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ABSTRACT 

 

 

SU DONG. Toward systematic design of knowledge-intensive service delivery 

networks (Under direction of DR. RAM KUMAR and DR. MONICA JOHAR) 

 

Effective management of IT-enabled services is becoming increasingly important. 

These services are often delivered by networks of knowledge workers who constitute 

Knowledge Intensive Service Delivery Networks (KISDN). This dissertation contributes 

to the effective design and management of KISDN by presenting two mixed integer 

programming models which integrate disparate streams of research. The first model 

facilitates analysis and managerial benchmarking of KISDN. We focus on how the 

performance of such networks depends on the interaction between workflow decisions, 

information flow networks (IFNs) structure and knowledge management decisions. We 

propose that knowledge about IFNs and worker competencies can be effectively used to 

make workflow decisions. Our results, based on the study of different IFN archetypes, 

illustrate practices for effective management of KISDN. Recognizing existing IFNs, 

increasing randomness in IFNs, nurturing weak or performative ties depending on the 

archetype, assigning tasks based on effective worker competence, and selectively 

delaying assignment of tasks to workers can enhance business value. The second model 

focuses on the design of IFNs. Organizations are increasingly creating and using IFNs to 

transfer knowledge. However, there is limited understanding of the design of IFNs to 

maximize knowledge sharing. Our results demonstrate the impact of worker competency 

heterogeneity, number of skills supported by the firm, and time (cost) associated with 

knowledge sharing on the design of efficient IFNs. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Introduction 

Organizations increasingly use knowledge-intensive IT services delivered from 

multiple locations. For example, US Internetworking (www.USi.com) claims that over 

70% of its employees have at least one certification (such as a CISCO networking) and 

of these, 90% have multiple certifications and are located in the US and India. These 

employees may interact with each other, and constitute knowledge intensive service 

delivery networks (KISDN). Management of such KISDN is an important, yet under-

researched area. 

This research recognizes the complex nature of the KISDN by integrating 

concepts from prior research on task assignment (Sahni and Gonzalez, 1976), modeling 

knowledge exchange in organizations (Levine and Prietula, 2006), knowledge diffusion 

in networks (Cowan and Jonard, 2004), assessing the value of knowledge creation 

(Chen and Edgington, 2005), and mining and using organizational social relationships 

(Guy et al., 2008). A review of the previous literature sheds light on the factors 

impacting the performance of the KISDN. However, the KISDN, as a complex system, 

has not received adequate attention. The dynamics between the factors affecting KISDN 

performance require further investigation. Hence, through a series of essay, this 

research systematically studies these factors to facilitate the design of the KISDN.  

The first essay presents an analytical model to manage the performance of a 

knowledge-intensive service organization whose performance depends on a 
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combination of task-assignment and knowledge management decisions. We illustrate 

how information flow networks can be effectively used to make task to worker 

assignments and underscore the importance of paying careful attention to the location of 

„experts‟ in different parts of an organizational network. Specifically, we focus on the 

following research question: how do task assignment, knowledge management 

strategies (knowledge acquisition from co-workers) and information flow networks 

impact the financial and operational performance of organizations under different 

service environments? We prove that the problem is NP-hard and propose a heuristic in 

order to analyze the impacts of the factors on firm performance. Additionally, we show 

that organizations could benefit from waiting to make assignments, and should 

dynamically assign service tasks in batches using an assignment heuristic. Ways in 

which firms can strategically manage the impacts of information flow network 

structures are also discussed. 

The second essay focus on the design of the information flow network of 

KISDN identified in essay one. A mathematical model is proposed to study important 

factors associated with the design of such networks. There is a growing interest in 

managing organizational social relationships to facilitate knowledge sharing (Abrams et 

al., 2003). IBM (2006) research center has promoted the use of Social Network 

Analysis (SNA), “a set of tools for mapping important knowledge relationships between 

people or departments”, in order to understand organizational social relationships which 

could facilitate or impede knowledge sharing. However, prior research mainly focuses 

on ad-hoc use of existing organizational social relationships to share knowledge. There 

is limited research that helps managers systematically understand the design and use of 
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the information flow networks in KISDN to facilitate knowledge sharing. Hence, we 

formally pose the following research question in the second essay: how should 

organizations design and use their information flow networks in order to maximize 

employees’ knowledge gain through sharing under different organizational 

environments? 

This dissertation is organized as follows: Chapter 1 provides an overview of the 

literature on Knowledge Intensive Service Delivery Networks (KISDN). Since the study 

of KISDN involves various streams of research, we have defined the scope of the 

investigation in Chapter 1. Chapters 2 and 3 discuss the two essays. Chapter 2 starts 

with a brief review of relevant literature to motivate the research questions, which is 

followed by the discussion of the analytical model. After that, we propose a heuristic to 

solve the problem. Simulation experiment design and results are then discussed, 

followed by the model extension, discussion and contributions. Chapter 3 also starts 

with relevant literature, and presents an analytical model afterwards. Similarly, a 

solution heuristic is proposed, which is followed by experiment design and results. 

Chapter 4 summarizes the contributions of the two studies and offers a conclusion to the 

dissertation. 

1.2 Literature Review 

The following sections discuss the relevant literature on KISDN and information 

flow networks that facilitates knowledge sharing within KISDN. More comprehensive 

literature will be reviewed in subsequent chapters for each essay. 

1.2.1 Knowledge-Intensive Service Delivery Networks 

This KISDN research is related to the call for development of a “service 

science” discipline which integrates perspectives from multiple traditional disciplines 
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such as information science, management science, social sciences and MIS (Bardhan et 

al., 2008; Chesbrough and Spohrer, 2006; IfM and IBM, 2008). The significant role of 

services in today‟s economy is realized by many organizations. Services stand for jobs 

and growth. But the evolution of the knowledge-intensive service industries also results 

in a new level of management difficulty and coordination complexity. For example, the 

delivery of IT-based services has engaged multiple business units and different 

geographies, creating new challenges for organizations to evaluate, implement and 

manage (Bardhan et al., 2008). The lack of a strong conceptual foundation for such 

“service science” attracts attentions from scholars and managers alike (Chesbrough and 

Spohrer, 2006).  

Prior research has recognized the importance of knowledge management in 

service delivery (Chesbrough and Spohrer, 2006; Maula, 2007), and the need to 

conceptualize service delivery as a process with “a focus on dynamic resources such as 

knowledge and skills” (Lusch et al., 2008). Maula (2007) argues that emerging “service 

science” should focus on knowledge-intensive services, knowledge and information 

management, and the dynamic complexity of the system. She justifies that knowledge in 

knowledge-intensive services should include employees‟ expertise and experience, 

process or system of services, and competence and capability to innovate, learn and 

renew. Knowledge and information management should emphasize on “the acquisition, 

availability, creation and sharing of knowledge, competence and intellectual capital” 

(Maula, 2007). Such a conceptualization with a focus on knowledge and skills of the 

workers is lacking in the prior research on call centers (Gans et al., 2003) and IT 

services (Buco et al., 2003).  
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Our research studies KISDN that have knowledge-intensive service tasks with 

service level agreements (SLAs). SLA contracts for IT service delivery such as e-

business often specifies the delivery of service functions, service quality measurement 

criteria, and penalties of failing to deliver quality service on time (Buco et al., 2003; Sen 

et al., 2009). Penalties for SLA violations can be refund to customers specified relative 

to the service cost (Buco et al., 2003). Considerable variability in customer preferences 

and service impacts the effective pricing and resource allocation mechanisms which are 

needed to deliver services at the promised quality level. Hence, effectively managing 

SLAs creates new challenges to IT services delivery. For example, firms need to 

dynamically allocating limited resources to minimize financial penalties due to SLA 

violations. Sen et al. (2009) propose a mechanism for SLA formulation that features a 

dynamic priority based price-penalty scheme targeted to individual customers. They 

prove that their proposed scheme is more effective than a fixed-price approach. Buco et 

al. (2003) study the design rationale of an integrated set of business oriented service 

level management (SLM) technologies developed by IBM. They find that a dynamic 

priority pricing approach can yield socially superior results. In addition, they 

demonstrate that demand heterogeneity can be addressed effectively in SLAs through 

dynamic resource allocation mechanism such as a price-penalty scheme that they 

proposed. 

In KISDN, employees often have multiple skills which allow them to provide 

heterogeneous services supported by the organization. However, their competence level 

for these skills may vary significantly (Kim et al., 2008). This competence 

heterogeneity creates space for knowledge sharing among employees within 
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organizations. Prior research also demonstrates that employees get information and 

acquire knowledge primarily by consulting their colleagues or friends when performing 

tasks (Cross et al., 2001). In addition, organizations allow workers to take training 

sessions to acquire knowledge (Chen and Edgington, 2005). Both training and 

knowledge sharing can increase the productivity of existing workforce by improving the 

overall employees‟ competence level. Our research recognizes the dynamic nature of 

knowledge and skills of workers by allowing them to vary over time during service 

delivery. We focus on organizations that provide knowledge-intensive services with 

SLAs, support multiple skills, have varying levels of worker competence, and often 

require knowledge acquisition. Such organizations are increasingly important given the 

trend in IT towards delivering software as a service (Mackie, 2007). 

1.2.2 Information Flow Networks Facilitating Knowledge Sharing 

The ability to create and share knowledge effectively and efficiently could be 

the basis for retaining competitive advantage in this ever changing economy (Abrams et 

al., 2003; Center for Knowledge Governance, 2004; Goh 2002). In order to facilitate 

knowledge sharing, many firms have invested heavily on knowledge management 

projects that emphasize the use of technologies which seldom bring in the expected 

(Abrams et al., 2003). Interestingly, many projects focusing on the use of technology 

failed in the past (Carroll, 2008). On the other hand, organizations are finding that 

employees are much more likely to consult their peers and colleagues (using 

organizational social relationships) for information and knowledge rather than use 

electronic knowledge bases and other technologies that firms adopted (Cross et al., 

2001). In addition, the structure of such information flow networks could significantly 

impacts knowledge sharing in KISDN (Abrams et al., 2003).  
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Prior research suggests that there is significant value of facilitating knowledge 

sharing among employees. Zhang et al. (2005) identifies four types of benefits of 

employees sharing knowledge in knowledge-intensive organizations: (a) it can increase 

and enrich the intellectual capital of an organization; (b) it ensures organizational 

advantage, lessen organization's dependency on individuals, and reduce potential loss of 

job-hopping; (c) it allows individuals to get more concentrated knowledge from the 

organization, and therefore increase personal competitive ability; and (d) it reduces the 

cost of accumulating knowledge within the organization. It is important to note that 

organizations can effectively create social relationships by providing physical 

environment (face to face communication platform), adopting motivation mechanisms, 

and using team/project assignment (Ardichvili et al., 2003, Bartol and Srivastava, 2002, 

Zhang et al., 2005). However, employee having excessive social relationships may 

create issues for IFNs (IBM, 2006). Cross et al. (2001) find that too many social 

connections produce significant stress and information overload for employees, which 

decreases the efficiency of the groups that they belong to. Hansen (2002) argues that 

establishing direct connections in a knowledge network provides immediate access to 

related knowledge, but requires significant time and effort to create/maintain. 

Moreover, replying on employees with large number of social connections to transfer 

knowledge creates potential risks to an organization such that if these employees leave 

the organization, the information flow network that facilitates knowledge sharing could 

break down. 



 

 

 

 

 

 

CHAPTER 2: SYSTEMATIC DESIGN AND ANALYSIS OF KNOWLEDGE 

INTENSIVE SERVICE DELIEVERY NETWORKS 

 

 

2.1 Introduction 

We study KISDN whose objective is to maximize financial performance over a 

finite planning horizon. We focus on the following research question: how do task 

assignment, knowledge management strategies (knowledge acquisition from co-

workers) and organizational networks impact the financial and operational 

performance of organizations under different service environments? In our opinion, this 

is an important, yet under-researched question. 

Assignment of different types of service tasks over time to a pool of agents is a 

complex problem. We formulate a Mixed Integer Programming (MIP) model, discuss 

its complexity, and present a heuristic that combines optimization and simulation in 

order to facilitate systematic analysis of the above research question. The proposed 

heuristic integrates ideas from prior research on task assignment, knowledge 

management, and social network analysis. Quality of the solutions produced by the 

heuristic compares favorably with optimal solutions. Our results provide several 

interesting insights into the dynamics of the service environment. 

First, this research contributes to the emerging stream of research on social 

networks in IS by proposing and illustrating the value of using social network 

information for service task assignment in knowledge sharing environments. Use of 

social networks to access the knowledge of co-workers addresses a call in prior research 
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(Lusch et al., 2008) to use dynamic resources such as knowledge and skills in service 

delivery. We demonstrate the significant additional value that can be generated by such 

sharing. Second, prior research on call centers (Gans et al., 2003) and IT support (Kim 

et al., 2008) typically assume that service requests are picked from a queue and assigned 

randomly to available workers. This research, on the other hand, illustrates that 

organizations could benefit from waiting to make assignments, and assign service tasks 

in batches using an assignment heuristic. The significance of the value of waiting, 

anchored in the theory of real options (Trigeorgis, 1996) is discussed. Third, we 

demonstrate the effect of network topology, network density and worker‟s willingness 

to help on performance of the organization through knowledge sharing. A network 

topology where experts are distributed throughout the organization as opposed to being 

concentrated or clustered consistently outperforms other network structures. We discuss 

ways to reduce this performance difference between network topologies by intentionally 

increasing network density and/or providing incentives to enhance worker‟s willingness 

to help. In addition, we also illustrate how an organization can strategically use worker 

training as a means to mitigate the effects of network structure. Fourth, computational 

results illustrate how worker specialization occurs in a multi-skill environment and how 

the degree of specialization is a function of the network topology and density. Research 

and managerial implications of these results are discussed. 

2.2 Literature Review 

As discussed in Chapter 1, the study of KISDN integrates different streams of 

research including task assignment (Sahni and Gonzalez, 1976), modeling knowledge 

exchange in organizations (Levine and Prietula, 2006), knowledge diffusion in networks 

(Cowan and Jonard, 2004), assessing the value of knowledge creation (Chen and 
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Edgington, 2005), and mining and using organizational social relationships (Guy et al., 

2008).  

The assignment of a group of tasks to a number of agents in a manner that only 

each agent is assigned one task and each task is assigned to one agent is a classic 

problem in operations research. Efficient solution procedures such as the Hungarian 

method are available for this problem (Ahuja et al., 1993). Several extensions of the 

basic assignment problem have been studied (Sahni and Gonzalez, 1976). The 

Generalized Assignment Problem (GAP) is one such extension which has been proven 

to be NP-hard (Sahni and Gonzalez, 1976). GAP assigns a number of agents to a 

number of tasks. Any agent can be assigned to perform any task, incurring some cost 

and profit that may vary depending on the agent-task assignment. In addition, each 

agent has a budget. The sum of the costs of task assigned to it cannot exceed this 

budget. The objective of the GAP is to maximize the total profits of the assignment 

while meeting all the budget constraints. In the KISDN optimization problem, studied in 

this dissertation, there is stochastic demand for tasks. These tasks are assigned to an 

agent or a limited number of agents at a time. Agents are prohibited from carrying out 

more than one task at a time (but could perform multiple tasks over time) and firms 

incur costs when they perform these tasks. Costs are also incurred when there is either a 

surplus demand for service (similar to wait time penalties) or surplus supply of workers 

(similar to cost of “workers sitting on the bench”). The firm‟s performance is optimized 

over a planning horizon. The GAP can be polynomially transformed to an arbitrary 

instance of the KISDN optimization problem, as discussed. 

This research integrates ideas from different streams of knowledge management 



11 

 

research that consider the effectiveness of help-seeking behavior. Levine and Prietula 

(2006) use agent-based simulation to study the impact of different types of ties (strong, 

weak and performative) between workers in the context of knowledge sharing behavior 

in social networks. Similar to our research, they study the scenario where employees 

have a set of skills which are used to perform relevant tasks. Knowledge could be 

obtained through self-learning or exchange with other employees. They illustrate that 

having some performative ties in an organization improved average task completion 

times. However, they do not optimize task assignment or consider different types of 

network topologies. This research is also related to Cowan and Jonard (2004) who use 

simulation to study the impact of different types of network topologies in the context of 

knowledge diffusion across organizations. They find that the average knowledge is 

maximal in Small World Networks when diffusion reaches the steady state. 

Nevertheless, their problem is different from the one studied in this research and did not 

include optimization of task assignment, or different types of connections (ties) between 

nodes in the network. This research optimizes task assignment to workers, who can 

improve competence by seeking help from co-workers using ties. It compares the 

impact of different network topologies, network densities and worker‟s willingness to 

help on knowledge sharing and service delivery. 

In our model extension, we also consider the value of organized knowledge 

transfer (training). Chen and Edgington (2005) use simulation to study the effect of 

different training strategies on organizational value. They conclude that allowing 

workers to decide on when to go for training does not maximize organizational returns. 

However, they do not consider knowledge sharing among co-workers or optimize the 
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task assignment. 

This dissertation is also related to emerging research on social networking. IS 

researchers are increasingly interested in social networking (Agarwal et al., 2008). 

Organizations are recognizing the value of understanding social networks and 

influencing the formation of networks (www.orgnet.com; Guy et al., 2008; Sahoo et al., 

2008). There is a growing body of research on mining social networks from different 

types of organizational data including email, wikis and blogs (Aron et al., 2004; Van 

Der Aalst et al., 2005), and using social networks in organizations (Kilduff and Tsai, 

2003). Leading IT service providers such as IBM are building tools to mine social 

networks from internal organizational data as well as external data and make these 

social networks available to other applications through Application Program Interfaces 

(APIs) (Guy et al.., 2008). Shen et al. (2003) study task assignment in workflow settings 

and use social network information to assign tasks to groups. However, they focus on 

using social network information to help manage group dynamics and mechanisms. 

They do not consider knowledge sharing among group members when assigning tasks, 

and did not study the impact of social network structures on assembling workgroups. 

The model presented in the following sections integrates ideas from these 

streams of research and proposes the use of organizational social network information 

in improving operational and financial performance of KISDN. 

2.3 Model Development 

This section develops a mathematical model of KISDN, which are knowledge-

intensive service systems with distributed resources. Such organizations can be found in 

a wide range of service sectors like management consultancy, design services, computer 

and IT-related services (Evanschitzky et al., 2007; Windrum and Tomlonson, 1999). 
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This model helps to develop a better understanding of how people, technology, 

organization, and shared information engage in dynamic value co-creation. Such an 

understanding facilitates managerial benchmarking of KISDN. Figure 1 describes the 

process of value co-creation in such a service system. The arrows in the figure illustrate 

the value co-creation process, starting from the bottom left. 

 

FIGURE 1: An organizational (Virtual Network) with ties between workers 

In such a system, service requests need not be limited to telephone requests and 

may be routed through other communication channels such as faxes or emails or filling 

out web forms (Levine and Kurzban, 2006). In cases where service requests are routed 

through multiple levels, our focus is on the higher, more knowledge-intensive, levels of 

support. The bottom left portion of Figure 1 illustrates that it is not necessary for service 

tasks to be handled immediately by knowledge workers, though there often is a cost of 

delay due to factors such as service level agreement penalties (Buco et al., 2003). These 

knowledge-intensive service tasks vary in terms of task difficulty, required skills and 

associated revenue. For example, service tasks related to management consultancy 
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concerning mergers and post-merger integration, require distinct skills such as law, 

finance and so on (Evanschitzky et al., 2007; Windrum and Tomlonson, 1999), and 

service tasks related to computer and IT often require skills such as database 

management and C/C++. 

As shown in Figure 1, in order to generate business value, these service tasks 

need to be effectively assigned to workers. The revenue resulting from task completion 

is based on the skills required, the market revenue for tasks requiring those skills, and 

how difficult the task is. Workers in KISDN vary in terms of competences in these 

skills and organizational networks that they belong to. The time a worker takes to 

complete a task (requiring particular skills) could vary due to differences in worker 

competences (Chen and Edgington, 2005; Davenport and Prusak, 1998). The 

complexity of these service-tasks often requires knowledge-workers to share their 

distinctive capabilities in order to provide unique services (Davenport and Prusak, 

1998). Therefore, it is possible that when workers are assigned to tasks, workers consult 

other co-workers to complete tasks efficiently (Levine and Prietula, 2006; Szulanski, 

1996). Such competence exchange is an important characteristic of service systems 

(Maglio and Spohrer, 2008) and is a function of worker properties and the types of ties 

between workers. This represents an important step in value co-creation. Figure 1 

illustrates that reporting relationships, membership in global teams and project 

experience facilitate ties. As described later, technology can play an important role in 

facilitating competence exchange.  

As shown in Figure 1, some workers in such organizations may remain idle (“sit 

on the bench”) during any point in time. Organizations may continue to pay out wages 
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to idle workers, thus negatively impacting business value co-creation.  

2.3.1 Model Formulation 

Mathematical modeling is a useful tool to understand key variables that describe 

a problem and their relationships. The model variables described in Table 1 represent 

the different elements of KISDN. In addition, mathematical modeling helps understand 

the relationships between different variables, and produces a solution that can serve as a 

benchmark. This approach is appropriate in the context of service systems such as 

KISDN, when the goal is a better understanding of different factors in the value co-

creation process. We model the problem of co-creating value in KISDN using mixed 

integer programming. This approach is appropriate in scenarios where some variables, 

such as assigning a worker to a task, are binary and others, such as worker competence, 

are continuous in value. 

We formulate a Mixed Integer Programming (MIP) model where service tasks 

requiring skilled workers are assigned to competent personnel, if available. The firm‟s 

objective is to maximize the firm‟s expected payoff over a planning horizon ( P ). We 

consider the planning horizon (time) to be divided into a set of discrete assignment 

periods t  },..,1{ T  where t represents the assignment period number. At the start of 

every assignment period t, the organization makes task to worker assignments based on 

the number of unassigned tasks in the system, and the availability and competence of 

workers. Note that the length or duration of an assignment period (  ) represents a 

context–specific unit of time (minutes, five minutes, fifteen minutes, etc) within which 

any newly arriving tasks are queued but no assignment decisions are made. The notation 

is outlined in Table 1. Since the skills required by different service requests (tasks) 
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could vary, we assume that there are total of S skills supported by the firm and a total of 

M task types in terms of their skill(s) requirement. Particularly, 1m

sq  when task of 

type },...,1{ Mm  requires skill },..,1{ Ss , 0 otherwise. Note that 1
1




S

s

m

sq , for each 

m. In addition, in line with prior research on managing IT service tasks (Buco et al., 

2003; Sen et al., 2009), we assume that the arrival rate of tasks of type m  follows a 

Poisson distribution with mean m , and the tasks arriving in each time period are 

independent of each other. The organization has K workers, and during each assignment 

a worker may be assigned to a service task, or kept idle (kept on bench). As discussed 

earlier, the firm may continue paying out wages to workers even when they are sitting 

on the bench. In addition, for each un-assigned task, the firm incurs a wait-time penalty 

per unit time. Hence, the firm‟s objective consists of the following terms: net payoff 

(revenue – cost) from completing tasks, the cost of workers sitting idle and, the wait-

time penalty from un-assigned tasks. Next, we briefly discuss how each of these terms is 

calculated. Additionally, we also outline how the uncertainty associated with some of 

the problem parameters is handled. 

TABLE 1: Major model parameters and decision variables 

 

  

Symbol Definition Type 

Decision Variables 

kjtA  
= 1, if worker k is assigned to task j in period t ; = 0, otherwise, with 

},...,2,1{ Tt  Decision 

Variables 
iklstH _  

= 1, if worker l provides help in skill s to worker k using tie i in period t ; = 0, 

otherwise, with i = 0, 1, or 2, indicates a strong, weak, or a performative tie 

System Environment 

Ph  Planning Horizon 

Exogenous 

Variables 

  The length or duration of each period 

T  Total number of time periods, with  /PhT  

K  Total number of workers in the organization 

S  Total number of skills supported by the organization 

Pc  Coefficient of task wait-time penalty per period, with ]1,0[Pc  
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TABLE 1 (Continued) 

Task Related 

M
 

Total number of type of tasks 

Exogenous 

Variables 

MaxN  Maximum number of tasks that have arrived over Ph  

sB  Billing rate per period for skill s 

m

sQ  = 1, if task type m requires skill s ; = 0, otherwise, with },...,2,1{ Mm  

jtTa  = 1, if task j arrives in period t ; = 0, otherwise 

jsTr  = 1, if task j requires skill s ; = 0, otherwise 

tN  

Total number of tasks that have arrived up to and including period t , with 


 


t

u

N

j

jut

Max

TaN
1 1

  

jsBm  
Time for a benchmark worker to complete component in task j that requires skill 

s  

jR  Revenue from completing task j , with 



S

s

jsjssj TrBmBR
1

 

m  Arrival rate per period of task type m 

sTt  
The average time required to complete skill s component in tasks by a 

benchmark worker 

Worker Related 

kWw  Wage rate per period for worker k 

Exogenous 

Variables 

Bc  Bench-cost coefficient, with ]1,0[Bc  

sWr  Wage rate per period for skill s for a worker of competence = 1 

ikl _  
= 1, if there is a tie of type i exists between workers k and l ; = 0, otherwise, with 

i = 0, 1, or 2, indicates a strong, weak, or performative tie respectively 

kstWc  

Worker k‟s competence in skill s in period t , ]4,0(kstWc . 0
kst

Wc  indicates 

an expert and 4
kst

Wc indicates a novice worker. For our purposes a value = 1 

indicates a benchmark worker. Workers could take any values in this range of 0 

to 4 

( 1ksWc  are exogenous variables, and },...,2{ TtWckst   are derived variables) Derived 

Variables 
kjtWt  = 1 if worker k completes task j by period t, = 0, otherwise 

kstEc
 

Worker k‟s effective competence in skill s in period t after consultation, with 

]4,0(kstEc
 
 

ktWb
 = 1 if worker k is busy in period t, = 0, otherwise 

Knowledge Acquisition 

  Knowledge retention coefficient, with ]1,0[  

Exogenous 

Variables 
iHc  

Overhead coefficient associated with worker providing consultation over tie of 

type i, with i = 0, 1, or 2, indicates a strong, weak, or performative tie 

respectively 

ikWh _  

Worker k‟s willingness to help over tie of type i, with i = 0, 1, or 2, indicates a 

strong, weak, or performative tie respectively (
2_1_0_ kkk WhWhWh  ) 

iklstGa _  
Represents worker k‟s gain in skill s from worker l using tie i in period t, with i 

= 0, 1, or 2, indicates a strong, weak, or performative tie respectively Derived 

Variables 
kstGa  

Represents worker k‟s gain in skill s in period t, after consultation 

Network Related  

Rp  Rewiring probability Exogenous 

Variables Nd  Network density 
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2.3.1.1 Net Payoff from Completing Tasks 

The assignment of worker k to task j in period t depends on (a) task revenue 

(  ), and (b) costs associated with completing tasks. 

2.3.2.1.1 Task Revenue 

Rather than directly choosing the revenue for a task, we arrive at this expression 

by first developing the expression at the skill level. We assume that the revenue for a 

task is a function of the skills required to complete the task and time that a benchmark 

worker (of competence 1) in the organization would take to complete the task. Hence, if 

s  represents the billing rate per unit time for skill s, the revenue from task j is given 

by, 



S

s

jsjssjR
1

 . Here, js  is equal to one if task j requires skill s, zero otherwise 

and js  represents time required by a benchmark worker (of competence 1) to fulfill the 

requirement in skill s for task j. This billing scheme is consistent with an industry 

practice of charging a standardized rate for a task based on task complexity (USi 2009). 

2.3.1.1.2 Costs Associated with Completing Tasks  

The total cost associated with completing a task is a product of the time to 

complete the task and the worker‟s wage rate ( kh ). The total time worker k takes to 

complete a task consists of two components, (a) time required to complete the task 

based on worker k‟s competence, (b) overhead incurred by worker k as a result of 

providing help to co-workers. These components are discussed below. 

Time Required to Complete a Task  

Worker k‟s competence (expertise) in skill type s, in assignment period t is given 

by ]4,0(kstW , such that the time taken by worker k to complete task j is given by 
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


S

s

jskstjsW
1

 . Thus, small values of kstW  indicate an expert worker, while larger values 

indicate a novice. In assignment period t, a worker, once assigned to a task, can acquire 

additional knowledge by consulting co-workers. We model the extent of knowledge 

gained by worker k, as a result of consulting co-worker l, as depending on: (a) the 

difference in their competence levels at that point in time )( lstkst WW  , (b) worker l‟s 

willingness to help ( i

l ). A worker‟s willingness to help is a function of the worker and 

the type of tie (strong, weak or performative) shared by co-workers k and l. Prior 

organizational research (Baum and Berta, 1999; Hansen and Løvås, 2004; Levine and 

Kurzban, 2006) has reported that individuals in organizations prefer using strong ties 

first (because they are more willing to help), followed by weak ties and performative 

ties. We model this by assuming 210

lll   , where 0, 1, and 2 represent strong, weak 

and performative ties respectively. Therefore, 
 


K

l i

i

klst

i

klstkst GG
1

2

0

represents worker 

k‟s gain in skill s in period t after consultation. Here, i

llstkst

i

klst WWG )(   is the extent 

of help acquired by worker k from worker l (sharing a tie of type i), and 1i

klst  

(decision variable) if worker l provides help using tie i to worker k (0 otherwise), in 

skill s in period t. Note that we allow worker k to gain help at most from one worker in 

period t in skill s (i.e.,  1
,1

2

0

 
 

K

kll i

i

klst ). Finally, worker k‟s effective competence in 

skill s in period t is given by kstkstkst GWC  . Therefore, the actual time a worker 

takes to complete a task, after knowledge acquisition, is given by, 


S

s

jskstjsC
1

.  
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We propose that organizations could push a help source by combining social 

network information with competence information. Tools such as IBM SOcial Network 

ARchitecture (SONAR) (Guy et al., 2008) provide social network information that can 

be combined with competence information from other available tools such as 

Microsoft‟s Skills Planning und (and) Development (SPUD) (Davenport and Prusak, 

1998), Knowledge Interchange Network (KIN) and Tacit Systems EKG (Cross et al., 

2001). 

It is important to note that a worker‟s competence in the current period kstW  is a 

function of knowledge acquired in prior periods. We assume that every time a worker 

completes a task there is an improvement in the workers competence (i.e., kstW  

decreases) due to consultation. This assumption is consistent with human capital theory 

(Becker 1962) and prior research on knowledge management (Chen and Edgington 

2005). 1ksW  represents the worker‟s initial competence level (at the beginning of the 

planning horizon). Here, 1kjtX  (decision variable) when worker k has been assigned 

to task j in assignment period t, 0 otherwise and 1kjtF  if task j is completed by period 

t (0 otherwise). Hence, the competence gained from tasks completed by assignment 

period t is 


 

1

1 1

1t

m

kjtksm

N

j

jskjm FGX
t

 . Here, we introduce a retention coefficient, ]1,0[ , 

to capture the reusable proportion of knowledge gained from consulting co-workers. For 

example, 1  implies that the worker retains only a fraction of the learning for tasks 

in future periods. Therefore, worker k‟s competence in period t is modeled as, 




 




1

1 1

1

1t

m

kjtksm

N

j

jskjmkskst FGXWW
t

 .  
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Overhead Associated with Providing Help 

While consultation may benefit the worker receiving help, it is possible that a 

competent worker may be burdened by having to help multiple workers in a given 

period. Therefore, the organization must take the cost of proving help into account 

when choosing a help source. We model this cost by increasing the time taken by 

worker k to complete his/her assigned task, when helping co-workers. Particularly, this 

additional time (overhead) in period t is modeled as,   
  


S

s

K

kll i

i

lkstkt

i Z
1 ,1

2

0

 . Here, 
i  

is the overhead coefficient associated with worker k providing help over a tie of type i, 

such that 0i  when there is no overhead from providing help. Such an overhead is 

relevant only when worker k is busy ( 1ktZ ), and increasing in the total numbers of 

workers being helped )(
1

2

0



 


K

kl
l i

i

lkst . 

Finally, total task time for worker k is the sum of,  

(a) time required to complete task j based on worker k‟s competence, 




S

s

kstjsjskjt CX
1

 .  

(b) overhead incurred by worker k as a result of providing help to co-

workers,   
  


S

s

K

kll

kt

i

lkst

i

i Z
1 ,1

2

0

 .  

Therefore, the total cost of completing tasks over the planning horizon is given 

by,    
    


T

t

K

k

S

s

K

kll

kt

i

lkst

i

i
N

j

kstjsjskjtk ZCXh
t

1 1 1 ,1

2

01

)(  . 

In summary, our model incorporates four factors that have been recognized in 
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prior research (Cross et al., 2001) as being important for effective knowledge sharing. 

These factors are: (a) “knowing what another person knows” which we model as worker 

competence kstW , (b) “willingness to engage in problem solving” which we model as 

i

k , (c) “being able to gain access” which we model by incurring a cost of providing 

help when a worker is busy, and (d) “degree of safety in the relationship” which we 

model using different values for 
i

k , based on the type of tie. 

2.3.1.2 Cost Associated With Workers Sitting on Bench 

When a worker is not competent enough to perform any task or there are no 

tasks available for him to perform, the worker might just have to sit idle for that 

assignment period. However, the firm incurs a cost for workers sitting on the bench, 

since it may continue to pay out wages to these workers. In our model, ktZ  equal to zero 

indicates that the worker is available in period t, and is not busy with any task assigned 

to him in a previous period. Therefore, the cost associated with the workers that are kept 

idle in period t is given by, b

K

k

k

N

j

kjtkt hXZ
t

 
 


1 1

))1((  . Here ]1,0[b  is the proportion 

of the wage paid when a worker is kept idle. This allows organizations to distinguish 

between a worker‟s wage rate when assigned a task versus sitting on bench. It is often 

equal to one in practice. 

2.3.1.3 The Wait-Time Penalty from Unassigned Tasks 

As discussed earlier, many IT service requests are time critical and delays in 

responding to these requests can often result in significant penalties for the firm. To 

capture this we introduce a task level wait-time penalty per period ]1,0[a . Here, a

represents the reduction in the task revenue (billing rate) for every time period that the 
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task is kept waiting in the system. Hence, if tN  represents the total number of tasks that 

have arrived till period t, the total wait-time penalty incurred in period t is given by, 

 
  


tN

j

a

S

s

sjs

t

m

K

k

kjmX
1 11 1

))1((  .  

Thus, the KISDN optimization problem can be formulated as: 

Objective Function
1
 


  

   



   

   
























T

t
N

j

a

S

s

sjs

t

m

K

k

kjm

K

k

bk

N

j

kjtkt

K

k

S

s

K

kll

kt

i

lkst

i

i
N

j

kstjsjskjtk

N

j

jkjt

tt

tt

XhXZ

ZCXhRX

Max
1

1 11 11 1

1 1 ,1

2

011

))1(()1(

))((





 

Total Task Revenue – Total Costs Associated with Completing Tasks (including the 

overhead of providing help) – Total Bench Cost – Total Wait Time Penalty 

 

Assignment Constraints 

,},..,1{},,..,1{   1
1

TtKkZX kt

N

j

kjt

t




 

Worker k can be assigned in the current period iff worker k is not busy with any tasks.  

 

},,..,1{   )1()(
1 1 ,1

2

0 111 1 1

KkTZXZCX
T

t

T

t

K

kll i

S

s

kt

i

lkst

i
N

j

kjtkt

T

t

N

j

S

s

kstjsjskjt

tt

    
      

  

Total time spent by a worker on tasks and on the bench cannot exceed T. 

 

},..,1{   1
1 1

Max

K

k

T

t

kjt NjX 
 

  

},,..,1{},,..,1{   0
1

TtKkX
Max

t

N

Nj

kjt 


 

A task can only be assigned once and after it arrives in the system. 

 

0)/))((( )1(

1

1 1

1

,1 

2

0

 



 



  

     tkj

t

m

kjm

S

s

t

mq

K

kll i

i

lksq

i

sjsjksmkjt FTXCmtF   

                                                 

1
 The linearized version of the above constraints is provided in Appendix A. 



24 

 

)1(

1

1 1

1

,1 

2

0

/))(((2 



 



  

      tkj

t

m

kjm

S

s

t

mq

K

kll i

i

lksq

i

sjsjksmkjt FTXCmtF 

,},..,2{},,..,1{},,..,1{       0
1

1

TtNjKkFX Maxkjt

t

m

kjm 




 

kjtF = 1 if worker k completes task j by time period t, 0 otherwise. 

i

klst =1 if worker k gets help in skill s from worker l using tie i in time period t, 0 

otherwise. 

 

,},..,2{},,..,1{    )1(
1

0 1

1

1

TtKkXFZ
t

m

N

j

kjmkjtkt

t




 





 

ktZ = 0 if worker k is available in period t (i.e., not busy), 1 otherwise. 

Knowledge Acquisition Constraints: 

 1},2,1,0{},,,1{},,,1{,},,,1{,)(  i

kl

i

llstkst

i

klst iTtSsklKlkWWG   

i

klstG  represents worker k‟s gain in skill s from worker l using tie i in time period t. 

 

 },..,1{},,..,1{,1},,..,1{                 1
,1

2

0

TtSsKk i

kl

K

kll i

i

klst  
 

  

Worker k can get help from only one worker l using one type of tie in skill s in period t. 

 

},..,1{},,..,1{},,..,1{
,1

2

0

TtSsKkGG
K

kll i

i

klst

i

klstkst   
 

  

 },..,1{},,..,1{},,..,1{   TtSsKkGWC kstkstkst   

kstG  represents worker k‟s gain in skill s in time period t, after consultation. 

kstC  is worker k‟s effective competence of skill s in time period t after consultation. 

 

},..,2{},,..,1{},,..,1{
1

1 1

1

1

TtSsKkFGXWW
t

m

kjtksm

N

j

jskjmkskst

t

 


 



   

Updating worker k‟s current competence ( kstW ) based on knowledge acquired in prior 

periods  

                  ■ 

2.3.1.4 Handling Uncertainty in problem parameters 

Recall that the firm‟s objective is to study how task assignment, knowledge 

management strategies and organizational networks interact in order to impact its 
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financial and operational performance. In that context, using expectations to estimate 

the type of tasks ( js ), arrival of tasks ( s ), initial competence of the workforce ( 1ksW ), 

and knowledge acquisition parameters (  ,, i

busy

i

idle ) removes the notion of uncertainty. 

However, we believe this is a relevant aspect of the firm‟s knowledge management 

problem. Therefore, in order to handle uncertainty more appropriately, the firm can 

draw different vectors of values for each of these parameters i.e., the firm 

conceptualizes the value as a random draw from an appropriate distribution. The firm 

considers random draws from the estimated distributions of the unknown values, solves 

independent problems for each instance, and takes the expected value across multiple 

instances. Note that the MIP formulated in the previous section can be interpreted as 

the knowledge management problem faced by the firm for one such instance. Given that 

the estimated distribution is continuous in nature, it is impractical to estimate the 

outcomes for all possible situations. However, if the number of instances (draws) 

selected is large enough, they would provide a reasonable approximation. The firm can 

basically estimate the value of its knowledge management strategies based on all the 

instances and the probabilities of each of the instances. This helps lend greater 

generalization to the model results.  

2.3.2 Network Structures 

We consider three types of organizational network structures: Clustered 

Networks (CN), Random Networks (RN), and Small-world Networks (SN) (see Figure 

2). These three network configurations are generated by “rewiring” the same total 

number of connections (Watts and Strogatz, 1998). In CN, all interactions are spatially 

local and a worker is directly connected to the same small number of his nearest 
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neighbors, i.e., a large number of cliques with few or no connections between them. 

This implies that in CN there tends to be large overlap between strong and weak ties, 

i.e., a friend are also a friend of a friend. On the other hand, RN have few or no cliques 

between workers. Hence, unlike CN, in these networks there is very little overlap 

between strong and weak ties of a worker. Lastly, SN lie somewhere in between CN 

and RN by having some cliques with limited connections between cliques.  

   

(a) Clustered Networks (CN) (b) Random Networks (RN) (c) Small-World Networks (SN) 

FIGURE 2: Different organizational network structures 

2.4 Solution Procedure 

2.4.1 Problem Complexity 

The KISDN optimization problem discussed in the previous section can be 

solved. However, a practical issue is whether realistic problems can be solved in a 

reasonable amount of time. Hence, we next discuss the complexity of our problem. 

Theorem 1: The KISDN optimization problem over some planning horizon is NP-hard.  

The main idea behind the proof is that the generalized assignment problem 

(Sahni and Gonzalez, 1976) can be polynomially transformed to an arbitrary instance of 

the KISDN optimization problem over some planning horizon T. In this construction, an 

item and a bin in the generalized assignment problem correspond, respectively, to a task 

and a worker. Assigning tasks to a worker corresponds to the notion of packing items in 

a bin. Appropriate choices for the service environment, worker, task and knowledge 

acquisition parameters complete the construction of an instance of the KISDN 
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optimization problem. For any positive integer 'J , the decision question “does there 

exist a valid task-to-worker assignment such that the firm‟s profit over the planning 

horizon T is greater than or equal to 'J ?” posed on the constructed instance is 

equivalent to solving the decision version of the generalized assignment problem. 

Consider the decision problem QKOP corresponding to the KISDN optimization 

problem over some planning horizon. 

Decision Problem (QKOP): Given the number of workers K, and the number of tasks 

MaxN , set values 1 ksW , kh , for each worker k, values i

kl  for each worker pair (k, l), 

values 
js , 

js , 
jR , 

jt  for each task j, and values T, S,  , a , b , i

k , 
i  and a 

specified number J, does there exist a task-to-worker assignment such that the firm’s 

profit over the planning horizon T is greater than or equal to J ? 

We now show that the decision version of generalized assignment problem can 

be polynomially transformed to QKOP. 

Generalized Assignment Problem (GAP): Given a finite set of bins },..,,{ 21 mbbbB   

with capacity ic  for each bin ib , and a finite set of items },..,,{ 21 nxxxS  , set weight

ijw  and profit 
ijp  for each pair of item 

jx  and bin ib , and a specified number 'J , does 

there exist a feasible packing, such that the total profit '

1 1

Jxp
m

i

n

j

ijij 
 

? 

A constraint in the GAP is that each item can only be packed into any one of the 

bins, (A.1)   },..,1{   1
1

njx
m

i

ij 


. A bin, however, can take multiple items, but should 

not exceed its capacity ic , (A.2)   },..,1{   
1

micxw j

n

j

ijij 


. 
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Given the generalized assignment problem, we now map it to an arbitrary 

instance of QKOP as follows. Each worker and task correspond to a bin ib  and an item 

jx  respectively in the generalized assignment problem. We construct an arbitrary 

instance of QKOP by setting 11 j  and 1,0  tjt },,..,1{, MaxNj  such that 

tNN Maxt   . This implies that all tasks arrive in the system at period 1. Also, 0a , 

and 0b  so that, there will be no penalty of keeping tasks waiting or keeping workers 

idle. In addition, we set 0i

k , and 0i  such that there will be no knowledge 

sharing among workers. One task can only be assigned to one worker, but a worker can 

perform multiple tasks over the planning horizon T. Therefore, this arbitrary instance of 

QKOP is given as follows:  

 
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The capacity constraint (A.5) in the QKOP means that the sum of the time taken 

to complete the assigned tasks and the time that the worker may be kept idle, cannot 

exceed the length of the planning horizon T. This corresponds to constraint (A.2) in the 
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generalized assignment problem. Thus, it is easy to see that for 'JJ   the solution of 

this instance of QKOP provides a solution to the generalized assignment problem. 

Moreover, the generalized assignment problem is known to be NP-hard (Sahni and 

Gonzalez, 1976). Hence QKOP is NP hard. 

                  ■ 

2.4.2 Dynamic Assignment Heuristic (DAH) 

If the planning horizon (P) was equal to the length or duration of a single period 

(i.e., P  implying 1T ), then the maximization problem would be similar to an 

assignment problem with inclusion and exclusion constraints. However, when the 

planning horizon is divided into multiple periods ( 1T ), then this problem can be 

solved for each period successively. In other words, we first determine the optimal 

assignment and the optimal payoff in the first period. Next, we set up the problem for 

the second period. To achieve this we use the assignment information from the first 

period, and take into account of all the new tasks that have arrived and the workers that 

have become available between period one and two. In addition, we update the worker‟s 

competences based on the task assignment in the first period. The optimal assignment 

and payoff for the second period can be obtained by using this information. Similarly, 

the assignment for the second period then sets up the problem for the third period, and 

so on. This would essentially be a greedy algorithm (with no look-ahead), wherein the 

emphasis, is on maximizing the payoff for only that period. In contrast, the proposed 

DAH improves over the greedy approach in two ways, (a) allows for dynamic 

assignment using a One-Period Look Ahead (OPLA) policy and (b) using suitable 

approximations, incorporates the value of learning viz., how the worker‟s knowledge 

acquisition in the current period impacts performance in future tasks. 
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2.4.2.1 One-Period Look Ahead Policy (OPLA) 

DAH uses a One-Period Look Ahead (OPLA) policy to decide whether to make 

assignments now or to wait until the next period. For each period t, the OPLA policy 

compares the objective functions of the following two scenarios: (a) making 

assignments in periods t and t+1successively (i.e., objective function value = a ), (b) 

wait and make assignments only in period t+1 (objective function value = b ). In both 

scenarios, we approximate the task arrivals for period t+1. We assume that on average, 

for each task of type m, m  tasks with task times equal to 


S

s

s

m

sq
1

  arrive into the 

system between period t and t+1. In the first scenario, a  is the sum of objective 

function values in assignment period t and the successive period t+1. Note that in the 

second scenario, since no assignments are made in period t, the firm incurs additional 

costs in terms of wait-time penalty (for unassigned tasks) and bench cost (for idle 

workers). Thus, b  is the objective function value from assignments at period t+1 less 

the additional costs stated above. Of course, these additional costs could be offset by 

making improved assignments in period t+1 (since a larger pool of tasks and workers is 

available). Hence, if ba   , OPLA policy will choose to wait for one period. 

Otherwise, the assignments are made in period t. This approach (OPLA) is applied 

repeatedly at every assignment period t. Hence, it is possible for the heuristic to wait for 

more than one period before making an assignment. 

2.4.2.2 Estimating the Future Value of Learning 

The value of learning depends on (a) number of additional tasks of type m 

completed as a result of learning )( 21

kmjtkmjt   , and (b) the revenue from each of these 
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tasks 


S

s

ss

m

sq
1

 . Here 1

kmjt  and 2

kmjt  are the expected number of tasks of type m 

performed by worker k using skill s, over the remainder of the session with and without 

learning, respectively. In order to approximate the values of 1

kmjt  and 2

kmjt , we need to 

consider – (a) the amount of time remaining in the planning horizon after the task 

assigned in period t is completed ))((
1





S

q

kqtjqjq CtT  , (b) the likelihood of the 

worker getting assigned to a task of type m in the future, after completing task j in 

period t ( kmjt ), (c) the workers effective competence, in skill s, with and without 

learning, ) ( kstkst GW   and kstW , respectively, and (d) the arrival rate of tasks of type m 

( m ). 

Note that, ))((
1





S

s

kstjsjsm CtT   represents the expected number of tasks of 

type m that will arrive in the remainder of the planning horizon. We propose that, since 

workers compete for tasks, the proportion of these tasks that can get assigned to worker 

k will depend upon his competence in task type m relative to his co-workers. Thus, the 

likelihood of assigning a task of type m to worker k is given by 

 
  


S

s

K

l

S

s

kstjslst

m

skstjskst

m

s

a

kmjt GWqGWq
1 1 1

_1 ))(4(/))(4(  , after learning (while 

doing task j), and  
  


S

s

K

l

S

s

lst

m

skst

m

s

a

kmt WqWq
1 1 1

_2 )4(/)4(  without it.  

On the other hand, even if there was no competition from co-workers, the 

maximum number of tasks of type m that worker k can complete in the remainder of the 

planning horizon can be estimated as the ratio of the time remaining in the planning 
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horizon to the average time taken by worker k to complete a task of type m. 

Mathematically, this ratio is 



S

s

skstjskst

m

s

S

s

kstjsjs GWqCtT
11
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11

/))(( , with and without learning respectively. In this 

case, we propose that the proportion of these tasks that can get assigned to worker k will 

depend upon his competence in task type m relative to his competence in other types of 

tasks. Thus, the likelihood of assigning a task of type m to worker k is 
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Therefore, we estimate
kmjt  based on which of the two scenarios mentioned 

above places a tighter constraint on the number of tasks of type m that can be assigned 

to worker k. That is, 

}

)(
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,))(({
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2.4.2.3 MIP formulation for each Period t  

Similar to Section 2.3 (MIP), in each period t, the firm‟s objective consists of 

the following terms: net payoff from completing tasks, the cost of workers sitting idle, 

and the wait-time penalty from un-assigned tasks. In addition the DAH objective 
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consists of the approximation for the value of learning in the current period on future 

periods. As discussed earlier, this depends on the number of additional tasks of type m 

completed as a result of learning )( 21

kmjtkmjt   , and the revenue from each of these tasks 




S

s

ss

m

sq
1

 . Mathematically, this is given by, 
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Here, tn̂  is the set of un-assigned tasks and 
tk̂  is the set of available workers at the 

beginning of period t. Using the same notation as in Section 2.3 (Table 1), in period t , 

the firm‟s maximization problem using DAH, can be we written as, 
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The assignment constraints are similar to Section 2.3, where we ensure that each 

task can only be assigned to one worker. Also, a worker can be assigned to a task, or 

kept idle in period t. The extent of knowledge acquired from a co-worker ( kstG ) and 

hence the effective competence ( kstC ), can be calculated in a fashion similar to the one 

described in Section 2.3.1.  

2.4.2.4 Implementation of the Hungarian Method 

To solve the maximization problem, in order to estimate the values for a  and 
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b , we use the Hungarian method (Cormen et al., 2001). The Hungarian method 

models the assignment problem as a p-by-q profit matrix, where each element jka ,  

represents the profit of assigning the k-th worker to the j-th task. Recall that in our 

assignment problem, there is a payoff associated with assigning worker k to task j, or to 

the bench. In addition, we also model a waiting-time penalty for each unassigned task in 

the system. Even so, we show that our assignment problem can be solved using the 

Hungarian method by generating an adjusted profit matrix. 

In the adjusted profit matrix, the payoff associated with assigning  

each task tnj ˆ  to each worker tkk ˆ  (which is jka , ) is sum of the payoff 
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) associated with task j (Block A in Figure 3). Note that, as in 

the MIP, we only allow one worker to provide help to worker k in skill s in period t.  

Therefore, for each task j, worker l provides help to worker k )1( i

klst , iff 
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The payoff associated with keeping a worker k on bench is period t is given as, 

bkh  (Block B in Figure 3). The number of rows in our adjusted profit matrix is 

determined by the number of available workers at the beginning of period t ( tk̂ ) , i.e., 

p = tk̂ . And, the number of columns is the sum of the number of available tasks in 

period t (
tn̂ ), and an additional option of keeping the worker idle (i.e., 1ˆ  tnq  ).  
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FIGURE 3: Profit matrix for the Hungarian method used in DAH 

In this section, we present the formal proof for using the adjusted task profit (

a

S

s

sjs

M

m

kmjtkmjt

S

s

ss

m

s

S

s kl i

i

klstl

i

jskstkjsjsj qhChR

t

  
   


11

21

11 ˆ

2

0

)()( ) in 

the profit matrix. The task payoff and the wait-time penalty in period t is given by 
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This could be written as follows: 

  

  

  

     































t t

t t t

nj kk

a

S

s

sjskjta

S

s

sjs

kk nj

M

m

kmjtkmjt

S

s

ss

m

s

S

s kl i

i

klstl

i

jskstkjsjsjkjt

X

qhChRX

ˆ ˆ 11

ˆ ˆ 1

21

11 ˆ

2

0

    

)()(



































 

  

   

     

t tt

t t t

nj kk

a

S

s

sjskjt

nj

a

S

s

sjs

kk nj

M

m

kmjtkmjt

S

s

ss

m

s

S

s kl i

i

klstl

i

jskstkjsjsjkjt

X

qhChRX

ˆ ˆ 1ˆ 1

ˆ ˆ 1

21

11 ˆ

2

0

)    

)()(





 

 

  

   

     


















tt t

t t t

nj

a

S

s

sjs

kk nj

a

S

s

sjskjt

kk nj

M

m

kmjtkmjt

S

s

ss

m

s

S

s kl i

i

klstl

i

jskstkjsjsjkjt

X

qhChRX

ˆ 1ˆ ˆ 1

ˆ ˆ 1

21

11 ˆ

2

0

    

)()(





 

 

 

tk̂  workers  

 1ˆ,ˆˆ,ˆ2,ˆ1,ˆ

1ˆ,2ˆ,22,21,2

1ˆ,1ˆ,12,11,1







tttttt

tt

tt

nknkkk

nn

nn

aaaa

aaaa

aaaa









 

tn̂ Tasks 

 

Bench 

Block A Block B 



36 

 



  

 

     


















t

t t t

nj

a

S

s

sjs

kk nj

a

S

s

sjs

M

m

kmjtkmjt

S

s

ss

m

s

S

s kl i

i

klstl

i

jskstkjsjsjkjt qhChRX

ˆ 1

ˆ ˆ 11

21

11 ˆ

2

0

    

)()(





 

Since 
 tnj

a

S

s

sjs

ˆ 1

  is a constant for time period t, our objective function could 

be solved using a

S

s

sjs

M

m

kmjtkmjt

S

s

ss

m

s

S

s kl i

i

klstl

i

jskstkjsjsj qhChR

t

  
   


11

21

11 ˆ

2

0

)()(  as 

the adjusted task profit.  

Updating the Overhead Associated with Providing Help 

One subtle aspect of DAH is that the cost of providing help is estimated only for 

busy workers )ˆ( tkk  , prior to making assignments. However, it is possible that post-

assignment (using the Hungarian method) some of the previously idle workers may also 

become busy. In that case, we need to check, for every such worker l, whether the cost 

of providing help incurred by l is offset by the benefit to every worker k being helped, 

and update the competence levels accordingly.  

Therefore, after making assignments using Hungarian method, we check 

whether 0)(
ˆ 11

2

0

 
   tnj

S

s

kjsjs

i

llstkstkjt

S

s i

i

klstl

i hWWXh  , where tkkl ˆ ,   and 

worker k, l are assigned to tasks in period t.  

(a) if 0)(
ˆ 11

2

0

 
   tnj

S

s

kjsjs

i

llstkstkjt

S

s i

i

klstl

i hWWXh  , we allow worker l to help 

worker k. However, as discussed in Section 2.3.1.1, worker l incurs overhead ( l

ih ) 

from providing help to worker k.  
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(b) if 0)(
ˆ 11

2
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 
   tnj

S

s

kjsjs

i

llstkstkjt

S

s i

i

klstl

i hWWXh  , we stop worker l from 

helping worker k in period t, and update worker k’s time to complete task j as, 




S

s

kstjsjs W
1

 .                  ■ 

Finally, Figure 4 summarizes the DAH.  

 

FIGURE 4: Dynamic Assignment Heuristic (DAH)  

2.5 Simulation Design 

The complexity of the problem precludes analytical solution and requires us to 

use simulation. Other studies in IS have used simulation with synthetic data in order to 

provide stylized insights into relationships between key variables when the underlying 

phenomenon is complex and real world data is difficult to obtain. Such studies include 

the value of knowledge management (Chen and Edgington, 2005), electronic markets 

(Jones et al., 2006), the performance of IS teams (Rao et al., 1995), and security 

portfolios (Kumar et al., 2008). The value of our model is primarily to provide 

generalized insights into the operation of KISDN. This section describes the design of 

simulation experiments including, key parameters and their estimation. Fifty 

replications of each sample path were used, and average values of system performance 

measures were calculated. Such an approach using average performance analysis is 

consistent with prior MIS research (Chen and Edgington, 2005; Jones et al., 2006; 

Kumar et al., 2008; Rao et al., 1995; Sen et al., 2009). Simulations were extremely  
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computation-intensive. Hence, they were run on a cluster of 160 Intel Xeon CPUs on 

Dell blade servers with Red Hat Enterprise Linux operating system. The average time 

for running each replication of a sample path was 2.4 hours.  

Table 2 describes the numerical values, and justification for parameters used in 

our simulation experiments. Where possible, we have attempted to base these values on 

ranges that could be encountered in practice and/or prior research. These parameters can 

be divided into five categories: service environment, workers, tasks, knowledge 

acquisition, and network. Each of these is described below. In our opinion, service 

environment, worker, and task parameters can be estimated relatively easily. 

Knowledge acquisition parameters included in our model could be estimated 

approximately and help sensitize the organization to KISDN management issues that 

involve these parameters.  

2.5.1 Service Environment Parameters 

The service environment was simulated for a planning horizon P of 1200 time 

periods. As discussed earlier, it is important to realize that the actual value of each time 

period could be context sensitive. We assume 100 workers ( K ) and 4 skills ( S ) for our 

simulations. This represents a relatively small service organization. Larger values would 

significantly enhance computational complexity. Prior research on knowledge transfer 

(Cowan and Jonard, 2004) and technical support (Prabhakar et al., 2005) has used 5 and 

3 skills respectively. As outlined before, we use wait time penalties to model the impact 

of customer waiting and use different values of penalty coefficients ( a ) in our 

simulation experiments. As mentioned in Table 2, the choice of values is comparable to 

actual service level agreements (SLAs) (Buco et al., 2003, Sen et al., 2009). 
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2.5.2 Worker Parameters 

We use two worker related parameters: hourly wage rate for a benchmark 

worker (of competence 1) for skill s ( sh ), and initial competence of worker k in skill s (

1ksW ). The hourly rate for worker k ( kh ) is calculated from these as shown in Table 2. 

These values were chosen to be comparable to the range of values encountered in 

practice (www.payscale.com and Sen et al., 2009). In addition, we assume the bench 

cost coefficient ( b ) is one. Consistent with prior research on worker cross training 

(Sayın and Karabatı, 2007) a normal distribution of worker competence was assumed. 

Empirical research on the operation of IT service environments has illustrated the 

presence of considerable worker heterogeneity in service task completion (Kim et al., 

2008). We chose a range of four for worker competence, based on the Microsoft SPUD 

project (Davenport and Prusak, 1998) which recognizes four levels of worker 

competence in each skill. A mean of 1.4 was chosen to allow for a normal distribution 

of worker competence in the range 0-4. While it is easy to measure worker‟s wage rate (

kh ), it is more difficult to measure worker‟s competence ( kstW ). However, there is a 

growing trend of using technology to assess workers, competence and store them in a 

skill database. Tools such as Microsoft‟s SPUD (Davenport and Prusak, 1998) and KIN 

and Tacit Systems EKG (Cross et al., 2001) have been adopted by service organizations 

in order to measure and store worker competence for use in decision making. 

2.5.3 Task Related Parameters 

We assumed that the time taken by a benchmark worker to complete the 

requirement in skill s for task j, is given by ),( ssjs N   with values (in minutes) for 

each type of skill given in Table 2. We assume six types of tasks in terms of their skill 
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requirement, each task requires two skills, and an equal arrival rate ( m ) for each task 

type m. Task arrival rates and task times are in the range that could be encountered in 

practice
2
 (HP, 2007; Sen et al., 2009). Sen et al., (2009) reports mean and maximum 

values for task times in the range of 30 minutes to 8 hours, and HP (2007) reports 

problem resolution times of 4 hours to 10 days. In our simulation, for example, a task 

requiring skills 1 and 2 would have a mean task time of 15x10 =150 minutes, and a 

maximum time of 330 minutes. The billing rate for each skill ( s ) is calculated based 

on the hourly rate for workers, assuming a profit margin of 50%, which is comparable 

to prior research (Sen et al., 2009). Setting a standardized billing rate ( s ) for a task 

based on the skill required is consistent with industry practice (USi, 2008). 

2.5.4 Knowledge Acquisition Parameters 

The willingness to help ( i

k ), the overhead coefficient )( i  and the knowledge 

retention coefficient ( ), are parameters designed to capture the characteristics of the 

knowledge acquisition environment. Willingness to help has been extensively 

researched (Cabrera and Cabrera, 2002). This parameter is a function of the type of tie 

(Baum and Berta, 1999; Hansen and Løvås, 2004; Levine and Kurzban, 2006). Cowan 

and Jonard, (2004) uses values in the range 0.5-1 for strong ties and recognizes that 

high values close to 1 are unrealistic. The values chosen by us are in this range. Cabrera 

and Cabrera (2002) provide an extensive discussion of techniques to enhance 

willingness to help. The overhead coefficient captures an individual's cost of providing 

help and depends on the type of tie (Marsden and Campbell, 1984). In our simulations 

                                                 

2
 A mean processing time per incident of 360 minutes was reported in discussions with a senior corporate 

systems support manager of a leading systems software vendor in 2009-2010. 
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we assume that the time spent on each help transaction is small, relative to task times
3
. 

For each help transaction, the values for the overhead coefficient chosen in Table 2 

translate to a maximum of 2.5%, 7.2%, and 12% for strong, weak and performative ties, 

respectively, for an average task time of 25 periods. It should be noted that when a 

worker helps multiple co-workers, the overhead incurred would be significantly large. 

Exact parameter estimation could be difficult. However, the intent is not to be able to 

estimate these parameters accurately, but to force organizations to think about whether 

these parameters are low or high and to consider ways to enhance their value. Such an 

approach is consistent with prior simulation based knowledge management research 

(Chen and Edgington, 2005). Knowledge retention coefficient forces organizations to 

think about synergies between tasks performed and is similar to the concept of reuse 

which has been used in other contexts such as software engineering (Schilling et al., 

2003). Learning while completing tasks has greater value in scenarios where the 

knowledge retention ratio is high. We experiment with a range of values for these 

parameters. 

2.5.5 Network Parameters 

A clustered network with 100 nodes (workers) was created by connecting each 

node with   of its nearest neighbors. SN and RN were created by disconnecting the 

link and reconnecting it with probabilities of 0.09 and 1 respectively using the Watts 

and Strogatz algorithm (Watts and Strogatz, 1998). It is important to note that the Watts 

and Strogatz algorithm maintains the same average number of neighbors even though 

                                                 

3
 This is consistent with practice, based on discussions with a senior support manager of a leading 

systems software vendor, and observations at a service organization specializing in the financial services 

industry. 
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the network topology changes. The values of   used are described in Table 2. We 

generate 50 different samples (with different connectivity) for each type of network. We 

simulate the performance of each of these 50 networks, and report the average 

performance.  

Organizations have been increasingly adopting tools to capture information flow 

networks. Commercial software such as InFlow (www.netorg.com) and IBM SONAR 

(Guy et al., 2008) allow organizations to extract organizational network information 

from emails, blogs, and other sources. 

2.6. Simulation Results 

This section presents important results from our experiments. These results 

illustrate the stylized behavior of KISDN in terms of measures of operational 

performance (Average total task time), financial performance (Objective function 

value), knowledge diffusion (Number and type of ties used per worker, average 

competence level of the workers in the organization, worker specialization), and 

assignment dynamics
4
. The impact of some of our parameters such as willingness to 

help is well researched (Cabrera and Cabrera, 2002). We merely note that increased 

willingness to help improves financial and operational performance and helps 

knowledge diffusion of KISDN, as expected. Our focus is on the impact of network 

structure (network topology and network density) on KISDN performance, since this is 

a relatively under-researched area. 

2.6.1 Impact of Network Structure  

                                                 

4
 T = 1200; K = 100; M = 6; S = 4; s = 6, 9, 12, 15; 

m = 1; a = 0.1, b =1;  = 10%; sh = 4, 6, 8, 10, s

{1,2,3,4};  =0.2; 
0
k = N(0.45, 0.03), 

1
k = N(0.25, 0.02), 

2
k = N(0.05, 0.01); 

0 = 0.1, 
1 = 0.3, 

2 = 0.5 

Differences between network structures were tested for statistical significance using multiple paired t-tests, p<0.05 
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In order to compare the three networks structures (RN, CN and SN) we observed 

their financial performance, operational performance, and knowledge diffusion 

characteristics for different values of the willingness to help parameter. 

  
FIGURE 5: Objective function value for different 

values of network density  

FIGURE 6: Average total task time for different 

values of network density  

  
FIGURE 7: Strong ties used per worker for 

different values of network density  

FIGURE 8: Cumulative strong tie gain for different 

values of network density  

  
FIGURE 9: Weak ties used per worker for different 

values of network density  

FIGURE 10: Cumulative weak tie gain for 

different values of network density  
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FIGURE 11: Performative ties used per worker for 

different values of network density  

FIGURE 12: Cumulative performative tie gain for 

different values of network density  

We observe that the financial performance (Figure 5) and operational 

performance (Figure 6) increase as networks become denser. Additionally, we notice 

that RN outperform the other network topologies
5
. However, the difference between 

RN, and the other two network topologies, decreases as network density increases. 

These results are driven by knowledge sharing behavior, which in turn, depends on 

network topology and network density. Next, we analyze knowledge sharing behavior 

in detail. 

Recall that, in our model the total time a worker spends on a task is a function of 

his effective competence, which in turn depends on extent of knowledge acquired from 

co-workers. And the extent of knowledge exchange between two co-workers depends 

on the type of tie shared and the competence difference between them. Typically, strong 

ties are the preferred method of consultation, since they have a higher willingness to 

help and the least overhead coefficient (Baum and Berta, 1999; Hansen and Løvås, 

2004; Levine and Kurzban, 2006). However, the number of strong ties that each worker 

has is limited. Weak ties have a lower willingness to help, but are greater in number as 

compared to strong ties. Finally, performative ties allow a worker to connect to any 

                                                 

5
 Based on average performance over 50 replications 
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worker in the system, and although they are the most in number, they are the least 

efficient in terms of both willingness to help and the overhead of providing help. The 

average number of strong ties per node increases as network density increases. Since 

strong ties are the most effective means of acquiring knowledge, this accounts for 

improved financial and operational performance with increase in network density 

(Figures 5, 6). Also, as network density increases to relatively high values, the three 

network topologies tend to become similar, reducing performance differences between 

them.  

While the number of strong ties is the same across the three network structures, 

the type of knowledge sharing behavior invoked by each network structure is very 

different. This is largely driven by the fact that as workers acquire knowledge from each 

other to perform tasks; cliques tend to become similar over time (in terms of knowledge 

vectors of workers). Therefore, the amount of knowledge gained by using strong and 

weak ties within cliques becomes limited as compared to using same ties from outside 

the clique, if they exist. In addition, within cliques there is a high overlap between the 

strong and weak ties, making weak ties redundant. As discussed earlier, CN have no or 

very few strong and weak ties outside cliques. In contrast, RN have very few cliques 

and many strong and weak ties distributed across the network. SN are somewhere in the 

middle with a small number of cliques having connections across them.  

For reasons discussed earlier, workers in all three network topologies, prefer to 

use strong ties, therefore the number of strong ties used per worker (Figure 7) is much 

higher than weak tie (Figure 9) and performative tie use (Figure 11). Note that, the 

number of strong ties used is about the same for all three network topologies (Figure 7). 
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However, RN, and SN use a much larger number of weak ties (Figure 9), compared to 

CN, which uses a much larger number of performative ties (Figure 11). Figures 8, 10, 

and 12 indicate that RN benefits most from strong and weak tie use, in terms of 

knowledge gained and CN benefits the least, since workers in cliques tend to be similar. 

In essence, we find that the RN invokes the most efficient knowledge sharing behavior 

between workers and this explains why it outperforms SN and CN. 

TABLE 3: Min/Max/Average performance differences across network structures 

Objective Function Value Difference (% Improvement) 

Network 

Density (%) 
SN over CN RN over CN 

 
Avg. Min Max Avg. Min Max 

10 51.4 10.2 232.3 134.6 25.5 459.0 

12 22.7 1.5 393.3 50.7 13.6 1132.9 

14 12.6 -5.7 280.9 28.9 6.2 531.9 

16 13.1 -0.2 73.2 19.2 -3.4 151.4 

18 7.9 -0.5 77.3 13.4 -5.8 100.3 

20 6.8 -3.1 21.2 11.5 -3.8 71.5 

 

  
FIGURE 13: Average knowledge level for 

different values of network density  

FIGURE 14: Worker specialization for different 

values of network denstity 

In addition to the average analysis, we also studied minimum and maximum 

performance differences across the three network structure (Table 3). We observed that 

when network density is high, it is possible for some sample paths (less than 2.5% of all 

instances) that CN slightly outperforms (by less than 0.5-6%) RN or SN. This suggests 
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that, on occasion, when network density is high, the experts may be nicely distributed 

amongst CN cliques, such that it is able to slightly outperform the other networks. 

However, for the most part (viz., on average across all instances), for the reasons 

already provided, CN performs poorly compared to SN and RN, in that order. 

These effects are further illustrated in Figures 13 and 14, where we plot the 

average knowledge level of workers and average worker specialization (coefficient of 

variation of competence across skills for all workers). In every time period t, the 

standard deviation of competence across S skills of worker k is given by kt . Hence, the 

average coefficient of variation of competence across skills over all workers is, 

 
 

K

k

S

s

kstkt WSK
1 1

)/()/1(  . Each clique in a CN may contain a subset of experts and this 

limits both the amount and range of knowledge that can be gained by individuals in that 

clique. In RN and SN, which have no or very few cliques, workers have access to a 

greater number of experts. Hence, there is greater knowledge diffusion in RN and SN, 

resulting in a higher knowledge level (Figure 13) compared to CN. It is important to 

note that knowledge diffusion (due to consultation) when a task requires multiple skills 

is different compared to knowledge diffusion in a scenario where a task requires only 

one skill. In the former scenario, each worker is able to improve his expertise in 

multiple skills, when performing tasks. In the latter case, since workers are assigned to 

tasks that require only one skill, learning during task assignment results in improved 

competency in that skill. In this case, repeated assignments, which use the skill that the 

worker is most proficient in lead to further specialization and higher knowledge 

variance (Figure 14). Therefore, when a task requires one (two) skill, each consultation 

increases (decreases), knowledge variability across skills. Given that RN better facilitate 
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help seeking behavior, RN results in higher (lower) worker specialization when a task 

requires one (two) skill(s), compared to CN. 

Note that increasing network density has the most impact in the case of CN and 

least in the case of RN (Figures 5, 6, 13, 14). The marginal value of additional 

neighbors is highest in the case of CN. CN are dependent on strong ties for knowledge 

transfer and benefit much more from access to new expertise, compared to RN and SN, 

which can access a broader range of help sources (outside cliques). 

2.6.2 Impact of Cost of Providing Help on Relative Network Performance 

In order to extend the robustness of the model trends seen thus far, we study the 

relative performance of the different network structures as we increase the cost of 

providing help. Note that, in these experiments the cost of providing help is increased in 

such a way that the relative cost of providing help via strong, weak or performative ties 

is maintained. As the overhead from providing help increases it is beneficial to acquire 

knowledge from only those co-workers where the knowledge gain can offset the cost. In 

other words, for a worker to be able to use his closest ties (strong and weak) it is critical 

that there be enough heterogeneity in skills across workers in his closest network (i.e, 

more potential for knowledge gain). The lack of enough heterogeneity in closest ties 

results in a reduction in the use of closest ties, increased use of performative ties, and 

reduced financial performance (Figure 15). In addition, we find that as the cost of 

providing help decreases the difference between network structures decreases. Since 

RN invokes the most efficient help sharing behavior, for reasons discussed in Section 

2.6.1, RN continues to outperform SN and CN, in that order
6
.  

                                                 

6
 It is trivial to see that, if the overhead of providing help is high enough to preclude access to co-
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FIGURE 15: Impact of different overhead 

coefficient of helping on objective function value 

FIGURE 16: Periods between successive 

assignments for different network density 

2.6.3 Impact of Various Parameters on Assignment Decision Dynamics 

Recall that the DAH uses OPLA to make a decision whether to wait for one 

period or make an assignment during that time period. We refer to this as the 

assignment decision. Hence, the time between successive assignments is dynamic and 

could be multiple time periods. The assignment decision is related to the costs and 

benefits of keeping tasks waiting or workers idle in the system. As discussed earlier, we 

assign a wait-time penalty for each time period that a task is waiting in the system. 

Also, the firm continues to pay out wages to all workers that are kept on bench. The 

benefit comes from the fact that, in each assignment period, the firm can now choose 

from a larger pool of un-assigned tasks and workers, with varying competences, 

resulting in improved assignments of tasks to workers. Thus, the net benefit from 

waiting to make an assignment depends on the number of tasks waiting to be assigned 

and the magnitude of the wait-time penalty. Hence, we study how the assignment 

decision depends on various factors such as, worker heterogeneity and network density. 

Worker heterogeneity refers to the variation in skill levels across workers, for a 

given number of workers. Recall that the intuition behind delaying assignment is that 
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the firm can choose from a larger pool of un-assigned tasks and workers with varying 

competences. Therefore, when there is significant worker heterogeneity, waiting results 

in better task to worker assignments (in terms of revenue from task completion and 

future value of learning). This is because there is a greater degree of mismatch between 

workers‟ competence level and the requirement of the arriving tasks. Conversely, for 

homogenous workers it is trivial to see that there would be no value of waiting. This is 

illustrated in Figure 16 where the average number of time periods between assignments 

for a low value of worker heterogeneity (0.40) is less than that for higher values of 

worker heterogeneity (0.45). This intuition can also be interpreted in terms of real 

options theory (Trigeorgis, 1996) and is discussed in Section 2.10. 

Figure 16, also plots the average number of time periods between assignments 

as a function of network density. Increasing network density increases the pool of 

available workers through strong ties and results in higher knowledge levels (Figure 13) 

and lower worker heterogeneity (not shown here). Hence, increasing network density 

reduces the value of waiting and results in more frequent assignments. Another 

important factor that affects the frequency of assignments is the wait-time penalty 

associated with un-assigned tasks. Since CN have the lowest average knowledge levels 

(Figure 13) and highest task completion times (Figure 6), they tend to have a larger 

number of tasks waiting in the system (hence largest wait-time penalty). This explains 

why the number of periods between assignments is the smallest for CN. 

2.7 Performance Evaluation of DAH 

2.7.1 Comparison with MIP Solution (using CPLEX) 

To evaluate the performance of our heuristic, we solve the MIP formulation 

using CPLEX for small problem instances and compare it against the solution using 
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DAH. This methodology is consistent with prior research (Dawande et al., 2008; Kumar 

et al., 2007). Particularly, we compare the CPEX gap (% difference between CPLEX 

solution and CPLEX upper bound) to the DAH gap (% difference between DAH 

solution and CPLEX upper bound (or optimal solution, where applicable)).  

All experiments were run using CPLEX (Version 12.1) on Core 2 Duo E4500 

computers (2.2GHz, 3GB RAM) with Windows XP as the operating system. We 

allowed each instance to run for 10 hours to get a reasonable solution (in terms of 

CPLEX Gap). We also used the DAH (coded in NetLogo and Java) to solve the same 

instances.  

The problem size is restricted due to the long compute times involved in 

CPLEX. Still, we design our experiments such that several model parameters that can 

affect the heuristic performance are varied, while staying within limits of reasonable 

problem size/complexity for CPLEX. These parameters include the wait-time penalty, 

the heterogeneity of workforce competence, planning horizon, task per period and 

average task time. We chose multiple (2 or 3) levels for each of these parameters giving 

us a total of 48 (3*2
4
) problem classes. Within each of the 48 classes, ten problem 

instances were generated (by taking draws from the relevant distributions for uncertain 

parameters as outlined in Section 2.3.1.4). The results of the solution comparison 

between MIP and DAH are reported in Table 4. For completeness, we provide the 

minimum and maximum performance GAP of DAH, in addition to the average over all 

sample paths. In each case, for the sample path that results in minimum and maximum 

performance of DAH, we also record the corresponding CPLEX GAP. This helps us 

approach the worst case performance of DAH when compared with CPLEX. 
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TABLE 4: Percentage gap of DAH results from CPLEX solution
*
 

 
* 

Number of Workers = 15, CPLEX Gap = (CPLEX Upper Bound – CPLEX Solution)/CPLEX Upper 

Bound; DAH Gap = (CPLEX Upper Bound – DAH Solution)/CPLEX Upper Bound 
** 

Optimal Solution for CPLEX, therefore, DAH Gap = (CPLEX Optimal Solution – DAH Solution) / 

CPLEX Optimal Solution, N/A – CPLEX solution was not obtained 

ID 
Penalty 
Coefficient 

Worker 
Heterogeneity 

Planning 
Horizon 

Task Per 
Period 

Average 
Task Time 

DAH Gap (%) CPLEX Gap (%) 

      Avg Min  Max  Avg Min  Max  

1 

0.1 

N(1,0.35) 

10 

6 3 4.6 2.7 6.8 16.9 12.1 18.3 

2 6 6 7.0 5.6 8.9 N/A N/A N/A 

3 3 3 4.0 2.8 4.9 14.4 12.8 16.4 

4 3 6 4.1 3.3 5.2 15.2 14.4 16.5 

5 

6 

6 3 3.6 1.7 4.8 9.9 8.4 7.0 

6 6 6 5.0 3.6 7.1 6.9 7.7 9.3 

7 3 3 2.1 1.2 3.1 7.9 7.0 5.3 

8 3 6 3.5 0.5 5.7 4.0 0.7 5.7 

9 

N(1,0.45) 

10 

6 3 3.1 0.2 4.6 15.6 11.0 19.6 

10 6 6 6.8 6.0 7.3 N/A N/A N/A 

11 3 3 3.1 2.0 4.3 9.7 8.3 10.6 

12 3 6 4.0 3.4 4.7 13.8 13.3 14.7 

13 

6 

6 3 2.9 1.1 4.5 9.1 8.4 7.0 

14 6 6 3.9 3.2 4.2 9.8 7.7 12.6 

15 3 3 2.3 0.5 3.9 8.6 7.0 5.3 

16 3 6 3.3 2.0 5.0 6.8 2.0 10.4 

17 

0.3 

N(1,0.35) 

10 

6 3 3.5 1.7 5.5 12.6 7.9 15.8 

18 6 6 6.6 2.9 10.0 N/A N/A N/A 

19 3 3 3.1 1.6 4.6 10.1 8.8 11.9 

20 3 6 3.1 2.0 5.1 13.1 10.7 15.5 

21 

6 

6 3 1.0 0.1 1.9 7.9 6.1 10.0 

22 6 6 3.8 1.4 5.2 6.2 0.0** 10.8 

23 3 3 0.7 0.3 1.4 7.0 5.8 8.5 

24 3 6 1.5 0.3 3.0 2.4 0.0** 8.0 

25 

N(1,0.45) 

10 

6 3 2.7 0.1 3.6 12.9 9.1 16.8 

26 6 6 6.4 4.1 7.5 N/A N/A N/A 

27 3 3 1.8 0.9 2.3 9.3 8.4 11.8 

28 3 6 2.9 1.8 5.0 12.1 9.9 15.6 

29 

6 

6 3 1.5 0.1 3.0 7.5 5.7 9.1 

30 6 6 3.9 3.0 5.4 6.6 2.1 9.9 

31 3 3 0.4 0.0 1.1 6.3 5.3 7.4 

32 3 6 1.4 0.5 2.6 3.1 0.0** 7.9 

 33 

0.5 

N(1,0.35) 

10 

6 3 2.9 1.5 3.9 11.0 7.7 15.9 

34 6 6 5.7 3.2 7.0 15.9 14.2 17.6 

35 3 3 1.8 1.4 2.3 8.8 8.3 10.0 

36 3 6 2.6 2.2 3.1 12.7 11.1 14.0 

37 

6 

6 3 1.7 0.9 3.0 7.8 6.1 9.0 

38 6 6 3.7 1.5 5.6 5.1 0.0** 9.0 

39 3 3 0.8 0.6 1.1 6.2 5.4 7.7 

40 3 6 1.6 0.2 3.1 1.6 0.0** 6.3 

41 

N(1,0.45) 

10 

6 3 1.7 0.2 2.7 10.3 7.9 12.0 

42 6 6 5.2 3.4 6.5 N/A N/A N/A 

43 3 3 1.5 0.7 2.1 6.7 5.4 7.4 

44 3 6 2.4 1.4 3.6 10.3 9.0 13.6 

45 

6 

6 3 1.7 0.4 2.5 6.1 5.5 7.6 

46 6 6 3.9 2.9 5.0 N/A N/A N/A 

47 3 3 0.6 0.1 1.3 5.1 4.5 6.3 

48 3 6 1.2 0.1 2.3 0.1 0.0** 0.3 
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First, for the problem instances that CPLEX solves to optimality, the DAH 

solution is also near-optimal (≤1.4% DAH GAP). For all other problems, where 

CPLEX cannot be solved to optimality, we compare against the CPLEX upper bound. 

In these cases, it can be seen that our DAH provides significantly better lower bounds 

than CPLEX solution (on average < 5% DAH GAP), across the wide variety of problem 

classes. Even when we compare the minimum and maximum DAH GAP, over all 

sample paths and across all problem classes, the performance of DAH is very robust. 

Finally, in terms of compute time, the DAH solution is obtained in a few seconds 

compared to 10 hours for CPLEX. Next we discuss how some of the model parameters 

affect the DAH performance. 

The DAH solution gets closer to the upper bound when worker heterogeneity 

increases. This is because, when worker heterogeneity is high, there is more benefit 

from waiting to make assignments and value of learning from co-workers. Both these 

effects are captured by DAH. Similarly, as wait-time penalty increases or the planning 

horizon decreases, the DAH assumption of looking only one-period ahead before 

making assignment decisions becomes more realistic. Hence, for the most part, we find 

that as wait time penalty increases or planning horizon decreases, DAH gap also 

decreases. On the other hand, as the average task time increases, workers take longer to 

become available. Hence, the OPLA scheme becomes less optimal, since we would like 

to look further down the planning horizon (more than one period) before making 

assignment decisions. This explains why the DAH gap, for most part, increases with 

average task time. In such scenarios, DAH performance can be improved by adjusting 

the length of the assignment period ( ) in proportion with the task times. Finally, as the 
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number of tasks per period increases, the need for finding the optimal worker-to-task 

assignment increases, in order to compensate for wait time penalty. In this situation, the 

OPLA scheme again becomes less optimal, resulting in a higher DAH gap. 

2.7.2 Comparison with Greedy Heuristic  

We also compared the performance of DAH with a Greedy heuristic. The main 

distinction of the greedy approach is that (a) at every period, the greedy heuristic makes 

the best available worker-to-task assignment without pre-fetching any benefits from 

learning in the current period on future performance and, (b) it does not use OPLA. In 

Figure 17, we plot the performance difference between DAH and greedy approach 

versus network density. The problem parameters are identical to those in Section 2.5. It 

is evident from the data that the DAH significantly outperforms the greedy approach 

(Table 5). Note that the performance benefit of DAH over greedy reduces as network 

density increases. This is because an increase in network density facilitates better 

knowledge diffusion, i.e., reduces knowledge heterogeneity across workers and 

increases average knowledge level. This in turn, reduces the value of dynamic 

assignments and learning from consultation, resulting in a lower performance difference 

versus the greedy heuristic.  

TABLE 5: Percentage improvement of DAH over Greedy approach 

DAH over Greedy (% Improvement) 

# of 

neighbors 

CN  SN RN 

Avg Min Max Avg Min Max Avg Min Max 

10 240.0 37.5 763.5 151.5 24.4 1557.5 80.7 14.5 2198.4 

12 102.7 26.3 2158.8 80.3 22.0 449.5 55.7 15.5 202.5 

14 72.8 19.5 940.2 63.5 16.6 234.5 47.9 13.8 149.6 

16 53.2 16.3 251.0 41.9 17.0 128.4 38.0 12.2 119.5 

18 43.8 14.9 198.4 38.0 12.6 134.0 33.7 11.4 89.1 

20 38.4 12.3 126.9 33.0 10.5 97.8 29.1 9.5 81.7 
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FIGURE 17: Comparison between DAH and 

Greedy approach for different values of network 

density 

FIGURE 18: Impact of worker initial heterogeneity 

on DAH performance over Greedy approach. 

Network density = 10% 
 

 
FIGURE 19: Impact of different knowledge 

retention coefficient on DAH performance over 

Greedy approach. Network density = 10% 

For similar reasons, it is easy to see that the performance advantage of the DAH 

heuristic would reduce as worker heterogeneity reduces (Figure 18). A similar trend is 

expected when the knowledge retention rate is high, since it facilitates rapid diffusion of 

knowledge. This reduces the value of learning from co-workers as well as benefit of 

waiting to make an assignment (Figure 19). 

2.7.3 Comparison with Periodic Assignment Heuristic 

Finally, we also compare the performance of DAH with a Periodic Assignment 

Heuristic. The main distinction is that in the Periodic Assignment Heuristic, we choose 

a fixed number of periods between successive assignments for the entire planning 

horizon. Particularly, we calculate marginal revenue and marginal cost for different 

values of number of periods between assignments (i.e., 1, 2, 3, etc) and select the value 
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at which marginal revenue is equal to marginal cost. In contrast, recall that in DAH the 

periods between assignments are dynamic and controlled by the OPLA scheme. It is 

important to note that in the Periodic Assignment Heuristic, similar to DAH, we pre-

fetch the value of learning in the current period on future periods. In Figure 20, it can be 

seen that the DAH significantly outperforms the Periodic Assignment Heuristic
 
(Table 

6). However, for the same reasons discussed in Section 2.7.2, the relative benefit of 

DAH over the Periodic Assignment Heuristic decreases as network density increases. It 

is important to note that the performance advantage of DAH also reduces for high 

values of wait time penalty (Figure 21). In this case, assignments are more likely to be 

made every period, making the distinctive feature of the DAH viz., dynamic assignment 

via OPLA, less critical. 

  
FIGURE 20: Comparison between DAH and 

Periodic Assignment Heuristic for different 

network density 

FIGURE 21: Comparison between DAH and 

Periodic Assignment Heuristic for different wait 

time penalty coefficient 
 

TABLE 6: Percentage improvement of DAH over periodic assignment policy 

DAH over Periodic Assignment Policy (% Improvement) 

# of 

neighbors 

CN SN RN 

Avg Min Max Avg Min Max Avg Min Max 

10 104.3 9.4 402.6 51.3 5.5 599.3 19.9 2.1 732.0 

12 34.9 5.1 817.6 21.1 4.7 124.0 11.2 1.2 51.7 

14 23.3 1.2 298.2 15.0 3.0 61.5 10.4 2.1 38.0 

16 14.8 1.1 61.5 8.1 2.2 22.4 6.5 1.8 20.5 

18 11.0 1.3 39.6 7.9 2.3 33.6 5.8 2.2 17.6 

20 9.4 1.5 30.4 6.0 1.2 21.7 4.6 2.4 14.1 
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2.8 Model Extension 

2.8.1 Using Training to Reduce Differences Between Networks 

As discussed earlier, the extent of knowledge exchange (and hence knowledge 

diffusion) between co-workers depends on the type of network structure. However, it 

may not be possible to easily alter the organizational network structure of a firm, in 

order to improve knowledge diffusion. Therefore, we propose an extension to the basic 

model (outlined in Section 2.3) where a firm can use training as a means to effectively 

improve the knowledge diffusion process. The firm can provide an opportunity for 

workers to undertake training and improve competence in one or more skills, in addition 

to consulting other co-workers. By allowing workers to take training, the firm can 

mitigate some of the drawbacks associated with SN and CN. Specifically, training can 

be used to strategically ensure that specialized knowledge does not get limited to 

cliques and that access to knowledge across all workers becomes homogenous.  

The use of training is prevalent in knowledge management literature. Chen and 

Edgington (2005) discuss two factors affecting knowledge acquisition through training. 

One factor is the sophistication of the knowledge provided in the training, which 

determines the maximum gain in competence (for a skill) that a worker could obtain 

after undergoing training. The other factor is the trainee‟s learning rate which is affected 

by unique, individual mental models (Anderson, 1995). Hence, the same training could 

result in different competence gains for different workers. In our model, st  represents 

the maximum competence level offered by a training session, in skill s in assignment 

period t. We assume that not all training sessions are equally efficient. In addition, 

)1,0(s

k  represents the learning rate associated with worker k for a training session in 
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skill s.  

In this extension, we allow workers to be engaged in training, in addition to be 

assigned to service tasks at any point in time. The revenue (from task completion), 

bench-cost (from idle workers), and wait time penalties (from tasks waiting in the 

system), are calculated similar to Section 2.3. There are two types of costs associated 

with training. First is a direct cost, related to the wages paid out to workers when in 

training. We model this as a product of the worker‟s wage rate ( kh ) and the time 

required to complete the training ( st ). The second cost is indirect, and is related to the 

fact that assigning a worker to training makes him unavailable for any other task. As a 

result, the firm might incur additional wait-time penalties on tasks waiting in the system 

while the worker is in training. This is modeled by adding an additional assignment 

constraint to the MIP in Section 2.3. The benefit associated with training comes from 

the improvement in the worker competence after training. Similar to learning from co-

workers (as modeled in Section 2.3), this improved competence allows the worker to 

complete future tasks more efficiently. Here, s

kstkstW  )(   is the potential improvement 

in the worker‟s competence after undergoing training. 1kstY  (decision variable) 

indicates that worker k has been assigned to a training session in skill s in period t (and 

0 otherwise), and 1smtL  if a training in skill s that started in period m is completed by 

period t (and 0 otherwise). Consequently, worker k‟s competence in period t is, 
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In Figure 22, we study how the competence offered by training affects the firm‟s 

performance. We find that, adding training as a means of knowledge acquisition 
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benefits the organization, irrespective of the network structure. It is important to note 

that CN benefit the most from offering training (highest percentage increase compared 

to SN and RN) as well as from increasing the level of competence offered by training 

(highest slope compared to SN and RN). This is because training enhances the 

knowledge diffusion and acquisition process by ensuring that knowledge does not get 

stuck in cliques in CN and SN. Although RN continue to outperform (not shown), they 

are least sensitive to the competence offered by training. 

  
FIGURE 22: Impact of training competence level 

on objective function value 

FIGURE 23: Impact of learning by doing on 

objective function value 

2.8.2 Incorporating Learning By Doing 

As discussed earlier, we allow workers to improve competence in one or more 

skills based on consultation with other co-workers. However, it may be possible that 

due to cost overhead, worker availability, etc., a worker may have to complete a task 

without any help from co-workers. In such a case, the worker may be able to improve 

his competence, simply by virtue of completing tasks (even if there was no consultation 

involved). This can be interpreted as “learning-by-doing”. Therefore, we propose an 

extension to the basic model (outlined in Section 2.3) where a worker‟s competence can 

improve through “learning-by-doing”, in addition to “learning from others”. We 

propose the extent of learning-by-doing in skill s depends on three components: (a) 
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proportion of time spent in skill s when completing task j )/.,.(
1




S

s

jsjsei  , (b) worker 

k‟s current competence )( ksmW , since we expect that the potential for learning-by-doing 

is greatest when the worker is less competent, and (c) individual worker‟s learning 

efficiency ( s

k ) (Anderson, 1995; Chen and Edgington, 2005). Therefore, worker k‟s 

competence in period t is given by, 
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=1 indicates learning from others and 
 


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1

2

0

=0 indicates 

learning-by-doing.  

In Figure 23, as expected, we find that the all the three network structures 

benefit from learning by doing, and this benefit increases as the learning efficiency 

increases. In addition, similar to training, we find that CN benefit the most from 

learning by doing, and RN benefit the least. Hence firms could encourage learning-by-

doing to improve the performance of existing CN and SN.  

2.9 Limitations and Future Research 

Worker competence, in this research, was initially generated randomly and then 

allowed to evolve based on task performance, knowledge sharing, learning-by-doing, 

and training using one training policy. Alternative training policies such as deliberate 

cross-training in conjunction with recruitment decisions could be evaluated. Our 

research has used one model of learning by doing. Future research could explore other 

models. The results presented in this dissertation assume knowledge depreciation is 

negligible. Future research could study KISDN performance under high knowledge 
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depreciation conditions. While we have assumed a fixed compensation structure, the 

model could be extended to compare different compensation structures. This 

dissertation assumed that the arrival of tasks are independent based on a wide variety of 

service research (Buco et al., 2003; Sen et al., 2009). Future research could examine 

interdependent task arrivals, for example by extending the unit of analysis in this 

dissertation (a single KISDN) to multiple interrelated KISDNs. This extension would be 

analogous studying queuing networks (Bolch, 2006) and is likely to be more complex 

and computation-intensive. This research has assumed a fixed capacity (workers). 

Future research could examine interrelated capacity planning and task assignment 

decisions. We concentrate on individual-oriented service tasks. However, one could 

consider a team-oriented service scenario. Modeling such a scenario is similar to 

modeling a project and would depend on the structure of the project and the team. Our 

focus has been on task assignment. However, organizations might be interested in other 

objectives such as maximizing knowledge sharing, for future use. Alternative model 

formulations to study this are interesting areas of future research.  

2.10 Discussion and Conclusion 

Trends in networking, globalization and evolution of software as a service are 

increasing the importance of studying KISDN. In our opinion, managing KISDN is an 

important aspect of the emerging discipline of service science, which is of increasing 

interest to MIS researchers.
 
To the best of our knowledge the MIP model presented in 

this dissertation and the DAH represent the first attempt to systematically analyze an 

important and complex research question in the context of delivering IT as a service. 

Since the KISDN optimization problem is NP hard, the DAH represents a reasonable 

approach to solving this problem for realistic problem sizes. The value of such 
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analytical modeling lies in the identification and integration of parameters and 

relationships into a framework that help to structure the debate on how to manage 

KISDN (Lusch et al., 2008).  

Our analysis has indicated that organizations can benefit from not assigning 

service tasks immediately (by using dynamic assignment). In other words, waiting to 

make an assignment is valuable since it results in higher revenue due to better task to 

worker assignment. Each assignment decision can be conceptualized as making an 

investment (incurring costs) in return for revenue. At any point in time, an organization 

has the option to make such an investment or to defer the investment. Exercising the 

option (making an assignment), in turn results in the option to make another investment 

(assignment) in the next period. As seen in our results, the value of such an option 

increases with increased uncertainty of the underlying asset (worker heterogeneity). 

Such a scenario can also be thought of as a compound or nested exchange option which 

can be valued analytically only in some special cases (Trigeorgis, 1996). 

To the best of our knowledge, this research is the first to propose how the 

information flow network can be combined with worker competence information to 

improve operational and financial performance of KISDN. Specifically, we integrate 

literature and tools for mining information flow networks (Guy et al., 2008; Van Der 

Aalst et al., 2005) with literature and tools for measuring knowledge competencies 

(Cross et al., 2001; Davenport and Prusak, 1998) and propose combining these two 

types of tools to provide information that can be used for task assignment. Our results 

also underscore importance of weak ties in improving organizational performance. 

Recognizing the importance of weak ties and nurturing them, in our opinion, is an 
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important managerial implication from our results. 

Organizations may currently resemble CN or SN and not RN. Our results 

indicate that organizations could improve knowledge transfer by creating RNs. Ways of 

doing this include job rotation, and facilitating communication between key individuals 

(Davenport et al., 1998). Complete reorganization to RN may be expensive or 

infeasible. Our results indicate that improving network density, particularly in the case 

of CN could significantly improve knowledge transfer and consequently organizational 

performance. Creating SN by means of links between cliques is also desirable, 

particularly at higher network densities. Also, in cases where it is non-trivial for 

organizations to change the organizational network structure, managers should focus on 

strategically training workers or providing incentives to improve worker‟s willingness 

to help, in order to maximize performance. Encouraging learning by doing may also 

complement other knowledge management strategies. It is hoped that this research will 

serve as useful framework for IS researchers as well as practitioners interested in 

knowledge management, service science and social networks. 



 

 

 

 

 

 

CHAPTER 3: UNDERSTANDING KEY ISSUES IN DESIGNING AND USING 

INFORMATION FLOW NETWORKS IN THE CONTEXT OF  

KNOWLEDGE-INTENSIVE SERVICE DELIVERY  

 

 

3.1 Introduction  

There is a growing recognition that employees‟ knowledge is an organization‟s 

most valuable asset, particularly in knowledge-intensive environments such as 

consulting, research, and IT service delivery (Dong et al., 2011; Davenport et al., 1997; 

Dyer and Nabeoaka, 2000). Prior IS research has also recognized that “making personal 

knowledge available to others is the central activity of the knowledge-creating 

company. It takes place continuously and at all levels of the organization” (Nonaka et 

al., 2000). Hence, firms are increasingly investing in Knowledge Management (KM) 

projects expecting to improve employees‟ knowledge levels (Goh, 2002). For example, 

McKinsey has long had an objective of spending 10% of its revenues on developing and 

managing intellectual capital (Davenport et al., 1997). Buckman Laboratories estimated 

that the firm would spend 7% of its revenues on knowledge management (Davenport et 

al., 1997). The global KM market had been projected to reach 8.8 billion dollars during 

2005 (Malhotra, 2005). Most KM research has thus far focused on information 

technologies (Cross et al., 2001; Davenport and Prusak, 1998), with relatively little 

discussion on how knowledge can be shared effectively among employees using 

organizational social relationships (Levine and Prietula, 2006). In practice, however, 

organizations are finding that employees often prefer to consult their peers and 

colleagues (organizational social relationships) in order to acquire knowledge, rather 
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than access electronic knowledge bases (Cross et al., 2001). Hence, this research 

focuses on better understanding how organizations can maximize knowledge transfer 

among interconnected employees. 

Recognizing the importance of using organizational social relationships to 

transfer knowledge, an increasing number of Chief Knowledge Officers (CKOs) are 

moving from a technological KM strategy to a socialization-based strategy. Such a 

strategy uses IT-facilitated information flow networks (IFNs) to facilitate knowledge 

sharing (Nicolas, 2004). These IFNs use ties (or information flow connections) between 

individuals in order to transfer knowledge. As discussed in the chapter 2, organizations 

can effectively capture existing IFNs. Furthermore, in the chapter 2, we show that the 

structure of the information flow networks and associated knowledge sharing behavior 

significantly impact organizational performance and employees‟ knowledge level. 

Prior research suggests that organizations can create organizational relationships 

through actions such as co-location, project and work group assignments, facilitating 

communication through technology tools, and incentives (Kotlarsky and Oshri, 2005; 

Lengnick-Hall and Lengnick-Hall, 2003, Nonaka et al., 2000). These relationships, in 

turn, facilitate information flow. Hence, we focus on how organizations should design 

and use their information flow network such that knowledge sharing is maximized. We 

seek to better understand which organizational factors should be considered when 

designing and using such networks. Such an understanding facilitates effective design 

and use of effective information flow networks in KISDN, and is an important, yet 

under-researched area (IBM, 2006; Leung and Glissmann, 2010).  

Consistent with chapter two, we study organizations in knowledge-intensive 
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service delivery environment, where organizations support multiple skills, have varying 

levels of worker competence, and require knowledge sharing among co-workers. 

However, we focus on the objective of maximizing employees‟ knowledge gain through 

sharing in this Chapter. More specifically, we have focused on the following research 

question: how should organizations design and use their information flow networks in 

order to maximize employees’ knowledge gain (over a planning horizon) through 

sharing under different organizational environments? We formulate a Mixed Integer 

Programming Model (MIP), and present a heuristic in order to facilitate systematic 

analysis and understanding of the above research question. In trying to answer this 

question, we examine organizations with different distributions of expertise and 

examine the optimal information flow networks.  

The rest of this chapter is organized as follows. Section 3.2 provides a review of 

related literature. This is followed by the model development in section 3.3. A heuristic 

is proposed in section 3.4 to solve the problem. Selected numerical results are presented 

in section 3.5. Limitations and conclusions are provided in section 3.6 and 3.7. 

3.2 Literature Review 

Our research integrates concepts from prior research on knowledge view of the 

organization (Alavi and Leidner, 2001; Grant, 1996; Nonaka et al., 2000), creating and 

using social relationships to facilitate knowledge sharing (Davenport et al., 1997; Sahoo 

et al., 2008), efficiency and tradeoffs associated with knowledge sharing (Borgatti and 

Cross, 2003; Hansen, 2002), and modeling knowledge exchange in organizations 

(Cowan and Jonard, 2004; Levine and Prietula, 2006). 

3.2.1 Knowledge View of the Organization 

The knowledge-based view of the organization (Grant, 1996) argues that 
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knowledge resides within individual workers, and the primary role of the organization is 

knowledge application. In addition, this view of the organization also recognizes that 

knowledge transfer is a critical determinant of sustainable competitive advantage 

(Grant, 1996).  

Nonaka et al. (2000) also argue that “knowledge and the capability to create and 

utilize such knowledge are the most important sources of a firm‟s sustainable 

competitive advantage”. They propose that researchers look inside the firm, and focus 

on the activity, strategy, structure, and culture of the firm, to see how it produces 

knowledge. They also identify several important factors that impact knowledge 

creation. Such factors include knowledge vision, organizational forms, incentive 

systems, corporate culture and organizational routines, and leadership. Knowledge 

vision determines what types of knowledge are created, and “the value system that 

evaluates, justifies and determines the quality of knowledge” (Nonaka et al., 2000). 

Organizational forms represent the way that the organization is configured and 

structured. Incentives such as monetary compensation, peer recognition, and the sense 

of belonging can effectively motivate knowledge sharing. Organizational culture and 

organizational routines, and leadership could either promote or hinder organizational 

knowledge creation. 

Alavi and Leidner (2001) highlight that “it is less the knowledge existing at any 

given time per se than the firm‟s ability to effectively apply the existing knowledge to 

create new knowledge and to take action that forms the basis for achieving competitive 

advantage from knowledge-based assets.” Furthermore, they claim that information 

technologies may play an important role in effectuating the knowledge-based view of 
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the firm. Knowledge management within organizations can be facilitated by advanced 

information technologies. 

3.2.2 Creating and Using Organizational Social Relationships to Share Knowledge 

Prior research suggests that organization relationships can be created using a 

variety of activities. For example, Hansen (1999) examine knowledge sharing across 

organizational subunits and find that establishing long-term collaboration relationships 

between different subunits can be used to facilitate knowledge transfer. However, 

people in a subunit are required to spend time cultivating such relationships through 

frequent visits to and meetings with people in another subunit. Kotlarsky and Oshri 

(2005) present two case studies carried out at SAP and LeCroy to illustrate the 

importance of establishing social ties and sharing of knowledge among distributed IS 

development teams. Their cases suggest that facilitating face-to-face interactions is an 

effective mechanism for creating social relationships. In particular, a short visit to a 

remote location prior to a formal introduction of the team, and non-hierarchical 

communication with high quality messages through open community channels after 

face-to-face activities, is important for establishing social relationships between team 

members. Lengnick-Hall and Lengnick-Hall (2003) study the problem of adopting a 

human resource management approach to build relationships that turn social capital into 

competitive advantage. They argue that through building and nurturing relationships, 

organizations can locate and share knowledge rapidly and respond to market changes. 

They propose the use of work teams and project teams to establish relationships among 

workers. Work teams often remain intact for long periods and have time to develop 

trust. But project teams need to develop and adjust relationships quickly to be effective. 

However, great care needs to be exercised when creating and using 
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organizational IFNs for knowledge management. For example, lack of knowledge 

sharing caused by inefficient IFNs in Chrysler Corporation results in significant 

decrease in performance (Lengnick-Hall and Lengnick-Hall, 2003). In summary, 

organizations can effectively create social relationships and facilitate knowledge 

transfer using such relationships. Yet, we underscore the importance of paying careful 

attention to the design of such information flow networks. 

3.2.3 Efficiency and Trade-offs Associated with Knowledge Sharing 

This research is also related to the efficiency of knowledge sharing. Prior 

research demonstrates that the strength of the social relationship significantly affects the 

efficiency of knowledge sharing (Borgatti and Cross, 2003; Cross et al., 2001). 

Granovetter (1973) categorizes the strength of social relationships into three group 

(strong, weak, and absent) based on a combination of the amount of time, the emotional 

intensity, the intimacy (mutual confiding), and the reciprocal services. In this research, 

we focus on two types of relationships: direct relationship (strong), and indirect 

relationship (weak), which involve different efficiencies and costs when being used to 

facilitate knowledge transfer. 

Direct ties involve significant interactions between two workers, and are often 

associated with commitments of sharing knowledge (Hansen, 1999). Hence, direct ties 

are effective in terms of transferring knowledge. Indirect ties, on the other hand, allow 

workers to access larger number of colleagues than strong ties, but often suffer low 

quality help (Hansen, 1999; Constant et al., 1996). In order to develop strong ties 

between workers, considerable amount of time and interactions are required, while 

indirect ties could exist between acquaintances who share common contacts (Hansen, 

1999; Constant et al., 1996). While direct ties allow workers to share knowledge more 
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effectively, they can be harmful when knowledge transferred is less complicated, 

because of the time and efforts are required to establish and maintain these social 

connections (Hansen 2002). As a result, having excessive number of direct ties could 

decrease knowledge sharing efficiency. IBM (2006) also recommend firms to carefully 

coordinate knowledge sharing because workers who are engaged in successive sharing 

activities could reduce the productivity and efficiency of the groups that they belong to. 

3.2.4 Modeling knowledge sharing within organizations 

In summary, prior research recognizes that knowledge sharing is desirable and 

can be facilitated though mechanisms such as incentives. However, the problem of what 

characterizes a desirable information flow network is poorly understood. It is important 

for organizations to better understand the characteristics of effective information flow 

networks in order to design such networks. 

This research develops a model to facilitate understanding of what constitutes an 

effective (optimal) information flow network. It integrates and further develops ideas 

from prior research that has modeled knowledge sharing. Cowan and Jonard (2004) use 

simulation to study the impact of different types of network topologies in the context of 

knowledge diffusion across organizations. The social network where knowledge 

diffuses is pre-defined and static. Each agent has a vector of multiple knowledge types 

with varying levels of competences. Knowledge transfer takes place through a myopic 

barter exchange only if there is a direct connection between two workers and trading 

benefits both parties. Their problem is different from the one studied in this research in 

that it did not consider creation of new social relationships to improve knowledge 

sharing, or different types of connections (indirect relationships) between nodes in the 

network. Levine and Prietula (2006) use agent-based simulation to study the impact of 
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different types of ties (strong, weak and performative) between workers in the context 

of knowledge sharing behavior in social networks. Their agents are embedded in local 

groups of direct ties, such as project teams, which again do not change. Each agent has 

a set of skills with varying competence levels. Tasks are randomly assigned to agents 

who may or may not have enough competence to complete. Knowledge, if needed, is 

attained either through self-learning, acquisition through exchange with another agent, 

or both. However, their social networks were static, and did not consider the cost of 

multiple social connections. 

This research studies the problems of maximizing knowledge sharing by 

creating and using social relationships. It examines the impact of worker heterogeneity, 

number of skills, time (cost) of transferring knowledge, on the design of the effective 

organizational information flow networks. 

3.3 Model Development 

3.3.1 Model Preliminary 

We model the problem of designing information flow networks inside a firm for 

effective knowledge management. The firm‟s objective is to maximize the total 

knowledge level of the organization over a planning horizon by creating and using 

direct and indirect organizational social relationships between co-workers. The use of 

information flow networks for effective knowledge management is illustrated in Figure 

24. We consider an organization with a heterogeneous workforce that supports multiple 

skills. Workers vary in terms of competences in these skills and the organizational 

networks that they belong to. Workers also vary in terms of the importance (weight) 

they have for each skill based on the types of tasks performed by each worker. For 

example, in a software consulting firm, functional consultants are required to have a 
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deeper functional knowledge of the system and the customer processes as compared to 

the technical aspects of the system. On the other hand, technical consultants need to 

focus on the technical aspects of the software system, such as database design and 

system security. Figure 24 illustrates that each worker has a knowledge level and a 

relative weight for each skill. 

Workers within the firm are connected through organizational information flow 

networks. In such an environment, workers competence level is directly associated with 

organizational value, and there is a constant need to acquire knowledge (Hansen 1999). 

Direct relationships occur between workers who can seek knowledge from each other 

directly through organizational or social relationships (Guy et al., 2008; Sahoo et al., 

2008). Examples of such direct relationships include office mates, close friends, team 

members, etc. In Figure 24, in period t, worker A and B, B and C, and E and F, have 

direct relationship with each other. Workers connected by indirect relationships do not 

know each other directly, but have direct relationships with one or more (common) 

workers. Common workers play a bridging role that allows the two workers to get 

acquainted and to share knowledge with each other. In Figure 24, in period t, worker A 

and C have indirect relationship with each other. Note that we treat knowledge transfer 

over direct and indirect relationships as directional. For example, if employee B 

transfers knowledge to employee A, it does not suggest any reverse knowledge flow 

from A to B. The idea of knowledge transfer through organizational relationships is 

consistent with prior research (Sahoo et al., 2008, Davenport et al., 1997).  

Organizations can effectively create direct relationships using strategies such as 

project team, work group, long-term interactions, face-to-face activities (Hansen, 1999; 
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Kotlarsky and Oshri, 2005; Lengnick-Hall and Lengnick-Hall, 2003). Time (effort) is 

required to establish these direct ties. Indirect relationships can be seen as by-products 

of creating such direct ties. We study an organizational problem of assigning workers to 

transfer knowledge using both direct and indirect ties, over the planning horizon. We 

discretize the planning horizon into time periods. It is important to note that the length 

of each period is context-specific and could be one day, one week, one month, etc. 

During any period, a worker may or may not be assigned to participate in the 

knowledge transfer activities. Moreover, workers may provide as well as acquire 

knowledge in the same period. In Figure 24, in period t+1, direct relationships between 

worker pair C and F, and D and E are created to facilitate knowledge transfer. 

 

 

FIGURE 24: Creating and using information flow networks to transfer knowledge 

We model the efficiency of knowledge transfer process as a function of the type 

and strength of the relationship. Direct relationships are more efficient than indirect 

relationships (Levine and Prietula, 2006). Also, we use the age of a relationship as a 

A (Expert)
B (Expert)

F (Novice)

C (Average)

D (Average)

E (Novice)

A (Expert)
B (Expert)

F (Novice)

C (Average)

D (Average)

E (Novice)

Worker Skill Weight

Skill-1/Skill-2/Skill-3

Knowledge Level

Skill-1/Skill-2/Skill-3

A 0.2/0.2/0.6 5/4/4

B 0.2/0.6/0.2 5/3/5

C 0.2/0.2/0.6 4/1/2

D 0.2/0.6/0.2 3/2/3

E 0.6/0.2/0.2 1/2/1

F 0.6/0.2/0.2 2/2/1

Worker Skill Weight

Skill-1/Skill-2/Skill-3

Knowledge Level

Skill-1/Skill-2/Skill-3

A 0.2/0.2/0.6 5/4/4.5

B 0.2/0.6/0.2 5/3/5

C 0.2/0.2/0.6 4/1/2

D 0.2/0.6/0.2 3/3/3

E 0.6/0.2/0.2 1/2/1

F 0.6/0.2/0.2 2/2/1

t t = t + 1

Knowledge 

Transfer in 

Skill s in The 

Current 

Period

Existing 

Direct Tie in 

The Current 

Period

Direct Tie 

Created in 

The Current 

Period

3
2

s

1

3

Legend
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measure of its strength. Knowledge transfer efficiency is also affected by the status of 

the worker. That is, we consider reduced knowledge acquisition efficiency (overhead) 

for workers who acquire and provide knowledge at the same time.  

3.3.2 Model Formulation 

Mathematical modeling is a useful tool to understand key variables that describe 

a problem and their relationships. The model variables described in Table 7 represent 

the different elements of the problem of designing information flow networks. In 

addition, mathematical modeling helps understand the relationships between different 

variables, and produces a solution that can serve as a benchmark. Understanding the 

relationship between the current state of an organization and the managerial benchmark 

produced by the model facilitates organizational change (Liberatore et al., 2000). This 

approach is appropriate in the context of a knowledge management problem where the 

goal is to design optimal information flow networks that maximize the overall 

knowledge level of the organization. We model the problem of designing information 

flow networks using mixed integer programming (MIP). 

We consider the planning horizon is divided into a set of discrete periods

},..,1{ Tt . The length of each period represents a context specific unit of time after 

which the organization re-assesses the knowledge levels of its workers. Prior research 

on knowledge management suggests that knowledge level of workers can be captured 

and documented effectively using tools such as Microsoft SPUD (Davenport and 

Prusak, 1998), KIN and Tacit Systems EKG (Cross et al., 2001). In each period, the 

organization may create new direct ties or use existing direct and indirect ties, for 

effective knowledge management. 



76 

 

TABLE 7: Major model variables and decision variable 

Symbol Definition Type 
t

iklsX _  
= 1 if worker k transfers knowledge in skill s to worker l using tie i 

during period t; = 0 otherwise. },..,2,1{, Klk  . Note that t

iklsX _  and 

t

ilksX _  are two different variables. 

Decision Variable 

K  Total number of workers 

Exogenous 

Variables 

T  Planning Horizon 

S  Total number of skills supported by the organization 

ks
 

Relative importance (value) of worker k‟s knowledge in skill s to the 

organization, with 1),1,0(
1

 


S

s
ksks   

ik _  
Efficiency of acquiring knowledge using relationship i (i = 0,1 

represent direct, indirect relationship respectively)  

i
 

Time coefficient of each worker providing knowledge using 

relationship i (i = 0,1 represent direct, indirect relationship 

respectively) 


 

Time coefficient of creating direct ties 
t

ksW  Worker k‟s competence level in skill s at the beginning of period t, 

with sMaxsMinsRangesMaxsMin

t

ks WWWWWW  ],,[ .(
1

ksW  are exogenous 

variables, and },...,2{1 TtWks   are derived variables) 

Derived Variables 

t

klD  
=1 if there is a direct tie between worker k and l in period t (could be 

existing tie, or new tie created during period t), = 0 otherwise. 
t

klV
 

=1 if there is an indirect tie between worker k and l (worker k and l 

share at least one common co-worker connected by direct tie) in 

period t; = 0 otherwise. 
t

klsM
 

=1 if worker k‟s knowledge in skill s is better than worker l‟s at the 

beginning of period t; = 0 otherwise. 
t

klsG
 

The amount of knowledge can be transferred from worker k to worker 

l in skill s during period t. 
t

iklH _  
The time incurred by worker k in providing knowledge to worker l in 

period t using relationship of type i. Worker k incurs a fixed time   

when creating and using a direct relationship to transfer knowledge for 

the first time. 
t

kZ
 

=1 if worker k is busy with transferring knowledge to other workers 

(as a result of assignments in previous periods) in period t, = 0 

otherwise. 
mt

klF _

 
=1 if till the beginning of period t, worker k has finished transferring 

knowledge to worker l as a result of assignment made in period m, = 0 

otherwise. 
mt

klJ _

 
=1 if during period t-1, worker k finishes transferring knowledge to 

worker l (as a result of assignment made in period m) and becomes 

available to provide knowledge to other workers in period t, = 0 

otherwise.  

We assume an organization that supports S skills and has K workers. We assume 

a heterogeneous workforce where workers could have varying levels of competence in 

each skill. This skill set (competence values) for a worker is defined as the knowledge 



77 

 

vector of a worker. In our model, ],,[ sMaxsMin

t

ks WWW  represents worker k‟s competence 

in skill s at the beginning of period t. Larger (smaller) values indicate an expert (novice) 

worker. Here, )( sMaxsMin WW represents the minimum (maximum) competence level in 

skill s. In addition, as mentioned earlier, we assume that workers vary in term of the 

importance (weight) they have for each skill, based on the types of tasks required of 

them. We use )1 ],1,0[(
1

 


S

s

s

k

s

k  to capture the relative importance of skill s for 

worker k. Therefore, the total competence of worker k, in period t, weighted by the 

importance of different skills is given by, 


S

s

s

k

t

ksW
1

 . During each assignment a worker 

may or may not be assigned to knowledge sharing activities. 

 

The firm‟s objective is to maximize the cumulative weighted competence level 

of all workers, across all skills supported by the organization, over the planning horizon. 

This is given by, 
  

T

t

K

k

S

s

t

ksksWMax
1 1 1

  

Next, we discuss additional details. 

3.3.2.1 Time required to transfer knowledge 

We assume that the total time to taken by worker k to transfer knowledge to 

worker l depends on: (a) knowledge difference between workers k and l, (b) type of tie 

between the workers k and l and, (c) work load of the work providing help.  

The amount of knowledge that worker k can transfer to worker l at the beginning 

of period t is given by, ],0[ sMax

t

kls WG  . If i is the time taken to transfer a unit of 

knowledge over a tie of type i, the time taken by worker k to transfer knowledge to 
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worker l, in skill s, in period t, is given by 


S

s

i

t

ikls

t

kls XG
1

_  . Here 
t

iklsX _ (decision 

variable) is equal to one if worker l is assigned to acquire knowledge from worker k, in 

period t, in skill s, over a tie of type i. It is important to note that knowledge transfer is 

directional, i.e., worker k transferring knowledge to worker l does not imply any 

knowledge flow l to k (
t

ilks

t

ikls XX __  ). Since direct ties are more efficient than indirect 

ties (Levine and Prietula, 2006), we assume 
01   , where 0 and 1 represent direct 

and indirect ties, respectively. 

In each period t, workers can share knowledge using existing direct or indirect 

relationships, or create new direct relationships. },..,1{ TtDt

kl  (derived variable) is 

equal to one if there is a direct tie between worker k and l during period t, and zero 

otherwise. Therefore, )1( )1(  t

kl

t

kl DD  indicates the absence of pre-existing direct ties 

between workers l and k, in period t. In the absence of pre-existing direct ties between 

workers, organizations need to facilitate direct ties between workers, in order to 

effectively transfer knowledge. Since the creation of new direct ties requires time 

(effort), we introduce a set up coefficient ( ) to capture the time required to facilitate a 

direct relationship between a pair of workers. Note that, the relationships between 

worker k and l are bidirectional i.e., t

lk

t

kl DD  . Similarly, },..,1{ TtV t

kl   (derived 

variable) is equal to one if there is an indirect tie between worker k and l during period 

t, and zero otherwise. Note that workers do not incur a setup cost when using indirect 

ties since these are by-products of creating direct ties. Thus, the knowledge transfer time 

from worker k to worker l using direct ties, in period t, is given by, 
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


 
S

s

t

kls

t

kls

t

kl

t

kl XGDD
1

00_

)1( )(  . Along the same lines, the knowledge transfer time 

using indirect relationships is given by, 


S

s

t

kls

t

kls XG
1

11_  .  

Note that multiple workers may be assigned to the same worker for knowledge 

acquisition, at the same time. However, we assume that the acquisition requests are 

queued and the knowledge transfer process is sequential, based on the order in which 

the requests are made. In our model, t

kZ ( derived variable) is equal to one if in period t, 

worker k is not busy with knowledge provision assignments made in previous periods, 

and zero otherwise. In our model, mt

klF _  (derived variable) is equal to one if, by period 

t, worker l has finished receiving knowledge from worker k as a result of knowledge 

acquisition assignments made in period m (zero otherwise). 

Therefore, the total time to transfer knowledge is the sum of knowledge transfer 

time and waiting time (time in the queue before knowledge sharing starts). For details 

refer to other knowledge sharing constraints in the model formulation. 

3.3.2.2 Knowledge diffusion using direct ties 

We model the extent of knowledge gained by worker k, as a result of consulting 

co-worker l, as depending on: (a) knowledge difference between worker k and worker l 

at the beginning of the knowledge transfer process ( t

klsG ), (b) the knowledge provision 

load of worker l (number of other workers assigned to acquire knowledge from worker 

l), and (c) the strength of the direct relationship between worker k and worker l. 

In this model, workers are allowed to provide and acquire knowledge in the 

same period. However, when a worker is providing and acquiring knowledge at the 

same time, it affects his knowledge acquisition efficiency. We model this overhead as 
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reduced knowledge acquisition efficiency in periods where the worker is simultaneously 

providing and acquiring knowledge i.e., idleilbusyil ____   , where i is equal to zero 

(one) for direct(indirect) ties. It is important to note that, it can take multiple periods for 

worker l to acquire knowledge. Therefore, the average knowledge acquisition  

efficiency for worker l between periods m and q, over a tie of type i, is given by,  

(





1

_0__0_ )/())1((
q

mr

r

lidlel

r

lbusyl mqZZ  ). 

We assume that the strength of direct ties can vary based on age of the 

relationship between two workers. In our model,


m

u

u

klD
1

 indicates the age of the direct 

relationship between workers k and l, in period m. Thus, 


m

u

u

kl TD
1

/  represents 

efficiency of knowledge transfer between workers k and l, in period m.  

1

lsW  represents the worker‟s initial competence level (at the beginning of the 

planning horizon). Therefore, in period t, worker k‟s updated competence, in skill s, as a 

result of knowledge acquisition from co-workers, using direct and indirect ties, is given by,  

},..,2{},,..,2,1{},,..,2,1{

)/())1((

)/())1(()/(

1

1

1

1 ;1

1

_1__1_1_

_

1

1

1

1 ;1

1

_0__0_0_

_
1

1

1

TtSsKl

mqZZGXJ

mqZZGXJTDWW

t

q

q

m

K

lkk

q

mr

r

lidlel

r

lbusyl

m

kls

m

kls

mq

kl

t

q

q

m

K

lkk

q

mr

r

lidlel

r

lbusyl

m

kls

m

kls

mq

kl

m

u

u

klls

t

ls







  

  







 











 













 

Finally, the Information Flow Network (IFN) optimization problem can be 

formulated as, 

Objective function: 


  

T

t

K

k

S

s

t

ksksWMax
1 1 1

  
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Knowledge Sharing Relationship Constraints: 

},..,2{,},,..,2,1{,

},..,2{,},,..,2,1{,)2/()(5.0

},..,2{,},,..,2,1{,)(

1

0_0_

)1(

1

0_0_

)1(

TtlkKlkDD

TtlkKlkSXXDD

TtlkKlkXXDD

t

lk

t

kl

S

s

t

lks

t

kls

t

kl

t

kl

S

s

t

lks

t

kls

t

kl

t

kl



















 
t

klD =1 if there is a direct tie between worker k and l in period t (could be tie facilitated 

in previous periods, or new tie created during period t), = 0 otherwise. 

},..,1{,},,..,2,1{,)2/()(

},..,1{,},,..,2,1{,

,
1

,
1

TtlkKlkKDDV

TtlkKlkDDV

K

lku
u

t

lu

t

ku

t

kl

K

lku
u

t

lu

t

ku

t

kl















 

t

klV  = 1 if there is an indirect tie between worker k and l (worker k and l share at least 

one common co-worker connected by direct tie) in period t; = 0 otherwise. 

},..,2{},,..,2,1{,},,..,2,1{,1

},..,2{},,..,2,1{,},,..,2,1{,

1_

)1(

1_

TtSslkKlkDX

TtSslkKlkVX

t

kl

t

kls

t

kl

t

kls



 

 

Worker l acquires knowledge from k in skill s in period t using indirect tie iff 1) there is 

an existing indirect tie in period t–1, and 2) there is no direct tie between k and l. 

Knowledge Sharing Assignment Constraints: 

},..,2,1{},,..,2,1{1
1

1 1

_
1

0 ;1 1

_ TtKlFX
t

m

K

k

mt

kl

i

K

lkk

S

s

t

ikls   


   

 

Worker l can acquire knowledge from at most one worker in one skill across S skills in 

period t, iff worker l has finished receiving knowledge from all workers assigned. 

},..,2,1{},,..,2,1{1
1

0 ;1 1

_ TtKkX
i

K

lkl

S

s

t

ikls   
    

Worker k can provide knowledge to at most one worker in one skill in period t. 

},..,1{       0)1(
11 ;1

1

0

_ KkZHT
T

t

t

k

T

t

K

kll i

t

ikl    
  

 

Total time spent by worker k providing knowledge and being idle cannot exceed the 

planning horizon T. 
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Other Knowledge Sharing Constraints: 

},..,2,1{},,..,2,1{,},,..,2,1{,1/)(

},..,2,1{},,..,2,1{,},,..,2,1{,/)(

TtSslkKlkWWWM

TtSslkKlkWWWM

sRange

t

ls

t

ks

t

kls

sRange

t

ls

t

ks

t

kls




 

t

klsM  = 1 if worker k‟s knowledge in skill s is better than worker l‟s at the beginning of 

period t; = 0 otherwise. 

},..,2,1{},,..,2,1{,},,..,2,1{,)( TtSslkKlkWWMG t

ls

t

ks

t

kls

t

kls 

 
t

klsG  is the amount of knowledge can be transferred from worker k to worker l in skill s 

during period t. 

},..,1{,},,..,2,1{,

)(

1

11_1_

1

00_

1

0_

TtlkKlkXGH

XGDDH

S

s

t

kls

t

kls

t

kl

S

s

t

kls

t

kls

t

kl

t

kl

t

kl



















 

t

iklH _  is the time incurred by worker k in providing knowledge to worker l in period t 

using relationship of type i. Worker k incurs a fixed time   when creating and using a 

direct relationship to transfer knowledge for the first time. 

},..,1{},,..,2,1{/))1((

},..,1{},,..,2,1{0))1((

1

1

1

1 ;1

1

0

_

1

1

1

1 ;1

1

0

_

TtKkTZHtZ

TtKkZHtZ

t

m

m

k

t

m

K

kll i

m

ikl

t

k

t

m

m

k

t

m

K

kll i

m

ikl

t

k





  

  







  







  

 

t

kZ  = 1 if worker k is busy with transferring knowledge to other workers (as a result of 

assignments in previous periods) in period t, = 0 otherwise. 

tmTmtlkKlk

TZHHtF

ZHHtF

m

q

q
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i

m

ikl

m

q

K

krr i
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ikr

mt
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m

q

q

k
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ikl

m

q

K

krr i

q

ikr

mt

kl
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  

  







  







  
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1
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1
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1
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1

0

_

_

1

1

1

0

_

1

1 ;1

1
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mt

klF _  = 1 if till the beginning of period t, worker k has finished transferring knowledge 

to worker l as a result of assignment made in period m, = 0 otherwise. 

tmTmTtFFJ mt

kl

mt

kl

mt

kl   },,..,1{},,..,2{_)1(__
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mt

klJ _  = 1 if during period t-1, worker k finishes transferring knowledge to worker l (as a 

result of assignment made in period m) and becomes available to provide knowledge to 

other workers in period t, = 0 otherwise.  

},..,2{},,..,2,1{},,..,2,1{
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1

1

1

1 ;1

1

_1__1_1_

_

1

1

1

1 ;1

1

_0__0_0_

_
1

1

1

TtSsKl

mqZZGXJ

mqZZGXJTDWW

t

q

q

m

K

lkk

q

mr

r

lidlel

r

lbusyl

m

kls

m

kls

mq

kl

t

q

q

m

K

lkk

q

mr

r

lidlel

r

lbusyl

m

kls

m

kls

mq

kl

m

u

u

klls

t

ls


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 













 

t

lsW  is worker l‟s knowledge in skill s at the beginning of period t.          ■ 

3.4 Solution Procedure 

The IFN optimization problem discussed in the previous section is difficult to 

solve as the number of workers increases. Hence, we propose a heuristic that uses 

connection based assignments at discrete points in time in order to solve the problem. 

3.4.1 Connection Based Heuristic (CBH) 

The IFN optimization problem can be solved for each period successively. In 

other words, we first determine the knowledge sharing assignments and the optimal 

knowledge gain in the first period. Next, we set up the problem for the second period. 

To achieve this, we use knowledge transfer information from the first period and take 

into account workers‟ knowledge provision load and workers‟ availability to acquire 

knowledge at the beginning of the second period. In addition, we update their 

knowledge level based on knowledge sharing activities in the first period. The optimal 

worker-to-worker knowledge transfer activities for the second period can be obtained 

by using the above information. Similarly, the knowledge transfer activities for the 

second period then sets up the problem for the third period, and so on. This would 

essentially be a greedy algorithm, wherein the emphasis is to find the optimal 

assignment for each period. 
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Instead, CBH considers the impact of knowledge sharing activities in the 

current period on future periods. First, we consider the potential benefits to other 

workers connected to the worker acquiring knowledge. Particularly, we consider 

the extent of knowledge that can, overtime, diffuse to other workers connected to 

the worker acquiring knowledge. Second, we consider the opportunity cost for the 

worker providing knowledge. That is, we consider the fact that once a worker is 

assigned to provide knowledge he becomes temporarily unavailable to other 

workers.  

Similar to section 3.3, in each period t, firm‟s objective is to maximize the 

cumulative weighted competence level of all workers, across all skills supported by 

the organization. In addition, CBH objective includes, an approximation for the 

potential future benefits of knowledge sharing activities in the current period, and 

the opportunity costs associated with workers providing help. Let tk̂  be the set of 

workers available to acquire knowledge at the beginning of period t. As mentioned 

earlier, the time to transfer knowledge can include a waiting time. In CBH, iklstp _  

represents the period when worker l starts acquiring knowledge from worker k. 

Note that, tp iklst _ . And, iklstq _  be the time period when k finishes transferring 

knowledge to worker l, in skill s, over a tie of type i (either by creating new tie or 

using existing tie).  

The value of assigning worker l to acquire knowledge from worker k, in 

period t, is consists of three terms: (a) the cumulative value of worker l‟s 

knowledge gain, (b) the future value of worker l‟s knowledge gain, and (c) the 

opportunity cost of assigning worker k to acquire knowledge from worker l.  
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Cumulative Value of Worker l’s Knowledge Gain 

Worker l‟s knowledge gain from worker k, using direct tie, can be written 

as, 







0_

0_

)/())1(()/( 0_0__0__0_

1

1

0_

klst

klst

q

pr

klstklst

r

lidlel

r

lbusyl

t

kls

t

u

u

klls

gain

klst pqZZGTD  . 

Similarly, the knowledge gain over, indirect tie, can be written as,  

,)/())1((
1_

1_

1_1__1__1_1_ 



klst

klst

q

pr

klstklst

r

lidlel

r

lbusyl

t

klsls

gain

klst pqZZG   . 

Future Value of Worker l’s Knowledge Gain 

In order to estimate the future value of knowledge acquisition in period t, 

we need estimate how much of the acquired knowledge in period t can diffuse to 

other workers connected to l in future periods. We measure this by calculating the 

average additional knowledge gain (
future

iklst _ ) for all workers connected to l. Where, 

.))1((/)())1()/((
,,1,,1

_1_

1

_0__

_

 
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future

iklst MDVDGGVDTDD
iklst

   

Opportunity Cost of Assigning Worker l to Acquire Knowledge from Worker k 

Assigning worker l to acquire knowledge from worker k makes k 

unavailable to provide knowledge to other workers from period iklstp _  to period 

iklstq _ . This delays knowledge provision to any other worker who can potentially 

acquire knowledge from k. We measure the opportunity cost ( opp

klst ) by using the 

average knowledge that worker k could transfer to other workers connected to him. 

t

kjs

K

lkjj

t

kj

t

kj

t

kj

t

kjsjs

K

lkjj

idlej

t

kj

t

kj
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kjidlej
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kj

opp

klst MDVDGVDTDD  
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




,,1,,1

_1_

1

1

_0_ ))1((/))1()/((  . 

Hence, in each period t, the INF optimization problem can be written as, 
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Objective function: 
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Knowledge Sharing Relationship Constraints: 
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Worker l can only acquire help from at most one worker across S skills in period t. 

},..,2,1{1
1
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s

t

ikls 
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Worker k can only provide knowledge to at most one worker across S skills in period t. 

}1,0{},,...,1{,,ˆ,},..,1{       0__  iSslkklKkqXT tiklst

t

ikls  

Knowledge transfer cannot exceed the planning horizon T. 

Using Hungarian Method to solve the problem for each period t 

Next, we show how to solve the problem for each period t using Hungarian 

methods. We calculate the profit matrix of all possible worker-to-worker knowledge 

transfer activities, where each element iskla ,,,  represents the expected value of assigning 

worker l to acquire knowledge from worker k in skill s using tie i. As discussed above, 

there expected value of assigning worker l to acquire knowledge from worker k can be 

calculated as )()()( ______,,, iklstiklst

opp

klstiklst

future

iklstiklst

gain

iklstiskl pqqTqTa   (Block A in Figure 

25). In addition, we allow workers to not acquire knowledge in period t (Block B in 

Figure 25), where the profit equals zero ( 01, Kla ). 

We then test the feasibility of each knowledge transfer activity. First, worker l 

cannot transfer knowledge to himself. Thus, the profit of assigning worker l to  

acquire knowledge from l is set to  to prevent this assignment  
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( }1,0{},,..,2,1{,ˆ  ,,,  iSskla tisll ). Second, each knowledge transfer activity 

cannot exceed the planning horizon T. Hence, we check the value of 
iklstqT _  for each 

possible worker-to-worker assignment ( iskla ,,, ). If 0_  iklstqT , we set the value of 

iskla ,,,  to   such that it will not be selected.  

 
FIGURE 25: Profit Matrix for the Hungarian Method used in CBH 

Finally, Figure 26 summarizes the Connection Based Heuristic. 

 

FIGURE 26: Connection Based Heuristic (CBH) 

3.4.2 Performance of Connection Based Heuristic (CBH)  

To evaluate the performance of our heuristic, we solve the MIP formulation 

using CPLEX for small problem instances and compare it against the solution using 

CBH. This methodology is consistent with prior research (Dawande et al., 2008; Kumar 

et al., 2007). In terms of compute time, the CBH solution is obtained in a few seconds 

compared to 10 hours for CPLEX. We observe that maximum gap between the CPLEX 

solution and the CBH solution (CBH Gap) is about 7% for the problems solved using 

  

tk̂  workers 

receiving help 

1,1,,,0,1,2,0,1,1,

1,1,,,0,1,2,0,1,1,

1,1,,,0,1,2,0,1,1,

ˆˆˆˆ

2222

1111







KkSKkkk

KkSKkkk

KkSKkkk

tktktktk

aaaa

aaaa

aaaa









 

K workers providing help 

in S skills using tie i (K*S*2 items) 

Do not receive help 

 

Block A Block B 

Step 1.
Set up the 

problem for 

period t

Step 2.
Calculate the expected value of 

knowledge transfer between 

each pair of workers

Step 3.
Check feasibility of 

each knowledge 

transfer activity

Step 4.
Solve the problem 

using Hungarian 

Method

Step 5.
If t < T

Stop
N

Y



88 

 

CPLEX (Table 8). The performance of our CBH is comparable with existing 

researching adopting this methodology (Dawande et al., 2008; Kumar et al., 2007). 

TABLE 8: Percentage Gap of CBH results from CPLEX solution 
Problem 

Class 

Worker 

Heterog

eneity
 

Number 

of 

Workers 

MIP Problem Size:  

Rows × Columns 

(Non-zeros) 

CPLEX 

Gap (%) 

CBH 

Gap 

(%) 

CPU time 

for CBH 

(sec) 

1 

Low 

10 26,530×19,785(104,175) 6.59 3.71 0.71 

2 12 49,407×32,745(189,895) 7.42 3.92 0.81 

3 14 87,323×56,175(391,635) 7.98 5.13 0.72 

4 16 159,275×98,565(771,115) 8.14 7.12 1.01 

5 

Med 

10 26,530×19,785(104,175) 5.71 3.70 0.78 

6 12 49,407×32,745(189,895) 7.51 3.60 0.68 

7 14 87,323×56,175(391,635) 7.56 4.92 0.97 

8 16 159,275×98,565(771,115) 7.73 7.09 0.77 

9 

High 

10 26,530×19,785(104,175) 5.91 3.17 0.89 

10 12 49,407×32,745(189,895) 7.71 3.59 0.78 

11 14 87,323×56,175(391,635) 8.16 4.87 0.97 

12 16 159,275×98,565(771,115) 8.13 6.96 0.86 

* 
Number of Skills = 2, Time to create direct tie = 2, Planning horizon = 10, 2/1:/ 10  ,  

** 
Low Worker Heterogeneity ~N(2.5, 0.8), Medium Worker Heterogeneity ~N(2.5, 1), High Worker 

Heterogeneity ~N(2.5, 1.2). 

3.5 Experiment Design 

The complexity of the problem precludes analytical solution and requires us to 

use simulation. Simulation with synthetic data allows us to obtain insights into 

relationships between key variables impacting the design of the information flow 

networks. This approach is appropriate when the underlying phenomenon is complex 

and real world data is difficult to obtain, and is used in studying knowledge 

management (Buco et al., 2003). 

This section describes the design of simulation experiments including, key 

parameters and their estimation. Fifty replications of each sample path were used, and 

average values of system performance measures were calculated. Same as in section 

2.4.1, simulations were extremely computation-intensive. Experiments were run on a 

cluster of 160 Intel Xeon CPUs on Dell blade servers with Red Hat Enterprise Linux 
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operating system. The average time for running each replication of a sample path was 1 

hour. 

TABLE 9: Experiment parameter values 

Type Parameter Values Justification 

System 

Environment 

K  100  

S  2/3/4/5  In Cowan and Jonard (2005) “Each agent has a 

5-category knowledge vector” and Prabhakar et 

al. (2005) refers to: “Programming Skills, 

Operating System Skills, Database, ERP, and e-

Commerce Server Skills.” 

 100  

Worker 

Related 

s

k  
Each worker is 

randomly specialized 

in one skill 

In Backes-Gellner and Mure (2008) “in 

industries, such as precision mechanics, 

insurances, etc., skills requirements are less 

homogenous, so the variance in the skill weights 

distribution is assumed to be larger.” Our 

parameter values are consistent with Backes-

Gellner and Mure (2008).
 

1

ksW  Follows Normal 

Distribution:  

N(2.5, 0.8) /N(2.5, 1.0) 

/N(2.5, 1.2)  

Lester (2005) proposed five categories to assess 

employee‟s skill level. A normal distribution of 

worker competence is consistent with prior 

research (Sayın and Karabatı, 2007). 

Knowledge 

Transfer 

i  0.15~0.4 We experiment with a range of values in order to 

study the sensitivity of our results. 

i
 

:0 6/10/14/18, 

:1 10/15/20/25 

In Hansen (2002), “relying on established direct 

relations may ease the difficulties of transferring 

noncodified knowledge, …, reducing the time it 

takes to explain the knowledge and understand 

one another”. 

 
5/10/15/20 We experiment with a range of values in order to 

study the sensitivity of our results. 

Table 9 describes the numerical values, and justification for parameters used in 

our simulation experiments. Where possible, we have attempted to base these values on 

ranges that could be encountered in practice and/or prior research. Since parameters 

related with knowledge sharing in our model are difficult to obtain, we experiment with 

multiple values to sensitize the organization to information flow network design issues 

that involve these parameters. 

We consider a population of 100 workers, with an average of two direct ties per 

worker. Each worker has multiple skills. Workers‟ knowledge level in each skill at the 

T


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beginning of the planning horizon (
1

ksW ) is initialized by selecting from a normal 

distribution. After that, workers are categorized into three groups – expert, average, and 

novice – based on their average initial knowledge level across skills. Based on prior 

research, workers with an average knowledge level (


S

s

ks SW
1

1 / ) between 0 and 2 are 

defined as Novices, between 2 and 3 as average worker, and between 3 and 5 as experts 

(Lester, 2005). Note that the each worker‟s total weight of all skills remains 100% 

regardless of the number of skills supported by the organization ( %100
1




S

s

s

k ). On 

the other hand, each worker is set to be specialized in a random skill ŝ , by increasing 

the value of s

k

ˆ  such that ssSss

k

s

k
ˆ},,..,1{   3

ˆ
  . At the beginning of the 

planning horizon, each worker randomly decides whether to transfer knowledge or not, 

representing the organization‟s initial status. If he decides to transfer knowledge, he 

randomly selects one of his colleagues (through direct or indirect tie) and picks a 

randomly skill. In summary, each worker randomly shares knowledge at the beginning 

of the planning horizon, which represents the current state of no management of 

information flow networks. Organizations then systematically decide which direct ties 

to create, and which ties to use, in order to effective share knowledge through 

information flow networks over the planning horizon. 

Our objective was to better understand the process by which knowledge is 

shared, and as well as the structure of information flow networks, for different types of 

worker populations. Also we varied worker expertise distribution, time coefficient of 

providing knowledge over direct and indirect ties, and number of skills supported by the 

organization. 
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3.6 Results and Discussion 

We present selected results from our experiments to illustrate the properties of 

effective information flow networks in terms of measures of knowledge gain, and 

sharing behavior between and within different groups
7
. We present the following sets of 

results: (a) the structure of effective information flow networks (as described by the 

number and types of ties between and within a different types of worker groups), (b) the 

impact of worker heterogeneity on knowledge gain and sharing, (c) the impact of time 

(cost) of creating and using knowledge sharing relationships, and (d) the impacts of 

number of skills supported by the organization on knowledge gain and sharing. 

3.6.1 The Structure of Effective Information Flow Networks 

As discussed earlier, we have three different groups of workers (experts, average 

and novice workers) in the organization. We seek to understand the similarities and 

differences between these groups of workers in terms of knowledge sharing behavior. 

Specifically, we are interested in similarities and differences between these groups in 

terms of the use of direct and indirect ties to facilitate knowledge transfer. We expect 

firms to facilitate novice workers to create ties with expert and average workers in order 

to improve knowledge sharing. However, the relative importance and roles of different 

types of workers is not always clear. Our results indicate that it is not optimal for a firm 

to just facilitate knowledge sharing between expert workers and novice workers. 

Average workers have a crucial intermediary role to play in facilitating knowledge 

flow. Table 10 indicates that the highest number of direct/indirect ties occur between 

 

 

                                                 

7
 Base parameter value used in the experiment: K=100, S= 5, T=100, ;100  ;201  ;10  

busyidlebusyidle _1_1_0_0 ///   = 0.4/0.3/0.2/0.1; 
s

ksW ~N(2.5,1) 
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experts and average workers, followed by the ties between average workers and 

novices, and then between experts and novices. Table 10 suggests that the number of 

direct and indirect ties within the average worker groups is higher than the number of 

ties within the novice and expert groups. In addition, we note that indirect ties between 

experts and novices have a crucial role to play in facilitating knowledge sharing, since 

they are much larger in number than direct ties between experts and novices (Table 10). 

Effective knowledge transfer tends to take place in short bursts (knowledge 

transfers of short duration) between workers who do not have very high knowledge 

differences. Such knowledge transfer allows the worker providing knowledge and the 

worker gaining knowledge, to become available relatively quickly for additional 

knowledge provision and /or knowledge acquisition. In addition, such a knowledge 

transfer pattern allows direct ties created between workers to become available to other 

workers for indirect tie formation, relatively quickly. The following sections explain the 

underlying dynamics of the knowledge diffusion process in greater detail. 

This result has important managerial implications. Organizations need to 

recognize the valuable bridging role that average workers can play in facilitating 

knowledge transfer. Our results indicate that ties between average and expert workers 

can have large network effects and facilitate effective knowledge transfer. This result is 

contrary to the common practice of facilitating knowledge transfer between experts and 

novices. 

3.6.2 The Impact of Knowledge Transfer Efficiency and Worker Heterogeneity on 

Creation and Use of Ties 

This section facilitates a deeper understanding of the dynamics of knowledge 

sharing and diffusion by studying the impact of knowledge transfer efficiency and 
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worker heterogeneity on tie creation and use. The term knowledge sharing refers to 

knowledge exchange between pairs of workers. Knowledge diffusion, on the other 

hand, refers to the change in the cumulative knowledge level of the workforce over 

time. 

We observe (Figure 27) that high knowledge acquisition efficiency result in 

better knowledge diffusion, (as measured by total cumulative weighted knowledge gain 

over the planning horizon), as expected. Interestingly, we also notice that knowledge 

diffusion over the planning horizon decreases as the worker heterogeneity increases. 

This merits additional explanation. 

  
FIGURE 27: Cumulative weighted knowledge gain 

percentage decrease for different values of worker 

heterogeneity
8
 

FIGURE 28: Number of times direct ties are 

accessed for different values of worker 

heterogeneity 

  
FIGURE 29: Number of direct ties created for 

different values of worker heterogeneity 

FIGURE 30: Number of effective direct ties per 

worker for different values of worker 

heterogeneity 

                                                 

8
 Low worker heterogeneity – N(2.5, 0.8); Medium worker heterogeneity – N(2.5, 1.0); High worker 

heterogeneity – N(2.5, 1.2); Low efficiency – 0.4/0.3/0.2/0.1; Medium efficiency – 0.6/0.45/0.3/0.15; 

High Efficiency – 0.8/0.6/0.4/0.2. 
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FIGURE 31: Effective indirect ties used per worker 

for different values of worker heterogeneity 

FIGURE 32: Number of ties use over time for low 

worker heterogeneity 

Recall that, in our model, workers have three methods of acquiring knowledge: 

using an existing direct tie, creating a direct tie, and using an indirect tie. The amount of 

knowledge acquired is a function of type of tie (direct or indirect ties), knowledge 

difference between two workers, and efficiency of knowledge sharing. Worker‟s 

competence is updated after knowledge acquisition is complete, which may last for 

multiple time periods. Using existing direct ties to acquire knowledge is the most 

efficient method as discussed above. However, existing direct ties may not provide 

access to competent workers. Thus, relatively abundant but inefficient indirect ties may 

to be used. Alternatively, additional direct ties could be created to access competent 

workers while incurring the setup cost. It is important to note that irrespective of the 

type of ties used/created, workers who are engaged in providing knowledge during a 

time period, are less efficient in acquiring knowledge. Knowledge transfer occurs in 

short bursts in environments characterized by low worker knowledge heterogeneity as 

discussed in Section 3.3.2.1. Thus, in low worker heterogeneity environment, larger 

pool of workers is available for consultation as compared to workers in high worker 

heterogeneity environment. Over time, this results in greater knowledge diffusion 

(Figure 27).  
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When worker knowledge heterogeneity is high, on average, each knowledge 

transfer results in larger amount of knowledge acquired, but also takes longer, as 

compared to a scenario where worker heterogeneity is low. This explains why the total 

number of times that direct and indirect (not shown) ties used decreases as worker 

knowledge heterogeneity increases (Figure 28). 

Interestingly, we observe that the number of direct ties created over the planning 

horizon increases as worker heterogeneity increases (Figure 29). This can be attributed 

to longer knowledge transfer times associated with increased worker heterogeneity, as 

discussed above. Longer knowledge transfer times reduce the opportunity to make a 

competent worker available to multiple workers over the planning horizon. Hence, new 

direct ties, providing access to available competent workers, need to be created in order 

to facilitate knowledge diffusion. We also observe that number of direct ties created 

decreases as knowledge acquisition efficiency increases (Figure 29). Note that high 

efficiency allows workers to acquire knowledge faster, which increases the pool of 

available competent workers for consultation and provides opportunities for reuse of 

existing ties over time. Thus, reducing the number of direct ties created over the 

planning horizon. 

It is important to note that there are more direct ties within groups than between 

groups, while more indirect ties are used between groups than within groups (Figures 30 

and 31). This is because knowledge difference within a group is lower compared to 

knowledge difference between groups. As discussed earlier, small knowledge difference 

allows worker quickly share knowledge with each other, resulting in faster knowledge 

diffusion. Direct ties are the preferred method of knowledge transfer because of better 
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efficiency and less time to transfer knowledge. Hence, more direct ties are used within 

group than between groups (Figure 30). 

Next we focus on the pattern in which different types of ties are used, over the 

planning horizon. In the beginning of the planning horizon, there are relatively fewer 

direct ties and it takes time to establish new direct ties. This limits access to competent 

workers via direct ties in the beginning of the planning horizon. On the other hand, 

indirect ties are relatively abundant and provide better access to competent workers, 

although they are less efficient than direct ties. This explains why in the beginning of 

the planning horizon, indirect tie usage is slightly larger than direct tie usage (Figure 

32). Over time, direct ties are systematically created to transfer knowledge and facilitate 

knowledge diffusion. Note that, the strength of existing and newly created direct ties 

increases with time, increasing the difference in knowledge sharing efficiency between 

direct and indirect ties. In addition, knowledge diffusion results in improved access to 

competent workers via direct ties. Hence, we observe in Figure 32 that the use of direct 

ties significantly exceeds the use of indirect ties over time (time period greater than 60). 

3.6.3 Impacts of Various Time (Cost) Coefficients 

In order to examine the robustness of the model trend seen thus far, we study the 

impact of various time coefficients on the number of direct ties created during the 

planning horizon. Three types of time coefficients are examined: time to create direct 

ties, time to transfer knowledge using direct ties, and time to transfer knowledge using 

indirect ties. Note that, in these experiments the time to transfer one unit of knowledge 

using direct ties is always smaller than the time required using indirect ties. It is not 

surprising that as the time to create direct tie increases, the cumulative weighted 

knowledge gain decreases (Figure 35). Similar trends are observed when time to 



98 

 

transfer using direct/indirect ties increases (Not shown). Note that creating new direct 

ties to transfer knowledge is less attractive as time to create direct tie increases. Thus, 

the number of direct ties created decreases as the time to create direct tie increases 

(Figure 33).  

Interestingly, as the time to transfer knowledge using direct ties increases, we 

observe that more direct ties are created regardless of the heterogeneity of the workforce 

(Figure 34). As time to transfer knowledge using direct/indirect ties increases, the time 

that workers are engaged in each knowledge transfer is longer, making them 

unavailable to other workers for consultation. Thus increasing the need to create new 

direct ties to acquire knowledge. 

  
FIGURE 33: Number of direct ties created for 

different values of time to create direct ties 

FIGURE 34: Number of direct ties created for 

different values of time to transfer knowledge 

using direct ties 
 

 
FIGURE 35: Cumulative weighted knowledge gain 

percentage decrease for different values of time to 

create direct ties 
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3.6.4 Impacts of Number of Skills Supported by The Organization 

The number of skills supported by an organization has interesting impacts on 

knowledge diffusion dynamics. Note that for each worker, the total weight of all skills 

sums up to one regardless of the number of skills supported by the organization. Hence, 

as the number of skills increases, the weight for each skill reduces. Each worker may 

need to improve knowledge in multiple skills depending on the weight of each skill and 

the existing knowledge level in a skill. Recall that the objective of an organization is to 

maximize the total weighted knowledge of all workers over a fixed planning horizon. 

As a result, the amount of time each worker spends on acquiring knowledge in each 

skill decreases, reducing the cumulative weighted knowledge gain (Figure 36). 

  
FIGURE 36: Cumulative weighted knowledge gain 

percentage decrease for different values of number 

of skills 

FIGURE 37: Number of direct ties created for 

different values of number of skills 

  
FIGURE 38: Number of times direct ties are 

accessed for different values of number of skills 

FIGURE 39: Number of times indirect ties are 

accessed for different values of number of skills 
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We observe that in Figure 37, the total number of direct ties created decreases as 

the number of skills increases. As discussed earlier, whether to use existing ties or 

create new ties to transfer knowledge depends on the availability of the knowledge 

provider and the amount of knowledge that can be transferred. As the number of skills 

increases, the likelihood of acquiring knowledge using existing direct/indirect ties also 

increases since many workers need to acquire knowledge in multiple skills. There is less 

need to create direct ties to acquire knowledge, and can re-use existing ties to transfer 

knowledge for multiple skills. Hence, as the number of skills supported by the 

organization increases, the total number of times direct ties are used increases (Figure 

38).  

Organizations that support multiple skills allow workers to re-use both direct 

and indirect ties to transfer knowledge. However, number of times that indirect ties are 

used does not always increase as the number of skills increases. Recall that existing 

direct ties are the preferred method of acquiring knowledge, but are limited in numbers. 

On the other hand, indirect ties are less efficient, but have access to wider range of 

workers. As the number of skills supported by an organization increases from 2 to 3, 

existing direct and indirect ties used increase as a result of tie re-use (Figure 39). But as 

the number of skills supported increases from 3 to 5, re-using existing direct ties 

become dominant that there is less need to use indirect ties to transfer knowledge. Thus, 

reducing the number of times indirect ties are used (Figure 39). 

3.7 Limitations and Future Research 

In this research, we assume that workers stay with the company across the 

planning horizon. As the model in this research was designed to study knowledge 

acquisition and provision over the planning horizon for a limited planning horizon, this 
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is not a limiting assumption. However, it is possible that employees change their jobs 

and leave the company. Additionally, the company could hire workers to fill job 

openings. Workers leaving and joining the company (labor turnover) could affect the 

performance of the IFNs. Labor turnover may be harmful to the company if skilled 

workers are often leaving, taking away their social ties inside the firm at the same time. 

While companies could hire employees to fill the vacancy, time is required for new 

hires to establish social ties to share knowledge inside the company. Future research 

could study the impact of labor turnover on the design and performance of IFNs. In this 

research, knowledge depreciation is assumed to be negligible. Additional research 

opportunities involve the design of IFNs under high knowledge depreciation scenarios. 

This research assumes that the knowledge sharing activities are organized in a fashion 

such that knowledge transferred from only one worker to another worker at a time. One 

may argue that knowledge transfer could involve more than two workers at a time. For 

example, knowledge can be transferred through seminars provided by co-workers to 

share their expertise with other team members, group discussions between multiple 

members in the same office, and other group related techniques. Future research could 

study IFNs that allow knowledge to be transferred among a group of employees. This 

extension would involve further exploration about group knowledge sharing dynamics, 

and is likely to be more complex. In this research, we focus on the design of using 

direct and indirect ties to facilitate knowledge sharing. Future research could examine 

different types of direct/indirect ties (team members, office mates, and reporting 

relationships) and associated efficiency and costs to further help organizations establish 

the IFNs to transfer knowledge. 
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3.8 Conclusions 

“Knowledge intensive service providers are highly dependent on human workers 

who possess specialized knowledge and skills.” (Leung and Glissmann, 2010) Such 

companies are increasingly interested in “the optimal design” that meets the 

organizational needs such as employee skill development (Leung and Glissmann, 2010). 

The MIP presented in this research aims to understand the design of effective IFNs to 

maximize knowledge sharing. The value of the model lies in understanding important 

factors to consider when designing and using IFNs. The model and solution procedure 

proposed in this chapter can be used either as a starting point for organizational design 

or as a means of benchmarking existing organizations. 

Our results underscore the important bridging role that average workers can play 

in facilitating knowledge transfer. We observe that most knowledge sharing happens 

between average workers and experts, followed by knowledge sharing between average 

workers and novices. Our results also provide insights into the use of the effective IFNs. 

We find that organizations seem to benefit from knowledge transfer between workers 

who do not have very high knowledge differences. Such knowledge transfer allows 

workers who are sharing knowledge to become available relatively quickly for 

additional knowledge provision and/or knowledge acquisition. This finding is contrary 

to the common practice of transferring large amount of knowledge between experts and 

novices. 

Both direct ties and indirect ties are valuable to the company and may 

complement each other. Direct ties are used more within groups than between groups, 

while more indirect ties are used between groups than within groups. In organizations 

where large number of skills are supported, there is less need to create additional direct 
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ties to transfer knowledge since workers can re-use their existing ties. However, 

organizations benefit less from knowledge sharing during the same planning horizon 

when the number of skills supported by the company increases. 



 

 

 

 

 

 

CHAPTER 4: CONCLUDING REMARKS 

 

 

Organizations increasingly use knowledge-intensive IT and IT-enabled services 

delivered from multiple locations. Employees in such organizations may interact with 

each other in order to deliver high quality service and constitute knowledge-intensive 

service delivery networks (KISDN). KISDN are not limited to IT service, and include 

other knowledge-intensive services that are facilitated by sophisticated IT such as some 

types of management, financial services and engineering consulting services. The 

dissertation aims to understand the management and design of such KISDN - an 

important, yet under-researched area with significant potential for IS as well as 

interdisciplinary research. 

The dissertation first presents a mixed integer programming model which 

integrates perspectives from multiple traditional disciplines such as information science, 

management science, social sciences and IS. Specifically, KISDN in this dissertation 

represent service systems with a significant emphasis on knowledge management in a 

distributed resource environment. The proposed model considers worker competence, 

organizational information networks, worker availability and task characteristics. We 

propose the use of IT to perform integrated business analytics which combines the 

above mentioned factors in support of the service workflow process. The results suggest 

the significant additional value that can be generated by facilitating knowledge sharing 

using organizational IFNs, in conjunction with information regarding worker 
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competence, worker availability, and service tasks. Additionally, a network topology 

where communication between random workers in the organization is encouraged 

(random networks) is preferred over other network structures in terms of KISDN 

performance. We also discuss ways to reduce the performance difference between 

network topologies by intentionally increasing network density, and strategically using 

worker training when altering the network structure might be difficult.  

Another mixed integer programming model was proposed to further study the 

design of the IFNs in different organizational environments. Given the fact that 

employees could be much more likely to turn to their peers and colleagues for 

knowledge rather than access electronic knowledge bases that firms build, organizations 

are increasingly interesting in facilitating knowledge sharing among employees through 

IFNs. To the best of our knowledge, there is limited research on the design of such 

IFNs. The model proposed in chapter 3 aims at maximizing knowledge sharing by 

creating and using social relationships under different organizational factors such as the 

heterogeneity of the workforce, efficiency and costs associated with knowledge sharing, 

and number of skills. The results suggest that a more heterogeneous workforce benefits 

less from knowledge sharing using IFNs, requires more direct relationships to be 

created than a less heterogeneous workforce. Our results indicate that the process of 

knowledge sharing does not necessarily occur just between the expert workers and 

novice workers. Average workers play a crucial intermediary role in facilitating 

knowledge flow. As the number of skills supported by the organizations increases, less 

direct relationships are facilitated as a result of re-using the same tie for multiple skills. 

However, organizations benefit less from knowledge sharing since each worker spends 
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less time on each skill. Our results indicate that the cost of creating new direct ties is 

crucial in improving knowledge sharing benefits. Organizations should explore 

technology-facilitated means of creating new direct ties. 

In summary, this dissertation contributes to the emerging field of service 

science, by advancing our understanding of service systems in knowledge-intensive 

distributed resource environments. The first model proposed can serve as a managerial 

benchmarking framework for KISDN management, which allows organizations to 

examine dynamics between different factors impacting KISDN performance. The 

second model enables organizations to understand the design and the use of IFNs to 

maximize knowledge sharing. This, in turn, facilitates systematic design of KISDN. 
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APPENDIX A: LINEARIZED VERSION OF KISDE OPTIMIZATION PROBLEM 

 

 

Here we provide the linearized version of the KISDN optimization problem 

discussed in Section 2.3. We use this for solving our problem instances in CPLEX.  
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klstG  represents worker k‟s gain in skill s from worker l using tie i in time period t. 
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APPENDIX B: MODEL EXTENSION DETAILS 

 

 

B-1 Formulation for KISDE Optimization Problem with Training 

Here we present the model for the KISDN optimization problem with training. 

We only provide new and modified constraints which are different from the Model 

discussed in section 2.3. Other constraints can be found in section 2.3.  
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ktZ = 0 if worker k is available in period t (i.e., not busy), 1 otherwise. 

Knowledge Acquisition Constraints: 
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B-2 Heuristics for Solving KISDE Optimization Problem with Training 
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Recall from Section 2.8.1 that by sending workers to training the organization 
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can incur costs in terms of additional wait time penalties. This cost of keeping tasks 

waiting has two components: (a) keeping existing tasks waiting, 
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Hence, the payoff from assigning workers to training depends on, (a) the number 
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Let tn̂  be the set of un-assigned tasks and tk̂  be the set of available workers at 

the beginning of period t. Using the same notation as in Section 2.3 (Table 1), in period 

t , the firm‟s maximization problem using DAH, can be we written as follows, 
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APPENDIX C: NETLOGO INTERFACE 

 

 

 


