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ABSTRACT

AKASH CHANDRA SHEKAR. Structure-from-Motion and RGBD depth fusion.
(Under the direction of DR. ANDREW R. WILLIS)

This article describes a technique to augment a typical RGBD sensor by integrat-

ing depth estimates obtained via Structure-from-Motion (SfM) with depth measure-

ments from an RGBD sensor. Limitations in the RGBD depth sensing technology

prevent capturing depth measurements in four important contexts: (1) distant sur-

faces (>8m), (2) dark surfaces, (3) brightly lit indoor scenes and (4) sunlit outdoor

scenes. SfM technology computes depth via multi-view reconstruction from the RGB

image sequence alone. As such, SfM depth estimates do not suffer the same lim-

itations and may be computed in all four of the previously listed circumstances.

This work describes a novel fusion of RGBD depth data and SfM-estimated depths

to generate an improved depth stream that may be processed by one of many im-

portant downstream applications such as robot localization, robot mapping, robot

navigation, object tracking, pose estimation, and object recognition.This approach is

demonstrated on sequences of images that transition from indoor scenes, where the

RGBD depth sensor can function, to outdoor scenes, where the RGBD depth sensor

fails.
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CHAPTER 1: INTRODUCTION

RGBD sensors are a relatively new class of image sensors. Their key novel feature

is the ability to simultaneously capture color “RGB” images of the scene and depth

“D” images of scene; hence the term “RGBD.” RGB images are capture using a con-

ventional visible light camera that incorporates a lens that focuses light rays from

scene locations onto distinct light-sensitive pixels of image sensor. RGBD integrate

the three devices: (1) an IR projector, (2) and IR camera and (3) a RGB camera

in a rigid relative geometry to create a single sensor that captures color-attributed

(X, Y, Z) surface data at ranges up to ~6m with frame rates up to 30 Hz. RGBD

sensors have a wide range of applications which include mapping, localization, pose

estimation, and object recognition. They have become popular for their ease-of-use

and low cost in comparison with the other visual sensor technologies such as LIDAR,

and have been incorporated into consumer products like mobile phones, gaming con-

soles, and automobiles [1].

1.1 RGBD Sensing Technology and Limitations

Depth image formation is accomplished using structured light technology to mea-

sure the geometric position of viewed surfaces. This is accomplished by illuminating

scene surfaces with an infrared (IR) projector having a known pattern and then using

an IR camera to capture the projected pattern [2]. Deformation of the projected

pattern over scene object is analyzed and used to triangulate the depth of scene sur-

faces with respect to the camera’s optical axis. The IR projector operates outside

the visible light frequencies and, as such, does not interfere with the captured RGB

stream pixel values.
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Despite the popularity of RGBD sensors, their utility for generic depth measure-

ment is limited in several ways due to shortcomings associated with structured light

depth estimation. One significant shortcoming is that RGBD sensors often fail to

provide meaningful depth values in sunlit outdoor scenes. Here the IR radiation from

sunlight interferes with the projected pattern causing the depth estimation process

to fail. This phenomenon also occurs in sunlit indoor scenes. RGBD sensors also

fail to collect measurements from surfaces having specific reflectance properties. This

includes the following three reflectance contexts: (1) “dark” surfaces, i.e., surfaces

having a low reflectance, (2) specular, i.e., mirror-like, surfaces and (3) transparent

surfaces [3][4].

1.2 The Structure from Motion

The Structure from Motion (SfM) algorithm leverages ideas originally drawn from

photogrammetry to estimate the three-dimensional structure of a scene from a time

series of RGB images from a moving single camera. This is achieved by calibrating

the camera [5] to develop a highly-accurate model to describe how 3D positions are

projected into camera images. Using this image formation model, the SfM algorithm

matches together pixels in separate images that correspond to projections of the same

3D location as the camera moves in the scene. Using the camera projection model

and the assumption that matched pixels are measurements of the same 3D world

coordinates, the SfM algorithm solves for both the pose of the camera within the

global coordinate system and the set of 3D surface positions provided by matched

image pixels [6]. The SfM problem is non-linear in the unknowns and is typically

solved in a two-stage sequence. Stage 1 solves for the relative pose of the cameras at

the instant the images were recorded. Stage 2 conditions on the estimated camera

pose values and solves for the 3D scene structure. Both stages use correspondences

between pixels from different images to solve the non-linear equations in the unknown

variables. The camera pose tracking problem of Stage 1 is often solved by finding a
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(a) (b) (c) (d)

Figure 1.1: An overview of the proposed RGBD and SfM fusion algorithm (a) shows
a grayscale image of the scene. (b) shows the sensed RGBD depth image. (c) shows
the SfM-estimated depth image, and (d) shows the fused image. The fused image
has been color-coded as follows: (white) denotes depth locations sensed only by the
RGBD sensor, (yellow) denotes depth locations only sensed via SfM, (red) denotes
fused (RGBD+SfM) depth locations and (black) denotes depth locations without
RGBD or SfM measurements.

map that transforms pixels from the original (x, y) coordinate field to new coordinate

positions (x′, y′) such that both locations correspond to images of the same 3D scene

point. The multi-view 3D surface reconstruction of Stage 2 is often solved using the

bundle adjustment algorithm [7].

While scene reconstruction via SfM produces depth images in contexts where depth

cameras fail, this modality for depth estimation also has several shortcomings. Specif-

ically, the theoretical formulation of the SfM problem shows that the scale of the esti-

mated 3D structure cannot be known without prior or outside information. This com-

plicates both the mathematical and computational SfM solutions. SfM also presumes

that viewed surfaces are static, i.e., they do not move, and when this assumption is

violated reconstructed surfaces are highly inaccurate.

1.3 Contribution

This article seeks to leverage the strengths of RGBD-derived and SfM-derived depth

measurements by fusing these measurements into an improved depth image that pro-

vides depth measurements in contexts where at least one of the two depth estimation

approaches succeeds. Figure 1.1 shows an RGBD-SfM fusion result for an indoor
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scene and how the fusion result (Figure 1.1(c,d)) captures more scene geometry than

either approach independently. Our proposed method to fuse RGBD and SfM depth

imagery includes consideration of the RGBD sensor depth image noise model, the

SfM algorithm depth noise model and also copes with the inherent unknown scale

and scale-drift problems intrinsic to SfM. To our knowledge these technical issues

have not been discussed elsewhere in the literature.



CHAPTER 2: RELATED WORK AND BACKGROUND INFORMATION

This article proposes fusion of SfM-estimated depths with depths captured from

an RGBD image sensor. This section is dedicated to discussing the relevant aspects

of the SfM algorithm and the sensed RGBD measurements necessary to explain the

proposed fusion method. Specifically, this section reviews the theoretical details of

the SfM algorithm, methods for processing depth images including computing depth

images for arbitrary camera poses, and details existing knowledge regarding the sensor

measurement noise for RGBD depth measurements.

2.1 RGBD Camera

RGBD cameras are the class of sensors that capture both intensity values (RGB

values) and depth values for every pixel in the frame. The RGB values are measured

by a traditional camera with the thin lens model, discussed in section 2.2.1. Depths

are measured with the help of infrared ray (IR) projectors and IR sensors. There

are two different approaches of using the IR rays to measure the depth. The first

approach relies on the principles of the structured light [8], where the known pattern

of infrared light is projected onto the environment, and the deformed pattern from the

environment interactions are observed and triangulated for the depth measurement.

The second approach uses the concept of Time of Flight (TOF) [9], where the IR rays

are continuously emitted into the environment, and the time taken for the IR rays to

hit the object and travel back, along with the change in its phase, are measured to

estimate depths.

For this study, the ORBBEC Astra Pro RGBD sensor was used, and it has the

following specifications:
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Figure 2.1: ORBBEC Astra RGBD sensor

• a field of view of 60° horiz x 49.5° vert.

• a range of 0.6 - 8 m.

• captures RGB images of dimension 640 * 480 @ 30FPS.

• captures depth images of dimension 640 * 480 @ 30FPS.

Experimental results reflects this accuracies. For which, single channel, 8 bit unsigned

integer of intensity images, and 32 bit floats of depth images were recorded for vari-

ous scenarios as a Robot Operating System (ROS) bag. Each bag was recorded for

approximately 30 seconds @ 30FPS, which produces a ROS bag of size approximately

1.3 giga-bytes.

2.1.1 Limitation of RGBD sensors

Despite their advancements over the years, RGBD sensors have limitations. These

limitations are primarily caused due to the use of infrared rays. The main limitation

of RGBD sensors is that they cannot be used outdoors for depth measurements.

The IR rays emitted by the Sun overwhelms the IR rays projected by RGBD sensors,

corrupting the depth measurements, as shown in the figure 2.2a. For the same reason,

the RGBD sensors fail to provide correct depth measurements for sunlit indoors.
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(a) (b) (c)

Figure 2.2: (a) shows the RGBD failure for outdoor. (b) shows the RGBD failure for
a black object and a refractive door. (c) shows the RGBD failure for specular surface
and its the range limitation.

Secondly, the material property of an object in the environment affects the fidelity

of depth measurements. For example, the highly specular objects like a mirror or a

shiny metal reflect IR rays, as shown in the figure 2.2c. While the refractive surface

like glass make them pass through, as shown in the figure 2.2b. And the diffuse black

objects observe them. All this phenomenon modify the IR rays, resulting in incorrect

depth measurements. Finally, RGBD sensors have a hardware limitation; they can

measure depths for an only limited range. For ORBBEC Astra Pro it is 0.6 - 8 m, as

shown in the figure 2.2c.

2.2 Structure from Motion

The SfM algorithm uses a time sequence of images from a moving camera to re-

cover the 3D geometry of objects viewed by the camera. While this problem can be

solved without a calibrated camera, reconstruction accuracy will adversely affected.

This work assumes that the camera calibration parameters are known, estimated via

camera calibration see subsection 2.2.2. The SfM algorithm can be broken down into

two key steps:
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1. estimation of the camera pose, i.e., position and orientation, at the time each

image was recorded,

2. estimation of the 3D structure of the scene.

As previously mentioned, typical SfM systems solve (1) by computing a map that

associates pixels from the original (x, y) coordinate field to new coordinate positions

(x′, y′) such that both locations correspond to images of the same 3D scene point

and (2) via multi-view 3D surface reconstruction algorithm, e.g., bundle adjustment

[7]. In the following sections we provide an overview of aspects of the SfM algorithm

necessary for the development of the proposed RGBD-SfM depth fusion algorithm.

2.2.1 Camera model

The SfM operates on two-dimensional images, and it is important to understand

how these images are generated. An image is formed by capturing the light energy (ir-

radiance) for every pixel. This process can be mathematically represented by the thin

lens camera model, which describes the relationship between the three-dimensional

coordinates and its projection onto the two-dimensional image plane. In this model,

the center of the lens is called an optic center, and the line passing through the optic

center (o) is called an optic axis. The plane perpendicular to the optic axis is called

the focal plane. The thin lens itself is characterized by its focal length (fx, fy) and

diameter. The focal length is the distance from the optic center, where all the ray

intersects the optic axis. The point of the intersection itself is called the focus of the

lens. One of the important properties to consider is that the rays entering the lens

through the optic center are undeflected, while the rays entering the lens in all the

other places are refracted. With this model, the irradiance at each pixel is computed

as an integration of all the energy emitted from a region of an environment, which is

determined by all the rays converged at that pixel.

The fundamental equation of the thin lens is obtained using similar triangles from
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Figure 2.3: Thin lens camera model

figure 2.3

1

Z
+

1

z
=

1

f

For the simplification of calculation, we consider an ideal camera model called the

pinhole camera model. In this case, the aperture of a thin lens is assumed to be

zero, all rays are forced to go through the optical center o; therefore they remain

undeflected. Consequently, as the aperture decreases to zero, the only points that

contribute to the irradiance at the image pixel p = [x, y] are on a line through the

center o of the lens. If a point p has coordinates P = [X, Y, Z] relative to a reference

frame centered at the optical center o, with its z-axis being the optical axis of the lens,

then it is immediate from the similar triangles in the figure 2.4 that the coordinates

of p and its image x are related by the so-called ideal perspective projection.

x = −fx
X

Z
(2.1)

y = −fy
Y

Z
(2.2)

This mapping of 3D point to 2D is called projection and is represented
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Figure 2.4: Pin-hole camera model

by π

π : R3 → R2

This is also written as p = π(P).

The negative sign in the eq 2.1 and 2.2 makes the object appear upside down on

the image plane. Since we are working with digital camera, we can handle this by

moving the image plane to front of the optic center to z = (fx, fy), which will make

(x, y)→ (−x,−y).

This can be represented in matrix form as

p =

 x

y

 =
1

Z
[fx, fy]

 X

Y


In homogeneous coordinates, this relationship can be modified as


x

y

1

 =
1

Z


fx 0 0 0

0 fy 0 0

0 0 1 0





X

Y

Z

1


(2.3)
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The equation 2.3 can be further decomposed into


fx 0 0 0

0 fy 0 0

0 0 1 0

 =


fx 0 0

0 fy 0

0 0 1

 1

Z


1 0 0 0

0 1 0 0

0 0 1 0


with

Kf =


fx 0 0 0

0 fy 0 0

0 0 1 0

 ∈ R3×3,π =
1

Z


1 0 0 0

0 1 0 0

0 0 1 0

 ∈ R3×4

The matrix π is a projection matrix and it is a non linear operation .

With the rigid body representation for camera from the equation 2.12, we can

represent the overall geometric model for an ideal camera as:


x

y

1

 =


fx 0 0

0 fy 0

0 0 1

 1

Z


1 0 0 0

0 1 0 0

0 0 1 0


 R T

0 1




X

Y

Z

1


(2.4)

The equation 2.4 represents the ideal camera model, where the retinal frame is

centered at the optical center, and its axis aligned with the optical axis. But in

practice, this does not true and the origin of the image coordinate frame typically

in the upper-left corner of the image. We need to address this distortion between

the retinal plane coordinate frame and the pixel array in our camera model. This

distortion can be corrected by a special matrix :
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Ks =


1 sθ ox

0 1 oy

0 0 1

 ∈ R3×3 (2.5)

K = KsKf =


1 sθ ox

0 1 oy

0 0 1



fx 0 0

0 fy 0

0 0 1

 =


fx sθ ox

0 fy oy

0 0 1

 (2.6)

where

• ox: x-coordinate of the principal point in pixels,

• oy: y-coordinate of the principal point in pixels,

• fx : size of unit length in horizontal pixels also called as focal length in x axis,

• fy : size of unit length in vertical pixels also called as focal length in y axis,

• fx
fy
: aspect ratio of a pixle

• sθ: skew of the pixel, often close to zero.

Since the parameters in matrix 2.6 are unique to every camera and are not influenced

by any external factors, they are called an intrinsic parameter, and the matrix itself is

called an intrinsic matrix K. With matrix K, the ideal camera model from equation

2.4 can be updated as


x

y

1

 =


fx sθ ox

0 fy oy

0 0 1

 1

Z


1 0 0 0

0 1 0 0

0 0 1 0


 R T

0 1




X

Y

Z

1


(2.7)

In the matrix notation,
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p = KπQP (2.8)

To summarize, equation 2.8 represents the projection of three-dimensional coordi-

nates P = [X, Y, Z]T by camera with the pose Q, as defined in the equation (2.13),

(also called as extrinsic parameters) and camera calibration K, onto two-dimensional

coordinate p = [x, y]T .

2.2.2 Camera Distortion and Calibration

The images generated by a typical camera usually have a distortions. Since, these

images are used for the estimation of intrinsic parameters, the distortions should be

fixed, in order to prevent errors in camera calibration. There are mainly of two types

of distortions, the radial distortion and tangential distortion. The radial distortion

effects image by curving the string lines, its effect is more as we move away from the

center of image. This distortion can be corrected by Brown’s distortion model [10] as

following.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

where (x, y) are distorted image intensities and (xcorrected, ycorrected) are corrected

image intensities, where kx is the distortion coefficient of the camera to be determined,

and r is the distance of pixel from the principal point.

Tangential distortion are due to misalignment of lens with imaging plane. As a

consequence some areas in image may look nearer than expected. This distortion can

be corrected by The Brown–Conrady [10] model as following
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Figure 2.5: Checkerboard for camera calibration

xcorrected = x+ [2p1xy + p2(r2 + 2x2)]

ycorrected = y + [p1(r2 + 2y2) + 2p2xy]

In total there are 5 parameters, known as distortion coefficients given by:

Dcoff = (k1, k2, p1, p2, k3) (2.9)

The camera calibration is the process of determining all intrinsic parameters of

the camera. For any given camera, all the essential parameters from equation 2.6

and equation 2.9 are determined by measuring the difference between the position of

key features in captured image and their supposed true position. For this process,

images of known pattern are captured from different orientations. Since the estimation

of corners are convenient and less prone to error, the two dimensional checkerboard

pattern are often used for camera calibration [11, 5]. There are many standard library

implementations of this process and we have used the one in OpenCV library [12].
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2.2.3 Estimation of the Camera pose

The camera pose is represented by the rigid body motion, which is introduced in

the section 2.2.3.3, these camera poses between pair of images can be estimated by

solving for their alignment, as discussed in the section 2.2.3.2. Further, this process

of pose estimation along with the knowledge of depth, can be applied to estimate the

camera trajectory over the sequence of images, which discussed in section 2.4.

2.2.3.1 Image alignment

The image alignment is the process of transforming (warping) one image with

respect to another image, with a goal to minimizing the total difference between the

intensities [13].

ξ̂ = min
ξ

∑
p

(I(ω(p, ξ))− Iref (p))2 (2.10)

In equation (2.10), the warp function, ω(p, ξ), which is a rigid body motion, maps

pixel locations, p, in the reference image Iref to pixel locations in the image I with the

current estimate of the transformation parameters ξ. With correspondence estima-

tion, ξ is a pose transformation of the viewing camera represented as 2.15. We then

seek the camera pose transformation parameters, ξ̂, that minimize the error in equa-

tion 2.10, which provides the camera pose change that best explain the differences

in these two of images of the same scene. Given two images and the camera pose

change between them, one can take the information in one image, and through the

warp function map these values into the viewpoint of the other image to establish a

correspondence. In this case the theoretical difference between expected and observed

values for the image pair is zero if the camera pose change is known exactly and sensor

noise and other outside influences are ignored. The wrap function which achieve this

goal can be estimated incremental by non linear optimization. To preform an image

alignment, the correspondence between images should be established, and the wrap

function ω should be defined.
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2.2.3.2 Solving for Image Pixel Correspondences

There are generically two different approaches for finding corresponding observa-

tions of the same 3D surface location in multiple images referred to as direct and

indirect [14]. In this discussion, we refer to the correspondence problem as a source-

to-target matching problem. Let It(x, y) denote an image recorded at time t and

It+∆t(x, y) denote a subsequent image measured at time t+ ∆t. The correspondence

problem seeks to find a map that transforms pixels from the original (x, y) coordi-

nate field of It to new coordinate positions (x′, y′) in It+∆t such that It(x, y) and

It+∆t(x
′, y′) correspond to images of the same 3D scene point.

Indirect Methods Indirect methods compute this mapping by detecting special (x, y)

locations referred to as features locations with a purpose-built feature detection algo-

rithm, e.g., the Harris corner detector [15]. A description of the image patch in the

vicinity of each detected (x, y) location is computed using some feature descriptor

algorithm, e.g., Lowe’s SIFT descriptor [16]. Feature descriptors seek to provide a

vector of values from the image patch data that is invariant to the image variations

that occur during camera motion. These include but are not limited to the follow-

ing effects: illumination variation, affine and/or projective invariance, photometric

invariance (brightness constancy), and scale invariance. Popular feature descriptors

often prioritize scale and affine invariance as their strengths. The invariance property

allows for correspondences to be computed by finding the mapping from the feature

descriptor set calculated from image It(x, y) to the feature descriptor set calculated

from image It+∆t(x, y).

Direct Methods Direct methods on the other hand typically iteratively solve for a

set of transformation parameters that best align a pair of images by the minimization

of pixel-wise errors. An image warping function, ω(x), maps a pixel location, p =

[x, y]t, in the original coordinate field to new coordinate positions, p′, such that both
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locations correspond to images. A classical solution to this problem is given by the

Lucas-Kanade-Tomassi (LKT) camera tracking algorithm [13].

2.2.3.3 Rigid Body Motion

The warp function in 2.10 is a camera transformation between a pair of images,

which is a rigid body motion. We need an efficient model to represent these rigid

body motions. The camera position is represented by a three dimensional vector in

an Euclidean space R3, and the rigid body motion of this camera is composed of a

rotation and translation.

Traditionally, rotation is represented by a 3 × 3 special orthogonal group called

rotational matrix. Special Orthogonal matrix SO(3) is a matrix which satisfy RTR =

RRT = I and have a determinant of +1.

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = +1}

The rotation transformation of a camera position Pc from its local coordinate frame

C, to its position Pw, in the world coordinate frame W is represented as

Pw = RwcPc

Because the rotational matrix is orthogonal, we have R−1 = RT , with this, the

inverse transformation of coordinates is achieved by

Pc = R−1
wcPw = RT

wcPw

The continuous rotation of a camera is described as a trajectory R(t) : t→ SO(3)

in the space of SO(3). When the start time of camera motion is not zero, the rotation

of the camera from time t1 to time t2 is denoted by R(t2, t1). When we have more

then one camera rotation, their composition is represented as



18

R(t2,t0) = R(t2,t1)R(t1,t0), t0 < t1 < t2 ∈ R

The translation of a camera is represented by a T ∈ R3, 1×3 vector, which accounts

for the amount of translation in every dimension. With this, the complete rigid body

motion is represented by

Pw = RwcPc + Twc (2.11)

However, the above equation is not linear but affine. We may convert this to linear

by using homogeneous coordinates, where we append the value 1 for 1× 3 vector and

make it a 1× 4 vector,

P̄ =

 P

1

 =



X

Y

Z

1


∈ R4

With this new notation for point, we can rewrite the transformation from equation

2.11 as

P̄w =

 Pw

1

 =

 Rwc Twc

0 1


 Pc

1

 = QwcP̄c (2.12)

where, the 4 × 4 matrix Qwc ∈ R4×4 is called the homogeneous representation of

the rigid-body motion.

The set of all possible rigid body transformation involving a rotation and a trans-

lation can be represented by a Special Euclidean group called SE(3)
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SE(3) = {Q =

 R T

0 1

 | R ∈ SO(3),T ∈ R3} ⊂ R4×4 (2.13)

This representation can extend to include an variable for uniform scaling in all the

dimensions. With α representing the scalar value for uniform scaling, the transfor-

mation from equation 2.12 is updated as fallowing

P̄w = αQwcP̄c (2.14)

Similar to 2.13 the set of possible configurations of a rigid body with uniform scaling

is represented by a Similarity transformation Sim(3), which is the composition of a

rotation, translation and a uniform scale, and hence this representation has 7 degrees

of freedom,

SIM(3) = {W =

 R T

0 α−1

 | R ∈ SO(3),T ∈ R3, α ∈ R} ⊂ R4×4 (2.15)

We can represent the pose change of the camera between two time instances as a

combination of orientation and translation by SE(3) as shown in the equation 2.13.

We could also incorporate the scale change to SE(3) by using SIM(3) as shown in

the equation 2.15

2.2.3.4 Exponential Map

The special orthogonal group for a three dimensional transformation is represented

by a 3× 3 rotation matrix R ∈ SO(3), with the constraint RTR = I, this constraint

implies that the SO(3) transformations does not affect the volume of the rigid body,

i.e, the value of the quantity x2+y2+z2 is not changed by the rotation transformation.

The group SO(3) has nine parameters, but the invariance of the volume implies six
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independent constraints, making only three free parameters. From this intuition, we

know that the six out of nine parameters in SO(3) representation are redundant, and

we can have better a representation for rigid body motion.

The SO(3), SE(3) and SIM(3) are categorized under the special group called the

Lie group, which are defined on the smooth differentiable manifolds. Every Lie group

has a tangent space at identity called the Lie algebra, which is a vector space used to

study the infinitesimal transformations.

For rotation group SO(3) its lie algebra so(3) is represented by

so(3) =
{
ω̂ ∈ R3×3 | ω ∈ R3

}
where ω̂ is a skew symmetric matrix representation for the vector ω

The map from the space so(3) to SO(3) is called the exponential map.

exp : so(3)→ SO(3); ω̂ 7→ eR̂

ω̂(t) = eR̂t (2.16)

The equation 2.16 represents a rotation around the axis ω ∈ R3 by an angle of t

radians. And the inverse mapping is obtained by logarithm of SO(3)

log : SO(3)→ so(3); log(R) 7→ ω̂ (2.17)

We can extend this to full rigid body motion which also involves the translation

along with the rotation, for rotation group SE(3) its lie algebra se(3) is represented

by .
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se(3)
.
=

ξ̂ =

 ω̂ υ

0 0

 | ω̂ ∈ so(3),υ ∈ R3

 ⊂ R4×4

with υ(t) = Ṫ(t)− ω̂(t)T(t) ∈ R3

Similarly, the exponential map from the space se(3) to SE(3)is given by

exp : se(3)→ SE(3); ξ̂ 7→ eQ

Similar to 2.17, the inverse to the exponential map is defined by logarithm

log : SE(3)→ se(3); log(Q) 7→ ξ̂

With the exponential map and its inverse, we could easily change states from Lie

group to Lie algebra and visa-verse, which very essential to gain the performance

during the non-linear optimization of image alignment as discussed in the section 2.3.

2.2.4 Estimation of the 3D structure

The image of a three-dimensional structure is generated by the principles of pro-

jection as depicted in the equation 2.8. By doing so, we lose the depth value of the

structure, however, given a pair of images, generated from the same camera of known

intrinsic parameters, represented in the matrix 2.5 , we could estimate the depth of

structure by imposing an epiploar constraint on them.

2.2.4.1 Epipolar geometry

The figure (2.6) represents an epipolar geometry, in which a pair of cameras at their

respective origins o1 and o2, with a relative pose of ξ = (R,T), where R ∈ SO(3)

is the relative orientation and T ∈ R3 is translation, are capturing two dimensional

images of the same three dimensional point p. Here, the projection of a camera
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center o1 and o2 onto their counter stereo image pair are called epipoles e1 and e2

respectively. The triangle formed between the camera origins o1 , o2 and the three

dimensional point P is in the same plane, called an epiploar plane. The lines, l1 and

l1, formed by intersection of epiploar plane with image plane are called epipolar lines.

If P1,P2 ∈ R3 are the 3-D coordinates of a point P relative to the two camera frames,

by the rigid-body transformation we have

P2 = RP1 + T

Now, let x1,x2 ∈ R3 be the homogeneous coordinates of the projection of the same

point P in the two image planes with respective unknown scales of α1and α2.

α2x2 = Rαx1 + T

By left-multiplying both the side by T̂ , where T̂ is a skew symmetric representation

of the vector T

α2T̂x2 = T̂Rα1x1

By left-multiplying both the side by xT2

0 = xT2 T̂Rαx1 (2.18)

with

E = T̂R (2.19)

Equation 2.18 is the epipolar constraint and the matrix E = T̂R is called the

essential matrix. It encodes the relative pose between the two cameras. Geometrically,

it proves that o1 , o2 and p forms a triangle and, lies on the same plane, i.e., an epiploar
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Figure 2.6: Epipolar geometry

plane, hence their triple product which measures the volume of the parallelepiped is

zero.

2.2.4.2 Solving for Scene Geometry

There are generically two different approaches for 3D reconstruction referred to

as sparse and dense. Sparse methods reconstruct the 3D scene geometry only for a

select subset of the entire image data [17]. This subset is often corner locations or

locations marked by some type of feature extraction, e.g., SIFT or SURF. [16, 18]

This results in a sparse description of the 3D scene in terms of a point cloud. In

contrast, dense methods [19] reconstruct as many 3D geometric locations as possible

and seek to provide a complete description of the 3D scene.

Sparse reconstructions often benefit from having a lower computational cost but

provide few 3D measurements. Dense reconstructions have higher computational cost

but provide a much more complete description of the 3D scene. Dense reconstruction

techniques have seen much recent interest, although a highly accurate, dense, and

real-time SfM approach has remained elusive.

A third class of algorithms, referred to as semi-dense algorithms [6], seeks to strike

a compromise between the sparse and dense methods. The reconstruction techniques

used are most similar to dense methods, however, only a subset of all image pixels are
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reconstructed. These approaches leverage the high accuracy of dense reconstruction

techniques, but are sparse enough to allow for real-time operation.

Here, reconstruction is limited to those pixels which possess high intensity gradient

values. These regions often correspond to scene geometries such as edges, corners,

and curves and to other areas of the scene that are highly textured. The thought

here is that regions of the image that possess large changes in intensity convey more

information than regions that possess less, thus semi-dense reconstructions provide a

compressed version of the total scene

2.2.4.3 Stereo correspondence and Disparity Estimation

We can estimate the depth of the object from a pair of images captured by the same

camera with a small transnational change but the same orientation. The amount of

distance that the object has shifted from the first image to the second is called the

disparity [20], and this information is useful in computing the depth of the object

itself. With the epiplore constraint 2.2.4.1 and known translation between the pair

of images, we can efficiently compute disparity of the pixel, this approach is called

the fixed baseline disparity mapping since the baseline between the pair of images

are known, and they are fixed. This process starts with finding the correspondence

between images. Stereo correspondence is the problem of finding which part of one

image correspond to which parts of another image, where the difference is due to the

movement of the camera. As discussed in 2.2.3.2 the correspondence can be either

dense or sparse. In dense correspondence, image intensities are used, whereas in

the sparse, only image feature are used. Also, with epiploar constraint in place, the

correspondence search can be narrowed down along the epipolar lines.

Let xL and xR be the one of the established correspondences in the image pair 2.7

and P = (X, Y, Z) be the 3D location of object, from the epiploar constraint 2.18,

we know that these corresponding image points and 3D position of the object forms

a triangle as depicted in the image 2.7 Since the focal length fx of the camera and
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Figure 2.7: Disparity Computation

baseline B = 2l are known, we can compute the disparity d, and consequently the

inverse depth of object invZ with properties of similarity triangles as following

d = xL − xR = f

(
X + l

Z
− X − l

Z

)

d =
2lfx
Z

Z−1 =
d

fB
(2.20)

Z−1 ∝ disparity (2.21)

However, the problem with the fixed baseline disparity computation is that the

error grows quadratically with depth, error of the depth is proportional to the length

of the baseline, as a result, for the shorter baseline, the nearer depths have better

accuracy but not the further depths, and vise-versa. This can addressed efficiently

by using variable baseline/resolution instead of fixed baseline[21], where the baselines

and focal length are selected with proportion to the depth, which helps us archive the
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constant accuracy over all the depths.

Further accuracy and performance improvements could be achieved by adopting a

probabilistic approach of adaptive baseline[6], which explicitly takes advantage of the

fact that in a video, small baseline frames are available before large-baseline frames.

In this case, instead of estimating depth for every pixel, only the subset of them which

contributes to the high accuracy of disparity search were preferred. For every qualified

pixel, a suitable reference frame is selected from the stack of earlier tracked frames for

disparity search, in which, the one dimensional disparity search is performed along

the epiploar line. This selection of the frame is based on the age of the pixel, for a

given pixel, the oldest frame in which disparity search range and the observation angle

was not above certain threshold was selected. If a disparity search with this frame

is unsuccessful, the pixels age is increased, such that subsequent disparity search use

newer frames. This adaptive baseline disparity search maximizes the stereo accuracy.

Further, the prior knowledge from an earlier iteration of disparity search is utilized

to minimize the disparity search range.

The disparity search is performed along the epiploar line, and it is subjected to two

sources of errors [6], the geometric error, which accounts for the noise in rigid body

motion ξ and the projection π(.). And, the photometric error, which is caused by the

intensity difference between image pair. The image gradient plays a crucial role in

depth estimation since it determines the extent of both the errors. The direction of the

image gradient defines the geometric error, and its magnitude defines the photometric

error. i.e., the geometric error on the epipolar line leads a small disparity error, if

the epipolar line is parallel to the image gradient, and a large otherwise. Similarly,

small image intensity errors have a large effect on the estimated disparity if the image

gradient is small, and a small effect otherwise. This intuition helps us prevent the

erroneous depth computation in the earlier stage itself, as soon as we have the epipolar

lines constructed for given pixel, we can compare the direction and magnitude of the



27

epipolar line to the local gradient of the image around the pixel for a threshold. As

a consequence, the region of the image with the rich pattern, which results in large

gradient change, have a high probability of depth estimation, then the region with no

gradient, resulting in the semi dense depth estimation.

Let l and g represent a normalized epipolar line and a normalized image gradient

respectively. εl be the isotropic Gaussian noise with the variance σ2
l associated with

the absolute position of the origin of the epipolar line l, then the variance of the

geometric disparity error is

σ2
λ(ξ,π) =

σ2
l

dot(g, l)2
(2.22)

It is evident in the equation 2.22 that the direction of the image gradient and

epipolar line, measured by the square of the dot product between g and l, defines

this error.This error originates from the noise in camera orientation ξ and the camera

calibration π(.) and independent of noise in intensity of image.

Let gp representing the gradient of a image intensity on the epipolar line at disparity

λ, and σ2
i representing the variance of the image intensity noise, we can have the

variance of the photometric disparity error as

σ2
λ(I) =

2σ2
i

g2
p

(2.23)

Equation (2.23) shows that the photometric disparity error depends on the magni-

tude of gradient of image, which directly depends on the intensity of image and hence

is independent of the geometric disparity error.

With the variance from equation (2.22) and (2.23), the total variance of the ob-

served inverse depth invZ, estimated using equation (2.20), is

σ2
Z−1,obs = α2(σ2

λ(ξ,π) + σ2
λ(I)) (2.24)
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where α is the proportionality constant defined for each pixel, and can be calculated

as

α =
δZ−1

δλ

where δd is the length of the searched inverse depth interval, and δλ the length of

the searched epipolar line segment.

For a given pixel, the depth observed Zobs is computed as the inverse of the equation

(2.20), and its variance σ2
Z,obs is same as the equation (2.24) , which can be represented

as Gaussian distribution

N (Zobs, σ
2
Z,obs) (2.25)

2.2.4.4 Depth propagation and fusion

The depths estimated for every pair of images are propagated and can be used

as an prior knowledge for the next iteration of depth estimation for the new pair of

images. For the small camera rotation, the inverse depth and its variance from the

earlier frame is propagated and is assigned to closet integer pixel position. If Z−1
0

is the inverse depth for a pixel from the previous frame, and the inverse depth Z−1
1

at the same pixel for the current frame with the camera translation of tz along the

optical axis is estimated as

Z−1
1 = (Z0 − tz)−1

and its variance σ2
invZ1

is given by

σ2
Z−1
1

=

(
Z−1

1

Z−1
0

)4

σ2
Z−1
0

+ σ2
Z−1
p

where, σ2
Z−1
0

is the variance of inverse depth from previous frame and σ2
Z−1
p

is the
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inverse depth prediction uncertainty. These depths are fused in similar fashion of the

extended Kalman filter[22] , where σ2
Z−1
p

corresponds to variance from to the prediction

step and σ2
Z−1
0

corresponds to the variance from the measurement step. Finally, the

new observation of inverse depth is incorporated into the prior, by multiplying two

distributions i.e., if N (Z−1
p , σ2

Z−1
p

) is the prior distribution and the N (invZ0, σ
2
invZ0

)

is the noise observation, the posterior inverse depth is

N (
σ2
Z−1
p
Z−1

0 + σ2
Z−1
0

Z−1
p

σ2
Z−1
p

+ σ2
Z−1
0

,
σ2
Z−1
p
σ2
Z−1
0

σ2
Z−1
p

+ σ2
Z−1
0

)

The posterior inverse depth will have a better standard deviation then the observed

inverse depth, and propagated to next frame as an prior.

2.3 Non linear Optimization

In practice, because of the noise in image correspondence and other errors, we

cannot measure the actual coordinates but only their noisy versions, say

x̃j1 = xj1 + ωj1

x̃j2 = xj2 + ωj2

where xj1and xj2 are the ideal image coordinates and ωj1 =
[
ωj11, ω

j
12, 0

]T
and ωj2 =[

ωj21, ω
j
22, 0

]T
are localization errors in the correspondence called residuals. Therefore,

we need a way to optimize the parameters (x,R,T) that minimize this errors.

One of the approach to optimize the error, is to minimize the squared 2-norm of

residuals, if we consider the first camera frame as the reference
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φ(x,R,T, α) =
n∑
j=1

∥∥ωj1∥∥+
∥∥ωj2∥∥2

=
n∑
j=1

∥∥x̃j1 − xj1∥∥2
+
∥∥x̃j2 − π(Rαjxj1 + T)

∥∥2
(2.26)

The error in the equation 2.26 is often called the “re-projection error”, since xj1 and

xj2 are the recovered three dimensional points projected back onto the image planes.

This process of minimizing the expression 2.26 for the unknowns (R,T, x1, α) is also

known as bundle adjustment[7], since, we are adjusting bundles of light rays to reduce

the error.

For the purpose of simplification consider a function

yi = f(xi) (2.27)

the goal is to find the parameters x, which minimizes the squared error between

observation y and estimation f(x), i.e., residual,

ri(x)2 = (f(xi)− yi)2 (2.28)

r = [r0(x0), r1(x1), r2(x2).......rN−1(xN−1)]T

One of the simplest ways to minimize this squared error is the gradient descent

method. It is a first-order optimization method which aims to determine a local

minimum of a non-convex cost function by iteratively stepping in the direction in

which the energy decreases most. Hence this method is also called as the steepest

descent method.

xt+1 = xt − αg (2.29)
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with step size α and gradient g

gj = 2
∑
i

ri
∂ri
∂xi

(2.30)

The problem with the gradient descent is that, since it is only a first order ap-

proximation, it it may end up in local minimum which is not necessarily the global

minimum. We can achieve a better results with second order approximation, and it

is done by an efficient approach called the Gauss-Newton method. Gauss-Newton

is a iterative method for finding the value of the variables which minimizes the sum

of squares, this method achieves this by assuming that the least squares function is

locally quadratic and tries to find the the minimum of the quadratic.

For the residual from the equation 2.28 we have to minimize

min
x

∑
i

ri(x)2 (2.31)

the parameters x that minimizes the equation 2.31 is determined by differentiating

it with respect to x and equating it to zero

2
∑
i

ri
∂ri
∂xi

= 0 (2.32)

But the equation 2.32 cannot be solved directly. Gauss-Newton method iteratively

approximate the Taylor approximation of residual function

r(x) ' r(xt) + gT (x− xt) +
1

2
(x− xt)TH(x− xt) (2.33)

The equation 2.33 is the Taylor approximation of residual upto second derivative,

where g is the gradient as defined in equation 2.30 and the Hessian H is

Hjk = 2
∑
i

ri(
∂ri
∂xj

∂ri
∂xk

+ ri
∂2ri

∂xi∂xk
) (2.34)
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The equation 2.34 is full hassian, by assuming the the problem is quadratic, we can

ignore the second order term in it, and, we can approximate the Hessian matrix with

Jacobian matrix as :

Hjk = 2
∑
i

JijJik (2.35)

with

Jij =
∂ri
∂xj

(2.36)

Now, the equation 2.33 can be differentiated as

∂r

∂x
= g + H(x− xt) = 0 (2.37)

Also from the equation 2.30 and equation 2.36 , we have

g = 2JT r (2.38)

with the Jacobian representation for gradient as shown in equation 2.38 and Hassian

as in equation 2.35, equation 2.37 can be updated as

2JT r + JTJ(x− xt) = 0

and xt+1 is estimated as

xt+1 = xt − (JTJ)−1JT r (2.39)

Gauss-Newton starts with the initial guess for xtand it iteratively sloves for xt+1

untill the minimum is approached. This method does not need the computation of

second derivatives (Hessian matrix) of the of function, which is often expensive and

sometimes not possible to compute, instead the Hessian is approximated with the
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Jacobian matrix of the function as show in equaition 2.35.

The modification to Gauss-Newton method is the Levenberg-Marquardt (LVM)[23]

algorithm,

xt+1 = xt − ((JTJ) + ρI)−1JT r (2.40)

this is a hybrid between the Gauss-Newton and gradient decent methods. For

small value of ρ ' 0, the equation 2.40 is equivalent to the Gauss-Newton method as

represented in the equation 2.39, and for the large value of ρ, the identity matrix in

equation 2.40 dominates the Hessian matrix H and the equation behaves as a gradient

decent, similar to equation 2.29 with the step size of α = 1/ρ. LVM efficiently mini-

mizes the squared error by updating the parameters in the steepest-descent direction

when the initial guess are far way from the solution, and switches to Gauss-Newton

method when small updates are required for approximation. The parameter ρ is called

a damping parameter, which was heuristically selected and adjusted every iteration

based the previous error, and this process is also called as the damped least-squares

approximation.

Further, Marquardt suggested that the convergence can be achieved quicker if there

is larger movement along the directions where the gradient is smaller. To achieve this

he replaced the identity matrix I in the equation 2.40 with diagonal values of JTJ, with

the intuition of scaling each component of the gradient according to the curvature.

xt+1 = xt − ((JTJ) + ρ(diag(JTJ)))−1JT r (2.41)

The Gauss-Newton and Levenberg-Marquardt are the second order approximation

methods, used to find the parameters which produces the minimal residual, equation

2.28. Unlike the gradient decent method, which is a first order approximation, these

methods are faster and does not end up with the local minimum.
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2.4 Visual Odometer and Graph Optimization

Visual odometer is the process of estimating the camera trajectory from the stream

of images. For every pair of images, we can estimate the depth as discussed in section

2.2.4, and consequently use this depth for the pose estimation from following frames.

This process of pose and depth estimation is repeated for every new image, and depth

is continuously propagated and refined as discussed in section 2.2.4.4

This is an nonlinear least square optimization problem, which tries to estimate

the set of parameters that accurately represents the trajectory of the camera and

observed 3D points of the object. The complexity of this problem can increases

quickly since we are dealing with multiple features from many pairs of images and

each pose estimation has a 7 degree of freedom 2.15. One efficient way to handle such a

large-scale nonlinear optimization problem is to represent them in a graph[24]. There

are two many advantages to this approach; Firstly, the graph representation helps

with the modular representation of the problem, where each node is reference image

and an edge between the nodes is a relative pose estimated. And more importantly,

graph representation helps handle other essential issues like global optimization and

loop closures.



CHAPTER 3: LSD SLAM

We are using LSD-SLAM [25] as our SfM implementation, it is a semi-dense, direct

method which optimizes the geometry directly on the image intensities. LSD-SLAM

provides as output a reconstruction of the observed 3D environment as a pose-graph of

specially designated RGB image keyframes with associated semi-dense depth images.

Direct correspondences are found between every RGB frame and each RGB keyframe

to estimate the keyframe-to-RGB-frame relative camera pose. This is achieved by

Levenberg-Marquardt optimization of the photometric error between the RGB image

pair.

E(ξ) =
∑
i

(Iref (pi)− I(π(pi, Dref (pi), ξ)))2 (3.1)

Equation (3.1) shows the specific image alignment object function and formalizes

the form for equation (2.2.3.1). Here, the warp function relies on the current estimate

of depth Dref to determine the relative pose ξ ∈ sim(3). The reference depth Dref is

the depth associated with current key frame, these depth values could be initialized

either with random values or with the depth measurements from a RGBD sensor to

initiate the process. π(.) is the projection of the three dimensional point cloud to

two dimensional pixel coordinates and it depends on the camera calibration.

We can apply Guass-Newton optimization, as discussed in section 2.3, to find opti-

mal ξ which minimizes the equation 3.1, to do that we need to compute the Jacobian

of the residual as required by the equation 2.39. The jacobian of 3.1 with respect to

ξ is
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J =
1

z′

(
∇Ixfx ∇Iyfy

) 1 0 −x′

z′
−x′y′

z′
(z′ + x′2

z′
) −y′

0 1 −y′

z′
−(z′ + y′2

z′
) −x′y′

z′
x′

 (3.2)

x′,y′and z′ are the warped three dimensional points before projection


x′

y′

z′

 = RξK
−1


x

y

ẑ

+ Tξ

here, ẑ is the reference depth at the pixel (x, y). fx, fy are the focal lengths of

the camera and K is the intrinsic matrix of the camera. ∇Ix and ∇Iy are the image

gradients.

For every new frame tracked, the depths associated with the keyframe are con-

tinuously refined by performing the adaptive baseline stereo 3D reconstruction [6]

between new tracked frames and the stack of previously tracked frames as discussed

in the section 2.2.4. When there is drastic pose change between the tracked frame and

keyframe, the current tracked frame is promoted as a keyframe and depth map from

previous keyframe is propagated to the new keyframe and regularized. Concurrently,

all the keyframes are added as a nodes to a pose graph that stores the relative pose

between the keyframes as edges/constraints [24]. The pose graph stores the global

trajectory of the camera in the 3D scene and an optimization algorithm processes the

pose graph to improve the camera pose estimates as new image correspondences are

found by image matching and loop closures.

The depth computation process involves finding the epipolar lines between new

tracking frame and reference frames, along which the disparity for the pixel is deter-

mined. This process have two error sources, the error on disparity itself called the

geometric disparity error and the error which encodes intensity difference called the
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Figure 3.1: An overview of the LSD SLAM algorithm. Each incoming frame is
tracked against the current keyframe. If it does not satisfy the criteria for new
keyframe creation, it is used along with previous tracked frames for refinement of
the estimated depth values of the keyframe. Otherwise, the frame is considered a
new keyframe and depth estimates from the previous keyframe are propagated and
used for initialization of the new depth estimates.

(a) (b) (c)

Figure 3.2: The outputs of the LSD SLAM (a) shows the good depth estimation for
corner with rich pattern. (b) shows the good depth estimation along the edges of
door and edges of poster. (c) shows the good depth estimation along the edges of
table and chairs.

photometric disparity error, the former error accounts for the magnitude of the image

gradient along the epipolar line , while the later one on the angle between the image

gradient and the epipolar line.

We know from the section 2.2.4.3 that the depths are estimated with high fidelity

for the regions having a large gradient change. This claim is further backed by

the outputs of LSD-SLAM, we can see that in the figure 3.2b, that the depths are

estimated for the rather plane wall, because of the presence of posters on wall, which

introduce the gradient change.
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3.1 Point Cloud Reconstruction

Measured 3D (X, Y, Z) positions of sensed surfaces can be directly computed from

the intrinsic camera parameters and depth image values. Here, the Z coordinate is

directly taken as the depth value and the 3D (X, Y ) coordinates are computed using

the pinhole camera model. In a typical pinhole camera model 3D (X, Y, Z) points

are projected to (x, y) image locations [26], e.g., for the image columns the x image

coordinate is x = fx
X
Z

+ cx − δx. However, for a depth image, this equation is re-

organized to “back-project” the depth into the 3D scene and recover the 3D (X, Y )

coordinates as shown by equation (3.3)

X = (x+ δx − ox)Z/fx

Y = (y + δy − oy)Z/fy

Z = Z

(3.3)

where Z denotes the sensed depth at image position (x, y), (fx, fy) denotes the camera

focal length (in pixels), (ox, oy) denotes the pixel coordinate of the image center, i.e.,

the principal point, and (δx, δy) denote adjustments of the projected pixel coordinate

to correct for camera lens distortion.

3.2 Point Cloud Re-Projection

Depth images can be simulated for camera sensor in arbitrary poses by “re-projection.”

For discussion, assume that depth image z(x, y) has been recorded in the “standard”

camera/optical coordinate system where the origin corresponds to the camera focal

point, the z-axis corresponds to the depth/optical axis extending out into the viewed

scene, the x-axis points towards the right and spans the image columns and the y-axis

points downward and spans the image rows.

Let R denote the 3D rotation that rotates the coordinate axes of the standard

coordinate system to align with the same axes of a second camera having arbitrary
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pose. Similarly, Let T denote the 3D translation vector describing the position of

the focal point of a second camera having arbitrary pose. Using this notation, the

re-projection algorithm consists of the following three steps:

1. Back-project z(x, y) to create an (X, Y, Z) point cloud (as described in § 3.1),

2. Transform, i.e., rotate, translate and scale, each point Pi = [X, Y, Z]t in the

point cloud to generate a new point P
′
i = [X

′
, Y

′
, Z
′
]t that lies in a standard

optical coordinate system centered on the second camera’s focal point and hav-

ing orientation that aligns with corresponding x, y, z-axes using equation (3.4),

P
′

i = R ∗ α ∗ (Pi −T) (3.4)

3. Re-project the (X, Y, Z) point cloud using the pinhole camera equations to

compute the new depth image z′(x, y) = Z using equation (3.5).

x = fx(
X
′

Z′
)− δx + ox

y = fy(
Y
′

Z′
)− δy + oy

Z = Z
′

(3.5)

Typically, the re-projected point cloud measurements fall at non-integer locations

in the new depth image and the values of z′(x, y) must then be interpolated via

bilinear interpolation or some other interpolation scheme (nearest neighbor).



CHAPTER 4: Methodology

The proposed fusion approach applies the semi-dense monocular reconstruction ap-

proach referred to as Large Scale Direct (LSD) SLAM [25]. The LSD-SLAM algorithm

solves the SfM problem using a direct method to compute pixel correspondences and

a semi-dense method for 3D reconstruction. We select this approach as it does not

require or impose any prior knowledge about the scene structure as required by dense

reconstruction methods and it gives more 3D estimates than sparse approaches while

having similar computational cost.

The LSD-SLAM SfM algorithm consists of the following three components:

1. A tracking component that estimates the pose of the camera

2. A depth map estimation component that estimates semi-dense depth images for

keyframes

3. A map optimization component that seeks to create a 3D map of the environ-

ment that is self-consistent.

This work utilizes the first two components to explore fusion of RGBD depth images

with SfM depth images. For this work, the map optimization component (3) is not

used. Figure 4.1 depicts an overview of the proposed depth fusion algorithm.

4.1 Time and Spatial Sampling Issues

As mentioned previously, RGBD sensors measure depth at a rate of 30 frames per

second (fps) and LSD-SLAM computes depth images only for keyframes which is a

sparse subset of the measured RGB frames. Further, keyframes are not generated

uniformly in time but created when the SfM algorithm detects criteria required to
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Figure 4.1: An overview of the proposed depth fusion algorithm.

create a new keyframe. This condition is triggered when the current camera pose

is too far from the most recent keyframe camera pose and when the current frame

tracking result is “good” in the sense that the image warping correspondence objective

function suggests an accurate or low-error result. As a result, SfM-estimated depths

exist only for those RGB images designated as keyframes.

Further, the spatial distribution of SfM-estimated depths within SfM keyframes are

localized to only those pixels having “good” 3D reconstruction characteristics. In this

sense, the quality of the depth estimate depends on accurately matching pixels along

epipolar lines inscribed in the image. The matching performance here is best when

there is a significant change in the image intensities along the epipolar line. Hence,

3D depth reconstruction is limited to those pixels that lie at sharp intensity changes,

i.e., “edge” pixels, and further limited to those “edge” pixels that lie on edges that are

roughly perpendicular to the direction of the epipolar line (see [6] for details).

The LSD-SLAM algorithm estimates depth at “good” pixel positions as a 1-dimensional

Gaussian distribution specified as a mean image µSfM(x, y), i.e., the estimated depth

image, and a variance image σ2
SfM(x, y) such that the RGB keyframe pixel at location

I(x, y) is estimated to have depth µSfM(x, y) with uncertainties given by σ2
SfM(x, y).

In this sense, the keyframe image I(x, y) augmented with the estimated depth image
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µSfM(x, y) is analogous in format to sensed RGBD image data. Yet, the uncertainties

for the image µSfM(x, y) are given by the image σ2
SfM(x, y) rather than the experi-

mentally validated uncertainties discussed in § 4.5.

4.2 Image Registration Issues

Fusing depth measurements requires knowledge of the correspondence between the

depth measurements generated from the RGBD sensor and the SfM algorithm. For

SfM keyframes this correspondence is trivial due to the fact that RGBD sensors sup-

port hardware registration. Hardware registration co-locates the RGBD depth image

measurements, Zrgbd(x, y), and RGB appearance values, I(x, y). Hence, for hardware-

registered RGBD depth images, Zrgbd(x, y) is the measured depth of the surface having

RGB pixel I(x, y). Similarly, SfM-estimated depths for an RGB keyframe, µZobs(x, y),

are the depths for the surface having RGB pixel I(x, y). Hence fusion is accomplished

by fusing the measurements at corresponding (x, y) locations in the RGBD depth

image, Zrgbd(x, y), and the SfM depth image, µZobs(x, y).

Depth correspondences for RGB images that are not SfM keyframes must be com-

puted from one or more SfM keyframe depth images. This article uses the most

recent, i.e., closest-in-time, keyframe to generate co-registered SfM depth images for

arbitrary RGB images. To do so, the depth image from the most recent keyframe,

Zobs(x, y), is “back-projected” to create a 3D point cloud of SfM measurements. Us-

ing the estimated keyframe-to-camera pose change, the 3D measurements are then

re-projected into the RGB camera image plane using the 3D projection equations for

the camera provided via camera calibration. The resulting depth image, Z̃obs(x, y) is

then co-registered with the RGBD depth image Zrgbd(x, y) and RGB image I(x, y).

However, due to the noise in depth computation and consequent trajectory esti-

mation, the depth registration is not always exact, this should be addressed as early

as possible to avoid the drift in their computations. We try to achieve better depth

registration by estimating the transformation error between the point clouds of sen-
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sor depth measurements and LSD depth estimation. Since the LSD estimations are

not to the scale, we also need to estimate the scale for better registration of depths.

The Umeyama’s Least-Square estimation [27] shows us how to estimate these Sim(3)

transformation parameters efficiently. In his work, Umeyama shows how to estimates

the rotation, translation and scale between two point clouds with known correspon-

dence. In order to avoid errors, we use only the valid depths in both the point cloud

for estimation. By using Prgbd and Pobs to represent the valid point clouds of sensor

measurements and LSD estimation respectively, each containing N three dimensional

points,

Prgbd = {P0,P1,P1, .....PN−1}

Pobs = {P0,P1,P1, .....PN−1}

we compute the mean, variances and covariance of both them as following.

µrgbd =
1

N

N−1∑
i=0

Prgbd,i

µobs =
1

N

N−1∑
i=0

Pobs,i

σ2
rgbd =

1

N

N−1∑
i=0

∥∥Prgbd,i − µrgbd∥∥2

σ2
obs =

1

N

N−1∑
i=0

‖Pobs,i − µobs‖
2

Σobs,rgbd =
1

N

N−1∑
i=0

(Prgbd,i − µrgbd)(Pobs,i − µobs)T
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With singular value decomposition of Σobs,rgbd as UDVT ,the optimum rotation

matrix R which achieves the minimum error between point clouds is given by

R = USV T

S =


I det(Σobs,rgbd) ≥ 0

diag(1, 1,−1) det(Σobs,rgbd) < 0

The scale adjustment c is computed by

α =
1

σ2
obs

trace(DS)

With scale and rotation established, the translation parameters are determined as

T = µrgbd − αRµobs

with the Sim(3) parameters we transform LSD point clouds before projecting them

to find z̃obs(x, y)

˜pcobs = αRpcobs + T

Using these techniques co-registered SfM depth images can be computed for a gen-

eral RGBD image. When RGBD images correspond to SfM keyframes the registration

is “automatic,” i.e., no computation is necessary. In all other cases, a co-registered

SfM depth image must be computed by reconstructing a 3D point cloud from a

keyframe and then projecting the point cloud into the target RGB camera image

using the estimated camera calibration and keyframe-to-camera-frame relative pose

parameters.
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(a) (b)

Figure 4.2: (a) shows the two different views of the point clouds before depth regis-
tration. (b) shows the different views of the point clouds after depth registration. The
green represents the point cloud from LSD SLAM and purple represents the point
clouds from RGBD sensors

4.3 Noise removal

Noise in the image and other inaccuracies in nonlinear optimization leads to erro-

neous depth computation; these outlier depth values should be detected and removed

to avoid further drift in pose estimation and consequent accumulation of the error in

depth estimations. Fortunately, these outliers have a particular pattern as shown in

the 4.3a (a), i.e., if we consider the principle point as an origin, the outlier depths

form a veiling pattern along the line from the origin to the furthest depth value. Also,

we know that the most distant depth is the valid depth, we can find this true depth

and eliminate all other noisy depth by tracing along the line to the origin.

We can implement this by finding the line from principle point, (0, 0, 0), to the

furthest depth for every valid depth in depth map. From the equation 3.3 which

represents the point in three dimensional space, we can obtain the line (lx, ly, lz) to

principle point (0, 0, 0) as:
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(a) (b) (c)

Figure 4.3: (a) LSD depths with veiling errors. (b) Veiling errors detected (repre-
sented in black). (c) LSD depths with veiling errors removed.

lx = ((x+ δx − cx)Z/fx)− 0

ly = ((y + δy − cy)Z/fy)− 0

lz = (Z − 0)

(4.1)

the slope for the line is determined by:

m = ly/lx (4.2)

Since these depths have a veiling pattern in the z-axis, the outlier depths tend to

have the same slope with small variance, and lower z value then the real depth. By

traversing the line towards the origin, we find and eliminate all the outlier depths

having the slope in the range of empirically determined threshold value. The exper-

imental results are shown in the figure 4.3b, where the depth outliers are marked in

black color, and result after the outlier elimination is shown if figure 4.3c.

4.4 Resolving the Unknown SfM Scale

The methods described in previous sections detail how co-registered SfM depth

measurements are computed for every sensed RGBD frame. However, as discussed in

previously, SfM depth images intrinsically have an unknown scale, α, which reflects

the fact that the solution for the scene structure is not geometrically unique, i.e., the

same scene structure can be observed at a infinite number of distinct scales. Therefore
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fusion requires the scale of the SfM depth image to fit the scale of the real-world scene

measured by the RGBD camera.

Given that the depth measurements for the RGBD depth image are co-registered

with the SfM estimated depth image the scale parameter can be directly estimated

by minimizing the sum of the squared depth errors [28] between the SfM depth image

and the RGBD depth image. Let V denote the set of (x, y) positions that have valid

depth measurements for “standard” fusion as described in 4.6. Equation (4.3) shows

the error function used to compute the unknown scale value and equation (4.4) shows

the solution α̂ that minimizes this error.

e(α) =
∑

(x,y)εV

‖Zrgbd(x, y)− αZSfM(x, y)‖2 (4.3)

α̂ =
∑

(x,y)εV

Zrgbd(x, y)

ZSfM(x, y)
(4.4)

4.5 RGBD Measurement Noise

The proposed fusion algorithm relies on experimental studies of accuracy and noise

for RGBD sensor measurement, e.g., the Kinect sensor. Research in [29] shows that a

Gaussian noise model provides a good fit to observed measurement errors on planar

targets where the distribution parameters are mean 0 and standard deviationσZ =

m
2fxb

Z2 for depth measurements where m
fxb

= −2.85e−3 is the linearized slope for the

normalized disparity empirically found in [29]. Since 3D the coordinates for (X, Y )

are a function of both the pixel location and the depth, their distributions are also

known as shown below:

σX = x−ox+δx
fx

σZ = x−ox+δx
fx

(1.425e−3)Z2

σY = y−oy+δy
fy

σZ = y−oy+δy
fy

(1.425e−3)Z2

σZ = m
fxb
Z2σd′ = (1.425e−3)Z2

(4.5)
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These equations indicate that 3D coordinate measurement uncertainty increases as

a quadratic function of the depth for all three coordinate values, where Z denotes

the sensed depth at image position (x, y), (fx, fy) denotes the camera focal length (in

pixels), (ox, oy) denotes the pixel coordinate of the image center, i.e., the principal

point, and (δx, δy) denote adjustments of the projected pixel coordinate to correct for

camera lens distortion.

However, the quadratic coefficient for the (X, Y ) coordinate standard deviation is

at most half that in the depth direction, i.e., (σX , σY ) ≈ 0.5σZ at the image periphery

where x−cx
f
≈ 0.5, and this value is significantly smaller for pixels close to the optical

axis.

4.6 RGBD and SfM Depth Fusion

For fusing measurements we consider the structured-light measurement of the

RGBD sensor to generate a distribution for the unknown true depth of the scene

surfaces at each RGBD (x, y) pixel in the depth image. These measurements are

considered to be independent and identically distributed to the measurements of the

true unknown depth of the scene surfaces from the registered SfM estimated depths.

With these assumptions, solving the depth fusion problem is equivalent to estimating

the posterior distribution of the true scene depth at each (x, y) position given the

distributions for the RGBD and SfM depth values.

Fortunately, previous sections show that Gaussian models are appropriate distribu-

tions for both the RGBD and SfM depth values and the parameters of these models

are either known (see § 4.5) or estimated continuously (see § 4.1). When both dis-

tributions are Gaussian, the posterior distribution can be found analytically and is a

well-known result used in pattern recognition and other prediction frameworks, e.g.,

the Kalman filter as discussed in [30]. Specifically, let the Gaussian noise for RGBD

depth at position (x, y) be represented as N (Zrgbd, σ
2
rgbd) and from the section 2.2.4.3

we have the Gaussian noise for the co-registered SfM depth image at position (x, y)
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as N (Zobs, σ
2
Z,obs). The posterior distribution on the unknown true depth at position

(x, y) is also Gaussian and let N (µfused, σ
2
fused) denote the mean and variance pa-

rameters of this distribution. Equations (4.6) and (4.7) provide optimal estimates of

the mean and variance of the fused depth at position (x, y). The best estimate of

the fused depth is given by the highest probability value in the posterior distribution

which is the mean fused image, µfused(x, y).

µfused =
Zrgbdσ

2
Z,obs + Zobsσ

2
rgbd

σ2
Z,obs + σ2

rgbd

(4.6)

σ2
fused =

σ2
rgbdσ

2
Z,obs

σ2
rgbd + σ2

Z,obs

(4.7)



CHAPTER 5: Results

The experiments were conducted with different setups to test and analyze the depth

fusion algorithm. Experiments recorded RGBD image sequenced from ORBBEC

Astra RGBD sensors and applied LSD-SLAM to their image streams using their

factory-provided intrinsic camera calibration parameters. Each experiment included

approximately 60 seconds of RGBD image data at the rate of 30 fps. The recorded

RGB images were processed offline by the LSD-SLAM algorithm to generate SfM

depth images. Experiments initialize the LSD-SLAM algorithm with the first recorded

depth image from the RGBD sensor to facilitate the initial scale approximation. The

output from the LSD-SLAM algorithm consisting of the relative pose for every tracked

frame and the depth map for each keyframe was then captured to disk. The fusion

algorithm was then run offline on the recorded RGBD image stream and LSD-SLAM

output files to generate the results shown in this section.

Experiment 1 depicts a indoor office scene at the university. This scene includes

specular and dark surface structures at close range that are not measured by the

RGBD sensor. Yet, the SfM algorithm estimates depths at a number of locations (on

the podium) where ther are significant intensity changes. These additional depths are

Table 5.1: Percentage of occurrence the depths from difference sources

Experiment
RGBD-only depths SfM-only depths Fused depths

(%) (%) (%)

1 67.7 6.7 25.5
2 55.5 10.0 34.3
3 68.1 15.1 16.6
4 51.0 25.7 23.1
5 68.3 8.8 22.8

Average 62.12 13.26 24.46
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(a) (b) (c) (d) (e)

Figure 5.1: Results for three experiments are shown. Images shown are organized into
separate columns. Column (a) shows a grayscale image of the scene (b) shows the
sensed RGBD depth image (c) shows the SfM-estimated depth image (d) shows the
fused image and (e) shows the standard deviation for fused depths (in m.). The fused
image has been color-coded as follows: (white) denotes depth locations sensed only
by the RGBD sensor, (yellow) denotes depth locations only sensed via SfM, (red)
denotes fused (RGBD+SfM) depth locations and (black) denotes depth locations
without RGBD or SfM measurements.
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evident in the fused results, which includes SfM-only depth measurements in regions

in the vicinity of image edges. The experiment demonstrates that depth fusion can

improve depth images by obtaining depths from surfaces not measurable by the RGBD

sensor.

Experiment 2 depicts a hallway in the UNCC EPIC building that includes both

specular surfaces and high intensity illumination from overhead lights. The experi-

ment is a second example showing that depth fusion bolsters over all depth measure-

ment performance by providing the depths when RGBD sensors fail. The SfM takes

advantage of the patterns on the surface and estimates the depths irrespective of the

nature of its reflectance properties and color.

Experiment 3 depicts the UNCC faculty conference hall. Here a number of scene

structures lie beyond the measurement range of the RGBD sensor. Yet, the SfM

algorithm is able to estimate the depth of these scene structures (albeit at high

variance) providing depths that would otherwise not be possible.

Experiment 4 depicts indoor to outdoor transition. By initializing the LSD SLAM

indoor, we get the scale estimated. We can see that in outdoor, when the sensor mea-

surements fails because of the infrared ray flooding, depth estimates from LSD SLAM

are used. Often because of IR flooding the sensor measurements gets corrupted, in

those scenarios we can consider replacing entire corrupted depth sensor measurements

by LSD depth estimation instead of fusion for better results.

Experiment 5 depicts indoor with well lit conditions, even though the sensors are

supposed work completely fine in this scenario, there are rare chances of the them

failing at steep surfaces. During such failures, depth fusion comes handy.

Table 5.1 quantifies the amount of additional depth information provided via RGBD-

SfM depth image fusion. When we average over the five experiments discussed ap-

proximately 62% of the fused depths originate from the RGBD sensor alone, approx-

imately 13% original from the SfM algorithm alone, and approximately 24% of the
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fused depths results from RGBD-SfM fusion. The addition of 13% of novel depth

data is a significant contribution. Further, fused depths account for roughly 24% of

depth image data and the measurement error for all of these measurements will be

reduced by the fusion. Variance reduction will be greatest for low-variance SfM depth

estimates which are typically in textured scene locations close to the camera. Yet, we

note that by inspection of equation (4.7), it is theoretically impossible for the vari-

ance of any fusion result to increase. Another obvious observation from the Table 5.1

is that the SfM has a largest contribution in Experiment 4 (outdoor scenario) since

sensor fails outdoors and it has least contribution in Experiment 5 (well lit indoor)

where sensor is at its best.



CHAPTER 6: Conclusion and Futher work

The SfM depth estimation complements the RGBD sensor measurements and can

provide depths when RGBD sensors fail. The depth fusion algorithm provides the

effective way to augment the RGBD depth stream and results in improved depth

images. The experiments conducted shows these improvements in the experimental

results for a number of scenarios where RGBD sensors fail including successfully

capturing depth for out-of-range RGBD depth locations and successfully capturing

depth measurements from specular and dark objects.

As future work, the proposed depth fusion can be generalized to address depth

image locations the include measurements having non-Gaussian noise distributions,

especially for the outdoor scenario the error noise are not necessarily Gaussian. Also,

the depth image gets corrupted by random speckles because of infrared ray flooding,

these speckles could be wrongly treated as depth value, since there values are in valid

depth range. Fortunately, it is observed that these speckles have particular pattern

and a prepossessing logic could be implemented to get rid of them.

Also, experimental results show that the scale and trajectory estimation of SfM

depths are not always accurate. Back-propagation of RGBD-SfM fused depth imagery

into the SfM algorithm can be exploited to improve the camera pose estimation in the

camera pose graph. We know that the fused depths have measurements where SfM

fails and also they have lower variance than SfM’s, propagating them to SfM leads to

improvement in estimated depth values, which leads to better trajectory computation

for future frames.
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