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ABSTRACT

GERALDINE SHIRLEY NICHOLAS. A SECURE SOC PLATFORM FOR
SECURITY ASSESSMENTS IN FPGAS. (Under the direction of DR. FAREENA

SAQIB)

With the rapid increase in connected devices and SoC design architecture being used

in diverse platforms, they become potential targets to gain unauthorized access for

data and privacy invasion. Therefore, heterogeneous SoC architecture raises secu-

rity concerns in addition to the benefits they offer with improved throughput. They

are susceptible to side-channel attacks where secure information is extracted through

communication channels. Crypto algorithms implemented for secure authentication

tend to leak sensitive information jeopardizing system security. Memory corruption

vulnerabilities, code injection, buffer overflow attacks and other software-based at-

tacks through untrusted channels tend to control the flow of the application with

malicious data. Though traditional defense mechanisms have been implemented they

are all still vulnerable to side-channel attacks.

Secure measures to protect the interfaces and data propagation through different

channels are critical and building a resilient model consists of the on-chip security

factors. In this work, a platform based SoC model is implemented to meet the secu-

rity objectives using the RISC-V architecture in which an information flow tracking

module tracks the flow of data for the system’s integrity along with crypto engines

and a secure boot mechanism for secure device authentication providing encrypted

data transfers. For bitstream resilient SoC models the work extends a logic obfusca-

tion module with runtime security leading to a secure assessment framework. This

work explores the microarchitectural vulnerabilities with Machine Learning models

and proposes a Transfer Learning technique based counterfeit detection scheme for

supply chain vulnerability.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Modern heterogeneous computing systems, which incorporate IoT devices and net-

works, have the potential to deliver high-speed, optimized performance with enhanced

capabilities. However, due to the increased number of components required to achieve

such results, these systems are susceptible to various security threats. When an active

device is connected to a network, it becomes vulnerable to firmware and hardware

attacks, where the former involves exploiting vulnerabilities in different system com-

ponents to gain control over the entire system, and the latter requires safeguarding

the System-on-Chip (SoC) design against unauthorized access and data leakage [1].

The development of frameworks for protecting hardware security attacks is primarily

dependent on the Intellectual Property (IP) and system architecture.

To develop a secure SoC platform, it is crucial to identify the security vulnerabili-

ties of the system, especially in platforms with different levels of abstraction. The key

factors for ensuring the security of an SoC platform are the Root of Trust [2], Secure

Boot, and Execution Level Security. The Root of Trust employs a set of modules with

diverse security features to monitor system functionality and provide secure authen-

tication for each component in the system. Secure Boot establishes the integrity of

the firmware and builds trust between the system and firmware before the execution

of an application through authentication and validation. Execution Level Security

provides access control and information flow tracking from various channels, along

with a Trusted Execution Environment (TEE) to isolate security-critical components

in the system.

Protecting interfaces and data propagation across various channels is critical, and
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building a resilient model requires on-chip security measures. Although traditional

architectures provide a secure environment to some extent, they fail to ensure different

levels of security within a system. Thus, a platform based SoC model can serve as

a foundation for evaluation tools and techniques to achieve security objectives. To

build a robust side-channel analysis framework, RISC-V architecture is utilized due to

its ability to provide a platform for the custom implementation of security extensions

compared to other traditional architectures. Additionally, RISC-V is an open-source

Instruction Set Architecture (ISA) which further adds to its benefits. This research

focuses on addressing the significant threats in an SoC design architectural platform

and presenting novel security enhancements using RISC-V architecture.

1.2 Contributions

This research has the following contributions towards major challenges in an SoC

Design and Architectural Platform.

• Identifies security threats and presents threat models that affect an SoC De-

sign and Architectural Platform. Existing work and their shortcoming are also

discussed.

• Proposes a novel device authentication scheme for runtime bitstream security.

This framework employs logic-locking mechanism and extents its applications

of secure boot process for FPGAs along with ARM TrustZone for secure con-

figuration.

• Design of an extensible hardware cryptographic accelerator compatible with the

RISC-V model in which an AES cryptographic engine with encryption function

is used during critical data transfers.

• Proposes a RISC-V design of a coarse-grained hardware-based Information Flow

Tracking framework with a tagged mechanism at the architectural level which
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detects security violations at runtime. This model uses a one-bit tag to track

the data flow from untrusted channels with a separate tag cache module for

minimal overhead.

• Proposes a RISC-V design of a fine-grained Gate level-based Information Flow

Tracking framework for security critical datapath using optimized shadow logic

for leakage model. This scheme focuses on a specific security critical module and

the datapath of the module to be executed to overcome the performance and

area overhead from existing schemes. Translation from the instruction level to

the data level is based on the module instantiation with security-critical data.

• Presents microarchitectural vulnerabilities in the SoC design along with different

machine learning models for SoC security validation and verification. This work

proposes a transfer learning based counterfeit detection scheme for supply chain

vulnerability.

1.3 Organization

This document is organized as follows:

Chapter 2 describes the background information on the topics involved in this

research along with the overview of the existing works related to SoC Design Security

and Architectural Platforms.

Chapter 3 presents a security-aware design flow scheme with secure boot features

and logic locking applications for bitstream security with ARM TrustZone enabled

isolation.

Chapter 4 details the contribution of the proposed extensible hardware crypto-

graphic accelerator for the RISC-V model.

Chapter 5 proposes the coarse-grained hardware-based Information Flow Tracking

framework with the performance analysis.
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Chapter 6 proposes the fine-grained gate-level-based Information Flow Tracking

framework with optimized shadow logic for security critical data modules.

Chapter 7 extends the research to microarchitectural vulnerabilities with Machine

Learning Models and Transfer Learning Technique based counterfeit detection model.

Lastly, the conclusions of the research are presented in Chapter 8.



CHAPTER 2: BACKGROUND STUDY

2.1 System-on-Chip Security

Due to its utilization in cyber-physical systems, embedded computing systems, and

the Internet of Things (IoT), security has become a critical component of SoC design.

With the SoC market projected to exceed 207 billion dollars by the end of 2023, the

model faces new vulnerabilities and increased cyberattacks, posing reliability issues

[3]. As computing devices are employed in various applications, they are susceptible

to a vast amount of sensitive data and critical information that must be safeguarded

against malicious access. The analysis and evaluation of resilient mechanisms against

different attack models are significant aspects of SoC design. Four major types of

attack scenarios must be considered when examining reference models for security

and challenges in the SoC Design and Architectural Platform:

• Insertion of Malware/Unwanted Application gaining access: By using system

software privilege levels, an adversary can insert a hidden functionality that

tracks critical data and information or triggers disruptive outcomes in a con-

nected network. In addition, malicious modification to the circuit can be done

by bypassing the security fence of the system.

• Side-channel attacks: One of the most common methods of security exploita-

tion involves obtaining information on crypto engines through communication

channels within a system. This method enables an adversary to reverse en-

gineer system functions by monitoring power consumption or electromagnetic

fields associated with the hardware to gain access to the network. Additionally,

memory access patterns and timing information at run time are targeted to
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exploit vulnerabilities in the system.

• Supply Chain Attacks: The globalized Integrated Chip (IC) supply chain has

the potential to be vulnerable to malicious design modifications or IP theft

through reverse engineering [6]. On the other hand, in software supply chain

attacks, the focus is on an unsecured network or infrastructure, which can be

targeted by malicious code to compromise build tools.

• Network Attacks: Denial of Service in a distributed network results in bridging

through the system and gaining access to it. This type of attack can cause sig-

nificant disruption to the availability of the system and the services it provides.

Figure 2.1 illustrates the different security challenges in a connected network.

Figure 2.1: Security Challenges in a Connected Network

To ensure a secure architecture, it’s essential to protect the application from un-

trusted sources and various vulnerabilities that may compromise the system’s se-

curity. These threats include malicious IPs in hardware, vulnerable firmware, and
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side-channel vulnerabilities through different communication channels. Secured SoC

models must implement robust security policies to prevent unauthorized access to the

devices, including authentication, confidentiality, integrity, and access control to the

system. There are three different groups in which security assurance can be classified,

owing to the complex roots of security assurance.

2.1.1 Hardware security

Hardware platforms and ICs utilized in diverse applications are susceptible to

threats that may arise throughout different phases of the component’s lifecycle. Hard-

ware security pertains to the security concerns resulting from underlying hardware

and architectural vulnerabilities that affect the design, implementation, and valida-

tion of security operations in such models. Malicious alterations of ICs, IP piracy,

reverse engineering, and unauthorized access to privileged resources via debugging

channels are some common hardware attacks. Current approaches predominantly

prioritize safeguarding against hardware supply chain attacks, which include Hard-

ware Trojan attacks, counterfeit IPs, and implementation-dependent vulnerabilities

in cryptographic modules leading to the exposure of sensitive information [5].

2.1.2 System or platform security

The platform security architecture refers to vulnerabilities that may arise from

functional and performance aspects of the system, which malicious third parties may

exploit during runtime. These include the leakage of security-critical data and side-

channel attacks that can alter the system’s behavior. Protecting sensitive informa-

tion stored in hardware from untrusted software and networks is critical, and this

is achieved through various levels of isolation. Access control and information flow

policies with validation are implemented to ensure a robust and secure system [6].

Authentication and security controls serve as methods of protecting information and

mitigating unauthorized access.
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2.1.3 Cloud security

Providing resource sharing and on-demand services, cloud computing offers a dis-

tributed work environment with extensive functionality and data storage. While

advantageous over traditional systems, there are privacy and security concerns that

allow adversaries to gain unauthorized control over stored data. Cloud security in-

volves vulnerabilities and security issues that arise from communication channels in a

client-server model, where critical data is transmitted through the network cloud [7].

Cloud-based attacks include data breaches, denial of service, and corruption of col-

lected data integrity through backdoor channels leading to remote access. To develop

a secure platform for an SoC with various abstraction levels, it is essential to identify

the system’s security vulnerabilities. The key factors of SoC Platform Security are as

follows.

2.2 Key Factors of SoC Platform Security

2.2.1 Root of Trust

The Root of Trust is a crucial system component that ensures data integrity and

verifies the functionality and design of the system. It can be either hardware or

software-based, with hardware Root of Trust being the most secure option, as it es-

tablishes a high level of trust by verifying its own integrity. The most secure hardware

Root of Trust is a stand-alone security module or one that is implemented within a

processor or System on Chip, ensuring isolation of resources, keys, and security assets,

along with a side channel resistant model and multiple layers of defense mechanisms

[8]. The Trusted Platform Module (TPM) [9] is an example of a tamper-evident

hardware module that provides Root of Trust measurement, remote attestation, and

cryptographic functions for the protection of both keys and sensitive data. The Phys-

ical Unclonable Function (PUF) [10] based security is another hardware Root of Trust

that enables unique IDs with true random number generation and secure key stor-



9

age, with an anti-tampering design. To establish a trusted supply chain platform,

methodological approaches such as PUF technology and obfuscation techniques for

SoC design can be employed to support Root of Trust features [11].

2.2.2 Secure boot

The programmable logic in SoC FPGAs supports both hardwired microprocessors

and soft-IP-based ones. These devices are programmed through bitstreams, and an

attack on the bitstream can jeopardize the entire system operation while it is deployed

in the field. FPGA bitstream reverse engineering is a major concern since reverse en-

gineering and other fault injection-based attacks can manipulate the cryptographic

components, compromising the system’s confidentiality and data integrity. To address

this problem, various solutions such as authentication of bitstreams and encryption

models have been proposed [12]. For instance, Xilinx provides a secure boot mech-

anism with authenticated bitstreams to safeguard against such vulnerabilities [13].

Additionally, secure root of trust architecture with TPM drivers and over-the-air

updates is implemented to detect malicious modifications in configuration files [14].

Multilayered secure boot is another approach that updates the LookUp Table (LUT)

frames using remote attestation and PUF-based mutual authentication during run-

time [15]. Self-authentication secure boot mechanism uses PUF-based authentication

to protect the secure boot process, and any modification made to unencrypted bit-

streams results in key regeneration failure of the PUF [16]. For securing open-source

architectures, a lightweight RISC-V-based secure boot framework with PUF and dif-

ferent encryption standards with secure remote key attestation is implemented [17].

Figure 2.2 shows the key factors that impact SoC Platform Security.
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Figure 2.2: Key factors affecting the SoC Platform Security

2.2.3 Execution Level Security

To protect system assets from unauthorized access, SoC security is essential. The

execution level security measures the access control mechanisms, information flow

control, and isolation of the programs that are necessary to protect confidential infor-

mation stored in the computing system. The access to the assets can be dependent

on the state of execution, and hence, run time vulnerabilities need to be considered

while implementing security measures. System-level policy classes for risk assess-

ment are focused on execution level security. Information leakage models are se-

cured by memory protection using programmable hardware monitors [18]. During

the design phase, static techniques such as binary code checks [19] and verification

tools [20] for program validation are implemented. Hardware-based techniques detect

memory-based vulnerabilities like buffer overflow and format strings during runtime

[21]. Hardware-based technologies have better processing speed and smaller resource
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overhead, making them more efficient than software-based methods [22].

2.3 Access Control Mechanism

Communication between devices connected to a network for data transfer can ex-

pose them to untrusted nodes that can exploit software vulnerabilities, making them

susceptible to attacks at the application level as well as the firmware level. Therefore,

it is necessary to provide attestation of the firmware to ensure that the device proves

that it is attested with a trusted remote entity [23]. In addition, authentication is a

process that verifies the identity of the user to access the system, while authorization

is an access control mechanism that determines access rights based on the security

operations performed on the system. To ensure authorized access and bitstream pro-

tection for reconfigurable devices, an authentication and encryption mechanism with

access control functionality is required. Access control involves a set of class policies

to access hardware and software components during execution [24]. Secured commu-

nication channels with multi-level security using PUFs for remote key updates provide

access management and bitstream verification [25], thereby safeguarding the data and

the system from malicious modifications.

2.4 Information Flow Tracking

Heterogeneous System on Chips and IoT devices connected to communication chan-

nels face the risk of information leakage and code injection due to their vulnerability

to untrusted systems. Information Flow Tracking (IFT) technique is a promising

analysis technique for security applications that enables the detection of information

leakage and malicious data in real-time. Different IFT approaches, based on static

verification during the design phase or dynamic checking at runtime, have been im-

plemented. The precision of the IFT logic and the granularity of the building blocks

determine the levels of abstraction. IFT implementations include both hardware and

software-based approaches and depend on the explicit and implicit flow of data to
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design conditional behaviors for the model. In this section, existing IFT implemen-

tations based on precision granularity models will be discussed.

2.4.1 Coarse Grained IFT Models

At the architectural level, Information Flow Tracking implementations offer a secu-

rity mechanism for metadata propagation and security policies by providing a coarse-

grained precision logic with a dedicated tag mechanism. These implementations can

either be hardware-based, depending on the architectural features and datapath of the

ISA model, or coarse-grained models that track control-sensitive information along

with program variables and independent labels. The access and information flow

with tags can be achieved through a dedicated co-processor or a modified ISA with

tag modules. Buffer overflow attacks and memory corruption can be prevented by

identifying malicious data, and IFT models protect the system from these attacks

[26][27].

Several IFT models have been developed to improve security. For instance, Flexi-

Taint[28] is an IFT model that supports an accelerator with tainted security policies

and extends the processor’s datapath for tag propagation. Dynamic Information Flow

Tracking (DIFT) [29] is a hardware-based approach that uses an ARM coprocessor

to track and debug traces using static analysis. Hardware Assisted Data-Flow Isola-

tion (HDFI) [30] and HyperFlow [31] are hardware-based RISC-V implementations

that use a tagged mechanism and security policies for information flow control. Ex-

ploitable Buffer Overflow Detection by Information Flow Tracking (BOFT) [32] is an

automated framework that integrates formal verification with IFT and leverages sym-

bolic execution to provide explicit and implicit IFT with extensive instrumentation

for taint propagation.

Mixed-mode Information Flow Tracking (MIT) [33] provides byte granularity by

using taint semantics at compile time that are dependent on runtime logs, thus decou-

pling the tracking logic from program execution. FineDIFT [34] is a hardware-based
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mechanism that generates data flow graphs of a running process with a coprocessor

to provide flexibility, but the metadata storage requirements result in several limita-

tions of software instrumentation. Kejun Chen et all summarizes the current DIFT

solutions referring to the over tainting problem leading to high false positive rates

[35]. These issues can be addressed by adopting parallel tag propagation schemes and

customizing security policies in IFT models.

Indirect Flow Propagation System (MITOS) [36] uses an analytical algorithm for

indirect flow propagation with an arbitrary number of tag types for flexibility. How-

ever, a tag-based model results in architectural overhead as the memory is modified

to incorporate tag bits, or if complex lattice structures are built to secure the data.

An efficient model should limit hardware design overheads and provide IFT capabil-

ities in hardware design. In such models, the tagging mechanism assigns a tag bit

to untrusted data and tracks the propagation of the data using the tag bits. For

example, incoming data from an untrusted source (input) is assigned a tag bit, and

the IFT module tracks the data using the tag bits value to indicate if the data is

spurious or safe. All incoming data is assigned a tag bit with the value 1 indicating

that it is unsafe, and 0 for trusted data. If the data is copied to string1, it is identified

as an untrusted source, and the IFT module tracks the data. Figure 2.3 shows an

illustration of this process.

Figure 2.3: Tag bits assigned to untrusted sources by the IFT module
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2.4.2 Fine Grained IFT Models

The implementation of IFT also includes fine-grained models with data labels asso-

ciated only with data flow, instead of focusing on control flow transfers. A gate level

IFT model is a fine-grained model associated with Boolean gates, where the informa-

tion flow appears at the gate level netlist, providing better precision logic. GLIFT

[37] is a shadow logic-based technique that adds logic to all the gates, resulting in de-

sign complexity and overhead. Several techniques have been implemented using data

flow logic [38] as the backbone, including optimized labelling and enhanced encoding

techniques [39] [40] [41], which help reduce complexity but affect the precision logic

of the system. The asset based GLIFT [42] model provides structural checking with

security properties.

Gate level-based leakage detection [43] detects the leaky path with parser and logic

modules for formal verification but results in intense computation complexity for large

designs. The multi-bit label tracking model [44] quantitatively detects the information

leakage with area constraints, where the multi-bit labels are directly proportional to

the number of gates in the circuit. A unified model for gate level propagation [45]

generates synthesizable propagation logic to be used in EDA tools where the attribute

labels at different levels of precision are addressed for faults with the flexibility to be

used in different emulation platforms.

A gate level based IFT model consists of gates and shadow logic for all the gates,

as shown in Figure 2.4 A separate shadow logic is implemented for each gate, (a

and b are the inputs with an output o) where the shadow consists of the inputs

along with untrusted inputs that affect the output. This scheme results in additional

area overhead. Therefore, approaches that reduce the complexity of the gate level

model and enable tracking of data critical modules, such as crypto engines and secu-

rity accelerators, rather than tracking the whole module, enhance the overall system

overhead.
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Figure 2.4: Gate level IFT with shadow logic

2.5 Trusted Execution Environment

The Trusted Execution Environment is an execution environment that provides

security features through isolation of software and data [46]. TEE based on ARM

TrustZone technology provides a mechanism to isolate security-critical components

in a system [47], while Intel SGX enclave is used in modern processors to protect

privilege levels by authorized functions [48]. Other architectures used for security-

critical applications include AMD Platform Secure Processor, AMD Memory Encryp-

tion Technologies, Intel Management Engine (ME), Open Portable TEE, and various

Platform Security Architectures (PSA).

In the ARM TrustZone technology, the software is partitioned into two worlds to

prevent software attacks, where the secure world protects critical data and the non-

secure world executes the normal operating system [49]. The secure monitor call acts

as a bridge between the two worlds. Once the system boots, the processor enters the

secure world of the TEE, and once all privileged operations are completed, it switches

back to the normal world and yields control to the bootloader [50]. Data routed to

a specific world is controlled by system operational modes and device configuration.

TEE provides secure trusted services, such as authentication and remote attestation,

to protect application integrity. TEE-enabled authentication from a remote device

can mitigate phishing attacks [51]. TrustZone architecture uses identity authentica-
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tion to provide run-time authentication and data protection mechanisms to verify

private data and ensure data access security using Application Program Interface

(API) calls [52]. The Programmable Logic (PL) master dynamically configures data

using the Application Extensible Interface (AXI) interconnect signals, and a secure

authentication scheme can be achieved using the secure slave key transaction with

the master [53].

2.6 Logic Obfuscation

Logic obfuscation is a technique that enhances the security of a design by inserting

key gates to the original design, thus locking the netlist. This makes the functionality

of the design hidden and only allows the correct key combination to unlock the design

functionality. By inserting key gates, the locked design produces corrupted outputs

if an adversary tries to access or modify the design. Figure 2.5 illustrates a modified

logic locked equivalent circuit for the c17 circuit, with key gate insertion. An input

sequence of 10011 with the correct key combination of K0 and K1=11 produces the

corresponding outputs X and Y as 01. However, if the key combination is wrong

(e.g., 00), the output of the circuit is modified, and the design becomes erroneous.

Nonetheless, attacks such as the Boolean satisfiability attack can eliminate the wrong

key combinations using the distinguished inputs, effectively breaking the logic-locking

techniques.

Figure 2.5: Logic-locked circuit with two new key gates added in C17 circuit



17

To prevent such attacks, SAT resilient techniques such as SARLock and TT-

Lock make the attack iterations grow exponentially with increasing key size [54][55],

whereas Anti-SAT provides tuning flexibility for the key gate configurations [56].

Furthermore, schemes such as SFLL remove a functional logic block and restore the

original logic using Hamming distance [57], while fault-based logic encryption lever-

ages EDA tools to insert key gates with fault impact metrics [58]. These techniques

are useful for intellectual property protection and can also be extended to applications

of secure boot.

2.7 Security Models

Most of the traditional architectures have limited capability to implement security

features necessary to secure devices from different types of attacks. The main reason

for this is the lack of flexibility as the developers of proprietary architectures do not

offer security enhancements due to the associated performance tradeoffs. RISC-V

architecture, on the other hand, provides this flexibility to customize the design of a

system with reconfigurability and system security. The following section describes the

security models, features and vulnerabilities in the existing traditional architectures

and provides a RISC-V compatible countermeasures by taking into consideration the

possible threats in the SoC design and Architecture Platform.

2.7.1 ARM Trustzone

The hardware-assisted TrustZone feature in the ARM-centric processing system

provides a secure implementation, while the FPGA fabric holds the programmable

logic and uses the AXI bus to communicate with the processing system. The intellec-

tual property cores are partitioned into secure and non-secure worlds, providing iso-

lation. The ARM TrustZone includes the TrustZone Memory Adapter (TZMA) and

TrustZone Address Space Controller (TZASC), which establish partitions between

memory and peripheral units for both worlds. However, modern designs with large
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stacks of libraries and optimized functions are vulnerable to cache-based side-channel

attacks. Key extraction from secure crypto engines is possible by compromising the

non-secure world Operating System (OS) or by tracking power or Electro Magnetic

Field (EMF) signals during key exchanges [59]. The ARM TrustZone is susceptible

to hardware attacks such as malicious modification of secure IP, denial of service, re-

source denial, and port attacks [60]. While configuring the NS bit along the AXI bus is

simple and effective, managing the structure in a multi-core environment is challeng-

ing. Incorporating additional security enforcements for optional memory controllers

outside the Cortex-M TrustZone Architecture is necessary. Figure 2.6 illustrates the

ARM TrustZone implementation, which includes various units and cores.

Figure 2.6: ARM TrustZone implementation

2.7.2 Intel SGX

Intel SGX allows for the protection of application address mappings and provides

enclave memory access semantics [61]. The enclaves are secure regions of memory
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that are protected from any access or modification. These enclaves are encrypted

and decrypted on the fly, providing hardware-isolated trusted environments. Figure

2.7 shows the basic operation performed in the SGX model. In this model, an un-

trusted application invokes a trusted function inside the enclave, which cannot be

accessed by any other application. This model achieves confidentiality of the code

with isolation and protects against integrity violations from software attacks. The

Processor Reserved Memory (PRM) holds the enclave page cache and is protected

from any non-enclave memory accesses. However, the downside of this model is that

the enclave gains full access to the entire address space of the untrusted application,

which makes it vulnerable to enclave malware.

Figure 2.7: SGX Model

Furthermore, the enclave is vulnerable to cache based side-channel attacks, and

software based side-channel attacks have been targeted on co-located SGX enclaves

to extract Rivest Shamir Adleman (RSA) private keys [62]. Although most modern
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Intel processors feature Hyperthreading, SGX does not prevent it, allowing malicious

software to execute system threads. Additionally, the Intel-specific architectural and

microarchitectural model with SGX’s security features is not publicly available, which

limits the ability to develop a trust model by customizing TEEs without proprietary

rights. Bridging the support for more than one hardware-enforced isolated domain is

not possible with the traditional architectures.

2.7.3 RISC-V

RISC-V is an open-source architecture that provides a highly flexible and customiz-

able platform for implementing different levels of security in a system. Unlike SoC

with 3PIP proprietary architecture, RISC-V’s extensible ISA with minimal instruction

set allows for the implementation of a customized processor that can support several

security applications. For instance, the Common Evaluation Platform (CEF) can be

used to identify the security properties of a RISC-V system [63]. The RISC-V secu-

rity committee has proposed an abstraction-augmented aISA that extends a bridge

between hardware and software beyond the traditional ISA for control [64]. RISC-V

Multizone Security by Hex Five provides a hardware-enforced software defined sep-

aration with multiple TEEs [65]. With the benefits of RISC-V being open-source,

especially in the security context, different modules can be implemented to secure

the system from different kinds of attacks [66]. The physical memory protection pro-

vided by this architecture is used for authenticating the execution of trusted nodes.

Integration of hardware cryptographic accelerators, key management, and security

extensions are made simple using available open-source frameworks. Multi-threaded

enclaves with memory-mapped resource protection are achieved by different RISC-V

security implementations modules.

Additionally, RISC-V supports various extensions like Multiplication(M), Atomic

(A), Single precision (F) and Double precision (D) floating point, which are collected

into (G) extension that provides a general-purpose scalar instruction set. As RISC-V
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based systems continue to grow rapidly and new security vulnerabilities emerge, it is

important to add some security features to RISC-V processors. Figure 2.8 illustrates

the block diagram of Freedom E31 core with RISC-V ISA Specification, which sup-

ports 32, 64, and 128-bits instruction widths and four different instruction formats:

R-type, I-type, S-type, and U-type. The processor is written in Chisel HDL (based on

Scala language). The flexibility of the RISC-V architecture also supports RISC-V ex-

tensions to support the IFT model, which provides a strong timing sensitive security

behavior that is otherwise not possible with traditional ISAs.

Figure 2.8: Freedom E31 core with RISC-V ISA Specification

Some of the existing information flow tracking models on RISC-V are tag based bare

metal and PULPino based model to protect the system from memory attacks [67]. Liu

et al [68] enforced a hardware extension of RISC-V SoC with static analysis to generate

control flow graphs. Samuel et al [69] present an augmented tag isolation mechanism
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to improve the dynamic reuse of untrusted memory across security boundaries by

sharing execution stacks with real-time constraints. Isadora [70] framework uses a

minimal testbench to run an automated trace generator for information tracking

limiting access to the full RISC-V toolchain. Table 2.7.3 provides RISC-V compatible

countermeasures by taking into consideration the possible threats in the Trusted

Execution Environment, and the SOC design and Architecture Platform.

Table 2.1: RISC-V compatible countermeasures

Threat Models RISC-V compatible countermeasure models

Cache-Timing Attacks Transparent Hardware-Protection Layers with

memory access leakage protection [71][85]

Side-Channel Attacks Core hardened resilient models with hardware

Accelerators and virtual TEEs [71]

Denial of Service and Memory

Attacks

Information flow tracking models tracking the flow

of the data to protect memory corruption and

mitigate DoS attacks by attestation models [86][87]

Malware Insertion Secure boot for SoCs along with data tracking

models [71]

Supply Chain Attacks Logic Obfuscation with SAT attack resilient model

for the SoC platform[71][102]



CHAPTER 3: SECURITY-AWARE DESIGN FLOW FOR BITSTREAM

SECURITY

3.1 Introduction

Reconfigurable devices offer flexibility in dynamic reconfiguration features, but they

are susceptible to bitstream modifications that can compromise the security of the

device. An attacker can tamper with or insert hardware trojans into the bitstream

during boot time or runtime if they have physical access to the configuration bit-

stream. To protect the bitstream during boot time, a secure boot with authentication

can be implemented, which provides a root of trust. However, this can be bypassed

by tampering with the device boot process using the Processor Configuration Access

Port (PCAP) or Internal Configuration Access Port (ICAP) ports. Existing solutions

like PUF modules [15] [16] [72], over-the-air updates, and TPM-based key manage-

ment systems provide bitstream protection and authentication, but they may not be

enough to prevent malicious modifications in configuration files [73][74].

Though these models provide bitstream security during boot time the PL can be

replaced to perform different operations by replacing it with malicious bitstreams. To

protect the application bitstream during runtime, various designs for trust techniques

have been developed [75][76][77]. For instance, logic locking schemes are used to secure

gate level IPs from bitstream reverse engineering, while ARM TrustZone provides

isolation to secure critical applications by enforcing secure transactions during device

authentication. This chapter presents the threat model for boot process and run time

security and proposes a multi-layered security framework to mitigate malicious code

modification during boot-up and runtime.
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3.2 Threat model for Boot Process and Runtime Security of a Reconfigurable

Device in the Field

Considering a reconfigurable device in the field in a client-server model that com-

municates with the server with critical data transactions. Authorized access control

must be provided for secure communication between the client and the server module.

Thus, the section represents the threat model during boot-up process and the runtime

vulnerabilities.

3.2.1 Boot-Time bitstream modification

An adversary can redirect the normal execution flow of code to an unauthorized

piece of code by hijacking the boot process. The Processing System (PS) controls the

PL bitstream during boot up where modifications to the bitstream can be made via

field configuration or other communication ports. Hardware trojans present in the

system can be triggered to replace the PL logic to perform different tasks. In bitstream

spoofing with relay and replay attacks, an adversary acts as an authenticated client

to replace the original bitstream with a malicious one. Unauthorized memory access

through hardware cores leaks critical data which can break the boot process on FPGA

SoCs [78]. Authentication keys stored in the memory can be easily accessed through

malicious hardware cores leading to system compromise by modifying the boot loader.

3.2.2 Runtime attacks

At runtime once the bitstream has been loaded an attacker may target dynamic

reconfigurable partitions or may want to target certain portions of the configuration.

Bitstreams must be encrypted to prevent IP theft and cloning and authenticated to

eliminate tampering and trojan insertion. Extraction of the bitstream encryption

keys leads to several runtime attacks such as:

• Side-channel bitstream key extraction: Extraction of the keys through different

communication channels.
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• Architectural model attacks: Hardware cores targeting the configuration files

to bypass authentication.

• Bitstream Tampering: Manipulation of critical functions and targeting pr-

configuration files to modify the bitstream.

3.3 Secure Design Flow

This work focuses on bitstream security to mitigate malicious code modification

during the boot-up process and runtime. It provides a multi featured secure design

where when the device powers on, a secure boot authentication is done using the

PUF mechanism which generates a unique challenge-response pair in a client-server

environment. Once the authentication is done a logic-locked mechanism based bit-

stream obfuscation is done to the application bitstream and programmed in the PL

which provides secure IP isolation using the ARM TrustZone configurations. In addi-

tion, to eliminate tampering attacks, the key to unlock the logic-locked bitstream is

securely stored in the TPM and through secure communication, it is used to unlock

the bitstream.

3.3.1 Secure Boot Mechanism

During the boot process, the initial stage provides authentication for the bitstream

with a unique key response generated by the PUF, followed by applying a logic-

locking mechanism to the application logic. The PUF generates the per-device unique

responses using input challenges, and during the enrollment phase, the verifier and

the prover generate challenge-response pairs which are encrypted using AES core to

prevent unauthorized access.

The client enrolls with the server in a trusted environment to receive the authenti-

cation bitstream, which is loaded during the boot process. The Hardware Embedded

Delay PUF (HELPPUF) [79], which is based on path delay variation, generates the

challenge-response pairs for authentication. The server sends the input challenges to
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the client, and the responses gathered in the server produce a unique key for authen-

tication. The first stage bootloader loads the authentication bitstream on the PL

fabric, and the PUF generates a response using the unique challenge and response

pairs provided by the TPM.

In the reconstruction phase, authentication is done using the unique per-device

key, and the PUF response is processed to generate a secret key for decrypting the

encrypted application bitstream. The First Stage Boot Loader (FSBL) overwrites

the authentication bitstream with the application bitstream, establishing secure com-

munication between a client-server model. Custom device drivers are used to enable

communication with TPM during the secure boot process to provide secure extensions

for key storage [15], and TPM securely stores the keys generated during runtime to

mitigate malicious intrusion. The overall key exchange mechanism for authentication

is depicted in Figure 3.1.

Figure 3.1: Secure boot authentication and key exchange process
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3.3.2 Obfuscation Framework

The secure boot flow is integrated with a logic-locking automation framework, al-

lowing key gates to be inserted at either the Register Transfer Level (RTL) or netlist

level. To safeguard gate level IP, the key gates are inserted into the gate-level netlist

using the insertion scheme illustrated in Figure 3.2. The flow is generated and imple-

mented with Synopsys tools and Vivado via the automated framework, which ensures

IP reuse security by integrating key gates into the design process. Utilizing solely the

RTL code increases the vulnerability of the design to reverse engineering by potential

adversaries. The framework is designed to switch the implementation method based

on the input file type, with the ABC tool [80] being used to convert input files to

Verilog. The generated test bench utilizes the input Hardware Description Language

(HDL) to produce a set of vectors to verify the design.

During synthesis, the Synopsys tool transforms the RTL into a gate-level netlist.

Two encryption-based logic locking schemes, SARLock and fault-based encryption,

are included in the experiment to enhance resistance against SAT attacks. SARLock

exponentially increases the key size to generate computational complexity, guarantee-

ing that a single key produces a fault for any input pattern. Fault-based encryption

integrates a fault impact metric [81] to determine the highest fault impact and max-

imize the effectiveness of each gate inserted in the design. The key produced by logic

locking is stored on the server, and any attempts to tamper with the bitstream result

in a corrupted or incorrect output, rendering it impossible to clone the IP. During

runtime, without the correct key provided from the server, the original application’s

functionality remains unknown and challenging to break. After successful device au-

thentication, the correct key is sent from the server and stored in the device TPM.
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Figure 3.2: Key Gate Insertion Framework

3.3.3 Secure IP Using ARM TrustZone

The ARM TrustZone configuration provides accessibility of MIO ports through

the secure world. Key storage for the TPM is integrated with the FPGA via the

SPI interface and the TPM driver library. To establish secure communication at the

FSBL for secure boot, transfer functions are implemented. Using AXI interconnects,

PS configures registers to design a secure IP in the PL, with the AXI interconnect

providing the IP security status parameter. After secure boot authentication, the

ARM TrustZone loads the logic-locked bitstream on the secure IP of the PL. If an

unauthorized master attempts to access the secure IP, the secure IP raises an error

signal, with NS bits on the AXI bus indicating the security transaction status.

The AXI bus comprises five communication signals, as depicted in Figure 3.3, to

establish communication between a master and a slave. ARPROT and AWPROT

signals are used to determine whether read/write access is granted to secure and non-
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secure IPs. Depending on the NS bits, the slave checks for security violations, and

transactions are completed with read or write signals. To monitor the master-slave

interface’s AXI-transactions, a core wrapper is implemented. The wrapper ensures

that only authorized transactions are permitted, and any configuration modification

raises an exception. Secure transactions take place in the secure IP of the PL using

ARM TrustZone. After device authentication, the key to unlock the bitstream stored

in the TPM is securely sent to the secure IP.

Figure 3.3: AXI communication signals

3.4 Implementation and Experimental Results

The hardware setup for the proposed framework on the Xilinx Zedboard FPGA,

equipped with Zynq-7000 XC7Z020-CLG484, incorporates the ARM Cortex A9 pro-

cessor and TPM SLB9670 module, as shown in Figure 3.4. To generate unique key

pairs, the HELPPUF component is integrated into the existing hardware functions

[79], and the device-unique encryption key is generated by the PUF. This 128-bit en-

cryption key is then utilized by the AES cryptographic core for bitstream encryption

and validation. The system block with PUF IP and AES IP are added as secure

slave registers with a custom configured system wrapper, and each General-Purpose

Input Output (GPIO) port is 32-bit wide. Once device authentication is completed,
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the authentication bitstream is programmed into the PL and verified with the PUF

generated keys before the logic-locked application bitstream is sent from the server

to the device.

Figure 3.4: Hardware setup

The obfuscated automated framework with SARLock and Fault-based encryption

is tested using circuits from benchmarks including the ISCAS-85/89 suite [82]. For

fault-based encryption, the circuits are analyzed using the ABC tool [80] to generate

bench and Verilog files, and the fault impact is calculated using the stuck-at fault

analysis. By using the fault impact provided [83] in which using the stuck-at fault

analysis the Fault impact = (#test patterns detecting sa0) x (#output bits affected

by sa0) x (#test patterns detecting sa1) x (#output bits affected by sa1) is calculated.

Key gates are inserted for the highest calculated fault impact, which protects the IP

from reverse engineering. This design offers flexibility to control corrupt outputs and

maximize design complexity for the attacker by targeting 50% Hamming distance

with a smaller number of key gates, significantly reducing the area overhead. Figure

3.5 shows the system block with PUF IP and AES IP added as secure slave registers

with a custom configured system wrapper.
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Figure 3.5: System block with secure IPs

Table 3.1 shows the fault impact summary for the ISCAS- 85/89 benchmarks with

different sets of test patterns. This shows the fault coverage along with the faults

detected at different gates to compute the fault impact for logic encryption. Based

on the fault impact factor Table 3.2 shows the average Hamming distance calculated

for the benchmarks with a range of key sizes between correct and incorrect outputs

to obtain a 50% Hamming distance with a smaller number of keys to preserve the

complexity of the locked design. Figure 3.6 shows the Hamming distance between the

outputs of designs on applying the correct key and a random wrong key. The whole

framework is automated along with functional verification for the generated netlist

using input test vectors. The key generated during logic obfuscation is stored on the
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server and upon mutual authentication, it is sent to the secure IP and stored on the

TPM. The secure IP and AXI interconnect implemented by using the TEE is used

to eliminate non-secure transactions and other AXI attacks. By using an isolation

design flow, the isolated secure IP block will have separate resources and ports for

transactions.

Table 3.1: Fault impact summary for the ISCAS- 85/89 benchmarks

C17 C432 C499 C7552 S510 S641 S713 S1196

No of primary

inputs

5 36 41 207 19 35 35 14

No of primary

outputs

2 7 32 108 7 34 23 14

No of test patterns

applied faults

224 224 224 20000 224 20000 20000 20000

No of detected

faults

22 472 1271 7550 561 402 475 1217

No of undetected

faults

0 28 83 440 3 65 107 25

Fault coverage 100% 94.4% 93.0% 94.2% 99.5% 86.1% 81.6% 97.9%

Table 3.2: Average Hamming Distance (50%) for the benchmark circuits with different
key sizes

Benchmark C17 C432 C499 C7552 S510 S641 S713 S1196

Range of Keys Size 2-5 17-20 39-42 50-60 41-47 25-32 25-30 8-20

Hamming Distance

(%)

50 50 50 50 50 50 50 50
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Figure 3.6: Hamming distance between the outputs of designs on applying the correct
key and a random wrong key

The master-slave ports with dedicated memory space are used for memory transac-

tions (GP AXI Ports). The keys are stored in TPM with driver functions and through

authorized configuration, the application is unlocked. Thus, unauthorized transac-

tions and readback modifications are blocked by using the isolation technique. To

secure the key from non-secure IP and AXI attacks, 128- bit AES encryption is done

to the logic-locked key in the Secure IP. If any non-secure IP tries to access the key,

only the encrypted version of the key will be available which makes it more secure.

Figure 3.7 shows the serial terminal in which the secure IP gets the key from the

server for the logic-locked application and saves it in the TPM and does 128-bit AES

encryption to the key to camouflage the original key. This model provides security

policies such as authorization by the user to update the system once the verification is

done. Transactions with the Secure IP is not possible by any Non-Secure IPs(master)

which eliminates illegal memory access. The AXI wrapper with custom IP creates

a bridge between the PS and the PL. Configuration registers for the AXI ports are

defined for the security policies of the application.
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Figure 3.7: Design using AXI GPIO Ports for Secure IP

3.5 Security Analysis

The implementation of a secure boot with various security features for reconfig-

urable logic is crucial in forming a resilient model against malware attacks. The

proposed framework incorporates the following security properties:

• PUF-based challenge-response pairs are used for mutual authentication, pro-

viding a unique set of key pairs for authentication between the device and the

server.

• The PUF keys are employed for decrypting the logic-locked application bit-

stream, and the logic-locking key is shared by the server after the authentica-

tion process is completed. The keys are securely stored on the device’s tamper-

resistant memory, and the TPM module mitigates invasive attacks aimed at
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acquiring the key.

• The logic-locked bitstream produces corrupted output if the authentication fails,

making it practically impossible to clone the IP. Additionally, the original func-

tionality of the application remains unknown and difficult to break during run-

time.

• Fault-based encryption analysis using the fault impact metric and Hamming

distance shows that even with a smaller number of key gates, the ambiguity of

the locked design functionality is preserved. Any single incorrect key changes

50% of the outputs or the functionality, thereby preserving the security of the

design.

• TrustZone IP isolation and wrapper implementation for secure IPs integrating

AXI signals help eliminate unauthorized transactions and readback modifica-

tions from the FPGA ICAP interface. AES encryption provides additional

security by encrypting the keys and camouflaging the original key, protecting

the keys from other access mediums.

3.6 Conclusion

This work investigates the threat model in the boot time process along with run-

time attacks and presents a secure framework to implement logic-locking for runtime

security and extend its application of secure boot process for FPGAs. The automated

framework demonstrates the secure design flow to enable security functions such as

RTL to secure bitstream, logic obfuscation, technology mapping, IP isolation, and

support secure boot applications during runtime. The framework is tested using IS-

CAS 85/89, benchmark suite and is demonstrated on the Zynq 7000 family of Xilinx

FPGAs for secure boot applications with authentication over the fly and secure IP

transactions using TrustZone features.



CHAPTER 4: EXTENSIBLE HARDWARE CRYPTOGRAPHIC ACCELERATOR

FOR RISC-V MODEL

4.1 Introduction

The importance of cryptographic operations in networked computing platforms

cannot be overstated, particularly when it comes to maintaining data confidentiality

and ensuring secure communication. SoC design models rely heavily on algorithms

like AES for encrypted data storage and RSA/ECC for key exchange during pro-

tected communication [84]. Hardware models require security policies such as key

management and information flow to support ISA extensions.

However, the efficient and secure sharing of resources from crypto accelerators

presents challenges for applications that require protection against untrusted inter-

faces. Resource sharing complicates data isolation and poses high security risks,

particularly with traditional architectures that are vulnerable to side-channel and

memory-based attacks. Additionally, complex designs that result from implementa-

tion technology, microarchitectural extensions, and other hardware-based approaches

make it difficult to track the flow of integrated models.

To address these challenges, RISC-V-based open-source hardware accelerators have

been developed for extensible and efficient implementation, offering design insights

for future RISC-V core designs and implementations. For example, the Advanced

Encryption Standard (AES) cryptographic accelerator is specifically designed to per-

form computationally intensive encryption and decryption operations, making it an

efficient and beneficial option for client and server platforms.
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4.2 Threat model

To ensure secure data communication in a client-server model, authentication of the

client is required. The AES engine is commonly used for remote authentication, with

different key lengths being used to balance security and performance requirements.

However, implementing the cipher algorithm itself can leave a system vulnerable

to side channel attacks, in which an adversary can obtain keys through timing or

power-based analysis. Multiple security levels in a system and parallel operations can

also lead to secret key leakage, and hidden trojans can obtain unauthorized access by

modifying the boot process and obtaining necessary authentication keys. Considering

these risks, this work focuses on developing an independent crypto accelerator using

the AES algorithm with architectural flexibility, to enable secure attestation.

4.3 Advanced Encryption Standard

AES is a symmetric-key encryption algorithm which is a variant of the Rijndael

cipher. AES has fixed block size of 128 bits with different possible key lengths such

as 128, 192 and 256 bits. Encryption consists of 10 rounds of processing for 128-bit

keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit keys. Except for the last

round in each case, all other rounds are identical with four main sub processing steps.

Figure 4.1 presents the overall structure of AES with a 128- bit encryption key. The

AES operations are performed on a 2-dimensional array of bytes called the state. The

main four steps in each round are:

• Substitute Byte: It consists of a lookup table using 16x16 matrix of byte values

called an S-box. The entire lookup table is created by multiplicative inverses in

GF (28) and it scrambling to eliminate bit-level correlations in each byte.

• Shift Rows: This step involves shifting the row array by the first row of the

state is not altered. The second row is shifted by 1 byte to the left in a circular

manner and similarly, the third row is shifted by 2 bytes and 4th row is shifted
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by 3 bytes to the left. The goal of this transformation is to scramble the byte

order inside each 128-bit block.

• Mix columns: This step is a substitution stage which uses the arithmetic of

GF (28) where each byte of a column is mapped into a new value that is a

function of all four bytes in the column. Each element of the product matrix

is the sum of the products of elements of the one row and one column where

the multiplication operation has been reduced to a shift and XOR operation

making the AES algorithm very efficient o implement.

• Add round key: In this step, the 128 bits of the state are bitwise XORed with

the 128 bits of the round key. A column wise operation between the 4 bytes of

a state column and one word of the round key is done which affects every bit

of the state.

For the encryption process, all the four steps are carried out for all the rounds

except for the last round which eliminates the mix column stage. The Key

Expansion is done to generate a key schedule where it takes a 4-word key and

produces a linear array of 44 words. The key expansion is designed to be

resistant to known cryptanalytic attacks. The decryption process has the same

key scheduler, but the entire process is the inverse of the encryption process.

4.4 Design Implementation and Experimental Results

The AES accelerator consists of different sub modules implemented on the

RISC-V architecture. This work implements a software and hardware-based

AES crypto engine for RSIC-V architecture for securing the critical data by

leveraging the open-source benefits of the architecture.
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Figure 4.1: Overall structure of AES with 128- bit encryption key

4.4.1 AES Algorithm Implementation using Chisel

The AES algorithm is implemented using the Constructing Hardware in a Scala

Embedded Language (Chisel) which is an open-source hardware description language

that is utilized to create digital electronics and circuits at the register-transfer level.

It is an open-source platform that facilitates advanced circuit generation and design

reuse for both FPGA and Application-Specific Integrated Circuits (ASIC) digital logic

designs. By adding hardware construction primitives to the Scala programming lan-

guage, Chisel empowers designers to produce synthesizable Verilog through complex

and parameterizable circuit generators. This allows for the creation of reusable com-

ponents and libraries, such as the FIFO queue and arbiters in the Chisel Standard
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Library, which raises the level of abstraction in design while maintaining fine-grained

control. Chisel is powered by the hardware compiler framework, FIRRTL (Flexible

Intermediate Representation for RTL), which optimizes Chisel-generated circuits and

supports custom user-defined circuit transformations.

The AES algorithm consists of an encryption module, a decryption module, and

a key expansion module. The top module consists of the class engine which holds

the encryption and decryption class bundles with different key stated to perform the

key expansions. Figure 4.2 shows the basic AES algorithm block diagram with the

different modules in which the plain text and key are provided as the input with the

cipher text output. An efficient model which is highly flexible and with less resource

utilization is implemented to support multiple configurations for adaptivity.

Figure 4.2: AES algorithm block diagram

Encryption Module: The encryption process consists of different transformations

applied to the data blocks where each round depends on the length of the key used.

An encryption class is implemented to perform the non-linear substitution using s-box

and cyclic shift operations with different operations. Initially, the algorithm checks for

the encryption engine’s busy cycle for pipeline availability and allocates the required
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cycles based on the valid key size. This is done by using a state machine counter to

initiate and check for the different states such as idle, ready and run and to reduce

the latency. Once the key size and the data are provided it uses the different sub

classes and the key expansion results to perform the different sub operations. Figure

4.3 illustrates the pseudo code for the encryption algorithm.

Figure 4.3: Pseudo code of the encryption algorithm

Decryption Module: The decryption module is similar to the encryption module

but consists of an inverse version of the sub byte, states and mix column array vectors

from the AES LUT implementations to provide efficient area and energy utilization.

It checks for the states to start the engine with valid data and performs the different

operations with inverse mapping. Based on the key size the number of rounds is

performed in an iterative way with a state check. All the transformations applied in

the encryption process are inversely applied to this process. The last round values of

both the data and key are first round inputs for the decryption process.

Key expansion: This module gets the key size (currently the key size is assigned to

be 256-bit with 14 rounds) where the state machine initiates the state to perform the

key expansion operations. The sub words are generated as a product of the previous

round key, a constant that changes each round and a series of S-box lookups for each

32-bit word of the key.

The proposed algorithm was implemented on Arty A7-100T Xilinx XC7A100T
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FPGA in which the RISC-V SiFive Freedom E310 was soft-cored. Figure 4.4 shows

the Hardware setup with JTAG Debugger to flash the program. The top module calls

the class engines to perform the encryption and decryption operations based on the

key size.

Figure 4.4: Hardware setup with JTAG Debugger

Figure 4.5 shows the simulation results consisting of the 128-bit plain text and the

256-bit key in which 14 rounds of iterative operations are carried out to encrypt the

plain text and when the EngReady function signal is high the cipher text is obtained.

For the decryption process when the inverse EngReady function signal is high the

cipher text and key are taken as input for the decryption engine to produce the 128-

bit plaintext. The AES Engine is executed on the RISC-V platform successfully to

perform the encryption and encryption for the 1280-bit text, Figure 4.6 shows the

AES engine running on the RISC-V core.
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Figure 4.5: Simulation Results

Figure 4.6: AES Engine

4.4.2 Hardware based AES Accelerator

The hardware based crypto accelerator consists of the AES core with 2 pipeline-

based models where the first pipeline is used for the transformation of the 16-byte

state and the other pipeline is used for computing the 16-byte key in each round. This

is done by modifying the RSIC-V architecture for state transformation pipelines. In

the first clock cycle the three stages namely: sub bytes, shift rows and mix column

operations are carried out and in the second clock cycle the key expansion with the

round key which is XORed is performed. Figure 4.7 shows the AES block diagram
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with the RISC-V core.

Figure 4.7: AES block diagram with the RISC-V core

The AES core bundle is instantiated to the registers where it is mapped to the

addresses based on the size of the key and data. The AES control status register is

created to control the valid address mapping for read and write operations. The AES

core is implemented in chisel and using generators the Verilog files are generated for

the core. The Tilelink module is used as the interface to interconnect the AES core

with the processor core. The hardware-based model also consists of a state machine

which keeps track of the state of the engine using a counter. Figure 4.8 shows the

AES Algorithm instantiated with the RISC-V core.

Figure 4.8: AES Algorithm instantiated with the RISC-V core
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The AES core is implemented with the most convenient tradeoff between perfor-

mance and complexity: only the functions belonging to one round are implemented

and used iteratively for several rounds ranging from 10 to 14 depending on the key

size. The modified RISC-V architecture with the AES core was soft cored on the Arty

A7-100T Xilinx XC7A100T FPGA. The SoC has been synthesized with an AES core

which contains the state machine, status registers and other data and key registers.

Table 4.1 presents the resource utilization of the AES core on the FPGA. Figure 4.9

and 4.10 shows the relative resource utilization percentage for AES and RISC-V core

with the SoC. The results show very less area utilization as most of the computation

uses the Battery Backup Random Access Memory (BBRAM) for the AES core which

is an efficient model.

Table 4.1: Resource Utilization of the AES core

Module LUT FF BBRAM

SoC 63400 126800 135

RISC-V 54523(86%) 32296(25.4%) 164(121%)

AES 3156(4.9%) 6806(5.3%) 100(74%)

Figure 4.9: Relative resource utilization of RISC-V
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Figure 4.10: Relative resource utilization of AES

The synthesized core with the AES engine is flash programmed to the Artix board

using the JTAG debugger and Figure 4.11 show the hello world application running

on the modified RISC-V core. This acts as an assessment tool consisting of the crypto

engine which can be extended based on the security policies thus providing a secured

SoC platform for remote authentication.

Figure 4.11: Hello world application running on the modified RISC-V core.
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4.5 Security Analysis

A secure hardware based crypto extension is implemented to provide secure encryp-

tion and decryption for a client server model. Chisel based implementation model

highly reduces the long Verilog source-code to just a few lines limiting the mem-

ory usage with additional generator benefits. RISC-V based model provides flexibil-

ity by transplanting the cryptographic accelerators with less performance overhead

compared to traditional architectures. This proposed AES algorithm uses minimal

requirements of clock cycles with fewer hardware resources and can be extended to

other security policies for secure transactions. With the evolving threats in the open-

source, these security extensions provides a layer of security for securing critical data.

4.6 Conclusion

This research investigates the threat model in client-server networks and proposes

a cryptographic AES engine on the RISC-V architecture which acts as a secure exten-

sion for authentication. This provides data encryption and decryption with limited

resources. The research provides an in-depth description of the AES engine, the

software and hardware implementations along with the resource utilization and en-

cryption/decryption mechanism for a secured SoC platform.



CHAPTER 5: COARSE-GRAINED HARDWARE-BASED INFORMATION

FLOW TRACKING

5.1 Introduction

The IFT technique focuses on preventing memory corruption and protects the

return address from software attacks. The IFT technique is a security measure that

focuses on preventing memory corruption and protecting the return address from

software attacks. To achieve this, control data flow integrity is used with tagged bits

to ensure that the return address matches the corresponding address after context

switching, thereby preventing an adversary from hijacking the return addresses. The

tag-based analysis approach is flexible in tracking data records with minimal overhead

if a single bit is used as a tag. To implement this, compiler-based modifications are

made to add the necessary security policies and to assist with the additional new

instructions added to the architecture.

To prevent software attacks that focus on the return address, stack and data protec-

tion is achieved by tracking and detecting the tagged data. In the tagged mechanism,

labels are associated with the address of data received from an untrusted source. The

tag mechanism is implemented with minimal hardware overhead by using a 1-bit tag

for the data address. During program execution, the tag mechanism assigns tag bits

to spurious data through the tag propagation module. The tag propagation module

assigns tags using new custom instructions implemented in the ISA architecture to

store and check the tag bits. To reduce the dedicated memory assigned for storing

tag bits, the tag bits are stored in the tag cache.

The RISC-V Rocket core is modified to incorporate security features at the ISA

level to detect and eliminate buffer overflow and string format attacks. The tag mod-
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ule at the ISA level consists of all the tag management units, and translated com-

piler modifications are developed in RISC-V GNU. A simulation-based IFT model is

demonstrated that translates the architecture-specific extensions to compiler-specific

simulation model with toolchain extensions for RISC-V to verify the security exten-

sions.

5.2 Threat model

An adversary can use an untrusted communication channel to exploit vulnerable

codes by providing malicious inputs to the system. The application is vulnerable

to permitting modification in the configuration parameters through software-based

attacks. In this section, we focus on memory corruption through buffer overflow

attacks and return address attacks.

5.2.1 Buffer Overflow Attacks

Buffer overflow attacks can occur when the stack, which is responsible for storing

temporary variables created by a function, is overwhelmed with excess data provided

by an adversary without proper bound checking. This can lead to the overwriting

of important information such as the return address and base pointer with malicious

data, resulting in system compromise or the execution of malicious code that can leak

sensitive information. Therefore, it is important to implement measures to prevent

these attacks and protect the system’s integrity.
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Figure 5.1: Buffer Overflow Attack

Figure 5.1 shows the buffer overflow attack caused by the sample program. The

memory structure consists of the stack and heap structure along with other sections to

be stored in the memory. Considering the example given, the get (str) can be passed

with size longer than the buffer size causing the return address to be overwritten or

the main function calls the get_fn() and the return address of the main is saved on

the stack. The local variables are created for the get_fn and the specified space is

allocated to the buffer. The gets(str) function which is highlighted gets an I/O string

data that is received from a communication channel. If an adversary takes control of

the I/O channels providing data that exceeds the limit of the buffer capacity, it results

in a buffer overflow and overwrites the return address. Thus, buffer over attacks needs

to be detected and eliminated before the return address is modified by using security

policies which assign tag bits to the data return address.

5.2.2 Return Address Attacks

The return address attack, also known as the return-to-libc attack, is a major threat

that must be addressed [85]. An attacker can modify the return address through a

subroutine, injecting hidden code that can execute in the background without de-

tection. Unlike other attacks, this method does not require an executable stack or
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shellcode but instead causes the main code to jump to a malicious program.

Figure 5.2 illustrates how the return address can be affected by input data from

an untrusted communication channel during a procedure call. In this scenario, the

stack is adjusted to make room for 3 items, including the saved values of the a1 and

a0 registers and the return address. The normal load/store operations are used to

implement this process, making it easy for an attacker to modify and overwrite the

return address during context switching. This can result in the execution of hidden

functionalities and data leakage without being noticed.

Figure 5.2: Return Address Attack

To protect against such attacks, most systems use address space randomization

protection. However, this technique is vulnerable to side-channel attacks. To protect

against return address attacks, new custom instructions can be implemented to track

the flow of the address using tags in an IFT model.

5.3 RISC-V Architectural Design Approach

The proposed scheme consists of the Hardware IFT mechanism for data tracking

framework with a tagged mechanism. The architectural model consists of the RISC-

V platform for implementation in which by adding security extensions to the model

it detects and eliminates the software attacks which corrupt the memory. Security
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policies are written to secure the system from different untrusted sources and by

protecting the return address with an extendable tag mechanism. The tag mechanism

module consists of different units which are used to assign tag bits and track the

propagation of the tags during run time to detect spurious data.

5.3.1 RISC-V Core

The RISC-V core which features both 32- and 64-bit variants has fixed-length

32-bit instructions with variable length encoding for customizable applications [66].

This feature leverages the ISA to extend the instruction-set extensions. Being a load-

store architecture, in which only load, and store instructions access the memory the

IFT model focuses on the load and store instructions to check the integrity level of

the memory contents. The loads are encoded in the I-type format and the store

instructions are encoded in S-type format. Two new instructions are added in the

ISA which is used in providing security checks for the 1-bit tag in the tag mechanism

[86]. Based on the load and store encoding specified in the RISC-V core the new

instructions are:

• In the load instruction encoding: LDTCHECK

• In the store instruction encoding: SDTCHECK

The new store instruction encoding is used to store data and assign a tag bit to the

address of the data assuming the data to be spurious and the new load instruction

encoding is used to load the data and check if the tag bit is 1 or 0. A new tag module

is created, and an array table is assigned for the tag bits making it separate virtual

access with a tag cache instead of the memory. The Control and Status Register

(CSR) which offers custom address space for unused addresses is used to assign a

new status for the tag values and mismatch conditions which results in an exception.

The core is extended to add the tag bit along with the read and write requests to

accommodate the new tag bit. The tag module is used to check the address of the
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load and store instructions which reduces the overhead in the architecture.

5.3.2 Tag Mechanism

The tag module consists of the tag initialization, tag propagation and tag checking

modules. Usage of 1-bit tags reduces the overhead and additional memory access

since all the tag mechanism is done separately in the tag cache. The tag initialization

module assigns tags to all the data addresses from untrusted sources using the newly

added custom instructions. The main purpose of the tag propagation unit is to track

the tag bits from all the data addresses and store the details of the tags in the tag

cache. Minimal information along with the path is stored in the tag cache to avoid

overhead. Finally, the tag checking module is used to check the tag bits for all the

data addresses after a procedure call and if there is a mismatch in the tag bit then

an exception is raised. The checking unit checks all the properties associated with

the security policies for the data. Based on the security policies the data is assigned

as spurious and tracked completely to protect it from being modified or it affecting

the memory leading to different attacks. Figure 5.3 shows the overall system design

with RISC-V core Tag mechanism to protect the memory from software attacks.
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Figure 5.3: IFT design with RISC-V core

5.3.3 Security Policies

Potentially malicious I/O channels are identified by specifying the security policies

for the system. Focusing on memory corruption the security policies are associated

with the load/store instructions and the return addresses. All user supplied data is

marked as malicious since it uses the load/store instructions with source and desti-

nation addresses. The program counter value is also tracked as the return address

should be protected from modification. The tag check rules are applied to the newly

created custom instructions tag bits and an exception is raised if the tag values mis-

match which eliminates the attack. If a conditional branch instruction is performed

the tag check module checks for the address using the tag bits and permits the execu-

tion only if the tag bits match with each other or terminates the call thus providing

a coarse granularity model with better precision. The security policies implemented

for protecting the return address assign checking rules for tracking all the procedure

calls along with user input data.
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5.4 Compiler-Specific Simulation Model

Many simulators use different techniques and technologies to achieve the required

architectural specifications and one such RISC-V ISA simulator is the Spike simula-

tor which adapts the ISA specifications and acts as a reference model for RISC-V.

This paper focuses on extensibility and modifying the simulator with new security

extensions with verification for runtime attacks in the RISC-V simulation model.

A software simulation model that highly correlates with the hardware model with

verification and runtime execution for the IFT technique.

The major goal of compiler/assembler modification is to extend the ISA for several

instruction set extensions. Spike ISA simulator is used to test the modification of ISA

on the software level and is divided into different modules. Each module is responsible

to simulate a block of architecture and adding new blocks in the simulator yields

new security extensions in the model. The initial step is to declare the instruction

to its instruction format to generate matching and masking address values for the

instruction. Then the new instructions corresponding to the matching address and

master address are introduced by describing the instruction length, operands, and

functionality like the hardware model. Figure 5.4 shows the filed format for the

RISC-V architecture to add the new instructions in the RISC-V opcode structure.

The highlighted red fields are modified to accommodate the new instructions in the

toolchain. The check tag and store tag functions are implemented to execute the tag

condition for the return address along with security policies to determine the tagged

flow.

Figure 5.4: Field Format to add new instructions in RISC-V

To simulate the newly added instructions on the Spike simulator the tag module
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is added with functions to check and store the tag bits. For the IFT simulation

module, a threat model with a buffer overflow attack in which the user input data is

untrusted is implemented and the IFT model identifies the return address modified

by eliminating the attack. The location of the stored return address on the stack is

retrieved by intentionally causing the buffer overflow attack. The toolchain support

provides the flexibility to add security policies and develop test beds to carry out

security analysis for RISC-V ISA with minimal design overhead and better precision

logic.

5.5 Experimental Results

5.5.1 Architectural Model

In the Tag Module architecture, the tags that are labelled for the return addresses

and data are processed and all the information is stored in the tag cache. Similar

to the load/store instructions the newly created tag-based instructions are used for

adding tags to only the return addresses and the user defined data. Figure 5.5 shows

the pseudo code for the tag module with tag cache where a class is created for the

tag cache with various tag parameters. Check functions are implemented for tag

matching and checking alone with a counter to maintain the tag array for the tag

cache and updated based on entries. Security policy functions are written to fetch

the tags and match the tag bits for validation.
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Figure 5.5: Pseudo code for Tag Module with Tag Cache

The Xilinx Artix-7 FPGA board is used to run the modified RISC-V rocket chip

with Vivado. User defined application is modified to run a simple buffer overflow at-

tack to test the architecture. Thus, the overall increase in the usage of LUT resources

does not exceed 1% and the processor performance is not affected as the tags are

processed in parallel and independently along with the instructions. Table 5.1 shows

the comparison of resource utilization of the proposed design with the Cryptographic

Return Address Stack (CRAS) architecture.

Table 5.1: Resource Utilization of IFT Module

Architecture LUT FF

Proposed Tag based

IFT

10528 7113

CRAS 11468 6130
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5.5.2 Simulation Model

The IFT framework is tested on the Spike simulator by implementing a buffer

overflow attack program. The new instructions are used with the stack operations

where the return address is saved. Tag bits are assigned to the return address and

the data to be stored on the stack. If there is a mismatch an exception is raised,

and the program execution is stopped by eliminating the buffer overflow attack. The

newly added SDTCHECK is used to assign a tag bit for the return address and the

LDTCHECK is used to check the tag corresponding to the return address in the tag

cache. This framework protects the stack by using customized instructions where the

new return address compromised by an adversary is not loaded on the stack.

Segmentation fault occurs if the allocated memory address is exceeded but if by-

passed it may access restricted locations and an adversary can gain access to the

return address. This proves that even though the segmentation fault exception ex-

its the program execution and avoids the program to access the protected memory

location stored on the stack, it can still cause leakage of critically important data.

When this is bypassed, the program executes on conventional RISC-V architecture by

successfully executing the buffer overflow attack by modifying the return address and

to eliminate such memory attack the IFT model is applied resulting in an exception

to terminate the process. The model identifies the modification of the return address

and stops the program execution by raising an exception to eliminate the buffer over-

flow attack as show in Figure 5.6 which illustrates the buffer overflow attack executed

successfully without the IFT model on RISC-V and Figure 5.7 show the IFT module

tracking the return address and eliminating the attack by raising an exception when

the return address is modified.
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Figure 5.6: Buffer overflow attack in RISC-V Architecture without IFT module

Figure 5.7: IFT module implemented eliminating the attack by exception

5.6 Security Analysis

The security extensions provided by the proposed framework to eliminate memory-

based attacks are analyzed.

• The RISC-V model is vulnerable to leaks such as buffer overflows, return address

attacks, fault injections etc. An adversary can modify the bit flips or the return

address of the application leading to compromised data. The data flow of the

security critical data is analyzed for accuracy by the tag module providing

runtime protection for data integrity.

• This scheme provides the flexibility to add new security policies and develop

test codes and software programs to carry out security analysis for the custom

ISA.

• Provides coarse grain granularity by precisely tracking the implicit and explicit

data flow and control flow paths with less area overhead.
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• The simulation model with toolchain extensions supporting custom ISA is flex-

ible to add new security policies for security analysis. It supports the archi-

tectural design and verification of security extensions to the RISC-V processor.

This model acts as a security standard for accelerating the security verification

from an architectural aspect to compiler specific verification.

5.7 Conclusion

This work investigates the threat model with untrusted channels leading to memory

attacks and proposes a hardware-based information flow tracking mechanism to track

the data form untrusted channels by modifying the RISC-V core. The hardware

architecture specific extensions are translated to compiler specific simulation model

with minimal design overhead and verified with an attack model. Hardware design

uses 1-bit tags with separate tag cache for tag storage with less than 1% of area

overhead and better precision logic. A secure RISC-V extension has been implemented

by considering the security objectives for a SoC Platform assessment model.



CHAPTER 6: MULTI GRANULAR LEVEL BASED INFORMATION FLOW

TRACKING

6.1 Introduction

Gate level IFT tracks information at fine granularity by targeting the gates [38].

This approach is used to detect the leakage of sensitive data and integrity violations

of untrusted inputs. In GLIFT, for a given set of inputs, tainted bits are assigned,

and the flow tracking is determined by tracking the outputs of all the tainted input

bits. If the output is affected by any changes in the tainted inputs, then the output

is marked as spurious. This approach is precise but does not ensure if the untrusted

data is spread across the whole datapath and leads to architecture inflexibility. Thus,

GLIFT model can be used to implement an architecture that can track the data

for certain data critical modules leading to an efficient precise logic with minimal

overhead. The work focuses on the gate level design to target on a specific security

critical module and the datapath of the module to be executed is tracked. The design

aims to detect the tainted triggering inputs that affect the output. The proposed

scheme reduces the complexity of the gate level model and enables to track the data

critical modules such as crypto engines and security accelerators rather than tracking

the whole module. This proposed technique integrates the tagged mechanism and

provides coarse and fine granularity in tracking the data.

6.2 Threat model

The threat model consists of two important scenarios. Firstly, it focuses on any

data from untrusted communication channels which can trigger hidden functionality

to modify the return address or corrupt the memory region during run time execu-
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tion and secondly it targets hardware accelerators and crypto engines that are used

for specific functions. These modules use encryption/decryption logic to secure the

critical functions and may leak the keys during execution. Tracking the inputs and

outputs of these modules is an essential aspect to identify the data transfer flow and

abnormalities in the system. RISC-V extensions and Toolchain modifications make

this approach more efficient than other hardware-based approaches. Tracking the

data flow of inputs and outputs for a specific module rather than an entire design

enhances the scaling flexibility of the gate level approach.

6.2.1 Data Level Leakage

The hardware design is not only vulnerable to untrusted communication channels

but is also potentially vulnerable to leakage of sensitive information from security

critical modules such as crypto engines and accelerators along with activated trojans

which can trigger the payload condition. Therefore, the analysis or tracking of data

requires access to gate level netlist to check the inputs which influences the outputs.

Modelling the integrity properties of the data at the gate level is done by gate level

IFT using shadow logics.

Figure 6.1 shows an example of trojan insertion in a gate level circuit consisting

of logic gates. The inputs( a,b,c,d) are given to OR gates and the result is XORed

which in turn is given as input to the NAND gate. A trojan input(T) is fed as another

input to the NAND gate which acts as a hidden trigger. When the trigger input is

1 the output is affected by the input resulting in an activated signal which triggers

the hidden function to be enabled. The secret keys are leaked or replaced by the

function executed by an adversary. Thus, the violation of key integrity is tracked

by information flow properties which are implemented using gate level IFT models

providing fine grain precision logic.
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Figure 6.1: Trojan insertion in Gate Level Circuit

6.3 RISC-V Architectural Design Approach

The proposed scheme consists of the Hardware IFT mechanism for data tracking

and an integrated gate-level IFT module for tracking security critical datapath mod-

ules for multi granularity. Considering only the gate level IFT module, it tracks the

information flow through the logic blocks by performing a composition of augmented

logic blocks in which the implicit, explicit, and covert information flow is tracked with

fine granularity at the data level is done in gate level IFT models. The gate level

design focuses on a specific security critical module and the datapath of the module

to be executed to overcome the performance and area overhead from existing models.

Special critical modules such as crypto engines and accelerators that share secret keys

or security critical information are considered as the logic blocks for which gate level

IFT is applied.

Without any hardware design modification, this approach is integrated with the

RISC-V core as a separate module to perform information policies for user instantiated

critical modules. Each input and output of the entire module is tainted and a shadow

logic library for the tainted gates is implemented. Security policies are matched with

the tainted information for the module under test. The tainted inputs for the gates are

determined by detecting the arbitrary changes in the inputs which affect the output

leading to data leakage and faults triggering hidden functionalities. Figure 6.2 shows

the overall system design with RISC-V core Tag mechanism and Gate level IFT with
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shadow logic in which individual units are used to protect the memory from software

attacks and data leakage.

Figure 6.2: RISC-V core Tag mechanism and Gate Level IFT

6.3.1 Shadow Logic for tainted gates

All the data bit propagating from the input to the output is marked as tainted if

the tainted input influences the output. Considering the example in Figure 2.4, we

have two OR gates and one AND gate with a and b as inputs and o as the output.

In an OR gate with reference to the truth table for the 2 inputs additionally tainted

inputs are added and when the inputs are toggled and output which is affected by the

tainted input is malicious and marked to be tracked through the whole information

flow. Based on the minterms the shadow logic is formed for the OR gate and similarly

it is done for the AND gate.

The shadow gate library is formed for all the basic gates and is compared with the

main logic to mark the tainted output bits. The information flow policy checking

module is used to track the flow based on the security policies implemented. The
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precision logic is indicated based on the tainted information. If it’s true, then the

output flowing from the input is spurious with information leakage.

6.4 Information Flow Policy Checking

The security policies for the logic gates and the associated tainted bits are imple-

mented for all the gates in comparison with the shadow logic library [87]. The flow

of the gate level model is described in Figure 6.3 Initially, the module to be tracked

is selected by the user and verified. The module or the application is then converted

to gate level netlist to track the information flow of individual data and they are

separated into sub modules. The gate level IFT module gets the information and

security policies from the shadow logic and the IF policy checking rules unit to deter-

mine the tainted inputs and the exact location of data leakage and spurious inputs

are identified. The gate level IFT unit tracks these untrusted information paths and

raises an exception if there is a change in the output and information flow resulting

in malicious data detection.

This approach is efficient with no hardware modification and integrated along with

architecture level IFT which makes it a model with accuracy and performance. De-

pending on the application or the micro-architectures added to the system, the Gate

level IFT is performed on any critically sensitive modules. For example, in crypto en-

gines, the keys in the AES encryption module can be tracked using gate level IFT to

check the integrity and data leakage from the system. Figure 6.4 shows the simplified

shadow logic for a 2-input OR gate. In this example, input b is considered untrusted,

and the shadow logic truth table is highlighted to show the tainted input affecting

the output. If a= 0 and b is untrusted then the output(o) = 0/1 and when a= 1 and

b is untrusted then the output(o) = 1/0 which proves that the output is affected by

the input b. Similar to this the shadow logic library holds the truth table for all the

gates and the tainted data is tracked using this logic and the exact location is found

that leads to data leakage.
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Figure 6.3: Gate Level IFT Model Flow

Figure 6.4: OR Gate Shadow Logic Truth Table
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6.5 Experimental Results

To analyze the security properties of the gate-level IFT implemented and to verify

the security properties for the critical datapath the ISCAS-85/89 and EPFL Bench-

mark circuits are used.

6.5.1 Netlist and submodules

The Xilinx PYNQ FPGA board is used to test the gate level IFT model with the

c432 ISCAS-85 Benchmark circuits. As the RISC-V specification is highly flexible

different soft processor variants can be used as a tool to study the threat model.

Building a flexible Inter and Intra-ISA variations for comparison with the RISC-V

family helps in analyzing the security extensions. RISC-V IP is implemented on the by

using Vivado for the PYNQ board using Overlay. The overlay acts as a bridge between

the designed IP and the FPGA. Figure 6.5 shows the PYNQ flow with the RISC-V

IP and AXI Interface designed for the PYNQ board using Overlay. The GLIFT is

integrated with the IP to track the datapath of the security critical modules. The

combinational circuit c432 interrupt controller is considered an example to illustrate

the gate level IFT implemented in the hardware. The circuit consists of 36 inputs and

7 outputs with a total of 160 gates in which based on the bus requests each channel

is enabled on priority. The initial circuit is converted to gate level netlist using the

implemented algorithm and is verified as the module to be tracked. The module is

classified into submodules based on the information and critical data. Finally, the

gate level IFT logic is used to compare the submodule to be tracked with the shadow

logic library and the security policies are applied to track the gates in which the

output is affected by the input. This gives a set of trusted input gates and untrusted

input gates that needs to be tracked.
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Figure 6.5: PYNQ flow with the RISC-V IP and AXI Interface designed for the
PYNQ board using Overlay

The gate level IFT model then tracks the untrusted gates and detects information

leakage by analyzing the data of all untrusted gate inputs. A variation in the data

flow is observed and raises an interrupt indicating a subtle information flow that is

hidden in the ISA abstraction. This model provides a fine precision logic with the

accurate prediction of untrusted data. Implemented as a separate automated model

this provides less area overhead when compared to other existing GLIFT models

which increases the area by 70% by doubling the gates for shadow logic.

Figure 6.6 shows the gate level IFT detecting the untrusted gate in the submodule

m2 for the c432 circuit. The circuit is divided into submodules and module 2 which

is the priority encoder B is selected to be tracked with untrusted inputs and the
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model detects the fault at the NAND gate based on the shadow logic libraries and

the sequence of inputs. It classifies the gates based on the shadow gate libraries

and points out the untrusted gate. Similarly, with different sets of input, the model

detects the untrusted gates and tracks the gates further during runtime to detect

leakage of critical data and modification of data inputs and raises a security function

call if there is a detection of malicious data inputs.

Figure 6.6: Gate Level IFT detecting the untrusted gate (NAND) for the submodule
Priority Encoder B in c432 circuit

Table 6.1 shows the execution of the shadow logic to detect the untrusted gates

in the circuit of different benchmarks. Individual security critical modules which are

vulnerable to data leakage through input data path can be tracked to identify the

location of untrusted inputs based on the proposed model with lesser execution time

leading to a precise model without design modification or scaling.Table 6.2 shows the

resource utilization of the RISC-V IP with the GLIFT module. This framework uses

minimal area resulting in an efficient fine grain model. Figure 6.7 shows the relative

utilization percentage graph with the SoC where only 8.5% of the LUT is utilized for

the RISC-V IP.
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Table 6.1: Execution Time Of ISCAS 85,89 And EPFL Benchmarks

Benchmark No. of

Inputs

No. of

Outputs

No. of

Gates

Shadow Logic

Execution Time

C432 36 7 160 186s

S398 3 6 119 177s

Adder 256 129 2162 556s

Alu-crtl 7 26 306 373s

Memort-

crtl(submodule)

1204 1231 8956 984s

Table 6.2: Resource Utilization of Proposed RISC-V IP

Module LUT FF LUTRAM BBRAM

SoC 53200 106400 17400 140

Proposed RISC-V

Implementation

4506 4753 188 16

6.6 Security Analysis

The control flow hijack of the security critical modules leaking data or modifying

the IP cores is an important security verification property which is handled by the

gate level IFT with minimal overhead. It provides accuracy with all information

flow along all timing channels. Different implementations either focus on data flow

or leakage models from different channels. This model protects the system against

leakage models by using gate level logic and maintains the data flow integrity by

eliminating memory corruption attacks with accuracy. The proposed design is a

flexible architecture with extensibility which can support the SoC Platform security

reference model to protect the system during runtime.
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Figure 6.7: Relative Resource Utilization

6.7 Conclusion

This work investigates the data leakage threat model with architectural inflexibility

and proposes a new multi-granularity based IFT model which uses a tag mechanism

for data flow integrity and an optimized shadow logic for the leakage model. The

modified RISC-V core provides system protection by tracking the data flow from

untrusted channels as well as the data from security critical modules with accuracy

during runtime.



CHAPTER 7: MICRO-ARCHITECTURAL VULNERABILITIES WITH

MACHINE LEARNING MODELS AND TRANSFER LEARNING TECHNIQUE

7.1 Introduction

SoC platforms are becoming increasingly complex with a wide range of compo-

nents gathered from different third-party companies in the global supply chain. This

complexity leads to potential security vulnerabilities as hardware IP obtained from

untrusted vendors may contain malicious implants such as Hardware Trojans or other

integrity issues. In addition, recycled ICs or cloned counterfeit chips obtained through

IP theft and IC tampering can decrease system performance and reliability. Reverse

engineering techniques can also be used to obtain copies of the original IC design and

labels, leading to critical data leakage.

As application software relies on the hardware root-of-trust for providing security

guarantees, it is crucial to ensure that the underlying hardware is secure and free of

vulnerabilities. Identifying and fixing these vulnerabilities is critical for ensuring the

overall system security. While several research efforts have focused on hardware secu-

rity verification, including techniques such as side-channel analysis, machine learning

has emerged as a feasible solution for efficient detection and mitigation of hardware

security vulnerabilities.

While there are a wide variety of research for hardware security verification [88],

[89], machine learning has emerged as the feasible solution for efficient detection and

mitigation of hardware security vulnerabilities. This work focuses on the machine

learning models for microarchitectural vulnerability detection and proposes a coun-

terfeit detection and avoidance model to ensure the authenticity of the component.
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7.2 Machine Learning Models

In recent years, SoC security research has become increasingly challenging and

resource-constrained. As a result, researchers have turned to Machine Learning (ML)

techniques for assistance. ML algorithms are designed to create models, known as

learning algorithms, from large amounts of historical training data. These trained

models can be used for prediction or classification tasks. The flexibility and gener-

alization capabilities of ML algorithms make them a promising solution for various

application domains. Figure 7.1 shows a typical workflow for using ML techniques

to analyze hardware vulnerabilities. The ML workflow involves four major steps:

preprocessing, learning, evaluation, and analysis [90]. In the first step, datasets are

collected from known hardware vulnerabilities. The second step involves training the

ML model using the gathered dataset. The trained model is then evaluated in the

third step. Finally, the validated model can be used to detect unknown vulnerabilities

in the fourth and final step.

Figure 7.1: ML workflow applied for hardware vulnerability analysis

Machine Learning techniques can be broadly divided into three categories: Su-

pervised Learning, Unsupervised Learning, and Reinforcement Learning. Supervised

learning requires training labels such as Support Vector Machine (SVM) adopted in

[91]. While unsupervised learning does not use labels but focus on extracting hidden

features from input samples directly. The clustering algorithms that define the met-

ric of the key for classification falls under this category [92]. Finally, reinforcement
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learning is a type of learning method that imitates human’s learning process through

continuous interaction and refinement.

ML based approach for hardware vulnerabilities is based on SoC security validation

and verification where the detection models focus on a particular attack scenario.

Some of the approaches that rely on trace analysis are:

• Simulation based validation: This approach focuses on the test generation to

activate hardware vulnerabilities. The test vectors activates the trigger associ-

ated to the malicious trojan and a comparison of the simulation output with

the expected output exposes the possible vulnerabilities in the system. Ran-

dom simulation models [93], statistical test generations [94] and SVM based

classifications [95] are some of the simulation-based approaches for hardware

vulnerability detection.

• Side-channel analysis: SCA detection models against micro-architectural side

channel attacks focuses on the time series of the data and correlates the execu-

tion time traces with the hidden information in the sequential data flow [96].

Runtime based detection models utilizes the different abstraction layers and

with clustering algorithm to plot the distribution of the leakage information

which distinguishes the malicious design [97].

• Formal verification: These models evaluate the functionality and security of

the design using discrete mathematical models [98]. Satisfiability solving with

iterations and model checking logics along with equivalence checking are some

of the key steps in this approach. Extraction of the common counter examples

for a given design for error patterns and graph-based models for variations lead

to accurate verification with significant efficiency.

• Heuristic Analysis: This is a combinational analysis which consist of feature

extraction followed by pattern recognition. Some of the countermeasures are the
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counterfeit IC detection based on SVM with parametric measurement analysis

for feature extraction [99] along with for 2-D space mapping. Hardware Trojan

detection by analyzing the structural features of the IP cores and malicious

triggering modules in the gate level circuits [100].

7.3 Transfer Learning

The technique of transfer learning involves reusing a model that has already been

trained on one task, in another task [101]. By using a pre-trained model with a

large amount of dataset, fewer false positives/negatives can occur, resulting in a

high accuracy system. To generate accurate features for prediction models, specific

classification layers for the pre-trained model can be utilized. This approach reduces

the amount of time the detection model needs to learn from scratch, making it self-

trained and significantly improving the system’s performance with limited resources.

The transfer learning method overcomes the learning paradigm of traditionally

designed conventional Deep Learning and Machine Learning algorithms, and the op-

timized predictive model developed from this technique improves the generalization

capability. Figure 7.2 illustrates the difference between traditional machine learning

and transfer learning, where in the latter, knowledge learned from task 1 is extracted

and transferred to the learning model of task 2, resulting in an accelerated learn-

ing process and better prediction models. Transfer learning is categorized into three

sub-categories based on the type of transfer required: transductive, inductive, and

unsupervised transfer learning.
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Figure 7.2: Traditional Machine Learning and Transfer Learning Model

7.4 Hardware Security Vulnerabilities

The fundamental threat to the market is posed by the supply chain vulnerabili-

ties, which are the focus of this work. Offshore semiconductor manufacturing is now

commonly outsourced by most design houses, making the supply chain vulnerable to

compromise at several points. Counterfeit ICs, whether remarked or cloned, present

a significant threat to various entities within the electronics supply chain. By manip-

ulating package identifiers, adversaries can introduce remarked ICs that present used

or alternative components as new and higher-grade versions of a desired IC. Cloned

ICs, on the other hand, are functionally similar or identical to ICs but deviate from

their authentic counterparts in implementation.

Authenticity verification of ICs is a crucial component of every entity’s value propo-

sition, and it may be subject to scrutiny if discovered by end-users. For instance,

fabless design houses place substantial trust in the foundries that fabricate their de-

signs, and they currently rely on the "golden" ICs sourced directly from the foundry.

However, it is challenging for them to verify the authenticity of ICs because they

must reverse-engineer the fabricated IC and compare it with their knowledge of the

technology node, which is time-consuming and destroys the device in the process.

Therefore, considering the time constraint issue, a transfer learning-based technique

can be utilized to detect counterfeit ICs with limited data.



77

7.5 IC Counterfeit Detection Mechanism

To improve image classification performance while working with limited resources, a

proposed scheme involves image augmentation through the creation and validation of

a dataset from a pre-trained model. The model utilizes feature extractors and a CNN

architecture to classify images. To achieve this, the scheme begins by implementing

preprocessing layers using image transformations. The image classifier is then created

by leveraging the VGG-16 model.

7.5.1 Image Augmentation with Preprocessing Layers

To enhance the diversity of the training model and improve prediction accuracy,

different geometric transformations are applied to the images in the dataset contain-

ing counterfeit ICs. Training data undergoes transformations such as image rotation,

height shifting, horizontal flipping, and zooming to improve model validation metrics

and ensure model predictions are performed on original images rather than the aug-

mented ones. To implement this scheme, an image class generator is first defined and

instantiated to configure the image with various transformations. The transforma-

tions used include:

Rotation: Rotation augmentations are used to rotate the image right or left using

degree parameters while maintaining the degree labels and applying feature standard-

ization.

Height Shifting: This transformation technique clips off images to produce varia-

tions in the training model for generalization and avoid positional bias in the data

with padding to preserve spatial dimensions.

Horizontal Flipping: As an extension to the rotation, this transformation technique

helps in generalization but is not a label-preserving transformation.

Zooming: Random zooming is used to add new pixel values around the interpolated

pixel values. The number of batches of samples in one epoch is specified to augment
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the images.

The input for image classification is the optical imaging dataset from the Florida

Institute for Cybersecurity (FICS) lab, which uses two different image acquisition

modalities, including the DSLR system with color normalization and Zeiss Stemi 508

Stereo Microscope. The images are preprocessed to create new ones for the training

set with an optimal gradient required to update the model parameters and adapt the

learning rate in the training model.

7.5.2 Pre-trained Convolution Models

The proposed approach for image classification involves the use of the VGG-16 CNN

model, which was originally proposed by Karen Simonyan and Andrew Zisserman

from the Visual Geometry Group Lab of Oxford University [101]. This model has

achieved a remarkable accuracy of 92.7% on the ImageNet dataset, which contains

14 million images belonging to 1000 classes. The architecture of the model includes

a series of convolutional layers, each with a 3x3 filter size, followed by a max-pooling

layer that reduces the height and width of the image. The layers are stacked for feature

mapping and equipped with rectification non-linearity, with only one Local Response

Normalization (LRN) to reduce memory and computation time. The pre-trained

model can be utilized by loading the model weights and architecture, and adding

the weights to the respective layers using transfer learning.Figure 7.3 illustrates the

VGG-16 architecture with different convolution layers and filter sizes.

Figure 7.3: VGG-16 Architecture
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To perform classification between the authentic and counterfeit ICs, the input shape

along with two fully connected dense layers are specified. The model is fine-tuned

with trainable parameters, and the parameters are set to false to freeze the weights

of a particular layer. The model is compiled with the Adam Optimizer, which is a

stochastic gradient descent method that is based on adaptive estimation of first-order

and second-order moments. The binary cross-entropy loss function is used for binary

classification, which computes the cross-entropy between the predicted classes and

the true classes. Early stopping technique is utilized to avoid overfitting by stopping

the training when the model improves on a holdout validation dataset. The predict

function is used to generate the classification report along with the confusion matrix,

which substantially increases the depth for classification accuracy. The training data

consists of high-resolution images of the front and back surfaces of different types of

ICs.

7.6 Experimental Results

7.6.1 Training Data

The implementation of the detection framework on the Xilinx PYNQ FPGA board

utilized the high-resolution DSLR and Zeiss Stemi 508 Stereo Microscope images,

which have a resolution of 2560 x 1920 pixels. Code cells were created to train and

validate the dataset, using the VGG-16 model with a split of 40% validation and 60%

training data, augmented using various image techniques. Figure 7.4 represents the

validated augmented images belonging to different classes. The Adam optimizer was

used to minimize the loss function for 100 epochs with 3 batches per epoch for the

VGG-16 model. The model comprised 19,433,793 parameters with 4 million being

trainable. The VGG-16 model’s deep stacked architecture accurately distinguished

between features, providing reliable results.
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Figure 7.4: Validated Images using Image Augmentation

7.6.2 Testing Data

Using the imported dataset, predictions were based on the probability value be-

tween 0 and 1, with a binary classification of class 0 for values < 0.5 and class 1

for values greater than and equal to 0.5. For VGG-16, a learning rate of 0.0001 was

assigned in the Adam optimizer. The performance metrics of the classification model

included accuracy, precision, recall, and F1-score with true positive, false positive,

true negative, and false negative classification. Figure 7.5 shows the Accuracy and

Loss during model training and prediction for the VGG-16 model. The loss for both

the training and test data is less than 1%.

Figure 7.5: Accuracy and Loss Plot for VGG-16 model
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With the trained model predictions are made for a different datasets which consists

of 200 high resolution images in which 100 counterfeit and 100 authentic ICs are

present for the training set and 10 counterfeit and 10 authentic ICs are present for the

test holdout dataset. The model is trained with the CNN model and the classification

report shows that VGG-16 performs better with 80% accuracy for the final holdout

data.

The confusion matrix for the classifier performance and the VGG-16 model accu-

racy of 80% for 10 images are illustrated in Figure 7.6. Table 7.1 shows the classifi-

cation report for the holdout dataset. The model could further enhance its accuracy

with more data. The confusion matrix generated provides the true and false positives

and negatives for the actual and predicted values. This model was tested using a test

set to avoid retraining and demonstrated accurate classification with minimal data.

Figure 7.6: Confusion matrix for the VGG-16 model

The test images with corresponding true and mispredicted class labels are shown

in Figure 7.7 where the authentic is predicted as 0 and counterfeit ICs are predicted

as 1 using the binary classifier.
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Figure 7.7: True class and predicted authentic and counterfeit images

Table 7.1: Classification Report

Model Classes Precision Recall F1score Accuracy

VGG-16 Authentic 0.75 1.0 0.86 0.80

VGG-16 Counterfeit 1.0 0.5 0.67 0.80

7.7 Security Analysis

To identify counterfeit ICs, this study uses transfer learning technique that employs

three different pre-trained models to train the prediction model. These models are pre-

trained with a large set of image classification data, and their convolution layers offer

optimized functions such as sparse connectivity, pooling layers, activation functions,

fully connected layers, and loss functions to create a robust and generalized prediction

model. The proposed system selects appropriate pre-trained models based on various

factors and offers data enhancement and mapping functions to boost the performance

of the model. Additionally, fine-tuning is applied at the end layers for training on a

small dataset to solve the problem of insufficient data. The VGG-16 model provides

80% accuracy with limited training data, which makes it a generalized model.

The pre-trained models used in this study are all binary classification predictive
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models that incorporate image augmentation techniques, which increases the classi-

fier’s performance in VGG-16. The deep learning architecture model’s performance is

compared to the human error rate to minimize false positives when classifying images.

The selected pre-trained model in this study has a lower error rate than the human

error rate, making it an efficient prediction framework for IC counterfeit detection.

7.8 Conclusion

This work investigates the hardware vulnerabilities in the SoC design along with

different machine learning models for SoC security validation and verification. It

propsoses a IC counterfeit detection scheme based on transfer learning technique for

supply chain vulnerability. This scheme contributes a counterfeit detection model

with limited dataset using a pre-trained model significantly increasing the classifica-

tion accuracy.



CHAPTER 8: CONCLUSION AND FUTURE WORK

The increasing use of heterogeneous SoC architectures has raised significant security

concerns, particularly in relation to memory and side-channel attacks, which can

compromise system security and privacy. Traditional defense mechanisms are still

vulnerable to side-channel attacks, and secure measures to protect interfaces and

data propagation through different channels are critical to building a resilient model

consisting of on-chip security factors.

To address these concerns, a platform-based SoC model is developed using RISC-V

architecture as a base, which provides a platform for custom implementation of secu-

rity extensions and is an open-source ISA. The model can address different security

objectives through various modules, such as Information Flow Tracking with multi

granularity for better precision presented in Chapter 5 and 6 along with hardware

accelerators for crypto engines which can be used for device authentication presented

in Chapter 4.

Chapter 3 presents a security aware design model to protect the bitstream from

modification along with multi layers of security where the bitstream is logic obfus-

cated during authentication by preserving the design during runtime. Isolation of

the critical data provides additional security from untrusted mediums. The use of

transfer learning-based IC Counterfeit detection model opens a new space to detect

the vulnerabilities in supply chain by using limited dataset. Figure 8.1 shows the

overall design components implemented for the SoC Secure Model.
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Figure 8.1: Design components implemented for the SoC Secure Model

Future work could involve further development and testing of the proposed frame-

work using different FPGA boards and EDA tools, and exploring additional secu-

rity objectives and modules to make the SoC design even more resilient to attacks.

Cache-based side channel attacks which targets the hardware level to gain access to

the timing information at run time obtains the memory access patterns and timing

variations generated by cryptosystems. ML based detection and countermeasures for

accurate detection and mitigation of these attacks can be considered as a security

objective for the SoC platform assessment tool.
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