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ABSTRACT 

 

 

TONG WU.  An Exploration of Comparability Issues in Educational Research: Scale Linking, 

Equating, and Propensity Score Weighting. (Under the co-direction of Dr. STELLA KIM and 

Dr. CARL WESTINE) 

 

 

This three-article dissertation aims to address three methodological challenges to ensure 

comparability in educational research, including scale linking, test equating, and propensity score 

(PS) weighting. The first study intends to improve test scale comparability by evaluating the 

effect of six missing data handling approaches, including listwise deletion (LWD), treating 

missing data as incorrect responses (IN), corrected item mean imputation (CM), imputing with a 

response function (RF), multiple imputation (MI), and full information likelihood information 

(FIML), on item response theory (IRT) scale linking accuracy when missing data occur within 

common items. The relative performance of these six missing data treatment methods under two 

missing mechanisms is explored with simulated data. Results show that RF, MI, and FIML 

produce fewer errors for conducting scale linking, whereas LWD is associated with the most 

errors regardless of testing conditions. The second study aims to ensure test score comparability 

by proposing a new equating method to account for rater errors in rater-mediated assessments. 

Specifically, the performance of using an IRT observed-score equating method with a 

hierarchical rater model (HRM) is investigated under various conditions. The newly proposed 

equating method leads to comparable bias, SE, and RMSE to that of a traditional IRT observed-

score equating method with the use of generalized partial credit model (GPCM) as normal raters 

scoring the new test forms. However, when aberrant raters are involved in the scoring process, 

the HRM IRT observed-score equating method generally produces more accurate results in bias 

and RMSE, though generates comparable SEs to the traditional method. The third study 
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examines the performance of six covariate balance diagnostics when using PS weighting method 

with multilevel data. Specifically, a set of simulated conditions is used to examine the ability of 

within-cluster and pooled absolute standardized bias (ASB), variance ratio (VR), and percent 

bias reduction (PBR) methods to identify a correct PS model. In addition, the association 

between the balance statistics and the bias in treatment effect is explored. Within-cluster ASB 

and PBR are observed to be associated with the most accurate results in the choice of PS model 

as compared to other diagnostics. Pooled ASB is found to have the highest association with the 

treatment effect bias. By advancing the methodology for addressing comparability issues, the 

dissertation intends to enhance the validity and improve the quality of educational research. 
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INTRODUCTION 

 The topic of comparability has received extensive attention in measurement and 

statistical research (e.g., Berger, 2006; Engelhard & Crocker, 1995; Green, 1995; Kolen, 1999). 

Depending on specific purposes and contexts, comparability can be interpreted differently. 

Therefore, researchers need to provide detailed and accurate information to create effective 

communication with stakeholders (Elliott, 2013). Notably, ensuring comparability is one of the 

key steps to maintain the validity of analyses or inferences under many circumstances (Berman 

et al., 2020; Evans & Lyons, 2017; Newgard et al., 2004). 

In the field of measurement, achieving comparability means that “users could be assured 

that students with the same score are equally proficient with respect to the knowledge and skills a 

test was intended to measure” (Berman et al., 2020, p. 2). According to the Standards for 

Educational and Psychological Testing (AERA, APA, & NCME, 2014), maintaining the 

comparability of test scores “enables test users to make comparable inferences based on the 

scores for all test takers (p. 59). In other words, test scores should be interchangeable regardless 

of test time, location, form, mode, or other factors. Comparability is significant in ensuring test 

fairness, such that examinees who are assigned to a particular form are not inadvertently 

disadvantaged over the others who take different forms of a test. With such practices, 

stakeholders, such as school admission officers, evaluators, test takers, and parents can make 

accurate interpretations of test results through valid test scores comparisons. Beyond the strict 

definition of test score interchangeability, Evans and Lyons (2017) stressed the value of viewing 

comparability from a broader perspective. Specifically, comparable inferences need to be 

guaranteed for different school districts and across assessment systems to ensure state 

accountability when various local assessments are administered. 
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Securing comparability related to test scores and across districts and assessment systems 

can be achieved through various approaches. Statistical procedures such as linking and equating 

can be used to adjust for differences in scales, group abilities, and test scores (Kolen & Brennan, 

2014). Judgement methods can also be employed, particularly for performance-based 

assessments, where expert judges ensure comparability of the judgements made by primary 

judges (Adams, 2007; Evans & Lyons, 2017). 

Ensuring comparability is also crucial in intervention studies, in which the actual effect of 

the intervention is more likely to be obtained if comparable treatment and control groups are 

created. Randomized controlled trial (RCT) is an ideal research design because all subjects have 

an equal probability of being assigned to a group, which will produce two comparable groups. 

The comparability between groups indicates that covariates, both observed or unobserved, such 

as age, ethnicity, gender, etc., between treatment and control groups are similar. Thus, any 

difference between treated and untreated subjects can be directly attributed to the treatment 

effect on the outcome measure (Greenland et al., 1999). 

However, in practice, randomization is often not practical or unethical, especially in 

education. For example, it is almost impossible for researchers to arbitrarily assign students into 

treated or untreated classes or schools. In non-randomized studies, the comparability of the 

characteristics between the two groups is unknown. Moreover, the probability of being assigned 

to a treatment group often relates to subject propensities, making it challenging to obtain 

comparable groups. If there is an imbalance in covariates between the groups, the treatment 

effect cannot be accurately estimated due to confounding issues (Greenland & Neutra, 1980). 

Thus, it is essential to use techniques such as propensity score matching, weighting, 
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subclassification, and covariate adjustments (Bai & Clark, 2018) to account for systematic 

differences between groups and ensure the validity of estimated treatment effects. 

Though multiple approaches can be employed to achieve comparability of different types 

or within contexts, there are several factors that can pose a threat to it. This dissertation aims to 

address three methodological challenges associated with comparability issues in educational 

research. The dissertation is formatted with three studies, each of which tries to address one 

specific challenge based on simulated data. The challenges are presented below: 

1. Which missing data handling method should be used to achieve accurate scale 

transformation for maintaining comparability among examinees taking different test 

forms?  

2. How can test score comparability be maintained if responses on different test forms 

are graded by raters with varying levels of severity and variability? 

3. Which covariate balance diagnosis is the most effective for selecting a more accurate 

propensity score model and constructing comparable groups when weighting is used 

with multilevel data? 

The dissertation aims to provide guidance to educational researchers in identifying more 

accurate methods for achieving comparability in different educational contexts, including scale 

linking, test equating, and propensity score (PS) weighting. The dissertation examines three 

different instances related to comparability where researchers face decision-making in the design 

or analysis of their study. Each challenge is elaborated on below, and the respective challenge is 

briefly addressed in each of the three studies. 
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Chapter/ Study 1 

To reduce the probability of cheating and enhance test security, large-scale testing 

programs often administer multiple forms of a test. However, within the item response theory 

(IRT), ensuring that test scores remain comparable across different forms of a test can be a 

difficult task. Common factors that can affect test score comparability may include differences in 

examinee abilities associated with different test forms and variations in the difficulty level of 

each test form. The first study in this dissertation aims to minimize the negative impact of ability 

differences between two forms to ensure test comparability. 

 The item response theory scales are characterized by the indeterminate property, which 

means that the location and spread of the scale are arbitrary. Conventionally, computer software 

utilizes a standard scale, specifically a normal distribution - N(0, 1), for placing abilities 

estimated from different groups (Kim & Kolen, 2007; Mislevy & Bock, 1990). Under a random 

group design, examinees from two groups (old and new group) are considered to be equivalent 

with respect to ability, which is often achieved by incorporating a spiraling procedure during data 

collection. Parameters estimated from the two equivalent groups are automatically placed on a 

common standard scale, enabling the estimates to be compared directly.  

However, it is often the case that test forms are administered to examinees from different 

populations. Then, the calibrated item parameter estimates of the two forms based on separate 

calibration are placed on two distinct standard scales due to the indeterminacy property. 

Improper scale linking could result in test results from a group of high-achieving test takers and a 

group of low-achieving test takers being incorrectly claimed to be at similar levels, undermining 

the validity of test scores. In addition, the credibility of different psychometric activities, such as 

test equating and differential item functioning, is threatened. 
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To address the issue, statistical procedures are often employed to adjust the differences 

related to group abilities. Scale linking is one such procedure used to transform parameter 

estimates, including item and ability parameters, onto the same scale. Although different 

definitions of linking were proposed in the literature (Dorans et al, 2007; Kim & Kolen, 2014), 

scale linking in this study refers to a procedure specifically used under a common-item 

nonequivalent groups design (CINEG). With this design, two groups of test takers with different 

abilities are provided with parallel forms of a test including a set of common items. Since the 

parameters are calibrated separately, there is no guarantee that the two sets of parameter 

estimates will be on the same scale. 

In practice, two major IRT scale linking approaches are used: characteristic curve 

methods and moment methods. The moment transformation methods include the mean-mean 

method (Loyd & Hoover, 1980) as well as the mean-sigma method (Marco, 1977). These 

methods use the mean of a and b parameters, and the mean and standard deviation of b 

parameter, respectively, to perform the transformation (Kolen & Brennan, 2014). In contrast, 

characteristic curve methods, including the Haebara (1980) and Stocking-Lord methods (1983), 

consider all parameters when estimating transformation coefficients, whereas moment methods 

only take the first one or two moments of item parameters into account. 

Previous literature has explored the topic of scale linking from various perspectives (e.g., 

Kim & Kolen, 2007, 2022; Kim & Lee, 2006; Vale 1986; von Davier & von Davier 2007).  

However, an overlooked challenge in scale linking is how to accurately transform the scale in the 

presence of missing responses. This problem should be investigated because without a proper 

treatment of missing responses, item and examinee parameters estimates obtained from 
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examinees associated with different forms can be affected. As a result, inaccurate linking 

coefficients are likely to compromise the validity of test results. 

Missing responses in other contexts have been handled in multiple ways. For example, 

listwise deletion (LWD) or treating the missing data as incorrect responses (IN) are the two most 

used methods. More advanced methods have also been used in practice, including substituting 

missing data with a corrected mean (CM, Bernaards & Sijtsma, 2000), response function 

imputation (RF, Sijtsma & van der Ark, 2003), multiple imputations (MI), and full information 

maximum likelihood (FIML, Enders, 2001), each of which has its own advantages. Both CM and 

RF are suitable for categorical data, a data type that is often found in large-scale tests (Bernaards 

& Sijtsma, 2000). MI and FIML have shown high levels of accuracy in previous research (Finch, 

2008; Mislevy, 2017). 

The impact of these methods on scale linking has not yet been investigated. It is likely 

that various methods of handling missing responses will influence linking coefficients, affecting 

the accuracy of item and person parameters. This can ultimately compromise the comparability 

of test scores between two test forms. Therefore, it is crucial to investigate the performance of 

different methods to treat missing responses and understand how they impact the maintenance of 

a common IRT scale between two test forms. 

Chapter/ Study 2 

Test equating, as a statistical procedure, is often used in large-scale assessments to 

achieve comparable/interchangeable scores across multiple test administrations. If parameters 

from different groups are placed on the same scale, equating can then be conducted “to adjust 

scores on test forms so that scores on the forms can be used interchangeably” (Kolen & Brennan, 

2014, p.2). Equating ensures that examinees' scores on one test form can be directly compared to 
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scores on another test form, allowing stakeholders to interpret test results accurately and make 

valid comparisons. 

Study 2 discusses how to achieve test score comparability across different test 

administrations for rater-mediated assessments that involve human raters. Equating becomes 

more complex in such assessments because scores assigned by raters can be influenced by 

various factors. According to Wolfe (2020), in general, rating outputs, such as rating quality, 

rating speed, and rating attitudes, can be largely influenced by three types of inputs for human-

scoring tests, including the characteristics of the raters (e.g., level of proficiency, experiences, 

education, etc.), the content of the responses (e.g., linguistic feature profiles of essays, 

handwritten or keyboarded essays, gender and ethnicity of examinees, etc.), and the context of 

the scoring process (e.g., training raters have received, the focus of the scoring criteria, testing 

mode, etc.). Researchers have used rater effects to describe the patterns of rater errors.  

The literature has identified four common rater effects: severity/leniency, 

centrality/extremity, accuracy/inaccuracy, and halo effects (Myford & Wolfe, 2003; Wolfe, 

2020). In addition, rater behavior can change over time, which is commonly referred to as 

differential rater functioning over time (DRIFT; Wolfe et al., 1999). Both rater errors and DRIFT 

can threaten the validity and reliability of a test score (Anthony et al., 2020; Engelhard, 1994; 

Hoyt, 2000) and therefore affect the accuracy of test equating. For example, in IRT observed-

score equating, if rater effects are not faithfully accounted for, they can affect both the 

conditional and marginal distributions of observed number-correct scores and the estimated 

distributions of latent traits. Therefore, rater effects can ultimately influence the accuracy of 

score adjustments between two forms. DRIFT, on the other hand, affects the consistency of 
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ratings across multiple administrations of a test, making test scores across different time points 

incomparable. 

Several rater models have been proposed to handle measurement errors caused by the use 

of human raters (e.g., Lincare, 1989; Patz et al., 2002; Qiu et al., 2021). These models have been 

used in many studies to quantify the bias and variability associated with raters and to investigate 

their effect on test scores (e.g., Congdon & McQueen, 2000; Harik et al., 2009; Hung et al., 

2012; Kassim, 2011; Nieto & Casabianca, 2019). However, how to handle rater errors and rater 

drift have not been fully investigated in the field of test equating. It remains unclear how to 

obtain test score comparability while adjusting for discrepancies in form difficulty and 

accounting for rater effects. An innovative equating method was proposed in study 2 to ensure 

score comparability across different test administrations by accounting for human raters. 

Chapter/ Study 3 

It is well acknowledged that randomization is often essential in educational research, as it 

ensures that all subjects have an equal chance of being assigned to a group, producing two 

equivalent groups. However, many intervention studies in educational context are not RCT. To 

achieve comparable subjects in treatment and control groups on the observed propensities, 

Rosenbaum & Rubin (1983; 1984) developed the PS method by matching the subject’s 

probability of being selected in the treated group to mimic a randomized experiment. One of the 

assumptions for using the PS method is that all factors related to treatment assignment or 

outcomes are measured. 

The PS method requires a series of steps (Powell et al., 2020). The first step involves 

calculating the effect size of the between-group differences on all covariates before conducting 

the PS methods. This step helps to understand the extent to which the equivalence between the 
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treatment and control groups needs to be improved. In the second step, a propensity score is 

created for each participant, representing the probability of being selected in the treatment group. 

Typically, a logistic regression is used to estimate the propensity score by using group 

membership as the outcome variable (1 for the treatment group and 0 for the control group) and 

the covariates as predictors. Then, a PS score is applied to each individual using one of the four 

popular approaches: matching, stratification, weighting, and covariate adjustments. The third 

step involves assessing the covariate balance between the treatment and control groups. If the 

difference between the two groups meets a certain criterion, step 4 is carried out. Otherwise, the 

covariates used in step 2 need to be changed, or the logistic regression model should be adjusted. 

Step 3 is repeated until the equivalence between the two groups is achieved. In the last step, a 

treatment effect is estimated by examining group differences on the outcome variable. For each 

of these four steps, researchers need to decide which method is most suitable for their study from 

a pool of available methods. Scholars have conducted extensive research to provide rationales for 

each decision point in using the PS methods by comparing their performance under specific 

conditions (Austin, 2009; Austin, 2014; Jacovidis et al., 2017; Stone & Tang, 2013). 

Among the four steps, the third step, covariate balance diagnostics, is crucial to ensure 

the comparability of covariates between groups, which influences the validity of the estimated 

treatment effect. Using an effective covariate balance diagnostic is instrumental in selecting a 

correct PS model. If the covariate balance diagnostic fails to provide accurate information about 

the degree of imbalance between two groups, the de facto imbalanced covariates might be 

incorrectly assessed as balanced. In this case, the undetected imbalance in the covariates can still 

influence the accuracy of the estimated treatment effect. 
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Multiple covariate balance diagnostics have been researched with single-level data (e.g., 

Ali et al., 2015; Austin, 2009). However, limited research has considered the complex data 

structure inherent in educational settings, where data are hierarchical (e.g., students nested within 

a class), in evaluating the performance of covariate balance diagnostics. Equivalence between 

comparison groups can also be achieved by applying PS weighting. Weighting can be conducted 

through multiplying the observations of the measured variable by a weight based on the 

propensity scores (Bai & Clark, 2018). When applying PS weighting with multilevel data, using 

the diagnostics constructed for single-level data may not be sufficient in detecting group 

imbalance. This is due to the fact that traditional diagnostics only consider variations among 

individuals, ignoring the information regarding the variations on covariates among clusters. 

Improper use of covariate balance diagnostics may lead to a misunderstanding of the degree of 

group imbalance, hindering the accuracy of treatment effect estimation. Therefore, there is a 

need to examine different covariate balance diagnostics to gain more insight into their 

applications with multilevel data, considering the use of PS weighting. 

Significance 

It is essential for educational researchers to ensure comparability for different purposes 

with the consideration of specific contexts. However, this goal can be difficult to achieve due to 

a variety of challenges. One such challenge is the selection of an appropriate method, which 

requires careful consideration of previous research findings as well as the researcher's 

experience. The dissertation aims to advance the methodology for addressing comparability 

issues in educational research through three studies. 

Both the first and second studies present advancements in methodologies to achieve 

comparability among test scores of multiple test forms. Test stakeholders can benefit from the 
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studies in different ways. For example, test takers can be treated fairly by receiving valid scale 

scores. School administrators can interpret test scores accurately to make better decisions.  

The first study of the dissertation uses simulated data to explore the role of six missing 

data handling approaches in IRT scale transformation. The objective is to aid psychometricians 

and researchers in determining the most suitable method for handling missing responses, thereby 

ensuring a fair comparison of IRT parameters. The second study addresses a gap in the literature 

by proposing an IRT observed-score equating method that accounts for rater error using a 

hierarchical rater model. Using simulated data to evaluate the new equating model, this study 

intends to offer a new equating tool for researchers and practitioners. The newly proposed 

equating method is expected to improve the interchangeability of test scores and help ensure test 

fairness when data involve errors attributable to human raters. 

The third study aims to identify a suitable covariate balance diagnostic for PS weighting 

with multilevel data to achieve balanced comparison groups. By examining a more 

comprehensive list of covariate balance diagnostics in the context of PS weighting, which has 

not been previously explored with nested data structures, this study contributes significant value 

to existing knowledge. By appropriately utilizing covariate balance diagnostics, researchers can 

better comprehend the effect of an intervention/program, providing policymakers with evidence 

to make informed decisions. 

This dissertation fills the gap in the literature by addressing comparability issues in 

education, including scale linking, test equating, and PS weighting. Based on the findings of the 

dissertation, educational researchers will be able to choose the optimal methods in data 

processing and analysis procedures to ultimately improve study validity and quality of 

educational research. 
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CHAPTER/ STUDY 1: EVALUATING THE EFFECTS OF MISSING DATA 

HANDLING METHODS ON SCALE LINKING ACCURACY 

Wu, T., Kim, S. Y., & Westine, C. (2022). Evaluating the Effects of Missing Data Handling 

Methods on Scale Linking Accuracy. Educational and Psychological Measurement, 

00131644221140941. 

In large-scale assessments, multiple forms of a test are often administered to multiple 

groups of test takers whose ability distributions are not equivalent. As a result, parameters that 

are calibrated separately for each group will be on different scales due to the indeterminacy 

property (S. Kim & Kolen, 2007; Kolen & Brennan, 2014) of the item response theory (IRT). 

This property makes it difficult to directly compare person and item parameters across different 

groups. More importantly, the differences between IRT scales need to be adjusted to conduct 

various psychometric work, such as item analysis, differential item functioning analysis, form 

construction, and so on. To deal with this issue, scale linking is usually used to position estimates 

from different groups to be on a common scale (Kolen & Brennan, 2014; Lee & Lee, 2018). 

Specifically, linking is indispensable when tests are administered under the common-item 

nonequivalent groups design (CINEG), where groups differ in ability and, thus, forms are built to 

share a set of common items in an effort to achieve scale comparability.  

Research on IRT scale linking has focused mainly on understanding the efficiency of 

using various linking approaches (e.g., moment methods and characteristic curve methods; Baker 

& Al-Karni, 1991; S. Kim & Kolen, 2006; Kim & Lee, 2006; von Davier & von Davier, 2007), 

examining the performance of different calibration methods (Hanson & Béguin, 2002; S. Kim & 

Kolen, 2006; Lee & Ban, 2009), or extending scale linking to tests with complex structures or 

with multiple constructs (S. H. Kim & Cohen, 1998; Kim & Kolen, 2006; S. Kim & Lee, 2006; 
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Li et al., 2004; Li & Lissitz, 2000; Oshima et al., 2000). These studies often assumed that 

responses collected from examinees are complete before dealing with linking issues. 

Unfortunately, achieving a complete dataset is almost infeasible in reality. For instance, in 

Programme for International Student Assessment (PISA) 2012, missing data were found to range 

from 0.3% to 13.3% at the item level for mathematics and from 0.8% to 10.5% for reading items 

(OECD, 2012).   

Under the CINEG design, linking coefficients are often estimated separately based on the 

responses to common items. If missing data that occur with the common items are not handled 

properly, estimated item and ability parameters are possible to be affected, influencing the 

accuracy of scale linking estimates. In that case, the estimated abilities of examinees will also be 

biased after being transformed to the common scale due to the inaccurate linking coefficients. 

Thus, it is crucial to understand the appropriate method to deal with missing data in the scale 

linking context such that sound decisions can be made to ensure test score validity and improve 

test fairness. 

Several missing data handling approaches have been explored within the IRT context 

(Cetin-Berber et al., 2019; Finch, 2008; Pohl et al., 2014; Shin, 2016), such as their impacts on 

the estimation accuracy of item and ability parameters. However, the performance of the 

methods on scale linking is still unknown. This study was conducted to fill this gap in the 

literature and to provide implications for practitioners and researchers on how to deal with 

missing responses for correctly placing group abilities on a common scale. Specifically, missing 

data treatment approaches were examined under two missing data mechanisms for a set of 

simulation conditions, including examinees’ ability distributions, ratio of common items, missing 

rates, percentages of common items involving missing data, and test lengths. Six missing data 
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handling approaches investigated in this study included a) listwise deletion (LWD), b) treating 

the missing data as incorrect responses (IN), c) substituting the missing data with corrected mean 

(CM; Bernaards & Sijtsma, 2000), d) applying imputation using response function (RF; Sijtsma 

& van der Ark, 2003), e) using multiple imputation approach (MI; Rubin, 1987), and f) utilizing 

full information maximum likelihood method (FIML; Enders, 2001a, 2001b; Finkbeiner, 1979) . 

Scale Linking Approaches 

This study focuses on the impact of missing data treatment methods on two IRT 

characteristic curve methods, including Haebara (1980) and Stocking-Lord methods (1983), 

because they have been found to yield more accurate results compared with the moment methods 

(Hanson & Béguin, 2002; S. Kim & Kolen, 2006; S. Kim & Lee, 2006; LeBeau, 2017). Both the 

Haebara and Stocking-Lord methods search for optimal scale transformation constants (slopes 

and intercepts) to mitigate the difference between characteristic curves across common items. 

However, they differ in that the Haebara method finds the coefficients by minimizing the 

differences between item characteristic curves, whereas the Stocking-Lord approach achieves the 

goal by reducing the differences between test characteristic curves (See Kolen & Brennan, 2014 

for more details). 

Missing Mechanisms 

According to Rubin’s theorems (1976), missing data are grouped into three mechanisms, 

including missing completely at random (MCAR), missing at random (MAR), and missing not at 

random (MNAR), depending on how the probability of missingness is related to the missing 

data. Data that are MCAR imply that the cause of the missingness is completely random. Under 

the MAR mechanism, the probability of having a data point missing is not dependent on the 

missing point itself. Instead, it is linked to some additional measured variables (e.g., total scores 
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over non-missing items can be considered a measured variable). For MNAR data, the likelihood 

of a missing response cannot be explained to any measurable variables, but caused by 

unmeasured variable(s) (e.g., missingness depends on the individual’s ability). Missing data 

handling approaches have shown to perform differently based on the type of missing 

mechanisms (e.g., Cetin-Berber et al., 2019; Finch, 2010; Robitzsch & Rupp, 2009). Mislevy and 

Wu (1996) suggested considering different missing data mechanisms when estimating 

parameters for obtaining more accurate results. Sachse et al. (2019) analyzed the PISA data from 

35 countries and identified that missing mechanisms and the presence of missing data were 

considerably different across multiple time points, countries, and domains. Through a simulation 

study, these two factors were proved to have significant impacts on trend estimates for large-

scale assessments.  

Large testing organizations tend to deal with missing responses based on the missing 

types, such as non-administered items, omitted items, and non-reached items. For instance, the 

National Assessment of Educational Progress (NAEP) assessment considers missing responses 

that appear before the last observed response as omissions and treats as fractionally correct, 

whereas the missing responses at the end of a block of items are considered as non-reached items 

and treated as not present (National Center for Educational Statistics [NCES], 2008). In real-

world practice, it is very unlikely that common items are not administered or not present to 

examinees unless there is a technical or administrative issue, which is rare to occur. Although 

missing responses on common items could possibly fall under all three missing data 

mechanisms, it is more reasonable to assume that responses are omitted or non-reached for 

common items. Previous research found that both omitted items and non-reached items can be 

affected by the examinee’s proficiency levels (Köhler et al., 2015a; Rose et al., 2010; Sachse et 
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al., 2019). However, they each can be associated with distinctive factors. The presence of 

omitted items could be attributed to item format (Köhler et al., 2015a), and item difficulty (Rose 

et al., 2010), whereas non-reached items are possibly influenced by one’s motivation level and 

test-taking strategy (Mislevy & Wu, 1988). These findings indicate that missingness for omitted 

items and non-reached items are likely to be MAR and MNAR rather than MCAR. The current 

study, as the first to examine missingness in the scale linking context, intended to identify the 

most appropriate methods to deal with omitted items under both MAR and MNAR missing 

mechanisms.   

Missing Data Handling Methods 

Listwise Deletion and Treating Missing Data as Incorrect 

In this study, six missing data handling approaches were investigated either because they 

have been found to yield accurate estimation of parameters, or they are easy to implement and 

have been commonly used (Cheema, 2014; Finch, 2008; Hawthorne et al., 2005). In terms of 

practicality, two of the most straightforward and easiest methods to apply are probably LWD and 

IN. However, treating missing responses with LWD by excluding the entire record of an 

examinee if any single value is missing was found to be associated with biased estimates 

(Enders, 2001b; Robitzsch & Rupp, 2009; Sinharay et al., 2001), except when it is under the 

MCAR mechanism (van Ginkel et al., 2010, 2020). The use of LWD inherently reduces overall 

sample size and, in turn, lowers statistical power. Considering field testing where a small number 

of examinees are involved, applying LWD with missing data seems to be more problematic 

because little data may remain if examinees who miss answering any items will be removed.  

IN assumes that the missingness is MNAR. Specifically, missingness is believed to be 

resulted from test takers’ limited knowledge or skills to perform the tasks, and thus missing 
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responses are treated as incorrect. However, in practice, missingness can also be related to 

examinees’ gender, motivation, self-efficacy, and the enjoyment of working on the subject (Di 

Chiacchio et al., 2016), which are not MNAR. Research has shown that IN is associated with 

biased parameter estimates or theta estimates (De Ayala et al., 2001; Mislevy, 2017; Robitzsch & 

Rupp, 2009; Rose et al., 2010), but this approach is still commonly used in practice for handling 

missing data due to its relatively simple application. 

In addition to the traditional methods introduced earlier, various imputation methods that 

are more complex and computationally demanding have been proposed to treat missingness in 

educational assessments. Imputation is a process where, “the missing values are filled in, and the 

resultant completed data are analyzed by standard methods” (Little & Rubin, 2020, p.24). Both 

single imputation methods, including CM and RF, and multiple imputation (MI) method are 

described subsequently. In addition, FIML is also discussed and examined in this study. 

Corrected Item Mean Substitution 

The CM method incorporates a weight to represent the examinee’s performance relative 

to the average performance of all examinees on the non-missing items (Bernaards & Sijtsma, 

2000). For instance, a higher value is imputed to the missing item response when the examinee’s 

performance on non-missing items is above the average performance. The imputed value 𝑋𝑖𝑗 for 

examinee 𝑖 on missing item j is found as (Bernaards & Sijtsma, 2000; Finch, 2008), 

𝑋𝑖𝑗 = {
𝑃𝑀𝑖

1

𝑁𝑖
∑ 𝐼𝑀𝑘𝑖𝑘𝑖

} 𝐼𝑀𝑗 , 
 (1.1) 

where 𝑃𝑀𝑖 is the mean score for examinee 𝑖 that can be obtained by averaging the available 

scores for examinee 𝑖 across all non-missing items. 𝐼𝑀𝑗 is the mean score for item j, which can 

be calculated by averaging all non-missing scores over examinees on item 𝑗. 𝑁𝑖 indicates the 

count of non-missing items for examinee 𝑖. 𝐼𝑀𝑘𝑖
 is the mean score for non-missing item 𝑘 of 
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examinee 𝑖, which can be obtained by averaging all non-missing scores over examinees on item 

𝑘. The ratio in the bracket indicates the relative performance of examinee 𝑖 with 𝑃𝑀𝑖 being 

divided by the mean of item means across all non-missing items. If the ratio is > 1, then 

examinee 𝑖 will have a higher score than the average score on item 𝑗 of all examinees, and vice 

versa. For dichotomous item responses, the imputed value is rounded to either 0 or 1 (see 

Bernaards & Sijtsma, 2000; Finch, 2008 for more details). 

Response Function  

The RF approach is a method using nonparametric regression to impute values for 

missing data based on a latent trait parameter of an examinee (Sijtsma & van der Ark, 2003). 

This method assumes that an examinee’s score is related to a latent parameter denoted by the rest 

score, 𝑅(−𝑗)𝑖, which represents the total score of examinee 𝑖 on all the items of a test except for 

missing item 𝑗. To impute data using RF, the first step is to calculate the rest score �̂�(−𝑗)𝑖:  

                                                     �̂�(−𝑗)𝑖 = 𝑃𝑀𝑖(𝐽 − 1), (1.2) 

where 𝑃𝑀𝑖 is as defined earlier and 𝐽 is the count of items over the test. The next step is to 

calculate the possibility of examinee 𝑖 obtaining the rest score �̂�(−𝑗)𝑖, but the method used in the 

calculation varies by the value of �̂�(−𝑗)𝑖. When �̂�(−𝑗)𝑖 is an integer, the possibility is calculated 

by dividing the number of examinees who have obtained the same rest score and answered the 

target missing item correctly by the total examinees. If �̂�(−𝑗)𝑖 is not an integer, the possibility is 

obtained using linear interpolation based on the percentage of the examinees who got item j 

correct with the largest integer rest score below �̂�(−𝑗)𝑖 and the proportion with the smallest 

integer rest score above �̂�(−𝑗)𝑖. In the final step, an imputed value for a missing item is drawn 

from a Bernoulli distribution with the estimated possibility (see Sijtsma & van der Ark, 2003 for 

more details). 
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Both CM and RF are single imputation strategies, which generate a complete dataset by 

filling in a value for each missing point. Finch (2008) found that the amount of bias in difficulty 

estimates associated with CM was comparable with other commonly used approaches, although 

a larger bias was found in item discrimination estimates with this method. The use of RF led to 

less bias than IN and CM but was associated with higher standard errors than CM in many 

conditions. These two methods were included in this study because they were designed to be 

applied to categorical data (Finch, 2008). In addition, both methods require relatively less 

intensive computation. However, using one model to restore missing data does not reflect 

sampling variability, which might underestimate the standard error in the subsequent statistical 

analysis (Little & Rubin, 2020). 

Multiple Imputation Algorithm 

To correct the major flaw of single imputation approaches as discussed above, Rubin 

(1987) introduced the MI algorithm. In MI, each missing data point is imputed M times. The 

imputed values are estimated based on the means and variances of the observed data. A standard 

statistical analysis is then carried out on each imputed dataset. The M sets of data are merged 

into one dataset (i.e., parameter estimates) by averaging values over M sets of results. For more 

details about MI, see Little and Rubin (2020) and Finch (2008). 

It was found that MI led to accurate results in parameter estimation (Finch, 2008; Kalkan 

et al., 2018; Mislevy, 2017; Schafer & Graham, 2002; Sijtsma & van der Ark, 2003). The 

number of imputations for implementing MI needs to be determined by investigators and 

different numbers of imputations potentially lead to different results (Graham et al., 2007). Some 

researchers argue that a large number of imputations are needed to ensure the accuracy of 

parameter estimation (Enders, 2010; White et al., 2011). However, running too many 
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imputations is often time-consuming and not realistic from a practical aspect. Parameter 

estimation involving MI is a computationally demanding process, but the introduction of several 

computer software, such as AMOS (Arbuckle, 2014) has made MI more accessible. 

Full Information Maximum Likelihood 

Schafer and Graham (2002) pointed out that MI and maximum likelihood are the two 

state-of-the-art methods to treat missing data in that both work well with MAR data. FIML uses 

all available information to estimate parameters without imputing incomplete data (Graham, 

2009; Schafer & Graham, 2002). This algorithm is also one of the direct maximum likelihood 

(ML) approaches, as the linear parameter estimates are generated from the raw data, and no other 

procedure is required (Enders, 2001a). Enders (2001a) offered a more comprehensive description 

of FIML. The parameters to be estimated in FIML are obtained by maximizing the log-likelihood 

function as follows, 

log 𝐿𝑖 = 𝐾𝑖 −
1

2
log|∑𝑖| −

1

2
(𝑋𝑖 − 𝜇𝑖)

′∑ (𝑋𝑖 − 𝜇𝑖)
−1
𝑖 , (1.3)    

where 𝑋𝑖 is the vector of complete data for examinee 𝑖, 𝜇𝑖 are the mean estimates for examinee 𝑖, 

𝐾𝑖 is a constant determined based on the number of data points in the complete dataset, and ∑𝑖 is 

a covariance matrix corresponding to the observed data (Cetin-Berber et al., 2019; Enders, 

2001a).  

Treating missing responses with FIML was found to have more accurate results than 

traditional missing treatment approaches, such as IN, LWD, pairwise deletion, and mean 

imputation and produce similar or more accurate results to MI (Cetin-Berber et al., 2019; Ender, 

2001b; Xiao & Bulut, 2020). Another advantage of FIML is that it does not require additional 

steps to impute missing values. FIML has become a part of built-in functions in many computer 
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programs, such as AMOS and flexMIRT version 3.62 (Cai, 2020). Hence, practitioners or 

researchers may be able to easily incorporate this method into their practice. 

 Proper techniques for handling missing responses have been demonstrated in the 

literature in the context of IRT applications, mostly on the effect on the accuracy of item and 

ability parameter estimation (e.g., De Ayala et al., 2001; Debeer et al., 2017; Finch, 2008; Rose 

et al., 2015). Other scholars focused on dealing with missing responses in the context of 

competence tests (Köhler et al., 2015b; 2017), computerized adaptive testing (Cetin-Berber et al., 

2019), and differential item functioning (Finch, 2011; Robitzsch & Rupp, 2009); however, thus 

far, researchers have paid relatively little attention to applications for test scale comparability. 

Shin (2016) investigated the effects of eight missing data approaches on vertical scaling using 

real data. IN was found to lead to higher discrimination and difficulty parameters, but it was 

associated with lower pseudo-guessing parameters. Two of the multiple imputation approaches, 

treating missing responses as not present (NP) and combining IN and NP (INNP), yielded similar 

results. In sum, different missing data treatment approaches resulted in different parameter 

estimates as well as vertical scaling results. However, the findings from this study have limited 

interpretation due to a lack of a proper evaluation criterion for real data analysis.  

Research Questions 

Although many studies compare missing data methods in the IRT context, the effect of 

these methods on scale linking was still unclear. From a practical perspective, how to handle 

missing responses when transforming scales into a common scale for large-scale assessments has 

received little attention. The primary purpose of this simulation study was to understand the 

relative performance of six methods to treat missing data on scale linking, with an intention to 

help practitioners choose an appropriate treatment. 
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 Specifically, missing responses within two missing mechanisms, including MAR and 

MNAR, were examined. Also, how to handle omitted responses to common items was the focus 

of the current study. The following research questions guided the study: 

Research Question 1: To what extent do the missing data handling approaches influence the 

linking accuracy within the MAR and MNAR mechanisms? 

Research Question 2: To what extent does each missing data handling approach interact 

with the six simulation factors under investigation? 

Method 

Simulation Conditions 

The six missing data handling methods were compared across two test lengths, including 

30-item and 60-item test forms, as used in previous research (Cetin-Berber et al., 2019). As 

transformation coefficients are calculated based on responses to common items over examinees 

under the CINEG design, this study took common items-related factors into consideration. The 

ratio of common items varied with two levels, including 20% and 40%. Kolen and Brennan 

(2014) mentioned that the rule of thumb is to have a minimum of 20% of common items for tests 

involving more than 40 items. In addition, the percentage of common items that has missing 

responses varied at two levels: 20% and 40%. Taken together, for instance, if the percentage of 

common items with missing data is fixed at 20%, then missing responses occurred on five 

common items for a 60-item test form with 24 (40%) common items. Furthermore, three levels 

of missing rates were examined in the study, including 8%, 15%, and 30%, the rates frequently 

observed in practice according to previous research (Cetin-Berber, 2019; Finch, 2008).  

In addition, the ability distribution of examinees taking the new test form was examined 

at three levels, including N(0, 1), N(0.25, 1.12) and N(0.5, 1.22). The three different proficiency 
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levels were selected after consultation with prior research with an intention to consider three 

distinct scenarios in which the new and old groups are similar, somewhat different, or extremely 

different (Kang & Petersen, 2012). The examinees in the old group were drawn from a standard 

normal distribution N(0, 1). The sample size was fixed at 3000. Table 1.1 presents all conditions 

considered in this study. Results under all conditions were investigated using the six missing data 

methods for both the Haebara and the Stocking-Lord linking approaches. 

Table 1.1 

Simulation Conditions 

Factor Levels No. of levels 

Examinee condition   

Ability distribution of new group N(0, 1), N(0.25, 1.12), N(0.5, 

1.22) 

3 

Test form conditions   

Test length 30, 60 2 

Proportion of common items 20%, 40% 2 

Missing data conditions   

Proportion of common items involving 

missing responses 

20%, 40% 2 

Missing rates 8%, 15%, 30% 3 

Linking Approaches Haebara, Stocking-Lord 2 

 

Data Generation 

To illustrate the simulation procedure, two test forms with 60 items and 20% common 

items were used as an example. First, 60 items were randomly drawn from an item pool of 800 

sets of item parameters that were calibrated from real data, and were considered as the old form- 

Form Y. Among the items in Form Y, 20% of common items were deliberately selected such that 

the distributions of the common items represented the full test in terms of statistical 

characteristics, for example, item difficulty level. Next, the new form, Form X, was built to 

include common items already selected and another 40 items unique to Form X. The unique 

items on Form X were selected from the same item pool. In addition, efforts were spent to make 
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sure that the distributions of the unique items on both forms were similar. In this way, the two 

forms were created to have similar item characteristics to reflect operational test construction. 

Finally, the abovementioned repeated for two test lengths (30 and 60 items) and two levels of 

common items proportions (20% and 40%). Responses to items on each test form were simulated 

based on the IRT 3PL model using the R program (R Core Team, 2021). The means and standard 

deviations of item parameters used in simulations are provided in Table 1.2. 

Table 1.2 

Means and Standard Deviations of Item Parameters Used in Simulations 

 

Total items 

 

Common items 

 

 

Form Y Form X 

a b c a b c 

60 24 Common items M 0.71 0.15 0.23 0.71 0.15 0.23 

   SD 0.21 0.74 0.06 0.21 0.74 0.06 

  Unique items M 0.74 0.12 0.28 0.74 0.08 0.25 

   SD 0.30 1.08 0.12 0.23 0.84 0.11 

  Total items M 0.73 0.13 0.26 0.74 0.11 0.24 

   SD 0.26 0.95 0.10 0.22 0.80 0.09 

60 12 Common items M 0.72 0.13 0.26 0.72 0.13 0.26 

   SD 0.25 0.69 0.07 0.25 0.69 0.07 

  Unique items M 0.73 0.13 0.26 0.73 0.12 0.26 

   SD 0.27 1.01 0.11 0.22 0.87 0.11 

  Total items M 0.73 0.13 0.26 0.73 0.12 0.26 

   SD 0.26 0.95 0.10 0.22 0.83 0.10 

30 12 Common items M 0.72 0.32 0.28 0.72 0.32 0.28 

   SD 0.20 0.99 0.14 0.20 0.99 0.14 

  Unique items M 0.73 0.27 0.25 0.76 0.30 0.24 

   SD 0.25 1.02 0.09 0.22 1.06 0.10 

  Total items M 0.72 0.29 0.26 0.74 0.31 0.25 

   SD 0.23 1.00 0.11 0.21 1.02 0.12 

30 6 Common items M 0.74 0.30 0.25 0.74 0.30 0.25 

   SD 0.24 0.92 0.14 0.24 0.92 0.14 

  Unique items M 0.72 0.29 0.27 0.75 0.30 0.28 

   SD 0.23 1.03 0.10 0.21 1.04 0.10 

  Total items M 0.72 0.29 0.26 0.75 0.30 0.27 

   SD 0.23 1.00 0.11 0.21 1.00 0.10 

 

For the MAR scenario, the missing data generation process followed the procedure used 

in the previous literature (De Ayala et al., 2001; Enders, 2004; Finch, 2008). In this study, the 

number-correct score over the non-missing items was viewed as the observed variable inversely 

related to the probability of a data point that was missing. Specifically, to conduct the simulation, 
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the number-correct score over the non-missing items was summed and then divided into three 

categories, each of which was assigned a probability of a missing response. For a 60-item test 

form where five common items were missing, the maximum value of the correct score over the 

non-missing items was 55. Thus, the possible correct scores for all examinees were classified 

into three categories, 0 to 18, 19 to 36, and 37 to 55. A missing probability was assigned to each 

category in which the higher score was inversely related to the missing probability. One 

condition here was that the averaged probability for each score category should be approximately 

equal to the desired missing percentage. For example, the probability for each category could be 

close to 0.4, 0.3, and 0.2 for 0 to 18, 19 to 36, and 37 to 55, respectively, such that the desired 

missing percentage, on average, was 30%. A range of ± 0.5% of the missing probability was 

allowed for each category to ensure the correct representation of the ratio of missingness while 

giving some extra room for the data to be generated (Finch, 2008). The probability of a missing 

value was then compared to a random value drawn from a uniform distribution. Based on the 

results of the comparison, the value was reserved or deleted in the datasets.   

Under MNAR, responses to test items were assigned a corresponding missing probability 

such that examinees answering the items incorrectly were more likely to be assigned a higher 

probability of missingness (Finch, 2008). When generating data, the average probability of 

missing was set approximately equal to the target missing percentage. For example, to achieve an 

overall missing percentage of 15%, the missing probability of a correct response was assigned a 

value of 0.1, whereas the probability of an incorrect response was 0.27. As with MAR, the 

probability of a missing response was compared with a random value generated from a uniform 

distribution 𝑈(0, 1) to decide whether to retain the value or not.  
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Table 1.3 

Item Parameters of the Common Items with Missing Responses 

Total 

items 

Common 

items 

Proportion of common items with 

missing responses 

Item parameters 

a b c 

60 24 40% 0.46 0.87 0.29 

   0.66 1.02 0.12 

   0.72 1.05 0.16 

   0.69 1.09 0.21 

   1.02 1.62 0.17 

   0.81 0.35 0.23 

   0.67 0.37 0.15 

   1.09 0.42 0.19 

   0.89 0.47 0.21 

   0.96 0.79 0.30 

60 24 20% 0.46 0.87 0.29 

   0.66 1.02 0.12 

   0.72 1.05 0.16 

   0.69 1.09 0.21 

   1.02 1.62 0.17 

60 12 40% 1.02 1.62 0.17 

   0.46 0.87 0.29 

   0.89 0.47 0.21 

   1.24 0.27 0.33 

   0.61 0.26 0.24 

60 12 20% 1.02 1.62 0.17 

   0.46 0.87 0.29 

30 12 40% 0.59 1.82 0.46 

   0.78 1.57 0.04 

   0.73 0.97 0.15 

   0.57 0.84 0.39 

   0.65 0.82 0.11 

30 12 20% 0.59 1.82 0.46 

   0.78 1.57 0.04 

30 6 40% 0.96 0.79 0.30 

   0.78 1.57 0.04 

30 6 20% 0.96 0.79 0.30 

 

The deletion of data points in the study was carried out only within common items. In 

fact, missing data within both common and unique items of each form may influence parameter 

estimates because they are calibrated based on responses to all items in both forms. However, 

when using separate calibration, transformation coefficients are calculated based on the 

responses to common items, which makes it more reasonable to assume that missing data within 

common items lead to a more significant impact on linking coefficients, compared to when 
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missing occurs to unique items. This assumption led this study to consider only a situation where 

missing happened within common items. The parameters of the common items involving 

missing items are summarized in Table 1.3. 

Six Missing Data Handling Approaches 

The first four methods (LWD, IN, CM, and RF) were applied with the incomplete 

datasets using R. The R package MICE (van Buuren et al., 2015) was employed to implement MI. 

The package offers an option to conduct MI with dichotomous items by using an iterative 

approach to estimate logistic regressions and impute missing values using regression estimates 

for the dependent variable (Vidotto et al., 2015). After treating the incomplete datasets using 

each method, the computer program flexMIRT was used to estimate item and person parameters. 

For FIML, missing data were handled by using flexMIRT directly. Once item and ability 

parameters were obtained, POLYST (Kim & Kolen, 2003) was used to conduct scale linking 

with the Haebara (1980) and the Stocking-Lord (1983) methods. 

Evaluation Criteria 

The extent to which the estimated slopes and intercepts are deviant from the true linking 

relationship was used to evaluate the relative performance of the six missing data methods. If no 

error is involved in the linking process, the exact values of the transformation constants A and B 

are equal to 𝜎𝑁/𝜎𝑂 and (𝜇𝑁 − 𝜇𝑂)/𝜎𝑂, respectively. In the equation, 𝜇𝑂 and 𝜎𝑂 represent the 

mean and standard deviation of the proficiencies for the examinees on the old-form scale (𝜃𝑂), 

respectively.  Similarly, 𝜇𝑁 and 𝜎𝑁 indicate the corresponding values of the new-form scale (𝜃𝑁). 

A more complete description of scale linking transformants can be found in S. Kim & Kolen 

(2007). 
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Three indices were used including: absolute bias (𝐵𝐼𝐴𝑆), standard error (𝑆𝐸), and root 

mean squared error (𝑅𝑀𝑆𝐸), which indicate the systematic, random, and overall errors in 

estimates, respectively: 

𝐵𝑖𝑎𝑠 =  |
1

𝑁 
∑ �̂�𝑟
𝑁
𝑟=1 −  𝑍|,  (1.4) 

𝑆𝐸 = √
1

𝑁
∑ (�̂�𝑟
𝑁
𝑟=1 − �̅�)2  , and 

 (1.5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (�̂�𝑟
𝑁
𝑟=1 −  𝑍)2 ,  

 (1.6) 

where 𝑁 is the number of replications (𝑁 = 100). In each equation, �̂�𝑟 represents the estimated 

slope or intercept obtained at the 𝑟𝑡ℎ replication, Z indicates the criterion values of the slope or 

intercept, and �̅� refers to the average value of Z over N replications. 

Results 

Overall Performance of Missing Data Handling Methods  

Aggregated results are presented across all study conditions for each type of missing data 

mechanism in Table 1.4. The results from the Haebara approach are presented only, as similar 

patterns were observed between the Haebara and the Stocking-Lord linking approaches. 

Missing at Random. Table 1.4 shows minimal differences in linking errors among the 

missing data handling methods under the MAR missing mechanisms, except for LWD. Treating 

missing data with LWD produced a significantly large amount of errors than the other methods 

in recovering both slopes and intercepts. IN yielded the second largest bias and root mean 

squared error (RMSE) in slopes but led to the smallest errors in intercepts under MAR for the 

Haebara approach. CM produced small errors in slopes but yielded the second largest errors in 

intercepts. The other three approaches, including MI, FIML, and RF, tended to be not only 

associated with small errors in slopes but also in intercepts. In general, these three methods 

provided the most accurate linking results when the missingness was MAR. 
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Missing Not at Random. Although differences in the performance of the six methods 

were found between MAR and MNAR, the overall patterns were similar. The LWD approach 

yielded the largest amount of errors in both slopes and intercepts under MNAR, as can be seen in 

Table 1.4. Overall, differences among the approaches except LWD were minimal. In terms of the 

performance of the other five approaches, both CM and IN seemed to be associated with slightly 

larger bias and RMSE in slopes than other three approaches. For intercepts, CM yielded larger 

errors than the other four approaches across all three evaluation criteria, and IN generally led to 

small errors. As with the results for MAR, RF, MI, and FIML were likely to produce more 

accurate linking coefficients in both slopes and intercepts as compared with other approaches. 
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Table 1.4 

Linking Error from Different Missing Data Handling Methods under MAR and MNAR using the Haebara Linking Approach 

Linking 

coefficient 

Missing data 

handling method 

MAR MNAR 

Bias SE RMSE Bias SE RMSE 

Slope LWD 0.044 0.049 0.054 0.042 0.050 0.052 

 IN 0.033 0.034 0.040 0.034 0.035 0.041 

 CM 0.030 0.035 0.037 0.033 0.036 0.040 

 RF 0.029 0.035 0.037 0.030 0.036 0.038 

 MI 0.029 0.036 0.036 0.029 0.036 0.036 

 FIML 0.029 0.036 0.036 0.029 0.036 0.036 

Intercept LWD 0.059 0.060 0.073 0.050 0.060 0.062 

 IN 0.030 0.037 0.038 0.031 0.038 0.039 

 CM 0.034 0.039 0.043 0.038 0.040 0.046 

 RF 0.030 0.037 0.038 0.031 0.038 0.039 

 MI 0.031 0.037 0.039 0.032 0.038 0.040 

 FIML 0.031 0.037 0.039 0.031 0.037 0.039 

Note. The largest and the smallest values across the six methods were bolded and underlined, respectively. MAR = missing at random; MNAR = missing not at 

random; LWD = listwise deletion; IN = incorrect response; CM = corrected mean; RF = response function; MI = multiple imputation; FIML = full information 

maximum likelihood; RMSE = root mean squared error. 
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The Impact of Test and Examinee Conditions 

Linking accuracy was calculated and compared across different test conditions for each 

simulation factor to better connecting the performance of missing data treatment methods with 

real-world practices. The results are presented in Tables 1.5 to 1.9 and discussed in the following 

paragraphs. 

 Test Length. In MAR and MNAR, most of the missing data handling methods, except 

for LWD, followed a similar pattern where they tended to produce slightly greater accuracy for a 

form with more items, as seen in Table 1.5. CM generally followed this trend, but it led to a 

similar amount of bias and RMSE in intercepts for a 30-item test and a 60-item test. Notably, 

treating missing responses with LWD showed a completely different pattern by leading to more 

errors, particularly in intercepts, as the number of items on a test form increased. By further 

examining the datasets, it was found that using LWD, responses from more examinees were 

deleted for a longer test, which caused greater errors in linking. 

Ratio of Common Items. In general, most of the missing data treatment methods yielded 

slightly more accurate linking coefficients when there was a larger ratio of common items on a 

test form, as shown in Table 1.6. The exception was with LWD and CM. LWD yielded 

substantially larger errors in slopes and intercepts as the ratio of common items increased. This 

finding is partly explained by the fact that more responses involved missing values when there 

were more common items and using LWD led to deletion of those cases, which then affected the 

accuracy of scale linking negatively. CM yielded smaller errors for a higher ratio of common 

items under most conditions, but it produced larger values of bias and RMSE in intercepts 

regardless of the ratio of common items under MNAR. In some real-world practices, achieving a 

proportion of common items of 20% or 40% can be challenging. Thus, a condition where 10% of 
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the items are common items was also investigated in the study for the 60-item test forms. No 

substantial changes were identified in the results under this condition in terms of the performance 

of the six missing data handling methods. 

Missing Rates. In general, MI, FIML, and RF were shown to be robust to missing rates: 

a drift was minimal in linking accuracy across the three levels of missing rates in both MAR and 

MNAR, which can be found in Table 1.7. In contrast, the influence of missing rates on the other 

methods was more apparent. LWD introduced substantial errors for a test form with higher 

missing rates. Note that when LWD was used, the rate of change in errors was greater for a form 

with a missing percentage above 15% than a form with a lower missing percentage. Also, when 

CM and IN were employed, larger bias and RMSE were found in slopes and intercepts for a 

missing percentage of 30% as compared with those for 8% and 15% under most conditions. 

The Proportion of Common Items With Missing Data. The performance of RF, MI 

and FIML was very similar regardless how many common items involved missing data, based on 

Table 1.8. Similarly, the errors produced by IN and CM remained constant under most test 

conditions with a few exceptions. For instance, there was only a slight increase in bias and 

RMSE in slopes for IN as missing data were observed within more common items. Similarly, 

relatively more errors were also found in intercept using CM, especially under the MNAR 

mechanism. LWD yielded considerably more errors for a form with a larger proportion of 

common items containing missing values.  

Ability Distribution. According to Table 1.9, the largest error was consistently found 

when the new group differed the most from the old group, which was N(0.5, 1.22). Slightly more 

or similar linking errors were found when the new group followed N(0.25, 1.12) as compared 

with N(0, 1) when using IN, CM, RF, MI, or FIML. The rate of change in errors was greater 
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when the new group had an ability distribution of N(0.25, 1.12) or higher as compared with the 

rate for a lower proficiency, which was more evident for IN and CM. LWD also yielded a large 

amount of errors when the new group was of a higher proficiency. 

The Influence of Linking Approaches 

In addition to the five simulation factors discussed, the efficiency of the six methods to 

treat missing data was also compared for both the Haebara and the Stocking-Lord methods. In 

general, a fairly consistent results were found between the two linking methods. The Stocking-

Lord seemed to produce slightly more errors in slopes than the Haebara approach, with a few 

exceptions. For intercepts, results from the two linking methods were almost identical. 
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Table 1.5 

Linking Error from Different Missing Data Handling Methods by Test Lengths Using the Haebara Approach 

  MAR  MNAR 

Linking 

coefficient 

Missing data handling 

method 

Bias SE RMSE 
 

Bias SE RMSE 

30 

Items 

60 

Items 

30 

Items 

60 

Items 

30 

Items 

60 

Items 

 30 

Items 

60 

Items 

30 

Items 

60 

Items 

30 

Items 

60 

Items 

Slope LWD 0.041 0.048 0.048 0.050 0.051 0.058  0.039 0.044 0.048 0.053 0.049 0.055 

 IN 0.035 0.030 0.038 0.031 0.043 0.037  0.035 0.033 0.039 0.031 0.043 0.040 

 CM 0.033 0.027 0.037 0.032 0.041 0.034  0.034 0.032 0.039 0.033 0.042 0.039 

 RF 0.033 0.026 0.038 0.032 0.041 0.033  0.033 0.027 0.039 0.034 0.041 0.034 

 MI 0.032 0.026 0.039 0.032 0.040 0.033  0.032 0.026 0.039 0.033 0.040 0.033 

 FIML 0.032 0.026 0.039 0.032 0.039 0.032  0.032 0.026 0.039 0.032 0.039 0.033 

Intercept LWD 0.046 0.073 0.051 0.068 0.057 0.089  0.041 0.058 0.051 0.070 0.052 0.072 

 IN 0.032 0.028 0.039 0.034 0.040 0.035  0.034 0.028 0.041 0.034 0.042 0.035 

 CM 0.034 0.035 0.041 0.036 0.042 0.043  0.038 0.038 0.043 0.037 0.047 0.046 

 RF 0.032 0.029 0.040 0.035 0.040 0.036  0.033 0.029 0.040 0.035 0.041 0.036 

 MI 0.033 0.030 0.040 0.035 0.041 0.037  0.034 0.030 0.040 0.035 0.042 0.038 

 FIML 0.033 0.029 0.040 0.034 0.041 0.036  0.033 0.029 0.040 0.034 0.041 0.036 

Note. MAR = missing at random; MNAR = missing not at random; LWD = listwise deletion; IN = incorrect response; CM = corrected mean; RF = response 

function; MI = multiple imputation; FIML = full information maximum likelihood; RMSE = root mean squared error. 
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Table 1.6 

Linking Error from Different Missing Data Handling Methods by Proportions of Common Items Using the Haebara Approach 

  MAR  MNAR 

Linking 

coefficient 

Missing data 

handling method 
Bias SE RMSE 

 
Bias SE RMSE 

  20% 40% 20% 40% 20% 40%  20% 40% 20% 40% 20% 40% 

Slope LWD 0.041 0.047 0.050 0.049 0.051 0.058  0.040 0.043 0.050 0.051 0.050 0.054 

 IN 0.036 0.030 0.039 0.030 0.044 0.036  0.036 0.031 0.039 0.030 0.044 0.038 

 CM 0.034 0.026 0.039 0.030 0.042 0.032  0.035 0.030 0.039 0.032 0.044 0.037 

 RF 0.033 0.026 0.040 0.031 0.041 0.032  0.033 0.027 0.041 0.032 0.042 0.034 

 MI 0.033 0.025 0.041 0.031 0.041 0.031  0.033 0.025 0.041 0.031 0.041 0.031 

 FIML 0.032 0.025 0.040 0.031 0.040 0.031  0.032 0.025 0.040 0.031 0.041 0.031 

Intercept LWD 0.048 0.070 0.052 0.068 0.060 0.086  0.041 0.058 0.051 0.070 0.052 0.072 

 IN 0.032 0.028 0.039 0.034 0.040 0.035  0.033 0.028 0.041 0.035 0.041 0.036 

 CM 0.035 0.034 0.041 0.036 0.043 0.042  0.036 0.040 0.042 0.038 0.044 0.049 

 RF 0.033 0.028 0.04 0.035 0.041 0.035  0.033 0.029 0.041 0.035 0.041 0.036 

 MI 0.033 0.029 0.04 0.034 0.042 0.036  0.034 0.029 0.04 0.035 0.043 0.037 

 FIML 0.033 0.029 0.04 0.034 0.041 0.036  0.033 0.029 0.04 0.034 0.042 0.036 

Note. MAR = missing at random; MNAR = missing not at random; LWD = listwise deletion; IN = incorrect response; CM = corrected mean; RF = response 

function; MI = multiple imputation; FIML = full information maximum likelihood; RMSE = root mean squared error. 
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Table 1.7 

Linking Error from Different Missing Data Handling Methods by Missing Rates Using the Haebara Approach 

Missing 

mechanism 

Linking 

coefficient 

Missing 

data 

handling 

method 

Bias 

 

SE 

 

RMSE 

   8% 15% 30%  8% 15% 30%  8% 15% 30% 

MAR Slope LWD 0.036 0.039 0.057  0.041 0.045 0.062  0.045 0.049 0.070 

  IN 0.029 0.031 0.038  0.036 0.032 0.035  0.037 0.038 0.046 

  CM 0.029 0.028 0.033  0.035 0.033 0.036  0.036 0.034 0.041 

  RF 0.029 0.028 0.031  0.036 0.033 0.036  0.036 0.034 0.039 

  MI 0.029 0.027 0.031  0.036 0.034 0.037  0.037 0.034 0.038 

  FIML 0.029 0.027 0.030  0.036 0.034 0.037  0.036 0.034 0.037 

 Intercept LWD 0.046 0.053 0.079  0.042 0.051 0.085  0.055 0.065 0.100 

  IN 0.029 0.030 0.031  0.035 0.037 0.037  0.036 0.038 0.039 

  CM 0.030 0.033 0.039  0.036 0.039 0.041  0.038 0.042 0.048 

  RF 0.030 0.031 0.031  0.036 0.037 0.038  0.037 0.039 0.038 

  MI 0.030 0.032 0.032  0.036 0.038 0.038  0.037 0.040 0.040 

  FIML 0.030 0.031 0.031  0.036 0.038 0.038  0.037 0.039 0.039 

MNAR Slope LWD 0.033 0.037 0.055  0.042 0.045 0.065  0.042 0.046 0.069 

  IN 0.031 0.032 0.038  0.036 0.033 0.036  0.039 0.039 0.045 

  CM 0.029 0.029 0.039  0.036 0.033 0.038  0.037 0.036 0.048 

  RF 0.029 0.028 0.033  0.036 0.034 0.039  0.037 0.035 0.041 

  MI 0.029 0.027 0.031  0.036 0.034 0.037  0.037 0.034 0.038 

  FIML 0.029 0.027 0.030  0.036 0.034 0.037  0.037 0.034 0.037 

 Intercept LWD 0.036 0.043 0.070  0.043 0.051 0.087  0.045 0.053 0.087 

  IN 0.029 0.031 0.033  0.036 0.038 0.040  0.036 0.038 0.041 

  CM 0.032 0.036 0.046  0.037 0.039 0.044  0.039 0.044 0.055 

  RF 0.030 0.031 0.032  0.036 0.038 0.040  0.037 0.039 0.040 

  MI 0.030 0.032 0.033  0.036 0.038 0.039  0.038 0.040 0.041 

  FIML 0.030 0.031 0.032  0.036 0.038 0.038  0.037 0.039 0.040 

Note. MAR = missing at random; MNAR = missing not at random; LWD = listwise deletion; IN = incorrect response; CM = corrected mean; RF = response 

function; MI = multiple imputation; FIML = full information maximum likelihood; RMSE = root mean squared error. 
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Table 1.8 

Linking Error from Different Missing Data Handling Methods by Percentages of Common Items Involving Missing Data Using the Haebara Approach 

  MAR  MNAR 

Linking 

coefficient 

Missing data 

handling method 
Bias SE RMSE 

 
Bias SE RMSE 

  20% 40% 20% 40% 20% 40%  20% 40% 20% 40% 20% 40% 

Slope LWD 0.037 0.051 0.044 0.055 0.046 0.063  0.035 0.048 0.043 0.057 0.044 0.060 

 IN 0.030 0.035 0.034 0.034 0.037 0.043  0.030 0.038 0.035 0.035 0.037 0.045 

 CM 0.030 0.030 0.035 0.034 0.037 0.037  0.032 0.033 0.035 0.036 0.040 0.041 

 RF 0.029 0.030 0.035 0.036 0.036 0.037  0.029 0.032 0.035 0.037 0.036 0.039 

 MI 0.029 0.029 0.036 0.036 0.036 0.037  0.029 0.029 0.036 0.036 0.036 0.037 

 FIML 0.029 0.029 0.035 0.036 0.036 0.036  0.029 0.029 0.035 0.036 0.036 0.036 

Intercept LWD 0.046 0.072 0.048 0.071 0.057 0.089  0.039 0.06 0.048 0.073 0.049 0.075 

 IN 0.030 0.030 0.037 0.037 0.037 0.038  0.031 0.031 0.038 0.038 0.038 0.039 

 CM 0.033 0.035 0.038 0.039 0.041 0.044  0.035 0.041 0.039 0.041 0.043 0.049 

 RF 0.030 0.030 0.037 0.037 0.038 0.038  0.031 0.031 0.037 0.038 0.038 0.039 

 MI 0.031 0.032 0.037 0.037 0.039 0.039  0.031 0.032 0.037 0.038 0.039 0.040 

 FIML 0.031 0.031 0.037 0.037 0.039 0.039  0.031 0.031 0.037 0.037 0.039 0.039 

Note. MAR = missing at random; MNAR = missing not at random; LWD = listwise deletion; IN = incorrect response; CM = corrected mean; RF = response 

function; MI = multiple imputation; FIML = full information maximum likelihood; RMSE = root mean squared error. 
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Table 1.9 

Linking Error from Different Missing Data Handling Methods by Ability Distributions Using the Haebara Approach  

 
  Bias  SE  RMSE 

Missing 

mechanism 

Linking 

coefficient 

Missing 

data 

handling 

method 

N(0, 1² 

) 

N(0.25, 

1.1² ) 

N(0.5, 

1.2² ) 

 

N(0, 1² 

) 

N(0.25, 

1.1² ) 

N(0.5, 

1.2² ) 

 

N(0, 1² 

) 

N(0.25, 

1.1² ) 

N(0.5, 

1.2² ) 

MAR Slope LWD 0.037 0.042 0.053  0.046 0.048 0.053  0.047 0.052 0.064 

  IN 0.026 0.030 0.042  0.032 0.034 0.037  0.033 0.037 0.051 

  CM 0.026 0.029 0.035  0.032 0.034 0.038  0.032 0.036 0.043 

  RF 0.026 0.029 0.033  0.033 0.035 0.038  0.033 0.036 0.041 

  MI 0.027 0.028 0.032  0.033 0.035 0.039  0.034 0.036 0.040 

  FIML 0.027 0.028 0.031  0.033 0.035 0.039  0.033 0.035 0.039 

 Intercept LWD 0.045 0.056 0.078  0.056 0.059 0.064  0.057 0.070 0.093 

  IN 0.029 0.028 0.033  0.036 0.035 0.038  0.036 0.036 0.040 

  CM 0.030 0.032 0.041  0.038 0.037 0.041  0.038 0.040 0.050 

  RF 0.029 0.029 0.034  0.036 0.036 0.039  0.036 0.036 0.042 

  MI 0.029 0.029 0.035  0.036 0.036 0.040  0.037 0.037 0.044 

  FIML 0.029 0.029 0.034  0.036 0.036 0.039  0.036 0.037 0.042 

MNAR Slope LWD 0.037 0.041 0.047  0.047 0.050 0.054  0.047 0.051 0.058 

  IN 0.027 0.031 0.044  0.033 0.034 0.037  0.033 0.038 0.052 

  CM 0.027 0.032 0.039  0.033 0.035 0.039  0.034 0.039 0.048 

  RF 0.027 0.029 0.034  0.034 0.036 0.039  0.034 0.037 0.042 

  MI 0.027 0.029 0.032  0.033 0.035 0.039  0.033 0.036 0.040 

  FIML 0.027 0.028 0.031  0.033 0.035 0.039  0.033 0.035 0.039 

 Intercept LWD 0.047 0.049 0.053  0.058 0.060 0.064  0.058 0.061 0.066 

  IN 0.030 0.029 0.033  0.038 0.036 0.039  0.038 0.037 0.041 

  CM 0.032 0.035 0.047  0.04 0.039 0.042  0.040 0.043 0.056 

  RF 0.030 0.029 0.034  0.037 0.036 0.040  0.037 0.037 0.042 

  MI 0.030 0.030 0.036  0.037 0.036 0.040  0.037 0.038 0.045 

  FIML 0.029 0.029 0.034  0.036 0.036 0.039  0.037 0.037 0.043 

Note. MAR = missing at random; MNAR = missing not at random; LWD = listwise deletion; IN = incorrect response; CM = corrected mean; RF = response 

function; MI = multiple imputation; FIML = full information maximum likelihood; RMSE = root mean squared error
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Discussion 

Large-scale testing programs often administer multiple forms of a test to eliminate 

the chances of cheating and improve test security. One of the challenges under IRT is how 

to maintain scales consistently across different forms of a test. Scale linking methods are 

commonly used for large-scale assessments to achieve group comparability when common items 

are included in multiple test administrations. Under a CINEG, scale linking is a prerequisite to 

conducting many psychometric works when using a separate calibration method. For example, 

without having accurate linking coefficients, it is impossible for researchers to obtain precise 

equating coefficients, which will then undermine the validity of test scores. So far, many aspects 

of scale linking have been examined, but the understanding of the proper method to address 

missing responses in the process of scale linking is still rudimentary. Specifically, there is no 

clear guidance in selecting an appropriate approach to handling missing data with the 

consideration of real-world test conditions and missingness assumptions.  

This study presented the results of a simulation study to understand the relative 

performance of using six different missing data handling methods on scale linking under two 

missing data mechanisms. Furthermore, a set of simulation conditions was varied, with the intent 

to create a comprehensive picture of the behaviors of missing data treatment methods in the 

context of scale linking.  

In general, RF, MI and FIML consistently demonstrated their superior performance over 

other methods based on the overall results, although some discrepancies were found between two 

mechanisms. In contrast, LWD always produced the largest errors regardless of the levels of 

factors used for simulating the datasets. CM and IN were identified to be associated with slightly 

larger or similar errors as compared with RF, MI, and FIML. However, it is crucial for 
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researchers and practitioners to pay close attention to the specifics of test conditions when 

applying CM and IN in practice. For example, CM tended to generate substantially more errors 

when 15% of the responses to the common items were missing than that of a smaller missing 

rate. IN resulted in larger errors as the proficiency of the examinees taking the new form 

followed a distribution of N(0.5, 1.22) as compared with a less proficient group.  

One of the major findings of this study was that MI and FIML seemed to consistently 

yield the smallest errors under the two missing mechanisms, which is in line with previous work 

(Ender, 2001b; Finch, 2008; Olinsky et al., 2003; Peyre et al., 2011). Prior research found that 

MI and ML tended to have a similar amount of errors (Collins et al., 2001), and the current study 

confirmed the trend in the context of scale linking. Using MI may be computational demanding 

and time-consuming in practice, especially when imputation is needed for large datasets from 

multiple administrations. Although MICE package has made multiple imputation more 

accessible, researchers still need to carry out the linking procedure multiple times to obtain the 

final averaged linking estimates over multiple imputations. Imputation is not required for FIML, 

but it also needs certain software to be available. 

As introduced previously, the most inaccurate results were led by LWD in both MAR and 

MNAR, which seemed to be consistent with what was found in previous research (Enders, 2004; 

Robitzsch & Rupp, 2009). Once a large proportion of responses are deleted by using LWD, the 

remaining sample may not well represent the whole population such that biased results can be 

generated. In the context of scale linking, scales estimated from two forms are supposed to be 

placed on a same scale based on the responses to common items. If a subgroup of examinees 

who underperform did not respond to those items, item parameter estimates are likely to be 
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influenced by not having a wide range of examinees, which will in turn affect scale linking 

accuracy. 

 A number of studies pointed out that using IN to handle missing data in the IRT context 

is not ideal (Cetin-Berber et al., 2019; Finch, 2008; Köhler et al., 2017; Pohl et al., 2014; Zhang 

& Walker, 2008). However, the linking results associated with IN presented in this study under 

MAR and MNAR were shown to be mixed. Specifically, this method led to slightly larger bias 

and RMSE than RF, MI, and FIML in slopes but had comparable or smaller results in intercepts. 

Notably, this method is relatively sensitive to a few simulation factors examined in this study, 

such as missing rate, the proportion of common items involving missing responses, and the 

difference in the ability distributions of the two groups for linking. Therefore, given that IN is 

one of the commonly used methods to treat missing responses in large-scale assessments, for 

example in PISA 2018 (OECD, 2020), more caution is needed to implement IN by taking 

different test conditions into consideration, especially in the context of scale linking. 

 The findings of the two single imputation methods seemed to be more complex. CM 

tended to produce slightly larger errors compared with other methods, except for LWD, under a 

few conditions. This might be related to the fact that the CM method involves the computation of 

an item mean using scores over non-missing responses divided by the number of examinees. 

With the increase in missing responses, information becomes limited in computing the item 

mean. By contrast, RF constantly resulted in small errors that were comparable to those of MI 

and FIML, which is aligned with the findings from previous studies (Finch, 2008, 2011). The 

calculation of RF does not require an item mean. Rather, it depends on rest scores for imputation, 

which accounts for examinees’ information across the entire form. Based on the design of the 
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study, missingness only occurred within common items. Borrowing information from unique 

items with no missing data seemed to contribute to maintaining the accuracy of the imputation.   

In terms of the simulation factors, RF, FIML, and MI led to the most accurate linking 

coefficients regardless of the study conditions. LWD was the most sensitive method to the choice 

of simulation factors under a variety of the conditions. The performance of IN and CM was 

slightly or moderately influenced by the simulation conditions. In general, the performance of 

the six missing data handling methods was consistent between the Haebara and the Stocking-

Lord linking approaches. However, CM had slightly better performance when the Stocking-Lord 

method was used.  

Conclusion and Future Research 

Based on the results observed in this study, RF, MI, and FIML revealed to introduce a 

relatively small amount of errors for conducting scale linking. It is an important finding that RF, 

as a less complex method, also demonstrated robust performance under most of the test 

conditions investigated in the study. Other than using the two well-known missing data handling 

methods, MI and FIML, researchers may also consider imputing missing responses with RF for 

scale transformation. Another notable finding of this study is that researchers may avoid using 

LWD as it consistently revealed a large amount of error across various study conditions. 

 The list of missing data treatment approaches examined in the study is by no means 

exhaustive. In addition, the current study only focused on how to handle missing responses for 

omitted items specifically, without considering the treatment of non-reached item which might 

be more closely related to examinee’s motivational factors. Research has demonstrated that 

model-based approaches can provide more accurate parameter estimates (Debeer et al., 2017; 

Rose et al., 2010) due to their ability in treating omitted and no-reached items differently. In 
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future studies, the accuracy of more complex model-based approaches on scale transformation 

can be investigated for missing responses caused by different reasons. In addition, the sample 

size was fixed at 3,000 in this study. Researchers might consider varying this factor and 

exploring its interaction with multiple missing data handling approaches.  

The current study serves as a starting point in developing a better understanding of how 

to treat missing responses in maintaining IRT scales. Efforts to make linking estimates accurate 

when missing responses present are an essential step in ensuring the comparability of item and 

person parameters and the validity of test scores. The goal of the study is to assist 

psychometricians and researchers in selecting the most appropriate approach for dealing 

with missing data in scale transformation. Future work may consider extending the current study 

design to the context of test equating for improving test form comparability and test fairness with 

the presence of missing responses.   
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CHAPTER/ STUDY 2: IRT OBSERVED-SCORE EQUATING FOR RATER-

MEDIATED ASSESSMENTS USING A HIERARCHICAL RATER MODEL 

Introduction 

Multiple forms of a test are developed in large testing programs to ensure test security 

and fairness. Although extensive efforts are made to build parallel forms of similar test 

characteristics, differences across forms may still exist. Test equating, as one of the key 

psychometric practices, is often employed to address the discrepancy in a difficulty level 

between test forms. According Kolen and Brennan (2014), test equating is a process to adjust the 

discrepancies in difficulty across test forms, ensuring the comparability and interchangeability of 

scores among multiple parallel forms of a test. Proper equating of multiple test forms not only 

ensures the validity of a test, but also improves the accuracy and efficiency of test result 

interpretations for stakeholders, such as educators, policymakers, and examinees. 

For multiple-choice (MC) tests, equating can be done relatively easily as long as the 

forms contain enough items to be used. More importantly, the scoring process for MC items is 

highly reliable with the aid of computers. However, rater-mediated assessments that require 

human raters to assign scores to examinees based on their performance on a particular 

construct(s) (Wang & Engelhard, 2019; Wind, 2019) is likely to introduce rater errors due to the 

differences in individual raters’ training and experience, personal beliefs, and cultural 

backgrounds, etc. (Barret, 2001; Lee, 2009; Long & Pang, 2015; Wexley & Youtz, 1985; Wolfe, 

2020). In fact, the presence of rater errors in rater-mediated assessments is almost unavoidable 

(Myford & Wolfe, 2003), making it more difficult to obtain test score interchangeability across 

administrations. Given that test equating plays an important role in ensuring test fairness and test 

score comparability, practitioners and researchers must be equipped to handle rater errors in 
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rater-mediated assessments in the equating process. This study aims to provide a new equating 

method in conjunction with a rater model that takes rater errors into account.  

This study intends to incorporate a rater model into an IRT observed-score equating 

approach for improving the equating accuracy. Specifically, the rater model used in the study is 

the hierarchical rater model (HRM, Patz, et al., 2002), which faithfully models the hierarchical 

structure of rating scores between raters and examinees’ responses.  

Rater Effects and Models 

Rater Effects 

Previous research has investigated multiple variations of rater effects, such as rater 

severity/leniency, extremity/centrality, accuracy/inaccuracy, and halo effects (Engelhard, 1994; 

Engelhard, 2002; Myford & Wolfe, 2003; Wolfe, 2020; Wolfe & McVay, 2010), each of which 

can potentially influence score accuracy. Rater severity/leniency is the tendency of raters to 

assign consistently either higher or lower scores to examinees than what they should have based 

on the performance. Rater extremity/centrality indicates the deviation or lack thereof of raters' 

scores from the middle score of a rating scale. Rater accuracy/inaccuracy refers to the distance 

between raters-assigned scores and an ideal score that an examinee should have received. The 

halo effect occurs when raters give similar ratings to an examinee across different tasks 

regardless of their actual performance.  

Research has identified multiple factors that can contribute to differences in rater 

behaviors, including rater attributes (e.g., rater’s conscientiousness, level of self-monitoring) 

(Tziner et al., 2005). In addition, different training backgrounds and experiences also have 

shown to contribute to impactful rater effects on scoring (Athey & Mclytyre, 1987; Borman, 

1979; Leckie & Baird, 2011; Wolfe et al., 2010). In the context of IRT equating, scores that are 
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obscured by rater effects are likely to affect estimation of examinees’ ability and item 

parameters, which may further threaten the accuracy of equating results. 

It is not unusual to notice that rater behaviors are subject to change across time points 

(Casabianca et al., 2017; Harik et al., 2009; Lunz & O’Neill 1997; Myford &Wolfe, 2009), 

which may also influence equating accuracy (Boyer & Patz, 2019). This lack of stability of 

raters, referred to as differential rater functioning over time (DRIFT, McLaughlin et al., 2009; 

Wolfe et al., 1999), has been identified in several studies. For example, Congdon and McQueen 

(2000) investigated the consistency of rater severity using the elementary school writing 

performance data with a many-facet Rasch model (MFRM, Linacre, 1989; Wang & Wilson, 

2005). Changes in rater severity was observed not only daily but also within each day. In 

addition, Leckie and Biard (2011) applied multilevel modeling to investigate rater performance 

using data from England’s 2008 national curriculum English writing test. Although they found 

the average severity among raters was stable across time, differences in rating severity were 

noted between individual raters. Myford and Wolfe (2009) explored the accuracy and 

consistency in applying a rubric among raters over time, observing that a few raters made 

statistically significant changes in their levels of accuracy across time. Moreover, some raters 

tended to use different scale categories over time. Researchers also noticed increased centrality 

as the scoring process moves forward (Leckie & Biard, 2011; Myford & Wolfe, 2009). 

Therefore, researchers should consider the impacts of DRIFT on the accuracy of test equating. 

Changes in ratings across multiple administrations of a test are likely to undermine score 

comparability if not being properly accounted for. 

Rater Models 
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Multiple rater models have been proposed and validated in previous research to detect 

and quantify rater patterns (Harik et al., 2009; Jin & Eckes, 2022; Leckie & Baird, 2011; 

Linacre, 1989; Patz et al., 2002; Raymond & Viswesvaran, 1993; Wang et al., 2014), such as 

MFRM (Linacre, 1989), generalized rater model (GRM, Wang, et al., 2014), and HRM (Patz et 

al., 2002). MFRM decomposes ratings into joint effects of persons, items, as well as raters on a 

logit scale. This model assumes that ratings are locally independent. However, this assumption is 

likely to be violated in practice. GRM (Wang et al., 2014) was developed as an extension of 

MFRM with an intention to address the local dependence problem by adding random-effect 

parameters to account for person-rater and person-item interactions (Robitzsch & Steinfeld, 

2018).  

Unlike the facet-models that directly connect scores assigned by raters with an examinee 

ability, HRM and its extended versions (Casabianca et al., 2016; Casabianca, 2017; DeCarlo et 

al., 2011; Nieto & Casabianca, 2019) use a hierarchical structure to model rating data. In the first 

level of HRM, raters’ scores, referred as observed ratings, are perceived as the indicators of an 

ideal rating, which can be modeled through a signal detection process. The ideal ratings depend 

solely on scoring rubrics without any rater bias or variability. In the second level, the ideal 

ratings are considered as the categorical indicators of an examinees’ true ability, which can be 

represented by an IRT polytomous model. In HRM, it accounts for the person-item dependence 

issue by introducing ideal ratings, capturing the dependence of multiple ratings on the same item 

(Patz et al., 2002; Robitzsch & Steinfeld, 2018). Wang et al. (2014) argued that HRM is more 

suitable when specific rating rubrics are available, whereas facet-models are preferred when 

raters are independent experts who assign scores based on their own knowledge and judgment. 

Given that the equating method proposed in this study is intended to be used in large-scale 
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assessments where raters are usually provided with standardized scoring rubrics, HRM was 

viewed more appropriate over facet-models. In addition, HRM is more flexible in parameter 

estimation because it allows the use of an existing IRT polytomous model, such as a partial 

credited model (Masters, 1982), a generalized partial credit model (GPCM, Muraki, 1992), and a 

graded response model (Samejima, 1969).  

The performance of HRM and GPCM was recently examined by Song and Lee (2022), 

where single and double ratings were both available for constructed response (CR) tests. HRM 

consistently demonstrated more accurate results as compared to GPCM when rater errors were 

present in data. Double scoring was observed to lead to reduced errors in proficiency estimates 

than single scoring. Furthermore, the accuracy of proficiency estimations improved with an 

increased number of items and score categories. 

Rater Effects on Score Comparability 

Trend scoring (Tate, 1999 & 2000) was proposed to mitigate the effect of rater errors on 

test score comparability. Specifically, within a common item non-equivalent group (CINEG) 

design, the common items completed by the old-form group of examinees are scored by both the 

old and the new sets of raters, such that the severity of the new-form rater group can be adjusted 

based on the old-form rater group. Therefore, DRIFT across multiple forms of a test is likely to 

be reduced before conducting the equating procedure. Kim et al. (2010) examined different 

designs for equating CR tests using classical equating methods. It was observed that smaller bias 

can be obtained by applying the trend scoring method for common CR items under the CINEG 

design or CR items under the random groups design as compared to other CINEG designs using 

only CR items or external MC items as common items. However, it is worth mentioning that the 

adjustment with trend scoring heavily relies on the score quality of the old-form rater group. In 
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fact, there is no guarantee that scores assigned by the old-form rater group are reliable or 

consistent, and therefore, more research needs to be done to find a good solution to rater drift.  

Boyer and Patz (2019) explored the impact of rater drift on two forms of a mixed-format 

test by varying the levels of rater bias and variability using data simulated based on HRM. 

Specifically, the Stocking-Lord (1983) method was used to adjust group differences across test 

forms under the CINEG design. Rater drift was found to have negative impacts on comparability 

of test scores. Higher leniency tends to result in more errors of scale linking than higher severity. 

Also, introducing more bias to the rating data seems to have a larger impact on scores than that 

of increasing variability.  

Notably, there is an inconsistent use of the term equating in the current measurement 

literature. This current study adheres to the terminology used by Kolen and Brennan (2014). In 

practice, it is possible that conducting scale linking, namely ensuring the two sets of parameters 

on a common scale, is sufficient if testing programs intend to generate reported scores in some 

forms of IRT theta scores (𝜃). While theta scoring is prevalent, number-correct scoring based on 

raw-scores is also often considered. If number-correct scoring is to be used in practice, one 

additional step is conducted after scale transformation, which is here referred to as equating. The 

focus of this study is to apply HRM to an IRT observed-score equating context. 

Research Purposes 

Previous research has not attempted to use HRM to account for equating errors associated 

with rater effects. The main purpose of the current study is to fill the gap in current literature by 

introducing an IRT observed-score equating method that accounts for rater errors using HRM. 

The specific research objectives of the study are as follows:  
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Research Purpose 1: To propose an IRT observed-score equating method under the 

HRM framework to account for rater errors; and 

Research Purpose 2: To compare the accuracy of equating results obtained from the 

newly proposed method to a traditional IRT observed-score equating method that uses 

GPCM for demonstrating the effectiveness of the proposed method. 

The newly developed equating method was examined under a set of simulation 

conditions to identify condition(s) in which the new method is preferred. The next section 

describes the procedure to conduct IRT observed-score equating with HRM (here referred to as 

HRM observed-score equating) followed by the simulation process and evaluation criteria. 

HRM Observed-Score Equating 

Conducting the HRM observed-score equating method involves seven steps. Step A is to 

estimate item and person parameters using HRM. In this study, the GPCM (Muraki, 1992) is 

used as the IRT polytomous model because the discrimination parameter can be captured in the 

model in addition to the difficulty parameter.  

(𝜉𝑖𝑗 = 𝜉|𝜃𝑖 , 𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗𝜉) =
exp {∑ 𝛼𝑗(𝜃𝑖 − 𝛽𝑗 − 𝛾𝑗𝑘)

𝜉
𝑘=1 }

∑ exp {∑ 𝛼𝑗(𝜃𝑖 − 𝛽𝑗 − 𝛾𝑗𝑘)
ℎ
𝑘=1 }𝐾−1

ℎ=0

  , 

(2.1) 

where 𝜉𝑖𝑗 represents examinee i’s ideal rating on item 𝑗, 𝜃𝑖 is the examinee’s ability, 𝛼𝑗 indicates 

the item discrimination, 𝛽𝑗 represents the item difficulty, 𝛾𝑗𝑘 is the item step parameter for 

category 𝑘 of the item, and K is the number of rating categories. 

The signal detection process modeled by HRM is a matrix of rating probabilities. A 

single rater r has a group of probabilities of assigning a score level, observed ratings 𝑋𝑖𝑗𝑟, to 

examinee 𝑖 on an item 𝑗 based on ideal ratings 𝜉𝑖𝑗. Table 2.1 describes five score levels to be 
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assigned to examinees on an item, conditioning on that the probabilities in the five cells on each 

row must sum to one (Patz et al., 2002). 

Table 2.1 

The Matrix of Rating Probabilities Indicating the Signal Detection Process Modeled in the HRM 

 Observed Rating (k) 

Ideal Rating (𝜉) 0 1 2 3 4 

0 𝑃00𝑟 𝑃01𝑟 𝑃02𝑟 𝑃03𝑟 𝑃04𝑟 

1 𝑃10𝑟  𝑃11𝑟  𝑃12𝑟  𝑃13𝑟  𝑃14𝑟  

2 𝑃20𝑟 𝑃21𝑟 𝑃22𝑟 𝑃23𝑟 𝑃24𝑟 
 

3 𝑃30𝑟 𝑃31𝑟 𝑃32𝑟 𝑃33𝑟 𝑃34𝑟 

4 𝑃40𝑟 𝑃41𝑟 𝑃42𝑟 𝑃43𝑟 𝑃44𝑟 

Note. 𝑃𝜉𝑘𝑟  ≡ P [Rater r rates k | ideal rating 𝜉] in each row of this matrix. From “The hierarchical rater model for 

rated test items and its application to large-scale educational assessment data,” by R. J. Patz, B. W. Junker, M. S. 

Johnson, & L. T. Mariano, 2002, Journal of Educational and Behavioral Statistics, 27(4), p. 349. 

 

As Patz et al. (2002) introduced, a discrete unimodal distribution is used for each row in 

Table 1 to link observed ratings and ideal ratings. Each row of the matrix probabilities is 

expected be directly proportional to a normal density with a mean of 𝜉𝑖𝑗 +𝜙𝑟 and a standard 

deviation of 𝜓𝑟. Rater bias 𝜙𝑟 is the mode of this distribution and variability 𝜓𝑟 represents the 

spread of the distribution, represented in Equation (2.1), 

𝑝𝜉𝑘𝑟 =  𝑃(𝑋𝑖𝑗𝑟 = 𝑘|𝜉𝑖𝑗 =   𝜉) ∝ exp {− 1

2𝜓𝑟
2 [𝑘 − (𝜉 + 𝜙𝑟)]

2} .  

(2.2) 
𝑖 = 1,…𝑁;   𝑗 = 1, … , 𝐽;   𝑟 = 1,… , 𝑅. 

In Equation (2.2), k is the observed rating category, N represents the number of 

examinees, J is the number of items, and R is the number of raters. Within HRM, a rater behavior 

can be described with respect to bias 𝜙𝑟 and variability 𝜓𝑟. When 𝜙𝑟= 0, it is likely for rater r to 

select a score level that matches the ideal ratings. In this case, no rater bias is supposed to exist. 

When 𝜙𝑟 < 0, rater r tends to rate examinee responses more severely, vice versa. With respect to 

the variability/unreliability of a rater, rater r tends to be more reliable as 𝜓𝑟 becomes closer to 0. 
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Step B is to build an ideal-rating distribution for an examinee’s true ability and an 

observed-rating distribution for an ideal rating using HRM. For step C, the conditional observed-

rating distribution for an examinee’s true ability on each item is represented by the joint 

distribution of these two distributions.  

Step D is to obtain a conditional observed-score distribution over all items on a test form 

for an ability point based on the conditional observed-rating distribution using the Hanson’s 

algorithm (1994), an extended version of Lord-Wingersky’s algorithm (1984). For step E, the 

conditional observed-score distributions over a test can be multiplied by ability distributions of 

all examinees to generate a marginal observed-score distribution which involves an integration 

procedure. For simplicity, the integral was approximated by a summation of the probability for 

each examinee obtaining the score point x, which then was divided by the number of examinees, 

as shown in Equation (2.3) (Kolen & Brennan, 2014). 

𝑓(𝑥) =
1

𝑁
∑ 𝑓(𝑥|𝜃𝑖)𝑖 , (2.3) 

where N is the total number of examinees. 

 Under the HRM framework, the marginal observed-score distribution over a test form 

exists for each rater; therefore, multiple marginal observed-score distributions are generated for a 

test form. Step F is to average the marginal distributions by the number of raters for each form. 

Step G is to conduct equipercentile equating to find the final equating relationship based on the 

averaged marginal observed-score distributions for the parallel forms. 

 The notable difference from the traditional IRT observed-score equating method is that 

the two layers of a distribution jointly constitute the conditional distribution. This is because in 

HRM, the observed rating is viewed as the function of a latent ability 𝜃 as well as a rater effect 

(bias and variability). To model the rater effect, one more step is added, which makes the 
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equating process relatively more complicated (one additional integration process is needed). 

However, if there is sufficient evidence of a non-negligible amount of rater effects, the increased 

complexity in model estimation and computation will be more than offset by the expected 

increased accuracy. 

Method 

Simulation Process 

Given that this study mainly focuses on illustrating the new equating model, a random 

group design is used to avoid additional complexity associated with CINEG as scale linking is 

additionally necessary for this design. The proposed method is compatible with other data 

collection designs (i.e., CINEG) in which equating can be implemented in a similar fashion 

given that parameters are properly transformed onto a common scale across forms. 

A simulation study was carried out to examine the effectiveness of the HRM observed-

score equating method. Two parallel forms used for conducting equating were generated, 

including a new form (Form X) or an old form (Form Y). Three test forms were generated, 

including test forms with 1) eight five-category items, 2) twelve five-category items, and 3) eight 

seven-category items. The discrimination parameters were generated by randomly drawing from 

a lognormal distribution - (0, 0.52), following the thresholds in Kang et al.’s (2009) study. For 

the five-category items, four location parameters were randomly sampled from N(-1, 1), N(-0.5, 

1), N(0.5, 1), and N(1, 1). For the seven-category items, two more location parameters were 

added in the simulation, including N(-1.5, 1) and N(1.5, 1). 

An incomplete rating design was used in this study, meaning that not all raters scored 

every response. Specifically, two out of six raters were randomly selected to score responses to 

each item from each examinee. Form Y was scored by normal raters, whose severity and 
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variability are within a reasonable range and known to have minimal impact on parameter 

estimates (Casabianca & Wolfe, 2017). For Form X, four different types of raters assigned 

scores, including 1) normal raters, 2) unreliable raters who tended to provide inconsistent ratings, 

3) severe raters whose ratings were more severe and exceeded the normal range, and 4) severe 

and unreliable raters (here referred to as severe/unreliable raters) who gave inconsistent and 

tighter ratings. The distributions of the parameters associated with the four different types of 

raters were selected based on the review of pervious literature (Boyer & Patz, 2019; Song & Lee, 

2022): normal raters (𝜙𝑟~𝑈(−0.5, 0.5), 𝜓𝑟~𝑈(0.3, 0.5)), unreliable raters (𝜙𝑟~𝑈(−0.5, 0.5), 

𝜓𝑟~𝑈(0.5, 1.0)), severe raters (𝜙𝑟~𝑈(−1.0,−0.5), 𝜓𝑟~𝑈(0.3, 0.5)), and severe/unreliable 

raters (𝜙𝑟~𝑈(−1.0,−0.5), 𝜓𝑟~𝑈(0.5, 1.0)). The level of rater bias and variability varied in this 

study to examine the ability of the newly proposed equating method in handling different 

types/amounts of rater errors. 

In total, 2,000 examinees were simulated based on a normal distribution N(0, 1), and 

randomly allocated to take either Form X or Form Y to ensure the equivalence of the two groups. 

Hence, each test form was administered to 1,000 examinees. The HRM rating data were 

simulated using R version 4.1.0 (R Core Team, 2021). 

The traditional IRT observed-score equating with GPCM was considered as the baseline 

method for better understanding the performance of the newly introduced method. Similar to 

previous studies (Casabianca & Wolfe, 2017; Song & Lee, 2022), parameters estimates were 

obtained through using the Markov Chain Monte Carlo (MCMC) method for both models. JAGS 

(Plummer, 2003), a computer program for analyzing Bayesian models, was employed for 

parameter estimation by incorporating the R package R2Jags (Su & Yajima, 2021). Song and 

Lee (2022) summarized a set of prior distributions based on previous research, which were 
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employed in the current study. Specifically, the priors used to fit both models include 

discrimination parameter ~ lognormal (1.2, 1.44), difficulty parameter ~ N(0, 6.25), and theta ~ 

N(0,1). The priors for estimating rater parameters include 𝜙𝑟~ N(0,10), log (𝜓𝑟)~𝑈(0, 10). In 

sum, 11,000 MCMC iterations, 5,500 burn-in, 16 thinning and three chains were set in JAGS. As 

for the estimated distributions, the mean for each parameter distribution was used as the 

estimates.  

Once HRM or GPCM parameters were obtained, IRT observed-score marginal 

distributions for both models were built through using R, which were then entered into an R 

package equate (Albano, 2016) to find the equating relationships. The generated equating 

estimates were compared against the evaluation criteria. 

Evaluation Criteria 

The equating relationships estimated based on HRM and GPCM were evaluated against a 

criterion equating relationship over 20 replications for each simulation condition. The criterion 

equating relationship was generated using a large-sample single group equipercentile equating, 

which not only minimizes the error related to the differences in examinees’ abilities between the 

two forms but also reduces sampling error (Kim & Lee, 2016; Kim et al., 2020). The criterion 

equating relationship was found through the following steps. First, 100,000 examinees were 

simulated from a N(0, 1) distribution. Then, all examinees were assumed to complete both Form 

X and Form Y, so responses to both forms were generated using HRM. Last, the criterion 

equating relationship was identified using the traditional equipercentile equating method. 

Conditional results were evaluated at each score 𝑥 based on three statistics. Specifically, 

bias, standard error (SE), and root mean squared error (RMSE), which are described as: 

𝑏𝑖𝑎𝑠(𝑥) =
1

𝑀
∑ (�̂�𝑥𝑟 − 𝑒𝑥)
𝑀
𝑟=1   , (2.4) 
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𝑆𝐸(𝑥) = √
1

𝑀
∑ (�̂�𝑥𝑟 −

∑ �̂�𝑥𝑟
𝑀
𝑟=1

𝑀
)2𝑀

𝑟=1   , and 
(2.5) 

𝑅𝑀𝑆𝐸(𝑥) = √𝐵𝑖𝑎𝑠(𝑥)2 + 𝑆𝐸(𝑥)2  , (2.6) 

where M is the number of replications, 𝑥 is the raw-score point, �̂�𝑥𝑟 represents an estimated 

equated score at raw score x in replication 𝑟, and 𝑒𝑥 represents the criterion equated score at raw 

score x, correspondingly. 

In addition, overall results were presented in terms of marginal statistics calculated over 

all raw-score points to understand the overall performance of each equating method. The 

overall/marginal bias (Obias) can be expressed as: 

𝑂𝑏𝑖𝑎𝑠 = √∑ ℎ(𝑥)[
1

𝑀
∑ (�̂�𝑥𝑟 − 𝑒𝑥)
𝑀
𝑟=1 ]2𝑥   , 

(2.7) 

where ℎ(𝑥) refers to the relative frequency distribution for the scores on Form X for the 

population data. The overall SE (OSE) and overall RMSE (ORMSE) were obtained in a similar 

fashion. The smaller the calculated statistics, the more precise the equating method. 

Results 

Conditional Results 

Conditional results, in terms of SE, bias, and RMSE, of the two IRT observed-score 

equating methods are provided in Figures 2.1 through 2.12. Specifically, Figures 2.1 to 2.4 

provide the values of conditional SE for normal raters, unreliable raters, severe raters, and 

severe/unreliable raters, respectively. Similarly, Figures 2.5 - 2.8 and 2.9 - 2.12 present the 

equating errors in terms of conditional bias and RMSE, respectively. In each figure, conditional 

results for three test conditions are presented. The horizontal axis indicates the raw score points 

whereas the vertical axis represents the equating errors. 

Conditional SE. As seen in Figures 2.1 to 2.4, both equating methods lead to a small 

amount of SEs over the entire score range, with the largest below 0.08. The shapes of SEs 
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associated with both equating methods, in general, follow bell-shaped distributions. For each 

rater condition, the magnitudes of SEs become slightly larger for test forms with an increased 

number of items or score categories. The difference in SEs between the two equating methods 

are not substantial. HRM produces negligible less bias in the lower and upper ends of the scale 

but leads to larger SEs in the middle range.  

Conditional Bias. When rater errors are within a normal range, both methods lead to 

relatively accurate results in terms of bias, as seen in Figure 2.5. Small differences are observed 

between the two methods when test forms consisted of eight five-category items and twelve five-

category items. Under these conditions, HRM seems to be associated with a slightly larger 

amount of bias than those from the baseline method in the middle range of the score scales. For 

the eight seven-category condition, the two equating methods result in an almost identical 

amount of bias over most of the score scale.  

When the new forms were scored by aberrant raters, HRM yields significantly reduced 

bias, which is different from the pattern observed under the normal rater condition. Specifically, 

with the presence of unreliable raters, HRM is associated with more accurate results than the 

baseline method across at least two/thirds of the scales regardless of test length and score 

categories, as seen in Figure 2.6. Fluctuations are still identified in the bias for HRM at the lower 

end and the mid-range of the score scale, but the magnitude of bias is significantly smaller than 

that observed for GPCM. For the upper one/third of the scales, the new method leads to smaller 

bias whereas the baseline method produces larger negative bias. Based on Figures 2.7 and 2.8, 

the new method seems to produce only a small amount of bias across the score scales when 

either severe raters or severe/unreliable raters present. However, the baseline method tends to 

produce a greater amount of bias under these two rater conditions. This indicates that the 
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proposed equating method is more robust to the presence of rater bias. Another interesting 

finding is that the baseline method consistently generates more bias for a longer test when 

aberrant raters scored the new forms. However, this pattern is not identified in the bias for HRM, 

suggesting its robustness to the changes in test length. 

Conditional RMSE. Under normal rater condition, the two IRT observed-score equating 

methods lead to relatively accurate values in RMSEs, consistent with what was observed in 

conditional bias. The magnitudes of RMSEs for both methods are within 0.12. However, when 

the new forms are scored by unreliable raters, using HRM can reduce a great amount of 

systematic error at the upper third of score scales as compared to GPCM, as displayed in Figure 

2.10. Although there are fluctuations in the RMSEs at the lower two-thirds of score scales for 

HRM, the magnitude is much smaller than those of GPCM. According to Figures 2.11 and 2.12, 

HRM shows superior performance in terms of RMSEs relative to GPCM for the majority of the 

score scales when severe raters or severe/unreliable raters scored the new forms. It is worth 

noting that under these two rater conditions, the discrepancy in RMSE between the two methods 

is larger than that under the unreliable rater condition. Consistent with conditional bias, the 

baseline method produces more RMSEs for the forms consisting of twelve five-category items 

with the presence of aberrant raters, which is not found for HRM. 
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Figure 2.1 

Conditional SE as Normal Raters Assigning Scores on New Forms 

 

 

Figure 2.2 

Conditional SE as Unreliable Raters Assigning Scores on New Forms 
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Figure 2.3 

Conditional SE as Severe Raters Assigning Scores on New Forms 

 

 

Figure 2.4 

Conditional SE as Severe/Unreliable Raters Assigning Scores on New Forms 
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Figure 2.5 

Conditional Bias as Normal Raters Assigning Scores on New Forms 

 

 

Figure 2.6 

Conditional Bias as Unreliable Raters Assigning Scores on New Forms 
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Figure 2.7 

Conditional Bias as Severe Raters Assigning Scores on New Forms 

 

 

Figure 2.8 

Conditional Bias as Severe/Unreliable Raters Assigning Scores on New Forms 
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Figure 2.9 

Conditional RMSE as Normal Raters Assigning Scores on New Forms 

 

 

Figure 2.10 

Conditional RMSE as Unreliable Raters Assigning Scores on New Forms 
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Figure 2.11 

Conditional RMSE as Severe Raters Assigning Scores on New Forms 

 

 

Figure 2.12 

Conditional RMSE as Severe/Unreliable Raters Assigning Scores on New Forms 
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Overall Results 

Table 2.2 provides a summary of the overall results. Specifically, the equating errors, 

including Obias, OSE, and ORMSE, are aggregated over the three test conditions by four types 

of rater errors. In terms of averaged Obias, the two equating methods produced results that are 

almost identical when new forms are graded by normal raters. However, different patterns are 

discernable when new forms are scored by aberrant raters in which HRM consistently produces 

smaller averaged Obias. In terms of averaged OSE, the difference between the two equating 

methods is minimal, which is within 0.002. It is worth noting that GPCM consistently yields 

smaller values regardless of the levels of rater severity and/or variability. The patterns of 

ORMSEs are similar to those of averaged Obias under the conditions involving aberrant raters 

because Obias contributes to ORMSE to a greater extent than OSE does. With normal raters, 

HRM leads to marginally larger values in averaged ORMSEs as compared to GPCM. Overall, 

given the magnitudes of the averaged Obias and ORMSE, HRM demonstrates robustness with 

respect to the presence of different types of rater effects (severe or unreliable) as compared to the 

traditional equating method based on GPCM. However, introducing rater errors has a little to no 

impact on SEs for both equating methods. 

Table 2.2 

Summary Statistics of Equating Errors across Test Conditions 

Raters Scoring New Forms Averaged Obias Averaged OSE Averaged ORMSE 

 HRM GPCM HRM GPCM HRM GPCM 

Normal 0.043 0.043 0.033 0.031 0.055 0.053 

Unreliable 0.062 0.115 0.034 0.033 0.071 0.120 

Severe 0.052 0.166 0.034 0.032 0.064 0.170 

Severe/Unreliable 0.051 0.185 0.034 0.032 0.061 0.188 
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Figures 2.13 through 2.15 are provided for a deeper examination of the potential 

interaction of test length and the number of score category on equating accuracy. Specifically, 

Figures 2.13, 2.14, and 2.15 present the values of OSE, Obias, ORMSE, respectively, across the 

three test conditions, including the forms with eight five-category items, twelve five-category 

items, and eight seven-category items. In general, both equating methods lead to larger OSEs as 

the test becomes longer and as the number of score category increases, as seen in Figure 2.13. 

HRM consistently leads to marginally larger OSEs than GPCM. 

The magnitude of Obias is similar between the two equating methods under the normal 

rater condition. Under the aberrant rater conditions, the increased accuracy associated with HRM 

is clear, which is invariant to the changes in test length and the number of score category.  

An interesting finding identified in Figures 2.14 and 2.15 is that test length seems to have 

a larger impact on equating accuracy, in terms of Obias and ORMSE, for GPCM compared to 

HRM under certain rater conditions. For example, GPCM produces larger Obias for test forms 

with twelve items compared to those with eight items under the severe raters or severe/unreliable 

rater conditions. However, bias for HRM seems to be more consistent under these two rater 

conditions. Regarding the number of score category, it seems to have a little to no impact on 

Obias and ORMSE. 
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Figure 2.13 

OSE over the Three Test Conditions 

 

 
Note. NR, UR, SR, and U&SR refer to normal, unreliable, severe, and severe/unreliable raters, respectively. 

 

Figure 2.14 

Obias over the Three Test Conditions 

 

 
 
Figure 2.15 

ORMSE over the Three Test Conditions 
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Discussion and Conclusion 

Rater-mediated assessments that involve human raters in the scoring procedure inevitably 

introduces rater errors. The existing equating methods fail to account for rater errors in the 

equating process. The aim of this research is to address the gap in current literature by 

introducing an IRT observed-score equating method that employs HRM to account for rater 

errors and enhance test score comparability. The effectiveness of the newly suggested equating 

method is compared to that of the traditional IRT observed-score equating method with GPCM 

in a range of simulated scenarios using a random group design. Researchers and practitioners 

who are interested in maintaining comparability of high-stakes rater-mediated tests will benefit 

from the conclusions of the current study, which are presented below. 

First, both equating methods demonstrated their robustness to a small rater effect by 

providing fairly accurate equating results. However, when aberrant raters were present, using the 

HRM equating method, in general, led to more accurate equating results of both bias and RMSE. 

Specifically, the equating errors from GPCM were largely impacted by the increase in rater 

errors whereas the proposed method tended to be more consistent in equating results regardless 

of the presence of unreliable or biased raters. This finding indicates that the use of HRM in the 

equating process enables errors caused by human raters to be accounted for such that equating 

accuracy can be maintained. Song and Lee (2022) noted that HRM tends to yield more precise 

ability estimates when rater effects are notably significant in ratings. By extending the use of 

HRM to the context of test equating, the current study identified a similar pattern. Boyer and 

Patz (2019) concluded that rater’s severity (bias) seems to have a larger impact on test score 

comparability than rater’s variability. This study confirmed the finding by observing 

significantly larger bias and RMSEs for the condition of severe raters than that of unreliable 
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raters when the traditional equating based on GPCM was implemented. However, this pattern 

was not found for HRM observed-score equating, indicating the new method effectively 

mitigates the impact introduced by severe raters. The effectiveness of the HRM equating method 

suggests that it is especially valuable for tests that include a large number of CR items, where 

there is a higher risk of high-impact rater error. In such cases, caution would require multiple 

ratings (e.g., Song & Lee, 2022), making the HRM equating method a particularly helpful tool to 

ensure the comparability of test scores. 

Second, only a minor difference was found in SEs between the two equating methods. 

Although HRM was found to be associated with slightly more overall SEs, it produced smaller 

SEs near the ends of the score scale. Unlike bias and RMSE, SE was not impacted whether raters 

were normal or aberrant for both equating methods. 

The examination of conditional results revealed that GPCM, under most of the 

conditions, tended to generate more errors at the ends of the score scale, in terms of the three 

evaluation criteria. This finding is in line with Tao and Cao (2016), who concluded that equating 

results are likely to fluctuate for score points with low frequency. The HRM observed-score 

equating method generally led to reduced bias and RMSE at both ends with only a few 

exceptions, suggesting that the new method can effectively reduce equating errors particularly 

for score ranges with limited observations by taking rater errors into account. Moreover, a larger 

discrepancy was found between the two methods in bias and RMSE when new forms were 

scored by severe raters or by severe/unreliable raters. Under these rater conditions, a much 

smaller proportion of examinees earned a maximum score on each item, such that information 

available for parameter estimation was limited. HRM could still generate relatively accurate 

results whereas the baseline method failed to do so.  
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In terms of the two simulation factors, more SEs were found to be associated with longer 

tests and an increased number of score categories for both equating methods. The two factors 

seem to have limited effects on bias and RMSE. As test length and score category increased, the 

errors associated with raters also increased, which is a potential reason for not obtaining more 

accurate results for longer tests with more score categories. 

Limitations and Future Research 

This study sets the stage for the development of a more sophisticated equating method 

that enables rater errors to be captured, ultimately enhancing test score comparability. As 

discussed earlier, each IRT rater model makes a different set of assumptions in regard to the 

relationship between persons, items, and raters. For some cases, the use of HRM may not 

adequately model the actual data structure and therefore not be justifiable. Future research could 

continue to explore the possibility of incorporating other rater models into the equating context 

for rater-mediated assessments. For example, GRM which models both the interactions between 

examinees and items, as well as between examinees and raters, can be applied to equating to 

address local dependence. Also, this study only suggested the observed-score equating but future 

research may consider, IRT true-score equating in conjunction with those rater-effect models 

(e.g, facet-models). 

Several limitations should be noted before implementing the proposed equating method. 

First, the current study set the old forms to be scored by normal raters. In practices, however, the 

old forms can also be graded by aberrant raters, which are not considered in the study. Future 

work may investigate the impact of other rater conditions that also include a varying level of 

rater effects for the old form. 
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The sample size used in the study was fixed at 1,000. Although sample size was found to 

be less impactful than the number of items or score categories on ability estimation at certain 

conditions for HRM (Song & Lee, 2022), it will be important that future research investigates the 

impact of sample size in the context of test equating when rater effects are present. Moreover, 

other possible conditions of number of items and the number of score category can be examined 

to produce a more comprehensive picture of the performance of HRM observed-score equating. 

In this study, a marginal distribution of a test form was computed by averaging the multiple 

marginal distributions by the number of raters for each form. Raters are viewed as the source of 

measurement errors, so having a larger number of raters has the potential increase the accuracy 

of estimated marginal distributions for each form. Therefore, it is also worthy to investigate the 

impact on equating accuracy as more raters are involved in the scoring process. 

Another major limitation has to do with defining a criterion equating relationship. It is 

worth noting that HRM was used for generating the data which might have offered unintended 

advantages to HRM observed-score equating over GPCM observed-score equating. Therefore, 

future research may use a different model in simulating data or simulate data using rater 

parameters based on rater statistics (i.e., quadratic weighted kappa) obtained from real data, as in 

the previous study (Boyer & Patz, 2019). 
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CHAPTER/ STUDY 3: EVALUATING COVARIATE BALANCE DIAGNOSTICS FOR 

PROPENSITY SCORE WEIGHTING WITH MULTILEVEL DATA 

Introduction 

Propensity score (PS) methods have long been employed by educational researchers and 

program evaluators to identify students' propensity for participating in educational programs, 

which is a crucial factor in achieving balanced covariates and detecting causal-effect 

relationships (e.g., Melguizo et al., 2011; Morgan et al., 2010; Yamada et al., 2018; Yamada & 

Bryk, 2016). A propensity score represents the probability of receiving a treatment assignment 

based on measured covariates (Rosenbaum & Rubin, 1983; 1984). It is assumed that, conditional 

on a true PS, if the covariates in treatment and control groups are equivalent, then the treatment 

will not be confounded with covariates (Rosenbaum & Rubin, 1983). Confirmation of group 

equivalence is predicated upon the researcher’s ability to properly test for covariate balance; 

however, existing tests are rudimentary. Educational research designs now extensively utilize 

multilevel structures to account for the inherent nesting of the education delivery model 

(Raudenbush & Bryk, 2002), and there is a pressing need for advanced covariate balance testing 

to be used for these complex data structures, as only a few currently exist. 

Matching based on PS is one of the most widely used PS methods to reduce selection 

bias. Thoemmes and Kim (2011) conducted a systematic review of social science studies that 

employed PS approaches and found that matching was used more often (n = 55, 64%) than three 

other PS methods: PS weighting, stratification, and covariate adjustment. However, a large 

sample size is often needed for conducting PS matching if used in conjunction with a specific 

matching strategy (Guo & Fraser, 2015). This may not be realistic for studies evaluating 

interventions targeted primarily at small groups of participants or studies with limited funding 
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for data collection. Moreover, when conducting PS matching, there is a potential to discard some 

part of the sample either in the control or treatment group (Austin, 2014; Guo & Fraser, 2015; 

Olmos & Govindasamy, 2015), which can lower the validity of treatment effects. 

Compared to matching, PS weighting has several advantages. It allows researchers to use 

the full sample in control and treatment groups for outcome analysis, which helps to maintain 

statistical power in identifying a treatment effect (Guo & Fraser, 2015; Stone & Tang, 2013). 

Unlike PS matching, which requires constructing comparison groups, PS weighting is easier to 

implement because the estimated PS can be used directly (Leite et al., 2015). Furthermore, 

weighting methods can be used to produce estimates not only for the average treatment effect 

(ATE), but also for the average treatment effect on treated participants (ATT) with slight 

changes in equations (Schafer & Kang, 2008; West et al., 2014). Additionally, weighting can be 

performed using many available computer software, enabling researchers from various fields 

using different software to implement PS methods (Olmos & Govindasamy, 2015). 

After applying a PS method to a sample, a crucial step in the analysis routine is to 

perform a covariate balance diagnostic to check the equivalence of the covariates between the 

two comparison groups. The covariate balance diagnostic is used to examine if the ignorability 

assumption of treatment assignment has been met (Bai & Clark, 2018; Rosenbaum & Rubin, 

1983). Ignorability of treatment assignment is required for using PS methods, and it assumes that 

the assignment to treatment or control groups is independent of outcomes when accounting for 

covariates. Achieving balanced covariates is necessary for meeting the ignorability assumption, 

allowing one to confidently draw the conclusion that selection bias is reduced by applying PS 

(Bai & Clark, 2018). In addition, assessing covariate balance is important to detect whether the 

PS model has been adequately defined (Austin, 2011). If balance diagnostics indicate an 
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imbalance, evaluators would need to select a different PS model or reconsider the covariates to 

obtain more balanced covariates between the two groups. 

     Research on covariate balance diagnostics is mostly conducted in the context of PS 

matching (Ali et al., 2014; Austin, 2009; Burnett 2019; Jacovidis et al., 2017; Zhang et al., 2019) 

whereas only a small amount of research has examined how to assess covariate balance for PS 

weighting.  In a systematic review of 29 studies that employed inverse probability of treatment 

weighting (IPTW) as the weighting approach, Austin and Stuart (2015) found that many studies 

failed to assess the balance of weighted samples in two comparison groups. 

While PS weighting is a simpler approach than matching, it is vulnerable to the impact of 

misspecification of a PS model, leading to biased estimates (Kang & Schafer, 2007; Schafer and 

Kang, 2008). Thus, it is crucial to assess covariate balance for PS weighting to check the 

adequacy of model specification. Austin and Stuart (2015) proposed a formal set of covariate 

balance diagnostics that can be used for IPTW, but this study only discussed covariate balance 

diagnostics for single-level data. However, in educational contexts, data are often hierarchically 

structured, with students nested in classrooms, schools, and/or districts, which requires the use of 

multilevel models to estimate PS and treatment effects. Variations may exist in the selection 

mechanism as well as the level of treatment among clusters (e.g., classrooms) and, to account for 

such complexity. Multilevel models have been used for estimating PS and treatment effects in 

previous literature. It is possible that the way to assess covariate balance for multilevel data is 

different from what has been used for single-level data.  

There is a limited understanding about which measure leads to the most precise 

assessment and how to address the multilevel structure in evaluating covariates. The current 

study was carried out to investigate the performance of different measures for evaluating 
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covariate balance when PS weighting is used for multilevel data, with an aim to provide 

guidance to researchers and practitioners on selecting the most appropriate covariate balance 

diagnostics with complex data. 

Covariate Balance Diagnostics 

Various covariate balance diagnostics have been proposed to assess the extent to which 

the propensities of treatment and control groups are balanced, such as numerical diagnostics, 

graphical methods, and inferential tests (Burnett, 2019). Ali et al. (2014) found that the 

standardized bias (SB) method consistently outperformed the Kolmogorov-Smirnov distance, the 

Lévy distance, and the overlapping coefficient methods in the context of PS matching. The SB 

method is easy to compute, and it is not likely to be influenced by sample size (Ali et al., 2014; 

Ali et al., 2015). Specific to IPTW, Austin and Stuart (2015) suggested a set of defined 

procedures for assessing covariate balance diagnostics, one of which is to use a weighted SB 

method to compare means and assess the prevalence of covariates between comparison groups in 

weighted samples. Rather than examining the mean difference between the two samples, using 

variance ratio (VR) can assess the difference in the dispersion of the distribution of the 

covariates in the two comparison groups (Austin, 2009; Imai et al., 2008). A moderate difference 

of the covariates between the groups was found in the values of VR when the PS model was mis-

specified, but when the PS model was correctly specified, the value of VR was close to 1, 

indicating that the two groups have similar variances. 

Percent bias reduction (PBR) is another way to assess covariate balance (Cochran & 

Rubin, 1973; Rosenbaum & Rubin, 1984). This statistical method reflects the degree to which 

the bias is reduced after applying the PS method. Although this method has been used in 

previous studies (e.g., Baser, 2006; Drake, 1993), limited research has focused on its 
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effectiveness. A few inferential tests such as t-tests and the Kolmogorov-Smirnov distance have 

been frequently used in previous research (Ali et al., 2015; Granger et al., 2020; Thoemmes & 

Kim, 2011). However, these tests should be used with caution as they are based on population 

parameters and the resulting estimates may be influenced by sample size (Ali et al., 2015; Ho et 

al., 2007). 

Education researchers have employed various covariate balance diagnostics to ensure 

group equivalency when using PS methods on multilevel data (Arpino & Cannas, 2016; Arpino 

& Maelli, 2011; Leite et al., 2021; Rickles & Seltzer, 2014; Yamada et al., 2018). While some 

scholars have evaluated covariate balance with (weighted) standardized mean difference or a 

ratio of standard deviations using a pooled method after PS matching/weighting (Leite et al., 

2015; McCormick et al., 2013), this method treats cluster-level covariates in the same way as 

individual-level covariates and ignores the clustering effect. To address this limitation, Arpino 

and Maelli (2011) proposed an additional step of averaging values of absolute standardized bias 

(ASB) to obtain an overall ASB between matched groups. Another approach used is the within-

cluster method, where ASBs or other bias indices are calculated for individual-level covariates 

within each cluster separately (Kim & Seltzer, 2007; Yamada et al., 2018; Yamada & Bryk, 

2016), and then each covariate from different clusters is averaged (Rickles & Seltzer, 2014). 

The comparison of the pooled and within-cluster methods for evaluating covariate 

balance reveals that both approaches have their own strengths and weaknesses, as discussed by 

Burnett (2019). The pooled method provides a single summary statistic for each covariate that 

can be evaluated based on a criterion directly. However, this method does not offer sufficient 

information about within-cluster covariates. In contrast, the within-cluster method considers 

covariate balance within each cluster, but it may not be feasible when the cluster size is small. 
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Moreover, when there are many clusters in a dataset, computing covariate statistics within each 

cluster requires substantial effort. In addition, statistics for each covariate within each cluster 

cannot be used directly, and instead, they need to be averaged to obtain an overall statistic for 

each covariate that can be evaluated based on a criterion (Burnett, 2019). 

To further examine these methods, Burnett (2019) conducted a simulation study to 

identify the optimal diagnostic for evaluating covariate balance with multilevel data after PS 

matching is applied, comparing pooled ASB, within-cluster ASB, pooled VR, and within-cluster 

VR. The results showed that pooled ASB had more accurate predictions for treatment effect bias, 

while within-cluster ASB was more sensitive to model specification. Although this study 

provided valuable information, it only focused on comparing balance diagnostics when PS 

matching was used. PS weighting has recently received increasing attention (Austin & Stuart, 

2015), but there is no existing literature that has examined the performance of various 

diagnostics when PS weighting is used with multilevel data. 

The current study aims to provide a comprehensive understanding of the effectiveness of 

several covariate balance diagnostics when PS weighting is used with hierarchical data. Six 

diagnostics were examined, including a) pooled ASB, b) within-cluster ASB, c) pooled VR, d) 

within-cluster VR, e) pooled PBR, and f) within-cluster PBR. The study uses IPTW because it is 

the most used weighting procedure for adjusting samples and has been demonstrated to remove 

more bias compared to alternatives such as marginal mean weighting (Leite et al., 2019). For 

IPTW, weights are assigned to individuals based on the inverse of their probability of receiving 

treatment, as estimated by PS (Rosenbaum & Rubin, 1983). Based on the study design in 

Burnett's (2019) research, this study expands the analysis to include the performance of six 



93 

 

 

 

diagnostics in the context of weighting. The study also investigates the correlations between the 

covariate balance diagnostics and the ATE bias under a set of conditions.  

This study aims to find a diagnostic that is sufficient at identifying model 

misspecification. In addition, this study intends to find a diagnostic that can provide additional 

insight into the bias in the treatment effect. The following research questions will be addressed: 

1. Among pooled ASB, within-cluster ASB, pooled VR, within-cluster VR, pooled 

PBR, and within-cluster PBR, which balance diagnostic performs best in detecting a 

correct PS model when using IPTW to work with multilevel data? 

2. How different factors, including cluster size, ICCs of individual-level covariates, 

treatment prevalence, and covariate imbalance, affect the performance of each 

diagnostic? 

3. Among the six covariate balance measures, which one demonstrates the strongest 

correlation with the bias in the treatment effect when utilizing IPTW with multilevel 

data? 

Method 

Simulation Factors 

This Monte Carlo study used a simulation design with an intent to approximate the real-

world scenarios by varying different factors. The choice of factors and levels was based on an 

examination of previous methodological research (Fuentes et al, 2021; Kush et al., 2022). In 

addition, the authors’ previous research experiences in quasi-experimental studies guided the 

study design to produce contextualized implications of the findings. 
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Cluster size 

Previous studies have highlighted the importance of the number of individuals within 

each cluster when dealing with multilevel data (Austin & Leckie, 2018; Leite et al., 2015; 

Moineddin et al., 2007). In this study, cluster size varied across three levels: 30, 50, and 100. The 

choice of the cluster size was based on an authors’ previous research project in which we 

evaluated the effectiveness of an intervention in a higher education context (Westine et al., 

2023). In that project, classes were considered as clusters, which often consist of 30 to 100 

students. Thus, the number of clusters in this study was fixed at 30.   

ICC of Individual-level Covariate X (𝑰𝑪𝑪𝑿) 

The intraclass correlation coefficient (ICC) measures the degree of clustering within 

groups. Previous research has demonstrated that the ICC of Individual-level Covariate X (𝐼𝐶𝐶𝑋), 

had an impact on balance measures in identifying a PS model (Thoemmes & West, 2011). In this 

study, 𝐼𝐶𝐶𝑋 varied at three levels: 0.1, 0.3, 0.5. With respect to the ICC of the treatment indicator 

in the PS model, it was fixed at 0.2 (Fuentes et al., 2021). 

Treatment Prevalence 

Treatment prevalence, representing the ratio of individuals assigned to the treatment 

group, was another factor manipulated in this study. Kush et al. (2022) found that the treatment 

effect estimation was more accurate when prevalence level was 0.5, compared to lower or higher 

treatment ratios. In this study, three levels of prevalence (0.2, 0.5, and 0.8) were simulated.  

Baseline Imbalance 

Baseline covariate balance is often checked before propensity score estimation to assess 

the degree of overlap between the two comparison groups. More bias and mean standard error in 

the estimation of treatment effect were found as the baseline imbalance increased (Kush et al., 
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2022). This study used the average ASB of both the individual-level and cluster-level covariates 

to measure baseline imbalance. Two levels of baseline covariate balance, including 0.3-0.5 and 

0.5-0.7, were examined. Since multiple conditions were simulated, a range, rather than a specific 

number, was assigned to each of the two levels to provide some flexibility for data generation. 

Table 3.1 summarizes the investigated factors. 

Table 3.1 

Factors and Levels of Simulation Study 

Factors Levels 

Cluster Size 30, 50, 100 

No. of clusters 30 

ICC of the individual-level covariate X (𝐼𝐶𝐶𝑋). 0.1, 0.3, 0.5 

Baseline Imbalance 0.3-0.5, 0.5-0.7 

Treatment Prevalence 0.2, 0.5, 0.8 

 

Data Generation 

The data simulation process followed the steps used in Burnett's (2019) study and is 

outlined in Figure 3.1. The steps for data generation include: (1) specifying a PS model for data 

generation, (2) simulating data for individual- and cluster-level covariates, (3) calculating the 

propensity score for each individual based on the specified model, (4) assigning individuals to 

the treatment or control group based on their propensity scores, and (5) generating outcome data 

based on a specified outcome model. 

Specifically, propensity score was generated based on a multilevel logistic regression 

model with both random intercept and slope components (Fuentes et al., 2021; Leite et al., 2015), 

referred to as the MRIS model, 
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𝑙𝑜𝑔𝑖𝑡 (𝑃𝑖𝑗(𝑇𝑖𝑗 = 1)) = 𝛼0 + 𝛼𝑋𝑋𝑖𝑗 + 𝛼𝑍𝑍𝑗 + 𝜇0𝑗 + 𝜇1𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗, 
         (3.1) 

where 𝑇𝑖𝑗 is the binary value indicating if individual 𝑖 in cluster 𝑗 is assigned to the treatment 

group. 𝑃𝑖𝑗 is the probability of assignment to the treatment group. The intercept is represented by 

𝛼0, while 𝛼𝑋 and 𝛼𝑍 are the fixed effects of individual-level covariate 𝑋𝑖𝑗 and cluster-level 

covariate 𝑍𝑗, respectively. The random slope of individual-level covariate 𝑋𝑖𝑗 is denoted by 𝜇1𝑗, 

and 𝜇0𝑗 represents the random effect on the intercept of cluster j. 𝜀𝑖𝑗 is the residual at the 

individual-level. 

Figure 3.1 

Flowchart of Data Generation and Analysis 

 

 

In this simulation, 𝑋𝑖𝑗 and 𝑍𝑗 were set to follow a standard normal distribution - 𝑁(0, 1). 

𝜇0𝑗 and 𝜇1𝑗 were drawn from a bivariate normal distribution with a mean of zero, whereas the 

variance of 𝜇1𝑗 was equal to half of the variance of 𝜇0𝑗. 𝜀𝑖𝑗 was drawn from a logistic 

distribution with a mean of 0 and a variance of 
𝜋2

3
. Both 𝛼𝑋 and 𝛼𝑍 were set to 0.5 (Fuentes et al., 
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2021). Each individual was assigned either to the treatment or control group based on a random 

draw from a binomial distribution using their propensity score (Kush et al., 2022). If a value of 1 

was generated, the individual was assigned to the treatment group, and if a value of 0 was 

obtained, the individual was assigned to the control group. 

The data were generated iteratively to achieve the required level of treatment prevalence, 

with a tolerance range of 0.05. To accomplish this, the intercept 𝛼0 of the PS model was adjusted 

until the desired prevalence levels were reached (prevalence = 0.2, 𝛼0 = -0.8; prevalence = 0.5, 

𝛼0 = 0; prevalence = 0.8, 𝛼0 = 0.8). The multilevel pseudo 𝑅2 was computed using the values of 

𝐼𝐶𝐶𝑋 and the intercept 𝛼0 following the method proposed by Snijders and Bosker (2012), as 

presented in Appendix B. Specifically, the pseudo 𝑅2 consisted of two components: the 

individual-level 𝑅𝐿1
2  and the cluster-level 𝑅𝐿2

2 . Across the conditions, 𝑅𝐿1
2  and 𝑅𝐿2

2  ranged from 

about 0.06 to 0.12. The pseudo 𝑅2 was approximately at a value of 0.18. 

The outcome model incorporates the individual-level and cluster-level covariates, and is 

expressed as follows: 

𝑌𝑖𝑗 = 𝛽0 + 𝜏𝑇𝑖𝑗 + 𝛽𝑋𝑋𝑖𝑗 + 𝛽𝑍𝑍𝑗 + 𝑣0𝑗 + 𝑣1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗 .   (3.2) 

𝑌𝑖𝑗 represents the outcome of individual 𝑖 at cluster 𝑗. 𝛽0 is the intercept. 𝜏 is the 

treatment effect. 𝛽𝑋 and 𝛽𝑍 are the fixed effects of the individual-level covariate 𝑋𝑖𝑗 and the 

cluster-level covariate 𝑍𝑗, respectively. 𝑣1𝑗 is the random slope of the individual-level covariate 

𝑋𝑖𝑗. 𝑣0𝑗 represents the random effect on the intercept of the 𝑗𝑡ℎ  cluster. 𝑒𝑖𝑗 is the residual at the 

individual-level. 𝛽0 was set to 0. 𝑣0𝑗, 𝑣1𝑗, and 𝑒𝑖𝑗 were generated from the standard normal 

distribution. 𝛽𝑋 and 𝛽𝑍 were both set to 0.5. The treatment effect (ATE) 𝜏 was set to 0.3. 
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Data Analysis 

Once data was generated, propensity scores were estimated by using four different PS 

models. In addition to the MRIS model, which was used to simulate data, three additional models 

were used to estimate PS: a single-level PS model (SL model), a logistic regression model with 

fixed-cluster effects (FC model), and a multilevel logistic model with random intercept only 

(MRI model). The SL model did not consider variations in assigning individuals to different 

clusters, which can result in biased estimates (Arpino & Mealli, 2011; Thoemmes & West, 

2011). The FC model can produce unstable estimates of PS when the data involve a large 

number of small clusters due to the large number of free parameters (Li et al., 2013). Random 

slope is not considered in the MRI model, which ignores the cluster variations in the individual-

level covariate. These three models were considered as incorrect models in this study (see Table 

3.2). Further details about these three models can be found in previous studies (Arpino & Mealli, 

2011; Burnett, 2019; Leite et al., 2015; Li et al., 2013). 

Table 2.2 

PS Models of Simulation Study 

Model for data generation Multilevel logistic regression model with both random intercept and slope 

(MRIS) 

Models for data analysis Single-level model (SL) 

 Logistic regression model with fixed-cluster effects (FC) 

 Multilevel logistic model with random intercept (MRI) 

 Multilevel logistic regression model with both random intercept and slope 

(MRIS) 

 

Once the propensity scores were calculated using the four models, the weight 𝜔𝑖𝑗 for 

individual i in cluster j was calculated as the inverse of the probability of the individual being 

assigned to the treatment or control group: 
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𝜔𝑖𝑗 =

{
 
 

 
     

1

1 − 𝛾𝑖𝑗
,                              𝑖𝑓 𝑇𝑖𝑗 = 0  

1

𝛾𝑖𝑗
 ,                                     𝑖𝑓 𝑇𝑖𝑗 = 1

   ,   

            (3.3) 

where 𝛾𝑖𝑗 is the estimated PS for individual i in cluster j. A weight of 
1

�̂�𝑖𝑗
 is calculated if the 

participant is in the treatment group. In contrast, a weight of 
1

1−�̂�𝑖𝑗
 is used if the participant 

belongs to the control group. 

Research Questions 1 and 2 

To answer research questions 1 and 2, the following procedures were conducted (Burnett, 

2019). Firstly, the statistics of pooled ASB, VR, and PBR were obtained by averaging the 

covariate balance values for both the individual-level and cluster-level covariates, without 

considering the variations among clusters. On the other hand, the three within-cluster measures 

were derived by first obtaining the balance value for each cluster and then averaging across 

clusters for the individual-level covariate. The equations for the six diagnostics can be found in 

Appendix A. 

The second step involved identifying the correct PS model based on the balance statistics 

obtained in the first step. The PS model that resulted in the lowest ASB and the highest PBR was 

selected as the one that achieved the most balanced groups. For the VR method, the PS model 

producing the value closest to 1 was selected. This procedure was repeated 100 times. 

The success rate of each balance diagnostic in correctly identifying the MRIS model was 

recorded in the last step. The evaluation was based on the frequency of successfully selecting the 

MRIS model for each balance diagnostic, with the assessment that had the highest frequency 

being considered the best. In this study, this evaluation method was referred to as the “balance 

statistics” method. 
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In practice, a threshold is often used with a covariate balance diagnostic to assess 

covariate balance. The threshold is used to determine the level of difference between the 

treatment and control groups that is considered acceptable. The results of using this evaluation 

method with different threshold values were presented in Appendix C. 

Research Question 3 

To answer the third research question, the study examined the correlation between the 

covariate balance diagnostic statistics and bias in the treatment effect. After applying IPTW to 

the sample, two estimators of ATE, namely marginal and cluster estimators, were used to 

estimate ATE. The study investigated both estimators since they handle variations among 

clusters differently. The marginal estimator calculates the difference of the weighted overall 

means of outcomes between the treatment and control groups, ignoring the existence of clusters 

(Li et al., 2013). In contrast, the clustered estimator of ATE is obtained by first calculating the 

sum of the weighted ATE within each cluster and dividing the total by the sum of the weights in 

each cluster. Given the hierarchical structure of the data, the cluster estimator appears more 

appropriate in this study context than the marginal estimator. For more information on ATE 

estimators, refer to Li et al. (2013). 

 The bias of ATE is the absolute difference between the ATE estimates and the true ATE 

value defined previously. After assigning weights to individuals in both the control and treatment 

groups, ATE estimates were generated by calculating the difference between the average 

weighted observations of the two groups. The ATE estimates were calculated in two ways, 

including a marginal and a cluster estimator. The correlation between the covariate balance 

diagnostics and the bias in the treatment effect was then calculated for each condition based on 

100 replications. In cases where the VR statistic was greater than 1, the reciprocal was used 
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before calculating the correlations. After calculating the correlations, the correlation coefficients 

from the VR and PBR methods were multiplied by -1 for easier comparison among the six 

diagnostics. The diagnostic with the highest correlation was considered the best method. 

Software Implementation 

The data were generated and analyzed using the R program (R Core Team, 2021). 

Specifically, the R package lme4 (Bates et al., 2015) was utilized to construct the four PS models 

and to estimate propensity scores. The glm function was used for the SL and FC models, while 

the glmer function was employed for the MRI and MRIS models. 

Results 

Overall Performance of Covariate Balance Diagnostics on Model Selection 

Figure 3.2 presents the aggregated results of the PS model selection for each of the six 

covariate balance diagnostics, which include pooled ASB, within-cluster ASB, pooled VR, 

within-cluster VR, pooled PBR, and within-cluster PBR, across all simulated conditions. 

Specifically, the percentages of each of the four models that were selected by each of the six 

balance diagnostics were displayed in the figure. 

According to Figure 3.2, within-cluster ASB (99.5%) yielded the highest frequency of 

selecting the MRIS model as the PS model. Within-cluster PBR (97.6%) was associated with the 

second-highest percentage for getting the correct model selected. In other words, by using these 

two diagnostics, researchers are more likely to identify a correct PS model that generates 

accurate weights. This may be due to the fact that variations exist across clusters in the simulated 

data, making the within-cluster diagnostics more accurate for multilevel data. However, this 

pattern was not found in VR, where pooled VR generated more accurate results than within-

cluster VR. Across the four models, the MRIS model had the highest frequency of selection by 
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using the pooled VR (48.4%) diagnostic. However, the percentage of the correct choice was not 

as dramatic as those of within-cluster ASB and PBR. The other three diagnostics, pooled ASB 

and PBR, and within-cluster VR, did not perform well in detecting the correct PS model. For 

pooled ASB and PBR, the probability of identifying a MRIS model was less than one-third, 

similar to that of the SL model. Within-cluster VR had the lowest probability of opting for the 

MRIS model, suggesting that the diagnostic may not work well for reducing selection bias. 

Figure 3.2 

Percentages of PS Model Selection of Covariate Balance Diagnostics with Balance Statistics 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 

 

The Impact of Simulation Factors on Model Selection 

 The performance of the six covariate balance diagnostics was compared across different 

factors. The results were displayed in Figures 3.3 to 3.6. 
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Cluster size 

Most of the covariate balance diagnostics, except for within-cluster VR, showed a similar 

trend in using balance statistics for model comparison. Figure 3.3 reveals that as the cluster size 

increased, they led to more accurate model selection results. However, the degree of 

improvement varied. Within-cluster ASB and PBR only showed a slight improvement due to the 

ceiling effect, whereas the other three diagnostics exhibited an improvement of about 10% to 

15% as cluster size changed from 30 to 100. In contrast, within-cluster VR showed a different 

pattern, in which the probability of identifying the correct PS model decreased with an increase 

in cluster size. 

Figure 3.3 

Percentages of Correct PS Model Selection of Covariate Balance Diagnostics with Balance Statistics by Cluster 

Size 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 
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ICC of Individual-level Covariate X (𝑰𝑪𝑪𝑿)  

According to Figure 3.4, the within- and clustered- ASB and PBR balance diagnostics 

were associated with a slightly decreased frequency in identifying the correct model as 𝐼𝐶𝐶𝑋 

increased. The range of the decreased percentage was within 4% across the three levels of 𝐼𝐶𝐶𝑋. 

However, the effect of 𝐼𝐶𝐶𝑋 on pooled VR did not follow the same pattern as the other 

diagnostics. Specifically, when 𝐼𝐶𝐶𝑋 was set to 0.3, the percentage of correct model 

identification appeared to be slightly higher than the other two levels. Overall, the individual-

level covariate X across clusters had little to no impact on the performance of most balance 

diagnostics. 

Figure 3.4 

Percentages of Correct PS Model Selection of Covariate Balance Diagnostics with Balance Statistics by 𝐼𝐶𝐶𝑋 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 
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minimal impact on within-cluster ASB and PBR, and pooled VR. The change among different 

levels of treatment prevalence was within 3%. It was observed that when the treatment 

prevalence was set to 0.5, these approaches produced marginally more accurate results in 

identifying the correct PS model. However, the impact of treatment prevalence on pooled ASB 

and PBR, and within-cluster VR was more apparent, following a completely different pattern 

compared to the other three methods. The lowest percentage of correct model selection appeared 

at a treatment prevalence of 0.5, followed by 0.8 and 0.2. Specifically, the percentage of correct 

model identification reduced from over 55% to about 15% when using pooled ASB and PBR as 

treatment prevalence changed from 0.2 to 0.5. 

Figure 3.5 

Percentages of Correct PS Model Selection of Covariate Balance Diagnostics with Balance Statistics by Treatment 

Prevalence 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 
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Baseline Imbalance 

Figure 3.6 illustrates that the impact of baseline covariate imbalance on the performance 

of the diagnostics was limited, with a fluctuation between -5.4% and 3.2%. Only within-cluster 

VR and PBR showed a slightly improved frequency of successfully identifying the correct PS 

model as the baseline imbalance increased. In contrast, the other four diagnostics exhibited a 

reverse trend. As the difference between the covariates of the two groups increased, the success 

rate of correct PS model detection slightly decreased. 

Figure 3.6 

Percentages of Correct PS Model Selection of Covariate Balance Diagnostics with Balance Statistics by Baseline 

Imbalance 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 

 

Association between Balance Statistics and ATE Bias 

 The marginal and clustered ATE bias were calculated before examining their associations 

with balance statistics. The values of the ATE bias were displayed in the model name legend in 

Figures 3.7 and 3.8. Overall, the mean and standard deviations of the clustered ATE bias were 
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smaller than those of the marginal bias using the same PS model. Notably, regardless of the type 

of ATE estimator, the smallest bias resulted from the correctly specified MRIS model. 

Figure 3.7 shows the association between balance statistics of each of the six diagnostics 

and the marginal ATE bias. Interestingly, the highest correlation was found in pooled ASB, and, 

in general, the pooled balance statistics tended to have higher correlations with marginal ATE 

bias than within-cluster balance statistics. Within-clustered ASB produced the highest 

correlations among the three within-cluster measures.  

Figure 3.7 

Correlations between Balance Statistics and Bias in Marginal ATE 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 

 

Figure 3.8 displays the results of using the clustered ATE estimator. In general, the 

clustered ATE bias using the pooled balance diagnostics tended to have lower correlations with 

balance statistics than the marginal ATE bias, whereas both ATE estimators produced similar 

results using within-cluster balance measures. Most of the patterns associated with the six 
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balance diagnostics were consistent between using the clustered and marginal ATE estimators. It 

is interesting to note that across the PS models, the FC model was associated with the highest 

correlations. 

Figure 3.8 

Correlations between Balance Statistics and Bias in Within-cluster ATE 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 

 

Discussion 

Propensity score methods are commonly used to adjust the covariate balance between the 

treatment and control groups to reduce selection bias. One of the challenges faced by researchers 

is choosing the most appropriate balance diagnostics to ensure the accurate assessment of the 

covariates between the two groups. Without a well-performed diagnostic, the correct PS model 

may not be identified, resulting in biased treatment effect estimation. This study aimed to 

examine the performance of six covariate balance diagnostics when PS weighting was employed 

with multilevel data. The study intended to provide general guidance for researchers on the use 
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of balance diagnostics in a real-world context to minimize the differences between the two 

comparison groups. 

The overall results indicated a relatively higher probability for within-cluster ASB to 

identify the correct PS model for multilevel data when IPTW was used. Within-cluster ASB 

performed better than within-cluster VR, but pooled VR produced more accurate results than 

pooled ASB. These findings were consistent with Burnett's study (2019) on the use of PS 

matching for multilevel data. It is also noteworthy that within-cluster PBR, which has not been 

explored in the multilevel context, was found to be associated with robust performance in model 

selection. This method led to more accurate results than pooled PBR, consistent with the pattern 

observed in the two ASB measures. This shared pattern between PBR and ASB may be related to 

the fact that both methods involve calculating the difference between the means of two groups, 

whereas VR focuses on the variances of each group. Further research is necessary to provide a 

clearer explanation for this pattern. 

The majority of the covariate balance diagnostics were influenced by the size of the 

clusters, with the accuracy of model selection being positively related to cluster size. Previous 

studies have also demonstrated a similar pattern in multilevel logistic regression model 

parameter estimation and treatment effect estimation (Leite et al., 2015; Moineddin et al., 2007). 

Moineddin et al. (2007) noted that a small cluster size might result in overestimation of the 

random slope and intercept of the multilevel model. Regarding 𝐼𝐶𝐶𝑋, ASB and PBR for both 

pooled and within-cluster calculations produced less accurate results as the value of 𝐼𝐶𝐶𝑋 

increased, but the impact was insignificant. This indicates that the variations across clusters of 

covariate X had only a slight negative impact on ASB and PBR. With respect to the treatment 

prevalence, the influence varied by each diagnostic. The prevalence of 0.5 either led to the best 
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or the worst performance across the diagnostics, which is consistent with the study conducted by 

Kush et al. (2022). Additionally, it was observed that there was a negative impact of baseline 

imbalance on the bias in treatment effect (Kush et al., 2022). In this study, most of the covariate 

balance diagnostics were associated with less accurate results as the baseline imbalance between 

the two groups increased, except for within-cluster VR and PBR, but the overall impact was not 

significant. 

Regarding the association between each balance diagnostic and the treatment effect bias, 

pooled ASB had the highest correlations. This finding is consistent with the conclusions 

presented in Burnett's study (2019). Although within-cluster ASB and PBR were the most 

successful in identifying the appropriate PS model, they did not yield the highest correlations 

among the six measures. The inconsistency in model identification and the prediction in 

treatment bias might be related to the fact that the model showing the least error in fitting the 

data of treatment assignment is not necessarily the same as the model that generates the least bias 

in estimating the treatment effect (Burnett, 2019; Schafer & Kang, 2008). 

Conclusion and Future Research 

The objective of this study was to enhance researchers’ comprehension of the use of 

covariate balance diagnostics when employing PS weighting with multilevel data. Overall, within-

cluster ASB and PBR were found to produce relatively robust results in choosing the correct PS 

model, regardless of the simulation conditions. Another noteworthy finding is that, across all 

conditions, pooled VR was associated with the least precise results. The four factors examined 

may have different levels of impact on the success rate of selecting the correct PS model. 

Regarding the prediction of the bias in the treatment effect, pooled ASB had the highest accuracy 

among the six covariate balance diagnostics. 
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Although this study examined several factors and levels, they were not exhaustive. For 

instance, the simulated number of clusters was fixed at 30. Moineddin et al. (2007) found that 

valid estimates for multilevel logistic regression models can be generated using a minimum 

cluster size of 50 with at least 50 clusters. Additionally, in an educational context, the number of 

classes/schools may vary depending on the scope of the study. Future research could vary this 

factor to explore the impact on the precision of balance diagnostics. Moreover, only one 

weighting method, IPTW, was explored in the study. Researchers have suggested that IPTW may 

produce extreme weights for individuals when low propensity scores are assigned to treatment 

groups or high propensity scores are assigned to control groups, leading to inaccurate effect 

estimation (Austin & Stuart, 2017). Other weighting approaches, such as trimming inverse 

probability of treatment weighting (Stürmer et al., 2010) or overlap weighting (Li et al., 2019), 

could be further studied. Furthermore, researchers may consider exploring the association 

between the use of covariate balance diagnostics and reduction of the bias in treatment effect 

using different methods. This would provide additional insights into the balance diagnostics and 

their relationship with the accuracy of treatment effect estimation. 
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Appendix A: Covariate Balance Measures 

In PS weighting, the pooled ASB is calculated as an absolute standardized bias over all 

the individual on weighted individual-level and cluster-level covariates (Arpino & Maellie, 2011; 

Burnett, 2019), which can be defined as, 

𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡 =
|

| �̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡 − �̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡

√
𝑆𝑇
2
𝑤𝑒𝑖𝑔ℎ𝑡

+ 𝑆𝐶
2
𝑤𝑒𝑖𝑔ℎ𝑡

2

|

|
× 100% 

((a) 

where �̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡 and �̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡 are the weighted sample means on the covariate of the treatment 

and control groups, respectively, which can be calculated as in Equations (b) and (c). 

�̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡 =
∑𝜔𝐶𝑖𝑥𝐶𝑖
∑𝜔𝐶𝑖

,  
(b) 

where 𝜔𝐶𝑖 and 𝑥𝐶𝑖 are the weight and covariate for the 𝑖𝑡ℎ individual in the control group C, 

respectively. 𝜔𝐶𝑖 can be obtained by using IPTW. 

�̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡 =
∑𝜔𝑇𝑖𝑥𝑇𝑖
∑𝜔𝑇𝑖

,  
(c) 

where 𝜔𝑇𝑖 and 𝑥𝑇𝑖 are the weight and covariate for the 𝑖𝑡ℎ individual in the treatment group T, 

respectively. The value of 𝜔𝑇𝑖 can be obtained by using IPTW. 

𝑆𝑇
2
𝑤𝑒𝑖𝑔ℎ𝑡

 and 𝑆𝐶
2
𝑤𝑒𝑖𝑔ℎ𝑡

 are the weighted variances on the covariates of the treatment and 

control groups, respectively, which can be calculated using Equations (d) and (e) (Austin & 

Stuart, 2015). 

𝑆𝑇
2
𝑤𝑒𝑖𝑔ℎ𝑡

=
∑𝜔𝑇𝑖𝑥𝑇𝑖

(∑𝜔𝑇𝑖)
2
− ∑𝜔𝑇𝑖

2
∑𝜔𝑇𝑖 (𝑥𝑇𝑖 − �̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡)

2, 
(d) 

 



120 

 

 

 

𝑆𝐶
2
𝑤𝑒𝑖𝑔ℎ𝑡

=
∑𝜔𝐶𝑖𝑥𝐶𝑖

(∑𝜔𝐶𝑖)
2
− ∑𝜔𝐶𝑖

2
∑𝜔𝐶𝑖 (𝑥𝐶𝑖 − �̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡)

2. 
(e) 

The pooled method evaluates covariate balance for multilevel data as if it is single-level 

data, so 𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡 can be directly used as the pooled 𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡. However, when the variants 

across clusters are considered, the 𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡 needs to be adapted for calculating the value for 

within-cluster ASB. 

The within-cluster ASB can be obtained by calculating the ASB for each cluster, then 

averaging the ASBs across all clusters, as shown in equation (f), 

𝐴𝑆𝐵𝑤𝑖𝑡ℎ𝑖𝑛−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
1

𝐽
∑ 𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝐽
𝑗=1 ,  (f) 

where J is the number of clusters and 𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡𝑗  is the weighted ASB of the 𝑗𝑡ℎ cluster. The 

value of 𝐴𝑆𝐵𝑤𝑒𝑖𝑔ℎ𝑡𝑗  can be calculated by using Equation (a), but it should be noted the ASB 

varies across clusters. 

The pooled variance ratio, 𝑉𝑅𝑤𝑒𝑖𝑔ℎ𝑡, for each covariate is defined as the ratio of the 

sample variances of the treatment and the control groups on the selected covariates (Austin, 

2009; Burnett, 2019), which is expressed in equation (g), 

𝑉𝑅𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑆𝑇
2
𝑤𝑒𝑖𝑔ℎ𝑡

𝑆𝐶
2
𝑤𝑒𝑖𝑔ℎ𝑡

  . 
(g) 

This index indicates the dispersion of the covariates between the two groups instead of 

examining the means. The distributions between the two groups are similar if 𝑉𝑅𝑤𝑒𝑖𝑔ℎ𝑡 is close 

to 1. 

The within-cluster variance ratio, 𝑉𝑅𝑤𝑖𝑡ℎ𝑖𝑛−𝑐𝑙𝑢𝑠𝑡𝑒𝑟, can be calculated by averaging the 

VRs for each cluster. The equation is shown as follows (Burnett, 2019), 

𝑉𝑅𝑤𝑖𝑡ℎ𝑖𝑛−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
1

𝐽
∑ 𝑉𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝐽
𝑗=1 ,   (h) 
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Pooled PBR is calculated as the percent reduction in the absolute difference of means 

between treatment and control groups before and after applying the weights to covariates. 

𝑃𝐵𝑅𝑝𝑜𝑜𝑙𝑒𝑑 = 
|�̅�𝑇 − �̅�𝐶| − |�̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡 − �̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡|

|�̅�𝑇 − �̅�𝐶|
× 100% , 

   

(i) 

where  �̅�𝑇 and �̅�𝐶 are the sample means on the covariates of the treatment and control groups 

without applying the weights, respectively, which can be calculated as Equations (j) and (k). 

�̅�𝑇 =
∑𝑥𝑇𝑖

𝑁𝑇
 , (j) 

where 𝑁𝑇 is the number of individuals in the treatment group, and 

�̅�𝐶 =
∑𝑥𝐶𝑖

𝑁𝐶
 , (k) 

where 𝑁𝐶 is the number of individuals in the treatment group. 

Within-cluster PBR can be obtained by calculating the PBR for each cluster, then 

averaging the PBRs across all clusters, as shown in equation (l) 

𝑃𝐵𝑅𝑤𝑖𝑡ℎ𝑖𝑛−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 
1

𝐽
∑

|�̅�𝑇𝑗 − �̅�𝐶𝑗| − |�̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑗
− �̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡𝑗

|

|�̅�𝑇𝑗 − �̅�𝐶𝑗|

𝐽

𝑗=1

× 100% , 

((l) 

where �̅�𝑇𝑗 and �̅�𝐶𝑗  are the sample means on the covariate of the treatment and control groups in 

the 𝑗𝑡ℎ cluster, respectively. �̅�𝑇𝑤𝑒𝑖𝑔ℎ𝑡𝑗
 and �̅�𝐶𝑤𝑒𝑖𝑔ℎ𝑡𝑗

 are the weighted sample means on the 

covariates of the treatment and control groups in the 𝑗𝑡ℎ cluster, respectively. 

Appendix B: Multilevel Pseudo-R square 

Snijders and Bosker (2012) proposed a method to obtain multilevel pseudo-R square. 

𝑅2 = 𝑅𝐿1
2 + 𝑅𝐿2

2  , (m) 

where 𝑅2 is the total R square value, 𝑅𝐿1
2  is the R square value at the individual-level, and 𝑅𝐿1

2  is 

the R square value at the cluster-level. 
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𝑅𝐿1
2 =

(𝛼𝑋
2+ 𝜎𝑢1

2 )(1−𝐼𝐶𝐶𝑋)

𝛼𝑋
2+ 𝛼𝑍

2+ 𝜎𝑢0
2 +𝐼𝐶𝐶𝑋(𝜎𝑢1

2 +
𝜋2

3
)
 ,   

(n) 

𝑅𝐿2
2 =

𝐼𝐶𝐶𝑋(𝛼𝑋
2+ 𝜎𝑢1

2 )+𝛼𝑍
2

𝛼𝑋
2+ 𝛼𝑍

2+ 𝜎𝑢0
2 +𝐼𝐶𝐶𝑋(𝜎𝑢1

2 +
𝜋2

3
)
 ,   

(o) 

where 𝐼𝐶𝐶𝑋 is the ICC of the individual-level covariate X, 𝜎𝑢0
2  is the variance of the variable 𝑢0, 

and 𝜎𝑢1
2  is the variance of the variable 𝑢1. 

Appendix C 

A second method to evaluate covariate balance diagnostics – a “balance threshold” 

method – was included in the study by replacing step 2 under the data analysis section with a 

different procedure. Specifically, the statistics generated from step 1 were compared against the 

respective thresholds. The common thresholds for balance for each statistic include: ASB (< 0.1) 

(Rubin 2001), VR (0.5 to 2.0) (Rubin, 2001), and PBR (> 0.8) (Cochran & Rubin, 1973). 

Specifically, a binary score (0, 1) was assigned based on the comparison between the results of 

the balance measure and the threshold (Burnett, 2019). If the statistic indicated a balance of the 

covariates between the two groups, a score of 1 was recorded. Otherwise, a 0 was recorded. For 

pooled balance measures, this binary-check mechanism was applied for each covariate before 

averaging the binary results across the covariates. For within-cluster measures, the balance 

statistics calculated within each cluster was compared to the threshold and the binary results 

were averaged across clusters. The resulting values associated with the four PS models were then 

compared. If there was a tie in the binary results between two models, no model was selected. 

Then the process repeated 100 times and the percentage of each covariate balance diagnostics 

selecting the correct model was recorded for further comparison. Results are presented in Figure 

3.A. 
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Figure 3.A 

Percentages of PS Model Selection of Covariate Balance Diagnostics with Balance Thresholds 

 

Note. WC refers to within-cluster. SL, FC, MRI, MRIS/Correct indicate single-level model, logistic regression 

model with fixed-cluster effects, multilevel logistic model with random intercept, and multilevel logistic regression 

model with both random intercept and slope, respectively. 
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OVERALL CONCLUSION 

Findings and Implications 

Researchers from various fields constantly face challenges for maintaining comparability 

in different contexts. . This dissertation aims to address three commonly encountered issues, each 

of which was addressed using simulation techniques. Specifically, by taking various simulation 

conditions into consideration, this dissertation intends to provide insights into selecting an 

appropriate method to make sure that the comparability between test scales, test forms, and 

treatment and control groups is achieved. If comparability is not maintained for a test, test results 

validity can be undermined and test score interpretation will be compromised. In addition, 

without obtaining two equivalent groups, the estimated treatment effect of an intervention of a 

quasi-experimental study can be biased, potentially leading to misjudgments, and hindering the 

development of effective policies. The three obstacles that impede the attainment of 

comparability and results of each study are discussed below. 

1. Which missing data handling method should be used to achieve accurate scale 

transformation for maintaining comparability among examinees taking different 

test forms?  

Different calibration methods can be used by testing programs for estimating item 

parameters and examinees’ proficiency. For concurrent calibration, when two test forms are 

calibrated simultaneously using computer software, there is no need to conduct scale 

transformation because the parameters are automatically placed on the same scale. Scale linking 

is also not required for separate calibration when two groups are equivalent. However, in the 

case of separate calibration where two groups may not be equivalent, scale transformation is a 

necessary step. For example, the 2018 Programme for International Student Assessment (PISA) 
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(OCED, 2019) used linear scale transformation to align ability and item parameters estimated 

from two groups on the common scale. Previous research has extensively discussed how to 

address missing responses when estimating item and ability parameters (e.g., Robitzsch, 2021; 

Xiao & Bulut, 2020). However, it is still an open question whether these methods for handling 

missing data affect the accuracy of the scale transformation procedure. 

In the first study of the dissertation, how to maintain the comparability between IRT 

scales under the CINEG design with the presence of missing data was examined. In particular, 

six missing data handling approaches were investigated in scale linking when missing data were 

observed in common items. It was revealed that RF, MI, and FIML were associated with less 

errors as compared to the other methods. With the use of these methods, the comparability 

between two test scales could be improved. It is worth noting that the rapid advancement of 

statistical software and packages make relatively complex missing data handling approaches 

(RF, MI, and FIML) more accessible and less time-consuming. In contrast, LWD was found to 

be associated with the worst performance when dealing with missing data, and therefore not 

recommended to use in practice.  

This study emphasized the need for testing programs that involve the scale linking 

procedure to consider not only the effect of missing data handling approaches on parameter 

estimation but also the association between these approaches and scale linking performance. The 

utilization of incorrect linking coefficients in the scaling process can result in incorrect 

conclusions about examinees’ abilities, potentially putting some test takers at a disadvantage. 

Moreover, the use of improper linking coefficients can result in inaccurate item parameter 

estimation, leading to future test administrations incorporating these biased item parameters, and 
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increased costs. This perpetuates the negative impact and potentially can cause long-term harm 

to the validity of the test. 

2. How can test score comparability be maintained if responses on different test 

forms are graded by raters with varying levels of severity and variability? 

Focusing on maintaining comparability across multiple test forms, the second study aims 

to develop an innovative observed-score equating method for rater-mediated assessments. With 

this type of assessment, errors may come not only from the differences in difficulty levels on two 

forms, but also from the differences in raters who assign scores to responses on both forms. This 

study develops and illustrates a process of integrating the IRT observed-score equating method 

and the HRM model with an intent to take rater effects into account in the equating procedure.  

The newly proposed HRM observed-score equating method produced less errors in bias 

and RMSE than the results for the GPCM method when the responses on the new forms were 

graded by aberrant raters (severe raters, unreliable raters and severe/unreliable raters). When the 

new form was scored by normal raters, both the GPCM and the HRM observed-score equating 

methods generated comparable results. The conclusions of the study indicated that with the use 

of the suggested equating method, the differences between two test forms can be better adjusted, 

ensuring a valid comparison and accurate interpretations of test results.  

The proposed HRM method may have many practical applications. Standardized testing 

programs, such as the Advanced Placement Exam, and many clinical certification programs rely 

on human raters to evaluate examinees’ skills in a particular domain. The HRM equating method 

can serve as an additional gatekeeper against rater error to produce reliable equating results by 

taking into account different types of rater effects. In addition, testing programs often invest 

significant funds in rater training and calibration to maintain rater quality. The utilization of the 
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HRM equating method will allow resources to be allocated and used more efficiently and 

effectively, while at the same time maintaining the score comparability between different forms 

of a test. Moreover, by considering the rater effects for each test administration, the impact of 

rater drift can be adjusted with the use of the HRM equating method. In sum, this new equating 

method has the potential to maintain score scales over the long term, ensuring consistent 

interpretations of test scores. This, in turn,t increases the likelihood of making valid educational 

policies or decisions. 

3. Which covariate balance diagnosis is the most effective for selecting a more 

accurate propensity score model and constructing comparable groups when 

weighting is used with multilevel data? 

The third study explores the performance of six covariate balance diagnostics when PS 

weighting is used with multilevel data. Whether the two groups are comparable or not should be 

evaluated based on proper balance diagnostics. Results of this study showed that within-cluster 

ASB and within-cluster PBR produced more accurate results in specifying a correct PS model as 

compared to other diagnostics. On the contrary, pooled and within-cluster VR were not 

recommended.  

In educational settings, conducting multilevel studies is a common practice due to the 

nested nature of data structures. For example, in the learning assistant study conducted by 

Westine et al. (2023), students were nested in class sections and class sections were nested in 

each course subject. There could be a great degree of variations of students within each section 

and each course, such as student’ gender, ethnicity, geographic region, and socio-economic 

status. These factors potentially lead to selection bias, if not properly addressed, thereby 

hindering accurate estimation of the treatment effect. However, whether the within-cluster 
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variations should be considered in covariate balance diagnostics was not clear. In particular, 

which covariate balance diagnostic leads to more valid results when PS weighting is used with 

nested data was not clear.  

The findings of this research should increase understanding of covariate balance 

diagnostics, particularly those receiving relatively less attention in the literature including within-

cluster ASB and within-cluster PBR. Proper assessment of covariate balance increases the 

likelihood of selecting a correct PS model, thereby reducing the risk of selection bias. When the 

two comparison groups are as similar as possible, then the estimated effect of an intervention can 

become more accurate. This will enable educational policymakers to make informed decisions 

based on results obtained from research that uses precise covariate balance diagnostics methods. 

Future Research 

The intriguing results of this dissertation have opened up various possibilities for future 

research. First, all of the three studies in this dissertation are based on simulated data. Simulation 

studies allow researchers to conduct computer experiments by generating data through random 

sampling from a known probability distribution, which is time-saving and cost-efficient 

compared to collecting and analyzing real data (Feinberg & Rubright, 2016; Morris et al., 2019). 

In simulation studies, the true parameters are known, enabling researchers to evaluate the 

performance of different statistical methods based on the differences between the estimated 

parameters and the parameters (Morris, 2019). Researchers have highlighted several important 

steps for conducting simulation studies, including resampling or simulating from parametric 

models, identifying methods to be evaluated, listing performance measures to be estimated and 

providing the rationales, analyzing the data, and reporting the results (Carsey & Harden, 2013; 

Morris et al., 2019). The three studies follow these steps to contribute to methodology in 
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educational research. The parameters used in the simulations are selected based on previous 

research or a common practice with an intent to better approximate realities. Although simulation 

studies have numerous advantages, they cannot replace empirical studies based on real data 

(Feinberg & Rubright, 2016). Thus, researchers need to be aware of the limitations when trying 

to generalize the results of this dissertation. Future research is needed to examine if the results 

from the simulation studies can be reproduced with real data.  

Second, the selection of the methods evaluated in the dissertation was justified with 

rationales. For instance, promising results were noted by previous research or suitability with a 

specific type of data. In practice, however, there are other methods used in the three research 

areas. Future research can be conducted to evaluate additional methods for providing more 

comprehensive information. For example, the impact of using the IRtree method and Expected-

Maximization (EM) algorithm to address missing data problem on scale linking is worth 

exploring. With respect to the second study, previous research has examined how rater drift is 

addressed within the use of Generalizability Theory (Harik et al., 2009). Future research may 

also extend the use of the theory in the equating context and compare it against with the use of 

the HRM equating method. The conclusion of the third study suggested the two within-cluster 

diagnostics perform well, but this does not mean they are the only methods that should be used 

for the assessment of covariate balance. The performance of graphical diagnostics, such as QQ 

plots and scatter plots, are also worth exploring with multilevel data. Also, their effectiveness 

with the use of different PS methods should be investigated. 

This dissertation only focuses on three factors that may affect comparability at various 

stages of the research process. Although the foci of comparability considered here are specific 

situations related to the handling missing data, equating test-forms, and the design of propensity 
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score weighting techniques, concerns of comparability are buried throughout the entire research 

process. Therefore, improving comparability of data and groups (or other cases) in applied 

research will be an ever-evolving challenge facing the research team.   

Novel problems of comparability can emerge from pedagogical and technological 

advances which alter the educational context, or methodological innovations which ultimately 

extend the frontiers of data collection, design, and analysis. For example, since the year 2020, 

more testing programs have started to offer remote/at-home tests. How to achieve comparability 

between remote or at-home tests and onsite tests is a critical topic to investigate (Puhan & Kim, 

2022). Furthermore, growing evidence suggests that socio-economic disparities may also 

exacerbates the digital divide in the technological era, having impacts not only for comparability 

of measures, but for the delivery and evaluation of educational interventions. Students with 

limited digital literacy skills may be at a significant disadvantage with a variety of unknown 

impacts as compared to those who have greater access to resources.  

Simulation research plays an important role in helping to answer these and related types 

of questions. Thus, it is vital for simulation researchers to work closely with policymakers and 

other consumers of research to properly define and inform the design of their comparability 

studies, as well as to interpret their findings to provide evidence-based answers that address these 

and other critical societal needs. Additionally, researchers seeking to conduct studies on 

comparability in educational settings must continue to adapt their designs in response to 

emerging innovations. As computing technology advances so must the scope of simulation 

studies to inform applied research. Future research should extend the present simulation studies 

to refine strategies to suit different contexts, address new applications, and respond to more 

complex models. 
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