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ABSTRACT
SU DONG. Toward systematic design of knowledge-intensive service delivery

networks (Under direction of DR. RAM KUMAR and DR. MONICA JOHAR)
Effective management of IT-enabled services is becoming increasingly important.
These services are often delivered by networks of knowledge workers who constitute
Knowledge Intensive Service Delivery Networks (KISDN). This dissertation contributes
to the effective design and management of KISDN by presenting two mixed integer
programming models which integrate disparate streams of research. The first model
facilitates analysis and managerial benchmarking of KISDN. We focus on how the
performance of such networks depends on the interaction between workflow decisions,
information flow networks (IFNSs) structure and knowledge management decisions. We
propose that knowledge about IFNs and worker competencies can be effectively used to
make workflow decisions. Our results, based on the study of different IFN archetypes,
illustrate practices for effective management of KISDN. Recognizing existing IFNSs,
increasing randomness in IFNs, nurturing weak or performative ties depending on the
archetype, assigning tasks based on effective worker competence, and selectively
delaying assignment of tasks to workers can enhance business value. The second model
focuses on the design of IFNs. Organizations are increasingly creating and using IFNs to
transfer knowledge. However, there is limited understanding of the design of IFNs to
maximize knowledge sharing. Our results demonstrate the impact of worker competency
heterogeneity, number of skills supported by the firm, and time (cost) associated with

knowledge sharing on the design of efficient IFNs.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Organizations increasingly use knowledge-intensive IT services delivered from
multiple locations. For example, US Internetworking (www.USi.com) claims that over
70% of its employees have at least one certification (such as a CISCO networking) and
of these, 90% have multiple certifications and are located in the US and India. These
employees may interact with each other, and constitute knowledge intensive service
delivery networks (KISDN). Management of such KISDN is an important, yet under-
researched area.

This research recognizes the complex nature of the KISDN by integrating
concepts from prior research on task assignment (Sahni and Gonzalez, 1976), modeling
knowledge exchange in organizations (Levine and Prietula, 2006), knowledge diffusion
in networks (Cowan and Jonard, 2004), assessing the value of knowledge creation
(Chen and Edgington, 2005), and mining and using organizational social relationships
(Guy et al., 2008). A review of the previous literature sheds light on the factors
impacting the performance of the KISDN. However, the KISDN, as a complex system,
has not received adequate attention. The dynamics between the factors affecting KISDN
performance require further investigation. Hence, through a series of essay, this
research systematically studies these factors to facilitate the design of the KISDN.

The first essay presents an analytical model to manage the performance of a

knowledge-intensive service organization whose performance depends on a



combination of task-assignment and knowledge management decisions. We illustrate
how information flow networks can be effectively used to make task to worker
assignments and underscore the importance of paying careful attention to the location of
‘experts’ in different parts of an organizational network. Specifically, we focus on the
following research question: how do task assignment, knowledge management
strategies (knowledge acquisition from co-workers) and information flow networks
impact the financial and operational performance of organizations under different
service environments? We prove that the problem is NP-hard and propose a heuristic in
order to analyze the impacts of the factors on firm performance. Additionally, we show
that organizations could benefit from waiting to make assignments, and should
dynamically assign service tasks in batches using an assignment heuristic. Ways in
which firms can strategically manage the impacts of information flow network
structures are also discussed.

The second essay focus on the design of the information flow network of
KISDN identified in essay one. A mathematical model is proposed to study important
factors associated with the design of such networks. There is a growing interest in
managing organizational social relationships to facilitate knowledge sharing (Abrams et
al., 2003). IBM (2006) research center has promoted the use of Social Network
Analysis (SNA), “a set of tools for mapping important knowledge relationships between
people or departments”, in order to understand organizational social relationships which
could facilitate or impede knowledge sharing. However, prior research mainly focuses
on ad-hoc use of existing organizational social relationships to share knowledge. There

is limited research that helps managers systematically understand the design and use of



the information flow networks in KISDN to facilitate knowledge sharing. Hence, we
formally pose the following research question in the second essay: how should
organizations design and use their information flow networks in order to maximize
employees’ knowledge gain through sharing under different organizational
environments?

This dissertation is organized as follows: Chapter 1 provides an overview of the
literature on Knowledge Intensive Service Delivery Networks (KISDN). Since the study
of KISDN involves various streams of research, we have defined the scope of the
investigation in Chapter 1. Chapters 2 and 3 discuss the two essays. Chapter 2 starts
with a brief review of relevant literature to motivate the research questions, which is
followed by the discussion of the analytical model. After that, we propose a heuristic to
solve the problem. Simulation experiment design and results are then discussed,
followed by the model extension, discussion and contributions. Chapter 3 also starts
with relevant literature, and presents an analytical model afterwards. Similarly, a
solution heuristic is proposed, which is followed by experiment design and results.
Chapter 4 summarizes the contributions of the two studies and offers a conclusion to the
dissertation.

1.2 Literature Review

The following sections discuss the relevant literature on KISDN and information
flow networks that facilitates knowledge sharing within KISDN. More comprehensive
literature will be reviewed in subsequent chapters for each essay.

1.2.1 Knowledge-Intensive Service Delivery Networks

This KISDN research is related to the call for development of a “service

science” discipline which integrates perspectives from multiple traditional disciplines



such as information science, management science, social sciences and MIS (Bardhan et
al., 2008; Chesbrough and Spohrer, 2006; IfM and IBM, 2008). The significant role of
services in today’s economy is realized by many organizations. Services stand for jobs
and growth. But the evolution of the knowledge-intensive service industries also results
in a new level of management difficulty and coordination complexity. For example, the
delivery of IT-based services has engaged multiple business units and different
geographies, creating new challenges for organizations to evaluate, implement and
manage (Bardhan et al., 2008). The lack of a strong conceptual foundation for such
“service science” attracts attentions from scholars and managers alike (Chesbrough and
Spohrer, 2006).

Prior research has recognized the importance of knowledge management in
service delivery (Chesbrough and Spohrer, 2006; Maula, 2007), and the need to
conceptualize service delivery as a process with “a focus on dynamic resources such as
knowledge and skills” (Lusch et al., 2008). Maula (2007) argues that emerging “service
science” should focus on knowledge-intensive services, knowledge and information
management, and the dynamic complexity of the system. She justifies that knowledge in
knowledge-intensive services should include employees’ expertise and experience,
process or system of services, and competence and capability to innovate, learn and
renew. Knowledge and information management should emphasize on “the acquisition,
availability, creation and sharing of knowledge, competence and intellectual capital”
(Maula, 2007). Such a conceptualization with a focus on knowledge and skills of the
workers is lacking in the prior research on call centers (Gans et al., 2003) and IT

services (Buco et al., 2003).



Our research studies KISDN that have knowledge-intensive service tasks with
service level agreements (SLAs). SLA contracts for IT service delivery such as e-
business often specifies the delivery of service functions, service quality measurement
criteria, and penalties of failing to deliver quality service on time (Buco et al., 2003; Sen
et al., 2009). Penalties for SLA violations can be refund to customers specified relative
to the service cost (Buco et al., 2003). Considerable variability in customer preferences
and service impacts the effective pricing and resource allocation mechanisms which are
needed to deliver services at the promised quality level. Hence, effectively managing
SLAs creates new challenges to IT services delivery. For example, firms need to
dynamically allocating limited resources to minimize financial penalties due to SLA
violations. Sen et al. (2009) propose a mechanism for SLA formulation that features a
dynamic priority based price-penalty scheme targeted to individual customers. They
prove that their proposed scheme is more effective than a fixed-price approach. Buco et
al. (2003) study the design rationale of an integrated set of business oriented service
level management (SLM) technologies developed by IBM. They find that a dynamic
priority pricing approach can vyield socially superior results. In addition, they
demonstrate that demand heterogeneity can be addressed effectively in SLAs through
dynamic resource allocation mechanism such as a price-penalty scheme that they
proposed.

In KISDN, employees often have multiple skills which allow them to provide
heterogeneous services supported by the organization. However, their competence level
for these skills may vary significantly (Kim et al., 2008). This competence

heterogeneity creates space for knowledge sharing among employees within



organizations. Prior research also demonstrates that employees get information and
acquire knowledge primarily by consulting their colleagues or friends when performing
tasks (Cross et al., 2001). In addition, organizations allow workers to take training
sessions to acquire knowledge (Chen and Edgington, 2005). Both training and
knowledge sharing can increase the productivity of existing workforce by improving the
overall employees’ competence level. Our research recognizes the dynamic nature of
knowledge and skills of workers by allowing them to vary over time during service
delivery. We focus on organizations that provide knowledge-intensive services with
SLAs, support multiple skills, have varying levels of worker competence, and often
require knowledge acquisition. Such organizations are increasingly important given the
trend in IT towards delivering software as a service (Mackie, 2007).

1.2.2 Information Flow Networks Facilitating Knowledge Sharing

The ability to create and share knowledge effectively and efficiently could be
the basis for retaining competitive advantage in this ever changing economy (Abrams et
al., 2003; Center for Knowledge Governance, 2004; Goh 2002). In order to facilitate
knowledge sharing, many firms have invested heavily on knowledge management
projects that emphasize the use of technologies which seldom bring in the expected
(Abrams et al., 2003). Interestingly, many projects focusing on the use of technology
failed in the past (Carroll, 2008). On the other hand, organizations are finding that
employees are much more likely to consult their peers and colleagues (using
organizational social relationships) for information and knowledge rather than use
electronic knowledge bases and other technologies that firms adopted (Cross et al.,
2001). In addition, the structure of such information flow networks could significantly

impacts knowledge sharing in KISDN (Abrams et al., 2003).



Prior research suggests that there is significant value of facilitating knowledge
sharing among employees. Zhang et al. (2005) identifies four types of benefits of
employees sharing knowledge in knowledge-intensive organizations: (a) it can increase
and enrich the intellectual capital of an organization; (b) it ensures organizational
advantage, lessen organization's dependency on individuals, and reduce potential loss of
job-hopping; (c) it allows individuals to get more concentrated knowledge from the
organization, and therefore increase personal competitive ability; and (d) it reduces the
cost of accumulating knowledge within the organization. It is important to note that
organizations can effectively create social relationships by providing physical
environment (face to face communication platform), adopting motivation mechanisms,
and using team/project assignment (Ardichvili et al., 2003, Bartol and Srivastava, 2002,
Zhang et al., 2005). However, employee having excessive social relationships may
create issues for IFNs (IBM, 2006). Cross et al. (2001) find that too many social
connections produce significant stress and information overload for employees, which
decreases the efficiency of the groups that they belong to. Hansen (2002) argues that
establishing direct connections in a knowledge network provides immediate access to
related knowledge, but requires significant time and effort to create/maintain.
Moreover, replying on employees with large number of social connections to transfer
knowledge creates potential risks to an organization such that if these employees leave
the organization, the information flow network that facilitates knowledge sharing could

break down.



CHAPTER 2: SYSTEMATIC DESIGN AND ANALYSIS OF KNOWLEDGE
INTENSIVE SERVICE DELIEVERY NETWORKS

2.1 Introduction

We study KISDN whose objective is to maximize financial performance over a
finite planning horizon. We focus on the following research question: how do task
assignment, knowledge management strategies (knowledge acquisition from co-
workers) and organizational networks impact the financial and operational
performance of organizations under different service environments? In our opinion, this
IS an important, yet under-researched question.

Assignment of different types of service tasks over time to a pool of agents is a
complex problem. We formulate a Mixed Integer Programming (MIP) model, discuss
its complexity, and present a heuristic that combines optimization and simulation in
order to facilitate systematic analysis of the above research question. The proposed
heuristic integrates ideas from prior research on task assignment, knowledge
management, and social network analysis. Quality of the solutions produced by the
heuristic compares favorably with optimal solutions. Our results provide several
interesting insights into the dynamics of the service environment.

First, this research contributes to the emerging stream of research on social
networks in IS by proposing and illustrating the value of using social network
information for service task assignment in knowledge sharing environments. Use of

social networks to access the knowledge of co-workers addresses a call in prior research



(Lusch et al., 2008) to use dynamic resources such as knowledge and skills in service
delivery. We demonstrate the significant additional value that can be generated by such
sharing. Second, prior research on call centers (Gans et al., 2003) and IT support (Kim
et al., 2008) typically assume that service requests are picked from a queue and assigned
randomly to available workers. This research, on the other hand, illustrates that
organizations could benefit from waiting to make assignments, and assign service tasks
in batches using an assignment heuristic. The significance of the value of waiting,
anchored in the theory of real options (Trigeorgis, 1996) is discussed. Third, we
demonstrate the effect of network topology, network density and worker’s willingness
to help on performance of the organization through knowledge sharing. A network
topology where experts are distributed throughout the organization as opposed to being
concentrated or clustered consistently outperforms other network structures. We discuss
ways to reduce this performance difference between network topologies by intentionally
increasing network density and/or providing incentives to enhance worker’s willingness
to help. In addition, we also illustrate how an organization can strategically use worker
training as a means to mitigate the effects of network structure. Fourth, computational
results illustrate how worker specialization occurs in a multi-skill environment and how
the degree of specialization is a function of the network topology and density. Research
and managerial implications of these results are discussed.

2.2 Literature Review

As discussed in Chapter 1, the study of KISDN integrates different streams of
research including task assignment (Sahni and Gonzalez, 1976), modeling knowledge
exchange in organizations (Levine and Prietula, 2006), knowledge diffusion in networks

(Cowan and Jonard, 2004), assessing the value of knowledge creation (Chen and
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Edgington, 2005), and mining and using organizational social relationships (Guy et al.,
2008).

The assignment of a group of tasks to a number of agents in a manner that only
each agent is assigned one task and each task is assigned to one agent is a classic
problem in operations research. Efficient solution procedures such as the Hungarian
method are available for this problem (Ahuja et al., 1993). Several extensions of the
basic assignment problem have been studied (Sahni and Gonzalez, 1976). The
Generalized Assignment Problem (GAP) is one such extension which has been proven
to be NP-hard (Sahni and Gonzalez, 1976). GAP assigns a number of agents to a
number of tasks. Any agent can be assigned to perform any task, incurring some cost
and profit that may vary depending on the agent-task assignment. In addition, each
agent has a budget. The sum of the costs of task assigned to it cannot exceed this
budget. The objective of the GAP is to maximize the total profits of the assignment
while meeting all the budget constraints. In the KISDN optimization problem, studied in
this dissertation, there is stochastic demand for tasks. These tasks are assigned to an
agent or a limited number of agents at a time. Agents are prohibited from carrying out
more than one task at a time (but could perform multiple tasks over time) and firms
incur costs when they perform these tasks. Costs are also incurred when there is either a
surplus demand for service (similar to wait time penalties) or surplus supply of workers
(similar to cost of “workers sitting on the bench”). The firm’s performance is optimized
over a planning horizon. The GAP can be polynomially transformed to an arbitrary
instance of the KISDN optimization problem, as discussed.

This research integrates ideas from different streams of knowledge management



11

research that consider the effectiveness of help-seeking behavior. Levine and Prietula
(2006) use agent-based simulation to study the impact of different types of ties (strong,
weak and performative) between workers in the context of knowledge sharing behavior
in social networks. Similar to our research, they study the scenario where employees
have a set of skills which are used to perform relevant tasks. Knowledge could be
obtained through self-learning or exchange with other employees. They illustrate that
having some performative ties in an organization improved average task completion
times. However, they do not optimize task assignment or consider different types of
network topologies. This research is also related to Cowan and Jonard (2004) who use
simulation to study the impact of different types of network topologies in the context of
knowledge diffusion across organizations. They find that the average knowledge is
maximal in Small World Networks when diffusion reaches the steady state.
Nevertheless, their problem is different from the one studied in this research and did not
include optimization of task assignment, or different types of connections (ties) between
nodes in the network. This research optimizes task assignment to workers, who can
improve competence by seeking help from co-workers using ties. It compares the
impact of different network topologies, network densities and worker’s willingness to
help on knowledge sharing and service delivery.

In our model extension, we also consider the value of organized knowledge
transfer (training). Chen and Edgington (2005) use simulation to study the effect of
different training strategies on organizational value. They conclude that allowing
workers to decide on when to go for training does not maximize organizational returns.

However, they do not consider knowledge sharing among co-workers or optimize the
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task assignment.

This dissertation is also related to emerging research on social networking. IS
researchers are increasingly interested in social networking (Agarwal et al., 2008).
Organizations are recognizing the value of understanding social networks and
influencing the formation of networks (www.orgnet.com; Guy et al., 2008; Sahoo et al.,
2008). There is a growing body of research on mining social networks from different
types of organizational data including email, wikis and blogs (Aron et al., 2004; Van
Der Aalst et al., 2005), and using social networks in organizations (Kilduff and Tsai,
2003). Leading IT service providers such as IBM are building tools to mine social
networks from internal organizational data as well as external data and make these
social networks available to other applications through Application Program Interfaces
(APIs) (Guy et al.., 2008). Shen et al. (2003) study task assignment in workflow settings
and use social network information to assign tasks to groups. However, they focus on
using social network information to help manage group dynamics and mechanisms.
They do not consider knowledge sharing among group members when assigning tasks,
and did not study the impact of social network structures on assembling workgroups.

The model presented in the following sections integrates ideas from these
streams of research and proposes the use of organizational social network information
in improving operational and financial performance of KISDN.

2.3 Model Development

This section develops a mathematical model of KISDN, which are knowledge-
intensive service systems with distributed resources. Such organizations can be found in
a wide range of service sectors like management consultancy, design services, computer

and IT-related services (Evanschitzky et al., 2007; Windrum and Tomlonson, 1999).
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This model helps to develop a better understanding of how people, technology,
organization, and shared information engage in dynamic value co-creation. Such an
understanding facilitates managerial benchmarking of KISDN. Figure 1 describes the

process of value co-creation in such a service system. The arrows in the figure illustrate

the value co-creation process, starting from the bottom left.
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FIGURE 1: An organizational (Virtual Network) with ties between workers
In such a system, service requests need not be limited to telephone requests and

may be routed through other communication channels such as faxes or emails or filling
out web forms (Levine and Kurzban, 2006). In cases where service requests are routed
through multiple levels, our focus is on the higher, more knowledge-intensive, levels of
support. The bottom left portion of Figure 1 illustrates that it is not necessary for service
tasks to be handled immediately by knowledge workers, though there often is a cost of
delay due to factors such as service level agreement penalties (Buco et al., 2003). These
knowledge-intensive service tasks vary in terms of task difficulty, required skills and

associated revenue. For example, service tasks related to management consultancy
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concerning mergers and post-merger integration, require distinct skills such as law,
finance and so on (Evanschitzky et al., 2007; Windrum and Tomlonson, 1999), and
service tasks related to computer and IT often require skills such as database
management and C/C++.

As shown in Figure 1, in order to generate business value, these service tasks
need to be effectively assigned to workers. The revenue resulting from task completion
is based on the skills required, the market revenue for tasks requiring those skills, and
how difficult the task is. Workers in KISDN vary in terms of competences in these
skills and organizational networks that they belong to. The time a worker takes to
complete a task (requiring particular skills) could vary due to differences in worker
competences (Chen and Edgington, 2005; Davenport and Prusak, 1998). The
complexity of these service-tasks often requires knowledge-workers to share their
distinctive capabilities in order to provide unique services (Davenport and Prusak,
1998). Therefore, it is possible that when workers are assigned to tasks, workers consult
other co-workers to complete tasks efficiently (Levine and Prietula, 2006; Szulanski,
1996). Such competence exchange is an important characteristic of service systems
(Maglio and Spohrer, 2008) and is a function of worker properties and the types of ties
between workers. This represents an important step in value co-creation. Figure 1
illustrates that reporting relationships, membership in global teams and project
experience facilitate ties. As described later, technology can play an important role in
facilitating competence exchange.

As shown in Figure 1, some workers in such organizations may remain idle (“sit

on the bench”) during any point in time. Organizations may continue to pay out wages
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to idle workers, thus negatively impacting business value co-creation.

2.3.1 Model Formulation

Mathematical modeling is a useful tool to understand key variables that describe
a problem and their relationships. The model variables described in Table 1 represent
the different elements of KISDN. In addition, mathematical modeling helps understand
the relationships between different variables, and produces a solution that can serve as a
benchmark. This approach is appropriate in the context of service systems such as
KISDN, when the goal is a better understanding of different factors in the value co-
creation process. We model the problem of co-creating value in KISDN using mixed
integer programming. This approach is appropriate in scenarios where some variables,
such as assigning a worker to a task, are binary and others, such as worker competence,
are continuous in value.

We formulate a Mixed Integer Programming (MIP) model where service tasks
requiring skilled workers are assigned to competent personnel, if available. The firm’s
objective is to maximize the firm’s expected payoff over a planning horizon (P ). We
consider the planning horizon (time) to be divided into a set of discrete assignment

periods t e{L,..,T} where t represents the assignment period number. At the start of

every assignment period t, the organization makes task to worker assignments based on
the number of unassigned tasks in the system, and the availability and competence of
workers. Note that the length or duration of an assignment period (A) represents a
context—specific unit of time (minutes, five minutes, fifteen minutes, etc) within which
any newly arriving tasks are queued but no assignment decisions are made. The notation

is outlined in Table 1. Since the skills required by different service requests (tasks)
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could vary, we assume that there are total of S skills supported by the firm and a total of

M task types in terms of their skill(s) requirement. Particularly, ;' =1 when task of

type me{l,..., M} requires skill s e{L,..,S}, 0 otherwise. Note that iqsm >1, for each

s=1
m. In addition, in line with prior research on managing IT service tasks (Buco et al.,
2003; Sen et al., 2009), we assume that the arrival rate of tasks of type m follows a

Poisson distribution with mean A_, and the tasks arriving in each time period are

independent of each other. The organization has K workers, and during each assignment
a worker may be assigned to a service task, or kept idle (kept on bench). As discussed
earlier, the firm may continue paying out wages to workers even when they are sitting
on the bench. In addition, for each un-assigned task, the firm incurs a wait-time penalty
per unit time. Hence, the firm’s objective consists of the following terms: net payoff
(revenue — cost) from completing tasks, the cost of workers sitting idle and, the wait-
time penalty from un-assigned tasks. Next, we briefly discuss how each of these terms is

calculated. Additionally, we also outline how the uncertainty associated with some of

the problem parameters is handled.

TABLE 1: Major model parameters and decision variables

Symbol | Definition | Type

Decision Variables

A =1, if worker Kk is assigned to task j in period t ; = 0, otherwise, with
it te{l,2,....T} Decision

= 1, if worker | provides help in skill s to worker k using tie i in period t ; =0, | Variables

Hiasi otherwise, with i =0, 1, or 2, indicates a strong, weak, or a performative tie

System Environment
Ph Planning Horizon
A The length or duration of each period
T Total number of time periods, with T =Ph/A Exogenous
K Total number of workers in the organization Variables
S Total number of skills supported by the organization

Pc Coefficient of task wait-time penalty per period, with PC€[0]
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Task Related

M Total number of type of tasks
N piax Maximum number of tasks that have arrived over Ph
B, Billing rate per period for skill s
Qr =1, if task type m requires skill s ; = 0, otherwise, with me{1,2,... M}
Ta; =1, if task j arrives in period t ; = 0, otherwise
Tr, =1, if task j requires skill s ; = 0, otherwise
Total number of tasks that have arrived up to and including period t , with
N t N Exogenous
t N, =Y >Ta, Variables
u=1l j=1
Bm. Time for a benchmark worker to complete component in task j that requires skill
s S
S
R, Revenue from completing task j , with R; = B,Bm,Tr,
s=1
Ao Arrival rate per period of task type m
T, The average time required to complete skill s component in tasks by a
benchmark worker
Worker Related
Ww, Wage rate per period for worker k
Bc Bench-cost coefficient, with Bc €[0,]]
- - Exogenous
Wr, Wage rate per period for skill s for a worker of competence = 1 Variables
Ou =1, if there is a tie of type i exists between workers k and | ; = 0, otherwise, with
ki i =0, 1, or 2, indicates a strong, weak, or performative tie respectively
Worker k’s competence in skill s in period t, Wg €(0,4] . We,, = O indicates
an expert and Wt , = 4 indicates a novice worker. For our purposes a value = 1
We indicates a benchmark worker. Workers could take any values in this range of 0
to4
(Wg,, are exogenous variables, and We Vt €{2,....T} are derived variables) \D/GUVS?
ariables
Wi, = 1 if worker k completes task j by period t, = 0, otherwise
Worker k’s effective competence in skill s in period t after consultation, with
ECow | g
Ckst € (014]
Wh, = 1 if worker k is busy in period t, = 0, otherwise
Knowledge Acquisition
K Knowledge retention coefficient, with x <[0,1]
Overhead coefficient associated with worker providing consultation over tie of
Hc; type i, with i =0, 1, or 2, indicates a strong, weak, or performative tie Exogenous
respectively Variables
h Worker k’s willingness to help over tie of type i, with i =0, 1, or 2, indicates a
Wh strong, weak, or performative tie respectively (Wh_, >Wh_, >Wh, ,)
Ga Represents worker k’s gain in skill s from worker | using tie i in period t, with i )
kist_i | =0, 1, or 2, indicates a strong, weak, or performative tie respectively Derived
Ga,, | Represents worker k’s gain in skill s in period t, after consultation Variables
Network Related
Rp Rewiring probability Exogenous
Nd Network density Variables
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2.3.1.1 Net Payoff from Completing Tasks

The assignment of worker k to task j in period t depends on (a) task revenue
(R;), and (b) costs associated with completing tasks.
2.3.2.1.1 Task Revenue

Rather than directly choosing the revenue for a task, we arrive at this expression
by first developing the expression at the skill level. We assume that the revenue for a
task is a function of the skills required to complete the task and time that a benchmark
worker (of competence 1) in the organization would take to complete the task. Hence, if
B represents the billing rate per unit time for skill s, the revenue from task j is given

S
by, R; = Z,BSSJ.S¢J.S . Here, 9 is equal to one if task j requires skill s, zero otherwise

s=1
and ¢, represents time required by a benchmark worker (of competence 1) to fulfill the

requirement in skill s for task j. This billing scheme is consistent with an industry
practice of charging a standardized rate for a task based on task complexity (USi 2009).
2.3.1.1.2 Costs Associated with Completing Tasks

The total cost associated with completing a task is a product of the time to

complete the task and the worker’s wage rate (h,). The total time worker k takes to

complete a task consists of two components, (a) time required to complete the task
based on worker k’s competence, (b) overhead incurred by worker k as a result of
providing help to co-workers. These components are discussed below.
Time Required to Complete a Task

Worker k’s competence (expertise) in skill type s, in assignment period t is given

by W, €(0,4], such that the time taken by worker k to complete task j is given by
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S
Z‘gjswkst¢js . Thus, small values of W, indicate an expert worker, while larger values
s=1

indicate a novice. In assignment period t, a worker, once assigned to a task, can acquire
additional knowledge by consulting co-workers. We model the extent of knowledge
gained by worker k, as a result of consulting co-worker |, as depending on: (a) the

difference in their competence levels at that point in time (W, —W,,), (b) worker I’s
willingness to help (a; ). A worker’s willingness to help is a function of the worker and

the type of tie (strong, weak or performative) shared by co-workers k and I. Prior
organizational research (Baum and Berta, 1999; Hansen and Lev, 2004; Levine and
Kurzban, 2006) has reported that individuals in organizations prefer using strong ties
first (because they are more willing to help), followed by weak ties and performative
ties. We model this by assuming o > o >/, where 0, 1, and 2 represent strong, weak

K 2 . .
and performative ties respectively. Therefore, G :ZZGII(IstAIkIst represents worker
1=1 i=0

k’s gain in skill s in period t after consultation. Here, G|, = (W, —W,, )¢ is the extent

of help acquired by worker k from worker | (sharing a tie of type i), and A\, =1

(decision variable) if worker | provides help using tie i to worker k (0 otherwise), in

skill s in period t. Note that we allow worker k to gain help at most from one worker in

K 2
period t in skill s (i.e., D, D Al <1). Finally, worker k’s effective competence in
1=1,1#k i=0

skill s in period t is given by C,, =W,

S

. — G, . Therefore, the actual time a worker

S
takes to complete a task, after knowledge acquisition, is given by, ZSjSCkst¢js.
s=1
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We propose that organizations could push a help source by combining social
network information with competence information. Tools such as IBM SOcial Network
ARchitecture (SONAR) (Guy et al., 2008) provide social network information that can
be combined with competence information from other available tools such as
Microsoft’s Skills Planning und (and) Development (SPUD) (Davenport and Prusak,
1998), Knowledge Interchange Network (KIN) and Tacit Systems EKG (Cross et al.,

2001).

It is important to note that a worker’s competence in the current period W, is a

function of knowledge acquired in prior periods. We assume that every time a worker

completes a task there is an improvement in the workers competence (i.e., W,

decreases) due to consultation. This assumption is consistent with human capital theory

(Becker 1962) and prior research on knowledge management (Chen and Edgington

2005). W, represents the worker’s initial competence level (at the beginning of the
planning horizon). Here, X,, =1 (decision variable) when worker k has been assigned
to task j in assignment period t, 0 otherwise and F;, =1 if task j is completed by period

t (0O otherwise). Hence, the competence gained from tasks completed by assignment
t-1 Ny

period tis > > X, &,@G,Fy - Here, we introduce a retention coefficient, @ <[0]],
m=1l j=1

to capture the reusable proportion of knowledge gained from consulting co-workers. For

example, @ <1 implies that the worker retains only a fraction of the learning for tasks

in future periods. Therefore, worker k’s competence in period t is modeled as,

t=1 Ny

Wi =Wy — Z Z ijm'gjsa)Gksm ijt .

m=1l j=1
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Overhead Associated with Providing Help

While consultation may benefit the worker receiving help, it is possible that a
competent worker may be burdened by having to help multiple workers in a given
period. Therefore, the organization must take the cost of proving help into account
when choosing a help source. We model this cost by increasing the time taken by

worker k to complete his/her assigned task, when helping co-workers. Particularly, this

K 2

S . . .
additional time (overhead) in period t is modeled as, > > > @' Z, A\, . Here, @'

s=1 I=1,1#k i=0
is the overhead coefficient associated with worker k providing help over a tie of type i,

such that @' =0 when there is no overhead from providing help. Such an overhead is

relevant only when worker k is busy (Z,, =1), and increasing in the total numbers of

K 2
workers being helped (O Al,).

1=1 i=0
12k

Finally, total task time for worker k is the sum of,

@ time required to complete task j based on worker k’s competence,
S
Z ijtlgjs¢jsckst '
s=1

(b) overhead incurred by worker k as a result of providing help to co-
K 2

S
workers, > > > @' NyyZy, .

s=1 I=L1=k i=0

Therefore, the total cost of completing tasks over the planning horizon is given

T K S N¢ K 2 L
by, Zzth(Zxkjtlgjs¢jkast + Z ZwlAllkstZkt)'
1 kL s 1Tk i=0

In summary, our model incorporates four factors that have been recognized in
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prior research (Cross et al., 2001) as being important for effective knowledge sharing.

These factors are: (a) “knowing what another person knows” which we model as worker

competence W, , (b) “willingness to engage in problem solving” which we model as

a,i , (c) “being able to gain access” which we model by incurring a cost of providing
help when a worker is busy, and (d) “degree of safety in the relationship” which we
model using different values for 0511 , based on the type of tie.

2.3.1.2 Cost Associated With Workers Sitting on Bench
When a worker is not competent enough to perform any task or there are no
tasks available for him to perform, the worker might just have to sit idle for that

assignment period. However, the firm incurs a cost for workers sitting on the bench,

since it may continue to pay out wages to these workers. In our model, Z,, equal to zero

indicates that the worker is available in period t, and is not busy with any task assigned

to him in a previous period. Therefore, the cost associated with the workers that are kept

N

K t
idle in period t is given by, Z((l—Zkt)— Xi)h G, . Here 6, €[0,1] is the proportion
k=1 1

i
of the wage paid when a worker is kept idle. This allows organizations to distinguish
between a worker’s wage rate when assigned a task versus sitting on bench. It is often
equal to one in practice.
2.3.1.3 The Wait-Time Penalty from Unassigned Tasks

As discussed earlier, many IT service requests are time critical and delays in

responding to these requests can often result in significant penalties for the firm. To
capture this we introduce a task level wait-time penalty per period 6, €[0]. Here, 6,

represents the reduction in the task revenue (billing rate) for every time period that the
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task is kept waiting in the system. Hence, if N, represents the total number of tasks that

have arrived till period t, the total wait-time penalty incurred in period t is given by,

N t K

Y-y xk,m)zsjsﬂs)e

j=1 m=1 k=1
Thus, the KISDN optimization problem can be formulated as:

Objective Function1

S N K2 .
Z(zxkjt j th(Zijtgjs¢jkast+ Z ZwlAllkstZkt))

s=1 j=1 1=1,1%k i=0
Max ‘

k=1 j=1
t=1 c S N t 3
_Z(l_zkt _Zxkjt)hkeb _Z((l_z ijm)zgjsﬁs)t%
k=1 j=1 = = o=t

m=1 k=1

Total Task Revenue — Total Costs Associated with Completing Tasks (including the
overhead of providing help) — Total Bench Cost — Total Wait Time Penalty

Assignment Constraints

N¢
D X +Z <1 Vkefl.,K}te{l,. T},
j=1

Worker k can be assigned in the current period iff worker k is not busy with any tasks.

T N
ZZ(ijtz‘915¢Jkast)+Z(l Z Zxkjt)+z Z Zzw AIIkstZ T Vk E{l,.., K},
t=1 j=1 t=1 1=1l=#k i=0 s=1

Total time spent by a Worker on tasks and on the bench cannot exceed T.

Mx
M—|

X <1 Vjefl., Ny}

=~

=1

N
I

Max

D Xy =0 Vkefl. K}tefl. T},

j=Ng+1
A task can only be assigned once and after it arrives in the system.

t-1 S
ijt(Z(t_m _Z(Cksm SJ¢SJ + Z Z ZZU Allksq))xkjm IT+ ij t-1) ) 0
m=1 s=1

g=m I=L,l=k i=0

! The linearized version of the above constraints is provided in Appendix A.
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t-1 S

2ijt 2 (Z(t —-m _Z(Cksm SJ¢S] + z Z ZZU lesq))xkjm IT+ ij (t-1)
m=1 s=1 g=m I=Ll#k i=0

t-1

X F 20 Vke{l,K}jeflo, Ny b tef2,.., T},
1

J
m=

ijt
N =1 if worker k gets help in skill s from worker | using tie i in time period t, 0
otherwise.

= 1 if worker k completes task j by time period t, O otherwise.

t—1 Ni_

Z, = 22(1— Fa)Xym Vke{l.,Khte{2,..,T},

m=0
Z,=0if worker k is available in period t (i.e., not busy), 1 otherwise.

AN

_

Knowledge Acquisition Constraints:
Gust = Wi —Wig)er) vk lefl K} I=ksefl, Shtefl, T}ie{0L2}, p, =1
G, represents worker k’s gain in skill s from worker | using tie i in time period t.

2

Z D N <1 vk e{l...K} pl =1se{l.,Shte{l. T}

I1=1,1#k i=0

Worker k can get help from only one worker | using one type of tie in skill s in period t.

Z ZG;.stA'k.st vke{l..K}sefl.,Shtefl..T}

I=L1=k i=0
Cot =Wt — G Vke{l.,K},se{l.,SHtef{l... T}
G represents worker k’s gain in skill s in time period t, after consultation.
C,t s worker k’s effective competence of skill s in time period t after consultation.

t-1 Ny

Wi =Wiip = 2D Xiin%:@ Gy Fig vk efL,.,K},se{l..,Shte{2,.. T}

m=1 j=1
Updating worker k’s current competence (W, ) based on knowledge acquired in prior
periods
2.3.1.4 Handling Uncertainty in problem parameters

Recall that the firm’s objective is to study how task assignment, knowledge

management strategies and organizational networks interact in order to impact its
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financial and operational performance. In that context, using expectations to estimate

the type of tasks (¢,), arrival of tasks (.,), initial competence of the workforce (w,y),

and knowledge acquisition parameters ( oy, b, @) removes the notion of uncertainty.

However, we believe this is a relevant aspect of the firm’s knowledge management
problem. Therefore, in order to handle uncertainty more appropriately, the firm can
draw different vectors of values for each of these parameters i.e., the firm
conceptualizes the value as a random draw from an appropriate distribution. The firm
considers random draws from the estimated distributions of the unknown values, solves
independent problems for each instance, and takes the expected value across multiple
instances. Note that the MIP formulated in the previous section can be interpreted as

the knowledge management problem faced by the firm for one such instance. Given that

the estimated distribution is continuous in nature, it is impractical to estimate the
outcomes for all possible situations. However, if the number of instances (draws)
selected is large enough, they would provide a reasonable approximation. The firm can
basically estimate the value of its knowledge management strategies based on all the
instances and the probabilities of each of the instances. This helps lend greater
generalization to the model results.

2.3.2 Network Structures

We consider three types of organizational network structures: Clustered
Networks (CN), Random Networks (RN), and Small-world Networks (SN) (see Figure
2). These three network configurations are generated by “rewiring” the same total
number of connections (Watts and Strogatz, 1998). In CN, all interactions are spatially

local and a worker is directly connected to the same small number of his nearest
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neighbors, i.e., a large number of cliques with few or no connections between them.
This implies that in CN there tends to be large overlap between strong and weak ties,
i.e., a friend are also a friend of a friend. On the other hand, RN have few or no cliques
between workers. Hence, unlike CN, in these networks there is very little overlap
between strong and weak ties of a worker. Lastly, SN lie somewhere in between CN

and RN by having some cliques with limited connections between cliques.

(a) Clustered Networks (CN) (b) Random Networks (RN) (c) Small-World Networks (SN)

FIGURE 2: Different organizational network structures
2.4 Solution Procedure

2.4.1 Problem Complexity

The KISDN optimization problem discussed in the previous section can be
solved. However, a practical issue is whether realistic problems can be solved in a
reasonable amount of time. Hence, we next discuss the complexity of our problem.
Theorem 1: The KISDN optimization problem over some planning horizon is NP-hard.

The main idea behind the proof is that the generalized assignment problem
(Sahni and Gonzalez, 1976) can be polynomially transformed to an arbitrary instance of
the KISDN optimization problem over some planning horizon T. In this construction, an
item and a bin in the generalized assignment problem correspond, respectively, to a task
and a worker. Assigning tasks to a worker corresponds to the notion of packing items in
a bin. Appropriate choices for the service environment, worker, task and knowledge

acquisition parameters complete the construction of an instance of the KISDN
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optimization problem. For any positive integer J', the decision question “does there

exist a valid task-to-worker assignment such that the firm’s profit over the planning

horizon T is greater than or equal to J ?” posed on the constructed instance is

equivalent to solving the decision version of the generalized assignment problem.
Consider the decision problem Qgop corresponding to the KISDN optimization

problem over some planning horizon.

Decision Problem (Qkop): Given the number of workers K, and the number of tasks

N set values W,,, h,, for each worker k, values p,, for each worker pair (k, 1),

Max !

values 9, ¢, R;, n, for each task j, and values T, S, w, 6,, 6,, al, @' and a

i
specified number J, does there exist a task-to-worker assignment such that the firm'’s
profit over the planning horizon T is greater than or equal to J ?

We now show that the decision version of generalized assignment problem can

be polynomially transformed to Qkop.

Generalized Assignment Problem (GAP): Given a finite set of bins B={b,,b,,..,b}
with capacity ¢, for each bin b, and a finite set of items S ={x, X,,.., X, }, set weight

w; and profit p, for each pair of item x; and bin b;, and a specified number J', does

m n

there exist a feasible packing, such that the total profit > > p,x, >J'?

i=1 j=1

A constraint in the GAP is that each item can only be packed into any one of the

bins, inj <1 Vjed{l.,n} (A.1). A bin, however, can take multiple items, but should
i=1

not exceed its capacity ¢;, > w;x; <¢; Vie{L..,m} (A.2).

i1
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Given the generalized assignment problem, we now map it to an arbitrary

instance of Qkop as follows. Each worker and task correspond to a bin b, and an item

x; respectively in the generalized assignment problem. We construct an arbitrary
instance of Qop by setting », =1 and 7, =0, vt>1,Vje{l., Ny}, such that

N, = N,,,, Vt . This implies that all tasks arrive in the system at period 1. Also, 6, =0,

Max

and 6, =0 so that, there will be no penalty of keeping tasks waiting or keeping workers

idle. In addition, we set o =0, and @' =0 such that there will be no knowledge

sharing among workers. One task can only be assigned to one worker, but a worker can
perform multiple tasks over the planning horizon T. Therefore, this arbitrary instance of

Qkor is given as follows:

T K NMax S
Maximize D > > Xk,-t(R,— -h >’ ‘9js¢jkuslj
t=1 k=1 j=1 s=1
NMax
X +Ze <1 vkefl., K} te{l, T} (A3)
=1
K T
> Y X, <1 Vil Nyad (A.4)
k=1 t=1
T Npyax S T N vax
Z Z(ijtzwksllgsj¢sj) + Z(l_ Ly~ Z ijt) <T vke{l.K} (A-5)
t=1 j=1 s=1 t=1 j=1
t-1 s
ijt( ((t—m) _ZWksllgsj¢sj)ijm IT+ ij(t—l)) >0 Vke{l, K}jell,, NMax}vt €{2,,T} (A.6)
m=1 s=1

t-1 S
2R, = Z (t—m)— Zwkslgsj;;ssj)xkjm IT+FRy Vkell, K}jefl, Ny} te{2. T} (A7)
m=1 s=1

t—

Xijm —Fie 20 vVke{l.,.K}je{l., Nyt te{2. T} (A8)

kim
m=1

Z, = vk e{L. K}t e{2,,T} (A9)

t-1 N
kim

(1 - ijt 71) X
=1

m=l j
The capacity constraint (A.5) in the Qkop Means that the sum of the time taken
to complete the assigned tasks and the time that the worker may be kept idle, cannot

exceed the length of the planning horizon T. This corresponds to constraint (A.2) in the
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generalized assignment problem. Thus, it is easy to see that for J = J the solution of
this instance of Qop provides a solution to the generalized assignment problem.
Moreover, the generalized assignment problem is known to be NP-hard (Sahni and

Gonzalez, 1976). Hence Qkop is NP hard.

2.4.2 Dynamic Assignment Heuristic (DAH)

If the planning horizon (P) was equal to the length or duration of a single period
(i.e., P=A implying T =1), then the maximization problem would be similar to an
assignment problem with inclusion and exclusion constraints. However, when the
planning horizon is divided into multiple periods (T >1), then this problem can be
solved for each period successively. In other words, we first determine the optimal
assignment and the optimal payoff in the first period. Next, we set up the problem for
the second period. To achieve this we use the assignment information from the first
period, and take into account of all the new tasks that have arrived and the workers that
have become available between period one and two. In addition, we update the worker’s
competences based on the task assignment in the first period. The optimal assignment
and payoff for the second period can be obtained by using this information. Similarly,
the assignment for the second period then sets up the problem for the third period, and
so on. This would essentially be a greedy algorithm (with no look-ahead), wherein the
emphasis, is on maximizing the payoff for only that period. In contrast, the proposed
DAH improves over the greedy approach in two ways, (a) allows for dynamic
assignment using a One-Period Look Ahead (OPLA) policy and (b) using suitable
approximations, incorporates the value of learning viz., how the worker’s knowledge

acquisition in the current period impacts performance in future tasks.
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2.4.2.1 One-Period Look Ahead Policy (OPLA)

DAH uses a One-Period Look Ahead (OPLA) policy to decide whether to make
assignments now or to wait until the next period. For each period t, the OPLA policy
compares the objective functions of the following two scenarios: (a) making

assignments in periods t and t+1successively (i.e., objective function value = r,), (b)

wait and make assignments only in period t+1 (objective function value = =, ). In both

scenarios, we approximate the task arrivals for period t+1. We assume that on average,

S
for each task of type m, A, tasks with task times equal to qumgs arrive into the
s=1

system between period t and t+1. In the first scenario, =, is the sum of objective

function values in assignment period t and the successive period t+1. Note that in the
second scenario, since no assignments are made in period t, the firm incurs additional
costs in terms of wait-time penalty (for unassigned tasks) and bench cost (for idle

workers). Thus, =, is the objective function value from assignments at period t+1 less

the additional costs stated above. Of course, these additional costs could be offset by
making improved assignments in period t+1 (since a larger pool of tasks and workers is

available). Hence, if 7, <z, , OPLA policy will choose to wait for one period.

Otherwise, the assignments are made in period t. This approach (OPLA) is applied
repeatedly at every assignment period t. Hence, it is possible for the heuristic to wait for
more than one period before making an assignment.

2.4.2.2 Estimating the Future Value of Learning

The value of learning depends on (a) number of additional tasks of type m

completed as a result of learning (5§mjt —5fmjt), and (b) the revenue from each of these



31

S
tasks > qi'B.c, . Here &5;, and 57, are the expected number of tasks of type m
=1

kmijt

performed by worker k using skill s, over the remainder of the session with and without

learning, respectively. In order to approximate the values of &, and o2, we need to

kmijt ?

consider — (a) the amount of time remaining in the planning horizon after the task
assigned in period t is completed (T —(t+zsll9jq¢jqckqt)), (b) the likelihood of the
ot

worker getting assigned to a task of type m in the future, after completing task j in
period t ( x,;: ), () the workers effective competence, in skill s, with and without
learning, W, —®G,,) and W, respectively, and (d) the arrival rate of tasks of type m
(An).

Note that, A, (T —(t +il9js¢jsckst)) represents the expected number of tasks of

P

type m that will arrive in the remainder of the planning horizon. We propose that, since
workers compete for tasks, the proportion of these tasks that can get assigned to worker
k will depend upon his competence in task type m relative to his co-workers. Thus, the

likelihood of assigning a task of type m to worker k is given by

s K s
Zirﬁjatl = Zq;n (4-Wg — lgjsa)Gkst))/ZZq;n (4- Wy — lgjsa’Gkst)) , after learning (while
s=1

I=1 s=1
S K S
doing task j), and xj5* =D a8 (4—W,,)/ DD a7 (4—W,,) without it.
s=1 1=1 s=1

On the other hand, even if there was no competition from co-workers, the
maximum number of tasks of type m that worker k can complete in the remainder of the

planning horizon can be estimated as the ratio of the time remaining in the planning
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horizon to the average time taken by worker k to complete a task of type m.

S S
Mathematically, this ratio is (T —(t+ > 3.4 Cic))/ D0l Wi — F @G )s, and
s=1 s=1

S S
T —(t+>.9:0,C)) D AW, , With and without learning respectively. In this
s=1 s=1

case, we propose that the proportion of these tasks that can get assigned to worker k will
depend upon his competence in task type m relative to his competence in other types of

tasks. Thus, the likelihood of assigning a task of type m to worker k is

M S

lkrﬁjt _qu (4 (Vvkst ‘9 a)Gkst))/zzqs (4 (\Nkst ‘9 a)Gkst)) aﬂ:er Iearnlng (Whlle

u=l s=1

performing task j), and y2=° = qu (4— Wkst)/ZZqS (4-W,,) without it.

u=l s=1
Therefore, we estimate 5, based on which of the two scenarios mentioned

above places a tighter constraint on the number of tasks of type m that can be assigned
to worker k. That is,
(T (t + 23]S¢15Ck5t))lkmﬁ

5I3mjt Mm{ﬂ (T (t + 2915¢Jsckst )) kajt | S } and
qum (\Nkst _‘gjsa)Gkst)gs

(T (t + Z ‘9]s¢Jkast))kat
Smie = Min{A,, (T — (t+ZL9,S¢,SCkst))kat ; }.
qunwkstgs

s=1

2.4.2.3 MIP formulation for each Period t
Similar to Section 2.3 (MIP), in each period t, the firm’s objective consists of
the following terms: net payoff from completing tasks, the cost of workers sitting idle,

and the wait-time penalty from un-assigned tasks. In addition the DAH objective
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consists of the approximation for the value of learning in the current period on future
periods. As discussed earlier, this depends on the number of additional tasks of type m

completed as a result of learning (&, — 5fm,-t) , and the revenue from each of these tasks

S M S
>al'Bs, .- Mathematically, this is given by, > > > > X,,0" B, (Sent — Syt -
s=1 K

kek, jen, m=l s=1
Here, f, is the set of un-assigned tasks and k, is the set of available workers at the

beginning of period t. Using the same notation as in Section 2.3 (Table 1), in period t ,

the firm’s maximization problem using DAH, can be we written as,

S 2 o M S
Max Z Z ijtRj - Z (Z hy ijtlgjs¢jsckst + ZZ h X kjtwlAlklst) + Z Z Z ijtqgnﬂsgs (5;mjt - é‘kzmjt)

kek, \ jefy 5=l jef, Igk, i=0 jen, m=1s=1
s
- Z(l_ Z ijr)hk'gb - Z((l_ Z ij:)zgjsﬂs)‘ga
kek, jefy jefy kek, s=1
Subject to,

> X <1 Vkek,,

jefy

D X <1 Vjen, ,

kek,

X {0 Vjeh, kek,sefl.,S} n
The assignment constraints are similar to Section 2.3, where we ensure that each

task can only be assigned to one worker. Also, a worker can be assigned to a task, or

kept idle in period t. The extent of knowledge acquired from a co-worker (G, ) and

hence the effective competence (C,, ), can be calculated in a fashion similar to the one

described in Section 2.3.1.

2.4.2.4 Implementation of the Hungarian Method

To solve the maximization problem, in order to estimate the values for z, and
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7, , we use the Hungarian method (Cormen et al., 2001). The Hungarian method
models the assignment problem as a p-by-q profit matrix, where each element a, ;

represents the profit of assigning the k-th worker to the j-th task. Recall that in our
assignment problem, there is a payoff associated with assigning worker k to task j, or to
the bench. In addition, we also model a waiting-time penalty for each unassigned task in
the system. Even so, we show that our assignment problem can be solved using the
Hungarian method by generating an adjusted profit matrix.

In the adjusted profit matrix, the payoff associated with assigning

each task jen, to each worker kelzt (which is a,; ) is sum of the payoff

s 2 o M S
(Rj - Z(‘gjs¢jshkckst + ZzlgjswlhlAlklst) + qugnﬂsgs (5klmjt - 5k2mjt )) and the wait-

s=1 Igk, 1=0 m=1 s=1
S
time penalty (Z.stﬂsea) associated with task j (Block A in Figure 3). Note that, as in
s=1

the MIP, we only allow one worker to provide help to worker k in skill s in period t.

Therefore, for each task j, worker | provides help to worker k (A, =1), iff

(Wkst _Wlst)ali¢js'9jshk _wihl 2 I;/’I?Yz({(vvkst _Wgst)aé¢js'9jshk _wrhg ) (Wkst _Wfst)a;¢js‘9jshk ,O}
vg ek, f ek, =g, f,re{012}
The payoff associated with keeping a worker k on bench is period t is given as,

—h,6, (Block B in Figure 3). The number of rows in our adjusted profit matrix is

k,

determined by the number of available workers at the beginning of period t (|K;|) , i.e.,

IZI . And, the number of columns is the sum of the number of available tasks in

p:

period t (|ri,| ), and an additional option of keeping the worker idle (i.e., g =|A|+1 ).
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Block A Block B
4 Y4 N
a4 Cip) a‘l,‘ﬁt‘ al,\ﬁt\ﬂ
A A || B2fafst
K,| workers :
a. a. A a .
[AER.AE: o || 2
\\ // - J
e — Y
|nt|Tasks Bench

FIGURE 3: Profit matrix for the Hungarian method used in DAH
In this section, we present the formal proof for using the adjusted task profit (

R Z (‘915¢Jsh Ckst + ZZBJSZU h Alklst) + qus ﬁ gs( kmjt kmjt) + z‘gjsﬂs in

Iezk i=0 m=1 s=1

the profit matrix. The task payoff and the wait-time penalty in period t is given by

ZZ ijt(R Z(‘gjs¢jsh C:k'st +2219JSZD' h Alklst) +qu ﬂ gs( kmjt 5k2mjt)]

kek, jefy Igk, i=0 m=1 s=1
_Z(l Zxkjt)zgjsﬂs a
jen, kek(

This could be written as follows:

s 2 o M s
szkjt(Rj _z(lgjs¢jshkckst+Zzgjswlhl/\lklst)+zzq :Bsgs( kmit 6k2mjt))
s=1 —

kek, jeh lgk, =0 m=1 s=1
_Z[Zgjsﬂs a Zxkjtzgjsﬂs aJ
jefy \ s=1 kek,
M S
= z Z ijt( z(‘gjs¢jsh Ckst + zzgjsw h AIklst) + qus IB gs( kmjt é‘kzmjt)]
kek, jefy Iek i=0 m=1 s=1
S
_(Zzl"gkﬂs Z;ijtzgjsﬂs J
Jen, s= Jen; ke

M S
= Z Z ijt(R Z(‘gjs¢jsh Ckst + Zzgjsw h AIklst) + zzqs gs( kmjt 5k2mjt)J

kek Jjehy ng i=0 m=1 s=1

+22xkﬁzl9ﬁﬂs A Zzgjsﬂsea

kek, jefy jen, s=1
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S M S S
- Z z ijt R Z ‘9]s¢15h Ckst + Zz‘gjsw h AIklst + ZZ qs ﬂ GS kmjt 5k2mjt) + Zlgjsﬂsga
kek jen, S=! |gk i=0 m=1 s=1 s=1
- Zzgjsﬂsea
jen, s=1

S
Since ZZSjsﬂﬁa is a constant for time period t, our objective function could

jefy s=1

be solved using R Z 9.:h, Ckst+zzlgszUhAlklst +§:iqsﬁgs Snic — O +zl9]sﬂ50 as

|gk‘ i=0 m=1s=1

the adjusted task profit.
Updating the Overhead Associated with Providing Help

One subtle aspect of DAH is that the cost of providing help is estimated only for
busy workers (k ¢ Kt), prior to making assignments. However, it is possible that post-

assignment (using the Hungarian method) some of the previously idle workers may also
become busy. In that case, we need to check, for every such worker |, whether the cost
of providing help incurred by | is offset by the benefit to every worker k being helped,
and update the competence levels accordingly.

Therefore, after making assignments using Hungarian method, we check

2

S . . S ~
whether > > @A =D D Xy W, W )/ Ih <0, where |,k ek, and

s=1 i=0 jeh, s=1

worker k, | are assigned to tasks in period t.

s 2 s
(a) if ZZw'hlA'klst = X Wi, ~Wi )i .3 hy <0, we allow worker | to help
=1 i=0

jefy s=1
worker k. However, as discussed in Section 2.3.1.1, worker | incurs overhead (w'h,)

from providing help to worker k.
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S 2 . . S .
(b) if D> @' hA DD X Wi ~W )/ 90, >0, we stop worker | from

s=1 i=0 jefy s=1

helping worker k in period t, and update worker k’s time to complete task j as,
S
Z‘gjs¢jswkst . | |
s=1

Finally, Figure 4 summarizes the DAH.

Setz=¢+1 Y

v
Step1. Step 2. Step3. | N[ Step4. Step 5.
Setup problem Calculate 7, m, using Ifn,<m, Make assignments in period 7 Ifr<T Stop
for period # Hungarian Method | using the solution from Step 3 N
Y

)

FIGURE 4: Dynamic Assignment Heuristic (DAH)
2.5 Simulation Design

The complexity of the problem precludes analytical solution and requires us to
use simulation. Other studies in IS have used simulation with synthetic data in order to
provide stylized insights into relationships between key variables when the underlying
phenomenon is complex and real world data is difficult to obtain. Such studies include
the value of knowledge management (Chen and Edgington, 2005), electronic markets
(Jones et al., 2006), the performance of IS teams (Rao et al., 1995), and security
portfolios (Kumar et al., 2008). The value of our model is primarily to provide
generalized insights into the operation of KISDN. This section describes the design of
simulation experiments including, key parameters and their estimation. Fifty
replications of each sample path were used, and average values of system performance
measures were calculated. Such an approach using average performance analysis is
consistent with prior MIS research (Chen and Edgington, 2005; Jones et al., 2006;

Kumar et al., 2008; Rao et al., 1995; Sen et al., 2009). Simulations were extremely
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computation-intensive. Hence, they were run on a cluster of 160 Intel Xeon CPUs on
Dell blade servers with Red Hat Enterprise Linux operating system. The average time
for running each replication of a sample path was 2.4 hours.

Table 2 describes the numerical values, and justification for parameters used in
our simulation experiments. Where possible, we have attempted to base these values on
ranges that could be encountered in practice and/or prior research. These parameters can
be divided into five categories: service environment, workers, tasks, knowledge
acquisition, and network. Each of these is described below. In our opinion, service
environment, worker, and task parameters can be estimated relatively easily.
Knowledge acquisition parameters included in our model could be estimated
approximately and help sensitize the organization to KISDN management issues that
involve these parameters.

2.5.1 Service Environment Parameters

The service environment was simulated for a planning horizon P of 1200 time
periods. As discussed earlier, it is important to realize that the actual value of each time
period could be context sensitive. We assume 100 workers (K ) and 4 skills (s ) for our
simulations. This represents a relatively small service organization. Larger values would
significantly enhance computational complexity. Prior research on knowledge transfer
(Cowan and Jonard, 2004) and technical support (Prabhakar et al., 2005) has used 5 and

3 skills respectively. As outlined before, we use wait time penalties to model the impact

of customer waiting and use different values of penalty coefficients ( &, ) in our

simulation experiments. As mentioned in Table 2, the choice of values is comparable to

actual service level agreements (SLAS) (Buco et al., 2003, Sen et al., 2009).
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2.5.2 Worker Parameters

We use two worker related parameters: hourly wage rate for a benchmark

worker (of competence 1) for skill s (h,), and initial competence of worker k in skill s (
W, ). The hourly rate for worker k (h,) is calculated from these as shown in Table 2.

These values were chosen to be comparable to the range of values encountered in

practice (www.payscale.com and Sen et al., 2009). In addition, we assume the bench

cost coefficient (6,) is one. Consistent with prior research on worker cross training

(Sayin and Karabati, 2007) a normal distribution of worker competence was assumed.
Empirical research on the operation of IT service environments has illustrated the
presence of considerable worker heterogeneity in service task completion (Kim et al.,
2008). We chose a range of four for worker competence, based on the Microsoft SPUD
project (Davenport and Prusak, 1998) which recognizes four levels of worker
competence in each skill. A mean of 1.4 was chosen to allow for a normal distribution
of worker competence in the range 0-4. While it is easy to measure worker’s wage rate (

h,), it is more difficult to measure worker’s competence (W, ). However, there is a

growing trend of using technology to assess workers, competence and store them in a
skill database. Tools such as Microsoft’s SPUD (Davenport and Prusak, 1998) and KIN
and Tacit Systems EKG (Cross et al., 2001) have been adopted by service organizations
in order to measure and store worker competence for use in decision making.

2.5.3 Task Related Parameters

We assumed that the time taken by a benchmark worker to complete the

requirement in skill s for task j, is given by ¢, = N(g,, o) with values (in minutes) for

each type of skill given in Table 2. We assume six types of tasks in terms of their skill
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requirement, each task requires two skills, and an equal arrival rate (A, ) for each task

type m. Task arrival rates and task times are in the range that could be encountered in
practice’ (HP, 2007; Sen et al., 2009). Sen et al., (2009) reports mean and maximum
values for task times in the range of 30 minutes to 8 hours, and HP (2007) reports
problem resolution times of 4 hours to 10 days. In our simulation, for example, a task
requiring skills 1 and 2 would have a mean task time of 15x10 =150 minutes, and a

maximum time of 330 minutes. The billing rate for each skill ( 5,) is calculated based

on the hourly rate for workers, assuming a profit margin of 50%, which is comparable

to prior research (Sen et al., 2009). Setting a standardized billing rate ( f5,) for a task

based on the skill required is consistent with industry practice (USi, 2008).
2.5.4 Knowledge Acquisition Parameters

The willingness to help (¢! ), the overhead coefficient (@') and the knowledge

retention coefficient (), are parameters designed to capture the characteristics of the
knowledge acquisition environment. Willingness to help has been extensively
researched (Cabrera and Cabrera, 2002). This parameter is a function of the type of tie
(Baum and Berta, 1999; Hansen and Lev&, 2004; Levine and Kurzban, 2006). Cowan
and Jonard, (2004) uses values in the range 0.5-1 for strong ties and recognizes that
high values close to 1 are unrealistic. The values chosen by us are in this range. Cabrera
and Cabrera (2002) provide an extensive discussion of techniques to enhance
willingness to help. The overhead coefficient captures an individual's cost of providing

help and depends on the type of tie (Marsden and Campbell, 1984). In our simulations

2 A mean processing time per incident of 360 minutes was reported in discussions with a senior corporate
systems support manager of a leading systems software vendor in 2009-2010.
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we assume that the time spent on each help transaction is small, relative to task times®.
For each help transaction, the values for the overhead coefficient chosen in Table 2
translate to a maximum of 2.5%, 7.2%, and 12% for strong, weak and performative ties,
respectively, for an average task time of 25 periods. It should be noted that when a
worker helps multiple co-workers, the overhead incurred would be significantly large.
Exact parameter estimation could be difficult. However, the intent is not to be able to
estimate these parameters accurately, but to force organizations to think about whether
these parameters are low or high and to consider ways to enhance their value. Such an
approach is consistent with prior simulation based knowledge management research
(Chen and Edgington, 2005). Knowledge retention coefficient forces organizations to
think about synergies between tasks performed and is similar to the concept of reuse
which has been used in other contexts such as software engineering (Schilling et al.,
2003). Learning while completing tasks has greater value in scenarios where the
knowledge retention ratio is high. We experiment with a range of values for these
parameters.

2.5.5 Network Parameters

A clustered network with 100 nodes (workers) was created by connecting each
node with x of its nearest neighbors. SN and RN were created by disconnecting the
link and reconnecting it with probabilities of 0.09 and 1 respectively using the Watts
and Strogatz algorithm (Watts and Strogatz, 1998). It is important to note that the Watts

and Strogatz algorithm maintains the same average number of neighbors even though

This is consistent with practice, based on discussions with a senior support manager of a leading
systems software vendor, and observations at a service organization specializing in the financial services
industry.
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the network topology changes. The values of x used are described in Table 2. We
generate 50 different samples (with different connectivity) for each type of network. We
simulate the performance of each of these 50 networks, and report the average
performance.

Organizations have been increasingly adopting tools to capture information flow
networks. Commercial software such as InFlow (www.netorg.com) and IBM SONAR
(Guy et al., 2008) allow organizations to extract organizational network information
from emails, blogs, and other sources.

2.6. Simulation Results

This section presents important results from our experiments. These results
illustrate the stylized behavior of KISDN in terms of measures of operational
performance (Average total task time), financial performance (Objective function
value), knowledge diffusion (Number and type of ties used per worker, average
competence level of the workers in the organization, worker specialization), and
assignment dynamics®. The impact of some of our parameters such as willingness to
help is well researched (Cabrera and Cabrera, 2002). We merely note that increased
willingness to help improves financial and operational performance and helps
knowledge diffusion of KISDN, as expected. Our focus is on the impact of network
structure (network topology and network density) on KISDN performance, since this is
a relatively under-researched area.

2.6.1 Impact of Network Structure

4 121200, K=100; M=6; S=4; §,=6,9, 12, 15; 1 = 1; 6,= 0.1, 6, =1; k= 10%; h,= 4, 6, 8, 10, Vs e

{1,234}, ®=0.2; a = N(0.45, 0.03), ai = N(0.25,0.02), & = N(0.05,0.01); @°=0.1, #'=0.3, @> =05
Differences between network structures were tested for statistical significance using multiple paired t-tests, p<0.05
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In order to compare the three networks structures (RN, CN and SN) we observed

their financial performance, operational performance, and knowledge diffusion

characteristics for different values of the willingness to help parameter.
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We observe that the financial performance (Figure 5) and operational
performance (Figure 6) increase as networks become denser. Additionally, we notice
that RN outperform the other network topologies®. However, the difference between
RN, and the other two network topologies, decreases as network density increases.
These results are driven by knowledge sharing behavior, which in turn, depends on
network topology and network density. Next, we analyze knowledge sharing behavior
in detail.

Recall that, in our model the total time a worker spends on a task is a function of
his effective competence, which in turn depends on extent of knowledge acquired from
co-workers. And the extent of knowledge exchange between two co-workers depends
on the type of tie shared and the competence difference between them. Typically, strong
ties are the preferred method of consultation, since they have a higher willingness to
help and the least overhead coefficient (Baum and Berta, 1999; Hansen and Levds,
2004; Levine and Kurzban, 2006). However, the number of strong ties that each worker
has is limited. Weak ties have a lower willingness to help, but are greater in number as

compared to strong ties. Finally, performative ties allow a worker to connect to any

5 L
Based on average performance over 50 replications
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worker in the system, and although they are the most in number, they are the least
efficient in terms of both willingness to help and the overhead of providing help. The
average number of strong ties per node increases as network density increases. Since
strong ties are the most effective means of acquiring knowledge, this accounts for
improved financial and operational performance with increase in network density
(Figures 5, 6). Also, as network density increases to relatively high values, the three
network topologies tend to become similar, reducing performance differences between
them.

While the number of strong ties is the same across the three network structures,
the type of knowledge sharing behavior invoked by each network structure is very
different. This is largely driven by the fact that as workers acquire knowledge from each
other to perform tasks; cliques tend to become similar over time (in terms of knowledge
vectors of workers). Therefore, the amount of knowledge gained by using strong and
weak ties within cliques becomes limited as compared to using same ties from outside
the clique, if they exist. In addition, within cliques there is a high overlap between the
strong and weak ties, making weak ties redundant. As discussed earlier, CN have no or
very few strong and weak ties outside cliques. In contrast, RN have very few cliques
and many strong and weak ties distributed across the network. SN are somewhere in the
middle with a small number of cliques having connections across them.

For reasons discussed earlier, workers in all three network topologies, prefer to
use strong ties, therefore the number of strong ties used per worker (Figure 7) is much
higher than weak tie (Figure 9) and performative tie use (Figure 11). Note that, the

number of strong ties used is about the same for all three network topologies (Figure 7).
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However, RN, and SN use a much larger number of weak ties (Figure 9), compared to
CN, which uses a much larger number of performative ties (Figure 11). Figures 8, 10,
and 12 indicate that RN benefits most from strong and weak tie use, in terms of
knowledge gained and CN benefits the least, since workers in cliques tend to be similar.
In essence, we find that the RN invokes the most efficient knowledge sharing behavior

between workers and this explains why it outperforms SN and CN.

TABLE 3: Min/Max/Average performance differences across network structures

Objective Function Value Difference (% Improvement)

Network
Density (%) SN over CN RN over CN
Avg.  Min Max Avg. Min Max
10 514 102 2323 | 1346 255 459.0
12 22.7 15 393.3 50.7 136 11329
14 12.6 -5.7 280.9 28.9 6.2 531.9
16 131 -0.2 73.2 19.2 -3.4 151.4
18 7.9 -0.5 77.3 134 -5.8 100.3
20 6.8 -3.1 21.2 115 -3.8 715
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FIGURE 13: Average knowledge level for | FIGURE 14: Worker specialization for different
different values of network density values of network denstity

In addition to the average analysis, we also studied minimum and maximum
performance differences across the three network structure (Table 3). We observed that
when network density is high, it is possible for some sample paths (less than 2.5% of all

instances) that CN slightly outperforms (by less than 0.5-6%) RN or SN. This suggests
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that, on occasion, when network density is high, the experts may be nicely distributed
amongst CN cliques, such that it is able to slightly outperform the other networks.
However, for the most part (viz., on average across all instances), for the reasons
already provided, CN performs poorly compared to SN and RN, in that order.

These effects are further illustrated in Figures 13 and 14, where we plot the
average knowledge level of workers and average worker specialization (coefficient of
variation of competence across skills for all workers). In every time period t, the

standard deviation of competence across S skills of worker k is given by o, . Hence, the

average coefficient of variation of competence across skills over all workers is,

K S
(1/K)z(6ktS/Zwkst)' Each clique in a CN may contain a subset of experts and this
k=1 =1

limits both the amount and range of knowledge that can be gained by individuals in that
clique. In RN and SN, which have no or very few cliques, workers have access to a
greater number of experts. Hence, there is greater knowledge diffusion in RN and SN,
resulting in a higher knowledge level (Figure 13) compared to CN. It is important to
note that knowledge diffusion (due to consultation) when a task requires multiple skills
is different compared to knowledge diffusion in a scenario where a task requires only
one skill. In the former scenario, each worker is able to improve his expertise in
multiple skills, when performing tasks. In the latter case, since workers are assigned to
tasks that require only one skill, learning during task assignment results in improved
competency in that skill. In this case, repeated assignments, which use the skill that the
worker is most proficient in lead to further specialization and higher knowledge
variance (Figure 14). Therefore, when a task requires one (two) skill, each consultation

increases (decreases), knowledge variability across skills. Given that RN better facilitate
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help seeking behavior, RN results in higher (lower) worker specialization when a task
requires one (two) skill(s), compared to CN.

Note that increasing network density has the most impact in the case of CN and
least in the case of RN (Figures 5, 6, 13, 14). The marginal value of additional
neighbors is highest in the case of CN. CN are dependent on strong ties for knowledge
transfer and benefit much more from access to new expertise, compared to RN and SN,
which can access a broader range of help sources (outside cliques).

2.6.2 Impact of Cost of Providing Help on Relative Network Performance

In order to extend the robustness of the model trends seen thus far, we study the
relative performance of the different network structures as we increase the cost of
providing help. Note that, in these experiments the cost of providing help is increased in
such a way that the relative cost of providing help via strong, weak or performative ties
is maintained. As the overhead from providing help increases it is beneficial to acquire
knowledge from only those co-workers where the knowledge gain can offset the cost. In
other words, for a worker to be able to use his closest ties (strong and weak) it is critical
that there be enough heterogeneity in skills across workers in his closest network (i.e,
more potential for knowledge gain). The lack of enough heterogeneity in closest ties
results in a reduction in the use of closest ties, increased use of performative ties, and
reduced financial performance (Figure 15). In addition, we find that as the cost of
providing help decreases the difference between network structures decreases. Since
RN invokes the most efficient help sharing behavior, for reasons discussed in Section

2.6.1, RN continues to outperform SN and CN, in that order®.

% It is trivial to see that, if the overhead of providing help is high enough to preclude access to co-
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2.6.3 Impact of Various Parameters on Assignment Decision Dynamics

Recall that the DAH uses OPLA to make a decision whether to wait for one
period or make an assignment during that time period. We refer to this as the
assignment decision. Hence, the time between successive assignments is dynamic and
could be multiple time periods. The assignment decision is related to the costs and
benefits of keeping tasks waiting or workers idle in the system. As discussed earlier, we
assign a wait-time penalty for each time period that a task is waiting in the system.
Also, the firm continues to pay out wages to all workers that are kept on bench. The
benefit comes from the fact that, in each assignment period, the firm can now choose
from a larger pool of un-assigned tasks and workers, with varying competences,
resulting in improved assignments of tasks to workers. Thus, the net benefit from
waiting to make an assignment depends on the number of tasks waiting to be assigned
and the magnitude of the wait-time penalty. Hence, we study how the assignment
decision depends on various factors such as, worker heterogeneity and network density.

Worker heterogeneity refers to the variation in skill levels across workers, for a

given number of workers. Recall that the intuition behind delaying assignment is that

workers, there would be no difference between network structures.



o1

the firm can choose from a larger pool of un-assigned tasks and workers with varying
competences. Therefore, when there is significant worker heterogeneity, waiting results
in better task to worker assignments (in terms of revenue from task completion and
future value of learning). This is because there is a greater degree of mismatch between
workers’ competence level and the requirement of the arriving tasks. Conversely, for
homogenous workers it is trivial to see that there would be no value of waiting. This is
illustrated in Figure 16 where the average number of time periods between assignments
for a low value of worker heterogeneity (0.40) is less than that for higher values of
worker heterogeneity (0.45). This intuition can also be interpreted in terms of real
options theory (Trigeorgis, 1996) and is discussed in Section 2.10.

Figure 16, also plots the average number of time periods between assignments
as a function of network density. Increasing network density increases the pool of
available workers through strong ties and results in higher knowledge levels (Figure 13)
and lower worker heterogeneity (not shown here). Hence, increasing network density
reduces the value of waiting and results in more frequent assignments. Another
important factor that affects the frequency of assignments is the wait-time penalty
associated with un-assigned tasks. Since CN have the lowest average knowledge levels
(Figure 13) and highest task completion times (Figure 6), they tend to have a larger
number of tasks waiting in the system (hence largest wait-time penalty). This explains
why the number of periods between assignments is the smallest for CN.

2.7 Performance Evaluation of DAH
2.7.1 Comparison with MIP Solution (using CPLEX)

To evaluate the performance of our heuristic, we solve the MIP formulation

using CPLEX for small problem instances and compare it against the solution using
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DAH. This methodology is consistent with prior research (Dawande et al., 2008; Kumar
et al., 2007). Particularly, we compare the CPEX gap (% difference between CPLEX
solution and CPLEX upper bound) to the DAH gap (% difference between DAH
solution and CPLEX upper bound (or optimal solution, where applicable)).

All experiments were run using CPLEX (Version 12.1) on Core 2 Duo E4500
computers (2.2GHz, 3GB RAM) with Windows XP as the operating system. We
allowed each instance to run for 10 hours to get a reasonable solution (in terms of
CPLEX Gap). We also used the DAH (coded in NetLogo and Java) to solve the same
instances.

The problem size is restricted due to the long compute times involved in
CPLEX. Still, we design our experiments such that several model parameters that can
affect the heuristic performance are varied, while staying within limits of reasonable
problem size/complexity for CPLEX. These parameters include the wait-time penalty,
the heterogeneity of workforce competence, planning horizon, task per period and
average task time. We chose multiple (2 or 3) levels for each of these parameters giving
us a total of 48 (3*2%) problem classes. Within each of the 48 classes, ten problem
instances were generated (by taking draws from the relevant distributions for uncertain
parameters as outlined in Section 2.3.1.4). The results of the solution comparison
between MIP and DAH are reported in Table 4. For completeness, we provide the
minimum and maximum performance GAP of DAH, in addition to the average over all
sample paths. In each case, for the sample path that results in minimum and maximum
performance of DAH, we also record the corresponding CPLEX GAP. This helps us

approach the worst case performance of DAH when compared with CPLEX.
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TABLE 4: Percentage gap of DAH results from CPLEX solution”

1D I():ir:‘flgzient }j’eotretzzgeneitv ]Ijlli?irzn([)‘f Ez:};)cll) ¢ ?Z:l?%ieme DAH Gap (%) CPLEX Gap (%)
Avg Min Max Avg Min Max
1 6 3 4.6 27 6.8 169 121 183
2 6 6 7.0 56 8.9 N/A N/A N/A
3 1 3 40 2.8 4.9 144 128 164
4 3 6 4.1 33 5.2 152 144 165
N(1,0.35)
6 3 36 1.7 48 9.9 84 70
6 6 6 5.0 36 7.1 6.9 77 93
7 6 3 3 2.1 12 3.1 7.9 70 53
8 3 6 35 05 5.7 40 07 57
9 o1 6 3 3.1 02 46 156 110 196
10 6 6.8 6.0 73 N/A N/A N/A
1 10 3 3 3.1 2.0 43 9.7 83 106
12 3 6 40 34 47 138 133 147
13 N(L.043) 6 3 2.9 11 45 9.1 84 70
14 6 6 3.9 3.2 4.2 9.8 7.7 12,6
15 6 3 3 23 05 3.9 8.6 70 53
16 3 6 33 2.0 5.0 6.8 2.0 10.4
17 6 3 3.5 1.7 55 126 79 15.8
18 6 6 6.6 2.9 100 | N/A N/A N/A
19 1 3 3 3.1 1.6 46 101 88 119
20 3 6 3.1 2.0 5.1 131 107 155
21 N(1,035) 6 3 1.0 0.1 1.9 7.9 6.1 10.0
22 6 6 38 14 52 |62  0.0* 108
23 6 3 3 0.7 03 1.4 7.0 58 85
24 3 6 L5 03 30 24 0.0% 80
25 03 6 3 27 0.1 36 129 9.1 16.8
26 6 6 6.4 4.1 75 N/A N/A N/A
27 1 3 3 1.8 0.9 23 9.3 84 118
28 3 6 29 1.8 5.0 121 99 15.6
N(1,0.45)
29 6 3 15 0.1 3.0 7.5 5.7 9.1
30 6 6 3.9 3.0 5.4 6.6 21 9.9
31 6 3 3 0.4 0.0 1.1 6.3 53 74
32 3 6 14 05 26 3.1 0.0 79
33 6 3 29 15 3.9 110 7.7 159
34 6 6 57 32 7.0 159 142 176
35 1 3 3 18 14 23 8.8 83 100
36 3 6 26 22 3.1 127 111 140
N(1,0.35)
37 6 3 1.7 0.9 3.0 78 61 90
38 6 6 37 1.5 56 5.1 0.0 9.0
39 6 3 3 0.8 0.6 1.1 6.2 54 77
40 B 3 6 16 0.2 3.1 16 0.0 6.3
41 0> 6 3 1.7 02 27 103 79 120
42 6 6 52 3.4 65 N/A N/A N/A
43 10 3 3 15 0.7 21 6.7 54 74
44 3 6 24 1.4 36 103 90 136
N(1,0.45)
45 6 3 1.7 0.4 25 6.1 55 76
46 . 6 6 3.9 29 5.0 N/A N/A N/A
47 3 3 0.6 0.1 13 5.1 45 63
48 3 6 12 0.1 23 0.1 0.0 03

“ Number of Workers = 15, CPLEX Gap = (C

Bound; DAH Gap = (CPLEX Upper Bound — DAH Solution)/CPLEX Upper Bound

PLEX Upper Bound — CPLEX Solution)/CPLEX Upper

" Optimal Solution for CPLEX, therefore, DAH Gap = (CPLEX Optimal Solution — DAH Solution) /
CPLEX Optimal Solution, N/A — CPLEX solution was not obtained
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First, for the problem instances that CPLEX solves to optimality, the DAH
solution is also near-optimal (<1.4% DAH GAP). For all other problems, where
CPLEX cannot be solved to optimality, we compare against the CPLEX upper bound.
In these cases, it can be seen that our DAH provides significantly better lower bounds
than CPLEX solution (on average < 5% DAH GAP), across the wide variety of problem
classes. Even when we compare the minimum and maximum DAH GAP, over all
sample paths and across all problem classes, the performance of DAH is very robust.
Finally, in terms of compute time, the DAH solution is obtained in a few seconds
compared to 10 hours for CPLEX. Next we discuss how some of the model parameters
affect the DAH performance.

The DAH solution gets closer to the upper bound when worker heterogeneity
increases. This is because, when worker heterogeneity is high, there is more benefit
from waiting to make assignments and value of learning from co-workers. Both these
effects are captured by DAH. Similarly, as wait-time penalty increases or the planning
horizon decreases, the DAH assumption of looking only one-period ahead before
making assignment decisions becomes more realistic. Hence, for the most part, we find
that as wait time penalty increases or planning horizon decreases, DAH gap also
decreases. On the other hand, as the average task time increases, workers take longer to
become available. Hence, the OPLA scheme becomes less optimal, since we would like
to look further down the planning horizon (more than one period) before making
assignment decisions. This explains why the DAH gap, for most part, increases with
average task time. In such scenarios, DAH performance can be improved by adjusting

the length of the assignment period (A) in proportion with the task times. Finally, as the
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number of tasks per period increases, the need for finding the optimal worker-to-task
assignment increases, in order to compensate for wait time penalty. In this situation, the
OPLA scheme again becomes less optimal, resulting in a higher DAH gap.

2.7.2 Comparison with Greedy Heuristic

We also compared the performance of DAH with a Greedy heuristic. The main
distinction of the greedy approach is that (a) at every period, the greedy heuristic makes
the best available worker-to-task assignment without pre-fetching any benefits from
learning in the current period on future performance and, (b) it does not use OPLA. In
Figure 17, we plot the performance difference between DAH and greedy approach
versus network density. The problem parameters are identical to those in Section 2.5. It
is evident from the data that the DAH significantly outperforms the greedy approach
(Table 5). Note that the performance benefit of DAH over greedy reduces as network
density increases. This is because an increase in network density facilitates better
knowledge diffusion, i.e., reduces knowledge heterogeneity across workers and
increases average knowledge level. This in turn, reduces the value of dynamic
assignments and learning from consultation, resulting in a lower performance difference
versus the greedy heuristic.

TABLE 5: Percentage improvement of DAH over Greedy approach
DAH over Greedy (% Improvement)

o of CN SN RN
neighbors | Ayg Min  Max Avg Min  Max Avg  Min  Max
10 240.0 375 763.5 1515 24.4 1557.5 80.7 14.5 2198.4
12 102.7 26.3 2158.8 80.3 22.0 449.5 55.7 155 202.5
14 72.8 195 940.2 63.5 16.6 2345 47.9 13.8 149.6
16 53.2 16.3 251.0 419 17.0 128.4 38.0 12.2 119.5
18 43.8 14.9 198.4 38.0 12.6 134.0 33.7 11.4 89.1
20 38.4 12.3 126.9 33.0 105 97.8 29.1 9.5 81.7




56

------- & Clustered

240% A 0 —=&— Small World

--4-- Random

180%

120% -

[*2]
o
X

Objective Function Value
Increase (DAH over Greedy)

0%
8 10 12 14 16 18 20
Network Density

------- & Clustered
—&— Small World b d
--4A-- Random ’

= N
o] S
2L 8
=3 =

120%

60%

0% T T 1
0.30 0.35 0.40
Worker Initial Heterogeneity

Objective Function Value
Increase (DAH over Greedy)

FIGURE 17: Comparison between DAH and
Greedy approach for different values of network
density

FIGURE 18: Impact of worker initial heterogeneity
on DAH performance over Greedy approach.
Network density = 10%

400% | o
300%
200% -

100% -

--4-- Random

------- & Clustered
—&— Small World

Objective Function Value
Increase (DAH over Greedy)

0%
0.1

Knowledge Retention Coefficient

0.2 0.3

FIGURE 19:

Impact of different knowledge
retention coefficient on DAH performance over
Greedy approach. Network density = 10%

For similar reasons, it is easy to see that the performance advantage of the DAH

heuristic would reduce as worker heterogeneity reduces (Figure 18). A similar trend is

expected when the knowledge retention rate is high, since it facilitates rapid diffusion of

knowledge. This reduces the value of learning from co-workers as well as benefit of

waiting to make an assignment (Figure 19).

2.7.3 Comparison with Periodic Assignment Heuristic

Finally, we also compare the performance of DAH with a Periodic Assignment

Heuristic. The main distinction is that in the Periodic Assignment Heuristic, we choose

a fixed number of periods between successive assignments for the entire planning

horizon. Particularly, we calculate marginal revenue and marginal cost for different

values of number of periods between assignments (i.e., 1, 2, 3, etc) and select the value
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at which marginal revenue is equal to marginal cost. In contrast, recall that in DAH the

periods between assignments are dynamic and controlled by the OPLA scheme. It is

important to note that in the Periodic Assignment Heuristic, similar to DAH, we pre-

fetch the value of learning in the current period on future periods. In Figure 20, it can be

seen that the DAH significantly outperforms the Periodic Assignment Heuristic (Table

6). However, for the same reasons discussed in Section 2.7.2, the relative benefit of

DAH over the Periodic Assignment Heuristic decreases as network density increases. It

IS important to note that the performance advantage of DAH also reduces for high

values of wait time penalty (Figure 21). In this case, assignments are more likely to be

made every period, making the distinctive feature of the DAH viz., dynamic assignment

via OPLA, less critical.

Assignment Heuristic)

------- & Clustered
—&— Small World
--4A-- Random

Objective Function Value
Increase (DAH over Periodic

8 10

12 14 16 18 20

Network Density (%)

Objective Function Value
Increase (DAH over Periodic

P~

ment Heuristic

Assign

200% -

150% -

100%

50%

0%

4444444 . Clustered
—&— Small World
--4a-- Random

T A--_

A

0.40

0.45 0.50

Penalty Coefficient

FIGURE 20: Comparison between DAH and
Heuristic for different

Periodic  Assignment
network density

FIGURE 21: Comparison between DAH
Periodic Assignment Heuristic for different wait
time penalty coefficient

and

TABLE 6: Percentage improvement of DAH over periodic assignment policy

DAH over Periodic Assignment Policy (% Improvement)

# of CN SN RN
neighbors | Avyg  Min Max | Avg Min Max | Avg Min Max
10 1043 9.4 4026 513 55 599.3 | 19.9 2.1 732.0
12 34.9 5.1 817.6 211 4.7 1240 | 11.2 1.2 51.7
14 23.3 1.2 298.2 150 3.0 61.5 104 2.1 38.0
16 14.8 11 61.5 8.1 2.2 22.4 6.5 1.8 20.5
18 11.0 1.3 39.6 7.9 2.3 33.6 5.8 2.2 17.6
20 9.4 15 30.4 6.0 12 217 4.6 2.4 141
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2.8 Model Extension
2.8.1 Using Training to Reduce Differences Between Networks

As discussed earlier, the extent of knowledge exchange (and hence knowledge
diffusion) between co-workers depends on the type of network structure. However, it
may not be possible to easily alter the organizational network structure of a firm, in
order to improve knowledge diffusion. Therefore, we propose an extension to the basic
model (outlined in Section 2.3) where a firm can use training as a means to effectively
improve the knowledge diffusion process. The firm can provide an opportunity for
workers to undertake training and improve competence in one or more skills, in addition
to consulting other co-workers. By allowing workers to take training, the firm can
mitigate some of the drawbacks associated with SN and CN. Specifically, training can
be used to strategically ensure that specialized knowledge does not get limited to
cliques and that access to knowledge across all workers becomes homogenous.

The use of training is prevalent in knowledge management literature. Chen and
Edgington (2005) discuss two factors affecting knowledge acquisition through training.
One factor is the sophistication of the knowledge provided in the training, which
determines the maximum gain in competence (for a skill) that a worker could obtain
after undergoing training. The other factor is the trainee’s learning rate which is affected
by unique, individual mental models (Anderson, 1995). Hence, the same training could

result in different competence gains for different workers. In our model, 7 represents

the maximum competence level offered by a training session, in skill s in assignment

period t. We assume that not all training sessions are equally efficient. In addition,

o; €(0,) represents the learning rate associated with worker k for a training session in
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skill s.

In this extension, we allow workers to be engaged in training, in addition to be
assigned to service tasks at any point in time. The revenue (from task completion),
bench-cost (from idle workers), and wait time penalties (from tasks waiting in the
system), are calculated similar to Section 2.3. There are two types of costs associated

with training. First is a direct cost, related to the wages paid out to workers when in

training. We model this as a product of the worker’s wage rate (h,) and the time

required to complete the training (v, ). The second cost is indirect, and is related to the
fact that assigning a worker to training makes him unavailable for any other task. As a
result, the firm might incur additional wait-time penalties on tasks waiting in the system
while the worker is in training. This is modeled by adding an additional assignment
constraint to the MIP in Section 2.3. The benefit associated with training comes from
the improvement in the worker competence after training. Similar to learning from co-
workers (as modeled in Section 2.3), this improved competence allows the worker to

complete future tasks more efficiently. Here, (W,, —z,)¢; is the potential improvement
in the worker’s competence after undergoing training. Y,, =1 (decision variable)

indicates that worker k has been assigned to a training session in skill s in period t (and

0 otherwise), and L, =1 if a training in skill s that started in period m is completed by

period t (and O otherwise). Consequently, worker k’s competence in period t is,

t-1 Ny t-1

_ s

Wkst - Wksl - z z X kjm'gjs @ Gksm ijt - Z Lsthksm (\Nksm - Tsm)qpk
m=1 j=1 m=1

In Figure 22, we study how the competence offered by training affects the firm’s

performance. We find that, adding training as a means of knowledge acquisition
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benefits the organization, irrespective of the network structure. It is important to note
that CN benefit the most from offering training (highest percentage increase compared
to SN and RN) as well as from increasing the level of competence offered by training
(highest slope compared to SN and RN). This is because training enhances the
knowledge diffusion and acquisition process by ensuring that knowledge does not get
stuck in cliques in CN and SN. Although RN continue to outperform (not shown), they

are least sensitive to the competence offered by training.
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FIGURE 23: Impact of learning by doing on
objective function value

2.8.2 Incorporating Learning By Doing

As discussed earlier, we allow workers to improve competence in one or more
skills based on consultation with other co-workers. However, it may be possible that
due to cost overhead, worker availability, etc., a worker may have to complete a task
without any help from co-workers. In such a case, the worker may be able to improve
his competence, simply by virtue of completing tasks (even if there was no consultation
involved). This can be interpreted as “learning-by-doing”. Therefore, we propose an
extension to the basic model (outlined in Section 2.3) where a worker’s competence can
improve through “learning-by-doing”, in addition to “learning from others”. We

propose the extent of learning-by-doing in skill s depends on three components: (a)
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S
proportion of time spent in skill s when completing task j (i.e., @ /Zgzﬁjs), (b) worker
s=1

k’s current competence (W,,,), since we expect that the potential for learning-by-doing

is greatest when the worker is less competent, and (c) individual worker’s learning
efficiency (&) (Anderson, 1995; Chen and Edgington, 2005). Therefore, worker k’s

competence in period t is given by,

t-1 Ny k 2 s k 2
Wkst :Wksl - Zz X kjm‘gjs 2 ijt (Gksm (ZZAIkIsm) + (¢js /Z¢js )Wksm (1_ ZZAIkIsm)éksj

m=1 j=1 1=1 i=0 s=1 1=1 i=0

2

K _ Kk 2
Here, D_>" A, =1 indicates learning from others and D " A\, =0 indicates
0

1=1 i=0 1=1 i=
learning-by-doing.

In Figure 23, as expected, we find that the all the three network structures
benefit from learning by doing, and this benefit increases as the learning efficiency
increases. In addition, similar to training, we find that CN benefit the most from
learning by doing, and RN benefit the least. Hence firms could encourage learning-by-
doing to improve the performance of existing CN and SN.

2.9 Limitations and Future Research

Worker competence, in this research, was initially generated randomly and then
allowed to evolve based on task performance, knowledge sharing, learning-by-doing,
and training using one training policy. Alternative training policies such as deliberate
cross-training in conjunction with recruitment decisions could be evaluated. Our
research has used one model of learning by doing. Future research could explore other
models. The results presented in this dissertation assume knowledge depreciation is

negligible. Future research could study KISDN performance under high knowledge
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depreciation conditions. While we have assumed a fixed compensation structure, the
model could be extended to compare different compensation structures. This
dissertation assumed that the arrival of tasks are independent based on a wide variety of
service research (Buco et al., 2003; Sen et al., 2009). Future research could examine
interdependent task arrivals, for example by extending the unit of analysis in this
dissertation (a single KISDN) to multiple interrelated KISDNs. This extension would be
analogous studying queuing networks (Bolch, 2006) and is likely to be more complex
and computation-intensive. This research has assumed a fixed capacity (workers).
Future research could examine interrelated capacity planning and task assignment
decisions. We concentrate on individual-oriented service tasks. However, one could
consider a team-oriented service scenario. Modeling such a scenario is similar to
modeling a project and would depend on the structure of the project and the team. Our
focus has been on task assignment. However, organizations might be interested in other
objectives such as maximizing knowledge sharing, for future use. Alternative model
formulations to study this are interesting areas of future research.

2.10 Discussion and Conclusion

Trends in networking, globalization and evolution of software as a service are
increasing the importance of studying KISDN. In our opinion, managing KISDN is an
important aspect of the emerging discipline of service science, which is of increasing
interest to MIS researchers. To the best of our knowledge the MIP model presented in
this dissertation and the DAH represent the first attempt to systematically analyze an
important and complex research question in the context of delivering IT as a service.
Since the KISDN optimization problem is NP hard, the DAH represents a reasonable

approach to solving this problem for realistic problem sizes. The value of such
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analytical modeling lies in the identification and integration of parameters and
relationships into a framework that help to structure the debate on how to manage
KISDN (Lusch et al., 2008).

Our analysis has indicated that organizations can benefit from not assigning
service tasks immediately (by using dynamic assignment). In other words, waiting to
make an assignment is valuable since it results in higher revenue due to better task to
worker assignment. Each assignment decision can be conceptualized as making an
investment (incurring costs) in return for revenue. At any point in time, an organization
has the option to make such an investment or to defer the investment. Exercising the
option (making an assignment), in turn results in the option to make another investment
(assignment) in the next period. As seen in our results, the value of such an option
increases with increased uncertainty of the underlying asset (worker heterogeneity).
Such a scenario can also be thought of as a compound or nested exchange option which
can be valued analytically only in some special cases (Trigeorgis, 1996).

To the best of our knowledge, this research is the first to propose how the
information flow network can be combined with worker competence information to
improve operational and financial performance of KISDN. Specifically, we integrate
literature and tools for mining information flow networks (Guy et al., 2008; Van Der
Aalst et al., 2005) with literature and tools for measuring knowledge competencies
(Cross et al., 2001; Davenport and Prusak, 1998) and propose combining these two
types of tools to provide information that can be used for task assignment. Our results
also underscore importance of weak ties in improving organizational performance.

Recognizing the importance of weak ties and nurturing them, in our opinion, is an
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important managerial implication from our results.

Organizations may currently resemble CN or SN and not RN. Our results
indicate that organizations could improve knowledge transfer by creating RNs. Ways of
doing this include job rotation, and facilitating communication between key individuals
(Davenport et al., 1998). Complete reorganization to RN may be expensive or
infeasible. Our results indicate that improving network density, particularly in the case
of CN could significantly improve knowledge transfer and consequently organizational
performance. Creating SN by means of links between cliques is also desirable,
particularly at higher network densities. Also, in cases where it is non-trivial for
organizations to change the organizational network structure, managers should focus on
strategically training workers or providing incentives to improve worker’s willingness
to help, in order to maximize performance. Encouraging learning by doing may also
complement other knowledge management strategies. It is hoped that this research will
serve as useful framework for IS researchers as well as practitioners interested in

knowledge management, service science and social networks.



CHAPTER 3: UNDERSTANDING KEY ISSUES IN DESIGNING AND USING
INFORMATION FLOW NETWORKS IN THE CONTEXT OF
KNOWLEDGE-INTENSIVE SERVICE DELIVERY

3.1 Introduction

There is a growing recognition that employees’ knowledge is an organization’s
most valuable asset, particularly in knowledge-intensive environments such as
consulting, research, and IT service delivery (Dong et al., 2011; Davenport et al., 1997;
Dyer and Nabeoaka, 2000). Prior IS research has also recognized that “making personal
knowledge available to others is the central activity of the knowledge-creating
company. It takes place continuously and at all levels of the organization” (Nonaka et
al., 2000). Hence, firms are increasingly investing in Knowledge Management (KM)
projects expecting to improve employees’ knowledge levels (Goh, 2002). For example,
McKinsey has long had an objective of spending 10% of its revenues on developing and
managing intellectual capital (Davenport et al., 1997). Buckman Laboratories estimated
that the firm would spend 7% of its revenues on knowledge management (Davenport et
al., 1997). The global KM market had been projected to reach 8.8 billion dollars during
2005 (Malhotra, 2005). Most KM research has thus far focused on information
technologies (Cross et al., 2001; Davenport and Prusak, 1998), with relatively little
discussion on how knowledge can be shared effectively among employees using
organizational social relationships (Levine and Prietula, 2006). In practice, however,
organizations are finding that employees often prefer to consult their peers and

colleagues (organizational social relationships) in order to acquire knowledge, rather
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than access electronic knowledge bases (Cross et al., 2001). Hence, this research
focuses on better understanding how organizations can maximize knowledge transfer
among interconnected employees.

Recognizing the importance of using organizational social relationships to
transfer knowledge, an increasing number of Chief Knowledge Officers (CKOs) are
moving from a technological KM strategy to a socialization-based strategy. Such a
strategy uses IT-facilitated information flow networks (IFNs) to facilitate knowledge
sharing (Nicolas, 2004). These IFNs use ties (or information flow connections) between
individuals in order to transfer knowledge. As discussed in the chapter 2, organizations
can effectively capture existing IFNs. Furthermore, in the chapter 2, we show that the
structure of the information flow networks and associated knowledge sharing behavior
significantly impact organizational performance and employees’ knowledge level.

Prior research suggests that organizations can create organizational relationships
through actions such as co-location, project and work group assignments, facilitating
communication through technology tools, and incentives (Kotlarsky and Oshri, 2005;
Lengnick-Hall and Lengnick-Hall, 2003, Nonaka et al., 2000). These relationships, in
turn, facilitate information flow. Hence, we focus on how organizations should design
and use their information flow network such that knowledge sharing is maximized. We
seek to better understand which organizational factors should be considered when
designing and using such networks. Such an understanding facilitates effective design
and use of effective information flow networks in KISDN, and is an important, yet
under-researched area (IBM, 2006; Leung and Glissmann, 2010).

Consistent with chapter two, we study organizations in knowledge-intensive
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service delivery environment, where organizations support multiple skills, have varying
levels of worker competence, and require knowledge sharing among co-workers.
However, we focus on the objective of maximizing employees’ knowledge gain through
sharing in this Chapter. More specifically, we have focused on the following research
question: how should organizations design and use their information flow networks in
order to maximize employees’ knowledge gain (over a planning horizon) through
sharing under different organizational environments? We formulate a Mixed Integer
Programming Model (MIP), and present a heuristic in order to facilitate systematic
analysis and understanding of the above research question. In trying to answer this
question, we examine organizations with different distributions of expertise and
examine the optimal information flow networks.

The rest of this chapter is organized as follows. Section 3.2 provides a review of
related literature. This is followed by the model development in section 3.3. A heuristic
IS proposed in section 3.4 to solve the problem. Selected numerical results are presented
in section 3.5. Limitations and conclusions are provided in section 3.6 and 3.7.

3.2 Literature Review

Our research integrates concepts from prior research on knowledge view of the
organization (Alavi and Leidner, 2001; Grant, 1996; Nonaka et al., 2000), creating and
using social relationships to facilitate knowledge sharing (Davenport et al., 1997; Sahoo
et al., 2008), efficiency and tradeoffs associated with knowledge sharing (Borgatti and
Cross, 2003; Hansen, 2002), and modeling knowledge exchange in organizations
(Cowan and Jonard, 2004; Levine and Prietula, 2006).

3.2.1 Knowledge View of the Organization

The knowledge-based view of the organization (Grant, 1996) argues that
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knowledge resides within individual workers, and the primary role of the organization is
knowledge application. In addition, this view of the organization also recognizes that
knowledge transfer is a critical determinant of sustainable competitive advantage
(Grant, 1996).

Nonaka et al. (2000) also argue that “knowledge and the capability to create and
utilize such knowledge are the most important sources of a firm’s sustainable
competitive advantage”. They propose that researchers look inside the firm, and focus
on the activity, strategy, structure, and culture of the firm, to see how it produces
knowledge. They also identify several important factors that impact knowledge
creation. Such factors include knowledge vision, organizational forms, incentive
systems, corporate culture and organizational routines, and leadership. Knowledge
vision determines what types of knowledge are created, and “the value system that
evaluates, justifies and determines the quality of knowledge” (Nonaka et al., 2000).
Organizational forms represent the way that the organization is configured and
structured. Incentives such as monetary compensation, peer recognition, and the sense
of belonging can effectively motivate knowledge sharing. Organizational culture and
organizational routines, and leadership could either promote or hinder organizational
knowledge creation.

Alavi and Leidner (2001) highlight that “it is less the knowledge existing at any
given time per se than the firm’s ability to effectively apply the existing knowledge to
create new knowledge and to take action that forms the basis for achieving competitive
advantage from knowledge-based assets.” Furthermore, they claim that information

technologies may play an important role in effectuating the knowledge-based view of
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the firm. Knowledge management within organizations can be facilitated by advanced
information technologies.

3.2.2 Creating and Using Organizational Social Relationships to Share Knowledge

Prior research suggests that organization relationships can be created using a
variety of activities. For example, Hansen (1999) examine knowledge sharing across
organizational subunits and find that establishing long-term collaboration relationships
between different subunits can be used to facilitate knowledge transfer. However,
people in a subunit are required to spend time cultivating such relationships through
frequent visits to and meetings with people in another subunit. Kotlarsky and Oshri
(2005) present two case studies carried out at SAP and LeCroy to illustrate the
importance of establishing social ties and sharing of knowledge among distributed IS
development teams. Their cases suggest that facilitating face-to-face interactions is an
effective mechanism for creating social relationships. In particular, a short visit to a
remote location prior to a formal introduction of the team, and non-hierarchical
communication with high quality messages through open community channels after
face-to-face activities, is important for establishing social relationships between team
members. Lengnick-Hall and Lengnick-Hall (2003) study the problem of adopting a
human resource management approach to build relationships that turn social capital into
competitive advantage. They argue that through building and nurturing relationships,
organizations can locate and share knowledge rapidly and respond to market changes.
They propose the use of work teams and project teams to establish relationships among
workers. Work teams often remain intact for long periods and have time to develop
trust. But project teams need to develop and adjust relationships quickly to be effective.

However, great care needs to be exercised when creating and using



70

organizational IFNs for knowledge management. For example, lack of knowledge
sharing caused by inefficient IFNs in Chrysler Corporation results in significant
decrease in performance (Lengnick-Hall and Lengnick-Hall, 2003). In summary,
organizations can effectively create social relationships and facilitate knowledge
transfer using such relationships. Yet, we underscore the importance of paying careful
attention to the design of such information flow networks.

3.2.3 Efficiency and Trade-offs Associated with Knowledge Sharing

This research is also related to the efficiency of knowledge sharing. Prior
research demonstrates that the strength of the social relationship significantly affects the
efficiency of knowledge sharing (Borgatti and Cross, 2003; Cross et al., 2001).
Granovetter (1973) categorizes the strength of social relationships into three group
(strong, weak, and absent) based on a combination of the amount of time, the emotional
intensity, the intimacy (mutual confiding), and the reciprocal services. In this research,
we focus on two types of relationships: direct relationship (strong), and indirect
relationship (weak), which involve different efficiencies and costs when being used to
facilitate knowledge transfer.

Direct ties involve significant interactions between two workers, and are often
associated with commitments of sharing knowledge (Hansen, 1999). Hence, direct ties
are effective in terms of transferring knowledge. Indirect ties, on the other hand, allow
workers to access larger number of colleagues than strong ties, but often suffer low
quality help (Hansen, 1999; Constant et al., 1996). In order to develop strong ties
between workers, considerable amount of time and interactions are required, while
indirect ties could exist between acquaintances who share common contacts (Hansen,

1999; Constant et al., 1996). While direct ties allow workers to share knowledge more



71

effectively, they can be harmful when knowledge transferred is less complicated,
because of the time and efforts are required to establish and maintain these social
connections (Hansen 2002). As a result, having excessive number of direct ties could
decrease knowledge sharing efficiency. IBM (2006) also recommend firms to carefully
coordinate knowledge sharing because workers who are engaged in successive sharing
activities could reduce the productivity and efficiency of the groups that they belong to.

3.2.4 Modeling knowledge sharing within organizations

In summary, prior research recognizes that knowledge sharing is desirable and
can be facilitated though mechanisms such as incentives. However, the problem of what
characterizes a desirable information flow network is poorly understood. It is important
for organizations to better understand the characteristics of effective information flow
networks in order to design such networks.

This research develops a model to facilitate understanding of what constitutes an
effective (optimal) information flow network. It integrates and further develops ideas
from prior research that has modeled knowledge sharing. Cowan and Jonard (2004) use
simulation to study the impact of different types of network topologies in the context of
knowledge diffusion across organizations. The social network where knowledge
diffuses is pre-defined and static. Each agent has a vector of multiple knowledge types
with varying levels of competences. Knowledge transfer takes place through a myopic
barter exchange only if there is a direct connection between two workers and trading
benefits both parties. Their problem is different from the one studied in this research in
that it did not consider creation of new social relationships to improve knowledge
sharing, or different types of connections (indirect relationships) between nodes in the

network. Levine and Prietula (2006) use agent-based simulation to study the impact of
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different types of ties (strong, weak and performative) between workers in the context
of knowledge sharing behavior in social networks. Their agents are embedded in local
groups of direct ties, such as project teams, which again do not change. Each agent has
a set of skills with varying competence levels. Tasks are randomly assigned to agents
who may or may not have enough competence to complete. Knowledge, if needed, is
attained either through self-learning, acquisition through exchange with another agent,
or both. However, their social networks were static, and did not consider the cost of
multiple social connections.

This research studies the problems of maximizing knowledge sharing by
creating and using social relationships. It examines the impact of worker heterogeneity,
number of skills, time (cost) of transferring knowledge, on the design of the effective
organizational information flow networks.

3.3 Model Development
3.3.1 Model Preliminary

We model the problem of designing information flow networks inside a firm for
effective knowledge management. The firm’s objective is to maximize the total
knowledge level of the organization over a planning horizon by creating and using
direct and indirect organizational social relationships between co-workers. The use of
information flow networks for effective knowledge management is illustrated in Figure
24. We consider an organization with a heterogeneous workforce that supports multiple
skills. Workers vary in terms of competences in these skills and the organizational
networks that they belong to. Workers also vary in terms of the importance (weight)
they have for each skill based on the types of tasks performed by each worker. For

example, in a software consulting firm, functional consultants are required to have a
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deeper functional knowledge of the system and the customer processes as compared to
the technical aspects of the system. On the other hand, technical consultants need to
focus on the technical aspects of the software system, such as database design and
system security. Figure 24 illustrates that each worker has a knowledge level and a
relative weight for each skill.

Workers within the firm are connected through organizational information flow
networks. In such an environment, workers competence level is directly associated with
organizational value, and there is a constant need to acquire knowledge (Hansen 1999).
Direct relationships occur between workers who can seek knowledge from each other
directly through organizational or social relationships (Guy et al., 2008; Sahoo et al.,
2008). Examples of such direct relationships include office mates, close friends, team
members, etc. In Figure 24, in period t, worker A and B, B and C, and E and F, have
direct relationship with each other. Workers connected by indirect relationships do not
know each other directly, but have direct relationships with one or more (common)
workers. Common workers play a bridging role that allows the two workers to get
acquainted and to share knowledge with each other. In Figure 24, in period t, worker A
and C have indirect relationship with each other. Note that we treat knowledge transfer
over direct and indirect relationships as directional. For example, if employee B
transfers knowledge to employee A, it does not suggest any reverse knowledge flow
from A to B. The idea of knowledge transfer through organizational relationships is
consistent with prior research (Sahoo et al., 2008, Davenport et al., 1997).

Organizations can effectively create direct relationships using strategies such as

project team, work group, long-term interactions, face-to-face activities (Hansen, 1999;
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Kotlarsky and Oshri, 2005; Lengnick-Hall and Lengnick-Hall, 2003). Time (effort) is
required to establish these direct ties. Indirect relationships can be seen as by-products
of creating such direct ties. We study an organizational problem of assigning workers to
transfer knowledge using both direct and indirect ties, over the planning horizon. We
discretize the planning horizon into time periods. It is important to note that the length
of each period is context-specific and could be one day, one week, one month, etc.
During any period, a worker may or may not be assigned to participate in the
knowledge transfer activities. Moreover, workers may provide as well as acquire
knowledge in the same period. In Figure 24, in period t+1, direct relationships between

worker pair C and F, and D and E are created to facilitate knowledge transfer.
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FIGURE 24: Creating and using information flow networks to transfer knowledge
We model the efficiency of knowledge transfer process as a function of the type

and strength of the relationship. Direct relationships are more efficient than indirect

relationships (Levine and Prietula, 2006). Also, we use the age of a relationship as a
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measure of its strength. Knowledge transfer efficiency is also affected by the status of
the worker. That is, we consider reduced knowledge acquisition efficiency (overhead)
for workers who acquire and provide knowledge at the same time.

3.3.2 Model Formulation

Mathematical modeling is a useful tool to understand key variables that describe
a problem and their relationships. The model variables described in Table 7 represent
the different elements of the problem of designing information flow networks. In
addition, mathematical modeling helps understand the relationships between different
variables, and produces a solution that can serve as a benchmark. Understanding the
relationship between the current state of an organization and the managerial benchmark
produced by the model facilitates organizational change (Liberatore et al., 2000). This
approach is appropriate in the context of a knowledge management problem where the
goal is to design optimal information flow networks that maximize the overall
knowledge level of the organization. We model the problem of designing information
flow networks using mixed integer programming (MIP).

We consider the planning horizon is divided into a set of discrete periods

te{L..,T}. The length of each period represents a context specific unit of time after

which the organization re-assesses the knowledge levels of its workers. Prior research
on knowledge management suggests that knowledge level of workers can be captured
and documented effectively using tools such as Microsoft SPUD (Davenport and
Prusak, 1998), KIN and Tacit Systems EKG (Cross et al., 2001). In each period, the
organization may create new direct ties or use existing direct and indirect ties, for

effective knowledge management.
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Symbol | Definition Type
XL | = 1 if worker k transfers knowledge in skill s to worker | using tie i
| during period t; = 0 otherwise. k,l €{L,2,..,K}. Note that X, ; and | pecision Variable
X i are two different variables.
K Total number of workers
T Planning Horizon
S Total number of skills supported by the organization
B Relative importance (value) of worker k’s knowledge in skill s to the
S
organization, with S, € (0,0), ; B =1 Exogenous
“ Efficiency of acquiring knowledge using relationship i (i = 0,1 | Variables
ki represent direct, indirect relationship respectively)
o Time coefficient of each worker providing knowledge using
' relationship i (i = 0,1 represent direct, indirect relationship
respectively)
(2 Time coefficient of creating direct ties
Wkts Worker k’s competence level in skill s at the beginning of period t,
with Wkts € sMin’WsMax]lwsRange :WsMin _WsMax (Wkls are EXOQGnOUS
variables, and Wkls Vte{2,....T} are derived variables)
D! =1 if there is a direct tie between worker k and | in period t (could be
Kl .. . . . . _ .
existing tie, or new tie created during period t), = 0 otherwise.
thl =1 if there is an indirect tie between worker k and | (worker k and |
share at least one common co-worker connected by direct tie) in
period t; = 0 otherwise.
M, =1 if worker k’s knowledge in skill s is better than worker I’s at the
beginning of period t; = 0 otherwise.
G, The amount of knowledge can be transferred from worker k to worker
I in skill s during period t.
H. , | The time incurred by worker k in providing knowledge to worker I in Derived Variables
- period t using relationship of type i. Worker k incurs a fixed time @
when creating and using a direct relationship to transfer knowledge for
the first time.
z! =1 if worker k is busy with transferring knowledge to other workers
(as a result of assignments in previous periods) in period t, = 0
otherwise.
FL-m =1 if till the beginning of period t, worker k has finished transferring
knowledge to worker | as a result of assignment made in period m, =0
otherwise.
I =1 if during period t-1, worker k finishes transferring knowledge to

worker | (as a result of assignment made in period m) and becomes
available to provide knowledge to other workers in period t, = 0
otherwise.

We assume an organization that supports S skills and has K workers. We assume

a heterogeneous workforce where workers could have varying levels of competence in

each skill. This skill set (competence values) for a worker is defined as the knowledge
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vector of a worker. In our model, W,; e W,,,... ], represents worker k’s competence

sMin?
in skill s at the beginning of period t. Larger (smaller) values indicate an expert (novice)

worker. Here, W, (W) represents the minimum (maximum) competence level in

skill s. In addition, as mentioned earlier, we assume that workers vary in term of the

importance (weight) they have for each skill, based on the types of tasks required of

S
them. We use g (e [0,1],Zﬂ,f =1) to capture the relative importance of skill s for

s=1

worker k. Therefore, the total competence of worker k, in period t, weighted by the

S
importance of different skills is given by, Zwktsﬁks . During each assignment a worker
s=1

may or may not be assigned to knowledge sharing activities.
The firm’s objective is to maximize the cumulative weighted competence level

of all workers, across all skills supported by the organization, over the planning horizon.

This is given by, MaxiZK:ZS:ﬂkSWki

‘=1 ko1 s=1
Next, we discuss additional details.
3.3.2.1 Time required to transfer knowledge
We assume that the total time to taken by worker k to transfer knowledge to
worker | depends on: (a) knowledge difference between workers k and I, (b) type of tie
between the workers k and | and, (c) work load of the work providing help.
The amount of knowledge that worker k can transfer to worker | at the beginning

of period t is given by, G, €[O,W,,,,]. If @, is the time taken to transfer a unit of

knowledge over a tie of type i, the time taken by worker k to transfer knowledge to
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S
worker |, in skill s, in period t, is given by » Gy Xy, ;@; . Here X, ; (decision
s=1
variable) is equal to one if worker | is assigned to acquire knowledge from worker k, in
period t, in skill s, over a tie of type i. It is important to note that knowledge transfer is

directional, i.e., worker k transferring knowledge to worker | does not imply any

knowledge flow I to k ( X, ; # X, ;). Since direct ties are more efficient than indirect

ties (Levine and Prietula, 2006), we assume @, >a@,, where 0 and 1 represent direct

and indirect ties, respectively.

In each period t, workers can share knowledge using existing direct or indirect
relationships, or create new direct relationships. D}, Vt e{L,.., T}(derived variable) is
equal to one if there is a direct tie between worker k and | during period t, and zero
otherwise. Therefore, (D, —D{™ =1) indicates the absence of pre-existing direct ties

between workers | and k, in period t. In the absence of pre-existing direct ties between
workers, organizations need to facilitate direct ties between workers, in order to
effectively transfer knowledge. Since the creation of new direct ties requires time
(effort), we introduce a set up coefficient () to capture the time required to facilitate a
direct relationship between a pair of workers. Note that, the relationships between

worker k and | are bidirectional i.e., D, =D, . Similarly, V,; vt e{L..,T} (derived

variable) is equal to one if there is an indirect tie between worker k and | during period
t, and zero otherwise. Note that workers do not incur a setup cost when using indirect
ties since these are by-products of creating direct ties. Thus, the knowledge transfer time

from worker k to worker | using direct ties, in period t, is given by,
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S
O(Dy — D)+ D Gy Xy @, - Along the same lines, the knowledge transfer time

s=1

S
using indirect relationships is given by, > Gy Xy, ,@, .

s=1
Note that multiple workers may be assigned to the same worker for knowledge
acquisition, at the same time. However, we assume that the acquisition requests are

queued and the knowledge transfer process is sequential, based on the order in which

the requests are made. In our model, Z; ( derived variable) is equal to one if in period t,

worker Kk is not busy with knowledge provision assignments made in previous periods,
and zero otherwise. In our model, F;-" (derived variable) is equal to one if, by period

t, worker | has finished receiving knowledge from worker k as a result of knowledge
acquisition assignments made in period m (zero otherwise).

Therefore, the total time to transfer knowledge is the sum of knowledge transfer
time and waiting time (time in the queue before knowledge sharing starts). For details
refer to other knowledge sharing constraints in the model formulation.
3.3.2.2 Knowledge diffusion using direct ties

We model the extent of knowledge gained by worker k, as a result of consulting

co-worker 1, as depending on: (a) knowledge difference between worker k and worker |
at the beginning of the knowledge transfer process (G, ), (b) the knowledge provision

load of worker | (number of other workers assigned to acquire knowledge from worker
1), and (c) the strength of the direct relationship between worker k and worker |.

In this model, workers are allowed to provide and acquire knowledge in the
same period. However, when a worker is providing and acquiring knowledge at the

same time, it affects his knowledge acquisition efficiency. We model this overhead as
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reduced knowledge acquisition efficiency in periods where the worker is simultaneously
providing and acquiring knowledge i.e., & ; p < i g, Where i is equal to zero

(one) for direct(indirect) ties. It is important to note that, it can take multiple periods for
worker | to acquire knowledge. Therefore, the average knowledge acquisition

efficiency for worker | between periods m and g, over a tie of type i, is given by,

(qz_:(al_o_busyzlr +a; o ge(l=2/))(q—m)).

r=m

We assume that the strength of direct ties can vary based on age of the

m
relationship between two workers. In our model, > Dy indicates the age of the direct
u=l

relationship between workers k and I, in period m. Thus, ZDK“, /T represents

u=1
efficiency of knowledge transfer between workers k and 1, in period m.
W,.! represents the worker’s initial competence level (at the beginning of the
planning horizon). Therefore, in period t, worker k’s updated competence, in skill s, as a

result of knowledge acquisition from co-workers, using direct and indirect ties, is given by,

t-1 g-

LN

m—:

g1 K q-1
WI; :Wé +ZZ Z (Z Dy /T)‘]ﬂ_mxﬂs_oegsZ(a|_o_busyz|r +a|_0_idle(l_ Z))I(q—m)
=1 m=1k=1;k#l u= r=m
t-1 g-1 K q-1
+ZZ Z Ju Xkls_1GkIsZ(al_1_busyzl +a|_1_idle(l_zl ))/(q—m)
g=1 m=1k=1;k=I r=m

vVle{l,2,..,K}, Vs e{l,2,.., S} Vte{2,.., T}
Finally, the Information Flow Network (IFN) optimization problem can be

formulated as,

Objective function:

T K S

Max) > > B

t=1 k=1 s=1
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Knowledge Sharing Relationship Constraints:

S
Dy <DI™ + > (X o + X o vk lefl2,.., K} k=l vte{2,..,T}
=1

S

Dy 20.5D{™ + > (Xye o + Xjis_0)/(25) vk lefl2,.., K} k=1, vte{2,.,T}
s=1

D, =D, vk, efl2,... K} k=1, vte{2,.., T}

D, =1 if there is a direct tie between worker k and | in period t (could be tie facilitated
in previous periods, or new tie created during period t), = 0 otherwise.

K
Vi < > Dy, Dy, vkl efl,2,., K}k zl,vte{l.. T}

u=1
uzk,|

K
Ve > (3 DLDL) K -2) Yk, efl2,. K} k=1, Vtel. T}
=1

u=k,|

V, = 1if there is an indirect tie between worker k and | (worker k and | share at least
one common co-worker connected by direct tie) in period t; = 0 otherwise.

Xis 1 SV vkl efl2,.., K} k=1, vsefl2,.., S} vte{2,.. T}
Xys 1 <1-Dy vkl e{l,2,... K}k =1, Vse{l2,..,S},Vte{2,.. T}

Worker | acquires knowledge from k in skill s in period t using indirect tie iff 1) there is
an existing indirect tie in period t-1, and 2) there is no direct tie between k and 1.

Knowledge Sharing Assignment Constraints:

K

> i ix;,s_i +iZF;,—m <1 vlefl2,.. K} vte{l2,.. T}

i=0 k=Lk=#l s=1 m=1 k=1

Worker | can acquire knowledge from at most one worker in one skill across S skills in
period t, iff worker | has finished receiving knowledge from all workers assigned.

>

1=1;k=l s

™-
M

I
o

Xgs_i <1 vk e{L2,.., K}, vt e{L,2,.., T}

1]
i

Worker k can provide knowledge to at most one worker in one skill in period t.

K T

T—iz Hi  ->.(1-Z)=0 Vke{l.,K}

1
t=1 1=L;1#k i=0 t=1

Total time spent by worker k providing knowledge and being idle cannot exceed the
planning horizon T.
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Other Knowledge Sharing Constraints:

M, > (WE =W MWonge vk | €12, K}k =1, Vs e{l,2,.., S} Vtefl2,.. T}
MEs < WS —WE) Wi +1 VK, e L2, K}k %1, Vs e {L.2,., S}, Vt {1,2,.. T}

M, =1 if worker k’s knowledge in skill s is better than worker I’s at the beginning of
period t; = 0 otherwise.

Gl = ML (WL —W,) VK, | e{1,2,.. K}k =1, Vs e{L,2,..,S}h vt e{L,2,... T}

G, is the amount of knowledge can be transferred from worker k to worker I in skill s
during period t.

H|z|_o =6 (D, Dli|l)+sz|lei|s_owo
Hy ZGk,Sx;,S_lwl vkl efl2,.., K} k=l vte{l. T}

H, ; is the time incurred by worker k in providing knowledge to worker | in period t

using relationship of type i. Worker k incurs a fixed time @ when creating and using a
direct relationship to transfer knowledge for the first time.

-1 K -1

Zy(t- ZZiHﬂ“i > (A-27))20 vk e{l,2,.., K}, Vte{l.. T}
Zi21-3 > iHH tzl"(l ZMIT  Vkefl2..K}vte{l. T}

Z, =1 if worker k is busy with transferring knowledge to other workers (as a result of
assignments in previous periods) in period t, = 0 otherwise.

ZEEIDIDITRES WHIES Y ELDEL
g=1 r=L;r#k i=0 i= g=1
m-1 K 1 1 m-1
R >(t-2, 2 2 Hi i - Hi -2 A-Z)/T
g=1 r=Lyr=k i=0 i=0 gq=1

vk, e{l,2,.. K}k =1, vt,me{l..T}m<t

F,-" = 1 if till the beginning of period t, worker k has finished transferring knowledge
to worker | as a result of assignment made in period m, = 0 otherwise.

™ =R - RD-m vte{2,.. THhVme{l. T} m<t
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J" = 1if during period t-1, worker k finishes transferring knowledge to worker | (as a

result of assignment made in period m) and becomes available to provide knowledge to
other workers in period t, = 0 otherwise.

t1 g1 K me g1
Wi =W, + Z Z (ZD /T)‘]l?l_mxlflls_OGlfI]sz(al_o_busyzlr+a|_0_id|e(1_zlr))/(q_m)
gq=1 m=1k=Lk=l u= r=m
t-1 g-1
+ z T X 1lesZ(al 1 busyZ o, e —27))/(q—m)
g=1 m=1 k=L;k=I

vlie{l2,., K}, vse{l2,.,S}vte{2,.., T}
W, is worker I’s knowledge in skill s at the beginning of period t. [
3.4 Solution Procedure
The IFN optimization problem discussed in the previous section is difficult to
solve as the number of workers increases. Hence, we propose a heuristic that uses
connection based assignments at discrete points in time in order to solve the problem.

3.4.1 Connection Based Heuristic (CBH)

The IFN optimization problem can be solved for each period successively. In
other words, we first determine the knowledge sharing assignments and the optimal
knowledge gain in the first period. Next, we set up the problem for the second period.
To achieve this, we use knowledge transfer information from the first period and take
into account workers’ knowledge provision load and workers’ availability to acquire
knowledge at the beginning of the second period. In addition, we update their
knowledge level based on knowledge sharing activities in the first period. The optimal
worker-to-worker knowledge transfer activities for the second period can be obtained
by using the above information. Similarly, the knowledge transfer activities for the
second period then sets up the problem for the third period, and so on. This would
essentially be a greedy algorithm, wherein the emphasis is to find the optimal

assignment for each period.



Instead, CBH considers the impact of knowledge sharing activities in the
current period on future periods. First, we consider the potential benefits to other
workers connected to the worker acquiring knowledge. Particularly, we consider
the extent of knowledge that can, overtime, diffuse to other workers connected to
the worker acquiring knowledge. Second, we consider the opportunity cost for the
worker providing knowledge. That is, we consider the fact that once a worker is
assigned to provide knowledge he becomes temporarily unavailable to other
workers.

Similar to section 3.3, in each period t, firm’s objective is to maximize the
cumulative weighted competence level of all workers, across all skills supported by
the organization. In addition, CBH objective includes, an approximation for the

potential future benefits of knowledge sharing activities in the current period, and
the opportunity costs associated with workers providing help. Let kAt be the set of

workers available to acquire knowledge at the beginning of period t. As mentioned

earlier, the time to transfer knowledge can include a waiting time. In CBH, p,, ;

represents the period when worker | starts acquiring knowledge from worker k.

Note that, p, ; >t. And, g, ; be the time period when k finishes transferring

knowledge to worker I, in skill s, over a tie of type i (either by creating new tie or
using existing tie).

The value of assigning worker | to acquire knowledge from worker k, in
period t, is consists of three terms: (a) the cumulative value of worker I’s
knowledge gain, (b) the future value of worker I’s knowledge gain, and (c) the

opportunity cost of assigning worker k to acquire knowledge from worker |.
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Cumulative Value of Worker I’s Knowledge Gain
Worker I’s knowledge gain from worker k, using direct tie, can be written
t-1 Oist 0
as, ¢kgI:1t o = B (ZD /T)les Z(al_o_busyzl +a|_0_id|e(1_zl ) /(qklst_O - pklst_o)'
u=1

'=Pust o

Similarly, the knowledge gain over, indirect tie, can be written as,
) Oist 1
t
k?:tlil = BisGus Z(al_l_busyzlr T 1 e -z /(qklst_l - pklst_l)l .
I=Pust 1
Future Value of Worker I’s Knowledge Gain
In order to estimate the future value of knowledge acquisition in period t,

we need estimate how much of the acquired knowledge in period t can diffuse to

other workers connected to | in future periods. We measure this by calculating the

future

average additional knowledge gain (¢, ;) for all workers connected to I. Where,

Aiist _i

kfllgur:e = Z (D|j j_o0 bUSy(ZDlj /T)+(l DIJ)VI] j_1 buw)ﬂjs(Glle-’—Glils)/ Z((l Dl])Vlj +D|J)M|JS

j=1, j=l,k j=1, j=l,k
Opportunity Cost of Assigning Worker | to Acquire Knowledge from Worker k
Assigning worker | to acquire knowledge from worker k makes k

unavailable to provide knowledge to other workers from period p,, ; to period
Oust ;- This delays knowledge provision to any other worker who can potentially

acquire knowledge from k. We measure the opportunity cost (¢5") by using the

average knowledge that worker k could transfer to other workers connected to him.
K

K
¢I?Ips? = Z kj j_o0 |d|e(ZD /T)+(1_ Dlij)vktjaj_l_idle)ﬁstI:js/ Z((l_ DIEJ )thj +D|£J)M lijS

=1, j=k 1 =L =kl

Hence, in each period t, the INF optimization problem can be written as,
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Objective function:

K s 1 _ K S 1
Maxzzzz X lils_i(olg?tlii (T =g i)+ ZZZZ X lzls_i(/)kfll;:lirie(T —Oyst i)
ek Kol 5110 ek kol 5110
K § 1
_Zzzleﬁls_ﬂﬁgp(qmst_i — Pust_i)
lek, tj s=1 i=0

Knowledge Sharing Relationship Constraints:

iiixgs_i <1 vl ek,

Worker k can only provide knowledge to at most one worker across S skills in period t.
T— X O i 20 Vkefl., K} VIek, k=1,Vsefl.., S}, Vie{0B}
Knowledge transfer cannot exceed the planning horizon T.
Using Hungarian Method to solve the problem for each period t

Next, we show how to solve the problem for each period t using Hungarian
methods. We calculate the profit matrix of all possible worker-to-worker knowledge
transfer activities, where each element &, ;; represents the expected value of assigning
worker | to acquire knowledge from worker k in skill s using tie i. As discussed above,
there expected value of assigning worker | to acquire knowledge from worker k can be
calculated as a,,; = @i (T =Gy )+ Pas (T —Ous 1) — o (Gag i — Pus ) (BlOCk A in Figure
25). In addition, we allow workers to not acquire knowledge in period t (Block B in

Figure 25), where the profit equals zero (&, ., =0).

We then test the feasibility of each knowledge transfer activity. First, worker |
cannot transfer knowledge to himself. Thus, the profit of assigning worker | to

acquire knowledge from | is set to —oo to prevent this assignment
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(8,4 =— Vle th,s e{12,..,S},ie{01}). Second, each knowledge transfer activity
cannot exceed the planning horizon T. Hence, we check the value of T —q,,, ; for each
possible worker-to-worker assignment (&, ;). If T—q,, ; <0, we set the value of

a,,s; 10 —oo such that it will not be selected.

Block A Block B
s A
ak1,1,1,o ak1,2,1,0 akl,K,S, akl,K+1
K, workers o0 o210 7 Hoksd ke
receiving help . : : :
akR 110 akk~ 210 akkA K8, akR K+
t t t t
\_ Y,
—
v

K workers providing help Do not receive help

in S skills using tie i (K*S*2 items)
FIGURE 25: Profit Matrix for the Hungarian Method used in CBH

Finally, Figure 26 summarizes the Connection Based Heuristic.

* Y
Step 1. Step 2. Step 3. Step 4. Step 5.
Setup the Calculate the expected value of Check feasibility of Solve the problem Ift<T Stop
problem for knowledge transfer between each knowledge using Hungarian
period t each pairof workers transferactivity Method

FIGURE 26: Connection Based Heuristic (CBH)
3.4.2 Performance of Connection Based Heuristic (CBH)

To evaluate the performance of our heuristic, we solve the MIP formulation
using CPLEX for small problem instances and compare it against the solution using
CBH. This methodology is consistent with prior research (Dawande et al., 2008; Kumar
et al., 2007). In terms of compute time, the CBH solution is obtained in a few seconds
compared to 10 hours for CPLEX. We observe that maximum gap between the CPLEX

solution and the CBH solution (CBH Gap) is about 7% for the problems solved using
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CPLEX (Table 8). The performance of our CBH is comparable with existing
researching adopting this methodology (Dawande et al., 2008; Kumar et al., 2007).

TABLE 8: Percentage Gap of CBH results from CPLEX solution

Problem | Worker | Number MIP Problem Size: CPLEX | CBH CPU time
Class Heterog of Rows xColumns Gap (%) Gap for CBH
eneity | Workers (Non-zeros) (%) (sec)
1 10 26,530%19,785(104,175) 6.59 3.71 0.71
2 12 49,407>32,745(189,895) 7.42 3.92 0.81
3 Low 14 87,323>56,175(391,635) 7.98 5.13 0.72
4 16 159,275>98,565(771,115) 8.14 7.12 1.01
5 10 26,530%19,785(104,175) 5.71 3.70 0.78
6 12 49,407>32,745(189,895) 7.51 3.60 0.68
7 Med 14 87,323>66,175(391,635) 7.56 4.92 0.97
8 16 159,275>98,565(771,115) 7.73 7.09 0.77
9 10 26,530%19,785(104,175) 5.91 3.17 0.89
10 . 12 49,407>32,745(189,895) 7.71 3.59 0.78
11 High 14 87,323>56,175(391,635) 8.16 4.87 0.97
12 16 159,275>98,565(771,115) 8.13 6.96 0.86

" Number of Skills = 2, Time to create direct tie = 2, Planning horizon = 10, @, / @, :1/ 2,

™ Low Worker Heterogeneity ~N(2.5, 0.8), Medium Worker Heterogeneity ~N(2.5, 1), High Worker
Heterogeneity ~N(2.5, 1.2).

3.5 Experiment Design

The complexity of the problem precludes analytical solution and requires us to
use simulation. Simulation with synthetic data allows us to obtain insights into
relationships between key variables impacting the design of the information flow
networks. This approach is appropriate when the underlying phenomenon is complex
and real world data is difficult to obtain, and is used in studying knowledge
management (Buco et al., 2003).

This section describes the design of simulation experiments including, key
parameters and their estimation. Fifty replications of each sample path were used, and
average values of system performance measures were calculated. Same as in section
2.4.1, simulations were extremely computation-intensive. Experiments were run on a

cluster of 160 Intel Xeon CPUs on Dell blade servers with Red Hat Enterprise Linux
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operating system. The average time for running each replication of a sample path was 1

hour.
TABLE 9: Experiment parameter values
Type Parameter | Values Justification
K 100
S 2/3/415 In Cowan and Jonard (2005) “Each agent has a
System 5-category knowledge vector” and Prabhakar et
Environment al. (2005) refers to: “Programming Skills,
Operating System Skills, Database, ERP, and e-
Commerce Server Skills.”
T 100
ﬂks Each worker is In  Backes-Gellner and Mure (2008) “in
randomly specialized industries, such as precision mechanics,
in one skill insurances, etc., skills requirements are less
homogenous, so the variance in the skill weights
Worker distribution is assumed to be Ia_lrger.” Our
Related parameter values are consistent with Backes-
Gellner and Mure (2008).
Wkls Follows Normal Lester (2005) proposed five categories to assess
Distribution: employee’s skill level. A normal distribution of
N(2.5, 0.8) /N(2.5, 1.0) | worker competence is consistent with prior
IN(2.5, 1.2) research (Sayimn and Karabati, 2007).
a. 0.15~0.4 We experiment with a range of values in order to
! study the sensitivity of our results.
@, @, :6/10/14/18, In Hansen (2002), “relying on established direct
Knowledge . relat|0n§ may ease the difficulties pf transferrmg
Transfer @, 110/15/20/25 noncodified knowledge, ..., reducing the time it
takes to explain the knowledge and understand
one another”.
2] 5/10/15/20 We experiment with a range of values in order to

study the sensitivity of our results.

Table 9 describes the numerical values, and justification for parameters used in

our simulation experiments. Where possible, we have attempted to base these values on

ranges that could be encountered in practice and/or prior research. Since parameters

related with knowledge sharing in our model are difficult to obtain, we experiment with

multiple values to sensitize the organization to information flow network design issues

that involve these parameters.

We consider a population of 100 workers, with an average of two direct ties per

worker. Each worker has multiple skills. Workers’ knowledge level in each skill at the
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beginning of the planning horizon (Wkls) is initialized by selecting from a normal

distribution. After that, workers are categorized into three groups — expert, average, and

novice — based on their average initial knowledge level across skills. Based on prior

S
research, workers with an average knowledge level (ZWklS /S) between 0 and 2 are
s=1

defined as Novices, between 2 and 3 as average worker, and between 3 and 5 as experts

(Lester, 2005). Note that the each worker’s total weight of all skills remains 100%

S
regardless of the number of skills supported by the organization (Z,BkS =100% ). On

s=1
the other hand, each worker is set to be specialized in a random skill §, by increasing

the value of B such that gf =38 Vse{l.,S}s=$. At the beginning of the

planning horizon, each worker randomly decides whether to transfer knowledge or not,
representing the organization’s initial status. If he decides to transfer knowledge, he
randomly selects one of his colleagues (through direct or indirect tie) and picks a
randomly skill. In summary, each worker randomly shares knowledge at the beginning
of the planning horizon, which represents the current state of no management of
information flow networks. Organizations then systematically decide which direct ties
to create, and which ties to use, in order to effective share knowledge through
information flow networks over the planning horizon.

Our objective was to better understand the process by which knowledge is
shared, and as well as the structure of information flow networks, for different types of
worker populations. Also we varied worker expertise distribution, time coefficient of
providing knowledge over direct and indirect ties, and number of skills supported by the

organization.
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3.6 Results and Discussion

We present selected results from our experiments to illustrate the properties of
effective information flow networks in terms of measures of knowledge gain, and
sharing behavior between and within different groups’. We present the following sets of
results: (a) the structure of effective information flow networks (as described by the
number and types of ties between and within a different types of worker groups), (b) the
impact of worker heterogeneity on knowledge gain and sharing, (c) the impact of time
(cost) of creating and using knowledge sharing relationships, and (d) the impacts of
number of skills supported by the organization on knowledge gain and sharing.

3.6.1 The Structure of Effective Information Flow Networks

As discussed earlier, we have three different groups of workers (experts, average
and novice workers) in the organization. We seek to understand the similarities and
differences between these groups of workers in terms of knowledge sharing behavior.
Specifically, we are interested in similarities and differences between these groups in
terms of the use of direct and indirect ties to facilitate knowledge transfer. We expect
firms to facilitate novice workers to create ties with expert and average workers in order
to improve knowledge sharing. However, the relative importance and roles of different
types of workers is not always clear. Our results indicate that it is not optimal for a firm
to just facilitate knowledge sharing between expert workers and novice workers.
Average workers have a crucial intermediary role to play in facilitating knowledge

flow. Table 10 indicates that the highest number of direct/indirect ties occur between

" Base parameter value used in the experiment: K=100, S= 5, T=100, @, =10; @, = 20; 6 =10;
Ay iaie! Qo pusy! gt | A1 pusy = 0.410.3/0.2/0.1; Wi ~N(2.5,1)
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experts and average workers, followed by the ties between average workers and
novices, and then between experts and novices. Table 10 suggests that the number of
direct and indirect ties within the average worker groups is higher than the number of
ties within the novice and expert groups. In addition, we note that indirect ties between
experts and novices have a crucial role to play in facilitating knowledge sharing, since
they are much larger in number than direct ties between experts and novices (Table 10).

Effective knowledge transfer tends to take place in short bursts (knowledge
transfers of short duration) between workers who do not have very high knowledge
differences. Such knowledge transfer allows the worker providing knowledge and the
worker gaining knowledge, to become available relatively quickly for additional
knowledge provision and /or knowledge acquisition. In addition, such a knowledge
transfer pattern allows direct ties created between workers to become available to other
workers for indirect tie formation, relatively quickly. The following sections explain the
underlying dynamics of the knowledge diffusion process in greater detail.

This result has important managerial implications. Organizations need to
recognize the valuable bridging role that average workers can play in facilitating
knowledge transfer. Our results indicate that ties between average and expert workers
can have large network effects and facilitate effective knowledge transfer. This result is
contrary to the common practice of facilitating knowledge transfer between experts and
novices.

3.6.2 The Impact of Knowledge Transfer Efficiency and Worker Heterogeneity on
Creation and Use of Ties

This section facilitates a deeper understanding of the dynamics of knowledge

sharing and diffusion by studying the impact of knowledge transfer efficiency and
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worker heterogeneity on tie creation and use. The term knowledge sharing refers to
knowledge exchange between pairs of workers. Knowledge diffusion, on the other
hand, refers to the change in the cumulative knowledge level of the workforce over
time.

We observe (Figure 27) that high knowledge acquisition efficiency result in
better knowledge diffusion, (as measured by total cumulative weighted knowledge gain
over the planning horizon), as expected. Interestingly, we also notice that knowledge
diffusion over the planning horizon decreases as the worker heterogeneity increases.

This merits additional explanation.

--+--Low Efficiency --#-- Low Efficiency
---#--- Med Efficiency ---4--- Med Efficiency
o —-%-— High Efficiency ® 1200 —-%-— High Efficiency
B 0% ®o—— ®— . x <
£ 8 3 Xr—mm % —.
g8 = 1100 - .. = X
X & -20% - L 8 | T
s 7 T L = Lo [
L g a3 PS .
5 $ 8 1000 -
= £ -40% - .- £ 8 e
=8 | ¢ - . = < e
=2 & k]
= .S -60% T ) 900 T
S 8 R = .
E © Low Med High E Low Med High
O = .
Worker Heterogeneity Worker Heterogeneity

FIGURE 27: Cumulative weighted knowledge gain | FIGURE 28: Number of times direct ties are
percentage decrease for different values of worker accessed for different values of worker
heterogeneity® heterogeneity
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e it o5 03

= - 5 ---4--- Between Groups

£ 14 ‘ 3 0
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FIGURE 29: Number of direct ties created for FIGURE 30: Number of effective direct ties per
different values of worker heterogeneity worker for different values of worker

heterogeneity

® Low worker heterogeneity — N(2.5, 0.8); Medium worker heterogeneity — N(2.5, 1.0); High worker
heterogeneity — N(2.5, 1.2); Low efficiency — 0.4/0.3/0.2/0.1; Medium efficiency — 0.6/0.45/0.3/0.15;
High Efficiency — 0.8/0.6/0.4/0.2.
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FIGURE 31: Effective indirect ties used per worker | FIGURE 32: Number of ties use over time for low
for different values of worker heterogeneity worker heterogeneity

Recall that, in our model, workers have three methods of acquiring knowledge:
using an existing direct tie, creating a direct tie, and using an indirect tie. The amount of
knowledge acquired is a function of type of tie (direct or indirect ties), knowledge
difference between two workers, and efficiency of knowledge sharing. Worker’s
competence is updated after knowledge acquisition is complete, which may last for
multiple time periods. Using existing direct ties to acquire knowledge is the most
efficient method as discussed above. However, existing direct ties may not provide
access to competent workers. Thus, relatively abundant but inefficient indirect ties may
to be used. Alternatively, additional direct ties could be created to access competent
workers while incurring the setup cost. It is important to note that irrespective of the
type of ties used/created, workers who are engaged in providing knowledge during a
time period, are less efficient in acquiring knowledge. Knowledge transfer occurs in
short bursts in environments characterized by low worker knowledge heterogeneity as
discussed in Section 3.3.2.1. Thus, in low worker heterogeneity environment, larger
pool of workers is available for consultation as compared to workers in high worker
heterogeneity environment. Over time, this results in greater knowledge diffusion

(Figure 27).




96

When worker knowledge heterogeneity is high, on average, each knowledge
transfer results in larger amount of knowledge acquired, but also takes longer, as
compared to a scenario where worker heterogeneity is low. This explains why the total
number of times that direct and indirect (not shown) ties used decreases as worker
knowledge heterogeneity increases (Figure 28).

Interestingly, we observe that the number of direct ties created over the planning
horizon increases as worker heterogeneity increases (Figure 29). This can be attributed
to longer knowledge transfer times associated with increased worker heterogeneity, as
discussed above. Longer knowledge transfer times reduce the opportunity to make a
competent worker available to multiple workers over the planning horizon. Hence, new
direct ties, providing access to available competent workers, need to be created in order
to facilitate knowledge diffusion. We also observe that number of direct ties created
decreases as knowledge acquisition efficiency increases (Figure 29). Note that high
efficiency allows workers to acquire knowledge faster, which increases the pool of
available competent workers for consultation and provides opportunities for reuse of
existing ties over time. Thus, reducing the number of direct ties created over the
planning horizon.

It is important to note that there are more direct ties within groups than between
groups, while more indirect ties are used between groups than within groups (Figures 30
and 31). This is because knowledge difference within a group is lower compared to
knowledge difference between groups. As discussed earlier, small knowledge difference
allows worker quickly share knowledge with each other, resulting in faster knowledge

diffusion. Direct ties are the preferred method of knowledge transfer because of better
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efficiency and less time to transfer knowledge. Hence, more direct ties are used within
group than between groups (Figure 30).

Next we focus on the pattern in which different types of ties are used, over the
planning horizon. In the beginning of the planning horizon, there are relatively fewer
direct ties and it takes time to establish new direct ties. This limits access to competent
workers via direct ties in the beginning of the planning horizon. On the other hand,
indirect ties are relatively abundant and provide better access to competent workers,
although they are less efficient than direct ties. This explains why in the beginning of
the planning horizon, indirect tie usage is slightly larger than direct tie usage (Figure
32). Over time, direct ties are systematically created to transfer knowledge and facilitate
knowledge diffusion. Note that, the strength of existing and newly created direct ties
increases with time, increasing the difference in knowledge sharing efficiency between
direct and indirect ties. In addition, knowledge diffusion results in improved access to
competent workers via direct ties. Hence, we observe in Figure 32 that the use of direct
ties significantly exceeds the use of indirect ties over time (time period greater than 60).

3.6.3 Impacts of Various Time (Cost) Coefficients

In order to examine the robustness of the model trend seen thus far, we study the
impact of various time coefficients on the number of direct ties created during the
planning horizon. Three types of time coefficients are examined: time to create direct
ties, time to transfer knowledge using direct ties, and time to transfer knowledge using
indirect ties. Note that, in these experiments the time to transfer one unit of knowledge
using direct ties is always smaller than the time required using indirect ties. It is not
surprising that as the time to create direct tie increases, the cumulative weighted

knowledge gain decreases (Figure 35). Similar trends are observed when time to
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(Not shown). Note that creating new direct

ties to transfer knowledge is less attractive as time to create direct tie increases. Thus,

the number of direct ties created decreases as the time to create direct tie increases

(Figure 33).

Interestingly, as the time to transfer knowledge using direct ties increases, we

observe that more direct ties are created regardless of the heterogeneity of the workforce

(Figure 34). As time to transfer knowledge using direct/indirect ties increases, the time

that workers are engaged in each knowledge transfer is longer, making them

unavailable to other workers for consultation. Thus increasing the need to create new

direct ties to acquire knowledge.
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3.6.4 Impacts of Number of Skills Supported by The Organization

The number of skills supported by an organization has interesting impacts on

knowledge diffusion dynamics. Note that for each worker, the total weight of all skills

sums up to one regardless of the number of skills supported by the organization. Hence,

as the number of skills increases, the weight for each skill reduces. Each worker may

need to improve knowledge in multiple skills depending on the weight of each skill and

the existing knowledge level in a skill. Recall that the objective of an organization is to

maximize the total weighted knowledge of all workers over a fixed planning horizon.

As a result, the amount of time each worker spends on acquiring knowledge in each

skill decreases, reducing the cumulative weighted knowledge gain (Figure 36).
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We observe that in Figure 37, the total number of direct ties created decreases as
the number of skills increases. As discussed earlier, whether to use existing ties or
create new ties to transfer knowledge depends on the availability of the knowledge
provider and the amount of knowledge that can be transferred. As the number of skills
increases, the likelihood of acquiring knowledge using existing direct/indirect ties also
increases since many workers need to acquire knowledge in multiple skills. There is less
need to create direct ties to acquire knowledge, and can re-use existing ties to transfer
knowledge for multiple skills. Hence, as the number of skills supported by the
organization increases, the total number of times direct ties are used increases (Figure
38).

Organizations that support multiple skills allow workers to re-use both direct
and indirect ties to transfer knowledge. However, number of times that indirect ties are
used does not always increase as the number of skills increases. Recall that existing
direct ties are the preferred method of acquiring knowledge, but are limited in numbers.
On the other hand, indirect ties are less efficient, but have access to wider range of
workers. As the number of skills supported by an organization increases from 2 to 3,
existing direct and indirect ties used increase as a result of tie re-use (Figure 39). But as
the number of skills supported increases from 3 to 5, re-using existing direct ties
become dominant that there is less need to use indirect ties to transfer knowledge. Thus,
reducing the number of times indirect ties are used (Figure 39).

3.7 Limitations and Future Research

In this research, we assume that workers stay with the company across the
planning horizon. As the model in this research was designed to study knowledge

acquisition and provision over the planning horizon for a limited planning horizon, this
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is not a limiting assumption. However, it is possible that employees change their jobs
and leave the company. Additionally, the company could hire workers to fill job
openings. Workers leaving and joining the company (labor turnover) could affect the
performance of the IFNs. Labor turnover may be harmful to the company if skilled
workers are often leaving, taking away their social ties inside the firm at the same time.
While companies could hire employees to fill the vacancy, time is required for new
hires to establish social ties to share knowledge inside the company. Future research
could study the impact of labor turnover on the design and performance of IFNSs. In this
research, knowledge depreciation is assumed to be negligible. Additional research
opportunities involve the design of IFNs under high knowledge depreciation scenarios.
This research assumes that the knowledge sharing activities are organized in a fashion
such that knowledge transferred from only one worker to another worker at a time. One
may argue that knowledge transfer could involve more than two workers at a time. For
example, knowledge can be transferred through seminars provided by co-workers to
share their expertise with other team members, group discussions between multiple
members in the same office, and other group related techniques. Future research could
study IFNs that allow knowledge to be transferred among a group of employees. This
extension would involve further exploration about group knowledge sharing dynamics,
and is likely to be more complex. In this research, we focus on the design of using
direct and indirect ties to facilitate knowledge sharing. Future research could examine
different types of direct/indirect ties (team members, office mates, and reporting
relationships) and associated efficiency and costs to further help organizations establish

the IFNs to transfer knowledge.
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3.8 Conclusions

“Knowledge intensive service providers are highly dependent on human workers
who possess specialized knowledge and skills.” (Leung and Glissmann, 2010) Such
companies are increasingly interested in ‘“the optimal design” that meets the
organizational needs such as employee skill development (Leung and Glissmann, 2010).
The MIP presented in this research aims to understand the design of effective IFNs to
maximize knowledge sharing. The value of the model lies in understanding important
factors to consider when designing and using IFNs. The model and solution procedure
proposed in this chapter can be used either as a starting point for organizational design
or as a means of benchmarking existing organizations.

Our results underscore the important bridging role that average workers can play
in facilitating knowledge transfer. We observe that most knowledge sharing happens
between average workers and experts, followed by knowledge sharing between average
workers and novices. Our results also provide insights into the use of the effective IFNs.
We find that organizations seem to benefit from knowledge transfer between workers
who do not have very high knowledge differences. Such knowledge transfer allows
workers who are sharing knowledge to become available relatively quickly for
additional knowledge provision and/or knowledge acquisition. This finding is contrary
to the common practice of transferring large amount of knowledge between experts and
novices.

Both direct ties and indirect ties are valuable to the company and may
complement each other. Direct ties are used more within groups than between groups,
while more indirect ties are used between groups than within groups. In organizations

where large number of skills are supported, there is less need to create additional direct



103

ties to transfer knowledge since workers can re-use their existing ties. However,
organizations benefit less from knowledge sharing during the same planning horizon

when the number of skills supported by the company increases.



CHAPTER 4: CONCLUDING REMARKS

Organizations increasingly use knowledge-intensive IT and IT-enabled services
delivered from multiple locations. Employees in such organizations may interact with
each other in order to deliver high quality service and constitute knowledge-intensive
service delivery networks (KISDN). KISDN are not limited to IT service, and include
other knowledge-intensive services that are facilitated by sophisticated IT such as some
types of management, financial services and engineering consulting services. The
dissertation aims to understand the management and design of such KISDN - an
important, yet under-researched area with significant potential for IS as well as
interdisciplinary research.

The dissertation first presents a mixed integer programming model which
integrates perspectives from multiple traditional disciplines such as information science,
management science, social sciences and IS. Specifically, KISDN in this dissertation
represent service systems with a significant emphasis on knowledge management in a
distributed resource environment. The proposed model considers worker competence,
organizational information networks, worker availability and task characteristics. We
propose the use of IT to perform integrated business analytics which combines the
above mentioned factors in support of the service workflow process. The results suggest
the significant additional value that can be generated by facilitating knowledge sharing

using organizational IFNs, in conjunction with information regarding worker
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competence, worker availability, and service tasks. Additionally, a network topology
where communication between random workers in the organization is encouraged
(random networks) is preferred over other network structures in terms of KISDN
performance. We also discuss ways to reduce the performance difference between
network topologies by intentionally increasing network density, and strategically using
worker training when altering the network structure might be difficult.

Another mixed integer programming model was proposed to further study the
design of the IFNs in different organizational environments. Given the fact that
employees could be much more likely to turn to their peers and colleagues for
knowledge rather than access electronic knowledge bases that firms build, organizations
are increasingly interesting in facilitating knowledge sharing among employees through
IFNs. To the best of our knowledge, there is limited research on the design of such
IFNs. The model proposed in chapter 3 aims at maximizing knowledge sharing by
creating and using social relationships under different organizational factors such as the
heterogeneity of the workforce, efficiency and costs associated with knowledge sharing,
and number of skills. The results suggest that a more heterogeneous workforce benefits
less from knowledge sharing using IFNs, requires more direct relationships to be
created than a less heterogeneous workforce. Our results indicate that the process of
knowledge sharing does not necessarily occur just between the expert workers and
novice workers. Average workers play a crucial intermediary role in facilitating
knowledge flow. As the number of skills supported by the organizations increases, less
direct relationships are facilitated as a result of re-using the same tie for multiple skills.

However, organizations benefit less from knowledge sharing since each worker spends
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less time on each skill. Our results indicate that the cost of creating new direct ties is
crucial in improving knowledge sharing benefits. Organizations should explore
technology-facilitated means of creating new direct ties.

In summary, this dissertation contributes to the emerging field of service
science, by advancing our understanding of service systems in knowledge-intensive
distributed resource environments. The first model proposed can serve as a managerial
benchmarking framework for KISDN management, which allows organizations to
examine dynamics between different factors impacting KISDN performance. The
second model enables organizations to understand the design and the use of IFNs to

maximize knowledge sharing. This, in turn, facilitates systematic design of KISDN.
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APPENDIX A: LINEARIZED VERSION OF KISDE OPTIMIZATION PROBLEM
Here we provide the linearized version of the KISDN optimization problem

discussed in Section 2.3. We use this for solving our problem instances in CPLEX.

Objective Function:
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j=1

NMax

D Xy =0 vk efl,...K}tefL.. T}

J=N;+1

K T ]

DY Xy <1 Vje{l,.,N,.}

k=1 t=1

T N s T N, T S K2

Z Z‘gjs¢jsAkjst +Q 1-Z, _zxkjt)+zzzzlellkst <T vke{l. K}
t=1 j=1 s=1 t=1 j=1 t=1 s=1 :j( i=0

Bym = Xijm + Fige —1 vke{l..K} jefl.., N, 3 mefl. t-3tef2,..T}
Bym <0.5(X g + Fige) vke{l...K}, jefl..N, pmefl. t-tef2,..T}
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Byt €{0,} captures X Fi where Fit» Byt €{0,1}.

kjm
Uye 2 Fyo + Py -1 vkefl,...K} jefl,.. N, . mefl. t-1}tef2..T}
Uy <05(Fy, +Fye) vk efL..K} jefl.. Ny . mefl. t—-tef2,.. T}

Uit €{0,1} captures FatFic where Fiit e{01}.

Hynst 2 Cign 4By =4 Vke{l..,K} je{l. Ny bme{l. . t-Tsefl. S}tef2,...T}
Hgmst < 4By vke{l,...K}, jedl. Ny b.mefl,.. t-8,sefl,..Shtef2,... T}
Hyjmst 20 vkefl,. K} je{l,. Ny p.me{l. t-1,se{l. Shte{2,.. T}
Hyimst < Cem vkedl,. K} je{l,. Ny pme{l. t-1,se{l,. Shte{2,.. T}
H

ymst Captures C, . By, where By €{0,5} and H,, €(0,4).

R 2 By -|—AiIksq -1 vkle{l,. . K}k=lsefl,.. S}ie{012},matef2,. T} je{l.., Ny}

< 0.5(Byy + Alg) VK| €L, K3k 21,5 €L, Shi e {012, m,qt €42, T} j e L Nyyard

ijsmqt

ijsmqt

Rigomqt €{03} captures By, Ay, Where By, Ay, €{0.13.

V”'qsqt 2 Xyt +Ai|ksq -1 vkle{l. K} k=lsefl,.. S}ie{012},q,te{2,.,T} je{l... Nyt
IkJSGIt_05(Xkjt +A',ksq) vk le{l,.. K} k=lse{l,..,S}ie{012},q,te{2,.. . T}, je{l,... Nyat

Visisq €{0.3 captures X, A where X, Ay, €{0.13.

-1 S t-1 k2
Z (Bkjmt (t—-m)— Z (‘9js¢js H s + Zz Rllkjsmqt)) IT+U it =0
m=1 s=1 q:m i=0
-1 k 2
kJI = Z(ijm (t m) Z(‘gjs¢js Akjsm + ;;\/ijsqm)) /T + ij(t -1)
g=m I=1 i=l
1k
t—1
D Xy —F 20 vk e{l,...K}jefl., N, }tef2,.. T}
m=1
=1 Ny
ZZ(XkJm kjm(t—l)) Vk G{l,..,K},tE{Z,..,T}
m=1 j=1

Knowledge Acquisition Constraints:

Gy =of W, —W) VkIefl.,K}l=k, sefl.,Shtefl..T}ie{012}, o, =1

G, represents worker k’s gain in skill s from worker | using tie i in time period t.
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K 2

S N <1 Vkefl.,K}sefl.,Shte{l.. T} oy =1

1 i=0
1k

The above constraint ensures that worker k gets help only from a single worker I,
through all ties, in time period t.

Dy =G + 4N -4 VK Iefl...K} 1=k sefl., Shte{l,..,T}ie{012}, p, =1
Dy < 4N\, vk le{l,...K}l=k,se{l., Shtell,. T}ie{012}, o), =1
Dy >0 vkl efl,..K} 1k, sefl,..,Shte{l. . T}ie{012}, p) =1

Dy <G —4A, +4 vkl efl,..K} 1=k, sefl..,Shte{l. . T}ie{012}, p) =1

D, captures G, A, Where A, {01} and D, < (0,4).

Gy = Dy Vke{l.,K}sefl,.Shtel{l. T} py =1

K 2
I=1 i=0
1=k

*

G, Is the maximum gain worker k can get in skill s through all ties, where G,, € (0,4).

Cii =W — Gt vk e{l,.., K}, se{l,..,Shte{l,.. T}
C, 1S worker k’s effective competence after searching for help, in period t and skill s.
Psmt 2 Gy + 4By —4 Vke{l. K} Vjefl,..,Ny ) Vs efl.., SHVme{l,.. .t -1}, vte{2,., T}
Pt < 4By Vkefl,.., K} Vje{l,., Ny} Vs efl,.., S} vme{l. . t -1, vte{2,.., T}
Pysmt 20 vkefl,.., K} Vjedl,., Ny b Vs e{l,.., S} vme{l,. .t -1, vte{2,., T}
ijsmt <Gy, Vke{l., K} Vjefl,.., Ny} Vs efl.., SHVme{l,.. .t -1}, vte{2,., T}
Pgsm: Captures Gy, By where By, €{0,1} and G, €(0,4).

t=1 Ny g
Wi =W, =2 D 0Py Vkefl..K}sefl.,Shtef2., T}

m=1 j=1

Worker k’s updated competence in period t.
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APPENDIX B: MODEL EXTENSION DETAILS

B-1 Formulation for KISDE Optimization Problem with Training
Here we present the model for the KISDN optimization problem with training.

We only provide new and modified constraints which are different from the Model

discussed in section 2.3. Other constraints can be found in section 2.3.
Objective Function

Z(zxkjt j -h (Z(Zxkjt‘915¢jsckst+zzw AIIkst kt))) ZZYkstth/st

k=1 j=1 s=1 j=1 1=l i=0 k=1 s=1

t K K S N,
—Z((l szk,m)29,sﬂ 0, =D (=2 =D Vit — 2 X )D6,
j=1 1 k=1 k=1 s=1 j=1

m=

Assignment Constraints

N; S

Zijt +ZYkst +Z,<1 Vke{l,. K}te{l. T},
j=1 =1

Worker k can be assigned in the current period iff worker k is not busy with any
tasks/training.
Ny 2

T S T S T S K o
ZZ(ijtZ‘915¢js kst +ZZYkstl//st+Z(1_Zkt_zYkst Z kjt +ZzzzwlAllkstZkt <T
s=1 1=1
Ik

t=1 j=1 t=1 s=1 t=1 j=1 t=1 s=1 i=0

vk e{l,.. K},
Total time spent by a worker on tasks, training, and on the bench cannot exceed T.

Ly 2 (E—m) -y, +D/T  Vse{l., ShHtefl.. T},
L (E—m) -y, )20 vsefl,.., Shtefl,.. T},

L, =1 if a training in skill s that started in period m is completed by time period t , 0

otherwise.

t—1 Ni_ t-1 t-1

s
(=R ) Xy + Z(l— L)W Vkefl.,K}te{2,.. T},

m=0 j=1 m=0r=0

1N
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Z,.= 0 if worker k is available in period t (i.e., not busy), 1 otherwise.

Knowledge Acquisition Constraints:

t-1 Ny t-1
Wi =W, —ZZ Xiim @ 9GPyt Z LYo Wi, — 7, )00 VK efL., K} sefl..Shte{2,..T}
m=1 j=1 m=1

B-2 Heuristics for Solving KISDE Optimization Problem with Training

Similar to Appendix A.2.2, the value of training depends on (a) number of

additional tasks of type m completed as a result of training in skill s (52 — ) » (D)

S
the revenue from each of these tasks (D q;".¢,), and (c) the cost of sending workers to
r=1

and &

kmst

training. Similar to &, and &5, used to calculate the value of learning, &

kmst

are given as follows,

5k3mst - Mm{ﬂ’ (T (t + l//st)) kast (T (t + '//st))kast /(zqmvvkrtgr q;n@fgs (\Nkst - Tst))}

r=1

s
éfmt =Min{4, (T - t)}(kmt (T _t)lfrﬁtb /qukrtgr}

r=1

5 K s
)(Ifrﬁset1 = (Z q:n (4 _Wkrt) - qsm(ﬂuf (\Nkst - Tst)) /(qu:n (4_ert) - q?@j (\Nkst - Tst))
r=1

1=1 r=1

Zkrﬁst = (qu (4 Wkrt) qs (Dk (\Nkrt st))/Z(qu (4 Wkrt) qs ¢k (\Nkrt _Tst))

u=l r=l

Zkrﬁt _qu (4- Wkrt)/zzqr (4- ert)

1=l r=1

ka_t _qu (4- Wkrt)/Zqu (4-W,)

u=l r=1

Recall from Section 2.8.1 that by sending workers to training the organization
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can incur costs in terms of additional wait time penalties. This cost of keeping tasks

waiting has two components: (a) keeping existing tasks  waiting,

Z mt(qu B v /K where A, is the number of available type m tasks at time

r=1

period t, and (b) keeping new tasks waiting (that arrive during v ),

Z(eaﬂm (Zq:nﬂr)l//st(l//st +1)/2K) .

Hence, the payoff from assigning workers to training depends on, (a) the number

of additional tasks completed as a result of taking training in skill s (2. — Op.) » (0) the

S
revenue from each of these tasks (D_a"f.s,), and (c) the cost of keeping tasks waiting
r=1

(ant(zqr ﬂ )l//st/K + Z( m(Zq;nﬂr)l//st(l//st +1)/2K))

m=1 r=1

Let A, be the set of un-assigned tasks and |2t be the set of available workers at

the beginning of period t. Using the same notation as in Section 2.3 (Table 1), in period
t, the firm’s maximization problem using DAH, can be we written as follows,

Objective Function

N M S
zzxkjt[R Z h L9]5¢Jsckst +Zzgjsw hAIkIst +qus ﬂgs( kmjt 5k2mjt)J

kek, jen §=! lek i=0 m=1 s=1

+ZZYkst[2(zq:ﬂﬂrgr kmst ~ mst) z AL qulﬂr wal K- Z( m(qurﬂﬂr)!//st(‘//st-}'l)/ZK)J

kek, s=L =1 r=l )

_z zxkjt)zgjsﬂs a Z(l_ZYkst_zxkjt)hkgb

jery kek, kek, s=1 jefy

Subject to,
Zxkﬁzykst <1 vkek, and D X <1 vjeh,
jen, kek

X, €03 and Y {0} Vjen, kek,sefl.,S} ]
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APPENDIX C: NETLOGO INTERFACE

» high_cost - NetLogo {DA\Research\Research 1\2_Experiment\20100,2010-7-4-Cost-Help\cost of providing hel... | = =1 i:h
File Edit Tools Zoom Tabs Help

Interface | Information | Procedures

o e ]
“abe Bution  ~

Edit Delete Add I

| view updates —
I Settings...

normal speed continuous *
I -
—— E0 & s et non g mean 1
- T
PﬁRﬁo.og depreciation 0.0000
I ——— | —— |
experiment 1 = 4
replication 50 Iﬁ
I —— [ ————
t-write 1 Maix-t 10
8% strong-high-cost ﬁ
Eg% UseTrain? Fﬁ&s
Tg% UseHelp? ﬁ
Train_Comp 0.9 ?ﬁﬂ
‘ GO z” Setup System new-term 0.3
o d Center [\ [ Car_|

observer=




