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ABSTRACT 

 

 

EVAN BLOMQUIST. Urban Form and Air Quality: A Fine-Scale Look at 22 Major U.S. Cities. 

(Under the direction of DR. GANG CHEN) 

 

 

 Common pollutants present in cities, such as nitrogen dioxide (NO2), can cause a variety 

of adverse human health outcomes. Urban form (e.g., land cover and its spatial patterns) is a 

crucial factor contributing to air quality. There have been efforts investigating the effects of 

urban form on air quality. However, urban form is typically quantified at coarse resolution (e.g., 

30 m) that is too broad to capture the spatial patterns of land cover in highly heterogeneous urban 

environments. Moreover, most of the efforts are limited to one single or only a few cities, 

leading to inconsistent or even contradictory findings among the studies. This project proposes 

utilizing 1-m resolution land cover maps to accurately capture fine-scale urban patterns in 22 

major cities across the U.S., investigate their relationship with NO2, and analyze the relationship 

variation across seasons and urban neighborhoods over diverse geographic regions in the 

country. The study bridges a gap in understanding the effects of highly heterogeneous urban land 

cover and its spatial patterns on air quality and can help urban planners and practitioners make 

informed decisions in the development of smart and sustainable cities. 

Keywords: Air Quality, Urban Form, Fine-scale, Multi-city, Nitrogen Dioxide (NO2), Remote 

Sensing, Sustainability  
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1.  Introduction 

Urban areas accommodate over 56% (4.4 billion) of the world’s population and are 

expected to add another 2.2 billion people by 2050 (United Nations, 2023). The urban 

atmosphere is a “giant chemical reactor” (Seinfeld, 1989), which contains a variety of harmful 

pollutants such as nitrogen dioxide (NO2) and fine particulate matter 2.5 (PM 2.5 – particles less 

than 2.5 micrometers in diameter). World Health Organization (WHO) estimates that more than 

80% of the world's population currently residing in cities are exposed to air quality levels that 

exceed guidelines (WHO, 2022). In all types of ecosystems throughout the world, urban areas 

produce about 78% of carbon and airborne pollutants. This adversely affects roughly 50% of the 

world’s population (Liang & Gong, 2020). NO2 is one of the most common and severe pollutants 

and can cause problems with lung function/development and cardiovascular systems (Gulia et 

al., 2015; Siddiqui et al., 2020). It has been shown that long-term exposure to NO2 can increase 

the risk of mortality from cardiovascular diseases by 11%, respiratory diseases by 3%, and 

cancer by 2% (Eum et al, 2019). There has also been evidence to suggest that people of lower 

income or socio-economic status are associated with an increased risk of exposure to this 

pollutant along with other traffic related air impurities, and that children living in households 

with increased traffic density 200 m from their home are more likely to develop lung related 

issues such as asthma (Cakmak et al., 2016).  

A wealth of studies have investigated individual key factors (e.g., transportation and 

weather) affecting air pollution or more specifically NO2 concentrations (Ikram et al., 2015; 

Salas et al., 2021; Yang et al., 2021); however, sustainable and smart urban development 

necessitates a holistic approach to address this issue. For example, a busy highway increases 

pollution, although it can be reduced by nearby urban forests (Roeland et al., 2019). The spatial 
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patterns of buildings vary from one city/neighborhood to another, which could result in 

significant differences in road networks, traffic, and hence, air pollution levels (McCarty and 

Kaza, 2015). From the lenses of urban planning, air pollution is directly or indirectly affected by 

urban physical elements (e.g., roads, buildings and trees) and their spatial arrangements/patterns, 

which together are referred to as urban form. Aiming to support informed decision-making in 

urban sustainable development, there have been growing efforts exploring the relationship 

between urban form and air pollution (e.g., Bechle et al. 2017; Ku, 2020; Kang et al., 2019; Li 

and Zhou, 2019). For example, Bechle et al. (2017) studied 1274 urban areas globally using 

satellite estimates. They found that contiguity, vegetation, and urban morphology had 

statistically significant relationships with NO2 concentrations, suggesting that properly designed 

urban form can reduce pollution exposure. However, they also found that climate, city 

population, and country-level income significantly impacted NO2 concentrations.  

While urban form was found to have an evident impact on NO2 levels, low or medium-

resolution satellite sensors, such as 30 m Landsat and 500 m MODIS, were typically used to 

delineate and analyze urban land cover and spatial patterns (e.g., Chen et al., 2013; Liang et al., 

2020). The reality is that urban areas, especially those intensively developed big cities, are of 

high spatial heterogeneity and fragmentation. Relatively small geographic entities (e.g., street 

trees and neighborhood roads) tend to be ignored in data of a coarse resolution, from which the 

spatial patterns of land cover are likely to be over-generalized. See an example in Figure 1, 

which shows a comparison of land cover at 1 m versus 30 m resolution over the same urban 

region. As argued by Bereitschaft & Debbage (2013), fragmentation and continuity play a major 

role affecting air pollution, but using a coarse scale (e.g., 30 m) cannot accurately identify the 

impact. We note that fine-scale urban form has recently been introduced to studying air 
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pollution, such as Urban Atlas (2-4 m resolution) used by Ajtai et al. (2020). The challenge is 

that most of those efforts were limited. Case and regional studies are highly beneficial, however, 

it leads to a concern about how generalizable the findings are. Some of the findings are not 

consistent, or even contradict each other. For example, Li and Zhou (2018) found that low urban 

compactness had a significant correlation with poor air quality, while low urban compactness 

was found to decrease non-point source emissions in studies by Fan et al. (2018) and Lu and Liu 

(2016). Different from their findings, Bechle et al. (2011) observed that compactness was not a 

significant predictor of NO2 concentration, and it was reconfirmed in Bechle et al. (2017).   

 

Figure 1: Different urban land cover and spatial patterns represented in 1-meter [from 

UrbanWatch develop by Zhang et al. (2022)] versus 30-meter land cover (from National Land 

Cover Database – NLCD developed by the Multi-Resolution Land Characteristics Consortium) 

over the same urban region in Charlotte, North Carolina, United States 

 

Based on the above considerations, this study aims to investigate the relationship between 

fine-scale urban form (1 m resolution) and air quality (with an emphasis on NO2). To ensure a 

strong generalization ability of our findings to inform decision-making over broad regions, we 
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captured 1 m resolution urban form over multiple cities, i.e., 22 major cities across the U.S. 

Through statistical modeling using Boosted Regression Trees (BRT), we would like to answer 

three specific questions in this communication: (i) Is the relationship between fine-scale urban 

form and NO2 concentration consistent across cities? Urban form has high variation in land 

cover and spatial patterns. Here we used a range of variables to quantify various aspects of urban 

form, and evaluated how consistent the relationships are between those variables and air quality. 

(ii) How is the relationship affected by the spatial extent (i.e., buffer zone) at which urban form is 

captured? Urban land cover patterns are highly variable when neighborhoods are observed 

within buffer zones of different sizes. It could cause inconsistent results of the studied 

relationship. Through this multi-city study, we evaluated whether buffer zone plays a consistent 

role in understanding such a relationship. (iii) How does the change in season affect the 

relationship between fine-scale urban form and NO2 concentration? Season is known to affect 

air quality (e.g., Jayamurugan et al., 2013; Ikram et al., 2015). For example, increased emissions 

from heating and transport, as well as the cold and dense air/lack of sunlight in the winter tend to 

increase concentrations of NO2 and lessen its diurnal variation (Boersma et al., 2009; Roberts-

Semple, Song, and Gao, 2012; Kendrick et al., 2015). At the fine scale, however, seasonal effect 

may be amplified or curtailed to variably affect microclimate and pollutant concentration. Our 

study is one of the first to address those questions through a fine-scale look at the urban form 

across a number of U.S. cities that have a broad and diverse geographical distribution. 
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2. Literature Review 

2.1 Study Areas 

When looking at air quality as well as land use patterns, spatial variability is important as 

well as a challenge in most cases. In Table 1, you can see study areas used in previous similar 

studies. As can be seen, studies tend to limit their analysis to either a couple of major cities or 

one region, restricting the generalization of their findings. Ku (2020) looked at different urban 

metrics that could potentially correlate either positively or negatively with air pollutant variables. 

While five cities were studied, it was limited to a small geographical region in Taiwan. While 

this most likely gives very detailed information about the areas involved in the analysis, these 

patterns could change if observed somewhere else. In another analysis done by the authors 

McCarty et al. (2015), data from the entire United States were used. However, their analyses 

relied on limited and unbalanced air quality monitoring stations which causes biased results in 

urban regions.  

Table 1: Description of the study areas used in some recent studies. 

Title  Author  Study Area  

Support tools for land use policies 

based on high resolution regional 

air quality modelling 

Ajtai et al. (2020) Bucharest Functional Urban Area, 

Romania 

Does urban forestry have a 

quantitative effect on ambient air 

quality in an urban environment? 

Irga, Burchett, and Torpy 

(2015) 

Sydney, Australia 

Influence of urban vegetation on air 

pollution and noise exposure – A 

case study in Gothenburg, Sweden 

Klinberg et al. (2017) Gothenburg, Sweden 

Analysis of the NO2 tropospheric 

product from S5P TROPOMI for 

monitoring pollution at city scale 

Prunet et al. (2020) Paris, Milan, Madrid, and Athens 

Effect of Land Use and Cover 

Change on Air Quality in Urban 

Sprawl 

Zou et al. (2016) Changsha, Zhuzhou and Xiangtan 

(Hunan Province) 

Accounting for spatial effects in 

land use regression for urban air 

pollution modeling 

Bertazzon et al. (2015) Calgary, Canada  
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The impacts of urbanization on air 

quality over the Pearl River Delta 

in winter: roles of urban land use 

and emission distribution 

Chen et al. (2013) Pearl River Delta Region 

The impacts of road traffic on 

urban air quality in Jinan based 

GWR and remote sensing 

Wang et al. (2021) Jinan, China 

 

2.2 Data 

In past studies one of the most common data sources for air quality has been that of 

ground station monitoring. These ground stations can be implemented at stationary points on the 

ground and can track PM 2.5 as well as trace gasses such as NO2, Ozone (O3), and sulfur dioxide 

(SO2). These stations are one of the most accurate ways to measure air quality at the surface and 

have been implemented for decades to record these observations. This can be seen in studies like 

Eum et al. (2019), where ground station monitors were used to conduct a wide-scale study across 

the US to assess the effects of long-term exposure to NO2 on elderly populations. The authors 

obtained their data from the daily NO2 data from the Air Quality System (AQS) publicly 

available from the EPA from December of 2000 to December of 2008. While they did find that 

air quality did increase cardiovascular health risks, it is widely known that air quality monitoring 

stations show much less spatial variability in the data that is recorded. This is due to them usually 

being installed at a fixed point, and areas that do not have these stations cannot be included in 

analysis. Typically, these monitoring stations are installed in the denser part of urban areas to see 

whether the city is following EPA guidelines. There has also been recent advances in the area of 

consumer-grade air quality devices that can be placed in different areas by citizen scientists. 

These are optical station monitors that can record readings such as PM 2.5 and weather 

conditions such as temperature and relative humidity. While these devices are great for making 

air quality monitoring networks within cities, and according to a study done by Stavroulas et al 
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(2020), these devices were seen to offer stability when used within an urban area. It does beg the 

question on whether everyday people are able to perform required maintenance. Leading to an 

issue when trying to define a generalized relationship on a large scale.  

In recent years, another popular data source has been satellite imagery specifically 

designed to report trace gas values in the atmosphere. These generally differ from surface 

observations, as you are viewing the average values of the tropospheric column. What this 

basically means is you are looking at averaged values of an entire atmospheric column that is 

above the surface, which can lead to less accurate and skewed results. The resolution of the 

images also tends to be coarse and can have pixels that represent multiple kilometers. While 

these are definite downsides, there is still value in using satellite imagery to measure trace gas 

pollutants. They typically provide a much wider range of spatial variation in the data collected, 

which is valuable despite the fact the data is less accurate. While ground station monitoring is 

beneficial for small-scale studies, satellite imagery has the clear advantage when trying to 

observe patterns across an entire landscape that may or may not have air quality stations. Two 

popular satellite platforms that observe trace gas values at the tropospheric level are OMI sensor 

and the TROPOMI sensors. Both platforms observe NO2, SO2, O3, as well as aerosol optical 

depth or AOD. The TROPOMI sensor is a nadir viewing spectrometer that is aboard the 

European Space Agency’s Sentinel 5p (Veefkind et al., 2012). Unlike the older platform OMI, 

which was developed by NASA, this sensor has a much higher spatial resolution of 7 km (5.6 km 

as of 6 August 2019) in the along-track, and about 3.6 km in the across-track of the swath. A 

study done by Geffen et al. (2019), compared the NO2 and NO (nitrogen dioxide) readings 

collected from the TROPOMI sensor against the same readings recorded by the OMI sensor. Due 

to them having about the same recording time, it was simple to draw comparisons between the 
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two platforms. It had been found in their study that both were good at picking up large hotspots, 

but the TROPOMI sensor was able to better pick up smaller hotspots. Therefore, this sensor has 

been gaining popularity for use in current studies. One example of such studies is one conducted 

by Ghahremanloo et al. (2021), where the impact of COVID-19 on air pollution in East Asia was 

observed. Using the nitrogen dioxide data provided, the authors were able to determine that due 

to less frequent use of roadways and travel, NO2 had shown a decrease than in previous years 

allowing for less polluted air. Because of the resolution of the sensor, urban air quality can be 

better observed.  

There are also some scenarios where portable monitoring are also used. These studies 

usually take place in one location. This is a great method for sampling, as it allows for spatial 

variability as well as accuracy. It is, however, resource-demanding, as well as time-consuming. 

Usually in this case the data must be collected personally/manually, meaning that the time 

reference is only for as long as you record data. Depending on how the instrument is being used, 

the data may also not be continuous or different users might observe different results or have 

biased results due to the instrument being used, making this data source to be slightly 

inappropriate if looking at large timeframes or any scenario where gaps in data would skew the 

results. This technique was employed by  Irga, Burchett, and Torpy (2015) in a study they 

conducted on the effects of urban forestry on ambient air quality. In this study, the authors chose 

11 monthly air samples that were randomly chosen based on a radius around 100m from the 

chosen sample site. This negated temporal non-independence, but one must ask how much of the 

data recordings were skewed due to human error. Recordings were taken 30m away from any 

road, but with the samples being taken from non-stationary points could account for some data 

loss.  



9 

 

 

Due to the nature of the topic being observed in this study, it is important to also review 

popular data sources for that of land use/land cover (LULC). These provide classifications of 

what is present within a landscape and allows for urban land use to be quantified as a value. 

Typically, these work by assigning a value, or classification to a given grouping of pixels. The 

size of this pixel can change however depending on the dataset, and what techniques were 

employed during the classification of the raster dataset. There are several resolutions that can be 

employed; however, most datasets tend not to go finer than resolutions of 10m and can go all the 

way up to 30m resolutions. This can cause classes to get averaged together and does not allow 

for patterns to be observed clearly in highly heterogenous locations such as cities (see an 

example in Fig. 1). When looking at urban form, the landscape metrics used to study habitat 

fragmentation may also be used when characterizing the urban area. Urban landscape metrics, 

however, involve using patches of contiguous urban areas, unlike traditional landscape metrics 

that use natural areas as their focus. After patches are identified different landscape metrics such 

as number, mean patch area, and other variables can be calculated. These urban metric patterns 

can be used to measure growth at a city level, but its use case has been limited to certain 

geographies (Bereitschaft & Debbage, 2013; Buyantuyev, Wu, & Gries, 2010; Seto & Fragkias, 

2005).  

2.3 Models 

 In terms of models, there are various types that can be employed depending on the work 

being done. Process-based models can consider atmospheric or meteorological data to predict air 

quality values, while statistical regression is able to observe a relationship between what is 

present on the ground and how they interact with key urban pollutants. OLS (ordinary least 

square) regression is a simple model that is commonly used in this case scenario. This model is a 
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form of global model, which means that it uses all training data to train a single classifier or 

variable and can be applied equally to different areas of interest (Fang et al., 2015). OLS  

regression is represented by equation (1) as shown below.  

 

𝑦 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + 𝜀, 𝜀~𝑁(𝑂, 𝛿2)       (1) 

 

where 𝑥𝑖 and 𝑦 are respectively independent and dependent variables; 𝑘 is the number of 

independent variables; 𝛽0 is the intercept; 𝛽𝑖 is the parameter estimate for the variable 𝑥𝑖; 𝜀 is 

just simply the error term. The parameter estimates, 𝛽𝑖, are assumed to be spatially stationary 

(Fang et al., 2015). A form of OLS regression was used during the study of Ku, 2020. In this 

case, the author used multiple linear regression (MLR), which is an extension of OLS. 

Ordinarily, OLS regression is only able to use one explanatory variable. MLR, on the other hand, 

can look at multiple variables that might explain the relationship to the independent variable.  

 Another popular model used by researchers is known as geographically weighted 

regression, also known as GWR. This model is numerically intensive and requires a good 

amount of computing power but is generally more accurate than OLS at predicting spatial 

variables. Since GWR can consider spatial heterogeneity of a landscape, results tend to be more 

accurate than that of other simpler forms of linear regression that do not take this into account 

such as OLS (Bertazzon et al., 2015; Wang et al., 2021; Lu and Liu, 2016). Specific 

requirements for this model include the calculation of n local linear regression equations, which 

use a distance-based weighting scheme. This allows for the dataset to be divided into n 

subsamples, one for each georeferenced dataset (Griffith, 2008). This model is overall very 

similar to the implementation of OLS; however it considers non-stationary variables such as 
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climate and air pollution by allowing model parameters to change over space (Su et al., 2012; 

Gao and Li, 2011). It has been implemented by many researchers and has been noted by 

Robinson et al. (2013), to outperform OLS. Due to this fact, Wang et al. (2021) used GWR in 

their study of urban road networks and traffic in relation to air quality to observe the relationship 

between the variables observed. It should also be noted, however, that GWR is not the end all be 

all model to use for every circumstance that observes spatial data. In previous studies, there are 

two major limitations that come along with using GWR that has been ignored by a good number 

of researchers. The first issue that arises during the use of this model is the multiple testing issue, 

which makes significance at the local level questionable. The second limitation is that GWR 

models, produce for all variables, a single optimized bandwidth. This gives the assumption that 

all factors affect air quality at the same spatial scale (Fotheringham, Yue, & Li, 2019; da Silva & 

Fotheringham, 2016).  This assumption is questionable, as it is simply not the case under most 

circumstances. It is important to remember, that while it is possible to create generalizations, 

pollutants and trace atmospheric gases are highly variable depending on the area or region, and it 

is more efficient to observe patterns than it is to try and precisely predict these values based off 

land use forms.  

 Recently newer forms of models have been implemented to account for the complex 

nature of the relationship between air quality and urban morphology, due to them being 

ultimately non-linear (Edussuriya, Chan, and Malvin, 2014). This requires machine learning 

models like random forests (RF) or boosted regression trees (BRT) to be used, and their use in 

previous studies has started to gain traction.  Elith et al. (2008) provided a working guide on how 

to use BRT with ecological as well as landscape patterns. Throughout their study, this model was 

touted to be more stable and better at predicting characteristics than traditional learning models. 
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It also fares better than random forest models since there is no need for complex data 

transformations and easily handles complex relationships, without the risk of overfitting that 

usually comes with the territory of using an RF model. RF is based on one single tree instead of 

sequentially generated trees that are used by BRT. The boosting algorithm that this form of 

model uses is iterative and develops a final model by progressively adding trees as well as 

constantly re-weighting the data to compensate for poorly predicted relationships from the 

previous tree (Leathwick et al., 2006). This averaging technique by bagging or boosting trees 

significantly improves the performance of the model being run (Hastie et al., 2001) 

2.4 Findings:  

 It is generally accepted that both PM 2.5 as well as NO2 are both heavily influenced by 

traffic patterns as well as roadway networks within urban areas. Both PM 2.5 and NO2 are 

created by both industry as well as exhaust from automobiles. This is seen in studies such as a 

review on urban air quality written by Gulia et al. (2015) in which they conducted an analysis on 

current policies regarding mitigation practices. In the UK alone, road transport has been shown 

to be the largest contributing factors to NOx and PM (particulate matter) emissions. NO2 being a 

trace gas greatly impacted by urbanization as well as industry. Thermal powerplants as well as 

heavily urbanized areas in India have been shown to cause hotspots for air pollution, mostly NO2 

(Siddiqui et al., 2020). In these hotspots, some of the more common anthropogenic factors 

include domestic combustion, agricultural waste burning, incomplete fuel combustion, industrial 

pollutants, power plants, and construction activity (Siddiqui et al., 2020). This is also seen in the 

study written by Lu and Liu (2016), where the cities with higher levels of urbanization and 

traffic congestion had the most amount of NO2 as well as SOs (sulfur dioxide). This study was 

done on 287 cities in China, meaning that this is most likely a generalized pattern. PM 2.5 is a 
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surface level emission that has a strong correlation with exhaust gasses within urban areas. Coal 

combustion is another source of this pollutant, but it has been seen that traffic is the main 

polluter within cities, especially during peak hours that cause traffic jams (Wang et al., 2021). 

There are also other metrics and landcover types that can also influence air pollution levels in 

urban areas. In their study, Ku et al. (2020), determined that nitrogen dioxide was negatively 

correlated with metrics associated with vegetation and forests. This metric was primarily land 

use percentage or PLAND, meaning that higher percentages of vegetation in a landscape caused 

air quality to decrease over time and buildings did not really have any significant impact on 

pollution levels. The drawback of this study, however, is that it cannot be generalized since only 

30 ground point monitoring stations were used in a comparatively small region to collect their air 

quality data. This begs the question of whether the findings from this study can significantly 

contribute to better urban planning methods. For example, McCarty and Kaza. (2016), stated that 

fragmentation due to roadway networks in urban areas is an important consideration when 

analyzing land use change and air quality. There is also a great degree of questioning that needs 

to be done on the resolution of these land cover datasets. Typically, finer resolutions tend to fare 

better due to the heterogeneity found within cities. If the datasets being used do not pick up the 

full scope of land use within a city, it is difficult to draw any significant conclusions from this 

data. McCarty and Kaza (2016), even admitted that the resolution of the dataset could have 

influenced their findings. 
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3. Methods 

3.1 Study area 

Cities in the southeast typically have vastly different climatological conditions than cities 

in the northeast or western parts of the country. If one is in Charlotte or Raleigh, these are 

categorized as mixed-humid, whereas cities further west like Denver are in cold climates; these 

areas are going to have different NO2 patterns.   

 

 

Figure 2: Shows the study area and cities overlayed with regional climate zones. The U.S. 

Energy Information Administration provided climate zone data.  

These 22 cities (recorded in Figure 2) were chosen because they span multiple different climate 

zones throughout the United States. These climate zones are listed as cold, hot-dry, hot-humid, 

marine, mixed-dry, subarctic, and very cold. NO2 reacts differently in the atmosphere depending 

on climatic conditions; choosing such a wide variety of cities from different climates allows for a 
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generalized approach for analysis. Data providing the climate zone information was retrieved 

from the U.S. Energy Information Administration.  

3.2 Data sources 

3.2.1 Fine-scale urban form at 1-meter resolution   

The land use/landcover (LULC) dataset used for this study is the UrbanWatch database 

developed by Zhang et al. (2022). This dataset provides 1-meter land cover classifications at 

91.25% accuracy for 22 urban areas within the United States and is still being expanded into 

other cities. Figure 3 shows a comparison between UrbanWatch and other commonly used 

databases.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

3a 3b 3c                               

3d 3e 3f 

3g 3h 3i 

Figure 3:Figure 3a-c shows a representation of the 1-meter data from 

UrbanWatch compared to the NLCD 30-meter dataset shown in 3d-f as 

well as ESRI 10m 3g-i  in the same geographic area. 
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There is a clear advantage to using a 1m dataset when studying urban landscapes. Cities are often 

dense and highly heterogeneous, making it difficult to see the differences between land classes 

when using a traditional data source like NLCD. The classes that are described by the 

UrbanWatch data are as follows; Buildings/Structures, Roads, Parking Lots, Tree Canopy, 

Grass/Shrub, Agriculture, Water, Barren, and lastly Other. 

Zhang et al 2022 used 1-m imagery retrieved from NAIP (National Agriculture Imagery 

Program) covering these cities from the USGS Earth Explorer portal during leaf on seasons taken 

from the years 2014-2017. These classifications were then applied to these images using Fine 

resolution, Large-area Urban Thematic information Extraction (FLUTE), which is a form of 

semi-supervised classification. The generated dataset just shows the land cover data for the urban 

centers within city limits. This means that there is no information available for suburb or rural 

areas. 

3.2.2 TROPOMI NO2 dataset 

 Due to the spatial scope of this study, data collected from ground station sites would have 

been insufficient. Satellite data must be used to create a generalized observation across a broad 

area, such as the TROPOMI sensor aboard the Sentinel 5-precursor satellite. This sensor has a 

spatial resolution of 7.2x3.6 km2. However, as of 6 August 2019, data is recorded in 5.6x3.6 km2 

pixels (Geffen et al., 2020). The satellite also passes over every day roughly at noon. 

 Regardless of this being one of the smallest resolutions currently available for column 

density values of NO2, the coarseness of this dataset would not be helpful for this study. Physical 

oversampling was used to pre-process the data retrieved from the TROPOMI sensor to help solve 

this problem. Oversampling is the process of creating a level 3 data product that is much finer 

than the original level 2 product. This was done by importing the downloaded daily TROPOMI 
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data into Python for each of the studied seasons using a provided code from the authors Sun et al. 

(2018) found on GitHub. This created a referenced GeoTiff image for fall, winter, summer, and 

spring. Allowing for the data to be refitted to finer grid sizes by treating the pixels inside the 

rectangular FOV (field of view) on the ground as a sensitivity scale (Sun et al., 2018); making 

refitting the data to a grid of .01° (roughly 1km on the ground) possible. While the data was still 

courser than our LULC dataset, this new resolution allows a better comparison between the two 

datasets. Figure 4 shows how the dataset looks after it has gone through the process and become 

a level 3 data product.  

Figure 4:Map showing NO2 concentration in Charlotte, North Carolina. 4a 

shows concentrations in the fall, 4b shows concentrations in the winter, 4c 

shows concentrations for the spring, and 4d shows concentrations for summer. 

Units are in µmol/m2. 

4a 4b 

4c 4d 
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 To account for seasonal variations in NO2 due to weather patterns and regional climates, 

collecting observations from each season, Fall (September-November) 2019, Winter (December-

February).2020, Spring (March-May) 2020, and Summer (June- August) 2020. With NO2 

concentrations being highly dependent on geographic and meteorological patterns, it is crucial to 

account for these shifts in the analysis as much as possible. It is also important to note that there 

was a global pandemic towards the start of spring 2020, causing lockdowns. Due to this, traffic 

patterns were not the same, so there might be some variation with the data collected from this 

time.  

3.2.3 Congestion Data and Index Creation 

As can be seen from Figure 2, each of the 22 cities in which the observations were taken 

had been sorted into areas of high and low congestion. This technique accounted for the fact that 

NO2 is heavily influenced by traffic patterns within cities (Gulia et al., 2015; Siddiqui et al., 

2020). Separating the study area and creating an index allowed for the congestion levels to be 

used as a control within the study. For areas of high congestion, this allowed them to be 

compared with areas of low congestion and see if this had any impact on the model results.  

 Data from the Texas A&M Transportation Institute Mobility Division was used to create 

the congestion index for city rankings. This dataset contains base statistics for multiple types of 

congestion metrics used to measure these values across 101 urban areas in the U.S., ranging from 

2017-2020. In their paper, Rahman et al. (2020) determined that the three of the metrics 

mentioned earlier, TTIR, COEX, and CODU, were all directly correlated/connected to city 

congestion levels. These values could be used to observe how highly congested a city is. TTIR is 

a ratio of average daily travel time in peak hours to travel time in off-peak hours, COEX is a 



19 

 

 

percentage of how many lane miles are congested, and CODU is a measure of how many hours 

peak rush times last (Rahman et al., 2020).  

 Since these variables are equally tied to congestion levels, principal components analysis 

(PCA) could create an index of congestion using the values connected to those metrics. The 

values used to generate the index were taken from 2018. This was because this year was the most 

recent these values could be collected from. 

   

 

 

 

 

 

 

 

 

As seen in Figure 5, the first component of these three metrics combined explains most of the 

variance in the model. Reducing the data to a one-dimensional index would not cause much data 

loss. The index allowed for cities to be ranked from 1-22. The highest congested cities start at 

one and end in the city with the lowest amount at 22.  The ranks given for each city can be seen 

in Table 2; any value greater than 11 was categorized as low congestion, and the remaining as 

high congestion.  To see the ranks of each city used in this study, refer to Table 4. To use PCA 

data for all three of these metrics were retrieved from the year 2018, as this was the most recent 

year in which these metrics were recorded for each city.  

Figure 5:The scree plot explains the variance 

collected by each component.  This plot shows that 

the first component explains most of the variance. 
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Table 2: Shows the rank given to each city based on their congestion levels. 

Urban Area Rank 

San Francisco- CA 1 

Los Angeles- CA 2 

San Diego CA 3 

Riverside- CA 4 

Washington- DC 5 

Seattle- WA 6 

Houston- TX 7 

New York- NY 8 

Denver- CO 9 

Atlanta- GA 10 

Boston- MA 11 

Dallas- TX 12 

Phoenix- AZ 13 

Chicago- IL 14 

Philadelphia- PA 15 

Miami- FL 16 

Minneapolis- MN 17 

Detroit- MI 18 

Charlotte- NC 19 

Tampa- FL 20 

Raleigh- NC 21 

St. Louis- MO 22 

 

3.3 Urban Form Extraction 

 One of the main objectives of this project is to define the relationship between urban 

form and NO2. To calculate the urban form, first the cities had to be sampled using random 

sampling techniques. The number of sample points were determined based on the size of the city, 

but the maximum number was set at eight to make sure observed areas would not overlap. After 

the random points were generated for each city, circular buffers were drawn around them in two 

different radii sizes of 1500m and 500m, then extracted using the extract by mask tool in ArcGIS 

Pro. This was largely done to test relationship consistencies at different spatial scales (Ku, 2020).  
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This study will use five urban metrics calculated using the FRAGSTATS v4.2.1 software 

as the independent/explanatory variables. FRAGSTATS is a free tool that can quantify aspects of 

an area called landscape metrics and assists in identifying spatial patterns (Benxin and Lannone, 

2020). Landscape metrics used overall were Patch Density (PD),  Largest Patch Index (LPI), 

Edge Density (ED), Mean Patch Area (AREA_MN), and Aggregation Index (AI). Urban 

landscape metrics use patches of contiguous urban areas, unlike traditional ones that use natural 

areas as their focus. After patches are identified, different landscape metrics can be calculated. 

These urban metric patterns can measure growth at a city level, but their use case has been 

limited to specific geographies (Bereitschaft & Debbage, 2013; Buyantuyev, Wu, & Gries, 2010; 

Seto & Fragkias, 2005). Table 3 shows the metrics and a short description relevant to air 

quality/pollution.  

Table 3: Describes the potential landscape metrics that may be used in each model and its 

relevance to air quality. These are referenced from the help guide for FRAGSTATS and 

reworded in the context of air quality. 

Metric Definitions 

Metric Description 
PD  

(Patch 

Density) 

The PD metric is relevant to air quality as it provides information on the spatial distribution of 

land cover types that could impact air pollution levels. PD is calculated by dividing the number of 

patches of a specific land cover type by the total landscape area in square meters, and then 

multiplying by 10,000 and 100 to convert it into 100-hectare units. This metric can be useful in 

understanding the potential sources of air pollution across a landscape. For example, a higher PD 

value for urban land cover types could suggest a more fragmented landscape with a greater 

number of smaller urban patches, potentially leading to increased emissions of pollutants from 

traffic or industrial activities. 

LPI  

(Largest 

Patch Index) 

The LPI metric is relevant to air quality as it can provide insights into the potential impact of 

dominant land cover types on air pollution levels. LPI is calculated by dividing the area (in square 

meters) of the largest patch of a specific land cover type by the total landscape area, and then 

multiplying it by 100 to convert it into a percentage. This metric can be useful in understanding 

the influence of the largest patch of a particular land cover type on the overall landscape. For 

instance, a high LPI value for vegetated land cover types could suggest that a large portion of the 

landscape is dominated by a vegetation, potentially swaying pollutant concentration levels. 

ED 

 

(Edge 

Density) 

 

The ED metric is relevant to air quality as it can help identify potential sources of air pollution 

associated with different land cover types. ED is calculated by dividing the sum of the lengths of 

all edge segments involving a specific land cover type by the total landscape area, and then 

multiplying it by 10,000 to convert it into hectares. This metric can be useful in understanding the 

amount of edge between different land cover types, which can affect the exchange of pollutants 

and other environmental factors. For instance, a higher ED value for urban land cover types could 
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suggest that there are more edges between urban areas and natural or agricultural land cover 

types, potentially leading to increased air pollution from traffic or other urban activities. 

Additionally, if a landscape border is present, ED includes only true edge segments between 

patches of different land cover classes, while if a landscape border is absent, a user-specified 

proportion of boundary segments and internal background edge segments are included in the 

calculation. 

AREA_MN 

 

(mean area) 

 

 

 

 

The mean patch size (AREA_MN) metric is relevant to air quality as it can provide insights into 

the potential impact of different land cover types on air pollution levels. AREA_MN at the class 

level is calculated based on the number of patches and total class area. This metric can be useful 

in understanding the distribution and size of patches of a specific land cover type, which can 

affect air quality in different ways. For example, a lower AREA_MN value for forested land 

cover types could suggest a more fragmented landscape with smaller forest patches, potentially 

leading to decreased air quality due to reduced filtration of pollutants and less carbon 

sequestration. It is important to note that although AREA_MN is derived from the number of 

patches, it does not convey information about the specific number of patches present, which could 

be relevant for understanding the spatial distribution of pollutants. 

AI 

 

(Aggregation 

Index)  

The AI (aggregation index) metric is relevant to air quality as it can provide information on the 

spatial arrangement of a specific land cover type and its potential impact on air pollution levels. 

AI is calculated by dividing the number of like adjacencies involving a specific class by the 

maximum possible number of like adjacencies involving the corresponding class, which is 

achieved when the class is maximally clumped into a single, compact patch. The resulting value 

is then multiplied by 100 to convert it into a percentage. This metric can be useful in 

understanding the degree to which a particular land cover type is clumped or dispersed across a 

landscape, which can affect the movement and concentration of pollutants. For instance, a higher 

AI value for urban land cover types could suggest a more compact and contiguous landscape with 

higher concentrations of pollution, potentially leading to negative impacts on air quality and 

human health. Conversely, a lower AI value for natural or agricultural land cover types could 

suggest a more dispersed and heterogeneous landscape that allows for better filtration of 

pollutants and improved air quality. 

 

Also aiming to study which landscape metric associated with what class type has the most 

considerable impact on a city, the landscape metric database was broken up by land class once 

the metrics were calculated. This ultimately was done to ensure that we were seeing a clear 

picture of how the spatial characteristics of each class type impacted the concentration of NO2. 
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Table 4: Shows the class type and associated landscape metrics used in the seasonal models. 

These metrics will be used as the independent variable in the models and will change based on 

the land class type. 

Class Metrics 

Class Type Associated Metrics 

Structures PD, LPI, AREA_MN, AI 

Trees PD, ED, AREA_MN, AI 

Roads PD, ED, AREA_MN, AI 

 

3.4 Statistical modeling 

 BRT is a technique that aims to improve the performance of a model. This is done by 

fitting many models and combining them for prediction (Elith et al., 2008). Some 

hyperparameters first need to be tuned when using this model. These parameters are the learning 

rate, number of trees, and tree depth. When determining these, Elith et al. (2008) recommend 

using at least 1000 trees and a learning rate between .1-.0001. In their working guide, they used 

these parameters for a similar purpose as an example for ecological and landscape analysis, 

making this suitable for our study as well. The tree depth or complexity must also be set; for this 

purpose, a value of 1-10 was used. Tree depth refers to the number of splits that are within a tree, 

and more complex interactions occur at larger depths. Finding balance can be tricky, however, 

because larger tree depths can cause model instability (Elith et al., 2008). This is why the range 

of 1-10 was used for this parameter. This allows for complex interactions to be observed without 

compromising stability. Unlike linear models, BRT modeling is able to handle multicollinearity 

better than traditional models like OLS regression. However, VIF scores were still calculated, 
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and any metric that had above a value of 5 for each class was dropped. That is how the final 

metrics in Table 4 were determined. These are also the metrics that will be included as the 

independent variables for each specific associated class type, and will be compared with NO2 

levels as the dependent variable. BRT, unlike random forest models, requires no need for data 

transformations or elimination of outliers and can easily handle complex relationships. Random 

forests can also lead to greater bias because results are 

based on one single tree instead of multiple. Boosting, on 

the other hand, grows the trees by sequentially modeling 

the residuals, leading to less bias. BRT also has no 

significance value (P-value) or degrees of freedom (Elith et 

al., 2008). This process also introduces stochastic gradient 

boosting to the model which allows it to be more accurate 

without a high risk of being overfitted. BRT also has been 

shown to be more stable than random forests (Yang et al., 

2016; Friedman, 2002).  

3.4.1 Model validation and calibration 

Model verification was done by using k-folds cross-

validation k=10. Cross-validation was used on a training 

dataset where 80% of the data was randomly selected to 

determine the best hyperparameter combination by 

selecting the model with the lowest root mean squared error (RMSE) using a grid search method. 

This was done to ensure that the model was not being overfitted by the parameters, and that the 

model was as accurate as possible when run on the test dataset for validation and comparison. 

Figure 6: Shows an outline of the 

BRT model used for this study 
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The test dataset retained 20% of the data that was also randomly selected. Figure 6 shows an 

outline of the model, and Table 5 shows the parameters used for the grid search. 

Table 5: Shows the values used for each parameter in the grid search used for the BRT modeling. 

Grid Search Parameters 

Parameter Value 

Number of trees  1,000-10,000; spaced by 100 

Tree Depth/Complexity 1-10 

Learning Rate/Shrinkage .1-.0001 

 

This study will have 24 models broken up by season, class type, and buffer radius size (1500m 

and 500m). In order to account for traffic as a control, the congestion rankings from each 

individual city will be included as an independent variable. This was done to control any outside 

factors that may come into play, as there has been evidence to suggest that these factors can 

influence NO2 levels within cities(Gulia et al., 2015; Siddiqui et al., 2020; Lu and Liu, 2016; 

Wang et al., 2021; Ku, 2020; McCarty and Kaza, 2015).  
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4 Results 

4.1 Seasonal NO2 Concentrations 

 When looking at the seasonal NO2 concentrations, the season with the highest average 

values was winter (e.g., Figure 7). This trend was noticed in all buffer radius sizes, leading to the 

conclusion that conditions in the winter may be very favorable for the formation of NO2. 

 

Figure 7: Shows the average seasonal concentrations of NO2. A trend of winter having the 

highest concentrations out of all the seasons, regardless of buffer radius, can be seen. 

Out of all the seasons, winter also seems to have the largest spread of data and interquartile range 

(IQR). Summer and spring are consistent with their NO2 readings and appear to be very similar. 

Fall appears to have the most similar spread of data to winter.  

4.2 Influence of Urban Land Class and Form on NO2 Concentrations 

 This section describes how landscape metrics can impact the concentration of NO2 

differently depending on which urban land class is observed in the model. After the model was 
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run it was observed across the board, the land classes that had the most considerable impact on 

these concentrations were urban buildings, trees, and roads.  

4.2.1 Buildings 

Table 6: This table shows the difference between the model results for observations collected in 

each buffer radius 

Buildings 

1500m 500m 

Season R-Squared RMSE 

(µmol/m2) 

Season R-Squared RMSE 

(µmol/m2) 

Fall .31 26.28 Fall .07 28.78 

Winter .50 27.95 Winter .41 32.09 

Spring .39 13.16 Spring .16 15.27 

Summer .49 8.33 Summer .06 11.21 

 

The observations from both buffer radii appear to be similar, however there are some 

differences to note. Table 6 shows that the R-Squared values appear to be performing better in 

the 1500m buffer radius than in that of 500m. This can be seen with fall where the R-Squared 

value within a 1500m radius is .31 as opposed to in 500m meters where it falls to .07. The root 

mean squared errors (RMSEs) also appear to be lower in the 1500m observation models. This 

indicates that there is less overfitting from results produced from these observations, and that 

there is more stability using these parameters. A consistent trend emerged with these results 

where winter had the highest R-Squared value, .50 and .41 respectively, and summer had the 

lowest RMSEs values which were 8.33 µmol/m2 and 11.21 µmol/m2.  
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Table 7: Lists all of the independent variables used in the model and lists their importance in 

terms of how much they impacted NO2 values. Variable importance is in terms of percentage, 

meaning that variables that have a value of 100 are the most impactful, while 0 means there was 

no impact. These percentages are also based on each singular value, so multiple metrics can have 

a value of 100 or 0. 

Buildings Variable Importance 

1500m Buffer Radius  

Variable Fall (%) Winter (%) Spring (%) Summer (%) 

Congestion 

Ranking 

100 100 100 84.8 

PD 20.6 8.97 17.7 33.6 

LPI 10.6 0 3.52 3.56 

AREA_MN 48.7 39 30 100 

AI 0 1.01 0 0 

500m Buffer Radius 

Congestion 

Ranking 

100 100 100 100 

PD 4.21 3.33 24.1 3.06 

LPI 0 0 0 0 

AREA_MN 37.2 7.66 46.2 46.2 

AI 8.94 9.76 10.9 10.9 

 

With variable importance, as listed in Table 7, other than the congestion ranking AREA_MN is 

typically listed as the second most important variable. Congestion ranking holds importance 

throughout all seasons except for in summer at the 1500m scale, where AREA_MN has a value 

of 100 and congestion only has an importance value of 84.8.  

4.2.2 Trees 

 The trees land cover class had similar results to that of buildings, however there was less 

of a distinction between the two buffer radius sizes. The largest R-Squared values were in the 

winter with .47 at the 1500m buffer scale, and .55 at the 500m buffer scale.  
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Table 8: This table shows the difference between the model results for observations collected in 

each buffer radius for the trees landcover class.  

Trees 

1500m 500m 

Season R-Squared RMSE 

(µmol/m2) 

Season R-Squared RMSE 

(µmol/m2) 

Fall .39 26.39 Fall .40 26.88 

Winter .47 29.1 Winter .55 27.92 

Spring .30 14.28 Spring .40 12.73 

Summer .41 9.14 Summer .43 8.1 

 

Table 8 also shows that the lowest error values for RMSE are once again in the summer. 9.14 

µmol/m2 is recorded for the 1500m buffer observations, and 8.1 µmol/m2 for 500m.Instead of 

using LPI as one of the variables in the model, this was replaced by ED for trees. The variable 

with the largest amount of importance is shown to be congestion rank, with PD being the second 

most important variable in most cases. Table 9 lists these values, and PD is one of the main 

variables impacting NO2 at both scales.  
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Table 9: Lists all the independent variables used in the model for trees and lists their importance 

in terms of how much they impacted NO2 values. Variable importance is in terms of percentage, 

meaning that variables that have a value of 100 are the most impactful, while 0 means there was 

no impact. These percentages are also based on each singular value, so multiple metrics can have 

a value of 100 or 0. 

Trees Variable Importance 

1500m Buffer Radius  

Variable Fall (%) Winter (%) Spring (%) Summer (%) 

Congestion 

Ranking 

100 100 100 100 

PD 39.7 27.3 68.3 57.5 

ED 29.9 19.5 52.5 24.4 

AREA_MN 14.1 39.8 20.1 0 

AI 0 0 0 3.14 

500m Buffer Radius 

Congestion 

Ranking 

100 100 100 100 

PD 18.3 22.8 31 37.6 

ED 45.7 18.1 .2 0 

AREA_MN 10.1 0 5.5 8.6 

AI 0 0.8 0 3.7 

 

4.2.3 Roads 

 The same metric variables used in the models for tree cover were also used for roads (PD, 

ED, AREA_MN, & AI). The R-Squared values do not show the same consistencies for winter 

having the highest in both buffer radii. In Table 9 winter had the highest R-Squared of .68 in 

1500m buffer radii, but is dropped down to third highest in a 500m buffer with a value of .50. 

Summer remained the season with the lowest RMSEs. In 1500m summer showed a value of 9.20 

µmol/m2 and 8.96 µmol/m2 at 500m.  
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Table 10: This table shows the difference between the model results for observations collected in 

each buffer radius for the roads landcover class. 

Roads 

1500m 500m 

Season R-Squared RMSE 

(µmol/m2) 

Season R-Squared RMSE 

(µmol/m2) 

Fall .44 23.68 Fall .67 22.05 

Winter .68 22.82 Winter .50 28.30 

Spring .54 11.29 Spring .65 9.88 

Summer .14 9.20 Summer .35 8.96 

 

Table 11: Lists all the independent variables used in the model for trees and lists their importance 

in terms of how much they impacted NO2 values. Variable importance is in terms of percentage, 

meaning that variables that have a value of 100 are the most impactful, while 0 means there was 

no impact. These percentages are also based on each singular value, so multiple metrics can have 

a value of 100 or 0. 

Roads Variable Importance 

1500m Buffer Radius  

Variable Fall (%) Winter (%) Spring (%) Summer (%) 

Congestion 

Ranking 

100 100 100 100 

PD 3.3 6.5 3.8 0 

ED 19 7.1 47 33 

AREA_MN 7.3 22 2.4 25 

AI 0 0 0 4.1 

500m Buffer Radius 

Congestion 

Ranking 

100 100 100 100 

PD 0 10.9 0 0 

ED 2.90 0 27.1 32.6 

AREA_MN 6.23 19.1 10.4 45.4 

AI 17 6 3.06 43.1 
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 There were no consistencies across all seasons for variable importance in terms of metric 

values, but congestion ranking did stay the most important variable throughout all given model 

parameters. There does seem to be a bit of agreement that ED and AREA_MN show importance 

in most seasons and both buffer radii.  The exception being AI with a value of 17% importance 

during the fall within a 500m buffer. It is also clear that the 500m buffer radius observations had 

less consistency than 1500m buffer radius observations. At the 1500m buffer scale, ED (edge 

density) was second most important throughout all seasons besides winter in which AREA_MN 

took its place instead. There was no consistent variable seen for all seasons at the 500m scale.  
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5 Discussion 

5.1 Fine-scale consistencies across studies 

 To develop the relationship between NO2 and fine-scale urban form, we used data from 

22 urban areas across the U.S. Due to the relationship between NO2 and traffic congestion 

already being well established (Agudelo-Castañeda et al., 2013; Gualtieri et al., 2015; Lähde et 

al., 2014; Madrazo 2018); lockdown protocols during COVID-19 caused a decrease in NO2 

concentrations in many areas (Ghahremanloo et al., 2020; Rossi et al., 2020). Having congestion 

rankings used as a control in the model allowed us to generalize the data between each city and 

look at other patterns that may have developed with urban form.  

 When we observe the landcover dealing with buildings, the most important factors 

contributing to increasing NO2 levels appear to be most related to the size of buildings or how 

much of the landscape they cover. Partial dependence is a way to show the relationship of non-

linear models such as boosted regression trees. It shows the relationship of a single independent 

variable and the predicted based on the other variables that are in the model. If we note the 

partial dependence plots shown in Figure 8, one can see that the variables of importance 

associated with this characteristic increase the NO2 levels to a point and then eventually level off. 

It has been shown in previous studies that large built structures can dampen both wind direction 

and speed, indirectly causing the concentration of NO2 to rise because of poor ventilation in the 

area (Chen et al., 2021; Peng et al., 2021; Mao et al., 2022). It is difficult to say if this is what is 

happening with the mean area of the landscape, as there is no way to determine the 3-D shape of 

a structure from the land cover dataset used. This finding is like studies that have shown the 

effect of landscape fragmentation within an urban landscape (McCarty and Kaza, 2015; Fan et 
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al., 2014). However, using 1 m data like the UrbanWatch dataset allows for individual patches of 

buildings to be isolated in the landscape when running calculations. This is advantageous as it 

allows for the individual 2D shape of buildings within an observed landscape to be analyzed. 

Typically, with a course resolution dataset, such as the 30 m NLCD, these buildings will get 

averaged into one patch that can also include vegetation or even roadways. 

 It is widely accepted that urban forests and larger green spaces are a key part of reducing 

NO2 levels within cities (Baró et al., 2015; Manes et al., 2016; Song et al., 2016). However, it 

was also demonstrated by Gong et al. (2022) that these trees seem to be absorbing NO2 

disproportionately. Here in this study, we may be seeing the same trends across each of the 22 

cities being studied. When looking at what impacted NO2 levels the most in terms of tree canopy, 

clustering appears to play a major part. Using partial dependence (Figure 9), however, it can be 

shown that this relationship is clearly not linear. It appears that as clustering in the observed 

landscape increases, that the so do NO2 levels overall. If we look more closely though, this 

clustering can also decrease concentrations of this pollutant as well. Different vegetation types 

can have varying effects on NO2 at large (Dai et al., 2023), so these values could be dependent on 

the species of tree. Due to the nature of the dataset being used for landcover, low-level 

vegetation such as shrubbery and grass can be excluded from the model, but there still may be 

variation between the species of the tree itself. This cannot be observed as there is no information 

on vegetation species within the landcover database.  

 Roadway networks are also typically difficult to capture within the landscape when 

running metric-based calculations. Typically, the full shape of this land cover classification 

cannot be determined as it will get averaged into other urban land classifications. This is 

problematic, as it was shown that congestion levels and city-wide traffic patterns greatly impact 
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the amount of NO2 within a city. Being able to set a defined border to observe this land use 

classification allows for the shape of these networks to be fully calculated. Roadways are an 

essential contributing factor of NO2 due to the congestion and daily travel from vehicles. 

Congestion and traffic patterns cause about 50% of all NO2 emissions (Basaric et al., 2014; Frey 

et al., 2010; Shon et al., 2011). Salas et al. (2021) noted that traffic restrictions put into place in 

Madrid had dramatically reduced the NO2 levels in areas that were previously well above the 

threshold for acceptable limits. Based on the importance of variables, besides congestion 

ranking, attributes that contributed to NO2 levels the most dealt mainly with size and continuity 

within the landscape. It can be noted in Figure 10 that these metrics do also appear to be 

increasing the amount of NO2 present within these cities. Again, the relationship is not linear, but 

these metrics consistently increase levels of this pollutant overall. Considering that traffic and 

congestion are relevant with rising NO2 levels, this result is consistent (Basaric et al., 2014; Frey 

et al., 2010; Shon et al., 2011). Extreme traffic conditions suggest an immediate impact on NO2 

concentrations; however, we note that urban form affects traffic patterns (Zhou and Gao, 2020), 

leading to an indirect impact on NO2 emissions. 
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Buildings Partial Dependence 

1500m 

500m 

Figure 8: Shows the partial dependence of the 

variable AREA_MN throughout all seasons and 

both buffer radius scales. Partial dependence is 

based on how the individual variable is effecting 

NO2 in comparison to everything included in the 

model 
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Trees Partial Dependence 

1500m 

500m 

Figure 9: Shows the partial dependence of the 

variable PD throughout all seasons and both buffer 

radius scales. Partial dependence is based on how 

the individual variable is effecting NO2 in 

comparison to everything included in the model 
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Roads Partial Dependence 

1500m 

500m 

Figure 10: Shows the partial dependence of the 

variable of importance throughout all seasons and 

both buffer radius scales. Partial dependence is 

based on how the individual variable is effecting 

NO2 in comparison to everything included in the 

model 
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5.2 Buffer Radius Size  

 The differences between individual buffer sizes within the landscape appear to minimal, 

however, 1500m did seem to perform better in terms of having higher R-Squared values and 

lower RMSEs overall. The most difference that could be seen was in the analysis of the 

buildings’ land use classification. Here, R-Squared results clearly saw higher values for the 

1500m buffer radius when compared to the 500m buffer radius. Landscape metrics are based on 

the size of the landscape from which they are calculated and are highly scalable (Wu et al., 

2002). Whether or not a 1500m or 500m buffer radius will perform better than the other may be 

highly dependent on the observed city because of the scalable nature of these metrics. With 

buildings being the one to show the difference between buffer sizes the clearest, a buffer with a 

radius of 500m may overestimate what is in the landscape and not allow for other urban 

landforms to be observed well enough. Given the analysis conducted by this study, it appears that 

there really is not enough of a difference between these two observational scales to give a clear 

answer of which is better for all classification types. Ku (2020) stated that 1500m performed the 

best out of all buffer types tested in their study, however, they used 30m land use data and 

performed analysis using multiple regression. City size and urban population has also been 

shown to be a contributing factor to NO2 concentrations within cities (Lamsal et al., 2013). 

Without using a finer-scale land cover dataset to determine the values of these metrics in highly 

heterogenous environments, it questions the accuracy of any other study trying to build a 

relationship between urban form and air quality, specifically NO2. 
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5.3 Consistencies across seasons 

 With NO2 being highly variable, seasonal fluctuations were observed to see whether there 

was any season consistently performing better than the other. It was also important to observe 

whether there were any seasonal consistencies between variable importance for each of the class 

types. At first glance there does not seem to be any major seasonal patterns noted, however, 

winter appeared to produce the highest R-Squared values overall. With winter also appearing to 

have the highest concentrations of NO2, this observation is most likely not a coincidence. In 

other studies, it has been consistently shown that winter can produce higher concentrations of 

this pollutant than any other season (Boersma et al., 2009; Kendrick et al., 2015). One of the 

main pathways NO2 is removed from the atmosphere is through exposure to sunlight and 

photochemical destruction, which allows for ozone (O3) to be formed towards the end of this 

process (Pancholi et al., 2018). In the winter, there is typically less solar radiation during the day 

in the northern hemisphere. This is added on top of more people using heating services during 

this time of year, which have a biproduct of NO2 (Bozkurt et al., 2018). 

There also appeared to be a consistent trend of summer having the lowest RMSE value 

when compared to the other seasons. This indicates that there is a better model fit during this 

time of year. Temperatures and synoptic weather conditions, such as wind direction and speed, 

have a tremendous impact on the levels of NO2 within a city. It has been shown in studies that 

urban heat islands (UHIs) can influence air pollutant concentrations. In this context, a UHI is 

where temperatures in urban areas are higher than in rural or vegetated land (Lai, 2009). It is 

unclear as to if these varying temperatures in the summer are causing these better fits, but again, 

summer typically has higher averages of solar radiation in the northern hemisphere. This may 

allow for NO2 to be removed easier during this time, allowing for a better fit.  
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5.4 Challenges  

 In this study, a couple of challenges were faced. The main one being the resolution of the 

tropospheric NO2 data. The use of physical oversampling allowed us to re-grid the data to a grid 

of about 1km in resolution. Oversampling is a useful tool, and in this case refers to the creation 

of a level 3 data product that is at a finer scale than the original dataset. This brought the 

resolution of the NO2 datasets closer to the resolution of 1 m, but there may still be 

inconsistencies due to the large differences in resolution size. There was not enough coverage 

available from ground-based monitoring stations, meaning that this was still the only option 

regardless. Another challenge that comes along with using satellite-based measurements is the 

temporal scale that is observed. The specific satellite used for this study, the Sentinel 5p, only 

passes over each location once a day at around noon. This means that there is no continuous 

recording of NO2 concentrations at the ground. NO2 is significantly impacted by diurnal cycles, as 

it is removed through the environment through photochemical pathways (Boersma et al., 2009; 

Chen et al., 2021; Pancholi et al., 2018). Not being able to observe these cycles is a downside, as 

there could have been a pattern that we missed if this was able to be recorded.  

 It is also worth noting that there was a major health crisis in the form of COVID-19 

within the time frame of data collection. There was a marked decrease in motor vehicle use 

during this time that could cause NO2 concentrations to be overall skewed for some locations 

(Ghahremanloo et al., 2021).  
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6 Conclusion  

In this study, we sought to answer three research questions about the relationship between 

fine-scale urban form and air quality. First, we explored whether this relationship is consistent 

across cities. Our findings suggest that the impact of urban form on air quality varies across 

cities and depends on factors such as traffic congestion and land classification. For example, we 

observed that buildings had a relatively large impact on NO2 concentrations in cities with low 

congestion, while roads and their continuity in the landscape held importance when this land 

classification was analyzed. Model results were also extensively less stable when used on areas 

of high congestion, having lower R-Squared values and higher amounts of error.  

Second, we investigated how the relationship is affected by the spatial extent or buffer 

zone at which urban form is captured. Our analysis showed that the choice of buffer radius can 

affect the stability and accuracy of model predictions. We found that observations collected from 

a 1500m buffer radius had slightly better model results and higher R-Squared values compared to 

observations collected from a 500m buffer radius. However, we also observed that 500m buffers 

can perform better for certain land classifications and in some congestion levels. Therefore, 

urban planners and designers should be aware of the limitations and trade-offs associated with 

different buffer sizes when making decisions about urban form and air quality. 

Finally, we examined how the relationship changes with the season. Our study found that 

winter had the highest overall concentration of NO2, likely due to the lack of solar radiation, 

which is one of the main pathways for NO2 removal from the atmosphere. Additionally, we 

observed that there are different consistencies between importance of variables depending on the 

season and which buffer radius was being used for analysis.For example, there were some 
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inconsistencies with different metrics of importance that were seen regardless of landcover type 

that were more associated with observations collected within a 500m buffer radius that were not 

seen when using a 1500m buffer. Seasonality also caused inconsistent variable importance when 

looking at land covers such as roads or trees.  

Overall, our study contributes to a better understanding of the complex relationship 

between fine-scale urban form and air pollution. It highlights the need for city-specific 

approaches to reduce air pollution and emphasizes the importance of considering both temporal 

and spatial scales in urban planning and design decisions aimed at improving air quality. It also 

shines a light on the importance congestion levels can have on a city when making these design 

decisions. 
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