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ABSTRACT

TARINI SHUKLA. Characterization of microtopography and its impact on carbon
dynamics in coastal wetlands using close-range remote sensing. (Under the direction

of DR. CRAIG ALLAN)

The spatial heterogeneity of microtopography where variation in elevation is less than

a meter plays a significant role in ecological, hydrological, and biogeochemical pro-

cesses. The microtopography can be categorized into microtopographic features as in

the case of forested wetlands in hummocks (local high points), and hollows (local low

points).To quantify and assess these microtopographic features, close-range remote

sensing technologies can be used in combination with field surveys. This research pro-

vides a systematic framework for microtopographic studies using these technologies

such as sUAS, aerial LiDAR, and terrestrial LiDAR. We highlight the importance of

using high-resolution DEM of less than 1m2 spatial resolution to delineate microto-

pography. In a low-relief topography, especially in coastal forested wetlands where

hollows and hummocks are differentiated by a few centimeters, we demonstrated a

method by combining water level data and terrestrial LiDAR-based DEM to char-

acterize microtopography over a large aerial extent utilizing coarser resolution aerial

LiDAR data. This research also investigated the influence of microtopography on

carbon dynamics in tidal and non-tidal coastal forested wetlands and found overes-

timation of ground elevation can not only misclassify the microtopographic features

but also leads to an underestimation of CH4 flux (upto 74%) and overestimation of

the CO2 flux (upto 44%). Our results show that the combination of on-site water level

data and RTK GPS ground-truthed terrestrial LiDAR-based elevation data can be

used to successfully adjust the base elevation and classification of microtopographic

features in aerial LiDAR data. The substitution of the more variable and drier non-

tidal water table regime in the process-based model resulted in a significant impact on

C gas emissions with annual CH4 emissions decreasing by an average of approximately
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53% and CO2 emissions increasing twofold over the four-year study period. The C

gas flux extrapolation based on these LiDAR-based DEM over larger areas possibly at

the watershed scale may open new avenues for research and can provide insight as to

how wetland microtopography interacts with precipitation/ET and tidally influenced

hydrologic regimes and how these may change under rising sea levels to impact GHG

emissions and carbon cycling in bottomland hardwood forests.
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PREFACE

Microtopography plays an important role in various ecological, hydrologic, and

biogeochemical processes. However, quantifying the characteristics of microtopog-

raphy represents a data-intensive challenge. Over the last decade, high-resolution

or close-range remote sensing data and techniques have become a powerful tool for

microtopography quantifying. The availability of wide-area aerial LiDAR data and

cost-effective small unmanned aerial systems (sUAS) or drone-based technologies and

terrestrial LiDAR has helped further research in examining microtopography in vari-

ous environments. Traditional field surveys were mainly limited to transects or small

plots, using limited sets of observations. Still, with the decrease in the cost of close-

range remote sensing technologies and increased computing performance, the micro-

topography, even in forested environments, can be assessed.

The first chapter provides a systematic framework for microtopographic studies

using close-range remote sensing technologies. This is achieved by reviewing the

application of close-range remote sensing to capture microtopography and develop

microtopographic models in natural ecosystems. Specifically, to achieve the main

objectives, we address the following questions: 1) What terrain attributes represent

microtopography in natural ecosystems? 2) What spatial resolution of terrain at-

tributes is needed to represent the microtopography? 3) What methodologies have

been adopted to collect data at selected resolutions? and 4) How to assess micro-

topography? Current research, challenges, and applicability of close-range remote

sensing techniques in different terrains are analyzed with an eye to enhancing the use

of these new technologies.

We highlight the importance of using a high-resolution DEM (less than 1m2 spa-
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tial resolution) to delineate microtopography. Such high-resolution DEM can be

generated using close-range remote sensing techniques. We also illustrate the need

to move beyond elevation and include terrain attributes such as slope, aspect, ter-

rain wetness index, ruggedness, flow accumulation, and flow path and assess their

role in influencing biogeochemical processes such as greenhouse gas emissions and

species distribution and biodiversity. To assess microtopography in terms of physical

characteristics, several methods can be adopted such as threshold-based classifica-

tion or mechanistically-based delineation, and machine learning-based delineation of

microtopography. The microtopographic features can be analyzed based on physi-

cal characteristics such as area, volume, depth, and perimeter or by using landscape

metrics to compare the classified microtopographic features. When used with field

experiments/data, remote sensing techniques provide new avenues for researchers to

understand ecological functions such as biodiversity and species distribution, hydro-

logical processes, greenhouse gas emissions, and the environmental factors that influ-

ence those parameters. This article provides a comprehensive and detailed review of

microtopography data acquisition and quantification for natural ecosystem studies.

In the second chapter, we assessed the high-resolution fine-scale microtopographic

features of a coastal forested wetland (CFW) with terrestrial LiDAR and aerial LiDAR

to test a method appropriate to quantify microtopography in low-relief forested wet-

lands. Our method uses a combination of water level data and elevation thresholding

to delineate hollows in terrestrial and aerial LiDAR data. Close-range remote sens-

ing technologies such as LiDAR can be used for microtopography in forested regions.

However, aerial and terrestrial LiDAR technologies have yet to be used to analyze

or compare microtopographic studies in CFW systems. Therefore, the objective of

this chapter was to 1) characterize and assess the microtopography of low-relief tidal

forested wetlands and 2) identify optimal elevation thresholds for widely available

aerial LiDAR data to characterize microtopography. Our results suggest that a com-
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bination of water level and percentile elevation thresholding can correctly characterize

the microtopography in this area of low-relief topography.

The microtopography of wetlands has been found to significantly influence the

spatial distribution of methane (CH4) emissions, with significantly higher emissions

occurring from hollows than hummocks. However, there is very scarce information

available on the influence of microtopography on carbon gas (CO2, CH4) fluxes in

tidal freshwater forested wetlands (TFFW). The third chapter investigated the in-

fluence of wetland microtopography derived from both terrestrial (0.25 m spatial

resolution) and coarser scale aerial LiDAR (1m spatial resolution) coverages on C gas

emissions in a TFFW wetland in coastal South Carolina. We used the spatially dis-

tributed processed-based TFW-DNDC model to simulate CH4 and CO2 fluxes from

three microtopographic features-hollows, fringe, and hummocks, representing 29%,

21%, and 50% of the 4250 m2 study area for the calendar years 2019-2022. Each

microtopographic feature had a unique combination of vegetation, hydrology, and

soil characteristics. Tidally influenced ground and surface water levels were recorded

on site. The daily maximum and minimum water levels were used as a model input

along with site-specific vegetation and soil parameters.

We also explored the influence of the tidally driven hydrologic regime on C gas emis-

sions by substituting the water levels from a nearby non-tidal forested wetland with

similar soils and vegetation cover over the same time period in the model. As could be

expected wetland hollows were hotspots for CH4 emissions (218.4 to 284.3 kgC/ha/yr)

as compared to hummocks (-10.1 to -9.7 kgC/ha/yr). Carbon dioxide emissions were

significantly greater for hummocks (3.4 to 4.0 MgC/ha/yr) than hollows (0.1 to 0.6

MgC/ha/yr). Our results show that the coarser aerial LiDAR-based DEM underesti-

mated CH4 emissions by 10% to 74% and overestimated CO2 emissions flux by 26%

to 44% for the study years. By substituting the precipitation/evapotranspiration-

driven water table regime instead of the tidal water level regime into TFW-DNDC



4

we found that CO2 flux increased by two to three times while CH4 was reduced by

78% over the study period. Our results quantify the TFW-DNDC model sensitiv-

ity to the spatial resolution of the base DEM and indicate the importance of using

a high-resolution DEM (less than 1m2 spatial resolution) to delineate microtopog-

raphy in low-relief coastal wetland environments. This research also highlights the

interaction between wetland microtopography and tidal hydrology in determining C

gas emissions in freshwater coastal wetlands. The microtopography characterization

method described here may be used and built upon for future use.



CHAPTER 1: Quantification of Microtopography in Natural Ecosystems Using

Close-Range Remote Sensing

1.1 Introduction

1The spatial heterogeneity of microtopography where elevation differences are often

less than a meter plays a significant role in various ecological, hydrologic, and biogeo-

chemical processes including carbon (C) and nitrogen (N) dynamics (2; 3; 4; 5). The

biogeochemical importance of microtopography lies in its impact on carbon seques-

tration (6; 7), greenhouse gas (GHG) emissions, and other biogeochemical processes

(8; 9; 10), and hydrological function (11; 12). These processes or functions are in-

fluenced by surface microtopography (13; 14; 15; 16). For example, in an estuarine

environment, the tidal riparian zone is affected by the interaction of microtopography

and daily tidal fluctuations, resulting in a complex pattern of soil gas emissions (17).

The biogeochemical activity, soil characteristics, and spatial interactions between veg-

etation, nutrients, hydrology, microbial communities, and soil organic carbon are all

in part influenced by microtopographic features (18; 19; 20). Microtopography also

explains vegetation composition in wetlands and forests due in part to vertical varia-

tions in soil water which impacts the availability of nutrients such as phosphate and

ammonium (13). In addition, the spatial and temporal distributions of hydrologic

connectivity in forested wetland landscapes can be substantially influenced by micro-

topography. The microtopography can be categorized into microtopographic features

as in the case of forested wetlands which are characterized by hummocks or mounds

(local high points), hollows or depressions (local low points), and lawns (intermediate

elevation points). Hummocks are higher elevation patches in a wetland consisting
1This chapter is published as an article authored by Shukla et al.(1).
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of dense mats of soil, moss, and roots from herbaceous vegetation while hollows are

found at a comparatively lower elevation where the soil is saturated.

1.1.1 Defining Microtopography

To understand the ecological, hydrologic, and biogeochemical processes from a mi-

cro to macro (or local to global) scale, it is important to quantify microtopography

and identify the scale of a high-resolution model which can appropriately represent the

spatial heterogeneity of the study site. It is vital to first define microtopography and

microtopographic features in order to quantify and classify spatially heterogeneous

topography in natural ecosystems. Hunneke and Sharitz (21) defined microtopog-

raphy as spatial heterogeneity at the scale of plants and individual seeds. Along a

similar vein, Titus (22), Bledsoe and Shear (23) stated microtopography is the el-

evation or topographic heterogeneity of substrates at the scale of individual plants

where the elevation ranges from 1 cm to 1 m. Subsequently, Moser et al. (24) de-

scribed microtopography as the combination of relief and roughness where relief is

vertical variation and roughness represents topographical variability. Diamond et al.

(25) and Stovall et al. (26) referred to microtopography as the vertical variation in

the ground surface occurring at centimeters to meter scales. Although elevation is

the most common terrain attribute which is associated with microtopography, other

terrain attributes such as slope, aspect, flow path, ruggedness index, wetness index,

and curvature can also be significant in microtopography-based studies (27).

Microtopography which influences ecological, hydrological, and/or biogeochemical

processes can be defined and classified irrespective of the spatial extent of a study

area, which means it can range from individual soil cores, and field plots to the scale

of a watershed. Also, microtopographic features are not limited to hummocks and

hollows (common microtopographic features in wetlands) or pits and mounds (micro-

topographic features in forests). Instead, microtopographic features are the landscape

characteristics that are classified and/or delineated based on their spatial and tem-
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poral extent to estimate the impact of microtopography on ecosystem functions. In

summary, microtopography represents the variation in terrain elevation observed at

a small (e.g., submeter) spatial scale over a study site, and the microtopographic

features are the landscape characteristics that can be delineated based on terrain

attributes over a given spatial and temporal extent.

1.1.2 Microtopography influences ecosystem processes

Small-scale variations in microtopographic features when studied over a large extent

may exert significant impacts on hydrologic, biogeochemical, and biologic processes.

In natural ecosystems, microtopography influences the hydroperiodicity in hollows

and hummocks and soil moisture which in turn impacts element cycling. The surface

flow path is greatly influenced by the spatial arrangement of hollows and hummocks

where hummocks can reduce the water storage by up to 30% (28). Assuming ho-

mogeneous surface without considering microtopography can alter the surface water

flow in modeling exercise and in turn the associated results. Based on soil saturation

the hollows become the local control point for methane emissions and over a large ex-

tent can be considered as ecosystem control points. In contrast, hummocks are often

the control points for high primary productivity. Multiple studies (29; 5; 30) have

shown that there is spatial variation in wetlands CO2 and CH4 emissions; hollows with

reduced redox state (low oxygen availability) are the source of greater methane emis-

sions. Due to extended exposure to open air and availability of nutrients, hummocks

are the source of carbon dioxide emissions.

Microtopography also influences exogenous processes such as landslides, erosion,

and nutrient transportation. Exogenous processes are the result of the interaction

of geological, hydrological, meteorological factors with microtopography. Processes

such as soil erosion and runoff have a significant role in sediment/nutrient transporta-

tion. Studies (27; 31; 32) conducted at a fine spatial scale showed the importance of

microtopography in studying exogenous processes.
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1.1.3 Microtopography with close-range remote sensing

Recent studies have reported the use of close-range remote sensing technologies to

map fine-scale microtopography by using dense and highly accurate elevation data

over reasonably large areas (33; 34; 35; 36; 26). However, this is a recent development,

and researchers examining fine-scale processes or distributions have traditionally re-

lied on labor-intensive manual field surveys. It is our view that a more complete

understanding of the state-of-the-art remote sensing techniques and their limitations

will facilitate their incorporation into future experimental designs and modeling appli-

cations examining such topics as carbon cycling, hydrologic processes, and vegetation

pattern and composition at fine spatial scales. The aim of this article is to provide

a systematic framework for microtopographic studies using close-range remote sens-

ing technologies. This is achieved by reviewing the application of close-range remote

sensing to capture microtopography and develop microtopographic models in natural

ecosystems. Close-range remote sensing techniques such as small Unmanned Aerial

Systems (sUAS) and LiDAR technologies have enabled researchers to employ these

technologies repeatedly during different seasons to identify the impact of microtopog-

raphy on the seasonal distribution of vegetation, hydrological connectivity, and GHG

fluxes. Small but critical features that are often missed in satellite imagery can be

revealed by aerial and terrestrial LiDAR or in sUAS-based photogrammetry in low

or sparsely vegetated wetlands.

1.1.4 Research question

The main objective of this article is to provide a systematic framework for micro-

topographic studies using close-range remote sensing technologies. In the past, the

characterization of microtopography over large areas was difficult due to limitations

in the ability to collect the density of data necessary to represent microtopographic

features. The most common methods of measuring microtopography involve exten-
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sive manual surveys or transect-based manual surveys and utilizing remote sensing

techniques such as aerial surveys and LiDAR-based techniques. To characterize mi-

crotopography in a study site, a researcher should focus on answering the following

questions: 1) What terrain attributes can represent the microtopography? 2) What

spatial resolution of terrain attributes are needed to represent the microtopography?

3) What methodology to adopt to collect data at the selected resolution? and 4)

How to quantify microtopography? Thus, in this article, to achieve the main ob-

jective, we focus our discussion on addressing these four aforementioned questions,

to assist researchers in optimizing the use of these new technologies in support of

microtopography-based ecosystem studies (see Figure 1.1)

Figure 1.1: Framework to answer microtopography-based questions using close range
remote sensing techniques
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1.2 Terrain attributes for representation of microtopography

Microtopography studies often require the use of quantitative measures to repre-

sent microtopographic characteristics. These quantitative measures mainly include

terrain attributes (quantified as a continuous spatial variable based on elevation) and

landscape metrics (quantified as a categorical spatial variable). Terrain attributes

are the quantities that express the position and orientation of ground points (37).

Terrain attributes can be determined using DEMs, which is based on elevation as a

continuous spatial variable. Terrain attributes include, but are not limited to, eleva-

tion, aspect, slope, flow path. flow accumulation, and topographic index. Elevation

is the primary attribute for assessing microtopography but other terrain attributes

such as roughness, slope, and terrain indices can also be critical in characterizing

microtopography. Table 1.1 summarizes a variety of ecosystem features impacted by

microtopography with corresponding terrain attributes and spatial resolution.
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Another terrain attribute which has not been widely explored for microtopographic

studies of natural landscapes is surface or soil texture (62). Surface texture can be

related to the microforms such as hummocks or hollows and can be related to surface

roughness. The roughness values are calculated based on a prescribed window size

and estimated for each window to capture the complexity of the terrain. In addition,

once microtopography is classified and delineated as hummocks or hollows, these hum-

mocks or hollows are landscape patches that are categorical spatial variables in nature.

Thus, landscape metrics (63), originating from the domain of landscape ecology, can

be used to analyze the spatial characteristics of these microtopography patches with

respect to their composition and configuration. More details on landscape metrics

will be discussed in Section 1.5.
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1.3 Spatial scale of microtopography

The scale of the microtopographic features of interest is an important consideration.

Small variations in elevation matter when it comes to representing microtopography

and its associated physical, biogeochemical, and ecological processes. In other words,

the study of microtopography often operates at small spatial scales, which often re-

quires high spatial resolutions to capture microtopographic features at smaller spatial

scales. Spatial resolution refers to the actual ground size that a pixel represents or

the smallest possible geospatial feature that can be detected. Spatial resolution needs

to be fine enough in order to capture the information of a geospatial feature. Specifi-

cally, spatial resolution needs to be finer than the scale that a geospatial phenomenon

operates on i.e., operational scale; see (64; 65). Therefore, a high resolution DEM

is needed to detect small elevation changes (often at submeter level) in the microto-

pography, which operates at a small spatial scale. This fine spatial resolution need

is reflected in the literature (see Table 1.1; microtopographic features ranging from

0.005 meter to 10 meter; most of them are under 1m).

It is necessary to identify what spatial resolution of terrain attributes can ade-

quately represent the microtopography at a specific location. With LiDAR data it is

possible to obtain sub-centimeter resolution DEM data, but an important question

is what is the right resolution to capture the landscape microtopography? In Bal-

tensweiler et al. (66) modeling of soil pH distribution, the most appropriate spatial

resolution was found to be 0.5m with a cross-validated R2 value of 0.62. While Stovall

et al. (26) found that a DEM resolution of 0.01 to 1m was necessary to represent

hummocks in a Black Ash wetland system and determined the most accurate classifi-

cation of 78.7% was obtained with a 0.25m resolution of DEM. The most appropriate

resolution depends on what ecological functions one is trying to model and the com-

plexity of the study site itself. Table 1.1 shows the spatial resolution of DEM used by

different studies. High spatial resolution studies can result in microtopographic fea-
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ture classifications with improved accuracy, which can differ from those obtained from

coarser spatial resolutions in the same region. This may lead to different results in

the estimation of parameters for models of GHG emissions, hydrologic connectivity,

and biogeochemical processes that are associated with microtopography in natural

ecosystems. However, the use of high spatial resolutions often leads to data and

computational challenges.

The horizontal resolution and vertical accuracy of elevation are significant aspects

of microtopographic studies. The DEM resolution can be selected based on the study

site and the purpose of the study. Several researchers have examined the effects of

DEM resolution in their study sites. Habtezion et al. (67) in their study of the North

American prairie Pothole region found that a coarser resolution DEM (>10m) tended

to overestimate ponded areas and underestimate runoff discharge. DEM resolution

becomes even more important for low-relief topography where microtopographic fea-

tures are differentiated by a few centimeters. We used a stochastic depression analysis

tool in Whitebox geospatial analysis tools (GAT) (68) to derive depressions from a

1 m2 resolution airborne LiDAR scan (ALS) and a 0.25 m2 resolution terrestrial Li-

DAR scan (TLS) DEM for a tidal bottomland forest area as shown in Figure 1.2. The

high-resolution TLS successfully identified the series of hollows at the south end of

the study site. In addition, it also provides information on connected and standalone

depressions. This means a TLS-based collection methodology more accurately rep-

resents this low-relief forested terrain as compared to a coarser 1 m2 resolution ALS

DEM which underestimated the aerial extent of depressions/hollows in this environ-

ment.
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Figure 1.2: Stochastic depression analysis showing the probability of depressions in
the Huger Creek forested wetland study site in Santee Experimental Forest, S.C. using
A) ALS data and B) TLS data.
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1.4 Data Acquisition

Here we focus on providing guidance as to what remote sensing methodology to

adopt to collect data at selected spatial resolutions. Microtopography at high resolu-

tions can only be measured in two ways. First by extensive manual surveys and second

by utilizing high-resolution remote sensing techniques. A manual survey requires la-

bor, access to surveying equipment, and the transportation of that equipment to the

study site. Most of these studies have used the transects method using surveying

equipment such as total stations, digital levels, or more recently real-time kinematics

global positioning systems (RTK GPS) and they have relied on the categorical anal-

ysis of predefined hummocks and hollows (16; 69; 70; 71). Transects are often limited

in their site representativeness and are relatively ineffective to represent the entire

region of interest. In contrast, remote sensing techniques can be used for the purpose

of microtopographic mapping of larger areas at a high resolution and affordable cost.

For instance, readily available aerial LiDAR data where point spacing is 1m or less

can provide useful information on microtopography at the field-to-watershed scale.

To decide on the acquisition methodology, researchers need to know the extent

of the study area and how much time and relevant resources are available. Based

on time and available resources, microtopography can be measured manually or by

using remote sensing techniques. Here we will focus on close-range remote sensing

techniques. These methods include aerial surveys with Structure from Motion (SfM)

photogrammetry, ALS, and TLS. Combining these measurements with elevations and

coordinates obtained with RTK GPS or a total station survey can help georeference

the data and validate the remotely collected data. Topographic data collected using

more recently developed remote sensing techniques greatly expands the topographic

information available as compared to field-level survey approaches employed in ear-

lier studies. Currently, researchers develop a microtopographic model based on the

objective of the study and the availability of terrain data. There is no consistent con-
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ceptual or analytical framework that provides a guideline to develop microtopographic

mapping. Here we attempt to develop a basic framework involved in estimating the

microtopographic features (Figure 1.3). Here we discuss each of these methods in

terms of the limitations and advantages of these methods (Table 1.2).

Figure 1.3: Suggested framework for the generation of microtopographic models using
close-range remote sensing techniques.

The figure shows the data collection method in different terrains namely open terrain

such as sparsely vegetated terrain, forested areas such as mangroves, vegetated and

dry region such as shrubs and grasslands, vegetated and wet regions such as marsh,

open and wet terrain such as lakes and shorelines.
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1.4.1 Microtopography determinations with Field-level surveys

Field-based microtopographic studies generally rely on the use of transects or the

study site is divided into multiple sections. The location of transects or subsections

is selected based on either topography or species type. Several surveying instruments

are used for such surveys including a clinometer, hypsometer, height sticks, level

string, dumpy level, and laser range finder. These studies were more common when

remote sensing technologies such as LiDAR and UAS were not available. Here we

provide a few examples to show how such surveys were carried out as well as the time

and effort that went into those microtopographic studies.

Almquist et al. (76) used a clinometer and two rods at 20 m distances along a

transect of 480-1540 m to assess the treefall gaps based on microtopography in a

bottomland hardwood forest collecting 24-77 observations. In order to study the

diversity of trees and forest structure in tropical freshwater swamp forests in relation

to microtopography and water level, Koponen et al. (77) used a hypsometer at 15 m

intervals of 10m x 50 m sample plots and height sticks to measure the water surface

level. The authors considered nine plots to design a transect 530 m long taking 36

observations on the transect. Courtwright and Findlay (13) studied tidal swamps on

the Hudson River and found significant porewater and vegetative differences between

hummocks and hollows although the elevation difference was only 19 cm relative

to a 1m tidal range. The authors used a level string that is 20cm long along a

transect to obtain relative elevation. The study considered five transects each 5m

long with 25 observations on each transect. In another study (78) wooden poles at a

certain distance along the transect were used to obtain the elevation and study forest

structure in a coastal Mexico lagoon.

All these studies attempted to collect elevation data which now can be easily col-

lected with LiDAR and UAS-based technologies. Along with close-range remote sens-

ing technologies total stations and RTK GPS is the most widely used field surveying
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instruments that are being used to validate and georeference remotely collected data.

1.4.2 Microtopography obtained with photogrammetry

sUAS-based SfM photogrammetry is best suited for wetlands where trees are absent

or have a low tree or shrub cover (3). The sUAS-based SfM photogrammetry has

been used in various wetland terrains including mapping moss in Antarctica (79),

mapping alpine peatlands in Canada (39), quantifying roughness for different peat

surfaces (44), and evaluating the impact of seismic lines on peatland CH4 emissions

(80). A sUAS represents a low-cost sensor platform that can cover a wide area as

compared to a tripod or even vehicle-mounted terrestrial LiDAR with several flight

missions possible within a few hours. Although the RGB-based camera on sUAS

can provide high-resolution images, in the case of forested wetlands the data under a

forest canopy cannot be captured and therefore currently their use is not suitable for

microtopographic studies in forested environments. The sUAS with thermal sensors

can effectively detect variable soil moisture conditions that can be associated with

hummocks/hollows complexes (81). Near-infrared (NIR) and multispectral cameras

can be used to characterize vegetation and analyze the impact of microtopography

on vegetation types. The flying altitude and velocity of sUAS also play an important

role in the quality of data collection.

1.4.2.1 SfM based Photogrammetry

In the SfM photogrammetric technique, a mosaic of images is created and then

georeferenced using ground control points (GCPs). This technique creates a very

high-resolution 3D point cloud which is utilized to create a high-resolution DEM or

digital surface model (DSM) as per user requirements. The process has been explained

by a number of researchers (e.g. (39; 82). In general, the SfM analysis provides 3D

information from stereoscopic 2D images. The process involves the identification of

common points called key points. The commonly used algorithm for feature detection
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is Scale Invariant Feature Transform (SIFT, (83)), which identifies key points in the

image. The key points are the unique characteristics of an image. These key points are

invariant of image rotation and scale and remain robust with changes in illumination

and the addition of noise. An initial sparse point cloud is created following bundle

block adjustment and a high-resolution 3D model is created based on stereoscopic

images. The GCPs assist in improving the accuracy of the bundle adjustment and a

3D georeferenced model is generated from a 3D point cloud.

In the case of open topography, RGB camera-based sUAS can assess microto-

pography effectively. The sUAS-derived SfM photogrammetry can create DSM of

sub-centimeter resolution with marked GCPs. Figure 1.4 shows the DSM of a rela-

tively open topography of a low-relief clear-cut forest in coastal South Carolina USA.

The orthomosaic was developed from the SfM technique using 570 images with 80%

side and front overlaps, covering an area of 180,000 sq. meters (using Pix4DMapper

software). A total of 6 GCPs were established using RTK GPS and the images were

georeferenced using these GCPs, with a mean root mean square error (rmse)of 0.006m.

1.4.2.2 Topographic models for microtopography

To quantify microtopography with aerial photos, is inherently related to the pur-

pose of a study. Harris and Baird (53) used a fine-scale topographic model to evaluate

the drivers affecting vegetation patterning. Their study found mean elevation as the

most influential variable in blanket peatland vegetation patterns due to the high corre-

lation of vegetation with topography and soil moisture. Martinez Prentice et al. (62)

used a high-resolution microtopographic model of six wetlands in Estonia using sUAS

to analyze the distribution of plant communities. The elevation difference of these

wetlands varied between 0 to 3 m and both object- and pattern-based classifications

were performed to analyze the distribution of grasslands.
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Figure 1.4: The high-resolution DTM of a low-relief coastal forest (2-cm spatial reso-
lution) orthomosaic developed from SfM photogrammetry method using 570 images.

Although sUAS-based photogrammetry techniques can provide high-resolution low-

cost 3D topography this technique has limited applications in dense forest environ-

ments. In the case of forested wetlands, sUAS are generally used for the estimation of

aboveground biomass density, leaf area index, and vegetation pattern for delineating

a wetland boundary. A few studies have also utilized sUAS-based photogrammetry

for the estimation of GHG fluxes. Becker et al. (84) utilized a dirigible type sUAS

for image acquisition and concluded that the spatial resolution of a DEM impacts

the detection of biogeochemical hot spots with respect to CH4 and CO2. Lehmann

et al. (85) used infrared images captured by sUAS to estimate uncertainty in CH4

flux in a South Patagonian peatland related to site microtopography. They consid-

ered the distribution of vegetation and microform to estimate the CH4 emission at

an ecosystem scale.

sUAS-based measurements of microtopography can cover reasonably large spatial

extent of up to few square kilometers, which is a major advantage over conventional
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transect-based analysis or manual field survey approaches. It provides an affordable

solution to quantify the microtopography at a fine spatial scale. The ease of operation

enables researchers to collect data multiple times and conduct the analysis of spatial

variations over time. These operations must be carefully planned based on consid-

erations of available battery life. Adverse weather conditions need to be avoided to

ensure the safety of equipment, and the quality of data, as well as to comply with

legal requirements. Quantifying wetland microtopography in forested wetlands and

upland forests is more problematic due to the presence of an often dense upperstory

and understory. In these environments, large errors in measurement can lead to unre-

liable or low accuracy of the resultant microtopography mapping. In contrast, open

topography such as bogs, boreal wetlands and peatlands with sparse vegetation can

be assessed for microtopography at high spatial resolutions. Currently, the two most

popular photogrammetric software used by researchers are Agisoft Metashape and

Pix4DMapper (86). Both are proprietary software, which can provide cloud-based

processing and utilize a large collection of images without the need for system up-

grades on the user side. Alternative options include open-source software such as

OpenDroneMap, openMVG, VisualSFM, and MicMac, which are also available but

require technical expertise from users.

1.4.3 Microtopography acquisition with aerial LiDAR

Aerial LiDAR has been used to assess forest canopy structure, underlying terrain,

and sub-canopy vegetative structure. In aerial LiDAR scanning, the laser pulses are

emitted from the airborne platform and then the backscattered signal from the sensor

to the earth’s surface is measured, which provides the range estimation between the

LiDAR device and the earth’s surface. This process is explained in detail in (87).

Chasmer et al. (88) called the frequency distribution of the returns from LiDAR scans

a ”digital fingerprint” for the natural environment with an assumption that different

parts of wetlands and forests have different vegetation structures and morphological
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characteristics. Aerial LiDAR housed on fixed-wing and sUAS platforms has also

been used extensively for estimating surface roughness (38) and mapping forested

wetlands (89). The LiDAR-based sUAS are comparatively more costly than camera-

based sUAS but they can effectively capture spatial variations or hummocks/hollows

complexes in a vegetated study site depending on the bare ground point density.

The high pulse density and/or small scan footprint associated with LiDAR systems

are an asset in mapping microtopography. The LiDAR echoes are processed to create

a digital terrain model (DTM). In aerial LiDAR, the higher the pulse propagation

frequency the greater the pulse return density per unit area is. A higher density of

pulses leads to a higher spatial resolution that can be utilized to construct a high-

resolution DTM. To create the representation of a site’s microtopography researchers

use ground returns with pulse density of 2 pts/square meter or higher and create a

DEM of 1m or higher spatial resolution (grid cell size of 1m or less). The cells that

do not contain a return are filled with interpolation techniques such as the nearest

neighbor, spline methods, inverse distance weighted (IDW), Kriging, and triangulated

irregular network (TIN) interpolations (90).

1.4.4 Microtopography acquisition with terrestrial LiDAR

In measuring landscape microtopography the scanner in a terrestrial LiDAR system

is mounted on a tripod and can be moved easily to target locations. The laser intensity

is inversely proportional to the square of the distance/range while in ALS atmospheric

condition also plays a significant role. In contrast to ALS, the incidence angle impacts

the data quality of TLS. The number of scans varies as per study site, terrain, and

research question. Terrestrial LiDAR data collection is prone to shadowing effects

and occlusion. This can be overcome by scanning the study plot from multiple angles

and overlapping scan locations. The registration of multiple scans requires tie points,

which are common points used to align and register the point cloud. Artificial objects

such as cylindrical reflectors, spherical targets, or checkered markers are placed in each
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location to be scanned and later used as the tie-points. More scans are required for

fine-scale terrain modeling to capture the impact of microtopography on, for example,

ecosystem functions. As the point density decreases linearly with distance, the LiDAR

data acquisition should therefore be planned beforehand to consider the terrain.

The terrestrial scanners generate higher point cloud density compared to the aerial

LiDAR. However, aerial LiDAR covers a larger area as it acquires data at near nadir

view angles while TLS due to its low oblique angle of transmitting signals, covers

substantially smaller areas. The dense vegetation in forests creates occlusion and

shadowing as the signals get interrupted or reflected on their way to the scanner.

As the scan distance increases the probability of returned signal originating from a

non-ground object also increases. This leads to an overestimation of ground elevation.

This is the reason why there is an overestimation of ground elevation exhibited by

both terrestrial and aerial LiDAR in dense forests. For complex study sites, TLS

data is more favorable as compared to aerial LiDAR (66). The main limitation of

TLS-based surveys is that they are required to move to multiple scan positions to

ensure overlapping scans and to cover the study site. The point cloud density is

higher around the scanner and inversely proportional to the square of the distance to

the TLS position (91). Also, due to the shadowing effect in forests, it becomes more

difficult to separate ground surface and non-ground points (92). To overcome this

limitation a larger number of scans with different viewsheds is required.

The use of terrestrial LiDAR for capturing bare ground in a vegetated region is more

challenging. Data acquisition should be planned during the dormant season when

leaves are off, and grass and bushes are largely senesced. This will help in addressing

the issue of occlusion due to a dense understory. The original point cloud data

collected from LiDAR cover both ground and surface returns such as trees and shrubs,

which requires cleaning through the use of stray/noise filters to remove spurious or

noisy scan points and above-surface scan points. This process may require a number
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of iterations until most statistical outliers are removed. The resultant filtered point

cloud can then be used for further analysis or delineation of hummocks and hollows.

The registered and filtered point cloud collected from terrestrial LiDAR is used for

subsequent analysis. To analyze the microtopography the point clouds associated

with the ground are retained, which means that point clouds above the ground are

required to be removed.

The ground points can be extracted from the dense point cloud generated by terres-

trial LiDAR to create a high-resolution DEM. Several researchers (93; 28; 33; 3; 94; 26)

used open source CloudCompare software to extract ground points. The extraction

of ground points requires a point cloud library (PCL, see (95)) to remove noise and

outlier points. PCL assumes a normal distribution of points where outliers can be

removed based on a defined threshold value of standard deviation. The resultant

point cloud can be rasterized for subsequent analysis. Another useful tool that can

be used to extract ground points is the use of a cloth simulation filter (CSF) (96).

This method imagines a piece of cloth over the point cloud which is turned upside

down. In other words, an imaginary cloth is assumed over an inverted surface which

can classify points as ground and non-ground points as shown in Figure 1.5.
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Figure 1.5: Side- and top-view of the TLS point cloud data obtained in a bottomland
forested wetland site. [A] Raw TLS data is filtered and exported, [B] Point cloud
clipped to 1 m, [C] 1 cm Surface Model.

Here are a few guidelines for conducting the terrestrial LiDAR based survey: 1)

conducting reconnaissance of the study site before carrying out actual surveying. This

will assist in deciding the minimum distance between the scan positions. The location

of GCPs can also be decided during this time. 2) Establishing GCPs or fixed spherical

targets and measuring them with RTK GPS. 3) The scan positions can be decided

based on transects where each transect is separated by 10m and each scan position

is separated by 10m in a forested landscape. In other landscapes this distance can

be increased depending on occlusions. In a dense forest with understory and shrubs

the scanner can be set at a high point cloud density of 20-40 million points. This will

assist in automated registration of multiple overlapping scans. 4) The control targets

or tie points should be evenly distributed with a minimum 3-5 spherical targets that

should be common in adjacent scans. In forested ecosystems, the spherical targets

should be increased from 5 to 8. 5) Before processing the point cloud, the minimum

distance between the points can be kept at 1 cm to reduce the point density.
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1.5 Assessing microtopography

Assessment of microtopography typically consists of two steps: delineation of mi-

crotopographic features and evaluation of delineated microtopographic features. In

this section, we focus our discussion on these two steps for the assessment of micro-

topography.

1.5.1 Delineation of microtopographic features

Delineation of microtopographic features mainly includes three approaches: 1)

threshold-based classification, 2) mechanistically based delineation, and 3) machine

learning-based delineation.

1.5.1.1 Threshold-based classification of microtopographic features

The common way of extracting microtopographic information from field-based sur-

veys is to use transects or plots in the study site and classify microtopographic fea-

tures, such as hummocks and hollows based on the field experience or sparse mea-

surements. With the availability of close-range remote sensing techniques, the micro-

topographic features can be delineated over a larger area based on different criteria.

Graham et al. (3) identified three ways to characterize microtopography: 1) based

on drivers associated with an ecological function such as using water table depth, 2)

elevation distribution of the study plot and classifying hummocks and hollows based

on a threshold, and 3) classifying microtopography based on an index, specifically

hollow index, which is calculated using elevation, concavity, and slope.

Multiple researchers used elevation-based thresholds to categorize hollows and hum-

mocks from a DEM generated from sUAS or LiDAR data. The threshold elevation is

determined based on field characteristics, expert knowledge, and assumptions. Kalac-

ska et al. (97) conducted a study on three tidal marshes in Canada using sUAS and

aerial LiDAR and found the accuracy is comparable to RTK GPS with R2 values

of 0.99 and 0.83 for the two methods, respectively. In their study, the authors used
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expert knowledge to define the height range of 5-31 cm above the median elevation to

define hummocks while >5cm below the median height range were characterized as

hollows. Knight et al. (40) analyzed microtopography along a transect in mangroves

in Queensland, Australia. They used a 1m resolution DEM from LiDAR data and

generated contours at an interval of 0.05m. Then the microtopography was analyzed

along a transect where hummocks were identified as positive deviations that are >0.05

m above the local mean elevation and hollows as deviations that are <0.05 m below

the mean elevation.

The categorization of microtopographic features is also guided by the aim of the

study. Kelly et al. (81) differentiated hummocks and hollows based on vegetation

types. The sites with Sphagnum sp. were classified as hollows while vascular vegeta-

tion sites were classified as hummocks. Griffin et al. (98) generated a LiDAR-derived

DEM to analyze the impact of microtopography on mosquito habitats. Brubaker

et al. (38) used a pit-filled DEM and then subtracted it from the original LiDAR-

derived DEM to identify pit and mound topography within an oak/hickory forest in

Pennsylvania, USA.

In addition to elevation, the slope has also been used extensively to categorize

microtopographic features. Cici et al. (52) generated a DTM derived from LiDAR-

based data and calculated slope within a 10m radius of each tree and then analyzed

the impact of slope on tree height in a tropical forest in Sumatra. Moreover, the

information on the intensity of LiDAR can also be used for the validation of classified

features. Korpela et al. (99) used aerial LiDAR in a boreal bog in southern Finland

to assess microtopography and analyzed the intensity of echoes that was the highest

in hummocks and lowest in water and hollows. That study employed a grid size of

20 cm x 20 cm, hummock index, and depression index to measure the elevation with

respect to local water level along with the echo intensity to classify microtopography.

A coefficient of +1 or -1 was assigned based on high or low elevation respectively.
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A value of +8 indicated a perfect peak while -8 corresponded to a depression. The

LiDAR returns were analyzed concurrently with aerial imagery in red, green, and blue

bands to classify different microtopographic features. The LiDAR/photogrammetry

combination worked well in this open bog region as there was nominal occlusion

by trees. This also shows that shortwave infrared LiDAR intensity varied with the

microtopographic features and is a good indicator/predictor of the spatial distribution

of hummocks, hollows, and lawns.

Anderson et al. (100) collected their data over a transect of 10 m at seven different

sites, and the vegetation pattern was analyzed in the quadrats of 20 cm x 20 cm.

RTK GPS was used to measure elevation along the transect at 50 cm intervals. The

hollows and hummocks were identified based on the water level readings and RTK

GPS readings. Baltensweiler et al. (66) derived a high-resolution DEM at different

scales of 0.2 m, 0.5 m, 1.2 m, and 4 m to create a soil pH model and found 0.5 m

model predicted the soil pH most accurately but (66) used a priori information to

stratify the study area in depression and ridges. Zhang et al. (101) classified their

coastal forested study region into tall and short vegetation and bare ground object.

1.5.1.2 Mechanistically-based delineation of microtopographic features

The DEM developed from close-range remote sensing techniques is highly precise

and captures microtopographic features which are natural depressions and not spu-

rious depressions. While delineating depressions such natural depressions should be

preserved over artifacts. To identify natural depressions (102) proposed to combine

the âDEM-unchangedâ (original DEM) strategy and the ”DEM-revising” (filled DEM)

strategy based on the study area and data characteristics. Recently (103) proposed a

level-set method that is based on graph theory to delineate nested depressions and a

priority-flood algorithm (104) to identify depressions. In a low-relief complex topogra-

phy, these methods can be useful as they can delineate nested depressions (Figure 1.6)

and can provide insights into the hydrological connectivity of depressions.
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Figure 1.6: Depression delineation using priority-flood algorithm and level-set method
based on aerial LiDAR-derived DEM of 1m2 resolution in a low relief tidal wetland
at Huger Creek area in Santee Experimental Forest South Carolina. The depressions
are delineated based on the size of a minimum 1m2 area and depth of 0.50 m.

Another method of delineating hollows is utilizing a localized contour tree approach

to identify individual hollows. Wu and Lane (105; 106) delineated wetland hollows

in the prairie pothole region of North America and represented them in the form of

contours. A power function curve fitted to the storage area-to-volume relationship

provided an area-to-volume model for estimating the storage volume of wetland hol-

lows in the watershed. Most of the hollows in the DEM represented areas that are

either inundated continuously or inundated seasonally. Chu et al. (107) proposed

a puddle-to-puddle (P2P) modeling framework based on identifying depressions and

their hierarchical relationships. The method simulates the surface inundation by fill-

ing, spilling, and merging the cells based on the hydrological connectivity and finally

delineating the depressions. To delineate hummocks (26) used the watershed delin-

eation approach by inverting the elevation values in the surface model and finding

edges of the watershed that actually represents hummock edges. The delineated mi-

crotopographic features then can be analyzed for physical characteristics such as area,
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volume, and depth/height.

1.5.1.3 Machine learning-based delineation of microtopographic features

A variety of machine learning algorithms have been used for image processing op-

erations. This machine-learning approach can be applied to the extraction of micro-

topographic features. Moreover, microtopographic field data can be combined with

high-resolution DEM/DSM derived from high-resolution satellite images or LiDAR

data. Falco et al. (49) investigated the covariability of field soil resistivity tomography

data, vegetation data, and terrain attributes utilizing aerial LiDAR-based DEM and

Worldview-2 high-resolution RGB satellite images. Abolt et al. (108) and Witharana

et al. (109) used convolution neural networks (CNN), a deep learning approach (110),

to extract polygons of various sizes and geometry from aerial LiDAR-based DEM of

tundra landscape. Another popular machine learning technique is Random Forest

which is based on the use of decision trees and ensemble learning for classification

and regression. Multiple researchers have shown that microtopography impacts the

location and extent of the plant communities (51; 62). Huang et al. (111) mapped

thermokarst landforms automatically using the DeepLab algorithm (based on CNN)

using high-resolution SfM-based images over a large area of 6 km 2. In addition

to delineation, machine learning approaches are also used for sensitivity analysis of

microtopography classification (26).

Threshold based classification only considers the elevation based threshold which

makes it easy to categorize microtopographic features. The threshold can be deter-

mined based on field observation and elevation data/ DEM which can provide more

accurate delineation of the features. Mechanistically-based algorithms not only con-

siders elevation but also slope, flow path and flow direction of each grid cell. The

accuracy of this delineation is highly dependent on the DEM grid size and accu-

racy as the terrain attributes are derived from DEM. These results should further

be validated by sUAS orthomosaics or high resolution satellite images or field data.
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Machine learning is best for automated delineation of microtopographic features over

a large area. Other than terrain attributes, we can also include other characteristics

of terrain such as vegetation type to delineate the microtopographic features. Al-

though preparing a training data set can be time consuming , it can provide useful

information over a watershed scale once the machine learning algorithms are trained.

1.5.2 Evaluation of microtopographic features

The physical characteristics of microtopographic features such as surface area, vol-

ume, and depth of hollows, also referred to as morphometric data can be derived

from LiDAR data and calculated using several methods. Stovall et al. (26) quanti-

fied fine-scale microtopography and delineated hummocks estimating the height, area,

volume, and perimeter of individual hummock features. Both Stovall et al. (26) and

Lovitt et al. (80) used a moving window average as an elevation threshold to classify

microtopography. Brooks and Hayashi (112) used morphometric data and maximum

depth (dmax) to measure vernal pools’ maximum volume (Vmax), maximum area

(Amax), and a p-coefficient to represent the shape of the basin as shown in equation

(1).

Vmax = (Amaxdmax)/(1 + 2/p) (1.1)

where p <1 represents a convex basin and p >1 corresponds to a concave basin.

A similar approach was used by Gamble and Mitsch (113) for the calculation of

wetland area (Amax), depth (dmax), and volume (Vmax) for depressional wetlands

as shown in equation (2).

Vmax = (0.3219Amaxdmax) (1.2)

The morphometric data for Figure 1.6 is shown in Figure 1.7
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Figure 1.7: The graph shows the morphometric data of the delineated hollows shown
in Figure 1.6 - volume in cubic meters and depth in meters for each of the delineated
hollows.

Once microtopographic features are classified and delineated, these features (e.g.,

hollows or hummocks) are spatial categorical variables that can be further analyzed

with landscape metrics (63). Landscape metrics include, but are not limited to, con-

nectivity, microtopographic features’ shape, size, area, perimeter, diversity, and frag-

mentation (microtopographic features are represented as landscape patches-spatial

categorical variables). These metrics can provide important insights into the micro-

topography studies which can assist researchers to assess its impact on ecological,

hydrological, and biogeochemical processes in terms of the composition and configu-

ration of microtopographic patches. Here we show an example of a low-relief wetland

area which is categorized based on elevation and water level and analyzed the land-

scape metrics for the microtopographic features. Figure 1.8 shows the tidal wetland

landscape classified into microtopographic features hollows, hollow fringe, and hum-

mocks using an elevation threshold approach. The data was collected using terrestrial

LiDAR. This method clearly delineated the tidal channel present in the study area.
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This channel becomes inundated during high tides but remains exposed to air during

the low tides. The corresponding landscape metrics are shown in Table 1.3.

There are more than 50 landscape metrics that have been reported so far in the lit-

erature (114). These metrics are designed at patch (e.g., individual hollow patches),

class (e.g., hollow or non-hollow), or landscape levels and can be used to quantify

spatial features of microtopographic patches at different levels. For instance, the

Aggregation index describes how different microtopographic features are spatially as-

sociated with one another. The clumpiness index indicates how microtopographic

features are aggregated or dispersed. The higher value indicates a more clumped dis-

tribution of features while lower values show dispersed distribution. The contiguity

index provides information on how microtopographic features are connected. The

tidal channel at the study site was characterized by a higher contiguity index com-

pared to hollow fringe and hummocks. Perimeter to area ratio indicates the shape

complexity of the features and sensitivity to the feature size. The above indices show

that the microtopographic features are more aggregated and clumped in the tidal

bottomland forest (Figure 1.8 and Table 1.3).
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Figure 1.8: Landscape categorization based on elevation threshold: microtopographic
features - hollows (< 0.65 m), hollows fringe (0.65 to 0.80 m) and hummocks (> 0.80
m) based on terrestrial LiDAR DEM with grid cell size 0.25 m X 0.25m in a low relief
tidal wetland at Huger Creek area in Santee Experimental Forest, South Carolina.

Table 1.3: Landscape metrics (mean values) calculated for a tidal bottomland forest
(Figure 1.8) (114).

Landscape metrics Hollows Fringe (m) Hummocks

Aggregation Index 0.93 0.75 0.95

Clumpiness Index 0.91 0.70 0.90

Contiguity Index 0.42 0.26 0.22

Mean perimeter area ratio 8.62 11.37 12.01

Percentage of landscape 25.27 17.90 56.53

Mean shape index 1.25 0.97 0.65

1.5.3 Accuracy Assessment

The classification of microtopographic features can be validated by producer ac-

curacy (PU), user accuracy (UA), and overall accuracy (OA), which have been well
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studied in the literature of remote sensing (115). The computation of kappa estimates

is another popular approach to validate the results. The overall accuracy is usually

expressed in percent by taking a summation of correctly classified values and dividing

by the total number of values. Producer accuracy, as the name suggests is from the

viewpoint of a map producer, it is the calculated number of correctly classified values

in a class divided by the total number of values in that class (column total). User

accuracy is calculated as the total number of correct classifications for a particular

class divided by the row total. The Kappa coefficient ranges from -1 to +1 where a

negative value indicates classification is significantly worse than random (by chance)

and a value close to 1 shows that classification is significantly better than random.

When conducting a study at multiple DEM resolutions it is worth reporting results

of multiple accuracy metrics (instead of single metric) for performed classifications as

each metric has its own power (see (116))
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1.6 Discussion

Small elevation changes in the natural ecosystems can have a significant effect on

ecosystem processes such as biogeochemical reactions. The spatial heterogeneity of

different processes requires analysis of microtopography, spatially and temporally at

an appropriate scale. For instance, we often observe a wide range of GHG emissions

measured within a type of ecosystem, for example, coastal wetlands (117). One of the

possible reasons for these variations is a strong association of GHG emissions with

wetland microtopography, which is not incorporated in most biogeochemical models.

As suggested by Shi et al. (118), modification of the existing models by incorporating

microtopography to assess C exchange results in improved prediction of C emissions.

To represent the microtopography of any study region requires the collection of a

huge amount of data which enables researchers to delineate microtopographic features

of interest such as hummocks, mounds, and hollows or pits for further analysis. The

collection of data can be challenging particularly in forested areas due to their vege-

tation coverage that is often dense. The vegetation obscures the ground and therefore

the data collection process should be well planned. It may require multiple flights or

scans to cover a relatively small study area. sUAS and LiDAR-based technology is

most suitable in forested wetlands for microtopographic studies while these technolo-

gies along with traditional aerial LiDAR and high-resolution satellite images can also

be used in areas with limited vegetative cover.

In forested or vegetated regions LiDAR-based data acquisition is most suitable.

For microtopographic studies, data should be collected when vegetation is senesced

to ensure minimum occlusion. LiDAR scanner should be set at high point cloud

density (approximately 10 to 20 million pulses per scan) and data acquisition should

be carried out with multiple overlaps with scan distance not more than 15m. With

aerial LiDAR data the point density is impacted by the flight altitude and speed of

the aircraft. LiDAR based on sUAS are most suitable for forested regions as the flight
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operation can be conducted at a lower altitude and speed can be controlled as low as

5 m/s.

As of now microtopography is only analyzed or studied as a static spatial phe-

nomenon. It is our understanding that microtopographic features should be analyzed

temporally as the spatial heterogeneity varies not only with location but also along the

temporal dimension. The ecological, hydrological, or biogeochemical processes exert

an impact on the microtopography by erosion or deposition. The temporal element

can highlight the impact of such processes on microtopography and vice versa. This

can provide useful insights into wetland and forest management. For example, it will

also be interesting to see the spatiotemporal impact of saltwater intrusion on micro-

topography. Our current use of microtopographic representation is mainly limited to

the creation of a single static DEM. It has an implicit assumption that microtopogra-

phy is static and not changing but we need to ask if is that true. This becomes a more

relevant question when we say microtopography is not only influenced by elevation

but also by other terrain attributes. We also need to investigate how to present and

integrate the temporal information of terrain attributes into the microtopographic

models if we are to adequately investigate dynamics in microtopography.

Another issue involved with the use of high-resolution microtopographic data is

the registration of scans or image alignment in forested environments. The absence

of artificial objects makes it challenging to stitch together a large number of scans or

images. More spherical targets and GCPs are needed in the case of terrestrial LiDAR

scans and sUAS image data collection to ensure successful registration/alignment.

Although data can be collected most times of the year in open wetlands, limited time

is available for the data collection in forested or vegetated areas and data collection

must be planned during the dormant season to reduce the occlusion from vegetation.

Direct georeferencing methods can be useful in mapping as they do not require estab-

lishing GCPs. Padro et al. (119) compared different direct georeferencing methods
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and an indirect georeferencing method and found onboard raw GNSS yielded a po-

sitional accuracy in excess of one meter with a vertical accuracy in the range of 4m

or higher. However, the post-processed kinematic (PPK) single-frequency carrier-

phase without in situ ground support and with ground support were of decimetric

and centimetric accuracies. The results were improved further with GCP yielding

centimetric accuracy. This shows that other than the GPS method of georeferencing,

PPK based direct georeferencing method can be utilized for forest and wetland mi-

crotopographic studies. In this method, the nearest pseudo reference station (PRS)

receives differential corrections which further corrects the onboard GNSS position.

1.6.1 Microtopography with Data Fusion

Data fusion of different data outputs can provide more insights into natural ecosys-

tems as it combines the information from several sensor sources and can provide a

more holistic view of a study system. The methodology of data fusion approaches

to delineate high-resolution topography can provide direction to adopt ideal ways to

represent surface microtopography. Data fusion is not restricted to merging infor-

mation from different platforms and sensors but also different spatial and temporal

scale matching. A reference frame can be defined to which data from different sources

and time periods can be transformed. In the future, we propose remote sensing-based

microtopography studies which consist of multi-source data integration in the natural

ecosystem modeling and an explicit examination of the impact of scale. The collection

of field data with explicit topographic information can be used for calibration and

validation of the datasets. In addition, data fusion techniques which require com-

bining two or more sensor output data can be useful in analyzing microtopography.

There are studies that utilized data fusion techniques which include point cloud data

of terrestrial LiDAR and sonar data to map the geomorphology and topography of

the hydraulic structures to the study of scours (73). These studies can be extended

to the field of microtopography mapping to generate a more holistic view of wetland



48

and forest systems.

High-resolution satellite data is a relatively new data source for microtopographic

studies. Beginning with study areas without canopy cover and then progressing to-

wards more forested study regions. The high-resolution satellite images can provide

useful tools to assess GHG emissions, or explore biogeochemistry in relation to mi-

crotopography in no/sparsely vegetated regions, although this needs more research.

Satellite data used in combination with sUAS or LiDAR data can provide useful

information with respect to the impact of microtopography on ecosystem parame-

ters. There are multiple low-orbiting small satellites that can capture images at high

spatial, temporal, and spectral resolutions. The list of satellites that provide sub-

meter resolution panchromatic images today are 1) WorldView-1 (50cm), WorldView-

2 (50cm), WorldView-3 (30cm), GeoEye (50cm), Pleiades-1A (50 cm), Pleiades-1B

(50cm), Pleiades-Neo (30cm), SuperView-1 (50cm), KOMPSAT-3 (70cm), IKONOS

(80cm), SkySat (72 cm to 86 cm panchromatic and 1.00m multispectral). Also com-

bining these high-resolution satellite images can provide a context to a study region

and its importance.

These high-resolution images can assist in precision agriculture applications, forest

canopy estimation, and urban planning. These data sources are currently not being

used for assessing microtopography in forested regions, likely because the ground is

obscured by the overstory and understory vegetation. The synthetic aperture radar

(SAR) which uses an active data collection process means that its sensor produces its

own energy and can provide high spatial resolution data compared to other satellite

data. As of now, SAR is most suitable for topographic mapping due to its high

penetration but its applicability to study microtopography in natural ecosystems is

still a matter of research. In the last five years, researchers are actively working on

developing algorithms to create high-resolution DEM from SAR data. For example,

(120) proposed dual frequency and dual baseline (DFDB) configuration in airborne
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SAR interferometry (InSAR) and a baseline calibration algorithm to create a high-

resolution DEM in tidal flats. In their proof of concept, the authors claimed a high

vertical accuracy in the sub-meter range. Another study, (121) developed a model

for measuring topographic changes in tidal flats and relied on minimizing the errors

due to height and interferometric phase deviation. In the InSAR methodology, the

quality of the interferogram is based on master and slave images which means high

coherence is important to ensure the accuracy in DEM. The study area examined by

both studies is without the canopy cover. Nonetheless, satellite data can be combined

with close-range remote sensing technologies to provide greater insights over a large

aerial extent.

1.6.2 Utilizing advanced techniques

New LiDAR technologies such as Geiger mode, single photon, and FLASH splits the

single laser pulse into multiple pulses. This results in a greater number of returns and

therefore a denser point cloud with more information. Such systems can penetrate

through a dense forest canopy and detect the microtopography in a forested area

although the laser penetration or the number of returns from the ground decreases

with increasing tree canopy or ground vegetation cover. These LiDAR systems are

more sensitive than earlier LiDAR scanners and are able to detect weak return signals.

The lighter weight of these technologies also makes them ideal for flying at lower

altitudes. In addition, aerial LiDAR data are regularly spaced and not very prone to

shadowing effects in contrast to aerial photogrammetric techniques.

Moreover, the availability of LiDAR sensors in different wavelengths enables us to

choose the sensor based on the research question. Researchers (122; 123; 124) have

conducted studies to identify wavelength appropriate for vegetation/species classifica-

tion. The typical wavelengths associated with aerial topographic LiDAR are 1064nm,

1550nm, and 905nm, and bathymetric LiDAR are green-532nm and infrared (1064

or 1550 nm) (125). Bathymetric LiDAR are composed of green and infrared beams.
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The green beam can propagate in water and assist us in finding useful information

on bathymetry while infrared beams are reflected by the water providing the water

surface elevation.

1.6.3 Microtopography with bathymetry

The technologies used for bathymetric surveys include echosounders, total sta-

tion/RTK GPS, unmanned surface vessels (USV), UAS, airborne LiDAR Bathymetry

(ALB), and Green-wavelength terrestrial laser scanning (GWTLS). Satellite-derived

bathymetric data is of medium resolution and may not be appropriate for the micro-

topographic studies often operating at small spatial scales. The inundated portion

of a wetland or lacustrine margins can also be mapped using bathymetric LiDAR or

SfM surveys. For example, coastal zone mapping imaging LiDAR (CZMIL) can not

only map the above water topography but the green laser can also penetrate water

to some depth and produce high-resolution bathymetric data. Shallow water where

boats can not be launched or the streams/rivers or regions which are inaccessible

to boats with traditional sonar equipment can be surveyed using RTK GPS or to-

tal station. Technologies such as CZMIL and GWTLS have been used for nearshore

bathymetry under clear atmospheric and water conditions where the water depth

is less than 1m providing high-resolution microtopography (126). The laser-based

bathymetric measurements are corrected by applying refraction correction which re-

quires specification of water surface level and refractive index. The refractive index is

1.335 for green lasers passing from air to clear water. The submerged point clouds are

corrected for refraction while the ground points maintain their original coordinates.

Other than LiDAR surveys, echosounders are the conventional surveying technique

used for high-resolution microtopography. It is important to control the speed of

the surveying vessel to ensure high point density. The echosounders are generally

equipped with a GPS system that provides the coordinates of the measuring point.

Unlike LiDAR systems, the echosounders are not restricted by the depth of the water
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and can survey rivers and streams. The microtopography of deeper river bed defor-

mation or in other words, scour or deposition can be measured using echosounders

(127).

1.6.4 Acceleration of Microtopographic Data Analytics

High-resolution microtopographic data collected via close-range remote sensing

techniques are often in large volume i.e., big data (128). The use of these high-

resolution data comes with its own challenges when we manage, process, analyze and

visualize them (e.g., registration and aligning point cloud data, performing different

statistical analyses on point cloud data, and processing high-resolution images and

mosaics). The processing and analytics of large-volume microtopographic data are

often computationally demanding, which can be overcome by using high-performance

and parallel computing approaches to leverage cyberinfrastructure-enabled computing

resources (129; 130).

The processing and analysis of large microtopographic data can be split into smaller

computing tasks that can be allocated to multiple computing elements for accelera-

tion. For example, Barnes et al.(131) developed a parallel priority-flood algorithm for

depression filling of large DEM data. A large DEM data was decomposed into individ-

ual tiles on which depression-filling operations were applied. Barnes (131) tested the

parallel depression filling algorithm on a series of DEM datasets and significant speed

up was obtained (only 287 minutes were needed when using 48 CPUs for parallel pro-

cessing of the SRTM DEM dataset, compared to 223 hours for sequential time using 1

CPU). Zheng et al. (130) implemented a parallel spatial interpolation approach that

relies on 2D spatial domain decomposition for the processing of DEM from LiDAR

data. As a result, the overall computing time was reduced from over 17 hours down

to within 1 hour by using 18 CPUs. High-performance and parallel computing as a

key capability of advanced cyberinfrastructure have a variety of applications, and it

has great potential in accelerating microtopographic data processing and analytics.
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1.7 Conclusion

In this article we provide a systematic data-driven framework to guide the study

of microtopography using close-range remote sensing. Our framework focuses on

four components: terrain attributes, spatial resolution, data acquisition, and assess-

ment of microtopography. Terrain attributes based on elevation (e.g., slope, aspect,

curvature, TWI, TPI, flow path, and flow accumulation) dominate the choice of quan-

titative measures for microtopography. Further, landscape metrics can also be used

for quantification once microtopography is classified or delineated as, for example,

hummocks or hollows (spatial categorical variable). With respect to spatial resolu-

tion, a high-resolution DEM (often at the sub-meter level) is needed to adequately

account for microtopographic characteristics as microtopography-driven phenomena

often operate at a small spatial scale. On one hand, we need to make sure the spatial

resolution to be used is finer than the operational scale of microtopography. On the

other hand, the use of very fine spatial resolutions for microtopographic data will lead

to a big data challenge due to the high volume of data to be handled.

Alternative close-range remote sensing techniques (sUAS, aerial LiDAR, and ter-

restrial LiDAR) have their own advantages and limitations in terms of time, labor,

and accuracy. It is important to take into account these aspects together with terrain

attributes and spatial resolutions for efficacious microtopographic data acquisition.

Remote sensing techniques especially through ALS, TLS, and sUAS can produce

DEMs of high resolution and can provide fine-scale measurements of microtopography

in natural ecosystems. The combination of one or more techniques of aerial LiDAR,

terrestrial LiDAR, sUAS, and high-resolution satellite images is the way forward to

characterize the microtopography in complex environments including forests, coastal

wetlands, and forested wetlands. Combining remote sensing techniques with field

measurements which include but are not limited to water level data, soil moisture,

soil pH, trace gas emissions, and RTK GPS data for location accuracy can provide a
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robust tool for predicting and assessing the ecosystem functions influenced by the mi-

crotopography. There is also a need for increasing the availability of microtopographic

data through increased sharing of datasets on platforms like OpenTopography and

accelerating microtopographic data processing and analytics via cyberinfrastructure-

enabled high-performance computing capabilities. New field-scale measurements of

biogeochemical and hydrologic processes that are explicitly linked to topographic

metadata are required to further realize the potential of these new technologies and

algorithms. The higher 3D point cloud density generated from close range remote

sensing leads to greater accuracy of DEM with lower RMSE (e.g., less than 0.5 m).

Our review makes it clear that heterogeneity in topography of the natural ecosystem

influences the biogeochemical and hydrologic processes, which should be included

in the ecosystem models when microtopography plays an inevitable role. We also

emphasize the need to model microtopographic features better to investigate their

impact on ecosystem processes by including field based observations into the models

(i.e., model calibration and validation).

The assessment of microtopography typically includes the delineation and evalua-

tion of microtopographic features. There are three delineation approaches including

threshold-, mechanistically-, and machine learning-based. While the first two ap-

proaches have been extensively used in the literature of microtopographic studies,

machine learning and deep learning algorithms hold great potential in the automated

delineation of microtopographic features and application in large study regions. More

machine learning-based studies are highly expected in the near foreseeable future

as deep learning-driven artificial intelligence has been increasingly driving the data-

intensive studies such as microtopographic data analytics in this study.

Overall the framework discussed in this article may improve our understanding of

microtopography by using close-range remote sensing as a quantitative approach. In

future studies, we will focus on specific applications or case studies of microtopography-
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driven geospatial phenomena, which will provide more detailed exploration and com-

parison of close-range remote sensing techniques with respect to their capabilities for

empowering microtopography studies. Further, we will explore the power of machine

learning-based approaches in the analytics of sophisticated microtopographic data

(e.g., automated delineation and recognition of microtopographic features) as well as

the utility of high-performance computing in accelerating these analytics that is often

computationally considerable.
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CHAPTER 2: Microtopography of low-relief coastal forested wetlands using LiDAR

2.1 Introduction

Microtopography, which is the small-scale variation of less than a meter in elevation,

is common to low-relief coastal forested wetlands but rarely quantified (1). The

spatial heterogeneity of the microtopographic features influences ecological functions

such as carbon cycling (2), species distribution (3), hydrological functions (4), and soil

processes (5). The importance of microtopography can be understood by the fact that

microtopography is often added to the created wetlands to increase habitat diversity

(6) and enhance biogeochemical cycling (7). Increasing urbanization and climate

change have encouraged scientists to improve their understanding of microtopography

and its impact on ecological functions in coastal wetland systems, particularly as

related to carbon budgets (8). Sallenger et al. (9) showed that the rate of sea level rise

is not spatially homogeneous with the increasing rate on the North American Atlantic

coast. This makes freshwater tidal wetlands on the east coast especially vulnerable

to seawater intrusion and an increase in hydroperiodicity. To understand the wetland

structure and ecological functions in CFW systems it is essential to be able to quantify

microtopography and understand the spatial pattern of microtopographic features

which impacts the hydrological processes and biogeochemical cycling.

The microtopography of CFW is characterized by hollows and hummocks. Hollows

are the low points that can become inundated during high tides and during periods

of precipitation while hummocks are high points often exposed to air during regu-

lar tidal cycles. In low-relief coastal wetlands, the hummocks and hollows are often

differentiated by only a few centimeters which require either labor-intensive manual

surveying with a total station or Real Time Kinematic (RTK) Global Positioning Sys-
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tem (GPS) systems or close-range remote sensing techniques to capture these small

variations. Ground surveying is often based on establishing representative transects

but it is questionable whether the transect-based approach can adequately represent

the microtopographic features in a low-relief wetland, particularly over larger areas.

In contrast, close-range remote sensing techniques such as small unmanned aerial

systems (sUAS) and LiDAR can map the wetlands effectively and quantify microto-

pographic features precisely (10; 11; 12)

The mapping of microtopographic features depends on the optimal resolution of

the digital elevation model (DEM). If a DEM is too coarse then the small microto-

pographic features may be missed due to the generalization of the terrain. However,

a very high-resolution DEM may be more appropriate to delineate microtopographic

features of sub-meter size. It is all the more significant when it comes to low-relief tidal

forests topography where surface water and groundwater flow directions are largely

determined by microtopographic features. The optimal DEM resolution, therefore, is

required to achieve microtopographic accuracy and efficient data processing.

Close-range remote sensing technologies allow the generation of dense point cloud

densities of three-dimensional topography and sub-meter resolution DEMs with high

horizontal and vertical accuracy over a large area. However, a high-resolution DEM

brings its own challenges in terms of data processing, data analysis, and data storage.

Therefore, an optimal DEM resolution for modeling microtopography in complex

natural ecosystems is needed to delineate microtopographic features efficiently. A

few studies have characterized peatland microtopography using a terrestrial LiDAR

(10; 12) and sUAS (13) by creating a high-resolution DEM of less than 1 m. Stovall et

al. (12) used the elevation and slope to delineate hummocks by inverting the DEM.

Moore et al. (13) used structure from motion (SfM) photogrammetry to generate

their DEM and Gaussian mixed models to characterize hollows and hummocks while

Graham et al. (10) classified microtopography using three methods: 1) using water
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table depth data, 2) relative elevation, and 3) using elevation, concavity, and slope.

The characterization of microtopography is important to understand the hydrolog-

ical, biogeochemical, and ecological functions of wetlands. The accurate characteriza-

tion of microtopography in low-relief tidally influenced wetlands is needed to better

estimate the impact of tidal fluctuations on carbon dynamics. Recently multiple

studies ((14; 15; 16; 17) have performed comparative analyses of aerial and terrestrial

LiDAR data and found mixed results. However, only a few studies to date compared

aerial and terrestrial LiDAR focussing on microtopography-based studies. Therefore

the objectives of this study are to 1) characterize and assess the microtopography of

low-relief tidal forested wetlands using aerial and terrestrial LiDAR, and 2) to identify

an optimal elevation threshold for widely available aerial LiDAR data to characterize

microtopography in CFWs. For the first objective we focussed on (i) using aerial

and terrestrial LiDAR data for the same study site and assessed the accuracy of the

respective DEMs with respect to RTK GPS measurements, and (ii) characterized

microtopography using the priority flood algorithm (18; 19). To achieve our second

objective we proposed a new method of combining mean water level elevation and

an optimum percentile elevation threshold to characterize microtopography. To ac-

complish these objectives we used terrestrial and aerial LiDAR point cloud data from

tidal forested wetlands to derive high-resolution DEMs of the study site. We also

provided a new user-friendly approach for terrestrial LiDAR microtopographic data

acquisition and processing which will encourage its use in forested ecosystem studies.
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2.2 Study Area

Our study site is a tidal freshwater forested wetland of Huger Creek watershed

located in Santee Experimental Forest, within the Francis Marion National Forest,

in South Carolina (Figures 2.1 and 2.2). Huger Creek is a fourth-order stream

formed by the confluence of Nicholson Creek and Turkey Creek which later joins

the east branch of Cooper River and eventually discharges into the Charleston har-

bor estuary. The study site consists of bottomland hardwood mixed deciduous

forests with the study site experiencing an average 1.5 m daily tidal fluctuation

(20). The data acquisition using terrestrial LiDAR was carried out in the second

week of February 2022 during the leaf-off season to minimize occlusion. Photo Sci-

ence Inc. acquired and processed the aerial LiDAR data in February 2007 with

an average of 1-meter point spacing or better. This data can be accessed through

http://cybergis.charlotte.edu/santee/views/data-landresource/lidar-data-table.php
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Figure 2.1: Tidal freshwater forested low-relief wetland located at Huger Creek in
Santee Experimental Forest, SC USA.
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Figure 2.2: Shaded relief of the study site located at tidal freshwater Huger Creek
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2.3 Method

We first evaluated how much of the study area needed to be scanned to compare

the microtopographic variation in aerial and terrestrial LiDAR-based DEMs. We

also selected a transect along the floodplain and measured surface elevation with

RTK GPS. As per our review of previous studies (Table 2.1), we selected a plot

size of 4330 m2. Our study plot is fairly large compared to most of the previous

studies summarized in Table 2.1. We selected a study area based on three factors: (i)

undisturbed location or unmanaged forest location such that the aerial LiDAR (2007

data) and terrestrial LiDAR data (2022 data) can be compared; (ii) the availability of

water-level data for multiple years recorded at 15-minute intervals; and (iii) to cover

an area which includes a series of hollows which become inundated during regular

diurnal tidal cycles and exposed to air during daily low tides.
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2.3.1 Terrestrial LiDAR Acquisition

Terrestrial LiDAR data were collected utilizing a Faro Focus S 350 laser scanner

with a monodyne laser of wavelength 1550 nm. This LiDAR device has a range of 0.6

m to 350 m depending on the terrain/study region with a ranging error of ±1mm and

angular accuracy of 19 arcsec. The instrument is equipped with GPS, compass, height

sensor, and dual-axis compensator. The data was collected in February 2022 during

the leaf-off season when the forest floor is less obscured by overground vegetation

allowing the microtopographical features to be observed. In addition, the hollows

scan was performed during low tide to capture hollows that are open to the air and

not inundated. For data collection, we chose a site in a low-relief tidal forested wetland

with an average ground elevation of 1 m ASL. Previous researchers (23; 27) found that

increasing the scan distance reduces the density of the ground point cloud. To ensure

high ground point densities we maintained 10m of the distance between scan locations

(see Figure 2.3). To scan the study site topography and avoid occlusion, we collected

108 overlapping scans at different locations. The terrestrial LiDAR point cloud was

registered utilizing spherical reference targets used as tie points to stitch the scans

together. To facilitate scan registration, we placed 5 to 8 spheres (targets) of 0.097

m radius in each plot. The scan position was selected so that at least four common

targets were visible in two adjacent scans. Once the two scans were completed, we

relocated two spheres to the next plot location while six remained in their original

location. Faro SCENE software was used to coregister the individual scans utilizing

the spherical targets.
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Figure 2.3: Scan configuration of forested wetlands using terrestrial LiDAR. The
distance between each scan is 10m to ensure overlapping scans.

We also placed five Ground Control Points (GCPs) in four cardinals and one at the

center of the plot for subsequent georeferencing. These GCPs were squared targets of

dimension 0.372 m2 placed directly on the ground. We made sure that these GCPs

were visible in multiple scans. The center of the GCP was surveyed using a Trimble

R12 RTK GPS with a precision of ±5 mm.

2.3.2 Model Development

All LiDAR point clouds were processed with CloudCompare software and visualized

using the R statistical programming language (packages: raster, rgdal, and sp) and

ArcGIS Pro. We used a cloth simulation filter (CSF) (28) to extract ground points

from the terrestrial LiDAR data. This technique simulates a cloth being placed over

an upside-down terrain with the final shape of the cloth being the digital terrain

model (DTM). The algorithm analyzed the cloth nodes and corresponding LiDAR
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ground points to determine the ground points and non-ground points. A grid of 0.05

X 0.05 m was placed over the resultant point cloud and within each cell, the lowest

height value was selected. The detailed framework is as shown in Figure 2.4).

Figure 2.4: Ground points extracted from terrestrial LiDAR data using cloth simu-
lation filters in CloudCompare.

Figure 2.5: Georeferencing the resultant point cloud using 0.61 m X 0.61 m GCP
(visible in inset) measured using RTK GPS

We utilized a new method to georeference the resultant point cloud. The point

cloud was georeferenced using GCPs visible in the point cloud by carefully selecting
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the center point of GCPs (see Figure 2.5. The elevation at the center of the GCP

was measured using RTK GPS. The local coordinate system of the point cloud was

then transformed to the GCPs coordinate system with the resulting georeferencing

returning a Root Mean Square Error (rmse) of 0.0448 m. The georeferenced point

cloud was then subsampled and then exported for further analysis. We selected an

inverse distance weighted (IDW) method to generate a DEM from the aerial LiDAR

and terrestrial LiDAR data. This method is most commonly used to generate DEM

from LiDAR data and is considered to perform well (29). The IDW interpolation

was carried out using ArcGIS Pro with a power of 2 and variable search radius of

12 points and a cell size of 0.25m for the terrestrial LiDAR and 1m for the aerial

LiDAR. The ground points filtered from terrestrial LiDAR and bare ground points

of the aerial LiDAR data were used for the interpolation and for generating the final

DEM.

2.3.3 Water Level Measurements

The riparian water table elevations at the study site were measured using a Druc

pressure transducer logged on a Cambell Scientific datalogger on a 15-minute time-

step from 2019-2022. The highest and lowest water table each day for A) hollow, B)

fringe, and C) hummock is shown in Figure 2.6.
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Figure 2.6: Maximum water level fluctuations from 2019-2022 in hollow, fringe, and
hummock. The line at 0.00 indicates the ground surface level based on terrestrial
LiDAR data while the dashed line is the ground surface level based on aerial LiDAR
data.
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2.3.4 Microtopography Classification

A common practice in the development of a DEM for the purpose of hydrological

modeling is to remove surface depressions. These surface depressions are treated as

spurious or artifacts (30). With close-range remote sensing where a DEM is often

developed at 1 m or higher resolutions, small surface depressions can be delineated

without treating them as artifacts. The most widely used algorithm, the priority flood

algorithm (31) is a depression-filling algorithm. In this method, all the sinks in the

DEM are filled and then the original DEM is subtracted from the filled DEM which

results in a sink DEM. We can then estimate the size, volume, and depth of the sinks.

Based on the data acquisition method and accuracy of the DEM, a threshold can be

set to eliminate artifacts/spurious depressions and retain microtopographic features.

Another method used to delineate microtopography is based on the water level. The

elevation below the mean of the all-yearly median water level is classified as a hollow

and above the elevation as a hummock (10).

MTLS =


Hollow, if ztls ≤ zwtls

Fringe, if ztls > zwtls and ztls ≤ z50tls

Hummock, if ztls > z50tls

where MTLS is characterized microtopography based on TLS-data, ztls is point

elevation and zwtls is the four-year (2019-2022) maximum median water level. z50tls is

the elevation at 50th percentile in terrestrial LiDAR based DEM.

To delineate the microtopography derived from aerial LiDAR-based data, an eleva-

tion threshold was used, where any point above the threshold is classified as hummock

and below were classified as hollow. Explicitly:
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MALS =


Hollow, if zals ≤ z29als

Fringe, if zals > z29als and zals ≤ z50als

Hummock, if zals > z50als

where MALS is characterized microtopography based on aerial LiDAR data, zals

is the point elevation and z29als is the elevation threshold which is found as 29th

percentile. z50als is the elevation at 50th percentile in aerial LiDAR based DEM.
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2.4 Experimental Results

We conducted an experiment to evaluate aerial and terrestrial LiDAR data acquisi-

tion techniques for microtopographic feature delineation, focussing on CFW hollows.

The terrestrial LiDAR data was collected on February 9, 2022, while aerial LiDAR

data was collected on February 24, 2007. The terrestrial LiDAR initial point cloud

consists of 624,343,772 points which were reduced to 287,199,447 points after applying

a noise filter, statistical outlier removal filter, and cloth simulation filter (CSF). This

point cloud was further subsampled such that the minimum space between points be-

came 0.01 m. The remaining 17,943,942 points were georeferenced using four GCPs

with an accuracy of 0.0448 m. The final georeferenced point cloud was then ex-

ported to create a DEM. The aerial LiDAR data was provided by USDA Forest

Service, Santee Experimental Forest in XYZ ASCII format and can be accessed at

http://cybergis.charlotte.edu/santee/views/data-landresource/lidar-data-table.php

2.4.1 Elevation Variation

The bare ground points were utilized to generate a fine-resolution DEM of the study

area. The refined LiDAR-derived DEMs were produced with 0.25 m point density

for terrestrial LiDAR-based data with an elevation range of 0.1 m to 2.6 m and 1 m

point density for the aerial LiDAR-based data with an elevation range of 0.41 m to

2.5 m (See Figure 2.7)

Figure 2.7: A) Terrestrial LiDAR-based DEM with a 0.25 m resolution B) Aerial
LiDAR-based DEM with a 1 m resolution.
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To evaluate the vertical accuracy of DEM, 26 points were measured with Trimble

R-10 RTK GPS, and corresponding aerial LiDAR and terrestrial LiDAR DEM val-

ues were extracted. The RMSE value for aerial LiDAR DEM (1 m resolution) and

terrestrial LiDAR DEM (0.25 m resolution) was 0.222 m and 0.107 m, respectively.

To compare the elevations measured by terrestrial LiDAR and aerial LiDAR data

along the transect of the flood plain a paired t-test was conducted which gave p<0.01

meaning the terrestrial LiDAR-based elevations are significantly different from the

aerial LiDAR-based elevations.

2.4.2 Hollow Delineation

2.4.2.1 Priority Flood Algorithm

In the priority flood algorithm, the edge cells of the DEM are arranged in a priority

queue where greater priority is assigned to lower elevations. To delineate microto-

pographic depressions in the study areas we set two parameters, which include a

minimum depression size, and a minimum depression depth. For terrestrial LiDAR

data, the depressions were delineated with criteria of a depression size of 0.25 m and

a minimum depression depth of 0.1m while for aerial LiDAR DEM, a depression size

of 1m and a depression depth of 0.1m was considered. These parameters were se-

lected based on the fact that microtopographic features can be 1m2 or less and in

low-relief topography, the hollows and hummock elevation only vary by a few 10’s

centimeters. The hollow delineation using the priority flood algorithm resulted in 75

and 13 depressions in terrestrial and aerial LiDAR data, respectively (Figure 2.8).

From our field experience and knowledge, we know a series of hollows at the south end

of the study area. We expected a continuous series of hollows rather than a discrete

delineation.
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Figure 2.8: Depression delineation A) terrestrial LiDAR data of 0.25 m resolution
and B) aerial LiDAR data of 1m resolution. The depressions are shown above the
shaded relief.

The terrestrial LiDAR we used for data acquisition has a wavelength of 1550 nm,

which is near-infrared. It failed to capture an adequate density of the point cloud

in hollows elevation as the wavelength was absorbed rather than reflected at the

study site. Even though terrestrial LiDAR-based data has delineated a significant

number of hollows, the continuity of the tidal channel can not be seen due to a lack

of adequate data and limitations of the instrument used. On the other hand, for the

aerial LiDAR-based data, we suspected that owing to the ”edge effect” all the hollows

were not delineated. The priority flood algorithm delineates depressions based on

the flow network and depression size. The model’s boundary may have impacted the

result of the algorithm as it excludes the network structure and events happening

beyond the boundary. To validate it, we increased the boundary and included an

area within the floodplain which resulted in the successful delineation of a series of

hollows at the study site using the aerial LiDAR data (see Figure 2.9).
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Figure 2.9: Depression delineation using the priority flood algorithm based on aerial
LiDAR data with a minimum sink size of 1 m2 and minimum sink depth of 0.5 m.
The blue line shows the boundary of the study site.

2.4.2.2 Combining water level and elevation threshold

The daily mean maximum water level from 2019-2022 was selected as a threshold

to characterize microtopography. The mean daily maximum water level is calculated

as 0.68 m. The terrestrial LiDAR data shows that the landscape below 0.68 m A.S.L.

is hollow. We found that the 29th percentile of elevation values are characterized as

hollows as they were below 0.68 m. We then used the 29th percentile as the threshold

to delineate depressions in the aerial LiDAR-based data. The corresponding 29th

percentile of elevation in the aerial LiDAR data was found to be 0.87 m. This method

has accurately delineated the series of hollows (see Figure 2.11), which becomes a

temporary channel during high tide and is exposed to air during low tide.
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Figure 2.10: Elevation distribution of LiDAR-based DEM where the vertical line
shows the threshold elevation. A) Elevation distribution of terrestrial LiDAR-based
DEM of 0.25 m resolution. Vertical lines show the threshold of 0.68 m, which is
selected based on the maximum mean water level. B) Elevation distribution of aerial
LiDAR-based DEM of 1.00 m resolution. Vertical lines show the threshold of 0.87 m,
the 29th percentile of the elevation values.

Figure 2.11: Microtopography classification based on the mean daily water level and
elevation threshold. A) Microtopography classification in terrestrial LiDAR-based
DEM with hollow, fringe, and hummock covering an area of 28.7%, 21.7%, and 49.6%
respectively. B) Microtopography classification in aerial LiDAR-based DEM with hol-
low, fringe, and hummock covering an area of 30.6%, 18.4%, and 51.0% respectively.

Our method has successfully refined the delineation of hollows for the study site us-

ing aerial LiDAR data by utilizing an elevation threshold and the record of water level

elevation for the site. We further scaled our results over a larger area which included

a larger area of the Huger Ck.flood plain of 50,000 m2. We utilized the same method-

ology and identified the 29th percentile of the elevation in the region which came out

as 0.903 m. We used this elevation threshold to characterize microtopography over a

larger area as shown in Figure 2.12.
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Figure 2.12: Microtopography delineation over a larger scale using an elevation thresh-
old. Hollows are delineated at the 29th percentile of the elevation distribution covering
39% of the total area.

By combining the historical water level data in conjunction with a subset of more

detailed terrestrial LiDAR data we found more accurate results as compared to ap-

plying the widely used priority flood algorithms and airborne LiDAR alone in the

delineation of CFW hollows. The reason is elevation thresholding is independent of

the flow network. Therefore, there is no edge effect, which results in the delineation

of hollows at the edges, which the former algorithm misses.
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2.5 Discussion

Our study site shows a unimodal elevation distribution similar to that of (Graham

et al., 2020) and resembles a normal distribution. However, our plot size was more

extensive than that examined by (Graham et al., 2020; Moore et al., 2019a). Here

we provide a unique method of combining water level data and elevation threshold

to characterize microtopography in the CFW environment. In this method, the ter-

restrial LiDAR data is used as a reference. The optimal threshold value of elevation

is identified based on the mean daily maximum water level. Then the corresponding

percentile of elevation is used as a threshold for aerial LiDAR data. Our results show

how terrestrial LiDAR data derived from a small area can be combined with water

level data and then scaled to a larger area utilizing coarser resolution aerial LiDAR

data to delineate wetland hollows. Our method utilizes labor-intensive field data such

as terrestrial LiDAR survey data from a relatively small area and coarse-resolution

aerial LiDAR data to accurately characterize wetland microtopography over relatively

large areas.

In addition, multiple overlapping scans ensured the coverage of the study area with

evenly distributed point clouds ensuring the quality of DEM. The CSF filter was also

found to distinguish ground points from non-ground points in the forested wetland

effectively. Our method of placing GCPs on the ground and ensuring they are visible

in some scans also worked well regarding georeferencing. The accuracy that of both

TLS and ALS DEM is high, even in this complex, low-relief forested topography.

For 0.25 m resolution, our accuracy of 0.107 m was comparable with (23) reported

RMSE of 0.12 to 0.14 m for the TLS DEM. We also agree with Baltensweiler et al.

and Stovall et al.(23; 12) that it is necessary to collect multiple overlapping scans to

ensure high accuracy of the resulting DEM.
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2.6 Conclusion

Close-range remote sensing techniques such as terrestrial and aerial LiDAR can

be used to characterize the microtopography of complex low-relief forested wetland

terrains. Even though the accuracy of terrestrial LiDAR-derived DEM is high, the

data collection process can be time-consuming, requiring multiple overlapping scans

to cover the study site. Our results revealed that by combining mean daily maximum

water levels and elevation threshold, we can sufficiently delineate the hollows utiliz-

ing more widely available lower point density aerial LiDAR data. Microtopography

is vital to wetlands’ ecological, biogeochemical, and hydrological functions. To un-

derstand different ecosystem functions, it is important to accurately characterize the

distribution and extent of different microtopographic features. Here we proposed a

method of utilizing high-resolution terrestrial LiDAR and water-level data to identify

a threshold for coarser-resolution aerial LiDAR data. Our method provides a robust

tool to characterize microtopography in low-relief tidal forested wetlands. This re-

duces the need to collect labor-intensive terrestrial LiDAR data over a large area,

which can be problematic over large portions of the year due to vegetation. With our

method, an aerial LiDAR DEM of 1 m resolution is appropriate for microtopographic

mapping in this low-relief CFW environment. In addition, bathymetric LiDAR or

terrestrial LiDAR with a green light is more suitable for mapping the depressions-

dominated landscape which tends to be saturated during high tides or high water

conditions.
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CHAPTER 3: Quantifying the impact of LiDAR-based microtopography and tidal

variations on greenhouse gas dynamics in freshwater coastal forested wetlands

3.1 Introduction

Wetlands are hotspots for biogeochemical transformations and biotic diversity in

most ecosystems. They play a key role in the global carbon cycle with global methane

(CH4) emissions ranging from 127 to 227 Tg CH4 per year. This is the highest global

natural source of CH4 to the atmosphere (1). These significant biogenic sources of

methane emissions contribute up to 40% to 50% of global methane emissions (2). A

study based on 21 wetlands from all over the world by Mitsch et al. (3) estimated

that the world's wetlands sequestered 1280 Tg-C/yr of CO2 from the atmosphere, and

448 Tg-C/yr is emitted as CH4 emissions which indicates the world's wetland serves

as net sinks with total carbon retention of 832 Tg-C/yr. Emphasizing the importance

of coastal environments in the global C cycle (4) estimated a total flux of 94 Tg-C/yr

in their study of sea-to-air fluxes of CO2 in the world's estuaries. Cavallaro et al. (1)

estimate the CO2 outgassing from North American estuarine environments as 10 Tg

C/year.

The tidal freshwater wetlands and marshes in the South Atlantic region have the

highest wetland density of the entire east coast of the USA (5; 6). In South Carolina,

historically tidal freshwater wetlands (TFW) were often diked and converted into rice

fields, although efforts are now being made to convert them to their original conditions

(7). Numerous researchers have pointed out that coastal wetlands face the combined

issues of increasing urbanization and sea level rise (8; 9), leading to wetland loss due

to changing habitat and saltwater intrusion. Saltwater intrusion can significantly

alter wetland biogeochemical cycles. For instance, saltwater intrusion reduces den-
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itrification and changes microbial community composition (10). Even though there

are numerous biogeochemical studies on coastal wetlands, relatively few have exam-

ined tidal freshwater forested wetlands (TFFW), (11). In the US, TFFW is widely

distributed over the southeastern coastal region and generally located in the upper

intertidal reaches of coastal rivers and their tributaries. In TFFWs microtopography

affects the surface inundation, water table depth, soil respiration, vegetation and mi-

crobial community compositions, and other biogeochemical processes. However, very

little information is available on the influence of microtopography and its interaction

with tidal hydrology on C gas fluxes in coastal forested wetlands. Quantification of

C emissions and C sequestration with respect to microtopography will not only en-

hance our knowledge of the soil C pool associated with wetlands but also assist us in

designing management strategies to prevent further wetland degradation and protect

the ecosystem services provided by these coastal wetland systems.

The microtopography of wetlands has been found to significantly influence the

spatial distribution of wetland CH4 emissions, with significantly higher emissions oc-

curring from hollows than hummocks (12; 13; 14). Based on hollows' drying and

wetting cycle, the anaerobic soil volumetric fraction increases or decreases as driven

by reduction-oxidation reactions. Li et al. (15) labeled this as an ”anaerobic bal-

loon” which swells or shrinks over time in response to hydrologic variability. Aerobic

and anaerobic microsites exist simultaneously in close proximity in both wetland and

forest soils. During high tides in coastal freshwater wetlands, the hollows are repeat-

edly inundated and become saturated creating a reducing environment and leading

to anaerobic conditions favoring methylation. During low tides, hollows might only

partially drain leaving hollow soils near saturation throughout the year. Whereas,

saturated conditions in hollow soils in forested wetlands upstream of the tidal influ-

ence are determined by the frequency and magnitude of precipitation events balanced

by evapotranspiration demands. This can result in hollow soils drying out and aerobic
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soil conditions for extended periods, particularly during the growing season. There-

fore, incorporating microtopography and its interaction with site-specific hydrologic

conditions is critical in the accurate modeling of C gas flux measurements. How-

ever, in the low-relief coastal environment, this requires fine-scale measurements of

the study site which becomes challenging when the study site is remote and forested.

Remote sensing techniques combined with representative field measurements can pro-

vide a possible solution to this problem. Several recent studies have reported the use

of remote sensing technologies to map the microtopography of wetlands (16; 17; 18).

These have included Unmanned Aerial Systems (UAS) based on structure from mo-

tion (SfM) photogrammetry, airborne LiDAR, and terrestrial laser scanners (TLS).

This chapter aims to assess the sensitivity of C gas emissions to TFFW micro-

topography represented by Digital Elevation Models (DEMs) with different spatial

resolutions and availability. Specifically, we develop DEMs of a TFFW from aerial

and terrestrial LiDAR measurements and incorporate them into a spatially explicit

and process-based biogeochemical model to quantify soil CH4 and CO2 fluxes in tidal

wetlands. A second objective of the study is to examine the interaction between wet-

land microtopography and tidal hydrology and its importance in GHG production in

coastal wetlands.

This study uses the recently developed biogeochemical model Tidal Freshwater

Wetlands-Denitrification Decomposition (TFW-DNDC) (19) to estimate Greenhouse

Gas (GHG) emissions in a low-relief tidally influenced wetland characterized by a com-

plex microtopography. The TFW-DNDC model is a process-based model developed

in cooperation with researchers at the USDA Center for Forested Wetlands Research,

the U.S. Geological Survey Wetland and Aquatic Research Center, and the School

of Forest Resources and Environmental Science, Michigan Technological University.

The model can simulate GHG dynamics in TFFW ecosystems and is modified from

the mangrove-based version of the DNDC model (mangrove carbon assessment tool
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(MCAT) (20). MCAT-DNDC was developed by integrating Forest-DNDC (21) and

Wetland-DNDC (22) to consider freshwater wetland biogeochemistry, water levels,

vegetation, and soil characteristics. The model can simulate carbon dynamics in the

mangroves in terms of climate change, natural or anthropogenic disturbances, and

sea level rise. In addition to MCAT DNDC capabilities, the revised TFW-DNDC

includes a salinity level feature in the model and can predict the impact of seawater

intrusion. In addition, it also considers daily maximum and minimum water levels in

the model which can more accurately depict the GHG dynamics in tidal regions.

Several researchers have used these DNDC models to simulate carbon sequestration

and trace gas emissions in different types of forests. Shu et al. (23) analyzed soil

GHG fluxes in a temperate forest, Changbai mountain pine forest in China, using an

automatic multi-channel soil CO2, CH4, and N2O flux observation system to measure

GHG fluxes directly. They then used Forest-DNDC to simulate the continuous high-

frequency soil GHG flux data. The study claimed that Forest-DNDC provided an

unbiased estimate of the annual average soil CH4 flux while underestimating average

CO2 and N2O fluxes. Dai et al. (24) assessed C sequestration in a temperate forest

in Idaho, US using Forest DNDC. Kurbatova et al. (25) conducted a sensitivity test

using Forest-DNDC simulations by varying the water table and concluded that climate

change could significantly affect the C balance in wetland forests and could convert

them from sinks to a source of atmospheric CO2 and considers salinity and tidal

fluctuation in water level, in addition to soil, vegetation, and climate parameters.

Wang et al. (19) developed TFW-DNDC to study the impact of salinity on plant

productivity and soil carbon sequestration in TFFW. The study showed that increased

salinity significantly reduced carbon sequestration under drought conditions. The

TFW-DNDC model is spatially explicit and can utilize different digital elevation

models with variable spatial resolutions to represent a site’s microtopography. Five

components drive the TFW-DNDC model: 1) climate factors, 2) soil parameters,
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3) vegetation properties, 4) anthropogenic activities, and 5) hydrology. The TFW-

DNDC model’s structure used in our study is shown in Figure 3.1.

Figure 3.1: Structure of the TFW-DNDC Model

The site chosen for this study is located in the USFS Santee Experimental Forest

(SEF), located in coastal S.C., USA. Previously, Dai et al. (26) analyzed spatial

and temporal variations of GHGs at the watershed scale in the non-tidal areas of

the SEF study area using the Forest-DNDC model and found a skewed distribution

of CH4 emissions that were heterogeneous in their spatial distribution with apparent

hotspot of CH4 emissions identified. This means that determining hotspot locations

is paramount to estimating CH4 fluxes using biogeochemical models. The same study

modeled a normal distribution of CO2 and N2O fluxes for most years. However, the

spatial distribution of N2O fluxes became skewed during extremely wet years (e.g.

2003). Soil CO2 flux was strongly related to soil temperature and soil moisture levels.

Dai et al. (26) concluded that the watershed-scale model performed better than

the field-scale model for characterizing annual CH4 flux estimation. Also, annual

CH4 flux was positively correlated with annual precipitation while soil respiration
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was substantially lower in wet years as compared to dry years. N2O flux was more

variable compared to CH4 and CO2 fluxes and the reason was attributed to large

variations in precipitation which induced substantial variations in the inter-annual

water table. In addition to water table N2O flux is also impacted by plant N uptake

and precipitation. The authors noticed that the spatial differences in the CH4 flux was

substantial on a year-to-year basis (2.5 to 7.4 MgC/ha/yr) and influenced by the water

table in the watershed. In addition, wetlands were the source for CH4 as compared

to uplands with over 90% of total watershed flux originating from wetlands. As far

as microtopography is concerned the authors observed that CH4 flux was greatest

where the topography was flat or depressional. Other than these locations the CH4

flux was either zero or negative. We extend earlier field and modeling studies at the

SEF through our examination of a TFFW which was not examined in(26) study.
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3.2 Materials and Methods

3.2.1 Study Site

The study site is located in Santee Experimental Forest, 55 km Northwest of

Charleston, South Carolina. Huger Creek is a tidal tributary of the East Branch

of the Cooper River. The study site is as shown in Figure 3.2

Figure 3.2: Study site at Francis Marion National Forest located at Huger Creek in
Santee Experimental Forest SC USA.

The average daily tidal fluctuation at the study site is approximately 1.2m. The

annual average temperature is 18.9oC and the mean annual precipitation (2019-2022)

is 1,392 mm. The elevation ranges from 0.4 to 1.5 m above mean sea level (27). The

soil in the floodplain is dominated by the Megget series and is characterized as deep,

nearly level, and clayey (28). The soil has a low hydraulic conductivity and high water

retention capacity. However, hollows in the study site are underlain with a saturated
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sandy subsoil that extends to at least a meter in depth. The forest cover type consists

of bottomland hardwoods which include ironwood, sweetgum, swamp dogwood, laurel

oak, American elm, swamp chestnut oak, green ash, water tupelo, and Carolina ash

(29). PVC groundwater wells were installed in a hollow and hummock within the

riparian zone, and water table position was measured with either a Globalwater or a

Druc pressure transducer logged on a 15-minute time step from January 2019 through

December 2022.

3.2.2 Microtopography Classification

We collected terrestrial LiDAR data from the undisturbed study site and used

available aerial LiDAR data to develop the site microtopographic model. The ter-

restrial LiDAR data was collected using FARO 350S Scanner, which utilizes a 1500

nm laser to produce a 3D point cloud. A total of 108 overlapping scans were taken

and registered and stitched using FARO SCENE to produce a single-point cloud of

the study area (Figure 3.3). The study area was scanned in February 2022 during

senesced vegetation to minimize occlusion. An area of 4250 m2 was scanned consist-

ing of hollows, hummocks, and fringe microtopography The area was selected in a

way to include the transect across the flood plain from the edge of the Huger Creek

to the edge of the upland.



111

Figure 3.3: Terrestrial LiDAR-based ground point cloud of the study site. The ground
points are extracted using the cloth simulation filter. A total of 108 overlapping scans
were taken for the study site. The scan position is visible as black circles.

Aerial LiDAR data was collected and processed in February 2007 by Photo Science

Inc and the data is owned by the Center of Forested Wetlands Research, USDA Forest

Service, USA. The data can be accessed from ”http://cybergis.charlotte.edu/santee/

views/data-landresource/lidar-data-table.php”. Two DEMs with a 1m and 0.25m res-

olution were created based on aerial and terrestrial LiDAR data, respectively. The

microtopography was characterized by three categories: hollows (low elevation fea-

tures), hummocks (high elevation features), and fringe (intermediate elevation fea-

tures). Multiple studies have used water level elevation either to define microto-

pography or its importance in defining microtopography. Researchers such as (17),

considered the 50th percentile as a threshold to characterize hollows and hummocks.

We chose the mean of yearly median water levels from 2019-2022 as a threshold

to categorize hollows in the terrestrial LiDAR-based DEM aligning with (16). The

threshold elevation was found to be 29th percentile in elevation values for the terres-
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trial LiDAR-based DEM and the same percentile was utilized to define the elevation

threshold in available aerial LiDAR data. In other words, any feature up to the 29th

percentile was considered as hollow. Features between the 29th and 50th percentile

are considered as fringe and above the 50th percentile as hummocks (see Table 3.1)

aligning with (17). Table 3.1 shows the details of the elevation distribution in both

terrestrial and aerial LiDAR-based data.

Table 3.1: Microtopographic classification

Data Type Elevation

range

Hollows (29th

percentile as

threshold

elevation)

Fringe (29th to

50th

percentile)

Hummocks

Above 50th

percentile

TLS 0.42 to 1.2 m 0.68 m 0.68 to 1.00 m above 1.00 m

ALS 0.49 to 2.0 m 0.87 m 0.87 to 1.20 m above 1.20 m

The density of elevation of terrestrial and aerial LiDAR DEMs is shown in Figure

3.4.

Figure 3.4: Elevation density distribution of terrestrial LiDAR-based DEM of 0.25m
resolution and aerial LiDAR-based DEM of 1m resolution. A) Vertical lines show the
threshold of 0.68 m which is selected based on the maximum mean water level. B)
The vertical line shows the threshold of 0.87 m which is the 29th percentile of the
elevation values.
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3.2.3 Greenhouse Gas Modeling

We created input tables required by the TFW-DNDC model for soil, vegetation,

climate data, water levels, elevation, and salinity for each of the microtopographic

features. The input parameters consist of 1) soil characteristics such as the number

of profile layers, pH, bulk density, clay fraction, field capacity, wilting point, and

stone fraction 2) vegetation characteristics such as leaf mass, root mass, C and N

stored, photosynthesis, root and wood respiration, water use efficient, growth rate,

vegetation type, and age, 3) climate data which includes maximum and minimum

daily temperature and daily mean precipitation, 4) daily maximum and daily mini-

mum water levels from 2019-2022, and 5) elevation and salinity of microtopographic

features. The soil layers are divided into two layers with an upper layer consisting

of organic matter while a second layer is a mineral soil layer. The hummock organic

layer is underlain by silty clay soils that have a low hydraulic conductivity of 0.007

cm/min and high water capacity while the hollows mineral layer is a sandy loam that

is well drained with hydraulic conductivity of 1.056 cm/min. The water table depth

data was measured from groundwater wells with logged pressure transducers at both

the tidal and non-tidal study sites from 2019 to 2022 (see Figure 3.5). The average

monthly water level is shown in Table 3.2. The model is validated with measured

CH4 and CO2 data for 2019-2022 (Allan unpublished data) and measurements from

previous studies (30) and (26). We conducted model runs utilizing both the 0.25 m

and the 1m DEMs to assess the importance of the resolution of the DEM in this

low-relief wetland terrain. A separate run was performed using the 0.25m resolution

DEM but utilizing the water table record from the nearby non-tidal Turkey Creek

watershed, a tributary of Huger Ck. That site has the same soil and vegetation cover

as the tidal site but is upstream of the tidal influence.
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Figure 3.5: Hydrological regime of A) hollows, B) fringe, and C) hummocks at the
tidal Huger Creek site from 2019 to 2022 using terrestrial LiDAR-based elevation.
The figure shows the daily maximum water levels at each microtopographic feature.
Here 0.00 represents the ground surface; positive values indicate the water level above
the ground elevation while negative values denote the water level below the ground
surface. The dashed line shows the ground surface in respect of aerial LiDAR data.
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3.3 Results

3.3.1 Microtopography Classification

The bare ground points from both the aerial LiDAR dataset and the terrestrial

LiDAR scans were utilized to generate fine-resolution DEMs of the study area. The

DEM generated from aerial LiDAR data (1m resolution) and terrestrial LiDAR Data

(0.25 m resolution) is shown in Figure 3.6. The point cloud density of aerial LiDAR

data is 1point/m2 or better while the average point cloud density for terrestrial LiDAR

data is 4000 pts/m2.

Figure 3.6: A) Shaded relief of terrestrial LiDAR-based DEM, B) shaded relief of
aerial LiDAR-based DEM, C) terrestrial LiDAR-based DEM of 0.25 m resolution,
and D) aerial LiDAR-based DEM of 1.00 m resolution.

A visual inspection of Figures 3.6 reveals the more pixilated nature of the coarser

aerial LiDAR coverage which fails to represent many of the fine-scale microtopo-

graphic features in this low-relief terrain. The microtopographic features are delin-

eated by combining water level data and terrestrial LiDAR elevation data as explained

above. In terrestrial LiDAR data DEM hollows, fringe and hummocks occupy 28.7%,

21.6%, and 49.7% of the study area, respectively. The corresponding coverages of

these same features in the aerial LiDAR data are 30.6%, 18.4%, and 51.0%, respec-
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tively. The use of the coarser aerial LiDAR coverage equates to a +6.6%, -14.8%

and +2.6% difference in the aerial coverage of the hollows, fringe, and hummocks in

comparison to the higher resolution terrestrial LiDAR DEM (see Figure 3.7)

Figure 3.7: Microtopography classification based on the mean daily water level. A)
Terrestrial LiDAR-based classification of microtopography B) Aerial LiDAR-based
classification of microtopography in hollows, fringe, and hummocks

3.3.2 TFW-DNDC GHG Emission Model Results

The TFW-DNDC simulated CH4 and CO2 annual fluxes utilizing the terrestrial

LiDAR DEM and the aerial LiDAR DEM for the individual landscape units are

shown in Table 3.3 and Table 3.4, respectively. The same data are graphically

presented in Figures 3.8 and 3.9. The annual aerially weighted composite fluxes for

the study site are presented in Table 3.5.
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Table 3.3: Terrestrial and aerial LiDAR data based annual CH4 (kg C/ha/yr) emis-
sions in Huger Creek study site.

Microtopographic feature 2019 2020 2021 2022 Mean

Hollowterrestrial 243.7 233.9 218.4 284.3 245.1

Fringeterrestrial 3.0 -10.1 -10.0 -10.5 -6.9

Hummockterrestrial -10.1 -10.1 -9.7 -10.1 -10.0

Hollowaerial 134.7 182.1 69.5 99.5 121.5

Fringeaerial -10.2 -10.2 -9.8 -10.2 -10.1

Hummockaerial -9.9 -9.8 -9.4 -9.7 -9.7

Table 3.4: Terrestrial and aerial LiDAR data based annual soil CO2 (Mg C/ha/yr)
emissions in Huger Creek study site.

Microtopographic feature 2019 2020 2021 2022 Mean

Hollowterrestrial 0.6 0.1 0.1 0.5 0.3

Fringeterrestrial 2.6 2.3 2.3 2.6 2.5

Hummockterrestrial 4.0 3.5 3.4 3.6 3.6

Hollowaerial 1.8 0.7 0.7 0.6 0.9

Fringeaerial 3.6 3.1 3.0 3.3 3.2

Hummockaerial 5.4 4.5 4.3 4.5 4.7

Figure 3.8: A) Simulated CH4 emissions using terrestrial LiDAR-based data. B)
Simulated CH4 emissions using aerial LiDAR-based data
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Figure 3.9: A) Simulated CO2 emissions using terrestrial LiDAR-based data. B)
Simulated CO2 emissions using aerial LiDAR-based data

Similar to Dai et al. (26) results using the Forest DNDC model, positive CH4

emissions were confined to areas classified as hollows with areas classified as fringe

and hummocks consistently displaying net consumption. Modeled unit area CO2

emissions for hummocks were higher than fringe which was higher than hollows for

both DEM simulations. The simulations produced are significantly different unit area

annual fluxes of both CH4 and CO2 despite each landscape unit being subject to the

same water table fluctuations, precipitation inputs, and air temperatures. All other

model parameters were consistent between model runs and years. This indicates

that the spatial distribution and absolute elevation range selected to represent the

different landscape units significantly impact the unit area fluxes of both CO2 and

CH4. Our results show that the use of the aerial LiDAR-based DEM underestimated

the CH4 flux in 2019 (-10.1%), 2020 (-18.7%), 2021 (-73.7%), and 2022 (-68.3%) in

comparison to the emissions produced by the more refined terrestrial LIDAR DEM.

Absolute unit area CH4 emission differences between the two modeled outputs were

smaller for fringe and hummocks with the aerial LiDAR-based runs over predicting the

strength of the CH4 sink for these microtopographies in 2019-2022. The influence of

the higher elevation ranges selected for the aerial LiDAR features (Table 3.1, Figure

3) is readily apparent where modeled unit area CO2 emissions for all three topographic

features (hollow 94.5 ±55.4, fringe (323.7 ±25.4), hummocks (469.2 ±47.0) over the
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four year study period were significantly higher for the airborne LiDAR DEM run in

comparison to those generated from the terrestrial LiDAR run (Table 3.4 and Figure

3.9).

The microtopography-weighted C gas emissions for the study site are presented

in Table 3.5. The study site was a net source of CH4 emissions in all four years

that were modeled irrespective of the base DEM employed in the model run. The

results illustrate the importance of microtopographiclly defined hotspots. In this case,

hollows, occupying approximately 30% of the study area, in determining the net CH4

flux to the atmosphere in this low-relief coastal wetland environment. CH4 emissions

generated with the aerial LiDAR DEM averaged 70% lower and were more variable,

the coefficient of variation (c.v) 11.5% terrestrial LiDAR and c.v. 39.9% for the aerial

LiDAR. Again, this presumably reflects the differences in elevation thresholds between

the two DEMs. As per the unit area CO2 fluxes for the different microtopographies

(Table 3.4 and Figure 3.9) the microtopographically weighted CO2 emissions are

significantly higher for hollows (average 3 times) for the aerial LiDAR model results

as compared to the terrestrial LiDAR results.
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Table 3.5: Modeled microtopography-weighted C gas emissions for the study site
using TFW-DNDC utilizing the terrestrial and aerial LiDAR-based DEMs.

Type Emissions 2019 2020 2021 2022

TLSCH4 CH4(kg C/ha/yr) 65.6 59.9 55.8 74.3

ALSCH4 34.2 48.7 14.7 23.6

Percent

differenceCH4

-10.1 -18.7 -73.7 -68.3

TLSCO2 Soil CO2(Mg C/ha/yr) 2.7 2.3 2.2 2.5

ALSCO2 3.9 3.1 3.0 3.1

Percent

differenceCO2

+44.4 +37.0 +32.4 +25.8

The modeled Carbon gas flux generally falls within the range reported from field-

based CO2 and CH4 measurements previously collected from the SEF ((26; 30)), (see

Table 3.6, giving some confidence to the TFW DNDC model results.
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3.3.3 Influence of the tidally influenced water table regime

To examine the influence of the tidal hydrologic regime on GHG emissions, the

Huger Ck. tidally influenced groundwater regime is substituted with the annual

water table series of a tributary watershed, Turkey Creek which is upstream of the

zone of tidal influence but has the same soil and vegetation cover. The annual water

level fluctuations for each site and topographic feature are presented in Figure 3.10.

Figure 3.10: Precipitation/evapotranspiration and tidally driven water table regimes
for the 2019-2022 study period. The solid black line indicates the ground level. A)
Non-tidal water level at the hollows, B) Tidal water level at the hollows, C) Non-tidal
water level at the fringe, D) Tidal water level at the fringe, E) Non-tidal water level
at the hummocks, F) Tidal water level at the hummocks.

The carbon gas emissions modeled for each microtopography type over the four

year study period using terrestrial LiDAR as the base DEM and the non-tidal and

tidally influenced water levels are presented in Tables 3.7, Table 3.8, Figure 3.11

and Figure 3.12 The microtopographically weighted CH4 and CO2 annual fluxes for

tidal and non-tidal hydrological regimes for the study site as a whole are shown in
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Table 3.9.

Table 3.7: Tidal and non-tidal based annual CH4 emissions (kg C/ha/yr) in Huger
Creek study site.

Microtopographic feature 2019 2020 2021 2022 Mean

Hollowtidal 243.7 233.9 218.4 284.3 245.1

Fringetidal 3.0 -10.1 -10.0 -10.5 -6.9

Hummocktidal -10.1 -10.1 -9.7 -10.1 -10.0

Hollownon-tidal 113.7 126.6 64.4 77.9 95.6

Fringenon-tidal -8.3 81.4 64.3 -8.7 32.2

Hummocknon-tidal -9.3 -9.2 -8.7 -9.0 -9.3

Table 3.8: Tidal and non-tidal based annual CO2 emissions (Mg C/ha/yr) in Huger
Creek study site.

Microtopographic feature 2019 2020 2021 2022 Mean

Hollowtidal 0.6 0.1 0.1 0.5 0.3

Fringetidal 2.6 2.3 2.3 2.6 2.5

Hummocktidal 4.0 3.5 3.4 3.6 3.6

Hollownon-tidal 1.8 0.3 0.6 0.6 0.8

Fringenon-tidal 7.1 2.0 8.7 6.2 6.0

Hummocknon-tidal 7.4 2.7 7.8 5.8 5.9

The substitution of the non-tidal water regime resulted in significantly different

magnitude and spatial distribution of C gas emissions. Annual hollow CH4 emissions

declined by approximately 61% and the fringe became a net source for CH4 in 2020 and

2021 as compared to the results for the tidal regime (Table 3.7, Figure 3.11). Annual

CH4 emissions also became significantly more variable under the non-tidal regime for

the hollows (tidal c.v. 11.5% and non-tidal 30.6%) and fringe non-tidal c.v. 147.6%

compared to negligible c.v. for tidal fringe. The magnitude and variability in the
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CH4 sink did not change significantly under the non-tidal water level regime. Under

the non-tidal water table regime annual CO2 emissions increased by 2.6x, 2.4x, and

1.6x for the hollow, fringe, and hummock microtopographies, respectively (Table 3.8,

Figure 3.12). Annual CO2 emissions also became more variable under the non-tidal

regime for the hollows (tidal c.v. 74.2% and non-tidal 77.8%) and fringe (tidal c.v.

7.0% and non-tidal 47.8%) and hummock (tidal c.v. 7.5% and non-tidal 40.0%).

Figure 3.11: A) Simulated CH4 emissions for tidal water levels. B) Simulated CH4

emissions non-tidal water levels.

Figure 3.12: A) Simulated CO2 emissions for tidal water levels. B) Simulated CO2

emissions non-tidal water levels.
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Table 3.9: Modeled microtopographically weighted carbon emissions under a tidal
and non-tidal water table regieme for the study area.

Type Emissions 2019 2020 2021 2022

TidalCH4 CH4(kg C/ha/yr) 65.6 59.9 55.8 74.3

Non-TidalCH4 26.3 49.4 28.1 16.0

Percent

differenceCH4

-60.0 -17.6 -49.7 -78.5

TidalCO2 Soil CO2(Mg C/ha/yr) 2.7 2.3 2.2 2.5

Non-TidalCO2 5.7 1.9 5.9 4.4

Percent

differenceCO2

+109.8 +17.7 +164.7 +79.2

The different hydrologic drivers had a clear impact on the modeled CO2 and CH4

emissions for the study site. The average CH4 flux was reduced by an average of

70% and exhibited a much greater interannual variability, c.v 12.6% tidal regime, c.v.

46.8% non-tidal hydrologic regime. The substitution of a precipitation/evapotranspiration-

driven hydrologic regimen had an even more significant impact on CO2 emissions with

modeled emissions exhibiting an average 1.8 times increase and the interannual vari-

ability also increasing, c.v 2.8% tidal regime, c.v. 4.2% non-tidal hydrologic regime.
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3.4 Conclusion and Discussion

This study is one of the few studies that simulate GHG dynamics in a spatially

explicit process-based model comparing microtopographic data obtained with ter-

restrial LiDAR and more widely available but coarser resolution aerial LiDAR. Due

to the complexity of low-relief coastal wetlands, robust measurements of surface mi-

crotopography are required to quantify carbon stocks and fluxes. This study also

quantifies the impact of microtopography and changing water levels on C gas dy-

namics. Similar to past studies in the SEF, our study indicates that hollows are the

hotspots for CH4 emissions Despite hollows representing only 30% of the study area,

the magnitude of their emissions 70 to 284 kg/ha/yr is sufficient to turn the TFFW

into a net source of CH4, despite the majority of the TFFW surface acting as a net

sink for CH4. CO2 emissions from hummocks were significantly higher than from hol-

low or fringe microtopographies and exhibited significant interannual variability (3.4

to 5.4 Mg C/ha/yr). These results show that the classification of low-relief wetland

microtopography in combination with on-site measurements of the water level regime

and vegetation and soil characteristics is vitally essential to assess carbon emissions

accurately.

We found that the aerial LiDAR data tended to overestimate ground elevation in a

densely forested wetland. In a low-relief topography where a few tens of centimeters

differentiate hollows and hummocks, the overestimation of ground elevation can not

only misclassify the microtopographic features but also leads to an underestimation

of CH4 flux (upto 74%) and overestimation of the CO2 flux (upto 44%). Terrestrial

LiDAR can provide accuracy in the microtopographic classification but unlike aerial

LiDAR, data only covers a small area and requires a significant investment in labor

and time. Our results show that combining on-site water level data and RTK GPS

ground-truthed terrestrial LiDAR-based elevation data can successfully adjust the

base elevation and classification of microtopographic features in aerial LiDAR data.
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Our substitution of the more variable and drier non-tidal water table regime in the

TFW DNDC model resulted in a significant impact on C gas emissions, with annual

CH4 emissions decreasing by an average of approximately 53% and CO2 emissions in-

creasing twofold over four-year study period. Prolonged periods of lower water tables

(Figure 3.10) allow the diffusion of O2 into hollow soils, significantly reducing an-

nual CH4 emissions, while less saturated conditions, particularly during the growing

season, lead to substantially higher rates of soil respiration. The water table substitu-

tion model results give us some insight as to how GHG emissions may evolve in this

low-relief bottomland wetland environment with rising sea levels as the freshwater

tidal regime propagates further inland, reducing CO2 emissions and increasing CH4

emissions.

The C gas flux extrapolation based on these LiDAR-based DEM over larger areas,

possibly at the watershed scale, may open new avenues for research and can pro-

vide insight as to how wetland microtopography interacts with precipitation/ET and

tidally influenced hydrologic regimes and how these may change under rising sea levels

to impact GHG emissions and carbon cycling in bottomland hardwood forests. High-

resolution DEM data can assist in identifying the microtopography in the coastal

region where low-relief topography and dense vegetation cover imposes a challenge in

identifying hummocks and hollows. Our results show that TFW-DNDC on fine-scale

topography can be assessed and accordingly, the impact of microtopography on GHG

emissions can be better understood.
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CHAPTER 4: Overall Conclusion

This research provides a systematic data-driven framework to guide the study of

microtopography using close-range remote sensing. We recommend including terrain

attributes derived from high-resolution DEM data (less than 1m2) for the microto-

pographic studies. Using fine-scale resolution data leads to big data challenges that

can be handled by utilizing HPC and cloud computing resources. We also emphasize

the need to model microtopographic features better to investigate their impact on

ecosystem processes by including field-based observations in the models (i.e., model

calibration and validation).

This research also provides a method to delineate microtopographic features in a

low-relief forested terrain by combining mean daily maximum water levels and highly

accurate elevations measured from terrestrial LiDAR and RTK GPS. An elevation

threshold percentile was determined based on the mean daily maximum water level

and used to characterize microtopographic features into hollows, fringe, and hum-

mocks. The selected elevation percentiles were then used in a coarser resolution

aerial LiDAR-based DEM to delineate microtopography over a comparatively more

extensive area. This method reduces the need for labor-intensive field surveys over a

large area.

We also discussed the role of microtopography in Carbon dynamics and displayed

the importance of the characterization of microtopography. Our results indicate that

even though hollows occupied 30% of the study area, they accounted for significant

carbon emissions. These results show that classifying low-relief wetland microto-

pography in combination with on-site measurements of the water level regime and

vegetation and soil characteristics is important to accurately assess carbon emissions.
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In addition, hydro periodicity also impacted the emissions in the microtopographic

features by increasing CH4 emissions under saturated conditions and producing higher

rates of respiration when microtopography is exposed to air in the growing season.

Another important highlight of this research is to highlight the importance of the

water table position on GHG emissions. The water table substitution model results

clearly indicated lower CH4 emissions and higher soil respiration in non-tidal wetlands.

This bolsters our belief that with rising sea levels as the freshwater tidal regime propa-

gates further inland, reduced CO2 emissions and increasing CH4 emissions conditions

may arise. The results also show that incorporating fine-scale microtopography into

the spatially explicit TFW-DNDC model structure can identify the importance of

hotspots in determining annual GHG emissions in low-relief coastal watersheds.

TFW-DNDC considers daily maximum and minimum water levels, as compared to

other DNDC models that only consider one daily water level value but the model can

further be improved by incorporating more dynamic water levels inherent in daily

tidal cycles. In addition, the model can only be accessed by contacting the Center

for Forest Watershed Research in USDA Forest Service. The accessibility can be

improved by either making it open-source or providing a link to US Forest Service

website, that way multiple researchers can be benefitted from the capabilities of the

model. There is also a need for a user-friendly user manual that can provide a step-

by-step guide to using the TFW DNDC model.


