical UI.

We have reviewed several distributed analysis systems such as XSEDE [124], SciServer

[109], and VIFI [123] to identify the design requirements to resolve the requirement for

the user to directly access the server, manage the access control from the application

layer, and facilitate the user to explore the result using interactive visualizations.

We identified 7 implementation requirements that satisfy the design requirements

to develop a web-based graphical UI for DAS. An interface for preparing the analytic

scripts, configuring the workflow, and running the workflow in DAS sites resolves

the requirement for the users to directly access the DAS servers. The middleware

orchestrates the transactions between the UI and DAS. Moreover, the middleware

manages the authentication and authorization from the application layer to reduce

the workload of data owners. The workflows executed by the users through the UI

are queued in the middleware database. The middleware communicates with the

DAS sites to decide when to push the queued tasks and provides runtime and error

logs to the UI that help the user to monitor the progress of the task. Finally, the

visual exploration panel produces interactive visualizations to explore the resulting
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data from the analytic scripts.

We demonstrated the UI that satisfies the design requirements and illustrates the

implementation requirements of our proposed VAF. The UI consists of 3 main panels -

workflow management, task management, and visual exploration. The workflow man-

agement provides access to a hierarchical file structure (Figure 3.4A), a component

for creating or updating analytic scripts (Figure 3.4B), and a terminal (Figure 3.4C)

to provide raw streaming logs. The middleware serves RESTful APIs to synchronize

the UI with the DAS site on user interactions. The task management panel provides

status updates for the running workflows, and overall runtime progress, and allows

the user to either re-run the workflow or explore the result (Figure 3.5). The visual

exploration panel familiarizes the user with the data (Figure 3.6), and perceives their

preferences to produce a set of interactive visualizations.

We implemented VAF in two use cases from the earth science and SHBE domain.

We leverage VIFI [123] DAS to implement 2 workflows from earth science and 3 work-

flows from SHBE. These workflows were initially configured and executed through a

command line interface. The users were required to access multiple servers including

the data sites to run their analyses. In contrast, after the initial configuration and

setup of VAF, the users are not required to access the distributed servers to create,

update and run their analytical scripts. The pre-configured visual exploration panels

for respected workflows assisted the analyst users to explore the result without any

effort in creating interactive visualizations.

Nevertheless, we identified a few limitations of VAF based on our implementa-

tion experience. Our framework complies only with the DAS that provides RESTful

APIs. We plan to address this issue by developing a generic RESTful API and deploy

at the DAS sites to comply with more distributed systems. The workflow configu-

ration from the UI requires a learning curve for the users to be familiar with the

configuration keywords We plan to provide a better interface with more readable
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labels and input validations for the configuration items which would ease the user

with workflow configuration. We understand our visualization library lacks the use

case-specific visualization and interaction requirement to explore the results, which

required workflow designers’ effort to preset the visualizations. We plan to create

more input scopes for the users to inject their domain knowledge to influence the

visualization recommendation [178].
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CHAPTER 4: INTERACTIVE GEOSPATIAL VISUALIZATION

Exploratory user interactions in contour-based visualizations create approaches to

visual analysis that are noticeably different from the perspective of human cognition.

As such, visualization researchers have introduced diverse interactive approaches to

improve system usability and enhance human cognition in the exploration of complex

and large-scale spatial datasets. However, further research is needed to better under-

stand and quantify the potentials and benefits offered by user interactions in contour-

based geospatial visualizations designed to support exploratory analytical tasks. In

this paper, we present a contour-based interactive geospatial visualization designed for

exploratory analytical tasks. We also report on the design and development of a web-

based user interface that facilitates quantitative user intervention studies of interactive

contour visualizations. We conduct a crowd-sourced user intervention study (N=62)

that analyzes the impact of interactive features in the contour-based geospatial visu-

alizations in support of exploratory analytical tasks. Our results evidently show that

the interactive features lead participants to perform significantly better compared to

static visualizations. Moreover, the quantitative analysis of participants’ performance

and observations from their interaction data provide a deeper understanding of utili-

ties in the interactive features from the perspective of spatial data extent, map layout,

task complexity, and user expertise. Finally, we comprehensively discuss our findings

that serve as guidelines for future design and implementation of interactive features

for contour-based geospatial view in support of case-specific analytical tasks.

4.1 Introduction

Geospatial visualizations are increasingly being used to support the analysis of

spatial variables in many research domains including atmospheric science [12, 13, 14],

meteorology, [90, 39, 179] and urban planning [15]. In addition, scientists and analysts

in those domains leverage contour maps in intricate geographical analysis such as un-



59

derstanding landform shapes, mountain elevations, ocean depths, climate projections,

etc. In recent years, visualization researchers and domain experts are collaborating

with greater frequency, employing cross-domain research efforts to identify innovative

visualization and interaction techniques that help domain experts extract unknown

events and hidden patterns in the geospatial data [63, 44]. However, our literature

review includes such collaborations in the earth sciences domain [119, 27, 180, 85]

and revealed that many researchers rely on traditional static depictions of geospatial

data in contour visualization to perform common visual analysis tasks [181, 116].

For instance, international assessment reports are a critical resource for under-

standing climate change, assessing societal impacts, and supporting effective decision-

making. The National Climate Assessment (NCA) reports published by Intergovern-

mental Panel on Climate Change (IPCC) are projections from climate models [182].

The assessment reports provide both direct foretelling of physical indicators of po-

tential future climates and indirect information on societal impacts where contour

maps play an essential role in visually interpreting downscaled climate projections.

As the spatial resolution of climate models becomes finer, model performance is gen-

erally improving, providing better representations of extreme weather events [116],

the hydrological cycle [183], and influential land surface processes [184]. However,

traditional approaches often leverage static contour depiction of high-resolution spa-

tial data [113], leaving the useful underlying events and insights from finer spatial

resolution. In this context, we hypothesize that user interactions with the contour-

based geospatial visualizations enhance the efficacy of such analyses; but, it is clear

that measuring these benefits for exploratory analyses remains a difficult task.

User interactions and visual representations often organize, structure, and seg-

ment spatial data in ways that enable user exploration from abstract overviews to

focused inspections. Exploratory user interactions in geospatial visualizations cre-

ate approaches to visual analysis that are noticeably different from the perspective
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of human cognition. In recognition of these differences and the opportunities that

they afford, visualization researchers have introduced diverse interactive approaches

to improve system usability and enhance human cognition in the exploration of com-

plex and large-scale datasets [94]. The importance and value of user interactions in

supporting exploratory geospatial analysis are well-accepted phenomena. However,

quantitative evaluations of the interactive features in such systems are lacking, de-

spite the qualitative evidence that demonstrates their value. In particular, further

research is needed to better understand and quantify the potentials and benefits of-

fered by user interactions in geospatial visualizations designed to support exploratory

analytical tasks.

To quantitatively evaluate the interactive features in contour-based geospatial visu-

alization, the comparative artifacts are interactive and traditional static maps. User

interactions in visualization applications are often categorized based on their support

for different analytical tasks [27]. Hence, to conduct a quantitative evaluation, it

is important to define a set of exploratory tasks and comparative visual artifacts.

Previous research categorizes the exploratory geospatial analysis from different per-

spectives, including event identification, comparison, ordering, and logical reasoning

[185, 186, 187]. Moreover, selecting proper datasets, ones that obtain adequate infor-

mation to resemble these analytical tasks is consequential for the evaluation outcome.

In this paper, we report our findings from a crowd-sourced user intervention study

that quantitatively evaluates interactive features in geovisual environments support-

ing exploratory analytical tasks. We leverage knowledge from our literature review

[188, 186] and collaboration with the climate and environmental scientists [44, 113,

114] to select seven exploratory visual analyses to investigate the usability of the in-

teractive features in contour-based geospatial visualizations. To conduct the study,

we utilize geospatial data containing temperature records for a tri-state area [189] and

precipitation data for the contiguous U.S. [21]. Data collected from the user study is
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statistically analyzed to understand quantitatively the impact of the user interactions

in performing the identified exploratory analytical tasks. Our results show that in-

teractive geospatial visualizations improve correctness in task performance compared

to static geospatial visualizations. In particular, the interactive features significantly

improve task performance in the identification of spatiotemporal differences from the

geospatial contours. This chapter presents following contributions:

1. We present a contour-based interactive geospatial visualization that supports

the users performing exploratory analytical tasks. Geospatial visualization con-

sists of numerous features that allow users to inspect, select, annotate, and filter

the geospatial data.

2. We designed a web-based user interface that facilitates a user intervention study

under an exploratory contour map visualization environment. We conducted a

crowd-sourced user intervention study to scrutinize the interactive features in

the contour-based geospatial visualization.

3. We discuss participants’ interaction behavior and report diagnostic analysis of

their performance that serves as guidelines to design and evaluate case-specific

interactive geovisualization.

4.2 Related Works

In this section, we summarize the previous research in visualizing the geospatial

data that enables users to conduct exploratory visual analyses. In addition, we review

the methods and techniques in evaluating the usability of the geovisual environments.

4.2.1 Geospatial Visualization

Geospatial data are traditionally categorized into three types: raster data, vector

data, and network data [9, 190]. Raster data gather a large set of pixels where each

pixel corresponds to a specific geographic location. These data often illustrate discrete
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information such as terrain type, as well as, continuous information such as temper-

ature or land elevation. In contrast, vector data contains information such as the

location of a movie theater, the path of roads, rivers, and the area of a country, river,

or national parks [9]. Vector data is often represented by points, lines, or polygons.

Moreover, network or graph data illustrates the spatial connectivity among the nodes

in the vector data such as road transportation and navigation [191]. In addition to

spatial features, dimension-impacting factors like time are frequently associated with

the geospatial data [192, 193].

Visualization researchers have introduced many geovisual environments for various

data types with analysis requirements, and use cases. The power of geospatial data

through geographic information systems for mapping and analytics has been realized

beyond earth science-related domains. Such domains (e.g., traffic systems, energy

systems, health informatics, entertainment) heavily rely on the location or geograph-

ical data [194]. Choropleth and geospatial maps are popularly leveraged to visualize

the data attribute containing spatial dimensions [88, 38, 3].

The static geospatial depiction is frequently utilized where users visually estimate

information from the traditional map views in form of raster images. NASA built

Panoply, a software package, to extract high-dimensional climate datasets and visu-

alize them as geospatial contours [97]. QGIS [195] is another widely used open-source

cross-platform software for visualizing geospatial data in a diverse format (e.g., Geo-

JSON, NetCDF, Shapefile) as a mesh layer. In addition, toolkits such as MATLAB

[103], NCAR [105], and GrADS [104] are still commonly used to visualize the geospa-

tial data.

Moreover, we reviewed transformations of geospatial visualizations to accommo-

date the multi-dimensional attributes. CDAT provides a software infrastructure and

platform for analyzing multidimensional data [196, 99], popularly used for distributed

analyses of geospatial data. In addition, CDAT offers visualization and control sys-
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tems that interact with Python to visualize the geospatial data [196]. GIS4WRF [197]

is another toolkit for processing and visualizing weather data and forecasting NetCDF

in an interactive single graphical environment. MeteoInfo is a desktop application that

provides a geospatial visualization platform for multidimensional meteorological data

[198].

4.2.2 Evaluating Geovisual Environments

Tools and applications employed for geospatial visual analysis are often developed

for use case-specific needs. Therefore, qualitatively evaluating the usability of those

tools is mostly sufficient with the domain experts’ or corresponding users’ feedback

[66, 113]. In our review, we only found a handful of literature that quantitatively

evaluated geovisual environments with users from a diverse range of expertise and

the effect on their performance. Koua et al. [186] conducted a user study with

geographers, cartographers, geologists, and environmental scientists as participants

where they evaluated the usability of different visualization methods for geovisual

analyses. Their study included visualization methods such as parallel coordinates,

and self-organizing heatmap representation against the geospatial map to evaluate

users’ performance in 10 exploratory analytical tasks. Zahan et al. [199] conducted

a user study to compare four design techniques for contour line stylization to explore

the multivariate geospatial data. Nagel et al. [200] introduced a tabletop map visu-

alization that enables users to explore geospatial networks interactively. Moreover,

Mahmood et al. [201] presented a mixed reality geospatial visualization method that

fosters remote collaboration and knowledge sharing for sensemaking tasks. We un-

derstand the exploratory geospatial task classification presented by Koua et al. [186]

is relevant to our work as we design our user study for quantitative evaluation.
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Figure 4.1: Overview of our implementation of an interactive geospatial visualization
presenting the contour map of (A) temperature intensity in New York City and (B)
precipitation intensity in the contiguous U.S. recorded at a certain time. The interac-
tive features in the map are intended to support exploratory visual analysis providing
underlying information about the contour regions.

4.3 Contour-based Interactive Geospatial Visualization

For our user study, we developed an interactive contour-based geospatial visual-

ization that includes multiple coordinated visual and interactive components. These

components are 1) a geospatial map, 2) a contour area distribution view, and 3) inter-

active features including, but not limited to, inspection, selection, exploration, toggle

layers, draw markers, control visibility, and location search. The visual components

alone can illustrate the geospatial data (often in the GeoJSON format) and basic

mapping to the geographic location without leveraging the interactive features. We

utilized Leaflet.js to visualize the geospatial contour transformed into GeoJSON.

4.3.1 Geospatial Map

The geospatial map presents a multi-layer view that includes a base map, a con-

tour map, and spatial masks. In geographic information system (GIS), the base map

refers to a collection of geographic features that illustrates the background scene for a

location. For instance, we use OpenStreetMap [202] as a base map to show geograph-

ical features (e.g., boundaries, rivers, and highways). The contour map provides the

topographic view of a location, where is the area sharing the equal value clustered
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with lines or polygons [203]. In Fig. 4.1, for example, the contour maps present A)

temperature intensity for New York City, and B) precipitation intensity for the con-

tiguous U.S. Additionally, the spatial masks draw boundaries for the contiguous US

regions, that provide a visual segment of the area specific (regional) intensity. While

this multi-layer version of the geospatial contour map obtains scope to accommodate

interactive features over a traditional single-layer bitmap, we still refer to this map

as a static map in the user study.

4.3.2 User Interactions

We implemented several interactive features over the traditional geospatial map to

transform the contour into an interactive map. For the interactive version, we keep

the map layout unique to the static map, only including components that enable

user interactions, to ensure the comparison between static and interactive maps is

focused on the interactive features instead of the visualization design. The user

interactions are designed to facilitate the human cognition process and categorized

based on their capabilities in supporting the exploratory analysis within geospatial

data [94]. The interactive features are designed to perform the exploratory analysis

task discussed later in Section 4.4.2. To implement the interactive features, we have

gathered knowledge from our previous research [113, 114, 44] and literature review

[36, 40, 12]. We included a set of interactive features such as inspection, selection,

annotation, filter, encode, and view synchronization.

The boundaries within the contour create multiple polygons which we identify as

the contour regions. In the interactive map, the interface can calculate the total

number of regions belonging to unique intensity. To calculate the contour area distri-

bution, we group the contour map based on the area that shares an equal value/range

of intensity. Then, we aggregate the area of all the contour regions grouped by unique

value/range of intensities to identify the contour area distribution.

Inspect: This interaction allows the user to move the mouse cursor over a contour
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region, then, the map highlights all the associated contour regions on the map. It

also pops up a tooltip that provides additional information about the interacted

contour region. The information on the tooltip includes the intensity of the interacted

region, the number of contour regions occupied by the intensity, and the contour area

distribution by those regions.

Select: This interaction allows the user to enable or disable all the contour regions

of an intensity. The user can click on the contour labels (Fig. 4.1F) to select the events

of interest. The contour area and regions are re-calculated based on the updated

selection.

Annotate: We implemented the annotation feature where the user can place mark-

ers on the map to explore detailed information or compare it with other locations or

regions. A right mouse click on the point of interest puts a marker on the map

(Fig. 4.1C). The view allows multiple markers in different locations. A left click on

the mouse shows additional information as an inspection of the marked location and

illustrates the comparison with the other marked places.

Filter: This interaction essentially provides search capabilities within the contour.

Search assists the user to locate an area/bound on the map that might be difficult to

find manually. To search an area, the user may click on the search icon (Fig. 4.1E)

placed at the top right on the contour map, type the area name and choose the one

from the options. A marker will be placed on the searched and selected location. The

searched markers function just as the other annotation markers placed on the map.

Encode: The map view encoding supports the user controlling the visibility of the

contour on the geographical boundary. Contour styles allow controlling the trans-

parency or strength of the contour area and borders to be able to better co-relate an

event with its geographical location.

Synchronize: This interaction caters to the comparison between two contours,

providing exploratory features to identify the potential differences for points of inter-
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est. The interactive features discussed above are synchronized in this setup, meaning

the user interaction with a contour map has a complementary effect on the compar-

ative map. In this study, we present these comparative maps as ‘Snapshot Left’ and

‘Snapshot Right’.

The interactive also provides navigation interaction such as zooming and dragging

the viewport. However, we have not included those interactions in our analysis as

we intend to focus only on the usability of the user interactions with the contour

regions. An implementation of the contour-based interactive geospatial map shown

in Fig. 4.1, demonstrates the interactive features selected for this user study. The

participating features are decided based on their potential support to the exploratory

analysis tasks discussed later in Section 4.4.2. That entails, there are plenty of scopes

remaining to include more interactive features that have usage scenarios for specific

cases.

4.4 Study Design

While contour maps are extensively used to visualize the spatial changes of the

data variables, scientists and researchers often leverage additional analysis toolkits

to understand the depth of information. With technological and infrastructure ad-

vancement, geospatial data, nowadays, contains high-dimensional and high-resolution

variables which are critical to understanding geographical characteristics. Hence, we

established research questions and hypotheses to measure the effect of interactive fea-

tures in contour maps. We select a subset of exploratory analysis task types that are

previously leveraged in evaluating exploratory geovisual environments [185, 186]. We

designed analysis tasks for this user study, derived from selected task types that are

common among climate and environmental scientists [186, 113, 199, 114].



68

4.4.1 Research Questions & Hypotheses

We recognize the potential of interactive contours on a geospatial view in visually

analyzing high-resolution geospatial data. Therefore, understanding the utility of

interactive features in geospatial visualization is significant to outline its potential

to the full extent. To measure the impact of the interactive features in the contour-

based geospatial maps, we breakdown our core research question into the following

questions:

RQ1. Can interactive contour maps assist users in visually performing analytical

tasks with better correctness in their estimation? Additionally, how does it affect

performance in terms of task completion time?

Design & Hypothesis: Participants will be prompted with multiple sets of

questionnaires from different geospatial contour maps. The contour maps are divided

into two groups where one group is presented with the interactive features and others

with the static illustration.

H1: The users’ performance in exploratory geospatial analysis tasks can be bene-

fited from the interactive features in the map. The ability to explore characteristics

of contour regions with user interactions can lead them toward a better estimation

of the information. Moreover, we hypothesize that the participants require more

time to complete tasks since there are more elements to interact with and cognitive

processing.

RQ2. Do the interactive features on the map hold a significant difference against

static maps in terms of users’ performance in various types of exploratory analysis

tasks?

Design & Hypothesis: We leveraged a taxonomy of exploratory geospatial

analysis to design the tasks (further discussed in Section 4.4.2) and sketched the

potential workflows in context to visual analysis. The participants will be prompted

with multiple sets of unique analysis tasks from the classification. The tasks in a set
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are designed around a contour map and provide the full extent of interactive features

to trial with a group of participants. Another group of participants performed similar

tasks with the static version of the same contour maps.

H2: We hypothesize that the interactive geospatial maps improve users’ perfor-

mance in the complex exploratory analysis tasks in comparison to the static maps.

The users are expected to perform better in tasks where perceiving the relationships

among multiple data points or contour regions. We suspect that would require users

to spend more time completing the tasks in exchange for better correctness. However,

we hypothesize that the overall individual performance in terms of correctness per

time would be improved significantly.

H3: We also hypothesize that interactive maps narrow down the participants’

performance gap between exploring the single geospatial data and comparing multiple

data instances. Comparative exploration between multiple maps is expected to be

more challenging than exploring a single geospatial map. As opposed to static map,

interactive maps synchronize the user the interactions, therefore, obtains the potential

to extract more correctness in multiple map exploration tasks.

H4: Interactive maps elevate the performance more for novice users who are not

familiar with geospatial analysis compared to experienced users. Performance mea-

sure in this context includes both correctness score and task completion time. We

still expect experienced users to achieve a correctness score significantly better than

novice users. However, the interactive maps could lead novice users to an improved

correctness score per time, meaning the time requires to interact with the map would

have a greater impact on novice users than the experienced users with geospatial

analysis.

We intend to measure the likeliness of utilizing each individual interactive feature

in different exploratory analysis tasks. We report the usage of the interactive features

and analyze the underlying patterns in the usage. The patterns are quantified based
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on the time differential of performing the tasks and their usage sequence.

4.4.2 Task Specification

We design this study to conduct a data-driven investigation to evaluate whether

interactive features in the geospatial visualization benefit performing exploratory

geospatial analysis tasks. To design the user study, we relied on the literature re-

view to find the exploratory analysis tasks for the geo-visualization environment.

Exploratory geospatial operations and analysis tasks often fall under the identifica-

tion of clusters, the relationship between data points, comparison, and analysis of

relevance to the geographical location. Numerous pieces of literature have translated

these tasks to visualization operations [204, 185, 188]. However, these visualization

operations are supported by multiple visual artifacts including geospatial view, par-

allel coordinates, matrix representations, line plots, etc. [186, 187].

In this study, we adopted the comprehensive list provided by Keller et al. [185]

and later leveraged by Koua et al. [186] to conduct a usability study for exploratory

geovisualization. We designed our analytical tasks wrapped around these operations,

which we identify as the following 7 task types: 1) Associate, 2) Categorize, 3) Clus-

ter, 4) Distinguish, 5) Identify, 6) Locate, and 7) Rank. Associate tasks involve users

in finding similarities between data points based on the characteristics of attributes,

geographic location, and patterns of events. Categorize tasks require defining all

regions on the display by the boundaries. The regions are usually categorized by

common features or spatial positioning. Cluster -type tasks require users to identify

different groups of similar data points or regions within the geospatial data. In these

tasks, the user identifies sparse data points or regions that share common attributes to

form unique groups within the data. Distinguish analytical tasks require the users

to recognize the difference or variations between the spatial events. These differences

often include geospatial area or location and values of the same attribute. Identify

tasks demand establishing the relationship between data attributes based on their
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shared characteristics. Locate requires recognizing certain data points or events on

the map. In this task, we aim to evaluate whether the map supports the user in lo-

cating the facts or a range of values. Rank -type tasks require feature ordering based

on the data attributes, clusters, or geographic locations.

Based on the number of data points involved in the exploration, we classified the

exploratory task types into simple and complex tasks. Simple tasks include distin-

guish, identify, and locate types of spatial exploration where the users engage with

not more than two data points. In these tasks, the user is either aware of the event

and querying the location of where it happened or vice-versa. In contrast, complex

tasks include associate, categorize, cluster, and rank type of spatial analysis where

the user explore the relationships among multiple data points. The users generally

identify the data similarities and mapping based on a point of interest regardless of

location or event.

We designed the tasks for each type from the point of view of a single instance

of geospatial data exploration and multiple geospatial data comparisons. The syn-

chronize interaction implemented in the map is expected to facilitate the users in

comparing the spatial events between multi-maps. Such cases are frequently studied

in identifying the temporal changes in spatial data. While the single map obtains the

potential to support the exploration of an instance of geospatial data, we intend to

measure the support that interactive features provide in analyzing the spatiotemporal

differences. Therefore, we designed a set of tasks that account for both single and

multi-map analysis and exploratory task types as outlined in Table 4.1. We under-

stand that the analytical tasks in Table 4.1 can be related to more than one task

type, however, we assigned the type based on the most prominent resemblance of the

analysis.
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Table 4.1: The participants performed these exploratory geovisual analyses from 7
unique task types. These exploratory tasks are designed for both single and multiple
map layouts to evaluate the usability of the interactive features in a geovisual envi-
ronment.

Task
Type

Single Map Multiple Maps

Associate Based on the area covered which
two [variable/marker] intensities
below are the most similar?

Find the [variable/marker] in-
tensities from both snapshot that
cover the [largest/smallest] area.

Categorize What is the [area/intensity] (dif-
ference) for the [highest inten-
sity/largest area] recorded on
[contour/Location X]?

What is the area difference
of [variable] [intensity] between
Snapshot Left and Right?

Cluster How many [unique/total] con-
tour regions are visible on the
map?

How has the number of
[unique/total] contour re-
gions changed from ‘Snapshot
Left’ to ‘Snapshot Right’?

Distinguish What is the [area/intensity] dif-
ference between the highest and
lowest [variable]?

How does the [highest/lowest] in-
tensity shift from ‘Snapshot Left’
to ‘Snapshot Right’?

Identify What is the [intensity/difference
between] [variable] in Location
[X] (and Location [Y])?

What is the intensity difference
between Location [X] in ‘Snap-
shot Left’ and Location [Y] in
‘Snapshot Right’?

Locate What is the [highest/lowest] in-
tensity on the [contour/marked
area]?

What is the [highest/lowest]
intensity [between both snap-
shots/among all markers]?

Rank Order the [markers/intensities
below] from [high to low/low to
high] [intensity/area].

Order the snapshots based on the
[larger/smaller] area covered by
the [lowest/highest] [variable] in-
tensity.
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4.5 User Study

4.5.1 Geospatial Datasets

In this study, we scrutinize the contour-based geospatial visualization under two

scenarios, presenting the long and short extent of the geospatial data. Hence, we

observe whether the geographical extent and data granularity has an impact on the

quantitative evaluation of the interactive features. We present geospatial visualization

utilizing the data generated from two different sources:

1. Hourly-averaged temperature forecast for the tri-state area based on the Weather

and Research Forecasting (WRF) model published by Coastal Urban Environ-

mental Research Group (CUREG) [189], as the sample illustrated in Fig. 4.1A.

2. Monthly-averaged precipitation projections for the contiguous U.S. (CONUS)

published by NASA Earth eXchange (NEX) where downscaled climate projec-

tions (NEX-DCP30) are generated in different emission scenarios such as RCP

2.8, RCP 3.5 and RCP 4.5 [21], as the sample illustrated in Fig. 4.1B.

Temperature data (DT) for New York City cover a short spatial extent, thus, allow

to experiment with interactive features such as inspection, search, marking, visibility

control, and synchronized interaction. In contrast, precipitation data (DP) for the

Contiguous U.S. cover a relatively large extent, therefore, allow us to experiment

with additional interactive features such as region/state selection, data filtering, and

viewport shifting. To complement the repetitive measures outlined in Table 4.2, we

arbitrarily included six temperature and precipitation data instances in this study,

recorded at distinct times.

4.5.2 Study Setup

We designed a custom web-based interactive interface to conduct the user in-

tervention study 1. The user study interface is developed on React.js using D3.js
1Link to the user study interface: https://geospatial-study.vercel.app/
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Table 4.2: Distribution of the 8 sets of tasks that accounts for the repetitive measures
such as the spatial extent, visualization methods, and map layout. Each task set
includes a task from the classification of the exploratory visual analysis tasks.

Map Data Context
Map Data
(Task Set)

Participant
Group 1

Participant
Group 2

Single Map - DT1
Short Spatial Extent
(NY Temperature)

Multi Map - [DT2, DT3]

Single Map - DP1
Long Spatial Extent

(CONUS Precipitation)
Multi Map - [DP2, DP3]

Static
Maps

Interactive
Maps

Single Map - DT4
Short Spatial Extent
(NY Temperature)

Multi Map - [DT5, DT6]

Single Map - DP4
Long Spatial Extent

(CONUS Precipitation)
Multi Map - [DP5, DP6]

Interactive
Maps

Static
Maps

and Leaflet.js for interactive visualizations, Django for the API server, and Mon-

goDB for storing the application and user data. Additionally, we reviewed litera-

ture that conducted crowd-sourced studies to evaluate the visualization components

[205, 200, 206, 207]. Our review provided us with a well-grounded idea about partici-

pant recruitment and exclusion criteria, training requirements, and study procedures.

First, the interface provides an overview to the participants about the study pro-

cedure, assignment details, and interaction data to be captured and asks for their

consent. Then, the interface collects basic demographic information from the par-

ticipants such as level of education, gender, expertise with geospatial data analysis,

familiarity with data visualization, and daily computer usage. Next, the interface

forwards the participants to a training window to describe the interactive features

and familiarize them with the features in visual analysis. The training window in-

cludes 12 sections where we explain the contour map, geospatial data, and interactive

features. In addition, the training window prompts a couple of sample questions after
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providing detailed explanations for each interactive item to verify the participant’s

understanding. There is no pass or fail in the training phase. If participants select

an incorrect answer, the interface interactively indicates the verdict and guides them

to the correct answer. This interactive guidance and hints are predominantly imple-

mented for the training and later disabled in the user study part. Once the training

is complete, the interface will redirect the participant to the user study window.

In the user study, the interface prompts 8 sets of tasks (divided into two sections)

where each set is associated with a map setup presenting different geospatial data.

Each task set includes one question from each of the 7 task types which sum to 56

questions (8 × 7) for the study. Table 4.2 provides a fair distribution of the map and

task types in counterbalancing the samples and taking repetitive measures. While

the participants perform the tasks by interacting or observing the map visualization,

the interface captures their observations, task completion time in seconds, and the

use of interactive features associated with questions. After completing the study,

the participants get a completion code from the interface which they submit to the

Amazon Mechanical Turk (MTurk) [208] portal to earn their incentive.

4.5.3 Participants & Recruitment

We conducted the study virtually online. The participants are recruited from

MTurk. We posted a human intelligent task (HIT) in the Mturk portal that links to

our user study interface. To ensure the cleanliness of the collected data, we included

participants who hold more than 95% approval ratings on the MTurk portal and are

identified as master workers. As per our pre-registration, we excluded the participants

who failed to correctly answer the engagement questions and completed the study in

less than 8 minutes. These requirements left us with 62 participants (25 females

and 37 males) for this study. We performed an a-priori power analysis using G*

power application [?]. The result suggests that a sample size of 62 estimated achieves

power over 0.994. We asked participants about their academic qualifications, their
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Figure 4.2: Summary of 62 participants’ educational qualifications, computer usage,
geospatial expertise, and visualization expertise.

daily computer usage, and how they rate their expertise in perceiving visualization

and analyzing geospatial data. For the computer usage, visualization expertise, and

geospatial analysis expertise, the participants identified themselves from the groups

shown in Figure 4.2. We found that 80% participants have at least a bachelor’s degree

and all of them use computers for their daily tasks. They have identified themselves

at various levels of expertise with visualization and geospatial analysis as Figure 4.2

suggests. Participants earned a $4 incentive for their effort and contribution to our

user study. They took an average of 8.6 minutes (SD=7.99 ) to complete the training

and an average of 29.14 minutes (SD=19.75 ) to complete the study.

4.5.4 Evaluation Metrics

Evaluations of geospatial visualizations span numerous qualitative and quantita-

tive dimensions [119]. In this study, we focused on quantitative metrics to evaluate

the interactive features of the geospatial map. In particular, to assess the dimen-
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sions of the exploratory analysis tasks and validate our hypotheses, we consider the

following quantifiable factors - participant’s task completion time, the correctness of

their performed task, and the use of visualization or interaction techniques to perform

the task. We utilize these data, to measure a quantitative analysis with respect to

static and interactive maps as well as how the task type factors in the result. The

performance metrics are designed to report a quantitative analysis that addresses the

research questions stated in the earlier section.

Dependent & Independent Variables: In this study, we considered two depen-

dent variables: 1) the task completion time, and 2) the correctness of the performed

tasks. For the independent variables, we considered the interactive features on the

map (visualization method) as discussed in Section 4.3.2, and the exploratory task

types as discussed in Section 4.4.2.

4.5.5 Analysis Methods

We leverage two-way and one-way repeated measures analysis of variance (ANOVA)

[209] at a 5% significance level as our primary method to test the effect of the indepen-

dent variables on different exploratory task types. In our analysis, we apply two-way

ANOVA to evaluate the performance metrics based on two independent variables

that include participants’ correctness score and task completion time. Additionally,

to present the estimates we calculate the lower and upper bounds at a 95% confi-

dence interval (CI). To present the difference between the visualization methods, we

report the p-value and the error bound mean (EBM) for the task types. Further,

we plot the participants’ performance in an interactive geospatial map against the

static map in a normal distribution. Both the participants’ correctness and task com-

pletion times are taken into consideration to interpret the performance. In addition,

we quantitatively rank the usability of the interactive features in the visual analytics

interface for the participating task types. We expect that it would be beneficial for

visualization researchers in the future to employ different interactive features based
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Table 4.3: Two-way ANOVA results for correctness and time required with visualiza-
tion method as static vs. interactive maps and exploratory task types.

- Factor F p ηp
2

C
or

re
ct

Vis × Task (6, 366) = 2.908 .006 .046

Vis (1, 61) = 114.186 < .001 .652
Task (6, 366) = 107.459 < .001 .638

T
im

e

Vis × Task (6, 366) = .892 .513 .015

Vis (1, 61) = 5.755 .020 .088
Task (6, 366) = 7.698 <.001 .114

on the intended analysis tasks.

4.6 Results

In this section, we apply statistical methods to testify our hypotheses and vali-

date the research questions raised in Section 4.4.1. To test the hypotheses, we have

considered two measures from data collected in the user study: the correctness score

of the performed tasks and task completion time. Correctness is measured based on

the participant’s ability to estimate what the tasks require. The completion times

are recorded by the UI based on the time elapsed before the participants completed

each task.

4.6.1 Effect of User Interactions

The two-way ANOVA result that is presented in Table 4.3 shows in terms of overall

correctness, there is a significant interaction effect (p = .006) between the static

(M = .537) and interactive (M = .647) visualization methods and the exploratory

task types. The simple effect of the visualization method (p < .001) and the task types

(p < .001) are also significant. For the task completion time, there is no interaction

effect (p = .448) between the visualization methods and the task types. The main

effect of the visualization method (p = .060) and the task types (p = .129) are also



79

not significant.

Figure 4.3: The error bound mean (EBM) for overall correctness score and task com-
pletion time estimate at 95% CI. The result shows participants’ (n=62 ) correctness
significantly improved in interactive maps.

Figure 4.3 presents the 95% CI of the overall correctness and time elapsed to

perform the analysis tasks using both the static and interactive geospatial maps. In-

teractive geospatial maps (EBM = [.62, .68]) evidently assist (z = 5.47) in better

correctness than static maps (EBM = [.51, .56]). However, the participants spent

a relatively greater time (z=1.79) with the interactive maps (EBM=[12.63, 19.49])

than the static maps (EBM=[10.01, 14.66]) while performing the analysis tasks. This

result verifies H1 that the interactive maps assist the users in producing a significantly

accurate result, however, requires an insignificantly greater time than the static maps

in leading to the observation. This makes sense as the interactive features allow to

explore the underlying information about the map while the participants interacted

with the contour regions. We also quantified how the interactive features improved

the individuals’ performance, analyzing by normally distributing their performance

fluctuation. The result suggests that the participants are expected to perform con-

sistently (R2=.903) better using the interactive features in the geospatial map.
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Table 4.4: Correctness and completion time results of the tasks from exploratory task
types using the static and interactive maps.

Correctness Completion Time
Task Type F (1, 61) p ηp

2 F (1, 61) p ηp
2

Associate 24.257 <.001 .285 5.988 .017 .091
Categorize 13.897 <.001 .186 8.601 .005 .125
Cluster 20.902 <.001 .255 2.436 .124 .039
Distinguish 2.531 .117 .042 2.750 .102 .044
Identify 4.923 .030 .075 8.263 .006 .121
Locate 3.279 .058 .058 .839 .363 .014
Rank 9.445 .003 .134 .018 .893 .000

4.6.2 Interaction Effect on Exploratory Tasks

To test H2, we measured the statistical significance of the interactive features in

the performance. We applied ANOVA and compute the mean differences (MD) in

pairwise correctness and error bound mean (EBM) for correctness score and time

estimates between static and interactive maps. The results of ANOVA comparing the

visualization methods in terms of task completion time and correctness are presented

in Table 4.4.

Associate: In associate-type tasks, participants’ correctness shows a significant

difference (p < .001) between the static and interactive maps. The pairwise correct-

ness difference (MD = [.371, .908]) leans onto the interactive map. The correctness

score suggests that participants performed substantially better using the interactive

features (M = 1.855, EBM = [1.621, 2.089]) in the map compared to static maps

(M = 1.177, EBM = [.990, 1.364]). That being said, the difference in time elapsed

between the visualization methods to perform the associate tasks are also significant

(p = .017). The participants spent significantly more time interacting with the inter-

active maps (M = 125.237, EBM = [91.438, 159.036]) compared to the static maps

(M = 91.673, EBM = [68.676, 114.671]).

Categorize: The difference between static and interactive maps is significant
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Figure 4.4: The participants’ error bound mean (EBM) correctness score and task
completion times. While the completion time is often faster with the static maps, the
correctness scores are consistently better with the interactive maps.

(p < .001) on the basis of participants’ performance matrices such as time spent

and correctness. The correctness score in the interactive maps (M = 2.323, EBM =

[2.036, 2.609]) and the static map (M = 1.726, EBM = [1.504, 1.947]) shows that

the interactive features provide the participants better support in performing the

categorize-type tasks. The pairwise difference observed in the data also indicates

better results (MD = [.265, .915]) in the interactive maps. While the correctness

improved in the interactive maps, the participants also tend to spend significantly

more time (p = .005) performing the tasks in interactive maps (M = 196.742,

EBM = [147.961, 245.524]) compared to the static maps (M = 138.503, EBM =

[110.308, 166.698]) as shown in Figure 4.4.

Cluster: We observed statistically significant differences (p < .001) between static

and interactive maps in participants’ correctness while performing the clustering

tasks. The pairwise correctness difference suggests the participants achieve better

correctness using the interactive maps (MD = [.445, 1.162]) which are also supported

by the correctness scores estimates for the interactive maps (M = 2.258, EBM =
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[1.971, 2.545]) compared to the static maps (M = 1.452, EBM = [1.189, 1.714]). The

difference between the participating visualization methods in terms of time spent is

not statistically significant (p = .124), however, it still suggests that the participants

spent more time in the interactive maps (M = 168.921, EBM = [74.280, 263.562])

than the static maps (M = 93.633, EBM = [70.681, 116.585]).

Distinguish: The correctness difference between the visualization methods is sta-

tistically insignificant (p = .117) for the distinguish tasks. The pairwise correctness

difference also indicates the insignificance (MD = [−.031, .654]). The correctness

score estimates still suggest that the participants performed better with the interac-

tive maps (M = 2.081, EBM = [1.845, 2.316]) than with the static maps (M = 1.806,

EBM = [1.543, 2.070]). Similarly, the difference in time spent between these visu-

alization methods is also insignificant (p = .102). The static maps (M = 76.655,

EBM = [59.187, 94.124]) lead to perform slightly faster than the interactive maps

(M = 92.522, EBM = [71.263, 113.781]).

Identify: The participants’ correctness illustrates a significant difference (p =

.030) between the visualization methods for the identify-type tasks. The pairwise

correctness difference (MD = [.011, .743]) is inclined to favor the interactive geospa-

tial map. The correctness scores indicate that the participants achieved better results

with the interactive maps (M = 2.065, EBM = [1.778, 2.351]) compared to the static

maps (M = 1.661, EBM = [1.418, 1.904]). The difference in time spent between these

visualization methods is also statistically significant (p = .006). The participants

spent more time with the interactive maps (M = 114.390, EBM = [88.458, 140.323])

than the static maps (M = 90.071, EBM = [69.620, 110.521]) while performing the

identify-type tasks.

Locate: Interestingly, there is no significant difference (p = .058) between the

visualization methods in terms of participants’ correctness. The pairwise correctness

difference (MD = [−.024, .515]) compared to the static map also indicates there is no
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statistical significance. The correctness score estimates suggest that the performance

is marginally better with the interactive maps (M = 3.210, EBM = [2.953, 3.466])

than with the static maps (M = 2.968, EBM = [2.720, 3.215]). The difference in time

spent between the visualization methods is also statistically insignificant (p = .363).

The task completion time estimates do not follow the trend of other task types where

participants completed tasks faster in static maps. It is evident that the participants

required similar times to complete the locate-types tasks in static maps (M = 60.198,

EBM = [49.739, 70.657]) whereas interactive maps suggest a wide elapsed time range

(M = 86.352, EBM = [29.037, 143.667]).

Rank: We observed a statistically significant difference (p = .003) in participants’

correctness between the visualization methods. The pairwise correctness shows the

interactive maps extract better correctness (MD = [.350, .515]) from the participants.

The correctness score at 95% CI suggests the participants’ performance is consistently

better with the interactive maps (M = 2.919, EBM = [2.675, 3.164]) than the static

maps (M = 2.387, EBM = [2.106, 2.668]) for the ranking tasks. The time differences

between the visualization methods are not significant (p = .893). The CI suggests that

the participants spent an estimated equal time completing the ranking tasks in both

the interactive (M = 143.964, EBM = [68.157, 219.771]) and static (M = 136.356,

EBM = [55.567, 217.144]) geospatial maps.

4.6.3 Interaction Effect on Multi-maps Exploration

The ANOVA result shows evidence that the interactive maps narrow down the

participants’ correctness score gap to a slender margin between single and multi-

map exploration (H3). For associate tasks in static maps, the correctness difference

between single (M = .790, EBM = [.20, 1.563]) and multi-maps (M = .387, EBM =

[.091, 1.099]) is statistically significant (p = .001) whereas, in interactive maps, the

difference becomes insignificant (p = 0.715) between single (M = .952, EBM =

[.327, 1.819]) and multi-maps (M = .903, EBM = [.256, 1.72]). Cluster (static p =
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Figure 4.5: Correctness comparison between single and multi-maps using static (left)
and interactive (right) geospatial visualization.

.017; interactive p = .368) and rank-type (static p = .023; interactive p = .125) tasks

show similar observations to a different degree. While doing cluster tasks in static

maps, the correctness scores in single maps (M = 1.032, EBM = [.353, 1.872]) are

significantly better than the multi-maps (M = .694, EBM = [.114, 1.459]) whereas,

in interactive maps the difference between single (M = 1.194, EBM = [.590, 1.979])

and multi-maps (M = 1.065, EBM = [.262, 2.046]) are insignificant.

The participants explored the single map instance with better correctness scores

than the multi-map where identify (MD = −.21), locate (MD = −.23), and rank-

type (MD = −.29) tasks are proven to be odd. For example, in the case of rank-type

tasks, the correctness difference between single (M = 1.371, EBM = [.821, 2.105])

and multi-maps (M = 1.548, EBM = [1.016, 2.312]) becomes insignificant in interac-

tive maps, however, for both static and interactive maps, the participants performed

better in the multi-maps compared to the single maps. The correctness score mean

along with the error bound means (EBM) are presented in Figure 4.5. Regardless

of the performance gap between single and multi-maps, the participants’ correctness

score improved in all task types in interactive maps, except for the distinguish-type
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Figure 4.6: Comparison between novice and experienced participants’ performance
suggests that novice users excel with interactive features significantly more than ex-
perienced users.

tasks. These findings reaffirm both the hypotheses H2 and H3.

4.6.4 Performance Elevation by Geospatial Expertise

To test hypothesis H4, we classified the sample space of participants into two

groups - novice and experienced, based on their provided expertise in geospatial anal-

ysis. The participants who identified themselves as ‘unfamiliar’ or ‘somewhat famil-

iar’ with geospatial analysis are classified as novice users. In contrast, participants

who identified themselves as ‘somewhat experienced’, ‘experienced’, or ‘expert’ are

classified as experienced users. As stated in H4, we take both correctness score and

completion time into account to verify if the novice users gained more performance

boost using interactive contour-map than the experienced users. The sample ratio

between these two groups is 1.06 which is fairly equal, as Fig. 4.2 suggests.

To measure the performance while taking both correctness and task completion

time into account, we calculated the participants’ correctness per unit of time in

the 7 exploratory analysis task types. Fig. 4.6 illustrates task-wise density plots to
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separately compare the performance measure of both novice and experienced users

in interactive and static maps respectively. We draw dashed lines in Fig. 4.6 to

represent the performance mean for static (gray) and interactive (green) maps. The

experienced users’ overall performance is significantly better than the novice users. In

addition, we previously verified with H1 and H2 that all participants tend to spend

significantly more time in interactive maps to complete the tasks. Here, the mean

performance difference between interactive and static maps suggests that interactive

features elevate the novice users’ performance more than the experienced users, thus

verifying H4. While spatial data categorization tasks are found to be particularly

difficult for novice users, the performance seems to excel in other complex task types

such as associate, cluster, and rank.

4.7 Discussion

The experiments in this user study outline the benefits of the contour-based inter-

active geospatial map in various exploratory analysis tasks. Exploratory data analysis

(EDA), as John W. Tukey stated, is an act of looking at data to see what it seems

to say [210]. Therefore, EDA is essential for building the hypothesis by initial inves-

tigation of identifying patterns or discovering anomalous events in the data. With

that considerations, we implemented a set of interactive features for the geospatial

map that facilitates the users to interactively explore underlying information about

the contour regions on the map. The interactive features presented in this paper are

a concept built around the presumed requirements of the participating exploratory

analysis tasks, drawn from previous research [113, 114, 44] and an abundant number

of literature review [36, 40, 12]. Nonetheless, the user study design and experiments

illustrate a systematic quantitative approach to measure the usability of interactive

features for an exploratory geovisual environment.
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Figure 4.7: The four most frequently used interactive features in the participating
(t = 56) exploratory tasks. The plotted range of usage frequency is categorized by
the task types and bootstrapped with a 95% confidence interval.

4.7.1 Observations from the User Interaction Logs

We analyzed interaction logs from the perspectives of usage frequency, usage pat-

tern over the task completion time, and usage sequence of each interactive feature.

We present these metrics based on the exploratory task types. To understand partic-

ipants’ interaction usage, pattern, and sequence, we classified the interaction based

on the number of mouse/keyboard operations (step) required to perform the feature.

Identifying the frequently used interactive features. Analyzing partici-

pants’ interaction data with the interactive contour map, we observe that inspect-

ing/selecting the contour regions is the most popular followed by annotating, search-

ing/filtering, and controlling the contour styles. This finding is reasonable as in-

spect/select is the single-step interaction that put up the basic information about the

contour area, as opposed to other multi-step interactions such as search, annotation,
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Figure 4.8: Task-wise user interaction pattern based on the normalized task comple-
tion time window. The highlighted area represents the time segments where partici-
pants’ interactivity exceeds the mean.

and encode. While summarizing the data, we identified a substantial number of un-

intended interactions in the data. For example, the participants are only required to

navigate the cursor to inspect the contour regions, therefore, to reach the area laying

deep inside the map border, the user interacts with other unintended contour regions

as well. Before the analysis, we trimmed off these unintended interactions by imple-

menting a time threshold. Hence, we determine the regions where participants spent

reasonable time perceiving the information provided on the tooltip or widgets. Fig.

4.7 shows the credible usage summary of the four most frequent interactive features

while performing (t = 56) exploratory analysis tasks (as distributed in Table 4.2) by

each participant.

Reflecting cognitive process with interaction patterns. We also observed

the participants’ interactive behavior during the task completion time window. There-

fore, we normalized the window size and plotted the user interaction (Fig. 4.8) to

find any foreseeable pattern. Inactivity in terms of user interactions during the ini-

tial and final segments in the window indicates participants’ cognitive processing to

understand the task and reach an analytic decision. We draw a red line for each task

type in Fig. 4.8 to indicate the mean interaction usage across the normalized time
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window. The highlighted area shows the window where the participants’ interactivity

is above the mean. It also provides the opportunity to estimate the segments where

the participants are seemingly cognitively active. We understand participants are

more interactive in complex tasks such as associate, categorize, and rank, as well as,

spending comparatively more time cognitively processing the data points relations.

Moreover, We observed participants relatively less interactive in the distinguish and

locate type tasks compared to other types. This finding is also reflected in the cor-

rectness score, as the difference is insignificant between static and interactive maps

in these task types.

Perceiving the reasoning of interaction usage. We observed from the inter-

action data of the complex tasks that participants inspected/selected various distinct

contour regions a great many times before reaching a decision. Since the associate,

categorize, and cluster tasks require establishing the relationships among a set of dis-

tinct intensities, therefore, they reasonably interacted back and forth to reach an an-

alytical decision. Annotations are mostly used in the locate, rank, and associate-type

tasks to mark/inspect spatial data points. These interactions include participants’

self-made annotations and interaction with predefined markers on the maps. Anno-

tations are particularly useful in the ranking tasks as the marker widget provides

comparison insights with other annotations, hence, supports in deciding the order

of the contour regions. We also observed that annotation interactions are generally

performed followed by inspect/select and filter interactions. Filter interactions are

frequently utilized while performing the identify and categorize-type tasks. These

interactions include searching based on geolocation. Identify tasks required to ex-

tract information based on geographical characteristics. Therefore, the participants

realized the search feature to eventually annotate or inspect intensities based on the

locations. Comparative information provided by the annotated locations is continu-

ously updated as the user interacts with other contour regions. Consequently, proven
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effective for categorization and clustering as these tasks require identifying the regions

with similar variability. Encoding features are mostly used in cluster and identify-

type tasks. The contour encodings are understandably useful in the cluster tasks,

as it often cases required to identify the unique regions on the contour map. The

identify tasks involve the geographical characteristics that usually reside in the base

map, hence, the participants’ controlled styles correlate with the contour map in these

tasks. Therefore, changing the weight and opacity of the contour lines and region’s

area can be beneficial in visually performing these tasks.

4.7.2 Interpretation of Results

We established two research questions to evaluate the usability of interactive con-

tour maps in the participating seven types of exploratory analysis tasks. The results

suggest that our initial hypothesis (RQ1) is correct as the participants achieved im-

proved correctness using the interactive contour maps as opposed to the traditional

static contours as shown in Fig. 4.3. Next, we hypothesize that the interactive

maps should reflect a significantly improved correctness score in the participating

exploratory analysis task types. The participants are also expected to spend signifi-

cantly more time with the interactive contour maps compared to the static maps. The

ANOVA result (Table 4.4) shows that participants’ correctness scores in the associate,

categorize, cluster, identify, and rank improved significantly (RQ2) while we also ob-

serve statistically insignificant improvement in the distinguish and locate-type tasks.

Additionally, the result shows that the participants consumed more time to perform

the tasks with the interactive maps where the differences in associate, categorize, and

identify-type tasks are significant as shown in Fig. 4.4.

As the task distribution presented in Table 4.2, we designed the repeated measures

based on the spatial extent (short vs. long), map layout (single vs. multi map),

geospatial expertise (novice vs. experienced), task types (7 EDA), and map inter-

activity (static vs. interactive). Thus, we analyzed the fluctuations in participants’
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correctness scores accounting for these individual factors in interactive maps against

static maps. We understand that the participants’ correctness score difference in the

static maps is significant between the single and multiple maps, especially for the

associate, categorize, cluster, and rank-type tasks (Fig. 4.5). In contrast, the score

difference in the interactive maps between the single and multiple maps is statisti-

cally insignificant except for the locate and distinguish-type tasks. While we have not

found any statistically significant interaction effect on the correctness score and the

exploratory task types based on short versus long extent maps, our analysis shows

evidence that the interactive mode brings the user performance close. We also mea-

sured user performance based on their reported geospatial expertise, considering both

correctness score and completion time. While the experienced users consistently per-

formed better than the novice users in both modes, the performance gaps are certainly

closer between them in the interactive mode (Fig. 4.6), especially in complex tasks

such as associate, cluster, and rank.

Quantitative evaluation in this study shares similarities with the previous studies

[186, 40, 200] in terms of task design, participant recruitment, and analysis methods.

However, the results from our experiments provide a unique understanding of the us-

ability of the interactive features from different perspectives, as opposed to previous

geovisual user studies, where only different visualization components [186], display de-

signs [201], and visual stylization [199] are evaluated for visual analysis tasks. Hence,

this study provided scope to not only quantitatively measure participants’ analyti-

cal performance but also their interaction behavior to report both descriptive and

diagnostic analysis from the usage data. For instance, the analysis presented in Fig.

4.8 shows that participants least interacted in locate tasks where multi-step interac-

tions are mostly utilized, thus, reflecting interaction behavior and potential reasoning

for the insignificant performance difference against static maps. The result suggests

that users’ interactivity is inversely proportional to the number of steps required to
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perform the interaction.

4.7.3 Limitations & Future Work

Despite the interactive features significantly improving the correctness of the geospa-

tial data exploration, the overall accuracy of visual estimation still requires further

improvement, as shown in Fig. 4.3. We observed participants struggling in advanced

exploratory tasks more than the simpler ones such as identify, and locate. Particularly

in associate, categorize, and cluster types, the tasks where in-depth spatial correla-

tion and comparison require, participants achieved relatively lower correctness scores

spending significantly more time than the other type of tasks as shown in Fig. 4.4.

Since the effect of interactive features is evident in the exploration visual analysis,

there are plenty of scopes to implement advanced interactive features that facilitate

these tasks. In our future research, we intend to formally survey the domain experts

to outline the requirements for the interactive visual exploration of geospatial data.

We plan to further measure the advantage of coordinated visualization including addi-

tional visual components in the environment. For the spatiotemporal exploration, we

plan to implement a multi-layer contour on a single map instance and design the user

interaction for exploratory purposes. We also plan to include experts in geospatial

analysis in both quantitative and qualitative evaluations of the interactive geospatial

visualization. While we leverage the temperature and precipitation intensity in this

study, correspondingly as short and large spatial extent data, Hence, we can utilize

the result for implementing user interaction that supports more advanced analysis

tasks.

In this chapter, we report the usability of contour-based interactive geospatial vi-

sualization in exploratory analysis tasks. We implemented an interactive geospatial

contour map and design a web-based interactive user study to quantitatively evalu-

ate users’ performance compared to the static geospatial map. We crowdsourced the

study and recruited 62 participants from Amazon MTurk for our experiment. The
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interactive features are scrutinized against seven exploratory analysis tasks using tem-

perature and precipitation contour maps. The result suggests that the participants’

correctness score improved with the interactive maps, however, needing additional

time to complete the task compared to the static maps. We also analyzed partici-

pants’ interaction logs to report and justify the usability of the interactive features in

the exploratory geospatial tasks. Our findings can serve as guidelines for visualization

researchers in the future to develop use case-specific interactive geovisualization for

visually exploring geospatial data.
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CHAPTER 5: VISUAL ANALYTICS APPROACH FOR LARGE-SCALE

SPATIOTEMPORAL DATA

In this chapter, we introduce a novel visual analytics approach, DCPViz, to en-

able climate scientists to explore massive climate data interactively without requiring

the upfront movement of massive data. Thus, climate scientists are afforded more

effective approaches to support the identification of potential trends and patterns in

climate projections and their subsequent impacts. We designed the DCPViz pipeline

to fetch and extract NEX-DCP30 data with minimal data transfer from their public

sources. We implemented DCPViz to demonstrate its scalability and scientific value

and to evaluate its utility under three use cases based on different models and through

domain expert feedback.

5.1 Introduction

In the United States (U.S.), the National Climate Assessment (NCA) [176] is the

nation’s leading resource for exploring and addressing adaptation and mitigation ques-

tions related to climate change across the various sectors of society. To explore and

assess the potential impacts of future climates, the NCA uses statistically downscaled

climate projections at a high spatial resolution of 10km or finer. Statistical down-

scaling (SD) is a correction technique for mitigating biases in important variables of

interest (e.g., temperature and precipitation). This technique uses observations to

estimate the bias-corrected variables appropriately and at a higher spatial resolution

than the original model outputs.

Recognizing the importance and need for bias-corrected statistical downscaling to

make reliable future climate projections (e.g., [175]), NASA’s Earth eXchange project

released the Downscaled Climate Projections (NEX-DCP30) at 800m resolution to

support climate change research [21, 13]. The NEX-DCP30 provides climate projec-

tion data, including monthly averaged precipitation (pr), daily maximum tempera-
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ture (tasmax ), and daily minimum temperature (tasmin), for the contiguous U.S. for

the 115 years between 1985 and 2099. The high-resolution spatiotemporal dataset is

organized according to the Network Common Data Form (NetCDF) format [52] and

publicly available on the Amazon Simple Storage Service (S3) 1.

There are, however, many challenges that limit the utility of the NEX-DCP30 and

similar downscaled climate projection (DCP) data for climate research and relevant

scientific analyses. First, due to the size of such data, it is often problematic for

climate scientists to migrate data to local storage, which is often necessary for data

analysis and exploration. For example, each NetCDF file contains 5 years of data

over the contiguous U.S. at 800m resolution, which makes each file size approximately

2GB (or, 17TB for the complete archive) [115, 21]. Similarly, CMIP6 [211] is expected

to produce more than 30 PB of simulation results through the Earth System Grid

Federation. Second, existing tools for visualizing, analyzing, and exploring data like

the NEX-DCP30 (e.g., Panoply [97], NCCV [13]) are limited. Existing tools normally

depict only a few static plots with minimal support for interactive exploration and

comparative analyses. Finally, even with prior knowledge of climate models and their

associated data formats (e.g., NetCDF), it is a prohibitive and complex task to convert

data into formats that are easily interpretable, understandable, and, thus, useful for

decision-makers [59, 13]. 2.

In a traditional pipeline, (Fig. 5.1), analyzing massive climate data usually begins

with users (e.g., climate scientists) searching and locating high-resolution climate

data. Users, then, must manage local storage, prepare computational resources, and

request data access. Once access is granted, users must download the (usually mas-

sive) data, convert the data into the desired format, analyze the data computationally,

and, visualize the converted data for scientific analyses to create, for example, perfor-

mance benchmarks based on the dataset. Due to the importance of high-resolution
1Data Source - https://nasanex.s3.amazonaws.com/NEX-DCP30/
2ESGF - https://esgf.llnl.gov/
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Figure 5.1: Traditional workflow for the climate scientists to explore the NEX-DCP30
data files. The climate scientists fetch the data files in a local machine from public
data repositories (e.g., S3), manually filter by model name, variable, experiment ID,
and year range, then, prepare the data and visualize it in the local machine using a
NetCDF viewer.

Figure 5.2: DCPViz employs coordinated multi-views (CMV) to explore high-
resolution statistically downscaled climate projections. It includes a regional view
of (A) Temporal Heatmap - presents relative monthly-averaged projection of the cli-
mate variable (e.g., precipitation)(B) Contour Matrix - aligned with temporal heat
map illustrates geo-coordinated projections, and (C) Map view - renders multi-layered
interactive map for exploring geospatial contours.

climate data to the U.S. NCA [176] and other international climate assessments (e.g.,

the IPCC) [212], climate scientists and decision-makers require more innovative and

interactive, visual, and cloud-based solutions to overcome the highlighted challenges

and maximize the utility of climate data like the NEX-DCP30 to improve our under-

standing of future climate change at multiple scales (e.g., regional, national).

To address the challenges of analyzing and exploring shared high-resolution climate

projection data like the NEX-DCP30, this paper introduces a novel interactive visual

analytics approach, called DCPViz, that improves the efficiency and efficacy of climate
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projection analyses. DCPViz provides data exploration and comparative analyses

with better accessibility to shared data, and a streamlined environment for climate

scientists and decision-makers to analyze climate projections data. To evaluate our

approach, we demonstrated DCPViz to climate scientists, allowed the scientists to

explore DCPViz (and associate climate data - i.e., NEX-DCP30), solicited expert

feedback, and performed a qualitative evaluation of the system. Our findings revealed

that key aspects of DCPViz - its interactivity, accessibility, and sense-making support

- assisted the evaluators in climate analyses and improved overall task performance.

The contributions of this paper are:

• We provide a novel cloud-based pipeline to extract high-resolution climate data

(e.g., NEX-DCP30 data) for an interactive visual analytics system. The pipeline

substantially reduces redundant downloads of large-scale data by moving anal-

ysis to the site of the data and migrating only the results of the analyses.

• We introduce a web-based interactive visual analytics tool, DCPViz, that helps

scientists perform analysis, reasoning, and decision-making tasks with spa-

tiotemporal climate projections.

• We present DCPViz use cases designed and recommended by climate scien-

tists. We also present findings based on expert evaluations. These findings

highlight the aspects of DCPViz that assist climate scientists to improve task

performance.

5.2 Related Work

To situate the contributions of DCPViz, we summarize related works from two

perspectives: i) visualization systems for earth science domains and ii) visualization

techniques for relevant data types. Our literature review is further scoped to the

challenges of analyzing massive, high-resolution DCP data.
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5.2.1 Visualization Systems for Earth Science

Several visualizations and modeling platforms have been developed for climate

data analysis in recent years. However, to our best knowledge, no previous plat-

forms demonstrate either: i) a visual analytics pipeline with exploratory features

for massive, high-resolution DCP data; or ii) sufficient interactive visualizations for

exploratory and comparative analyses.

5.2.1.1 General Purpose Systems for Earth Science

Most general-purpose visualization systems demand data be organized according

to a well-defined format prior to visualizing, exploring, and analyzing the data. In

addition, visualization systems until recently were not compatible with cloud-based

architectures. Analytics systems for large-scale data such as Community Data Anal-

ysis Tool (CDAT) [99, 28], Climate Engine [43], MATLAB [103], and NCAR [105],

and GrADS [104] have been widely applied to the earth science domains. The goal

of these platforms is to provide data mapping and time-series visualization features

to users of geospatial data. Despite comprehensive analytical features, these systems

do not offer integrated visualizations for analyzing spatiotemporal patterns.

5.2.1.2 Visualization Systems for Climate Change

Climate scientists work with diversified data that frequently demand visualiza-

tions and interactions specifically tailored for the analysis of massive, high-resolution

spatiotemporal data. Hence, most of the special purpose systems have domain ex-

perts involved in the design, development, and evaluation process [213] according

to task-specific requirements such as operational weather forecasting, climate change

assessments, etc.

HI-RAMA [12] and VAPOR [34] are domain-specific systems to help climate sci-

entists predict and explore the impact of potential climate change. NCCV [13] offers

exploratory visualizations for NEX-DCP30 temperature and precipitation data. To
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our best knowledge, NCCV is the only tool focused on NEX-DCP models, but it was

developed based on Flash player which is no longer available. Similar visualization

systems have been developed to facilitate deep exploration and comparative analysis

of climate projections [214, 40, 39, 34]. But these systems limit analytical support

to specific variables or models. NASA developed an online analysis platform, Gio-

vanni [98], that limits its study of geophysical variables including precipitation and

temperature, as well as, restricts users from loading preferred data and processing

scripts.

Several platforms have been developed (e.g., MeteoInfo [198], WebGlobe [39], Panoply

[97]) to analyze the data encoded in the NetCDF format, an abstraction for storing

multidimensional data, and a popular data encoding format for climate variables

[57, 39, 34]. These tools are sufficient to generate a geospatial view from NetCDF

data but lack interactive features for exploring spatial patterns.

5.2.2 Interactive Visualization Techniques

Climate variables are often attributed to geolocation and timestamp information.

As such, climate model evaluations utilize geospatial visualizations and time charts

[213]. Geospatial visualizations commonly enable data exploration based on geo-

graphic location [76, 13]. Time charts are often used to identify trends over time.

Information access, navigation, user interaction, and manipulation are some common

affordances of interactive geospatial visualization systems. While visualization has

a lengthy history with climatology, researchers continue to search for better visual

approaches to explore complex environmental information in a manner that is both

understandable and useful for a broader range of tasks [76]. As such, visual analytics

systems often leverage other visual artifacts to support geospatial visualization. For

example, area maps are used to plot the area of modeled impact [98, 34]. Parallel

coordinates are utilized to analyze the association in multivariate climate data [42].

Histograms, bar plots, and hierarchical ensemble clustering are popularly leveraged
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Figure 5.3: The proposed DCPViz pipeline incorporates 3 distributed servers for
exploring spatiotemporal climate projections: 1) Data Server, 2) Backend Server,
and 3) UI server. There are four major modules in our pipeline: A) Data Processing
Module - performs transformation and analysis in a cloud environment (VIFI), B)
Data Collection Module - stores the resulting indexed data, C) Web API Module -
maintains the transactions between data and UI servers, and D) Interactive UI - a
web-based module to allow users simultaneous access to the system.

in several systems to compare the climate models in different spatiotemporal gran-

ularity [48, 44]. However, these tools and systems provide insufficient support for

coordinated multi-visualizations with interlinked user interactions, which are very

useful for pattern detection and comparative analysis.

DCPViz, however, allows climate scientists to explore spatiotemporal patterns and

covariability among projected climate variables using interactive spatiotemporal and

geospatial visualization. The interactive features also allow the user to interact with

its system pipeline to transform the data and link them to coordinated visualizations.

5.3 Design Method & Requirements

To design DCPViz, our team of visualization researchers and climate scientists met

weekly for more than one year to define design requirements, discuss climate science

workflows, and conduct several research and design interactions. We began our design

integration using a traditional workflow (Fig. 5.1). Climate projection data are com-

plex due to high dimensionality, multi-variability, and multi-resolution factors [52].

Exploratory analysis can benefit interactive transformation and filtering of complex
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multidimensional data. However, such analyses require efficient information extrac-

tion from NetCDF data sources. Data extraction unfolds spatiotemporal information

from NetCDF files and interprets data for interactive visualization. Visual analytics

approaches enable the exploration of underlying patterns in different spatiotemporal

granularity as compared to static visualizations. In addition, we reviewed related

works and the goals of NEX for the NCA [21, 215]. These goals include: a) engaging

scientists in addressing climate change, b) improving the scope of climate research

and analysis, and c) facilitating better access to data and software tools to encour-

age collaboration and knowledge sharing. Based on the literature, we identified five

primary design requirements:

R1 To facilitate data preparation without the overhead of massive data

downloads. The system should extract spatiotemporal climate projections

from NetCDF data files stored in a cloud environment efficiently and eliminate

redundant downloads of large data files in order to run exploratory analyses.

R2 To enable interactive transformation and filtering to multidimensional

data. The system should provide seamless access to interactive features for data

transformation and filtering for exploratory and sense-making tasks. Leveraging

a web-based protocol for data access will also support a NEX objective by

enabling better data accessibility to climate scientists.

R3 To enable climate scientists to perform visual exploratory analyses.

The system should offer a web-based interactive interface that allows climate sci-

entists to access model projections for emission scenarios. The interface should

provide climate scientists with visual components to perform analysis tasks,

reason over analytical results, and identify latent insights.

R4 To facilitate trend and covariance analysis in different spatiotempo-

ral granularity. The system should offer interactive visualizations to observe
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underlying patterns and identify covariance among climate variables at mul-

tiple spatial (e.g., region, state, county) and temporal (e.g., annual, seasonal,

monthly) granularities.

R5 To enhance collaboration and sharing among climate scientists. The

system should serve as a platform for climate scientists where they can perform

data exploration and analyze climate variables simultaneously. The system

should facilitate further collaboration by enabling the sharing of key findings

among climate scientists.

To satisfy the aforementioned requirements, we designed a novel visual analytics

pipeline for DCPViz. This pipeline contains four modules: data processing, data

collection, (RESTful) web API, and the UI, which provides interactive visual compo-

nents. Fig. 5.3 illustrates the modules and process flows.

The Data Processing Module enables data transformation and analysis over

distributed data by leveraging VIFI [216, 127]. This module runs on a remote server

to access the NetCDF files from a mounted S3 bucket containing the DCP data (Fig.

5.3A and 5.3-3). These data are extracted from the cloud in an efficient matter to

facilitate data preparation and reduce the overhead of massive data downloads prior

to analysis (R1).

The Data Collection Module stores the extracted data in a shared reposi-

tory and obtains the data index to facilitate accessibility ‘on demand’ (Fig. 5.3B

and 5.3-4). Each index is composed of a unique code for the model name, variable

name, temporal identifier, and the DCP dataset name (e.g., ‘NEX-DCP_CESM1-

CAM5_pr_2021-03-01’ ). Each index identifies its original NetCDF file. The shared

repository stores the indices for the entire dataset (e.g., spatiotemporal precipitation,

maximum and minimum temperatures). When the user focuses on a certain segment

in the timeline or a spatial region, the interface passes a request to the API module

to fetch the required data (R2).
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The Web API Module is a backend server that extracts a subset of the data from

the remote site using specified filters (Fig. 5.3C). To eliminate the need for prerequi-

site knowledge about the climate model and data format, the system automatically

pre-processes the data into the requested format. This is a standalone service that

provides precipitation and temperature data to the UI module and associated analysis

scripts (R2).

The UI Module provides Coordinated Multi Views (CMV) to allow users to in-

vestigate climate change on a regional scale leveraging high-resolution NEX-DCP30

data [213]. This module provides not only conventional plots according to the tra-

ditional workflow but also an interactive visual interface (Fig. 5.3D). The interface

supports exploratory analyses on future climate change over spatial and temporal

domains (R3). Moreover, the interface displays climate variability and a summary

of overall seasonal changes between pr and tasmax and across the 7 NCA regions

in the contiguous U.S. (R4). Furthermore, DCPViz supports textual annotations in

the map and matrix views to share key findings with other users on DCPViz (R5).

Section 5.4.3 describes the UI in detail.

We integrated these modules to build our proposed visual analytics system. The UI

module interprets a sequence of events from the user and delegates them to the dis-

tributed modules to support requested functionalities. The system allows the user to

foster efficient and collaborative research on regional climate change over the contigu-

ous US without downloading and preprocessing data using local storage and without

detailed knowledge of the data format and organization.

5.4 Visual Analytics Approach

In this section, we describe DCPViz and illustrate how it meets our design re-

quirements. We begin by describing the NEX-DCP30 dataset that we leveraged to

demonstrate the DCPViz UI. Next, we describe the data processing, data collection,

and web API modules to present our novel cloud-based pipeline for transformation
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and exploratory analysis of the high-resolution DCP data. We conclude by presenting

UI Module, including its views and affordances for interaction.

5.4.1 The NEX-DCP30 Dataset

NEX is a collaborative platform to facilitate the analysis and forecast of climate

data [21]. NEX projections provide several statistically downscaled datasets via a

public S3 bucket. Among these datasets, NEX-DCP30 is the dataset with the high-

est spatial resolution of about 800m. Three variables are included in NEX-DCP30

(precipitation - pr (mm/day), daily maximum temperature - tasmax (K), and daily

minimum temperature - tasmin (K) later converted to (oC)). They are derived from

36 climate models and observational data. We use two of these models for DCPViz:

Community Atmospheric Model version 5 (CESM1-CAM5 [217]) and Goddard Insti-

tute for Space Studies Model E2 coupled with the Russell ocean model (GISS-E2-R

[218]). NEX-DCP30 contains 115 years of monthly data for the contiguous U.S. Data

from 1985 to 2005 are historical and data from 2006 to 2099 are projected under three

RCP scenarios (2.6, 4.5, and 8.5).

5.4.2 Data Transformation & Analysis

We leverage VIFI, an open-source tool that enables the analysis of distributed

fragmented data. VIFI enables data sharing by migrating analytics (often lightweight)

to data locations rather than by migrating massive data [216, 127]. Users can perform

a variety of analyses, specified as analytical workflows (Fig. 5.4), over distributed

data stored at multiple locations. VIFI workflows are implemented for data-driven

discoveries from distributed climate data [?]. We utilize VIFI to enable contour map

generation, analyze climate variability and identify anomalous patterns from the RCP

scenario projections (Fig 5.3A-B). Workflow execution begins with query generation

based on user-selected parameters such as model name, climate variables, experiment

ID, and year range. Once the backend server accesses the data corresponding to
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Figure 5.4: Spatiotemporal transformations of the projection data for exploratory
analysis. The transformations illustrate the extracted hierarchical levels of spatial
and temporal granularity.

specified parameters, the Data Processing Module (Fig. 5.3A) triggers the VIFI

workflows to perform data extraction, transformation, and analysis. To demonstrate

this process in DCPViz, we provide an illustration using pr and tasmax in the NEX-

DCP30 models.

Contour Map Generation. We extract NetCDF files using VIFI data orches-

tration to retrieve geo-coordinated monthly averaged climate projections (e.g, pr and

tasmax ). The workflow extracts 60 projected snapshots (one for each month) from

each NetCDF file that recorded the spatiotemporal climate variables. Next, the con-

tour generation process (Fig. 5.4F) transforms the geo-coordinated data to the Geo-

JSON format. While extracting the data remotely, the collection module attaches an
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index to the generated GeoJSON using the search parameters.

Spatiotemporal Granularity Extraction. We apply a series of transformations

to geo-coordinated monthly projection data to extract the spatiotemporal granularity

(Fig. 5.4). The 4th NCA report segments US territories in 10 regions [182], of which

we have segmented the climate projections for 7 regions, including the Northeast,

Southeast, Midwest, Southwest, Northwest, Northern Great Plains, and South Great

Plains. The Alaskan, Hawaiian, and US Caribbean regions are excluded from the

NEX-DCP30 data. We apply an NCA’s region mask on the projected data to segment

the temporal variable intensity into seven regions (Northeast, Southeast, Midwest,

Southwest, Northwest, Northern Great Plains, and Southern Great Plains).3 Then,

we utilized the segmented data to calculate seasonal and yearly regional means for the

projected variables. These data are further exploited to analyze and assess climate

variability in the projected models. The data processing module passes the metadata,

GeoJSON index, and extracted temporal data to the data collection module.

Extracting Anomalous Projections. Lastly, we derive measures to extract

anomalous patterns from the climate projections. A previously calculated yearly

mean is leveraged to measure the percentage change between the yearly mean and

the selected decades of retrospective mean (e.g., 1985-2006), what we call ‘Relative

Intensity’. Seasonal regional retrospective means are described as RM(t, s, r) in the

following:

RM(t, s, r) =
1

3∆t
∗

t1∑
y=t0

s+3∑
m=s

Xr(y,m) (5.1)

where t represents a year range within retrospective timeline, s represents the season,

and r represents the region. Xr(y,m) provides the monthly-averaged regional mean

for the climate variables. RM(t, s) is leveraged in calculating the ‘Relative Intensity’,
3The 4th NCA report segments U.S. in 10 regions [182] but Alaskan, Hawaiian, and U.S.

Caribbean are excluded in the NEX-DCP30 data
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RI(t, y,m, r) for pr described as follows:

RI(t, y,m, r) =
| RM(t, ⌊m/3⌋, r)−Xr(y,m) |

RM(t, ⌊m/3⌋, r)
(5.2)

The intensity fluctuation is often projected within a wide range of variations, which

can overlook anomalies at certain data points. For example, a 0.5 mm/day change

in pr may not be noticeable in a snapshot compared to the overall range. How-

ever, this small change could be significant if the pr trends around 2 mm/day in

that month/season. As such, RI(t, y,m, r) can amplify anomalous patterns. The im-

plementation of user-controlled thresholds and interactions facilitates this anomaly

detection on the UI module as discussed in Section 5.4.4.

The Data Collection Module (Fig. 5.3B) maintains a repository of extracted and

transformed data as well as analytical results. We store these data in a manner that

allows for efficient filtering while exploring projections from the entire timeline. The

extracted regional climate variables are summarized as monthly and yearly means and

saved in another table to feed the summary visualizations. In addition, this module

manages the user’s credentials and annotations.

The Web API Module transforms collected data as per the required structure for

the interactive visualizations before responding to the requests from the UI Module.

All of these processes are executed remotely to limit data migration and the need for

user knowledge of data format and organization.

5.4.3 DCPViz: Exploratory Visual Interface

The DCPViz interface presents interactive temporal and spatial visualizations for

retrospective and projected climate data. The UI leverages CMV to enable rich user

interaction. It consists of three main views: 1) a map view (Fig. 5.5C), 2) an adaptive

spatiotemporal view (Fig. 5.5A-B), and 3) a reconfigurable summary panel (Fig. 5.6,

5.7, and 5.8). We implemented the interface for exploring the projection of historical
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Figure 5.5: Overview of the DCPViz interface. (A) Temporal heatmap mapped with
contour matrix presents a seasonal progression of geospatial intensity (pr) (top to
bottom), whereas (B) regional bar chart provides yearly-averaged regional intensity
(pr) followed by a monthly progression (left to right). (C) Map view enables anno-
tating the geo-coordinated location in addition to interactive depictions of contour
matrix snapshots.

pr and tasmax data across the U.S. The interface is developed using open-source web

libraries.4

5.4.3.1 Map View

The map view shows a geo-coordinated contour that represents the monthly-averaged

intensity across the U.S. regions. The view has three map layers: a base map, a con-

tour map, and an area border map for the contiguous U.S. The base map shows

different geographical features of the U.S. such as boundaries, rivers, and highways.

The geospatial contour map is plotted as a variable intensity layer. The area border

map shows the borders of the seven U.S. regions.

The map view provides three interaction modes (Fig. 5.5i): 1) inspection, 2) se-

lection, and 3) annotation. The inspection mode allows users to find areas of similar

intensity on the contour layer. Areas are grouped by the projected intensity levels,

which range from 0-14 mm/day with a yellow-green-blue scheme. Hovering over a

specific location opens a tooltip that shows additional information such as the in-

spected region and the monthly-averaged value at the selected snapshot. Hovering

also strengthens the color intensity to let the user effortlessly differentiate the focused
4The interface is publicly available at https://esva.jpllab.net/
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area from other areas (Fig. 5.2C). The selection mode allows users to indicate atten-

tion in a specific location. Downscaled climate data are projected at 800m resolution

[115, 21]. So, concentrating attention on a specific region can provide essential detail

that may not be easily observed from the default view. Users can also change the

view hierarchy to the entire U.S., a specific region, or a specific state on the map.

The annotation mode allows users to share findings and observations on the map

view. Once the user adds an annotation, the view shows a pin to share points of

interest with others for further exploration (Fig. 5.5h). An additional marker is added

to each thumbnail in the spatiotemporal view to indicate whether the annotation

is added for that snapshot (Fig. 5.2B). This interaction also allows users to post

annotations directly without marking a specific location on the map.

5.4.3.2 Spatiotemporal View

The spatiotemporal view presents thumbnails of geospatial contours with the corre-

sponding temporal mean from 2036 to 2099. The entire dataset for the model contains

150 years of data [115] of which we extracted remotely the most recent 1380 (monthly

average for 115 years) recorded/projected snapshots. Observations reveal that it can

be difficult to identify trends or mark points of anomaly by traversing snapshots using

only geospatial projections on the map. To address this, we developed the spatiotem-

poral view to render the geospatial data against a temporal axis. We add color-coded

legends (Fig. 5.2f) with corresponding measuring units to denote pr and tasmax in

the visualizations. This view has four visual components (Fig. 5.2A-B): a temporal

heat map, a geo-spatiotemporal contour matrix, a climate variability time series, and

a regional bar chart.

Temporal Heatmap. The temporal heatmap shows the projected mean pr shar-

ing the identical axis with the temporal geospatial contour (Fig. 5.2C). We used two

different measures to set the intensity for the heatmap: 1) mean pr for each snapshot

(Fig. 5.5A); and, 2) relative pr (Fig. 5.2A) derived as RIPr(t, y,m, r) in section 5.4.2.
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Fig. 5.2e provides a control ‘Relative PR’ to switch between these measures. We also

add the option to filter this view by setting upper and lower limits of pr. A similar

seasonal grouping is applied in the temporal geospatial thumbnail view. Fig. 5.5A

shows an example of the Fall season where the cells in a row represent months in the

corresponding year. The temporal heatmap helps users understand the progression

of pr over time. The yellow-green-blue color scheme is used for monthly-averaged

mean in the geospatial visualization [219]. In the ‘Relative PR’ view, we adjust the

color scheme to blue-pale yellow-red because it is popular for showing anomalies [219],

which in our case denotes maximum increase to maximum decrease from blue to red.

Geo-spatiotemporal Contour Matrix. When capturing the contour for each

geo-coordinated monthly snapshot, we store them as static images. These images

are essential to show a preview to help users identify the point of interest. DCPViz

presents the captured geospatial snapshot against a temporal axis. Therefore, the

user obtains both the time information and suggested pr intensity before deciding

to explore the contour in the map view. We maintain a uniform alignment between

the temporal heatmap and geospatial contour matrix to help the user identify the

corresponding contours from the heatmap cell. We also group the contour images

by seasons (Fig. 5.2B) to help users perceive the seasonal pr trend. Hovering over

thumbnails shows enlarged renderings of the contour with metadata for a detailed

view.

Climate Variability Time-Series. The line charts represent a time series of

mean pr (blue) and mean tasmax (gray) (Fig. 5.2A). pr and tasmax are subset

data for the selected region, grouped by season and rendered for each season. Each

data point in the line charts presents the yearly seasonal-average pr record and their

associated change in the tasmax.

Regional Bar Chart. The regional bar presents the yearly seasonal-average

pr grouped by region. The map view provides an indication of the intensity of pr
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in different regions. However, the map view may not be adequate for the user to

compare pr among the regions. Hence, the regional bar chart view is aligned with

the geospatial contour in the temporal matrix, as shown in Fig. 5.5B, to show a

precise comparison of pr among the regions. In addition, the bar representing the

selected region is highlighted to amplify the seasonal comparison among regions when

scrolling up or down. A yearly-averaged regional bar chart is also included to reveal

yearly changes among the seven regions.

5.4.3.3 Summary Views

Climate projections are often large and complex, and thus difficult to visualize

both in totality and with granularity. As such, we provide a reconfigurable summary

view to encode and visualize the data. We considered three design factors for the

summary view: the visualization purposes, the supporting analysis tasks, and the

data type [220]. We leverage the multi-level spatiotemporal granularity extracted from

the projected data during data transformation. The summary view contains three

visualizations: a time-series visualization (Fig. 5.6), an RCP scenario comparison

(Fig. 5.7), and a hierarchical treemap (Fig. 5.8A).

Time-Series Visualization. The time-series visualization shows the seasonal pr

and tasmax mean from 1985 to 2098 (Fig. 5.6). It allows users to explore the trends

of projected climate variables, such as pr and tasmax. It also provides support for

direct search to help users find anomalies and patterns in the timeline. We found

the time-series visualization to be a suitable candidate for identifying outliers and

patterns across a large number of data points [221, 79].

RCP Scenario Comparison. A different design of a stacked bar chart is adopted

for visual comparison and anomaly detection across RCP scenario projections (Fig.

5.7A). Each RCP scenario is distinguished by color, where overlapping areas are

highlighted with strengthened intensity. This visualization presents a yearly-seasonal

regional projection spread of the extreme RCP scenarios (e.g., RCP 4.5 and RCP
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Figure 5.6: Time-series presents a summary view of yearly-averaged regional climate
variability (e.g., projected pr and tasmax in the southeast region).

8.5 as compared to RCP 2.6). In Fig. 5.7B, we compare the scenarios for tasmax

during the summer season in the western region according to CESM1-CAM5. Lower

fluctuations among different RCP scenarios are observed in earlier decades in the 21st

century. However, tasmax is projected to be significantly higher in the later years in

the most extreme scenario.

Hierarchical Treemap. The treemap visualizes data with a nested structure for

two selected climate variables, e.g., pr and tasmax (Fig. 5.8). The treemap is con-

structed maintaining the following hierarchy of data from the top: region, season, and

year (Fig. 5.4). pr is denoted by the dimension of the cells whereas tasmax is denoted

by the intensity using a blue-yellow-red color scheme for lowest to highest maximums.

In the treemap, users can select an area of interest (Fig. 5.8B). The treemap presents

an overview of the climate co-variability between variables to highlight, for example,

which region is getting hotter & wetter or hotter & drier under a changing climate.
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Figure 5.7: A) Comparative view of RCP scenarios to amplify patterns and anomalies
in long-term climate projections. B) Comparing the tasmax projections in different
RCP scenarios during summer seasons in the western region.

5.4.4 Interactions

We enable user interactions based on data and view manipulation capabilities to

facilitate the human cognition process. These user interactions are categorized based

on their support for different visual analysis tasks [94]. As each is used extensively,

only representative illustrations are described.

Select. Users can select a region from the navigation panel and map view to switch

the context for exploring region-specific data. We also enable select interactions to

reconfigure the perspective view of summary visualizations among the time-series

view, scenario comparison, and hierarchical treemap. This interaction often works

as a precursor to other interaction techniques [96, 94] such as explore, connect, and

filter.

Explore. When analyzing climate data, the explore interaction plays a vital role
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Figure 5.8: The hierarchical treemap supports investigating covariability between pr
and tasmax across the 7 U.S. regions. It provides hierarchical selection to reconfigure
the focus based on region, season, and year.

[222]. Often, explore interactions allow users to create additional views either by

removing or overlapping a component [94] in an attempt to unfold underlying knowl-

edge from multi-variate spatiotemporal data. In DCPViz, all visualizations provide

additional spatial and temporal information in the form of a tooltip associated with

each data point. Hovering over a thumbnail in the contour matrix (Fig. 5.5B) reveals

an enlarged image of the thumbnail. This additional view also depicts timestamps,

monthly-averaged intensity, and a static geospatial contour view. Left mouse clicks

on a thumbnail (Fig. 5.2B) will present a dialog box for annotations as shown in Fig.

5.5g.

Filter. Users may filter based on spatial, temporal, and data value ranges. DCPViz

will conditionally ‘gray out’ the heatmap cells that do not match the filter condition.
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Figure 5.9: A scenario for the reconfigurable temporal heatmap of the Southern Great
Plains in the winter season. The unnoticeable fluctuations in A) yearly-averaged
intensity are strengthened in the (B) relative view by plotting the projections against
a seasonal historical mean.

In addition, we add tiny red circles to the bottom-right of thumbnails in the spa-

tiotemporal matrix to filter the projections that contain annotations from the user

(Fig. 5.2f).

Abstract. This interaction allows users to elaborate on data from various levels

of granularity, which is essential for visualizing large datasets. Fig. 5.8 demonstrates

the abstract interaction, transitioning display from A to B when the user selects

a region and B to C when the user selects a season. Geospatial visualization also

provides abstract interaction where users can select regions and states for in-depth

views, utilizing the high-resolution intensity in DCP.

Connect. The spatiotemporal, geospatial, and summary views are interlinked

based on selected regions from the map view or the navigation panel. Each cell on

the heatmap represents a corresponding thumbnail on the spatiotemporal matrix. The

user can select a cell (Fig. 5.2g) to navigate among thumbnails (Fig. 5.2f). Selecting

a thumbnail from the spatiotemporal matrix loads the geospatial pr contour into the

map visualization connecting the interaction between these two views.

Reconfigure. This interaction supports rearranging visual representations of the
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data. We provide reconfigure interactions to expand or shrink the coordinated views.

The expanded view has additional visual components such as the climate variability

trend and regional bar chart for each season. The temporal heatmap can be recon-

figured to enable or disable the ‘Relative PR’ view as shown in Fig. 5.9. Based on

the user’s preferences and analysis task, the interface allows users to reorder the sum-

mary visualizations described in Section 5.4.3.3. In addition, the hierarchical treemap

provides sorting options to allow users to rearrange the tiles on the map. We also

provide year, temperature, and precipitation as sorting options to inspect the same

data from different perspectives.

5.5 Evaluation

Climate scientists provided a qualitative evaluation of DCPViz to determine its

effectiveness at meeting its design requirements (R1-R5), characterized the scientific

value of climate data analyses, and demonstrated our research contributions. In this

section, we describe the DCPViz evaluation metrics, the case studies utilized, and

domain expert feedback.

5.5.1 Qualitative Evaluation Metrics

Evaluations of climate science visualizations span numerous qualitative and quan-

titative dimensions. For our evaluation, we focused on qualitative metrics that assess

DCPViz based on its ability to reveal nuances of climate change, intricately visualize

massive spatiotemporal data, and depict multivariate association factors for climate

change [223]. To assess the dimensions of interlinked analysis tasks, communica-

tion, and decision-making in climate research, we used evaluation metrics from the

following categories: visualization, interaction, and presentation.

Visualization. To evaluate the exploratory features of the visualizations, we as-

sessed their ability to provide inexplicable insights to users from projected data. We

wanted to determine the value our proposed visualizations added to the climate sci-
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ence data analysis tasks. This question raised factors such as the time, complexity,

and expertise [224] required to perceive a specific insight with and without DCPViz.

Interaction. Support for user interaction is central to the design of DCPViz.

We focused our assessment on whether or not DCPViz support for interaction is

sufficient to identify specific, relevant details within climate data. DCPViz utilizes

CMVs. Thus, our qualitative assessments focused on the utility of filter, focus, and

connect interactions for various exploratory tasks. We assessed the extent to which

these interactions help users to exclude irrelevant parameters and values from the

view and to discover the target data.

Presentation. We evaluated the visualizations based on their self-exploratory

capabilities. To determine the quality of the presentation, we sought answers to

the following three questions: 1) Are the colors, legends, and tooltips sufficient to

understand the visualizations? 2) How easy is it to navigate among visualizations

during analysis tasks?; and 3) Which visualizations are most useful for corresponding

data and analyses? Based on these, we assessed whether domain experts are able to

use the DCPViz without training.

5.5.2 Evaluation Procedure

We employed a survey to solicit feedback from domain experts on DCPViz. Seven

climate scientists, who are experts in analyzing NEX-DCP30 data, participated in

the survey. The survey contained three sections. First, participants were asked to

complete the pre-questionnaire regarding their experience with climate data, analysis

tasks, and the tools and data analysis libraries they utilize in their analysis. Next,

participants watched a video that demonstrated DCPViz functions. Then, they in-

teracted with the UI to explore NEX-DCP30 data. Finally, participants were asked

to complete a post-questionnaire that inquires about: 1) Preference of the visualiza-

tions, 2) Features that support their analysis tasks, 3) Performance of the CMVs for

explanatory capabilities and features.
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5.5.3 Use Cases

We highlight the three use cases where DCPViz demonstrated the greatest value

to climate scientists.

Comprehensive investigation of the spatiotemporal variability in regional

precipitation (UC1). The temporal heatmap (Fig. 5.2A) revealed to domain

experts future pr changes for each of the four seasons. For example, when the user

selects the Southeast U.S. region (Fig. 5.5e) and enables ‘Relative PR’ (Fig. 5.2e),

the heat map cells in the winter season are mostly rendered in red colors (Fig. 5.5A).

This essentially indicates a relatively drier winter later (2036-2085) compared to the

first three decades of the century. The contour matrix (Fig. 5.5B) reveals that most

of the region’s pr occurs along the West Coast and Sierra Nevada. Users can move

their cursors over the thumbnails to see the spatial patterns in pr. By clicking the

thumbnail, the precipitation intensity is displayed on the map view with boundaries of

the associated NCA region (Fig. 5.5C). The map view supports zooming to maximize

the utility of the high spatial resolution (800m). Making annotations (Fig. 5.2g)

facilitates a comparison of pr patterns between dry and wet months.

Analyses of long-term trends in temperature and precipitation under

different emission scenarios (UC2). The summary view (Fig. 5.6) reveals in

the climate data the overall warming trend of tasmax for all the seven NCA regions.

The observed warming from 1985 to the present is well known, and the bias-corrected

temperature from NEX-DCP30 is expected to represent the observed trend. Unlike

the warming trends, however, observed pr trends in the climate data, as revealed by

the relevant visualizations, appear not to be significant across the contiguous U.S..

By default, the line and bar charts represent CESM1-CAM5 model predictions under

the RCP 8.5 emissions scenario, which represents high emissions of greenhouse gases

without any mitigation efforts. Using DCPViz, domain experts were able to observe

that across all seven NCA regions and four seasons, the associated warming trends
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are higher than those for the RCP 4.5 and 2.6 scenarios. The plots indicate that pr

changes are more variable than tasmax and tasmin in all three scenarios. Also, the

pr predicted by CESM1-CAM5 does not exhibit consistent sensitivity to the emission

scenarios across the seven regions (Fig. 5.7A).

Covariability of seasonal maximum temperature and precipitation (UC3).

The hierarchical treemap is one of the unique visual components leveraged in DCPViz

that is rarely utilized for analyzing spatiotemporal data. The hierarchical treemap

(Fig. 5.8) provides scope to observe co-variability between the climate variables. The

cell dimension represents mean pr while color intensity scales temperature. The hi-

erarchical treemap also helps domain experts answer key scientific questions related

to climate projections - e.g., Are warmer and more humid conditions expected during

the latter decades of the 21st century in the fall season of the Western regions? What

about spring in the Northeast region?

5.5.4 Domain Expert Feedback

The domain experts who participated in the survey possessed on average 5 years of

experience in climate science research. In the pre-questionnaire, they mentioned that

climate data processing and visualization is a moderately to highly difficult task due

to the volume and complexity of high-dimensional structure. The domain experts also

expressed their desire to have interactive geospatial and time-series views, in contrast

to traditional static plots (e.g., by Python or Matlab).

Visualizations. We asked domain experts which visualizations they find useful

on the interface and for what purposes. The domain experts mentioned that inter-

active geospatial visualization (Fig. 5.5C) is worthwhile to have and appreciated the

annotation feature as it allows them to share the observations with other scientists.

Additionally, the inspect user interactions helped them identify the spatial pattern in

each snapshot (UC1). The spatiotemporal view (Fig. 5.5A) was also identified as ef-

fective by four experts to understand the temporal progression along with the spatial
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distribution. The heatmap helped the domain experts quickly inspect the data as the

heatmap contains the summary for the whole timeline. The temporal contour matrix

aided the domain experts with a quick view of the spatial patterns and their changes

over time. We also learned from the pre-questionnaire that the time-series chart is

the most common visualization for climate scientists for trend analysis. Along with

the seasonal and regional time charts, the domain experts identified the treemap as a

less common yet useful visualization for analyzing comparative patterns for multiple

variables.

Interactions. The experts’ feedback suggests that the reconfigure and explore

interactions are essential for their analysis. One expert stated that the reconfigurable

view for summary visualization is convenient for sensemaking long-term patterns from

different aggregation perspectives (UC2, UC3). The exploratory features such as

inspecting the map view from the contour thumbnail (Fig. 5.5B) and switching the

multi-views based on region selection helped the domain experts to identify quickly

interesting facts or insights from the data (R3). Moreover, the tooltips were well ap-

preciated as they provide comprehensive data inspection capabilities and additional

context in the visual analysis. We have received positive feedback on the data inspec-

tion capability in general for all the visualizations on the interface.

Presentation. We asked the participants how convenient it is for them to discover

the target information. The participants responded stating the interface is convenient

for them to interact. Among them, one participant labeled the interface as easy to

use after the initial learning process. The domain experts were able to discover

their target information from the interactive visualizations while one expert stated

the interface became intuitive after the initial learning process. Another participant

quoted, “This tool is great for making quick inspections of the data as not only does

the heatmap provide a summary for multiple timesteps, but the map interface lets me

quickly see what the spatial patterns look like for each timestep, helping me get a better
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idea at how spatial patterns change with time.” Moreover, the experts mentioned that

the treemap is a good candidate to illustrate the covariability between pr and tasmax

(UC3). We also learned that the use of information icons, color codes, and legends

were deemed useful by them. The domain experts also left us a few suggestions such

as - 1) to include annotation for other visualizations (beyond the map), 2) to increase

the use of animation in visualizing the projections, and 3) to attempt to simplify the

UI.

The domain experts also provided some suggestions to improve the interface. One

expert pointed out that the interface is a bit complex with a handful of content for

a relatively small window. Two other experts suggested that we add more textual

details about the visualizations and reduce the use of acronyms. They also desired

more pervasive support for the annotation feature in other visualizations (beyond the

map view). In addition, they suggested opportunities for animation - e.g., to show the

change in projected pr for a selected time period - which could benefit their analysis.

Based on the majority of the feedback, we understand DCPViz benefits domain

experts as they perform exploratory analyses of climate data (UC1). Moreover, the

use cases suggest that DCPViz is also useful in examining long-term trends within

the NCA regions (UC2, UC3).

5.6 Discussion and Limitations

We proposed a cloud-based visual analytics approach, DCPViz, for making sense

of DCP datasets that benefits exploratory analysis by climate scientists. We de-

scribed specific challenges and identified important design requirements for systems

that support the analysis of massive high-resolution spatiotemporal data for climate

change research. We hypothesized that our proposed requirements would enhance

the traditional analysis workflow and support climate scientists in sense-making and

decision-making processes. We described the four modules that comprise DCPViz

(data processing, data collection, web API, and UI) to satisfy the design requirements



122

of the DCPViz pipeline (Fig. 5.3). In addition, we demonstrated how DCPViz can

enhance transitional analysis workflows and support climate scientists’ sensemaking

and decision-making.

5.6.1 System Scalability

Initially, we prepared a computational script for query generation and extracting

NetCDF files. Data extraction itself for geospatial contour was a relatively straight-

forward task since climate scientists apply the same extraction in their traditional

workflow on a regular basis. We identified that the required time window for loading

NetCDF and processing the GeoJSON is massive. Thus, our initial challenge was

to reduce the data loading and extraction time. We distributed the computation

in multiple threads at once to significantly reduce the data processing time. Since

the data loading requires a substantial amount of primary memory, we had to find a

proper balance of thread count and memory availability in our backend server. We

parameterized these features so that we can tweak the processing module when the

backend is moved to a different server. The complex behavior of the climate projec-

tion data raised the requirement to introduce a data collection module in the system.

A database system supported optimized searching capability for a large amount of

metadata and index for generated GeoJSONs. We demonstrated DCPViz with two

NEX-DCP30 models (CESMI-CAM5 and GISS-E2-R) in 3 RCP scenarios. The web-

based UI provides simultaneous access to climate scientists to visually explore these

extracted projection data. However, climate models are continuously updated to pro-

vide high-fidelity simulations by changing parameters. With computational resources

becoming more easily accessible, the climate simulations with finer spatial and tempo-

ral resolutions (e.g., NEX-GDDP [225]), daily projections are becoming increasingly

available. To incorporate other DCP models and RCP scenarios, we modularized

the data processing and collection modules. This allows the scientists to trigger the

processing module to extract more model data and store it in the collection module
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(R1).

Moreover, we understand that climate scientists’ exploratory analyses demand more

analytical workflows than we presented in Section 5.4.2. The DCPViz pipeline allows

climate scientists to incorporate additional analytical workflows leveraging VIFI [44]

in the backend. The results from the workflows are required to satisfy one of the trans-

formations presented in Fig. 5.4 to visualize the DCPViz UI. Furthermore, to perform

a comparative visual analysis between different data and scenarios, the user can simul-

taneously open several DCPViz interfaces for different DCP data or RCP scenarios.

For example, the user can open one DCPViz interface with the CESM1-CAM5 model

and another with the GISS-E2-R model for multi-model scenario comparison.

5.6.2 Interactive visualizations

Geospatial visualization and time series charts are popular visualization techniques

for climate scientists [213] which we identified from the experts’ feedback as well.

Our design study shows that the select and explore interactions in the geospatial

view allow the users to understand the spatial patterns of precipitation from different

perspectives such as seasonal, regional, and state-wide. To foster the environment for

collaboration in the earth science community, we introduced the annotation feature

on the spatial data so that the scientist can share their observations. In addition,

we introduced a novel multi-view spatiotemporal visualization to inspect a spatial

pattern against a temporal axis. To address the challenge of browsing the large-

scale climate projection data, we employed CMVs to support seamless navigation to

the entire timeline of the projection model (Fig. 5.5A). Furthermore, we provided a

summary panel on the interface providing trends and patterns between precipitation

and maximum temperature from three different perspectives to explore the long-term

model projection (R3). Based on the user study feedback for (UC1), we learn that

our design choices for the geospatial visualization are sublime for exploratory analysis

of geospatial data. The idea of annotating spatial data is appreciated by domain
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experts. They suggested supporting it with annotation for other visualizations as well

(R4). They also commended the swiftness of the spatiotemporal views to inspect the

prominent aspect of the data at a glance. The summary visualizations presented on

the interface (Fig. 5.5D, Fig. 5.8, and Fig. 5.6) also found to be useful by the experts

from the Expert’s feedback evaluation. The hierarchical and sorting interaction for

the treemap is particularly helpful for the experts to analyze covariability between

maximum temperature and precipitation (UC3).

5.6.3 Limitations

To support navigating and exploring the entire model projection, we have added

exploratory and explanatory visualizations in the same window. As convenient as it is

to gain insight promptly, the interface looks a bit complicated and it requires an initial

learning curve to use the interactions. To perform a comparative analysis between

projection models and scenarios, the user needs to open two DCPViz interfaces with

the participant models or scenarios. In the future, we aim to support visual analysis

of multi-model comparisons in DCPViz.

DCPViz enables the exploration of large volumes of data by creating visual com-

ponents. We learned from the user study that system performance is affected by

client-side network status and computational capacity. Despite the clear benefits of

climate science analyses, system performance improvement will be part of our future

work. Implementing combinable tabs [226] and adopting the progressive visualization

pipeline [227] can ease users’ analytical vision while the processing is running in the

background. Employing a server-side tiled map technique for the map view can reduce

the rendering time for geospatial contours to enhance the overall performance.
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CHAPTER 6: RESEARCH GUIDELINES

In this dissertation, we have conducted a comprehensive review of the literature,

identified the research scope, established research questions, and designed an ex-

ploratory approach to visual analytics for distributed spatiotemporal data. Based on

the insights gained from this research, we outlined a set of guidelines for the visu-

alization researchers to pursue further progress in the visual analytics for large-scale

spatiotemporal data, as described below:

Hierarchical clustering for visualizing spatiotemporal granularities. In

our data type classification, we found a majority of climate data falls into a multidi-

mensional type due to the high dimensionality, multi-variability, and multi-resolution

factors in climate data. In contrast, tree-type datasets are not much utilized in cli-

mate VA. However, we understand interpreting spatiotemporal data to tree data type

holds enormous potential to observe patterns and identify correlations among climate

variables through several spatial (e.g., region, state, and county) and temporal gran-

ularities (e.g., annual, seasonal, and monthly). Consequently, hierarchical clustering

[48] and treemap [228, 113] visualization techniques are not extensively utilized in

spatiotemporal climate data exploration and have the potential to be a new research

direction for climate science visualizations.

Growing trend of integrated visualizations in spatiotemporal exploration.

In recent years, integrated visualization techniques have become widely utilized as

tools to visualize spatiotemporal climate data. Integrated visualizations are essen-

tial for the exploratory analysis of climate variables because of their usability and

existing and potential future new interactive features. Visualizations that enable sci-

entists to perceive salient data features quickly and efficiently are key. For example,

distributing the spatial and temporal dimensions across multiple visual components

allows users to inspect the data by focusing on individual dimensions. Consequently,

such a capability not only helps scientists to identify underlying trends and patterns
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from the data but also helps them to maximize cognitive efficiency. According to

our review, CMV has become a trending approach for the interactive exploration

of large-scale spatiotemporal climate data. However, significant challenges remain in

terms of choosing relevant visualization techniques, display formation, and interactive

features for exploratory visual analysis. Roberts [91] reflected on the view generation,

interaction, and manipulation aspect to achieve state-of-the-art in CMV.

Underexplored immersive visual environments. Climate scientists often use

point cloud data from observations and numerical models which can be analyzed in a

fully immersive environment [229] applying Virtual and Augmented Reality technolo-

gies. Such an immersive analytic environment would provide better spatial perception

to climate scientists for exploratory spatial analysis with other climate variables and

a collaborative environment to discuss and share their findings with other scientists

and researchers.

Interactive shepherding of exploratory models. Shepherd user interactions,

discussed in 2.3.3, are underutilized in climate science VA. This entails a shortcom-

ing of these systems in facilitating user-driven exploratory analysis. Systems such

as UV-CDAT [28] and MeteoInfo [179] comprise active participation in building the

exploratory analysis model. However, these systems are heavily code dependent and

often lack interactive features (Task requirement R10). This unfolds a research op-

portunity to enable interactive user-driven exploratory analysis from the VA interface

(Task requirement R3).

Case-specific approaches over general-purpose VA. We grouped the spa-

tiotemporal VA systems for climate science into general-purpose and case-specific

systems. While the general purpose systems [230, 28, 43] are well-commended for

diverse usability and rich visualization library, these systems often lack the domain

or use-case-specific custom visualizations and user interactions to support analysis

tasks or demand high levels of programming expertise from the user. In addition,
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we reviewed VA systems developed to serve specific analysis tasks or data sources

[12, 24, 37, 113]. In contrast to the general purpose systems, these systems are more

oriented to employ a use-case-specific analytics pipeline, visualization techniques, and

user interaction. Climate scientists and visualization researchers usually engage in a

joint collaboration to develop case-specific systems to satisfy the analysis require-

ments. Currently, a significant number of VA systems developed for climate science

focus on specific use cases.

Surge of web-based VA systems. As climate scientists work with diversi-

fied datasets to understand climate change and its social impact and derive effective

decision-making for adaptation, they often obtain data from disparate sources to per-

form distributed decision support and sensemaking analysis [231]. To conduct such

analyses, they commonly transfer the data from distributed sources to their local

workstations, apply data processing and transformations on the workstations, then

generate visual illustrations. To mediate this inefficient workflow, a web-based VA

approach can address these challenges of accessing disparate remote data sources,

performing case-specific analyses on high-performance clusters, and providing an in-

teractive interface for exploratory spatiotemporal visualizations [232, 113]. With ad-

vancements in modern web technology, VA systems are widely built on the web-based

platform in recent years.

Low pervasion among climate scientists. A comprehensive review of sev-

eral analytical reports and surveys [233, 27], as well as, our discussion with the at-

mospheric and environmental scientists identify that most climate scientists do not

leverage state-of-the-art VA solutions to conduct their exploratory analyses. This gap

between VA capabilities and climate science advancement must be bridged. Tradi-

tional approaches that incidentally rely on visualizations are becoming increasingly

insufficient to match the scope of the climate science community’s scientific challenges.

Much of the information contained in the ever-growing observational and modeling
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datasets remains untapped. For example, two-dimensional plots, that are central to

publications and anchor scientific paper development are highly reductive. Training

of climate scientists and collaboration with VA domain experts will help bridge these

persistent gaps.

Unexploited potential of progressive visualization. There are growing num-

bers of observational platforms with increased data rates, growing numbers of climate

models that exhibit increasing complexity, and a growing sophistication of experi-

ments undertaken with climate models [234]. This rapid growth of data also chal-

lenges VA systems to support on-demand exploratory capabilities over large volumes

of data. Conventional methods in VA systems often leverage background computa-

tion based on user queries [87]. They, then, display the computed result at once upon

completion. Zgraggen et al. [227] labeled such a method as a ‘blocking approach’

where the user’s analytical visions are blocked until the computation is fully com-

pleted. To address this challenge, climate research can benefit from the potential for

progressive visualizations where data are incrementally processed in smaller chunks

as the analytics systems interactively update the interface, working from an approxi-

mation that is refined over time [227, 25]. As the computations take place in chunks,

shepherd interaction [94] can be utilized to build the exploratory analysis model. We

have not found any progressive VA systems to explore spatiotemporal climate data.

This indicates another opportunity for visualization researchers to develop progressive

systems in collaboration with climate scientists.
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CHAPTER 7: CONCLUSION & FUTURE WORK

This dissertation identifies the research questions for adopting a cloud-based ar-

chitecture for distributed exploratory spatiotemporal analysis and correspondingly

introduces three major components for interactive exploratory visual analytics for

distributed spatiotemporal data. These components include a visual analytic frame-

work presenting a data mining architecture, a contour-based exploratory geospatial

visualization, and a visual analytics approach for large-scale distributed spatiotem-

poral data.

In chapter 3, we presented a visual analytics framework (VAF) for distributed

data analysis systems (DAS) to mediate users’ direct interaction with the distributed

servers, provide access control from the application layer, and enable the exploratory

visual analysis of results. To demonstrate the benefit of our proposed framework, we

developed workflows for two use cases from earth science and SHBE research domains,

working with respective domain experts. While we understand the potential of our

VAF in distributed data analysis, we have several takeaways for future directions.

Our future work will focus on complying with more distributed systems and devel-

oping a generic API service to deploy at DAS sites. Moreover, we aim to provide a

more convenient interface for configuration management and perceive the user’s do-

main knowledge to provide interactive visualization recommendations to explore the

resulting data.

In chapter 4, we report the usability of contour-based interactive geospatial vi-

sualization in exploratory analysis tasks. We implemented an interactive geospatial

contour map and design a web-based interactive user study to quantitatively evalu-

ate users’ performance compared to the static geospatial map. We crowdsourced the

study and recruited 62 participants from Amazon MTurk for our experiment. The

interactive features are scrutinized against seven exploratory analysis tasks using tem-

perature and precipitation contour maps. The result suggests that the participants’
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correctness score improved with the interactive maps, however, needing additional

time to complete the task compared to the static maps. We also analyzed partici-

pants’ interaction logs to report and justify the usability of the interactive features

in the exploratory geospatial tasks. Our findings can serve as guidelines for visual-

ization researchers in the future to develop use case-specific interactive visualization

for visually exploring geospatial data.

In chapter 5, we introduced DCPViz, a novel visual analytics approach to analyze

and explore large-scale distributed spatiotemporal data where we leveraged NASA’s

downscaled climate projections, the NEX-DCP30 data. To demonstrate the visual

analytics interface, we leveraged the NEX-DCP30 data. We presented three use

cases provided by climate scientists while interacting with the DCPViz interface. Ex-

perts’ feedback is utilized to evaluate the proposed visual analytics approach. While

the feedback we received from the experts is promising, we identified several future

directions for further research. Our future work will encompass a data mining ar-

chitecture that is fully integrated with a distributed framework to optimize the data

transformation and analysis time. In addition, we will utilize the extracted data from

multiple DCP models to assess the climate projection uncertainty. To evaluate the

model projections for each climate variable, we plan to add observational datasets,

more analytical workflows, comparative visualizations, and interactive features on the

interface. Finally, we plan to conduct a more extensive user evaluation by gather-

ing climate scientists in focus groups to evaluate in greater detail the usability and

efficiency of DCPViz.



131

REFERENCES

[1] B. Shneiderman, “The eyes have it: a task by data type taxonomy for informa-
tion visualizations,” in Proceedings 1996 IEEE Symposium on Visual Languages,
pp. 336–343, Sep. 1996.

[2] J. He, H. Chen, Y. Chen, X. Tang, and Y. Zou, “Variable-based spatiotempo-
ral trajectory data visualization illustrated,” IEEE Access, vol. 7, pp. 143646–
143672, 2019.

[3] C. Tominski, G. Andrienko, N. Andrienko, S. Bleisch, S. I. Fabrikant, E. Mayr,
S. Miksch, M. Pohl, and A. Skupin, “Toward flexible visual analytics augmented
through smooth display transitions,” Visual Informatics, vol. 5, pp. 28–38, 9
2021.

[4] N. Andrienko and G. Andrienko, “A visual analytics framework for spatio-
temporal analysis and modelling,” Data Mining and Knowledge Discovery,
vol. 27, no. 1, pp. 55–83, 2013.

[5] W. Von Engelhardt, J. Zimmermann, and J. Zimmerman, Theory of earth sci-
ence. CUP Archive, 1988.

[6] S. S. Board, N. R. Council, et al., Earth science and applications from space:
national imperatives for the next decade and beyond. National Academies Press,
2007.

[7] G. J. Borradaile, Statistics of earth science data: their distribution in time,
space and orientation. Springer Science & Business Media, 2003.

[8] N. Andrienko, G. Andrienko, and P. Gatalsky, “Exploratory spatio-temporal
visualization: An analytical review,” Journal of Visual Languages and Comput-
ing, vol. 14, pp. 503–541, 2003.

[9] M. M. Alam, L. Torgo, and A. Bifet, “A survey on spatio-temporal data ana-
lytics systems,” 2021.

[10] P. Rosen, A. Seth, B. Mills, A. Ginsburg, J. Kamenetzky, J. Kern, C. R. John-
son, and B. Wang, “Using contour trees in the analysis and visualization of radio
astronomy data cubes,” 4 2017.

[11] A. Comrie, K.-S. Wang, S.-C. Hsu, A. Moraghan, P. Harris, Q. Pang, A. Pińska,
C.-C. Chiang, R. Simmonds, T.-H. Chang, et al., “Carta: Cube analysis and
rendering tool for astronomy,” Astrophysics Source Code Library, pp. ascl–2103,
2021.

[12] J. H. McLean, S. B. Cleveland, M. Lucas, R. Longman, T. W. Giambelluca,
J. Leigh, and G. A. Jacobs, “The hawai’i rainfall analysis and mapping appli-
cation (hi-rama): Decision support and data visualization for statewide rainfall
data,” pp. 239–245, Association for Computing Machinery, 7 2020.



132

[13] J. R. Alder and S. W. Hostetler, “Web based visualization of large climate data
sets,” Environmental Modelling Software, vol. 68, pp. 175–180, 2015.

[14] Z. Li, Q. Huang, Y. Jiang, and F. Hu, “Sovas: a scalable online visual analytic
system for big climate data analysis,” International Journal of Geographical
Information Science, vol. 34, no. 6, pp. 1188–1209, 2020.

[15] F. Kamw, S. Al-Dohuki, Y. Zhao, T. Eynon, D. Sheets, J. Yang, X. Ye, and
W. Chen, “Urban structure accessibility modeling and visualization for joint
spatiotemporal constraints,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 1, pp. 104–116, 2020.

[16] D. Sha, X. Miao, H. Lan, K. Stewart, S. Ruan, Y. Tian, Y. Tian, and C. Yang,
“Spatiotemporal analysis of medical resource deficiencies in the us under covid-
19 pandemic,” PloS one, vol. 15, no. 10, p. e0240348, 2020.

[17] G. A. Meehl, W. M. Washington, J. M. Arblaster, A. Hu, H. Teng, J. E. Kay,
A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand, “Climate
change projections in cesm1 (cam5) compared to ccsm4,” Journal of Climate,
vol. 26, no. 17, pp. 6287–6308, 2013.

[18] Y. Liu, A. R. Ganguly, and J. Dy, “Climate downscaling using ynet: A deep
convolutional network with skip connections and fusion,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ‘20, (New York, NY, USA), p. 3145â3153, Association for Com-
puting Machinery, 2020.

[19] R. S. Khan and M. A. E. Bhuiyan, “Artificial intelligence-based techniques for
rainfall estimation integrating multisource precipitation datasets,” Atmosphere,
vol. 12, no. 10, 2021.

[20] M.-J. Kraak and D. E. van de Vlag, “Understanding spatiotemporal patterns:
Visual ordering of space and time,” Cartographica: The International Journal
for Geographic Information and Geovisualization, vol. 42, no. 2, pp. 153–161,
2007.

[21] R. R. Nemani, B. L. Thrasher, W. Wang, T. J. Lee, F. S. Melton, J. L. Dungan,
and A. Michaelis, “Nasa earth exchange (nex) supporting analyses for national
climate assessments,” vol. 2015, p. GC21Eâ04, 2015.

[22] A. Talukder, M. Elshambakey, S. Wadkar, H. Lee, L. Cinquini, S. Schlueter,
I. Cho, W. Dou, and D. J. Crichton, “Vifi: Virtual information fab-
ric infrastructure for data-driven discoveries from distributed earth sci-
ence data,” in IEEE SmartWorld, Ubiquitous Intelligence Computing, Ad-
vanced Trusted Computed, Scalable Computing Communications, Cloud Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/ IOP/SCI), pp. 1–8, Aug 2017.



133

[23] C. A. L. Pahins, N. Ferreira, and J. L. Comba, “Real-time exploration of large
spatiotemporal datasets based on order statistics,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 26, no. 11, pp. 3314–3326, 2020.

[24] M. Kalo, X. Zhou, L. Li, W. Tong, and R. Piltner, “Chapter 8 - sensing air
quality: Spatiotemporal interpolation and visualization of real-time air pollu-
tion data for the contiguous united states,” in Spatiotemporal Analysis of Air
Pollution and Its Application in Public Health (L. Li, X. Zhou, and W. Tong,
eds.), pp. 169–196, Elsevier, 2020.

[25] U. U. Turuncoglu, “Toward modular in situ visualization in earth system models:
the regional modeling system regesm 1.1,” Geoscientific Model Development,
vol. 12, no. 1, pp. 233–259, 2019.

[26] K.-L. Ma, “In situ visualization at extreme scale: Challenges and opportunities,”
IEEE Computer Graphics and Applications, vol. 29, no. 6, pp. 14–19, 2009.

[27] S. Afzal, M. M. Hittawe, S. Ghani, T. Jamil, O. Knio, M. Hadwiger, and
I. Hoteit, “The state of the art in visual analysis approaches for ocean and
atmospheric datasets,” in Computer Graphics Forum, vol. 38, pp. 881–907, Wi-
ley Online Library, 2019.

[28] E. Santos, J. Poco, Y. Wei, S. Liu, B. Cook, D. N. Williams, and C. T. Silva,
“Uv-cdat: Analyzing climate datasets from a user‘s perspective,” Computing in
Science & Engineering, vol. 15, no. 1, pp. 94–103, 2013.

[29] R. MacIejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani,
W. S. Cleveland, S. J. Grannis, and D. S. Ebert, “A visual analytics approach
to understanding spatiotemporal hotspots,” vol. 16, pp. 205–220, 3 2010.

[30] W. Chang, M. L. Stein, J. Wang, V. R. Kotamarthi, and E. J. Moyer, “Changes
in spatiotemporal precipitation patterns in changing climate conditions,” Jour-
nal of Climate, vol. 29, no. 23, pp. 8355 – 8376, 2016.

[31] H. Mohammadi, M. R. Delavar, M. A. Sharifi, and M. D. Pirooz, “Spatiotempo-
ral visualization of tsunami waves using kml on google earth,” vol. 42, pp. 1291–
1299, International Society for Photogrammetry and Remote Sensing, 9 2017.

[32] C. Helbig, H.-S. Bauer, K. Rink, V. Wulfmeyer, M. Frank, and O. Kolditz,
“Concept and workflow for 3d visualization of atmospheric data in a virtual
reality environment for analytical approaches,” Environmental earth sciences,
vol. 72, no. 10, pp. 3767–3780, 2014.

[33] Y. Zhang, K. Sung, and J. Fridley, “A web framework for interactive data visu-
alization system,” MSCSSE Capstone Rep. Comput. Softw. Syst. Univ. Wash.
Bothell, p. 84, 2019.



134

[34] S. Li, S. Jaroszynski, S. Pearse, L. Orf, and J. Clyne, “Vapor: A visualization
package tailored to analyze simulation data in earth system science,” Atmo-
sphere, vol. 10, p. 488, 2019.

[35] J. Sukharev, C. Wang, K.-L. Ma, and A. T. Wittenberg, “Correlation study of
time-varying multivariate climate data sets,” in 2009 IEEE Pacific Visualization
Symposium, pp. 161–168, IEEE, April 2009.

[36] F. Wang, W. Li, S. Wang, and C. R. Johnson, “Association rules-based multi-
variate analysis and visualization of spatiotemporal climate data,” ISPRS In-
ternational Journal of Geo-Information, vol. 7, no. 7, 2018.

[37] C. Li, G. Baciu, Y. Wang, J. Chen, and C. Wang, “Ddlvis: Real-time visual
query of spatiotemporal data distribution via density dictionary learning,” IEEE
Transactions on Visualization and Computer Graphics, pp. 1–1, 2021.

[38] M. Maskey, R. Ramachandran, I. Gurung, M. Ramasubramanian, B. Freitag,
A. Kaulfus, G. Priftis, D. Bollinger, R. Mestre, and D. da Silva, “Employing
deep learning to enable visual exploration of earth science events,” in IGARSS
2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium,
pp. 2248–2251, Sep. 2020.

[39] A. Sharma, S. M. A. Zaidi, V. Chandola, M. R. Allen, and B. L. Bhaduri,
“Webglobe - a cloud-based geospatial analysis framework for interacting with
climate data,” pp. 42–46, Association for Computing Machinery, Inc, 11 2018.

[40] J. Herring, M. S. VanDyke, R. G. Cummins, and F. Melton, “Communicating
local climate risks online through an interactive data visualization,” Environ-
mental Communication, vol. 11, pp. 90–105, 1 2017.

[41] J. Johansson, T. Opach, E. Glaas, T.-S. Neset, C. Navarra, B.-O. LinnÃ©r,
and J. K. RÃžd, “Visadapt: A visualization tool to support climate change
adaptation,” IEEE Computer Graphics and Applications, vol. 37, no. 2, pp. 54–
65, 2017.

[42] J. Poco, A. Dasgupta, Y. Wei, W. Hargrove, C. Schwalm, R. Cook, E. Bertini,
and C. Silva, “Similarityexplorer: A visual inter-comparison tool for multi-
faceted climate data,” Computer Graphics Forum, vol. 33, no. 3, pp. 341–350,
2014.

[43] J. L. Huntington, K. C. Hegewisch, B. Daudert, C. G. Morton, J. T. Abat-
zoglou, D. J. McEvoy, and T. Erickson, “Climate engine: Cloud computing and
visualization of climate and remote sensing data for advanced natural resource
monitoring and process understanding,” Bulletin of the American Meteorologi-
cal Society, vol. 98, pp. 2397–2409, 11 2017.

[44] A.-A.-R. Nayeem, M. Elshambakey, T. Dobbs, H. Lee, D. Crichton, Y. Zhu,
C. Chokwitthaya, W. J. Tolone, and I. Cho, “A visual analytics framework for



135

distributed data analysis systems,” in 2021 IEEE International Conference on
Big Data (Big Data), pp. 229–240, Dec 2021.

[45] S. Hadlak, C. Tominski, H.-J. Schulz, and H. Schumann, “Visualization of
attributed hierarchical structures in a spatiotemporal context,” International
Journal of Geographical Information Science, vol. 24, no. 10, pp. 1497–1513,
2010.

[46] G. M. H. Zahan, D. Mondal, and C. Gutwin, “Contour line stylization to visu-
alize multivariate information,” 2021.

[47] T. Eaglin, I. Cho, and W. Ribarsky, “Space-time kernel density estimation for
real-time interactive visual analytics,” in Proceedings of the 50th Hawaii Inter-
national Conference on System Sciences, 2017.

[48] C. P. Kappe, M. Böttinger, and H. Leitte, “Analysis of decadal climate predic-
tions with user-guided hierarchical ensemble clustering,” in Computer Graphics
Forum, vol. 38, pp. 505–515, 2019.

[49] L. Liu, M. Mirzargar, R. M. Kirby, R. Whitaker, and D. H. House, “Visualizing
time-specific hurricane predictions, with uncertainty, from storm path ensem-
bles,” in Computer Graphics Forum, vol. 34, pp. 371–380, 2015.

[50] S. Lu, R. M. Li, W. C. Tjhi, K. K. Lee, L. Wang, X. Li, and D. Ma, “A
framework for cloud-based large-scale data analytics and visualization: Case
study on multiscale climate data,” in 2011 IEEE Third International Conference
on Cloud Computing Technology and Science, pp. 618–622, Nov 2011.

[51] S. Kim, S. Jeong, I. Woo, Y. Jang, R. Maciejewski, and D. S. Ebert, “Data flow
analysis and visualization for spatiotemporal statistical data without trajec-
tory information,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 24, pp. 1287–1300, 3 2018.

[52] E. Edward Hartnett and R. Rew, “Experience with an enhanced netcdf data
model and interface for scientific data access,” in 24th Conference on IIPS, 2008.

[53] R. O. Obe and L. S. Hsu, PostgreSQL: Up and Running: a Practical Guide to
the Advanced Open Source Database. " O’Reilly Media, Inc.", 2017.

[54] R. Obe and L. Hsu, PostGIS in action. Simon and Schuster, 2021.

[55] M. D. Da Silva and H. L. Tavares, Redis Essentials. Packt Publishing Ltd, 2015.

[56] K. Chodorow, MongoDB: the definitive guide: powerful and scalable data stor-
age. " O’Reilly Media, Inc.", 2013.

[57] R. Rew and G. Davis, “Netcdf: an interface for scientific data access,” IEEE
computer graphics and applications, vol. 10, pp. 76–82, 1990.



136

[58] P. Scarponi, G. Coro, and P. Pagano, “A collection of aquamaps native layers
in netcdf format,” Data in Brief, vol. 17, pp. 292–296, 4 2018.

[59] E. Davis, C. S. Zender, D. K. Arctur, K. O’Brien, A. Jelenak, D. Santek,
M. J. Dixon, T. L. Whiteaker, and K. Yang, “Netcdf-cf: supporting earth sys-
tem science with data access, analysis, and visualization,” AGUFM, vol. 2017,
p. IN33Câ0137, 2017.

[60] B. Eaton, J. Gregory, B. Drach, K. Taylor, S. Hankin, J. Caron, R. Signell,
P. Bentley, G. Rappa, H. Höck, et al., “Netcdf climate and forecast (cf) metadata
conventions,” 2003.

[61] J. C. Biard, J. Yu, M. Hedley, S. J. D. Cox, A. Leadbetter, N. J. Car, K. A.
Druken, S. Nativi, and E. Davis, “Linking netcdf data with the semantic web-
enhancing data discovery across domains,” AGUFM, vol. 2016, p. IN23Aâ1758,
2016.

[62] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed
file system,” in 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), pp. 1–10, 2010.

[63] C. A. Steed, J. R. Goodall, J. Chae, and A. Trofimov, “Crossvis: A visual an-
alytics system for exploring heterogeneous multivariate data with applications
to materials and climate sciences,” Graphics and Visual Computing, vol. 3,
p. 200013, 2020.

[64] N. Cao, C. Lin, Q. Zhu, Y. R. Lin, X. Teng, and X. Wen, “Voila: Visual
anomaly detection and monitoring with streaming spatiotemporal data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, pp. 23–33, 1
2018.

[65] E. J. Pebesma, K. de Jong, and D. Briggs, “Interactive visualization of uncer-
tain spatial and spatioâtemporal data under different scenarios: an air quality
example,” International Journal of Geographical Information Science, vol. 21,
no. 5, pp. 515–527, 2007.

[66] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead, “Noo-
dles: A tool for visualization of numerical weather model ensemble uncertainty,”
IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 1421–
1430, 2010.

[67] Q. Shu, H. Guo, J. Liang, L. Che, J. Liu, and X. Yuan, “Ensemblegraph: Inter-
active visual analysis of spatiotemporal behaviors in ensemble simulation data,”
in 2016 IEEE Pacific Visualization Symposium (PacificVis), pp. 56–63, April
2016.

[68] D. Keim, “Information visualization and visual data mining,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 1–8, 2002.



137

[69] J. Li, K. Zhang, and Z.-P. Meng, “Vismate: Interactive visual analysis of station-
based observation data on climate changes,” in 2014 IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 133–142, IEEE, Oct 2014.

[70] E. Mayr, G. Schreder, S. Salisu, and F. Windhager, “Integrated visualization of
space and time: A distributed cognition perspective,” Dec 2018.

[71] S. Castruccio, M. G. Genton, and Y. Sun, “Visualizing spatiotemporal mod-
els with virtual reality: from fully immersive environments to applications in
stereoscopic view,” Journal of the Royal Statistical Society: Series A (Statistics
in Society), vol. 182, no. 2, pp. 379–387, 2019.

[72] S. Papers, M. Hlawitschka, T. Weinkauf, A. Thudt, D. Baur, and S. Carpendale,
“Visits: A spatiotemporal visualization of location histories,” 2013.

[73] N. Andrienko, G. Andrienko, E. Camossi, C. Claramunt, J. M. Cordero Garcia,
G. Fuchs, M. Hadzagic, A.-L. Jousselme, C. Ray, D. Scarlatti, and G. Vouros,
“Visual exploration of movement and event data with interactive time masks,”
Visual Informatics, vol. 1, no. 1, pp. 25–39, 2017.

[74] F. Ferstl, M. Kanzler, M. Rautenhaus, and R. Westermann, “Time-hierarchical
clustering and visualization of weather forecast ensembles,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, pp. 831–840, Jan 2017.

[75] T. Nocke, T. Sterzel, M. Böttinger, M. Wrobel, et al., “Visualization of climate
and climate change data: An overview,” Digital earth summit on geoinformatics,
pp. 226–232, 2008.

[76] W. Cartwright, J. Crampton, G. Gartner, S. Miller, K. Mitchell, E. Siekier-
ska, and J. Wood, “Geospatial information visualization user interface issues,”
Cartography and Geographic Information Science, vol. 28, pp. 45–60, 2000.

[77] M. Rautenhaus, M. Bottinger, S. Siemen, R. Hoffman, R. M. Kirby,
M. Mirzargar, N. Rober, and R. Westermann, “Visualization in meteorology
- a survey of techniques and tools for data analysis tasks,” 12 2018.

[78] T. Nocke, M. Flechsig, and U. Bohm, “Visual exploration and evaluation
of climate-related simulation data,” in 2007 Winter Simulation Conference,
pp. 703–711, IEEE, 2007.

[79] T. Nocke, H. Schumann, and U. Böhm, “Methods for the visualization of clus-
tered climate data,” Comput. Stat., vol. 19, p. 75â94, feb 2004.

[80] O. Schroth, E. Pond, S. Muir-Owen, C. Campbell, and S. R. Sheppard, “Tools
for the understanding of spatio-temporal climate scenarios in local planning:
Kimberley (bc) case study,” Zurich: Swiss National Sciences Foundation, 2009.



138

[81] G. A. Schmidt, M. Kelley, L. Nazarenko, R. Ruedy, G. L. Russell, I. Aleinov,
M. Bauer, S. E. Bauer, M. K. Bhat, R. Bleck, et al., “Configuration and as-
sessment of the giss modele2 contributions to the cmip5 archive,” Journal of
Advances in Modeling Earth Systems, vol. 6, no. 1, pp. 141–184, 2014.

[82] M.-J. Kraak, “The space-time cube revisited from a geovisualization perspec-
tive,” in Proc. 21st International Cartographic Conference, pp. 1988–1996, Cite-
seer, 2003.

[83] M. Kraak, “Timelines, temporal resolution, temporal zoom and time geogra-
phy,” in ICC 2005 : Proceedings of the 22nd international cartographic con-
ference, (New Zealand), International Cartographic Association, 2005. 22nd
International Cartographic Conference, ICC 2005 : Mapping approaches into a
changing world, ICC ; Conference date: 09-07-2005 Through 16-07-2005.

[84] C. Tominski, P. Schulze-Wollgast, and H. Schumann, “3d information visualiza-
tion for time dependent data on maps,” in Ninth International Conference on
Information Visualisation (IV’05), pp. 175–181, July 2005.

[85] N. Andrienko and G. Andrienko, “Spatio-temporal visual analytics: a vision for
2020s,” Journal of Spatial Information Science, no. 20, pp. 87–95, 2020.

[86] N. Röber and J. F. Engels, “In-situ processing in climate science,” in High Per-
formance Computing: ISC High Performance 2019 International Workshops,
Frankfurt, Germany, June 16-20, 2019, Revised Selected Papers, (Berlin, Hei-
delberg), p. 612â622, Springer-Verlag, 2019.

[87] K.-L. Ma, “In situ visualization at extreme scale: Challenges and opportunities,”
IEEE Computer Graphics and Applications, vol. 29, no. 6, pp. 14–19, 2009.

[88] P. S. Quinan and M. Meyer, “Visually comparing weather features in forecasts,”
IEEE Transactions on Visualization and Computer Graphics, vol. 22, pp. 389–
398, Jan 2016.

[89] M. Sakr, G. Andrienko, T. Behr, N. Andrienko, R. H. Güting, and C. Hurter,
“Exploring spatiotemporal patterns by integrating visual analytics with a mov-
ing objects database system,” in Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS
‘11, (New York, NY, USA), p. 505â508, Association for Computing Machinery,
2011.

[90] Y. Q. Wang, “Meteoinfo: Gis software for meteorological data visualization and
analysis,” Meteorological Applications, vol. 21, no. 2, pp. 360–368, 2014.

[91] J. C. Roberts, “State of the art: Coordinated amp; multiple views in exploratory
visualization,” in Fifth International Conference on Coordinated and Multiple
Views in Exploratory Visualization (CMV 2007), pp. 61–71, July 2007.



139

[92] G. Andrienko and N. Andrienko, “Coordinated multiple views: a critical view,”
in Fifth International Conference on Coordinated and Multiple Views in Ex-
ploratory Visualization (CMV 2007), pp. 72–74, IEEE, 2007.

[93] G. Convertino, J. Chen, B. Yost, Y.-S. Ryu, and C. North, “Exploring context
switching and cognition in dual-view coordinated visualizations,” in Proceedings
International Conference on Coordinated and Multiple Views in Exploratory
Visualization - CMV 2003 -, pp. 55–62, July 2003.

[94] Y. Lu, R. Garcia, B. Hansen, M. Gleicher, and R. Maciejewski, “The state-of-
the-art in predictive visual analytics,” in Computer Graphics Forum, vol. 36,
pp. 539–562, Wiley Online Library, 2017.

[95] E. Dimara and C. Perin, “What is interaction for data visualization?,” IEEE
transactions on visualization and computer graphics, vol. 26, no. 1, pp. 119–129,
2019.

[96] J. S. Yi, Y. ah Kang, J. Stasko, and J. A. Jacko, “Toward a deeper understanding
of the role of interaction in information visualization,” IEEE transactions on
visualization and computer graphics, vol. 13, no. 6, pp. 1224–1231, 2007.

[97] J. G. Acker, G. T. Alcott, M. Ventura, J. C. Wei, and D. J. Meyer, “The
Advantages of Synergy - Quantitative Earth Science Data Visualization and
Analysis with Giovanni, Panoply, and Excel,” in AGU Fall Meeting Abstracts,
vol. 2018, pp. IN21B–35, Dec. 2018.

[98] J. G. Acker and G. Leptoukh, “Online Analysis Enhances Use of NASA Earth
Science Data,” EOS Transactions, vol. 88, pp. 14–17, Jan. 2007.

[99] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pascucci,
and C. Johhson, “Visualization of uncertainty and ensemble data: Exploration
of climate modeling and weather forecast data with integrated visus-cdat sys-
tems,” in Journal of Physics: Conference Series, vol. 180, p. 012089, IOP Pub-
lishing, 2009.

[100] D. Cashman, S. R. Humayoun, F. Heimerl, K. Park, S. Das, J. Thompson,
B. Saket, A. Mosca, J. Stasko, A. Endert, et al., “A user-based visual analytics
workflow for exploratory model analysis,” in Computer Graphics Forum, vol. 38,
pp. 185–199, Wiley Online Library, 2019.

[101] W. Cui, “Visual analytics: A comprehensive overview,” IEEE Access, vol. 7,
pp. 81555–81573, 2019.

[102] D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. A. Keim, “Knowl-
edge generation model for visual analytics,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 12, pp. 1604–1613, 2014.

[103] D. Hanselman and B. Littlefield, Mastering MATLAB: a comprehensive tutorial
and reference. Prentice-Hall, Inc., 1996.



140

[104] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-
son, K. Kennedy, C. Kesselman, J. Mellor-Crumme, D. Reed, L. Torczon, and
R. Wolski, “The grads project: Software support for high-level grid applica-
tion development,” The International Journal of High Performance Computing
Applications, vol. 15, no. 4, pp. 327–344, 2001.

[105] D. Brown, R. Brownrigg, M. Haley, and W. Huang, “Ncar command language
(ncl),” 2012.

[106] H. Lee, A. Goodman, L. McGibbney, D. E. Waliser, J. Kim, P. C. Loikith, P. B.
Gibson, and E. C. Massoud, “Regional climate model evaluation system powered
by apache open climate workbench v1.3.0: an enabling tool for facilitating
regional climate studies,” Geoscientific Model Development, vol. 11, no. 11,
pp. 4435–4449, 2018.

[107] R. J. Sandusky, “Computational provenance: Dataone and implications for cul-
tural heritage institutions,” in 2016 IEEE International Conference on Big Data
(Big Data), pp. 3266–3271, IEEE, 2016.

[108] J. P. Cohn, “Dataone opens doors to scientists across disciplines,” 2012.

[109] D. Medvedev, G. Lemson, and M. Rippin, “Sciserver compute: Bringing anal-
ysis close to the data,” in Proceedings of the 28th international conference on
scientific and statistical database management, pp. 1–4, 2016.

[110] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,
K. Blackburn, T. Wenaus, F. Würthwein, et al., “The open science grid,” in
Journal of Physics: Conference Series, vol. 78, p. 012057, IOP Publishing,
2007.

[111] T. Nocke, T. STERZEL, M. BÃ¶ttinger, and M. Wrobel, “Visualization of
climate and climate change data: An overview,” in Ehlers et al. (Eds.) Digi-
tal Earth Summit on Geoinformatics 2008: Tools for Global Change Research
(ISDE’08), Wichmann, Heidelberg, pp. 226-232, 2008, 01 2008.

[112] J. Kehrer, F. LadstÃ€dter, P. Muigg, H. Doleisch, A. Steiner, and H. Hauser,
“Hypothesis generation in climate research with interactive visual data explo-
ration,” 2008.

[113] A.-A.-R. Nayeem, H. Lee, D. Han, M. Elshambakey, W. J. Tolone, T. Dobbs,
D. Crichton, and I. Cho, “Dcpviz: A visual analytics approach for downscaled
climate projections,” pp. 291–300, 2022.

[114] A.-A.-R. Nayeem, I. Segovia-Dominguez, H. Lee, D. Han, Y. Chen, Z. Zhen,
Y. Gel, and I. Cho, “Learning on health fairness and environmental justice via
interactive visualization,” in 2022 IEEE International Conference on Big Data
(Big Data), pp. 784–791, 2022.



141

[115] H. Lee, A. Goodman, and K. Gorski, “The big climate data pipeline (bcdp):
A tool to facilitate server-side processing of nasa-nex data on amazon cloud,”
AGUFM, vol. 2019, p. IN12Aâ03, 2019.

[116] J. W. Lee and S. Y. Hong, “Potential for added value to downscaled climate
extremes over korea by increased resolution of a regional climate model,” The-
oretical and Applied Climatology, vol. 117, no. 3-4, pp. 667–677, 2014.

[117] N. Röber, M. Böttinger, and B. Stevens, “Visualization of climate science simu-
lation data,” IEEE Computer Graphics and Applications, vol. 41, no. 1, pp. 42–
48, 2021.

[118] R. Fuchs and H. Hauser, “Visualization of multi-variate scientific data,” Com-
puter Graphics Forum, vol. 28, pp. 1670–1690, 2009.

[119] C. Tominski, J. F. Donges, and T. Nocke, “Information visualization in climate
research,” in 2011 15th International Conference on Information Visualisation,
pp. 298–305, IEEE, 2011.

[120] M. D. Gerst, M. A. Kenney, A. E. Baer, A. Speciale, J. F. Wolfinger,
J. Gottschalck, S. Handel, M. Rosencrans, and D. Dewitt, “Using visualization
science to improve expert and public understanding of probabilistic tempera-
ture and precipitation outlooks,” Weather, Climate, and Society, vol. 12, no. 1,
pp. 117–133, 2020.

[121] P. Pirolli and S. Card, “The sensemaking process and leverage points for ana-
lyst technology as identified through cognitive task analysis,” in Proceedings of
international conference on intelligence analysis, vol. 5, pp. 2–4, McLean, VA,
USA, 2005.

[122] D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. A. Keim, “Knowl-
edge generation model for visual analytics,” IEEE transactions on visualization
and computer graphics, vol. 20, no. 12, pp. 1604–1613, 2014.

[123] A. Talukder, M. Elshambakey, S. Wadkar, H. Lee, L. Cinquini, S. Schlueter,
I. Cho, W. Dou, and D. J. Crichton, “Vifi: Virtual information fabric in-
frastructure for data-driven discoveries from distributed earth science data,”
in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computed, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–8, IEEE, 2017.

[124] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Ha-
zlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and
N. Wilkins-Diehr, “Xsede: Accelerating scientific discovery,” Computing in Sci-
ence Engineering, vol. 16, pp. 62–74, Sep. 2014.



142

[125] R. J. Sandusky, “Computational provenance: Dataone and implications for cul-
tural heritage institutions,” in IEEE International Conference on Big Data (Big
Data), pp. 3266–3271, Dec 2016.

[126] S. Shahand, M. M. Jaghoori, A. Benabdelkader, J. L. Font-Calvo, J. Huguet,
M. W. Caan, A. H. van Kampen, and S. D. Olabarriaga, Computational Neu-
roscience Gateway: A Science Gateway Based on the WS-PGRADE/gUSE,
pp. 139–149. Cham: Springer International Publishing, 2014.

[127] M. Elshambakey, M. Khalefa, W. J. Tolone, S. D. Bhattacharjee, H. Lee, L. Cin-
quini, S. Schlueter, I. Cho, W. Dou, and D. J. Crichton, “Towards a distributed
infrastructure for data-driven discoveries & analysis,” in 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 4738–4740, IEEE, 2017.

[128] C. Chokwitthaya, Y. Zhu, R. Dibiano, and S. Mukhopadhyay, “Combining
context-aware design-specific data and building performance models to improve
building performance predictions during design,” Automation in construction,
vol. 107, p. 102917, 2019.

[129] O. T. Karaguzel, M. Elshambakey, Y. Zhu, T. Hong, W. J. Tolone, S. Das Bhat-
tacharjee, I. Cho, W. Dou, H. Wang, S. Lu, et al., “Open computing infrastruc-
ture for sharing data analytics to support building energy simulations,” Journal
of Computing in Civil Engineering, vol. 33, no. 6, p. 04019037, 2019.

[130] R. Zhang and O. T. Karaguzel, “Development and calibration of reduced-order
building energy models by coupling with high-order simulations,” Global journal
of advanced engineering technologies and sciences, vol. 7, no. 2, 2020.

[131] W. J Tolone, “Application of the virtual information fabric infrastructure (vifi)
to building performance simulations,” Current Trends in Civil & Structural
Engineering, vol. 4, no. 2, 2019.

[132] S. D. Bhattacharjee, W. J. Tolone, A. Mahabal, M. Elshambakey, I. Cho, A. a.-
R. Nayeem, J. Yuan, and G. Djorgovski, “Multi-view, generative, transfer learn-
ing for distributed time series classification,” in 2019 IEEE International Con-
ference on Big Data (Big Data), pp. 5585–5594, IEEE, 2019.

[133] S. Gesing, J. Krüger, R. Grunzke, S. Herres-Pawlis, and A. Hoffmann, “Using
science gateways for bridging the differences between research infrastructures,”
Journal of Grid Computing, vol. 14, no. 4, pp. 545–557, 2016.

[134] I. Foster, “Globus online: Accelerating and democratizing science through cloud-
based services,” IEEE Internet Computing, vol. 15, no. 3, pp. 70–73, 2011.

[135] S. Gugnani, C. Blanco, T. Kiss, and G. Terstyanszky, “Extending science gate-
way frameworks to support big data applications in the cloud,” Journal of Grid
Computing, vol. 14, no. 4, pp. 589–601, 2016.



143

[136] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurth-
wein, “The pilot way to grid resources using glideinwms,” in Proceedings of the
2009 WRI World Congress on Computer Science and Information Engineering
- Volume 02, CSIE ’09, (Washington, DC, USA), pp. 428–432, IEEE Computer
Society, 2009.

[137] A. S. Szalay, “From skyserver to sciserver,” The ANNALS of the American
Academy of Political and Social Science, vol. 675, no. 1, pp. 202–220, 2018.

[138] http://jupyter.org/.

[139] N. Wilkins-Diehr, “Special issue: Science gatewaysâcommon community inter-
faces to grid resources,” Concurrency and Computation: Practice and Experi-
ence, vol. 19, no. 6, pp. 743–749, 2007.

[140] Y. Gong, L. Morandini, and R. O. Sinnott, “The design and benchmarking
of a cloud-based platform for processing and visualization of traffic data,” in
IEEE International Conference on Big Data and Smart Computing (BigComp),
pp. 13–20, Feb 2017.

[141] http://www.prace-ri.eu/.

[142] V. Dimitrov, “Evolution of the european grid infrastructure from grid to
cloud,” Proceedings of International Conference on Application of Informa-
tion and Communication Technology and Statistics in Economy and Education
(ICAICTSEE), p. 610, 2013. Date revised - 2014-12-01; Last updated - 2015-
01-06.

[143] T. Gottdank, Introduction to the WS-PGRADE/gUSE Science Gateway Frame-
work, pp. 19–32. Cham: Springer International Publishing, 2014.

[144] T. Piontek, B. Bosak, M. Ciżnicki, P. Grabowski, P. Kopta, M. Kulczewski,
D. Szejnfeld, and K. Kurowski, “Development of science gateways using qcg —
lessons learned from the deployment on large scale distributed and hpc infras-
tructures,” Journal of Grid Computing, vol. 14, pp. 559–573, Dec 2016.

[145] Z. Farkas, P. Kacsuk, and Á. Hajnal, “Enabling workflow-oriented science
gateways to access multi-cloud systems,” Journal of Grid Computing, vol. 14,
pp. 619–640, Dec 2016.

[146] S. Gesing, K. Lawrence, M. Dahan, M. E. Pierce, N. Wilkins-Diehr, and
M. Zentner, “Science gateways: Sustainability via on-campus teams,” Future
Generation Computer Systems, vol. 94, pp. 97 – 102, 2019.

[147] S. Gesing, J. KrÃŒger, R. Grunzke, S. Herres-Pawlis, and A. Hoffmann, “Chal-
lenges and modifications for creating a mosgrid science gateway for us and eu-
ropean infrastructures,” in 7th International Workshop on Science Gateways,
pp. 73–79, June 2015.



144

[148] J. Arshad, G. Terstyanszky, T. Kiss, N. Weingarten, and G. Taffoni, “A formal
approach to support interoperability in scientific meta-workflows,” Journal of
Grid Computing, vol. 14, pp. 655–671, Dec 2016.

[149] S. Gugnani, C. Blanco, T. Kiss, and G. Terstyanszky, “Extending science gate-
way frameworks to support big data applications in the cloud,” Journal of Grid
Computing, vol. 14, pp. 589–601, Dec 2016.

[150] Z. Farkas, P. Kacsuk, and A. Hajnal, “Connecting workflow-oriented science
gateways to multi-cloud systems,” in 7th International Workshop on Science
Gateways, pp. 40–46, June 2015.

[151] M. Pierce, S. Marru, L. Gunathilake, T. A. Kanewala, R. Singh, S. Wijeratne,
C. Wimalasena, C. Herath, E. Chinthaka, C. Mattmann, A. Slominski, and
P. Tangchaisin, “Apache airavata: Design and directions of a science gateway
framework,” in 6th International Workshop on Science Gateways, pp. 48–54,
June 2014.

[152] http://developer.agaveapi.co/.

[153] I. Foster, “Globus online: Accelerating and democratizing science through cloud-
based services,” IEEE Internet Computing, vol. 15, pp. 70–73, May 2011.

[154] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent enhancements and future
plans,” in Proceedings of the XSEDE16 Conference on Diversity, Big Data, and
Science at Scale, XSEDE16, (New York, NY, USA), pp. 27:1–27:8, ACM, 2016.

[155] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Kettimuthu,
J. Kordas, M. Link, S. Martin, K. Pickett, and S. Tuecke, “Software as a service
for data scientists,” Commun. ACM, vol. 55, pp. 81–88, Feb. 2012.

[156] R. T. Fielding, Architectural styles and the design of network-based software
architectures. University of California, Irvine, 2000.

[157] C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32, pp. 102–
c3, May 2015.

[158] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE
Cloud Computing, vol. 1, pp. 81–84, Sept 2014.

[159] C. Boettiger, “An introduction to docker for reproducible research,” SIGOPS
Oper. Syst. Rev., vol. 49, pp. 71–79, Jan. 2015.

[160] I. Miell and A. H. Sayers, Docker in Practice. Greenwich, CT, USA: Manning
Publications Co., 1st ed., 2016.

[161] https://nifi.apache.org/.

[162] https://docs.docker.com/engine/swarm/.



145

[163] A. MÄtÄcuÅ£Ä and C. Popa, “Big data analytics: Analysis of features and
performance of big data ingestion tools,” Informatica Economica, vol. 22, no. 2,
pp. 25–34, 2018.

[164] P. Kacsuk, Science gateways for distributed computing infrastructures: Devel-
opment framework and exploitation by scientific user communities. Springer
International Publishing, 8 2014.

[165] N. Shakhovska, N. Boyko, Y. Zasoba, and E. Benova, “Big data processing
technologies in distributed information systems,” Procedia Computer Science,
vol. 160, pp. 561–566, 2019. The 10th International Conference on Emerging
Ubiquitous Systems and Pervasive Networks (EUSPN-2019) / The 9th Interna-
tional Conference on Current and Future Trends of Information and Commu-
nication Technologies in Healthcare (ICTH-2019) / Affiliated Workshops.

[166] https://www.incommon.org/.

[167] https://wso2.com/identity-server/.

[168] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for
fine-grained categorization,” in 4th International IEEE Workshop on 3D Rep-
resentation and Recognition (3dRR-13), (Sydney, Australia), 2013.

[169] https://hub.docker.com/.

[170] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific containers
for mobility of compute,” PLOS ONE, vol. 12, pp. 1–20, 05 2017.

[171] C. Arango, R. Dernat, and J. Sanabria, “Performance evaluation of container-
based virtualization for high performance computing environments,” CoRR,
vol. abs/1709.10140, 2017.

[172] E. Le and D. Paz, “Performance analysis of applications using singularity con-
tainer on sdsc comet,” in Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact, PEARC17,
(New York, NY, USA), pp. 66:1–66:4, ACM, 2017.

[173] N. Naik, “Building a virtual system of systems using docker swarm in multiple
clouds,” in IEEE International Symposium on Systems Engineering (ISSE),
pp. 1–3, Oct 2016.

[174] https://www.shbe.org/.

[175] A. M. Wootten, E. C. Massoud, A. Sengupta, D. E. Waliser, and H. Lee, “The
effect of statistical downscaling on the weighting of multi-model ensembles of
precipitation,” Climate, vol. 8, no. 12, 2020.

[176] K. Jacobs, The US national climate assessment. New York, NY: Springer Berlin
Heidelberg, 2016.



146

[177] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, T. Schaub, et al., “The
geojson format,” Internet Engineering Task Force (IETF), 2016.

[178] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. Parameswaran, “Towards
visualization recommendation systems,” ACM SIGMOD Record, vol. 45, no. 4,
pp. 34–39, 2017.

[179] Y. Wang, “An open source software suite for multi-dimensional meteorological
data computation and visualisation,” Journal of Open Research Software, vol. 7,
07 2019.

[180] X. Chen, L. Shen, Z. Sha, R. Liu, S. Chen, G. Ji, and C. Tan, “A survey of
multi-space techniques in spatio-temporal simulation data visualization,” Visual
Informatics, vol. 3, no. 3, pp. 129–139, 2019.

[181] P. B. Gibson, S. E. Perkins-Kirkpatrick, P. Uotila, A. S. Pepler, and L. V.
Alexander, “On the use of self-organizing maps for studying climate extremes,”
Journal of Geophysical Research: Atmospheres, vol. 122, no. 7, pp. 3891–3903,
2017.

[182] D. Reidmiller, C. Avery, D. Easterling, K. Kunkel, K. Lewis, T. Maycock, and
B. Stewart, “Fourth national climate assessment,” Volume II: Impacts, Risks,
and Adaptation in the United States, 2017.

[183] H. Lee, D. E. Waliser, R. Ferraro, T. Iguchi, C. D. Peters-Lidard, B. J. Tian,
P. C. Loikith, and D. B. Wright, “Evaluating hourly rainfall characteristics
over the us great plains in dynamically downscaled climate model simulations
using nasa-unified wrf,” Journal of Geophysical Research-Atmospheres, vol. 122,
no. 14, pp. 7371–7384, 2017.

[184] F. De Sales and Y. K. Xue, “Dynamic downscaling of 22-year cfs winter sea-
sonal hindcasts with the ucla-eta regional climate model over the united states,”
Climate Dynamics, vol. 41, no. 2, pp. 255–275, 2013.

[185] P. R. Keller, M. M. Keller, S. Markel, A. J. Mallinckrodt, and S. McKay, “Visual
cues: practical data visualization,” Computers in Physics, vol. 8, no. 3, pp. 297–
298, 1994.

[186] E. L. Koua, A. Maceachren, and M. â. Kraak, “Evaluating the usability of visual-
ization methods in an exploratory geovisualization environment,” International
Journal of Geographical Information Science, vol. 20, no. 4, pp. 425–448, 2006.

[187] E. Mayr, G. Schreder, S. Salisu, and F. Windhager, “Integrated visualization of
space and time: A distributed cognition perspective,” 2018.

[188] P. Ogao and M.-J. Kraak, “Defining visualization operations for temporal carto-
graphic animation design,” International Journal of Applied Earth Observation
and Geoinformation, vol. 4, no. 1, pp. 23–31, 2002.



147

[189] C. Beale, H. Norouzi, Z. Sharifnezhadazizi, A. R. Bah, P. Yu, Y. Yu, R. Blake,
A. Vaculik, and J. Gonzalez-Cruz, “Comparison of diurnal variation of land
surface temperature from goes-16 abi and modis instruments,” IEEE Geoscience
and Remote Sensing Letters, vol. 17, no. 4, pp. 572–576, 2020.

[190] J.-G. Lee and M. Kang, “Geospatial big data: Challenges and opportunities,”
Big Data Research, vol. 2, no. 2, pp. 74–81, 2015. Visions on Big Data.

[191] X. Huang, “Supporting location-based services in spatial network databases,”
in Handbook of Research on Innovations in Database Technologies and Appli-
cations: Current and Future Trends, pp. 316–324, IGI Global, 2009.

[192] N. Pelekis, B. Theodoulidis, I. Kopanakis, and Y. Theodoridis, “Literature re-
view of spatio-temporal database models,” The Knowledge Engineering Review,
vol. 19, no. 3, pp. 235–274, 2004.

[193] S. Shekhar, Z. Jiang, R. Y. Ali, E. Eftelioglu, X. Tang, V. M. Gunturi, and
X. Zhou, “Spatiotemporal data mining: A computational perspective,” ISPRS
International Journal of Geo-Information, vol. 4, no. 4, pp. 2306–2338, 2015.

[194] G. Percivall, “The power of location.” https://www.ogc.org/blog/1817, accessed
October 10, 2022.

[195] M. Hugentobler, Quantum GIS, pp. 935–939. Boston, MA: Springer US, 2008.

[196] D. N. Williams, R. S. Drach, P. F. Dubois, C. Doutriaux, C. J. OâConnor, K. M.
AchutaRao, and M. Fiorino, “Climate data analysis tool: An open software
system approach,” in 13th Symp. on Global Change and Climate Variations,
2002.

[197] D. Meyer and M. Riechert, “Open source qgis toolkit for the advanced research
wrf modelling system,” Environmental Modelling & Software, vol. 112, pp. 166–
178, 2019.

[198] M. A. Rico-Ramirez, I. D. Cluckie, G. Shepherd, and A. Pallot, “Meteoinfo:
Gis software for meteorological data visualization and analysis,” Meteorological
Applications, vol. 14, pp. 117–129, 2007.

[199] G. M. H. Zahan, D. Mondal, and C. Gutwin, “Contour line stylization to visu-
alize multivariate information,” in Graphics Interface 2021, 2021.

[200] T. Nagel, E. Duval, and A. Vande Moere, “Interactive exploration of geospatial
network visualization,” in CHI ’12 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’12, (New York, NY, USA), p. 557â572, Associa-
tion for Computing Machinery, 2012.

[201] T. Mahmood, W. Fulmer, N. Mungoli, J. Huang, and A. Lu, “Improving in-
formation sharing and collaborative analysis for remote geospatial visualization
using mixed reality,” in 2019 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 236–247, IEEE, 2019.



148

[202] OpenStreetMap, “Openstreetmap.” https://www.openstreetmap.org/, accessed
March 31, 2021.

[203] T. Hahmann and E. L. Usery, “What is in a contour map?,” in International
Conference on Spatial Information Theory, pp. 375–399, Springer, 2015.

[204] S. Wehrend and C. Lewis, “A problem-oriented classification of visualization
techniques,” in Proceedings of the First IEEE Conference on Visualization: Vi-
sualization ‘90, pp. 139–143, 1990.

[205] J. Heer and M. Bostock, “Crowdsourcing graphical perception: Using mechan-
ical turk to assess visualization design,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’10, (New York, NY,
USA), p. 203â212, Association for Computing Machinery, 2010.

[206] A. Karduni, R. Wesslen, I. Cho, and W. Dou, “Du bois wrapped bar chart:
Visualizing categorical data with disproportionate values,” in Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20,
(New York, NY, USA), p. 1â12, Association for Computing Machinery, 2020.

[207] A. Karduni, D. Markant, R. Wesslen, and W. Dou, “A bayesian cognition ap-
proach for belief updating of correlation judgement through uncertainty visual-
izations,” IEEE Transactions on Visualization and Computer Graphics, vol. 27,
no. 2, pp. 978–988, 2021.

[208] J. Chandler, C. Rosenzweig, A. J. Moss, J. Robinson, and L. Litman, “Online
panels in social science research: Expanding sampling methods beyond mechan-
ical turk,” Behavior research methods, vol. 51, no. 5, pp. 2022–2038, 2019.

[209] L. St, S. Wold, et al., “Analysis of variance (anova),” Chemometrics and intel-
ligent laboratory systems, vol. 6, no. 4, pp. 259–272, 1989.

[210] S. Morgenthaler, “Exploratory data analysis,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 1, no. 1, pp. 33–44, 2009.

[211] V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer,
and K. E. Taylor, “Overview of the coupled model intercomparison project
phase 6 (cmip6) experimental design and organization,” Geoscientific Model
Development, vol. 9, no. 5, pp. 1937–1958, 2016.

[212] M. Stockhause, R. Matthews, A. Pirani, A. M. Treguier, and O. Yelekci, “Cmip6
data documentation and citation in ipcc’s sixth assessment report (ar6),” in
EGU General Assembly Conference Abstracts, pp. EGU21–2886, 2021.

[213] T. Nocke, T. Sterzel, M. BÃ¶ttinger, and M. Wrobel, “Visualization of climate
and climate change data: An overview.”



149

[214] J. D. Blower, A. L. Gemmell, G. H. Griffiths, K. Haines, A. Santokhee, and
X. Yang, “A web map service implementation for the visualization of multidi-
mensional gridded environmental data,” Environmental Modelling and Software,
vol. 47, pp. 218–224, 9 2013.

[215] R. R. Nemani, W. Wang, A. Michaelis, P. Votava, and S. Ganguly, “OpenNEX,
a private-public partnership in support of the national climate assessment,” in
AGU Fall Meeting Abstracts, vol. 2016, pp. GC31G–1182, Dec. 2016.

[216] A. Talukder, M. Elshambakey, S. Wadkar, H. Lee, L. Cinquini, S. Schlueter,
I. Cho, W. Dou, and D. J. Crichton, “Vifi: Virtual information fabric infras-
tructure for data-driven discoveries from distributed earth science data; vifi:
Virtual information fabric infrastructure for data-driven discoveries from dis-
tributed earth science data,” 2017.

[217] G. A. Meehl, W. M. Washington, J. M. Arblaster, A. X. Hu, H. Y. Teng, J. E.
Kay, A. Gettelman, D. M. Lawrence, B. M. Sanderson, and W. G. Strand,
“Climate change projections in cesm1(cam5) compared to ccsm4,” Journal of
Climate, vol. 26, no. 17, pp. 6287–6308, 2013.

[218] M. Kelley, G. A. Schmidt, L. S. Nazarenko, S. E. Bauer, R. Ruedy, G. L. Russell,
A. S. Ackerman, I. Aleinov, M. Bauer, R. Bleck, et al., “Giss-e2. 1: Configura-
tions and climatology,” Journal of Advances in Modeling Earth Systems, vol. 12,
no. 8, p. e2019MS002025, 2020.

[219] N. Kaye, A. Hartley, and D. Hemming, “Mapping the climate: guidance on
appropriate techniques to map climate variables and their uncertainty,” Geo-
scientific Model Development, vol. 5, no. 1, pp. 245–256, 2012.

[220] A. Sarikaya, M. Gleicher, and D. A. Szafir, “Design factors for summary visual-
ization in visual analytics,” in Computer Graphics Forum, vol. 37, pp. 145–156,
Wiley Online Library, 2018.

[221] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock, “Finding
anomalous periodic time series,” Machine learning, vol. 74, no. 3, pp. 281–313,
2009.

[222] J. Meyer, E. W. Bethel, J. L. Horsman, S. S. Hubbard, H. Krishnan, A. Ro-
mosan, E. H. Keating, L. Monroe, R. Strelitz, P. Moore, et al., “Visual data
analysis as an integral part of environmental management,” IEEE transactions
on visualization and computer graphics, vol. 18, no. 12, pp. 2088–2094, 2012.

[223] J. Johansson, T.-S. S. Neset, and B.-O. Linnér, “Evaluating climate visual-
ization: An information visualization approach,” in 2010 14th International
Conference Information Visualisation, pp. 156–161, IEEE, 2010.

[224] N. Elmqvist and J. S. Yi, “Patterns for visualization evaluation,” Information
Visualization, vol. 14, no. 3, pp. 250–269, 2015.



150

[225] S. V. Raghavan, J. Hur, and S.-Y. Liong, “Evaluations of nasa nex-gddp data
over southeast asia: present and future climates,” Climatic change, vol. 148,
no. 4, pp. 503–518, 2018.

[226] G. Jiang, C. Zhao, M. R. Scott, and F. Zou, “Combinable tabs: An interac-
tive method of information comparison using a combinable tabbed document
interface,” in IFIP Conference on Human-Computer Interaction, pp. 432–435,
Springer, 2009.

[227] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska, “How pro-
gressive visualizations affect exploratory analysis,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 23, no. 8, pp. 1977–1987, 2017.

[228] T. Schreck, D. Keim, and F. Mansmann, “Regular treemap layouts for visual
analysis of hierarchical data,” in Proceedings of the 22nd Spring Conference on
Computer Graphics, SCCG ’06, (New York, NY, USA), p. 183â190, Association
for Computing Machinery, 2006.

[229] K. Marriott, F. Schreiber, T. Dwyer, K. Klein, N. H. Riche, T. Itoh, W. Stuer-
zlinger, and B. H. Thomas, Immersive Analytics, vol. 11190. Springer, 2018.

[230] T. Sellis, A. D. Library., and A. for Computing Machinery. Special Interest
Group on Management of Data., An Analytic Data Engine for Visualization in
Tableau. ACM, 2011.

[231] D. Cao, J. Zhang, L. Xun, S. Yang, J. Wang, and F. Yao, “Spatiotemporal
variations of global terrestrial vegetation climate potential productivity under
climate change,” Science of The Total Environment, vol. 770, p. 145320, 2021.

[232] M. E. Porter, M. C. Hill, T. Harris, A. Brookfield, and X. Li, “The discover-
framework freeware toolkit for multivariate spatio-temporal environmental data
visualization and evaluation,” Environmental Modelling & Software, vol. 143,
p. 105104, 2021.

[233] C. Tominski, J. F. Donges, and T. Nocke, “Information visualization in climate
research,” in 2011 15th International Conference on Information Visualisation,
pp. 298–305, July 2011.

[234] V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer,
and K. E. Taylor, “Overview of the coupled model intercomparison project
phase 6 (cmip6) experimental design and organization,” Geoscientific Model
Development, vol. 9, no. 5, pp. 1937–1958, 2016.



151

APPENDIX A: MATERIALS FROM THE DOMAIN EXPERT SURVEY OF

GEOVISUALIZATION REQUIREMENTS AND CURRENT PRACTICES FROM

CLIMATE SCIENTISTS

This appendix contains the materials used in a domain expert survey with IRB

approval (IRB Number: 22-0001), to identify the usability and requirements for in-

teractive geospatial visualization. The survey invited domain experts in earth science

to outline their current practices and potential gaps in geovisual analysis. The items

leveraged in the survey are included in the order as follows:

1. Electronic Advertisement for Recruitment

2. Informed Consent Form

3. Demographic Information & Survey Questionnaire



Surveying Domain Expert’s Knowledge on Geospatial Data Analysis

We are researchers at the University of North Carolina at Charlotte seeking participants for our
research study on “A Comparative Analysis of Evaluating Interactive Geospatial Visualization”.
To participate in this study, we were looking for experts in the earth science domain with an
understanding of geospatial data analysis, aged over 18 and proficient in English language.

In this study, we will first ask the participants a set of questionnaires using a Google Form about
their work with earth science data and the tools that they currently use to accomplish the tasks.
The purpose of this research study is to assist earth science, researchers and analysts, in their
exploration and sense-making tasks with the interactive features in geospatial visualization. In
this study, we want to better understand your analytical tasks, who are experts in the earth
science domain so that we can design an interactive visual component to support your analysis
tasks.

After the initial set of questionnaires about their qualification and experience in analyzing
geospatial data, we will ask detailed questions about the analysis tasks and how you perform.
Our main goal is to understand and categorize the analysis tasks a researcher or analyst performs
on a daily basis with geospatial data. Obtaining your domain knowledge would help us to design
an interactive geospatial visualization that supports your analysis tasks through visual analysis.
Moreover, we would like to mention that we are not capturing any interaction log during the
survey. The online survey will take approximately 30 minutes to complete.

We will provide a consent form at the beginning of the survey to explain the detailed procedure
of our study. If you agree to provide your consent, the form will open the survey questionnaire to
you.

Thank you and we look forward to your participation!

Project Investigator:
Abdullah-Al-Raihan Nayeem
Research Assistant
Email: anayeem@uncc.edu

Faculty Advisor:
Dr. Isaac Cho
Assistant Professor
Email: Isaac.Cho@uncc.edu
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College of Computing & Informatics
9201 University City Boulevard, Charlotte, NC  28223-0001

Consent to Participate in a Research Study

Title of the Project:  A Comparative Analysis of Evaluating Interactive Geospatial Visualization
Principal Investigator: Abdullah-Al-Raihan Nayeem, Research Assistant, UNC Charlotte
Faculty Advisor: Dr. Isaac Cho, Adjunct Professor, UNC Charlotte
Study Sponsor: -

You are invited to participate in a research study. Participation in this research study is voluntary. The
information provided is to help you decide whether or not to participate. If you have any questions,
please ask.

Important Information You Need to Know

● You are being asked to participate in a survey for a research project, “Comparative Analysis of
Evaluating Interactive Geospatial Visualization”. The purpose of this research study is to assist
earth science, researchers and analysts, in their exploration and sense-making tasks with the
interactive features in geospatial visualization. In this study, we want to better understand your
analytical tasks, who are experts in the earth science domain so that we can design an interactive
visual component to support your analysis tasks.

● We are asking experts in the domain of earth science to participate in our study. With your
consent, we will send you a link to a Google Form containing survey questions to learn about
your experience working with geospatial data, the analysis task that you perform and the tools
that you utilize.

● In the survey, you may choose to skip a question you do not want to answer. You may personally
benefit from taking part in this research (given the visualization component we are aiming to
design is useful for replacing your analysis approach) but more importantly, your input in this
study may help us better understand how such visual components can assist in the earth science
analysis tasks.

● Please read this form and ask any questions you may have before you decide whether to
participate in this research study.

Why are we doing this study?
In this study, we intend to learn from you, the domain expert, about the analysis tasks with the
geospatial data. Additionally, we want to understand the design requirements of an interactive
geospatial visualization to eventually support those tasks through visual analysis..

Why are you being asked to be in this research study?
You are being asked to be in this study because you are an expert in the earth science domain and use
geospatial data in the analysis tasks in your daily work.

What will happen if I take part in this study?
If you choose to participate you will complete a survey on Google form. In this study, we will first ask the
participants a set of questionnaires using a Google Form about their work experience with geospatial data
and the analysis tools that they currently use for the tasks. After the initial set of questionnaires about their
qualification and experience in analyzing geospatial data, we will ask detailed questions about the
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analysis tasks and how you perform. Our main goal is to understand and categorize the analysis tasks a
researcher or analyst performs on a daily basis. Obtaining your domain knowledge would help us to
design an interactive geospatial visualization that supports your analysis tasks through visual analysis.
Moreover, we would like to mention that we are not capturing any interaction log during the survey. The
interview will take approximately 30 minutes to complete.

What benefits might I experience?
You will not benefit directly from being in this study at this moment. Eventually, we expect our
visualization tool to assist in your analysis tasks.

What risks might I experience?
We do not expect you to go through any mental or physical risk participating in this study.

How will my information be protected?
You are asked to provide your email address as part of this study. We will use your email address to send
the survey Google Form after you provide your consent. The identifier email or name will be separated
from the obtained survey information. The data will be accessible only to those who are working on
evaluating our proposed system. All the information collected from the study will be stored in a secure
server protected by the password with minimal accessibility. If google form captures the email address of
the participant on its own, we will separate that information from the responses and store only the answers
provided against our questionnaires and tag the response with Expert 1, 2…Expert N.

How will my information be used after the study is over?
After this study is complete, the person involved in this research study can still utilize your feedback for
other studies but will not share with any other personnel. The portion of information utilized will not
contain any of your identity or identifiable information. Since we are not capturing any of your interaction
data in this study rather your observation and experience, we will not get back to you for further revision
of this information.

Will I receive an incentive for taking part in this study?
We are not offering any incentive to participate in this study.

What other choices do I have if I don’t take part in this study?
You have the total right to opt out from this study any time. If you do not want to participate in this study,
please let us know. We will not send out the survey form in that case. You would not be responsible or do
not require any clarification in that case.

What are my rights if I take part in this study?
It is up to you to decide to be in this research study. Participating in this study is voluntary. Even if you
decide to be part of the study now, you may change your mind and stop at any time. You do not have to
answer any questions you do not want to answer.

Who can answer my questions about this study and my rights as a participant?
For questions about this research, you may contact Abdullah-Al-Raihan Nayeem (anayeem@uncc.edu,
980 318 8981) or Dr. Isaac Cho (Isaac.Cho@uncc.edu). If you have questions about your rights as a
research participant, or wish to obtain information, ask questions, or discuss any concerns about this study
with someone other than the researcher(s), please contact the Office of Research Protections and Integrity
at 704-687-1871 or uncc-irb@uncc.edu.
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Consent to Participate
By signing this document, you are agreeing to be in this study. Make sure you understand what the study
is about before you sign. You will receive a copy of this document for your records. If you have any
questions about the study after you sign this document, you can contact the study team using the
information provided above.

I understand what the study is about and my questions so far have been answered. I agree to take part in
this study.

_________________________________________________
Name (PRINT)

_________________________________________________
Signature Date

_________________________________________________
Name & Signature of person obtaining consent           Date
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Participant's Experience

1.

Mark only one oval.

Undergraduate

Masters

Doctorate

Other

Domain Expert Survey on Geospatial Data
Analysis
Title of the Project:  A Comparative Analysis of Evaluating Interactive Geospatial Visualization
Principal Investigator: Abdullah-Al-Raihan Nayeem, Research Assistant, UNC Charlotte
Faculty Advisor: Dr. Isaac Cho, Adjunct Professor, UNC Charlotte,  Assistant Professor, Utah State 
University. 

We would like to invite you to participate in this survey for a research project, “Comparative Analysis 
of Evaluating Interactive Geospatial Visualization”. The purpose of this research study is to assist 
earth science, researchers and analysts, in their exploration and sense-making tasks with the 
interactive features in geospatial visualization. In this survey, we want to better understand your 
analytical tasks, who are experts in the earth science domain so that we can design an interactive 
visual component to support your analysis tasks.

For questions about this survey, you may contact Abdullah-Al-Raihan Nayeem (anayeem@uncc.edu) 
or Dr. Isaac Cho (Isaac.Cho@uncc.edu).

What is your academic background?
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2.

Mark only one oval.

1

2

3

4

5

3.

4.

5.

Mark only one oval.

1 - 3 years

4 - 5 years

5 - 10 years

10+ years

6.

How do you rate your expertise with geospatial data analysis

What position are you holding at your current job?

What is your major research area? (eg. climate science, geography, meteorology)

How many years of experience do you have working with geospatial data?

How useful geospatial visualization is in your day-to-day tasks?
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7.

Geospatial analysis tasks

8.

9.

10.

11.

How do you visualize the geospatial data (tools/software)?

What type of information do you extract from the geospatial analysis (Please provide a list)?

What type of analysis do you conduct with the geospatial data (Please provide a list)?

How do you compare the temporal variables in geospatial data?

What is the most challenging part in your geospatial analysis?
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12.

13.

This content is neither created nor endorsed by Google.

Which part of your analysis task would you prefer to replace with a tool?

How does geospatial contour map help in your analysis tasks?

 Forms
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APPENDIX B: MATERIALS FROM THE USER STUDY FOR QUANTITATIVE

EVALUATION OF CONTOUR-BASED INTERACTIVE GEOSPATIAL

VISUALIZATION FOR EXPLORATORY ANALYSIS

This appendix contains the materials used in a user intervention study to quantita-

tively evaluate contour-based interactive geospatial visualization, discussed in Chap-

ter 4. This crowd-sourced study was conducted with IRB approval (IRB Number:

22-470) and recruited participants from Amazon Mechanical Turk (MTurk) for Hu-

man Intelligent Tasks (HIT). The items leveraged in the study are included in the

order below:

1. Informed Consent Form

2. Posting for Amazon Mturk HIT

3. Participant Training Materials



College of Computing & Informatics
9201 University City Boulevard, Charlotte, NC  28223-0001

Consent to Participate in a Research Study

Title of the Project:  A user study for evaluating interactive features on geospatial visualizations
Principal Investigator: Abdullah-Al-Raihan Nayeem, Research Assistant, UNC Charlotte
Faculty Advisor: Dr. Isaac Cho, Adjunct Professor, UNC Charlotte
Study Sponsor: -

You are invited to participate in a research study. Participation in this research study is voluntary. The
information provided is to help you decide whether or not to participate. If you have any questions,
please ask.

Important Information You Need to Know

● You are being asked to participate in a user study for a research project, “Quantitative Evaluation
for interactive features on geospatial visualizations”. The purpose of this research study is to
assist earth science, researchers and analysts, in their exploration and sense-making tasks with the
interactive features in geospatial visualization. In this study, we aim to conduct a user
intervention study to capture users’ interaction in performing their analysis tasks using geospatial
visualization. We want to analyze the data to evaluate the interactive features in different analysis
tasks with geospatial visualization.

● We are asking experts and students who are interested in interactive geospatial analysis to
participate in our study. With your consent, we will redirect you to the user study interface. The
interface will inquire a few demographic questions and provide an interactive exercise to be
familiar with the visualization. Next, the interface will take you to the study page. The interface
will prompt questions that you can answer using the interactive geospatial visualization. Finally,
the interface will ask about your impression of using the visualization.

● In the demographic and post-questionnaire, you may choose to skip a question you do not want to
answer. You may personally benefit from taking part in this research. We expect the visualization
component is useful for performing analysis tasks but more importantly, your input in this study
may help us better understand how such visual components can assist in the spatiotemporal
analysis tasks.

● Please read this form and ask any questions you may have before you decide whether to
participate in this research study.

Why are we doing this study?
In this study, we intend to learn if an interactive contour-based geospatial visualization may assist the user
in performing exploratory analytical tasks over the geospatial data. W designed analytical tasks to
perform using both traditional static and interactive geospatial visualization to evaluate our hypotheses. In
addition, we want to understand your impression and experience with the implemented interactive
features for the visualization.
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Why are you being asked to be in this research study?
You are being asked to participate in this study because you are an expert or student related to earth
science or geography domain and use geospatial data in the analysis tasks in your daily work. You are
also able to participate in this study using a laptop or desktop. If you are an MTurk worker, you must be a
master worker and have at least a 95% HIT approval rate.

What will happen if I take part in this study?
If you choose to participate and provide your consent on the web interface electronically, you will be
redirected to the user study. We are not capturing any identifiable information in our study. The rest of the
study will follow up and store the data against an unidentifiable unique ID.

The study starts with getting basic information from you such as academic qualification, gender, and
expertise in geospatial analysis. Next, the interface forwards to another window that interactively
introduces the developed geospatial visualization. This interactive exercise describes the features and how
to utilize them. To verify your understanding, we would provide some sample questions that are not part
of the study. If you are able to correctly answer the questions, the interface redirects to the actual user
study. In the training phase, when the user chooses the wrong answer, the interface would assist in
selecting the correct one.

The user study interface consists of three parts - a geospatial visualization panel, an information panel that
describes the data put on the map, and a question/answer panel. The interface will provide 8 sets of
questions to the user from 8 different task categories. Each set contains 14-15 questions. To answer these
questions, the user needs to interact with the map. Patterns of questions would vary based on the task
category. That entails that you might be prompted with a similar question set for different geospatial
visualization. Finally, the interface prompts some usability questions to understand the participant's
impression of using the visualization. The user study will take approximately 60 minutes to complete.

What benefits might I experience?
You will not benefit directly from being in this study at this moment. Eventually, we expect our
visualization tool to assist in your analysis tasks in the future.

What risks might I experience?
We do not expect you to go through any mental or physical risk participating in this study.

How will my information be protected?
We do not intend to capture any of your identifiable information. The data captured in the user study are
stored against a unique ID generated once you provide your consent to participate in the study. After
completing the user study, data will be accessible only to those who are working on evaluating our
proposed system. All the information collected from the study will be stored in a secure server protected
by a password with minimal accessibility. We will not publish or disclose any granular portion of the data
that might lead to the potential identification of a participant.

How will my information be used after the study is over?
After this study is complete, the person involved in this research study can still utilize your feedback for
other studies but will not share it with any other personnel. The portion of information utilized will not
contain any of your identity or identifiable information. We will not get back to you for further revision of
this information.

Will I receive an incentive for taking part in this study?
If you are a participant from UNCC SONA, completion of this study would benefit you with 1 credit. If
you are a participant from M-Turk, please use your token after completing the study to redeem an
incentive of $4 in the M-Turk portal. If you are a participant from SONA, please contact the PI with your
token, to earn the credit. Your tokens are not identifiable or associated with your participation in this
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study. Please note that to earn the incentive you must complete the study and get a completion code from
the user study interface. Additionally, we also place eight engagement questions to ensure your
attentiveness during the study. If you are unable to answer all the engagement questions correctly or
complete the user study portion in less than 10 minutes, we reserve the right to not award the incentive.
That being said, we do not want you to get stressed about finding the correct answer. We would definitely
appreciate your best attempt.

What other choices do I have if I don’t take part in this study?
You have the total right to opt out of this study at any time. If you do not want to participate in this study,
please let us know. You would not be responsible or do not require any clarification in that case.

What are my rights if I take part in this study?
It is up to you to decide to participate in this research study. Participating in this study is voluntary. Even
if you choose to be part of the study now, you may change your mind and stop at any time. You do not
have to answer any questions you do not want to answer.

Who can answer my questions about this study and my rights as a participant?
For questions about this research, you may contact Abdullah-Al-Raihan Nayeem (anayeem@uncc.edu,
980 318 8981) or Dr. Isaac Cho (Isaac.Cho@uncc.edu). If you have questions about your rights as a
research participant or wish to obtain information, ask questions, or discuss any concerns about this study
with someone other than the researcher(s), please contact the Office of Research Protections and Integrity
at 704-687-1871 or uncc-irb@uncc.edu.

Consent to Participate
By checking the box below, you are agreeing to be in this study. Make sure you understand what the study
is about before you agree. You can download a copy of this document for your records. If you have any
questions about the study after you agree to provide your consent, you can contact the study team using
the information provided above.

❑ I understand what the study is about and my questions so far have been answered. I agree to take part
in this study.
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B.1 Posting for Amazon Mturk HIT

B.2 Participant Training Materials
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APPENDIX C: MATERIALS FROM THE USER STUDY OF VISUAL

ANALYTICS APPROACHES FOR DOWNSCALED CLIMATE MODEL

EXPLORATION

This appendix contains the materials used in a qualitative evaluation study with

IRB approval (IRB Number: 21-0324), which is discussed in Chapter 5. The study

invited domain experts in earth and climate science to evaluate our proposed vi-

sual analytics approach for large-scale spatiotemporal data using downscaled climate

projections. The items below are included in the order:

1. Informed Consent Form

2. Demographic & Pre-Questionnaire Form

3. Post Questionnaire Form



 
 
 

 
 
 

College of Computing & Informatics 
9201 University City Boulevard, Charlotte, NC  28223-0001 

 
Consent to Participate in a Research Study 

 
Title of the Project:  Visual Analytics system for NASA Earth Exchange Downscaled Climate Projection 
Principal Investigator: Abdullah-Al-Raihan Nayeem, Research Assistant, UNC Charlotte 
Faculty Advisor: Dr. Isaac Cho, Adjunct Professor, UNC Charlotte 
Study Sponsor: National Science Foundation (NSF) 
 
You are invited to participate in a research study. Participation in this research study is voluntary. The                 
information provided is to help you decide whether or not to participate. If you have any questions,                 
please ask. 
 
Important Information You Need to Know 
 

● You are being asked to participate in a research study, “Visual Analytics System for NASA               
NEX-DCP30” The purpose of this research study is to assist earth science, researchers and              
analysts, in their exploration and sense-making tasks using the NEX-DCP30 dataset. In this study,              
we want to better understand your analytical tasks who are experts in the earth science domain,                
and how our proposed visual analytics system can contribute to your workflow.  

 
● We are asking experts in the domain of earth science to participate in our study. This is a three                   

(3) part study. With your consent, we will send you a link to a Google Form containing                 
pre-questionnaire, system demonstration that includes embedded video demonstration introducing         
our system and opportunity to use the system without giving us any use or interaction log, and                 
finally, post demonstration questionnaire to understand your feedback or impression about our            
system.  

 
● In the pre-questionnaire section, we will ask about your work experience with earth science              

data and the analysis tools that you currently use for the tasks. You may choose to skip a                  
question you do not want to answer. You may personally benefit from taking part in this research                 
(given our system is useful for replacing your analysis tool) but more importantly, your input in                
this study may help us better understand how this system can assist in the earth science analysis                 
tasks.  

 
● Please read this form and ask any questions you may have before you decide whether to                

participate in this research study.  
 
Why are we doing this study?  
In this study, we intend to understand the usefulness of our system and improve in terms of                 
features and performance to make it useful for the earth science analytical tasks. 
 
Why are you being asked to be in this research study? 
You are being asked to be in this study because you are an expert in the earth science domain and use data                      
analysis tools in your daily work.  
 
What will happen if I take part in this study?  
If you choose to participate you will complete a survey on Google form. In this study, we will first ask the                     
participants a set of questionnaires using a Google Form about their work experience with earth science                
data and the analysis tools that they currently use for the tasks. After the initial set of questionnaires, we                   
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will provide a recorded video demonstration of our visual analytics system for earth science to facilitate                
analyzing the NEX-DCP30 data. Next, we will ask questions about our system based on the               
demonstration provided, specifically to understand the potential of the system in your future endeavors,              
your recommendations about the system, and usefulness of the system’s features in general. In this step,                
we would also like the participants to use our system. We would like to mention that we are not capturing                    
any interaction log. We do not intend to evaluate the system based on the interaction, therefore, we are not                   
interested to know how participants use the interface. The follow-up questionnaires will also be included               
in the Google Form right after the video demonstration. In the process, we will ask about your                 
visualization and interaction preferences to explore the dataset. Additionally, we will also ask your              
feedback on the relevancy between the analyzed data and visualization provided for exploratory analysis.              
The interview will take approximately 60 minutes to complete.  
 
What benefits might I experience?  
You will not benefit directly from being in this study at this moment. Eventually, we expect our system to                   
assist in your analysis tasks. 
 
What risks might I experience?  
We do not expect you to go through any mental or physical risk participating in this study.  
 
How will my information be protected?  
You are asked to provide your email address as part of this study. We will use your email address to send                     
the survey Google Form after you provide your consent. The identifier email or name will be separated                 
from the obtained survey information. The data will be accessible only to those who are working on                 
evaluating our proposed system. All the information collected from the study will be stored in a secure                 
server protected by the password with minimal accessibility. If google form captures the email address of                
the participant on its own, we will separate that information from the responses and store only the answers                  
provided against our questionnaires and tag the response with Expert 1, 2…Expert N.  
 
How will my information be used after the study is over?  
After this study is complete, the person involved in this research study can still utilize your feedback for                  
other studies but will not share with any other personnel. The portion of information utilized will not                 
contain any of your identity or identifiable information. Since we are not capturing any of your interaction                 
data in this study rather your observation and experience, we will not get back to you for further revision                   
of this information. 
 
Will I receive an incentive for taking part in this study? 
We are not offering any incentive to participate in this study. 
 
What other choices do I have if I don’t take part in this study?  
You have the total right to opt out from this study any time. If you do not want to participate in this study,                       
please let us know. We will not send out the survey form in that case. You would not be responsible or do                      
not require any clarification in that case. 
 
What are my rights if I take part in this study?  
It is up to you to decide to be in this research study. Participating in this study is voluntary. Even if you                      
decide to be part of the study now, you may change your mind and stop at any time. You do not have to                       
answer any questions you do not want to answer.  
 
Who can answer my questions about this study and my rights as a participant? 
For questions about this research, you may contact Abdullah-Al-Raihan Nayeem (anayeem@uncc.edu,           
980 318 8981) or Dr. Isaac Cho (Isaac.Cho@uncc.edu). If you have questions about your rights as a                 
research participant, or wish to obtain information, ask questions, or discuss any concerns about this study                
with someone other than the researcher(s), please contact the Office of Research Protections and Integrity               
at 704-687-1871 or uncc-irb@uncc.edu.  
 
  

174



Consent to Participate 
By signing this document, you are agreeing to be in this study. Make sure you understand what the study                   
is about before you sign. You will receive a copy of this document for your records. If you have any                    
questions about the study after you sign this document, you can contact the study team using the                 
information provided above. 
 
I understand what the study is about and my questions so far have been answered. I agree to take part in                     
this study.  
 
_________________________________________________ 
Name (PRINT)  
 
 
_________________________________________________ 
Signature            Date 
 
 

 
_________________________________________________ 
Name & Signature of person obtaining consent           Date 
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1.

Mark only one oval.

I have signed the consent to participate in this study

I do not intend to participate in this study

Pre-Questionnaire

2.

3.

4.

User Experience Study :: Visual Analytics
System for NASA Earth Exchange
Downscaled Climate Projections
In this study, we aim to understand your analytical tasks in the earth science domain and how our 
proposed visual analytics system can contribute in your work�ow. We would also like to receive 
feedback from you through the questionnaires about the currently implemented features and 
potential future works of our system

* Required

In the invitation, we have sent you a DocuSign consent form for participating in this
research study. Please sign the form before proceeding to the study.

*

What is your education level?

What is your job position?

How many years of experience you have in this job?

176



5.

6.

7.

8.

9.

10.

11.

Video
Demonstration

To use our interface, please visit the following link: 
https://esva.jpllab.net/

Please briefly describe your work.

For what purpose do you study the Climate Science?

Which software and toolkit do you use to analyze your datasets?

Which software or tool do you use to visualize your datasets?

What are some of the prominent datasets you generally utilize in your research and
analyses?

How easy or difficult you find the process of data analysis and visualization?

Are there any specific features you wish to have when you are using visualization software
(e.g. GIS + map)?
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DCPViz: A Visual Analytics Approach for Downscaled Climate Projections

http://youtube.com/watch?v=INDfAZo-ZZY

Feedback on User Interface

12.

13.

14.

Which visualization was most useful for you and why?

What scenario do you think you can utilize this interface to analyze your data?

Which features of the interface would be useful for your analysis and why?
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15.

16.

17.

18.

This content is neither created nor endorsed by Google.

Are there any specific features (or visualizations) you think to add into the interface?

How convenient the interface was for you to find the target information?

Are the visualizations self explanatory with colors, legend, and tooltip?

How do you rate the performance of the visualization (based on rendering time and
transition)?

 Forms
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