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ABSTRACT 

MILAD HOSSEINPOUR. Improved Fidelity of Triangulation Sensor Measurements in Optical 
Inspection. (Under the direction of Dr. EDWARD P. MORSE) 

With the evolution of gear design requirements for new applications, classical gear inspection based 

on a time-consuming line-oriented tactile measurement must be replaced with a more rapid, areal inspection 

that can capture complex modern gear modifications. Triangulation-based optical instruments provide a 

promising path to meet new gear metrology demands with respect to access to the gear flanks and having 

sufficient speed and accuracy. In triangulation sensor measurement, the image position of a laser line strip 

on the sensor is analyzed to find the measured geometry. This image of the line on the sensor is calculated 

through a peak detection algorithm that produces a 'ridge line,' which is the line in the x-y sensor domain 

with the highest light intensity.  

The physics of optical measurement dictates that speckles and scattered light exist during an optical 

inspection. As a result, when a triangulation sensor is used, the deflection of the scattered light may cause 

inaccurate peak detection and, therefore, large form deviations in the reconstructed (measured) geometry. 

In addition, multiple light reflections that influence point calculations from an optical measurement must 

be detected, eliminated, or remedied. This research provides an improved mathematical approach to ridge 

line detection in each sensor frame, to detect the peak position of that frame even more accurately. This 

algorithm is used to measure four reference geometries to evaluate its influence on point clouds from surface 

measurements when compared to the embedded (OEM) algorithm.  

This dissertation offers the improved profile fidelity of triangulation sensor measurements for 

optical inspection by developing a novel mathematical approach and replacing the original row-by-row 

peak detection algorithm by the proposed frame-by-frame algorithm. It can be used in the future closed-

loop control process where the new gear production processes require fast-optical measurement and 

evaluation processes to trace back from the produced gear geometry to the manufacturing process. This can 

be achieved by equipping the manufacturing machine with suitable optical measuring devices, an 

appropriate evaluation strategy, and an inline inspection.  
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1 CHAPTER 1: INTRODUCTION 

1.1 Motivation and background  

Gears are the crucial elements of power transmission systems whose efficiency is determined by the quality 

of their gears. Gears have a wide range of applications, from wind energy applications to automotive 

industries. Over the past decades, the functional properties of transmission systems, including generated 

noise, vibration, transmission capacity, lifetime, and weight, have been enhanced dramatically due to 

improved gear geometry [1]. Many efforts have been made on different aspects of gear manufacturing from 

cutting to the finishing stage, to achieve more repeatable, reliable, and efficient techniques in precision gear 

manufacturing to meet quality grade requirements [2-5]. Precision gear manufacturing needs to accurately 

capture gear surface features. Advancements in gear design and manufacturing over the past few decades 

require more robust gear metrology in terms of reliability and evaluation speed with a higher accuracy level. 

Therefore, manufacturing precision gears requires precision metrology to control the gear geometry in size 

and shape. Before the 1970s, when CNC technology had not been invented for the metrology purpose, gear 

metrology had been performed by manual gauging and electro-mechanical instruments. However, CNC-

based contact methods made a paradigm shift in gear metrology which are still state-of-the-art techniques 

with high accuracy dominating in the industry. In the design and manufacturing stage of many gear 

applications, the gear flank follows an involute profile that requires tight tolerancing in the range of single-

digit micrometers [6]. Conventionally, gears are measured by Gear Measuring Instruments (GMI) or tactile 

Coordinate Measuring Machines (CMM) [1,7,8]. Although they are able to measure gear tooth shape with 

a micrometer level accuracy, the technology is limited in speed due to the tactile nature of the measurement. 

Basically, classical gear measurement is based on two characteristic lines on both flanks of only four teeth 

oriented approximately 90 degrees apart [9,24]. One is a profile line in a transverse plane, and the other is 

a lead line in a pitch cylinder. Clearly, two lines per flank only for a limited number of teeth cannot 

extensively represent the entire gear surface. Lotze et al. offered an analytical full 3D substitute gear model 

for helical and spur gears to use the measuring capability of Coordinate Measuring Machines (CMM) to be 
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extended to gear evaluation [9]. They used three independent parameters, i.e., the base radius of the flank 

origin 𝑟௕, polar angle of the origin ∅௕, and base helix angle 𝛽௕ to analytically model the nominal gear flank. 

Their work initiated the fundamentals of using CMM in gear inspection. In contrast with the conventional 

cross-section method, this method did not require capturing points exactly on a transverse plane for profile 

testing or pitch cylinder for lead testing as described in the standards. However, the points could be 

measured at any arbitrary coordinates. This gave remarkable flexibility and accuracy for the gear 

measurement and evaluation using a CMM. Flank modifications could also be added to the model using 

some additional geometrical parameters. However, gear deviation parameters were only limited to those of 

the predefined parameters in the mathematical model. 

 

Figure 1.1: Substitute gear flank and measuring points. Mathematical equation correlates nominal geometrical 
parameters with Cartesian coordinates [after 9] 

In the high volume production of automotive gears, the environmental situation, including the temperature 

behavior of machine tools and tool wear affecting the precision of production, remains constant; therefore, 

a random sample seems to be a rational strategy to save inspection time [10]. Consequently, the time-

consuming tactile measurement requires a random inspection, especially when it comes to the high volume 

production of mid-size gears.  

In addition, geometrical modifications such as slope and crowning are intentionally added to the nominal 

involute of modern gear flanks in automotive and wind energy transmission systems to enhance their 

functionality in terms of generated noise, transmitted power, vibration, and lifetime [11]. On the other hand, 

there are some undesired deviations from the nominal involute which are an inevitable result of the 

manufacturing process. Those deviations include but are not limited to distortion and twist caused mainly 
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by heat treatment process and continuous generating grinding [1]. However, the above-mentioned analytical 

model suffered from the lack of any parameters describing flank modifications and deviations which have 

seemed to be highly demanding and inevitable, especially over recent decades as the automotive industry 

and renewable energy are growing rapidly. 

 

 

 

Figure 1.2: Gear flank with modification/deviation of involute helical gears [after 11, 12] 
a) Profile slope b) Profile crowning c) Tip and root relief d) Lead slope e) Lead crowning f) End reliefs 

However, those desired modifications and undesired deviations cannot be captured when a line-oriented 

approach is used in which a few lines represent the entire gear flank. All the above-mentioned reasons can 

support the argument that a comprehensive measurement is required to capture the 3D feature of gear flanks 

to feed the manufacturing section with holistic information about the measured gears. This can improve the 

assessment of the measured gears and the gear manufacturing process. 
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A set of explicit equations were introduced by Guenther et al. to add a nominal description of helical gear 

modifications to the nominal gear flank in 2D. The equations comprised profile slope modification, profile 

crowning modification, helix slope modification, and helix crowning modification [13]. During the initial 

gear manufacturing process, these deviations can intentionally be added to the gear flank to compensate 

later for the negative effect of undesired manufacturing deviations caused predominantly by the subsequent 

heat treatment process and continuous generating grinding [3]. Also, adding modifications in the finishing 

stage of manufacturing can provide a smooth meshing between mating gears under various loading 

conditions. The modifications can reduce stress concentration and, as a result, wear damage on the meshing 

area of mating gears leading to a substantial increase in the gear's lifetime. Mechanical components' fatigue 

life under dynamic loads is exponentially proportional to the applied load. The modification can play a 

promising role in specifically Wind Energy Systems (WES), where developing robust gearbox technology 

that requires relatively little maintenance is essential. Therefore, it seems crucial to qualitatively evaluate 

and control the desired modifications and undesired deviations to reach a sufficient quality level of 

manufactured gears and to control the manufacturing process as well. 

Goch discussed the current challenges that modern numerically controlled (NC) measuring instruments 

encountered when the only available standards and guidelines were the conventional probing and evaluation 

along the prescribed cross-section lines [1]. Gear alignment and mounting were considered the first problem 

when a tactile probe was supposed to precisely scan the standardized profiles. A mechanical alignment 

together with a numerical compensation could only partially fulfill those requirements. Secondly, the non-

contact optical devices could scan several tens of thousands points in a few seconds, reflecting helpful 

information of the flank topography; however, the lack of comprehensive standards covering the entire gear 

flank would waste the majority of the captured information. Unavoidable gear modifications, on the other 

hand, due to the growing demand for higher gear drives' functional properties, would require a significant 

change in the evaluation rules and conditions. Hence, he proposed a self-contained mathematical model of 

the flank surface, including a geometry description of nominal points along with their normal directions. 

This could remove the requirement of measuring points along specific profiles; instead, all the 3D measured 
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points could be utilized in evaluating the gear. This model could also provide an iterative numerical 

alignment to reach a 3D coordinate transformation of the entire measured points to meet the conformance 

alignment requirements. Following the mentioned alignment and selecting the measured point clouds in a 

tight region along the conventional evaluation tracks, there would be an acceptable agreement between the 

new and traditional evaluation results. Given the mathematical model and normal unit vector of the nominal 

surface [13], he showed that the Plumb line distance is dependent on the actual coordinates of the gear 

flank. Thus, dlot is independent of the position of the corresponding nominal point to any measured point, 

which is considered a significant advantage of this method. Due to its analytical nature, this method could 

also drive the deviation values at the presence of superimposed flank modifications. His work significantly 

contributed to areal evaluation methods in future gear metrology. 

 

 

 

Figure 1.3: Three various deviations between the measured point and the nominal geometry [after 14, 15] 
a) Euclidean distance dEuklid b) Projected distance dProj c) Plumb line distance dlot 
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Ni et al. dealt with current major challenges in gear metrology, including a lack of areal information of gear 

flank, complex flank modifications, and improved closed-loop control of the manufacturing process [12]. 

Following the prementioned Plumb line distance concept, they presented implicit equations describing a 

full 3D gear geometry for both sides of all gear teeth. An areal description of the flank surface named the 

areal distance map was defined independent of the nominal geometry of the flank containing all flank 

modifications and deviation parameters.  

 

Figure 1.4: Local UV coordinates commensurate with the description of flank modifications 
Plumb line distance equation for helical gears [after 12] 

They proposed a meaningful revision to the conventional line-oriented standard parameters. Furthermore, 

using the orthogonal characteristics of Chebyshev polynomials, a robust evaluation method was proposed 

in which gear deviation parameters can directly be extracted from an areal distance map. 

 

Figure 1.5: First eight terms of 2D Chebyshev polynomials [after 12] 

They performed simulation techniques for various types of point distributions to obtain areal parameters 

out of simulated data points. Later, they successfully verified the evaluation method by measuring a gear 

artifact and comparing line-oriented with area-oriented parameters. The maximum relative deviation 
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between the areal method and the conventional certified one was about 1.5 micrometers which was within 

the measurement uncertainty. The developed areal distance map initiated a fundamental change in gear 

evaluation algorithms in future studies and applications of gear metrology. It expanded a holistic gear 

assessment in the gear production industry. 

As discussed earlier, a holistic measurement cannot be achieved in a reasonable time when the measurement 

technology is restricted to widely used tactile measurement. This deficiency highlights the emerging need 

for an essential shift in the measurement and inspection strategy for transmission gears. It is exactly where 

an alternative non-contact measurement approach can compensate for these drawbacks and introduce a fast 

assessment approach. A non-contact measurement can always be realized using an optical instrument; 

however, the measurement reliability is a challenging factor to agree with the required accuracy grade. 

Nonetheless, due to the high measurement speed and high-resolution measured point clouds, optical 

methods are becoming more of industrial interest for mass production.  

1.2 Instrument Evaluation 

A gear measuring instrument and an involute artifact are conventionally used to control the standard of 

quality gears. The standard calibration of the involute artifact, on the other hand, is insufficiently accurate. 

Takeoka et al. adopted a straightforward approach for measuring the involute artifact using a laser 

interferometer with a laser beam diameter of 6 µm and measurement resolution of 158 nm (a quarter of the 

laser wavelength) [16]. The impacts of the surface condition of the measured item and the influence of the 

driving of the artifact were addressed in the essential experiments shown in their proposed measuring 

device. It was verified that the suggested approach was capable of measuring the profile form deviation of 

an involute tooth flank and had the potential to measure an involute artifact with an ultraprecise level. 
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Figure 1.6: Involute artifact with base cylinder [after 16] 

  

Figure 1.7: Takeoka et al.'s setup for involute artifact measurement using laser interferometry [after 16] 

As illustrated in Figure 8, Fang et al. established a laser interferometric setup to measure the flank surface 

of helical cylindrical gears [17]. With enhanced equipment, the oblique-incidence-based approach was 

expanded from measuring spur gears to helical gears. They offered a ray-tracing-based approach for 

simulating interference fringe patterns (IFPs) while using a two-path interferometer to measure gear tooth 

flanks. There were two phases involved in this simulation process. The profile of an IFP was created in the 

first stage by ray tracing within the interferometer's object path. The profile of an IFP was then illuminated 

by interference fringes in the second stage. Simulations of two spur involute gears were conducted to assess 

the accuracy of the simulation, and the simulated IFPs were confirmed using an actual two-path 

interferometer established on an optical bench. 
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Figure 1.8: Instrument arrangement and schematic representation of the two-path interferometric system [after 17] 

 

Figure 1.9: Results of measured flank using laser interferometry [after 17] 

Goch stated that many triangulation-based optical instruments satisfying gear metrology demands could 

provide sufficient accessibility to gear flanks, speed, and accuracy [1]. In contrast, minor accessibility of 

gear flanks in interferometry-based measurements could make them unsatisfactory measurement methods, 

despite their potential to achieve the highest accuracy level. 

The gear profile was measured using a phase-shift optical triangulation approach by Lu et al., which 

benefited from comprehensive information, speed, and non-contact nature [18]. The technology had 

successfully exhibited comparative measuring accuracy greater than 1 µm and resolution of about 0.1 µm 

while inspecting a 2 cm2 region. The optical system's measurement findings were in good accordance with 

those from a mechanical probe on a coordinate measuring machine. It was also fair to realize a few teeth 

per second measuring speed. Different factors that affected measurement accuracy and potential remedies 

were examined. They, however, did not offer any standard metrics to be used in gear production metrology. 
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Figure 1.10: Stretch of gear measurement using Phase-shift optical triangulation [after 18] 

Optical instruments equipped with a light section triangulation sensor are commonly used to enable data 

acquisition of dense point clouds on each gear flank in a reasonable time to capture surface topography. A 

laser beam is emitted from a laser source, passing through a focus lens to project the surface to be measured. 

Then the reflected scattered light passing through a collection lens is focused onto a photosensitive detector 

to form an image. The position of the image on the pixels of the detector is then analyzed to find the target's 

distance to the instrument [19]. This technique is called triangulation because the emitted beam, the 

reflected light, and the detector form a triangulation.  

 

Figure 1.11: Principle of laser line triangulation [after 20] 
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The line structured light sensor based on point-to-point triangulation principles can also accurately be used 

for distance measurement. Structured light is emitted to the 3D surface to be measured, and the reflected 

light from other perspectives than that of the emitter is captured on a photosensitive detector. The distorted 

reflected light on the detectors can be used to measure the geometrical features of the surface. The 

significant advantages of this method are high precision, high speed, and an anti-interference nature.  

The structured light technique was used first to measure a helical gear by Peters et al. [21]. They illuminated 

a gear flank by a structured light pattern. The distorted reflected pattern was captured by a CCD camera. 

Then a calibrated algorithm transferred the registered pattern along with system design data into 3D 

coordinates of the measured flank. They could reach the resolution on the order of 1 micrometer for a few 

square centimeters measuring area. The maximum deviation between the measured data and the theoretical 

curve did not exceed 10 micrometers.  

 

Figure 1.12: gear measurement using structured light pattern: a) Hardware setup b) Result of areal measurement 
[after 21] 

Using a structured light pattern, Leopold et al. developed a test instrument and its supporting software to 

measure the entire gear flank in less than a square centimeter [22]. Fringe patterns were projected to a tooth 

flank, and a CCD camera recorded the distorted light due to interaction between the projected stripes and 

the measured surface. Their device consisted of a CCD camera as a detector and a commercially available 

LCD as a fringe projector which made them able to use phase correct measurements with sinusoidal fringe 

patterns. The sequence of the fringe pattern was used aiming at higher accuracy and a better measuring 

range. They recorded 10 micrometers as the best resolution achieved in the measurement area. 
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Figure 1.13 A) Principles of triangulation B) Fringe projection [after 22] 

 

Figure 1.14: Components of Leopold et al.'s optical system [after 22] 

Kumar et al. took advantage of reverse engineering in measuring gear surfaces using a 3D laser scanner 

[23]. They used the K-mean method and a proposed MATLAB algorithm to reconstruct the 3D coordinates 

of the scanned surface. This method used a noise-free scanned point cloud as the input to compute the K-

mean neighbors of the points in order to regenerate the tooth profile. Although they could improve the 

distance sensitivity by several orders of magnitude, they did not quantitatively mention how accurately they 

could reconstruct the gear surface. 

The Moiré method was established by Chen et al. to optically measure a gear tooth surface. A halogen lamp 

was used as a light source, an autocollimator was used to provide a collimated beam, and the collimated 

beam passing through two linear gratings formed Moiré fringes to illuminate the flank surface. The recorded 

fringes on a CCD camera were later used by their developed computer code to reconstruct the contour of 
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the gear tooth surface. Then the reconstructed data were compared to the data from a Coordinate Measuring 

Machine as a reference to verify the results. 

 

 

  

Figure 1.15: Conceptual framework and experimental setup of the projection moiré system [after 24] 

An unambiguous definition of a 3D involute coordinate system for helical cylindrical gears was presented 

by Hartig et al., which was in reasonable agreement with conventional evaluation cross sections [25]. The 

presented involute coordinate system could facilitate the performance of gear evaluation. They also showed 

that the gear deviations in pitch, profile, and helix directions could be correlated with one another if the 

gear is modeled in one workpiece coordinate system, although that correlation is unknown in the current 
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flank evaluation strategy. Compared to cartesian-based models, this can better describe the dynamic 

behaviors of the mating gears as well. They did not, however, include an appropriate measuring technique. 

Despite the multitude of optical techniques reviewed, no gear deviation parameters were offered.  

1.3 Commercial Systems 

Alternatively, since 2015, numerous commercial devices with various opto-mechanical setups have been 

developed due to state-of-the-art laser triangulation technology. MS3D [27], Nikon [28], and Gleason [29], 

for example, provided instruments that can collect dense areal data over the entire flank surface in a few 

seconds. 

Hexagon designed a structured light-based point cloud measuring machine. The instrument measures a gear 

flank with four structured light sensors facing the target flank and an inner bore with a separate line 

structured light sensor mounted above the upper face. However, areal gear measurement with such a 

commercial instrument is still under experimental investigation.  

 

Figure 1.16: Commercial optical measuring instruments: a) MS3D [27] b) Nikon HN-C3030 [28] c) Gleason 
300GMSL [29] [after 26] 

Nikon also developed the HN-C3030, a high-speed, high-precision flank topography measurement 

instrument that can be applied for gear inspection of a variety of gears with diameters of less than 300 mm. 

The contactless HN-C3030 3D measuring instrument is designed for precision and fast measurement of 

sophisticated components such as gears, impellers, turbine blades, etc. Nikon has made a big step ahead in 

ultra-fast shape evaluation compared to conventional tactile measurement techniques with the HN-C3030, 

which has an innovative laser scanner. Customers can gain superior insights into product compliance by 
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inspecting and correlating the measured surface to the original CAD file, resulting in rapid problem-

solving. 

Gear vibration and noise cause lots of problems for power transmission systems of automotive and wind 

turbines. A critical consideration in gear vibration and noise is the micrometer-order form deviations 

[16,34]. On the other hand, the presence of speckles and other types of scattered light in optical inspection 

is an inevitability according to the physics of optical measurement. As a result, when triangulation sensors 

are used, the scattered-based light deflection might cause unexpected, large form deviations. It has always 

been challenging to compare optical evaluation results with reference results, i.e., acquired by tactile 

measurement since large form deviations increase measurement uncertainty.  

Aside from that, it is essential to detect and remedy or avoid multiple light reflections, which might lead to 

inaccurate point clouds evaluated from an optical measurement of the flank surface [34]. In order to be 

recognized by the automotive industry, the holistic areal evaluation will also have to be consistent with the 

present conventional line-oriented evaluation within a few microns.  

This dissertation contributes toward addressing the problem of large, evaluated form deviations and 

multiple light reflection. An optical instrument equipped with a light section triangulation sensor is used to 

measure certain reference geometries, i.e., flat surface, cylinder, and sphere, as well as certain commercial 

gears to investigate and improve the fidelity of triangulation sensor measurements in optical inspections. 

1.4 Dissertation layout  

Chapter 1 has provided an overview of this study's background, motivation, and importance. The 

measurement and evaluation aspects of modern gear metrology technologies have been discussed. Classical 

gear inspection, based on a line-oriented tactile measurement, must be replaced with a faster, areal 

inspection that can capture complex modern gear modifications to adapt to the current needs of new 

applications. New requirements for gear metrology, including sufficient speed and accuracy, can be met 

through triangulation-based optical instruments. Since speckles and scattered light are inevitable during an 

optical inspection, they can cause large form deviations in the reconstructed geometry. This large, evaluated 
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form deviation imposes a severe technical gap for further adapting optical areal measurement systems in 

the industry.  

Chapter 2 describes the triangulation principle and peak detection algorithm and how the current embedded 

(OEM) algorithm can lead to large, evaluated form deviation. Then an improved mathematical approach is 

introduced for peak detection in each sensor frame to detect the peak position of that frame even more 

accurately. A MATLAB algorithm is developed based on the current mathematical approach. The impact 

of this algorithm on point clouds derived from surface measurements is analyzed in comparison to that of 

the embedded algorithm by measuring four reference geometries.  

Chapter 3 focuses on assessing the algorithm on various sets of simulated data. Each actual sensor frame 

consists of 1024 rows. The data is simulated based on the both exponential and quadratic distribution of 

light intensities over each row for both quadratic and elliptical ridge line profiles, which is the line in the 

x-y sensor domain with the highest light intensity. 

Chapter 4 studies the structure of actual sensor data to perform preprocessing on individual frames. 

Depending on the measured geometry, the ridge line profile that appears on the sensor varies. Four reference 

geometries are measured in this dissertation whose ridge line profiles are either quadratic or elliptical. Then 

the preprocessed frame is fed into the algorithm for the peak detection purpose for two types of ridge line 

profiles. The ridge line detected by the UNCC algorithm is compared with that by the Nikon algorithm to 

illustrate peak detection improvement. Then a rough correlation between the sensor coordinate system and 

the workpiece coordinate system is derived by performing an experimental measurement. This correlation 

offers a rough estimation of how implementing the UNCC algorithm can improve the evaluated form 

deviations. 

Chapter 5 gives the experimental verification of applying the UNCC algorithm in the measurement process 

of four reference geometries. The instrument creates two sets of information from any surface measurement; 

the sensor data and the lin file, including all the measurement information, which later forms the point 

clouds. This chapter uses the sensor data exported from the instrument to find the modified peak positions. 



17 
 

 

First, the sensor data, including several successive sensor frames, is used as the algorithm input. Then the 

peak detection algorithm is applied on every frame to find the modified peak positions of all frames. Then 

the original peak positions in the lin file are replaced with the modified ones to create the modified lin file. 

Finally, the modified lin file is converted to modified point clouds. The entire process is performed for four 

measured reference geometries to show the fidelity improvement of triangulation sensor measurement. 

Chapter 6 presents the conclusion of this dissertation and suggests several future works.  
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2 CHAPTER 2: METHODOLOGY 

The use of laser triangulation sensors is one methodology for precisely measuring the distance between a 

single point or line of points and the sensor reference. A light section triangulation sensor is widely adopted 

in optical instruments to enable the acquisition of extensive point clouds in a fair period of time in order to 

obtain surface topography. After a laser beam passes through a focusing lens to project onto the surface to 

be measured, the scattered light reflected from the surface passes through a collecting lens and is focused 

onto a photosensitive detector to create a spot image. As the target's relative distance varies, the spot's 

absolute position in the detector's coordinate system varies correspondingly. Hence, the spot's location on 

the detector is then processed to evaluate the target's distance from the light section. The approach is referred 

to as triangulation because the sensor, the emitted laser, and the reflected laser together resemble a triangle 

when seen from different perspectives. To speed up the measurement process, a laser spot is usually 

replaced with a laser stripe to swipe the target surface. This can be accomplished by passing the beam 

through a cylindrical lens or a Powell lens. 

 
 

Figure 2.1: Schematic principles of laser triangulation sensor [after 19] 

Since the triangulation principle used to measure a target surface is based on a laser light source, speckles 

and other scattered light phenomena may appear on the sensor detector as a result of the deflected laser 

stripe. The reflected stripe on the CCD camera would be detected as a series of bright successive rows with 
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an uneven intensity distribution in one sensor frame as depicted in Figure 2.2. Depending on the machine 

capturing frequency, which will be covered in detail in section 2.2, the result of the scanned surface consists 

of multiple consecutive sensor image frames. In each bright row, the light intensities form a bell-shaped 

distribution. Meaning that the intensity values start at zero, rise to a major peak, then fall to zero 

in each nonzero intensity row. In a simplified manner, the position of the pixel with the highest intensity is 

referred to as the peak position value of each successive row. In the original evaluation method, a 2D profile 

connecting all successive peaks over the CCD camera, referred to as a ridge line in this dissertation, is used 

as the 2D profile of the reflected stripe. This profile on the detector is then used to evaluate the location in 

space of the physical measured profile on the target surface.  

  

 
Figure 2.2: Intensity distribution of reflected laser stripe on CCD camera in one sensor image frame 

The above-mentioned light phenomena might cause some inaccurate peak position detection in the original 

evaluation method. The peak shift in sensor X-Y direction leads to a deviation in the evaluated distance, 

approximately perpendicular to the part surface. This is considered the main reason for the apparent form 

deviation in the measured results, which are not plausible in physical or technical terms since the measured 
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references have finished surfaces with a form deviation in the single-digit micrometer range (e.g., 3-5 𝜇𝑚). 

The objective of the performed research is to develop a mathematical approach to improve the detection of 

the ridge line within each frame for all the consecutive frames. The ridge line is the line in the X-Y domain 

with the highest intensity, as illustrated in the contour plot in Figure 2.4 as a blue dashed line. Using 

information about the sensor position relative to the workpiece, each scanned ridge line is transformed to 

spatial XYZ coordinates. Combining the XYZ data from consecutive ridge lines will form a representation 

of the entire surface (referred to as measured points).  

 

Figure 2.3: Nikon instrument’s coordinate systems 
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The advantage of the presented frame-by-frame approach to finding the ridge line compared to the original 

row-by-row approach is that in the original approach, the continuity of the measured profile is not 

considered when the peak detection of each row is independent of its adjacent rows. This makes the original 

method vulnerable to any dislocation of the intensity peaks due to environmental issues. In Contrast, the 

presented method follows a more global approach by enforcing continuity of the ridge line through the 

simultaneous evaluation of all the nonzero-intensity rows in a scanned frame. Some alternative 

mathematical approaches will be considered for the instrument to detect the peak position even more 

accurately.  

 

Figure 2.4: Intensity distribution of the sensor image frame vs. the ridge line in triangulation sensor [after 1] 

2.1 Mathematical Description 

Suppose the intensity at any given point, described by (𝑥,𝑦) coordinates in the sensor plane, can be found 

as an analytical function of x and y. The deviation between the measured and analytical model-based 

intensity can be calculated. To do so, a description of the intensity ridge line is needed depending on the 

geometry to be measured. According to the investigated geometries in this dissertation, i.e., flat surface, 

cylinder, sphere, and helical cylindrical gear, and based on the performed optimization that will be 
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covered in detail later, the ridge line profile is considered a quadratic polynomial for all the references 

except for sphere whose ridge line can be modeled best with an ellipse. 

Figure 2.5 illustrates the ridge lines in the cases of cylinder and sphere measurements. In both cases, the 

ridge line detected by the original evaluation method is shown in green and referred to as the rough 

solution. Different fitting methods are tested in each case to determine which can best fit the rough 

solution; in other words, which profile can better describe the rough solution.  

In the case of the cylinder measurement, a circle fit, an ellipse fit, and a quadratic polynomial fit are 

examined, among which the quadratic polynomial profile can interestingly fit the rough solution. 

Similarly, a quadratic polynomial can best model the ridge line profile of flat surfaces and cylindrical 

gears as shown in chapter 4. In the case of the sphere measurement, on the other hand, the ellipse fit 

offers a better match with the rough solution compared to the circle fit.  

 

 

Figure 2.5: Best fit to the ridge line profile for cylinder and sphere measurement 
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2.1.1 Quadratic Ridge Line 

Following the results given in the current dissertation, a quadratic polynomial can best represent the ridge 

line profile of the flat surface, cylinder, and helical cylindrical gear on the sensor plane. Then the local 

coordinate (ξ) on the ridge line can be defined in any of the three following directions, as demonstrated 

in Figure 2.6.  

A) Perpendicular to the ridge line  

B) Along the x direction 

C) Along the y direction 

(A) (B) (C) 

        
Figure 2.6: Illustration of ridge line profile in the sensor's X-Y-plane and intensity distribution along one local 

coordinate (ξ) 
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Figure 2.7: 3D and 2D plotted sensor image frame for linear (left) and quadratic (right) polynomials as the ridge line 

This section aims to find a 3D analytical model for the Intensity distribution across the 2D sensor plane. 

Three possible cases mentioned above will be described depending on how the orientation of the local 

coordinate is defined with respect to the projected ridge line profile on the sensor plane.  

2.1.1.1 Local Coordinate Perpendicular to Ridge Line 

In the first case, the local x coordinate is perpendicular to the ridge line profile (𝜉 = 𝑋௟௢௖), and the ridge 

line is considered a quadratic curve where 𝑦௖ is a function of 𝑥௖.  

 𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ 

(2.1) 
(ref A. a. 1)1 
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sin 𝜑

cos 𝜑
൰ ൬

𝑥 − 𝑥௖

𝑦 − 𝑦௖

൰ 
(2.2) 
(ref A. a. 3) 

 𝐼(𝜉, 𝑥௖ , 𝑦௖) = 𝑏଴(𝑥௖ , 𝑦௖) − 𝑏ଶ(𝑥௖ , 𝑦௖)𝜉ଶ (2.3) 
(ref A. a. 4) 

 
1 The ref equation numbers relate to the full derivation in Appendix A. 

Since the slope of the perpendicular line (𝜑) can be calculated having the slope of the tangent line to the 

ridge line (
ௗ௬೎

ௗ௫೎
), which is known for any point along 𝑦௖(𝑥௖), and 𝑋௟௢௖ is equal to 𝜉, then the intensity 

distribution can be determined as the function of x and y coordinates of the ridge line (I(𝑥௖ ,𝑦௖)). The 

straight line perpendicular to the ridge line passing through (𝑥௖ ,𝑦௖) is described by equation (2.4). Then, 

combining equations (2.1) to (2.4), 𝜉 can be found to be substituted in equation (2.3). It is also assumed 

that 𝑏଴ and 𝑏ଶ are constant over the ridge line. This means that the height of the intensity peaks along the 

ridge line and the width of the intensity stripe are both assumed to be constant. Plugging equation (2.5) 

into (2.3) gives equation (2.6): 



25 
 

 

 
𝑦 − 𝑦௖ =

ିଵ
೏೤೎
೏ೣ೎

(𝑥 − 𝑥௖)  (2.4) 
(ref A. a. 10) 
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(ref A. a. 13) 
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(2.6) 
(ref A. a. 15) 

 

Equations (2.1) and (2.4) are combined to remove 𝑦௖ and obtain equation (2.7) for 𝑥௖ . Considering the 

known values for x and y, which are the locations of any given pixel in the sensor coordinate system, 

equation (2.7) can be solved for 𝑥௖. Since 𝑥௖ is a non-linear function of the 𝑎௜ coefficients leading to a 

highly non-linear distance function, the other two directions for xloc are going to be assessed, hoping to 

reach a more linear distance function in terms of 𝑎௜ and 𝑏௜ coefficients. 

 
(𝑥 + 𝑎ଵ𝑦 − 𝑎ଵ𝑎଴) + (2𝑎ଶ𝑦 − 𝑎ଵ

ଶ − 2𝑎ଶ𝑎଴ − 1)𝑥௖ + (−3𝑎ଶ𝑎ଵ)𝑥௖
ଶ + (−2𝑎ଶ

ଶ)𝑥௖
ଷ = 0 

(2.7) 
(ref A. a. 17) 

 
𝑥௖ = 𝑓(𝑥, 𝑦) 

(2.8) 
(ref A. a. 18) 

 

2.1.1.2 Local Coordinate Along with X Direction 

In the second case, the local x coordinate is along with the sensor x direction (ξ =𝑥 − 𝑥௖) and 𝑦 = 𝑦௖. 

Therefore, the local coordinates can be determined by equation (2.10). Solving the equation (2.9) for 𝑥௖ 

and put that in (2.3), equation (2.11) can be derived. Similar to what was done in the previous case and 

having an analytical-based model for the intensity distribution, the distance function, which is the residual 

between the measured and the model-based intensity (𝐼௠ and 𝐼௔ respectively), can be found for any given 

pixel (𝑥, 𝑦) on the sensor. The distance function is defined in equation (2.12) in terms of 𝑎௜ and 𝑏௜ 

coefficients which are named as the solution and denoted by 𝑠 and defined by  𝑠 = (𝑎଴, 𝑎ଵ, 𝑎ଶ, 𝑏଴, 𝑏ଶ ) so 

that 𝑠ଵ is 𝑎଴ and 𝑠ହ is 𝑏ଶ. Then the solution changes, denoted by ∆𝑠 and defined by ∆𝑠ሬሬሬሬ⃗ =

(∆𝑎଴, ∆𝑎ଵ, ∆𝑎ଶ, ∆𝑏଴, ∆𝑏ଶ ), are added up to the solution in the distance function. Then the objective 

function (Q) shown in equation (2.13), which is the root square of the sum of the squares of the distance 

function values for all the sensor pixels, is optimized with respect to the solution changes iteratively. 
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Since equation (2.14) leads to an extremely complicated non-linear equation in terms of ∆𝑠௝ the last 

direction is going to be assessed. 

 𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ  

(2.9) 
(ref A. b. 1) 

 
൬

𝑥௟௢௖

𝑦௟௢௖

൰ = ൬
𝑥 − 𝑥௖

𝑦௖

൰ 
(2.10) 
(ref A. b. 4) 

 𝐼௔(𝑥, 𝑦) = 𝑏଴ − 𝑏ଶ ൬𝑥 − (
ି௔భ±ඥ௔భ

మିସ௔మ(௔బି௬)

ଶ௔మ
)൰

ଶ

  
(2.11) 
(ref A. b. 8) 

 𝑑௜ = 𝐼௜൫𝑠௝ + ∆𝑠௝൯ − 𝐼௠,௜  (2.12) 
(ref A. b. 11) 

 
𝑄 = ට∑ 𝑑௜

ଶ௡
௜ୀଵ   

(2.13) 
(ref A. b. 13) 

෍ ቌ𝑠ସ + ∆𝑠ସ − 𝐼௠,௜ − (𝑠ହ + ∆𝑠ହ) ൭𝑥௜ + (
(𝑠ଵ + ∆𝑠ଵ) ± ඥ(𝑠ଶ + ∆𝑠ଶ)ଶ − 4(𝑠ଷ + ∆𝑠ଷ)(𝑠ଵ + ∆𝑠ଵ − 𝑦௜)

2(𝑠ଵ + ∆𝑠ଵ)
)൱

ଶ
𝜕𝑑௜

𝜕∆𝑠௝

ቍ = 0
௡

௜ୀଵ
 

(2.14) 
(ref A. b. 15) 

2.1.1.3 Local Coordinate Along with Y Direction 

In the last case, the local y coordinate is along with the sensor y direction ξ =𝑦 − 𝑦௖  and 𝑥 = 𝑥௖. It is 

assumed that the ridge line 𝑦௖(𝑥௖) of the intensity distribution in the X-Y plane is known as a starting 

solution, i.e., a smooth line following the peaks of the intensity distributions over the successive rows. 

Plugging equation (2.15) into (2.3), the analytical model for the intensity of any arbitrary point (𝑥, 𝑦) is 

found as 𝐼௔(𝑥, 𝑦). 

 

Figure 2.8: Illustration of the ridge line in the sensor's X-Y plane and intensity distribution along 𝑦୪୭ୡ  coordinate 
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 𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ 

(2.15) 
(ref A. c. 1) 

 
൬

𝑥௟௢௖

𝑦௟௢௖

൰ = ൬
𝑥௖

𝑦 − 𝑦௖

൰ 
(2.16) 
(ref A. c. 2) 

 𝐼௔(𝑥, 𝑦) = 𝑏଴ − 𝑏ଶ(𝑦 − (𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ))ଶ (2.17) 
(ref A. c. 6) 

 

As discussed earlier, the square root of the sum of the squares of the residuals between the measured and 

the model-based intensity (𝐼௠ and 𝐼௔ respectively) for all the sensor pixels is called the objective function 

(Q). This objective function needs to be a minimum to find the best approximation for 𝐼௔. To do so, the 

intensity function should be written in terms of 𝑠௝ + ∆𝑠௝ (𝑎௝ + ∆𝑎௝ and 𝑏௝ + ∆𝑏௝). Then, Q should be 

iteratively minimized with respect to the five variable changes (∆𝑠௝) as given in equation (2.20) [31]. In 

equation (2.19), i denotes the point number, and k denotes the number of iterations. 

 
𝑑௜ = 𝐼௜൫𝑠௝ + ∆𝑠௝൯ − 𝐼௠,௜  

(2.18) 
(ref A. c. 7) 

 𝑄௞ = ට∑ 𝑑௜,௞
ଶ௡

௜ୀଵ   
(2.19) 
(ref A. c. 9) 

 

An initial solution 𝑠௝,଴ (𝑠଴ሬሬሬ⃗ = ൫𝑎଴,଴, 𝑎ଵ,଴, 𝑎ଶ,଴, 𝑏଴,଴, 𝑏ଶ,଴ ൯) is needed to start the iterations. One approach to 

finding the initial solution which is used in this work is to find the positions of the arrays with maximum 

intensities in X-Y sensor coordinate and find a quadratic polynomial regression to find the initial ridge 

line coefficients (𝑎଴,଴, 𝑎ଵ,଴, 𝑎ଶ,଴) for each sensor frame. Then the 1st nonzero-intensity row of the same 

sensor frame is used to find the initial coefficients (𝑏଴,଴, 𝑏ଶ,଴) for the quadratic intensity distribution using 

another quadratic polynomial regression. Considering the coefficient changes for the initial solution 

labeled as ∆𝑠௝,଴ (∆𝑠଴
ሬሬሬሬሬሬ⃗ = ൫∆𝑎଴,଴, ∆𝑎ଵ,଴, ∆𝑎ଶ,଴, ∆𝑏଴,଴, ∆𝑏ଶ,଴ ൯), the initial solution can be improved and used as 

the first solution for the next iteration.  
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(2.20) 
(ref A. c. 12) 

 

The square roots in the denominators of the five equations in equation (2.20) must be positive and 

different from zero in the non-trivial case. Therefore, only the numerators must be considered. However, 

the highly non-linear term in the nominator, 𝑓௝,଴ = ∑ ൬𝑑௜,଴
డௗ೔,బ

డ∆௦ೕ,బ
൰௡

௜ୀଵ , is linearized with respect to ∆𝑠௝,଴ to 

find a linear equation 𝑔௝,଴. Performing the same linearization for all five non-linear equations and setting 

them to zero ends up with a system of five linear equations in equation (2.22). 

 

𝑓ଵ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑎଴,଴

ቇ → 𝑔ଵ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ଵ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ଵ,଴

௡

௜ୀଵ
 

𝑓ଶ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑎ଵ,଴

ቇ → 𝑔ଶ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ଶ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ଶ,଴

௡

௜ୀଵ
 

𝑓ଷ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑎ଶ,଴

ቇ → 𝑔ଷ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ଷ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ଷ,଴

௡

௜ୀଵ
 

𝑓ସ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑏଴,଴

ቇ → 𝑔ସ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ସ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ସ,଴

௡

௜ୀଵ
 

𝑓ହ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑏ଶ,଴

ቇ → 𝑔ହ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ହ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ହ,଴

௡

௜ୀଵ
 

(2.21) 
(ref A. c. 13) 

 

Rearranging the five linear equations in terms of the changes (∆𝑠ሬሬሬሬ⃗ = (∆𝑎଴, ∆𝑎ଵ, ∆𝑎ଶ, ∆𝑏଴, ∆𝑏ଶ )), the 

following set of five linear equations is obtained. 
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(2.22) 
(ref A. c. 14) 

 

where the definition of each of the 𝐴௜௝  coefficients is given in APPENDIX A, and superscript 1 refers to 

iteration 1. Solving the set of 5 linear equations, all the five coefficient changes are calculated at each 

iteration, then the updated coefficients are obtained. Equation (2.23) shows how the five coefficients’ 

changes in iteration 1 (∆𝑠ଵ
ሬሬሬሬሬሬ⃗ ) is calculated first to update the initial coefficients (𝑠଴ሬሬሬ⃗ ) to the coefficients in 

iteration 1 (𝑠ଵሬሬሬ⃗ ). 

 [∆𝑠]ଵ = [[𝐴]ଵ]−1[𝐵]ଵ → 𝑠1ሬሬሬ⃗ = 𝑠0ሬሬሬ⃗ + ∆𝑠1
ሬሬሬሬሬሬ⃗  

(2.23) 
(ref A. c. 37) 

 
The new solution at each iteration 𝑠௞ሬሬሬ⃗  should be used to reduce the objective function 𝑄௞ to eventually 

find the minimum 𝑄 when the convergence criterion is satisfied. The maximum relative error of two 

consecutive solutions has been considered the predetermined convergence criterion to terminate the 

iteration loop. Although 1% is usually sufficient [31], 0.1 % is considered for this work as this has a 

minor effect on the computational expenses of the current algorithm. The optimization results given in 

chapter 4 along with the conformance between the results of proposed optimization and those of the 

fminsearch function illustrated in Figure 2.9, the considered convergence criterion looks sufficient. Then 

𝐼௔ as the best solution describes the intensity distribution can be found, and consequently, the ridge line 

can be achieved using already calculated 𝑎௜ coefficients. The derivations of the analytic expression of 

the intensity distribution and the related equations can also be found in APPENDIX A. 

2.1.2 Elliptical Ridge Line 

In the case of sphere measurement, the ridge line profile is found to be an ellipse. The four first solution 

coefficients are defined by the ellipse parameters (center coordinates and diagonals), and the fifth and 

sixth coefficients are defined by the quadratic intensity coefficients as 𝑠 = (𝑥଴, 𝑦଴, 𝑎, 𝑏, 𝑏଴, 𝑏ଶ). In other 

words, the first four coefficients are determined using an elliptical fit to the initial solution of the ridge 
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line, and the last two coefficients are determined using a quadratic fit to the initial solution of the intensity 

distribution of the first nonzero row. Plugging equation (2.24) into (2.3), the analytical model for the 

intensity of any arbitrary point (𝑥, 𝑦) is found as 𝐼௔(𝑥, 𝑦) illustrated in equation (2.26). Following the 

same procedure as for the quadratic ridge lines, the distance function given in equation (2.27) is derived 

as a function of the solution coefficients (𝑠௝) for any given point of sensor coordinates (𝑥, 𝑦). Similarly, 

the objective function 𝑄 is defined to be optimized with respect to the six solution coefficients to achieve 

the best intensity distribution out of the measured sensor intensities. Having the best-fitted intensity 

distribution, the ridge line profile is then determined.  

 
𝑦௖(𝑥) = 𝑠ଶ +  𝑠ସඨ1 − ൬

𝑥௖ − 𝑠ଵ

𝑠ଷ

൰
 ଶ

 
(2.24) 
(ref A. d. 1) 
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𝑥௟௢௖

𝑦௟௢௖

൰ = ൬
𝑥௖

𝑦 − 𝑦௖

൰ 
(2.25) 
(ref A. d. 2) 

 
𝐼௔(𝑥, 𝑦) = 𝑠ହ − 𝑠଺ ቌ𝑦 − 𝑠ଶ −  𝑠ସඨ1 − ൬

𝑥 − 𝑠ଵ

𝑠ଷ

൰
 ଶ

 ቍ

ଶ

 
(2.26) 
(ref A. d. 5) 

 
𝑑௜,௞ = ൫𝑠ହ,௞ିଵ − 𝐼௠,௜൯ − ൫𝑠଺,௞ିଵ൯ ቌ𝑦௜ − 𝑠ଶ,௞ିଵ −  𝑠ସ,௞ିଵඨ1 − ቆ

𝑥௜ − 𝑠ଵ,௞ିଵ

𝑠ଷ,௞ିଵ

ቇ

 ଶ

 ቍ

ଶ

 
(2.27) 
(ref A. d. 7) 

 

𝑄௞ = ඩ෍ 𝑑௜,௞
ଶ

௡

௜ୀଵ

 
(2.28) 
(ref A. d. 8) 

 
 
Since Q in equation (2.28) is a non-linear function of the coefficients and the optimization process explained 

earlier, requiring the process of analytical expansion followed by a linearization process, is expensive in 

terms of potential numerical errors and computational time, another approach is taken in the case of sphere 

measurement. In this case, Q is numerically optimized using Matlab's "fminsearch" function to reach the 

best-fitted intensity distribution. To do this, Matlab code is developed to optimize the objective function 

and to obtain the 𝑠௝ coefficients describing the ridge line profile. It is noteworthy to mention that in the 

earlier ridge line case, the results obtained from the already described optimization process are consistent 

with the results from the fminserach function, as shown in Figure 2.9, proving that the fminsearch function 

could be used as a powerful alternative in case of the complexity of the objective function.  
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Figure 2.9: UNCC Optimization vs. fminsearch function for cylinder measurement 

A MATLAB code comprised of several sections has been developed to take the sensor intensity matrix 

as the input and to perform the required calculations and the adjustments followed by the optimization 

process to achieve the optimized 𝑎௜ coefficients describing the improved ridge line for every single frame.  

2.2 Peak Detection Improvement 

The method used to modify the peak detection position of the point cloud measured by the Nikon Instrument 

is explained below. Figure 2.10 depicts a high-level view of the process of modification. The steps involved 

in the process are outlined below. The machine generates two sets of information as the result of measuring 

a target profile; dat files, which include sensor image data, and a lin file which includes peak detection 

positions along with the corresponding addresses. The lin file includes the peak detection position of every 

line (row) in every scanned sensor frame in a binary form. Software provided by Nikon can convert the dat 

files into TIFF files for image processing. The converted TIFF files are then converted to text files; each 

text file includes the sensor image data of one scanned frame.  
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(a) Original Nikon process (b) Proposed process 

Figure 2.10: Original and proposed peak detection process 

The sensor image data in the text file format is then fed into the UNCC algorithm to find the modified peak 

positions. Based on the lin file structure, in which peak positions and the corresponding addresses are saved 

in a binary format, the algorithm also generates the corresponding addresses to be later used during the 

replacement process so that each original peak position is exactly replaced with the modified peak position 

belonging to the same address. The replacement is done by another software provided by Nikon to achieve 

a modified lin file. Eventually, the modified lin file is converted to the modified point clouds in the machine 

coordinate system through another Nikon software. 

Depending on the length to be scanned, the number of frames generated by the Nikon instrument varies 

as the machine capturing frequency, the so-called "Pitch Value" in the supporting metrology software, is 

set by default to 20 microns per frame. For instance, 1000 frames would be generated by the instrument 

once a length of 20 millimeters is supposed to be scanned. Pitch value specifies the pitch value of the 

point cloud data to be obtained to change the scan speed. The smaller the pitch value is set in the 
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metrology software, the slower the scan will be performed. A recommended pitch value ranges from 

0.02mm to 0.05mm. 

2.2.1 UNCC Algorithm for Peak Detection Improvement 

In this section, the general outline of the UNCC algorithm is explained. The algorithm includes various 

parts, each of which is designed to add a capability to the algorithm. These parts are listed below. 

1. Define unique measurement parameters 
2. Import text files 
3. Match the modified lin file with the original lin file 
4. Remove multiple light reflection  
5. Make segments and integrate them for optimization considering the intensity positions 
6. Normalize over each row 
7. Crop the window to remove initial minor peaks 
8. Find the initial solution for optimization 
9. Perform optimization 
10. Calibrate the sensor to compensate for the sensor errors numerically 
11. Generate the corresponding address for each peak position 
12. Find the original Nikon solution and compare it with the algorithm's solution 

   

Figure 2.11: Algorithm for peak detection improvement 
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It is worth noting here the structure of sensor image data before discussing the different parts of the 

algorithm. As can be seen from Figure 2.12, there are zero intensity lines or void lines (depicted in orange) 

and nonzero intensity lines with a band of nonzero intensity elements (depicted in blue frame) surrounded 

by zero intensity elements (depicted in red frame) in each frame. One section of a converted text file, 

including light intensities, has been demonstrated in Figure 2.12. The maximum intensity of each line is 

highlighted in yellow. The highlighted profile across the entire sensor frame can represent a very rough 

estimation of the ridge line of this sensor frame illustrated in the dashed red line. Nikon follows a row-by-

row approach to find the peak position. They go through every single line independent of the following 

line, find each line's individual peak position using a mathematical method, and consider each line and its 

peak position to generate measured points. That’s why the measured profile by the original algorithm is 

non-uniform. Since the measured surface is a finished surface, a more or less uniform ridge line and 

therefore a uniform measured profile is expected. 

In addition to the structure of sensor images, the general structure of lin files is essential to be discussed as 

the modified peak positions must sit exactly at their corresponding addresses in the original lin file to form 

the modified one. Every line of a sensor frame has a unique address in the lin file, which is attributed to its 

corresponding peak position value in a binary format, as illustrated in Figure 2.13. 

 

Figure 2.12: Sensor image data vs Ridge line 
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Figure 2.13: Lin file structure 

In the first part of the algorithm, the unique parameters of measurement, including the index of the essential 

input files (sensor files and the line file), are defined for the algorithm. This would help the algorithm to 

load and read the input files automatically.  

The next section is designed to import the input files, and to save the associate data on the corresponding 

variables. Comparing the modified lin file with the original line file created by the instrument, there seems 

to be filtering performed by the company algorithm that excludes the peak position of some lines from the 

lin file. Since the eliminated lines are more related to the beginning and ending of nonzero lines of a frame, 

there might be a threshold defined for their algorithm to exclude the intensities below the predefined 

threshold that cannot form precise point clouds later. 

In the third part, a list of peak positions of each frame is extracted from the original lin file, and the index 

of void lines is detected. Then lines with the same index are set to zero in the imported sensor file to match 

the sensor files with the original lin file in terms of the void lines. In other words, not removing those lines 

from the imported sensor file will later lead to extra peak positions in the modified lin file and, thus, extra 

points in the modified point clouds. Every nonzero-intensity line corresponds to a peak position value and 

a measured point in the XYZ coordinate system. If the modified lin file is not matched with the original 

one, it would significantly affect the total number of modified point clouds compared to the original ones. 

Then, in the fourth part, intensities out of the primary band intensity, depicted in orange in Figure 2.14, are 

detected as multiple light reflection effects and are removed to avoid false surface detection. Multiple light 

Address Peak Position 
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reflection has always been a major challenge in optical metrology, especially in the case of shiny surfaces 

and small geometrical features such as tiny deep grooves or deep tooth gears. Access to the sensor file and 

detecting multiple light reflection effects in this dissertation offer one effective way to resolve this issue. 

 

Figure 2.14: Multiple light reflections in sensor frame 

As can be seen from Figure 2.12, the primary band intensity may include several segments of nonzero lines. 

They need to be separately detected to be considered in the optimization process to detect the ridge line. 

Although they are separated, they must be integrated and used in the optimization process. These all are 

performed in the fifth part of the algorithm.   

As the algorithm's objective is to detect the ridge line, the peak position matters. In other words, the three 

𝑎௜ coefficients in the case of a quadratic ridge line, or the 1st four 𝑠௝ coefficients in the case of an elliptical 

ridge line, which describe a ridge line profile, are the actual output of the optimization process and the 𝑏௜ 

coefficients, which describe the intensity profile across each row (intensity peak values and the intensity 

base width) are just used to run the optimization. Having said that, the ridge line coefficients (𝑎௜ or the 1st 

four 𝑠௝ coefficients) must be calculated independent of the intensity peak values and the optimization 

process must be isolated from the intensity peak values. Hence, the effect of various peak values across the 

sensor frame from line to line must be avoided. To do that, each frame is normalized by dividing the 

intensity values of each line by the maximum intensity value of that line so that the maximum intensity 

value of all lines is 1. 
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Another modification considered in the algorithm is the effect of minor peaks at each line's beginning and 

end. Looking at each nonzero intensity line, the intensity values often start from zero then rise to a minor 

peak and fall into a lower value followed by a sudden rise and reach a major peak. This approximately 

symmetric shape around the central peak can be observed in almost all lines. Minor peaks can cause a severe 

problem when the optimization falls into a local minimum instead of the global minimum, leading to false 

peak detection and, therefore, a wrong ridge line. In this section, the primary band intensity is cropped, and 

a tighter window excluding minor peaks is used for the optimization. Depending on the investigated 

geometries followed by the optimization results, a 15-pixel window is considered for the geometries with 

quadratic ridge line, i.e., flat surface, cylinder, and gear, and an 11-pixel window is considered for the 

geometries with the elliptical ridge line. The above-mentioned window’s width is found based on the results 

of the optimization process for various sensor frames of each geometry measurement. Here, two criteria are 

considered for determining the width: a visual and numerical comparison using the objective function value. 

First, by visually comparing the shape of the optimized ridge line profile with the original ridge line profile. 

Second, by checking the objective function value. Since the number of the evaluated pixels varies as the 

window width varies, and the objective function values changes as the number of evaluated pixels changes, 

the objective function criterion alone does not suffice. 

 

Figure 2.15: Cropped sensor data for the optimization 
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The eighth part of the algorithm is devoted to finding an initial solution to start the optimization with. As 

mentioned earlier in sections 2.1.1 and 2.1.2, there are two sets of coefficients; one to describe the ridge 

line profile and one to describe the bell-shaped intensity distribution. An initial solution for the first set is 

obtained by developing a quadratic polynomial regression to find the initial ridge line coefficients for each 

sensor frame by finding the locations of the arrays with the highest intensities in the X-Y sensor coordinates, 

as shown in Figures 2.11 and 2.12. The second set's initial values are then found using another quadratic 

polynomial regression on the first nonzero-intensity row of the same sensor frame. Having an initial 

solution 𝑠௝,଴, the iterations can then be started.  

The next and most crucial part is the implementation of the optimization process, the mathematics of which 

is explained in detail in sections 2.1.1 and 2.1.2. 

One of the advantages of the proposed algorithm is the calibration part which includes a 2-step process. 

First, the algorithm should run and drive the modified point clouds. In the second step, the modified point 

clouds are compared with the original point cloud to eventually find the numerical sensor calibration for 

the measured geometry. This calibration can later be used in the algorithm to compensate for the 

noncalibrated sensor effects. The deviations between the modified point clouds driven from the algorithm 

and the original point clouds are calculated in the calibration part. Then there is a common polynomial in 

the deviations of all frames when seen in the same plot. Subtracting the calculated deviation from the 

common term, residual deviations can be obtained that all follow a similar trend across various frames. The 

mean value of the residuals in the sensor coordinate system gives the calibration values in the sensor 

domain. As discussed in Chapter 4, the deviation in the sensor domain is linearly commensurate with the 

deviations in the point cloud coordinates system with a linear coefficient. Considering the linear conversion 

coefficients, the sensor calibration can be converted from the sensor domain into the machine coordinate 

system. The calibration of different geometries will be comprehensively discussed later in Chapter 5. 

To be able to modify the original lin file, not only the modified peak positions should be identified, but also 

the corresponding addresses should be generated so that each original peak position can be replaced with 
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the corresponding modified peak position belonging to the same address. The generation of the 

corresponding addresses and assigning each modified peak position to the correct address is performed in 

the next part of the algorithm. 

In the algorithm’s last part, original peak positions are driven from an original lin file to allow the user to 

compare peak positions between modified and original values. This can give one an idea of what change 

the UNCC algorithm can make in the sensor domain compared to the original Nikon method, as illustrated 

in Figure 2.16. The comparison in the sensor domain will be discussed in detail in Chapter 4. 

 

Figure 2.16: UNCC solution vs. Nikon solution in cylinder measurement 
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3 CHAPTER 3: EVALUATION WITH SIMULATED DATA 

This chapter assesses the UNCC algorithm performance using four sets of simulated data. A 3D light intensity 

distribution of a sensor frame is simulated using a quadratic and an elliptical ridge line profile. For each ridge line 

profile, one quadratic and one exponential profile is considered to simulate the bell-shaped light intensity 

distribution over each line of a sensor frame. First, the 3D light intensity distribution is simulated using known 

coefficient values. The known coefficients are comprised of three 𝑎௜ coefficients in the case of the quadratic ridge 

line, or the 1st four 𝑠௝ coefficients in the case of the elliptical ridge line, to describe a ridge line profile and two 𝑏௜ 

coefficients to describe the peak values and the bandwidth, as described earlier in Chapter 2. Then, the simulated 

light intensity is fed to the UNCC algorithm in each of the four cases to perform an optimization to iteratively find 

the corresponding ridge line profile. Then the simulation coefficients are compared to the UNCC solution to 

evaluate the UNCC algorithm. 

 

3.1 Quadratic Ridge Line 

An iterative optimization is developed based on the previously mentioned set of five linear equations and then tested 

for both the exponential and the quadratic simulated data, as seen in Figures 3.1 and 3.2. The algorithm can perfectly 

find the expected ridge line for both sets of simulation data. 

 

  
Figure 3.1: Simulation Data vs. the algorithm solution for exponential distribution 

𝒚 − 𝒚𝒄 
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Figure 3.2: Simulation Data vs. the algorithm solution for quadratic distribution 

Below, two examples of the simulated data and a comparison of the results are given to show how accurately the 

algorithm can converge to the 𝑎௜ simulated coefficients. In the first example, the intensity along the y direction is 

simulated using an exponential function, while in the second one, a quadratic polynomial is used to simulate the 

intensities along the y direction. As seen from the simulation coefficients and the final solution, the algorithm would 

perfectly approach the same values for the three first simulation coefficients, which describe the ridge line 

(𝑎଴, 𝑎ଵ, 𝑎ଶ). 

3.1.1 Simulation Based on Exponential Distribution of the Intensities over Each Row  

 
𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖

ଶ   
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𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑏଴𝑒ି௕మ(௬ି௬೎)మ
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Table 3.1: Coefficients describing exponential distribution of the intensities over each row for quadratic ridge line 

Simulation 
Coefficients 𝒂𝟎തതത 𝒂𝟏തതത 𝒂𝟐തതത 𝒃𝟎

തതത 𝒃𝟐
തതത 

100 2 3 10 0.001 

Start 
Solution 𝒂𝟎,𝟎 𝒂𝟏,𝟎 𝒂𝟐,𝟎 𝒃𝟎,𝟎 𝒃𝟐,𝟎 

120 0 3.5 5 0.005 

Final 
Solution 𝒂𝟎,𝒇 𝒂𝟏,𝒇 𝒂𝟐,𝒇 𝒃𝟎,𝒇 𝒃𝟐,𝒇 

100.000 2.000 3.000 5.757 0.001 

 

𝒚 − 𝒚𝒄 
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Figure 3.3: Simulation Data vs. the algorithm solution 

 
Figure 3.4: Objective function vs. iteration number 

3.1.2 Simulation Based on Quadratic Distribution of the Intensities over Each Row 

𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ   
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𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑏଴ − 𝑏ଶ(𝑦 − 𝑦௖)ଶ    
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Table 3.2: Coefficients describing quadratic distribution of the intensities over each row for quadratic ridge line 

Simulation 
Coefficients 𝒂𝟎തതത 𝒂𝟏തതത 𝒂𝟐തതത 𝒃𝟎

തതത 𝒃𝟐
തതത 

100 2 3 10 0.001 

Start 
Solution 𝒂𝟎,𝟎 𝒂𝟏,𝟎 𝒂𝟐,𝟎 𝒃𝟎,𝟎 𝒃𝟐,𝟎 

120 0 3.5 9 0.005 

Final 
Solution 𝒂𝟎,𝒇 𝒂𝟏,𝒇 𝒂𝟐,𝒇 𝒃𝟎,𝒇 𝒃𝟐,𝒇 

100.0000 2.0000 3.0000 10.0000 0.0010 

 

𝒚 − 𝒚𝒄 
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Figure 3.5: Simulation Data vs. the algorithm solution 

 
Figure 3.6: Objective function vs. iteration number 

3.2 Elliptical Ridge Line 

In the optimization stage of elliptical ridge line simulation, due to the highly nonlinear nature of the intensity 

equations caused by complicated elliptical equation, the MATLAB fminsearch function is used for both the 

exponential and the quadratic simulated data. Again, the algorithm can perfectly find the expected ridge line for 

both sets of simulation data, as shown in Figures 3.7 and 3.8. 

  
Figure 3.7: Simulation Data vs. the algorithm solution for exponential distribution 

𝒚 − 𝒚𝒄 

𝒚 − 𝒚𝒄 
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Figure 3.8: Simulation Data vs. the algorithm solution for quadratic distribution 

3.2.1 Simulation Based on Exponential Distribution of the Intensities over Each Row  

 𝑦௖(𝑥) = 𝑠ଶ +  𝑠ସඨ1 − ൬
𝑥௖ − 𝑠ଵ

𝑠ଷ

൰
 ଶ
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𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑠ହ 𝑒ି௦ల(௬ି௬೎)మ
   19 

 
Table 3.3: Coefficients describing exponential distribution of the intensities over each row for elliptical ridge line 

Simulation 
Coefficients 𝒙𝟎തതത 𝒚𝟎തതത 𝒂ഥ 𝒃ഥ 𝒃𝟎

തതത 𝒃𝟐
തതത 

5.0 0.0 6.0 20.0 10.0 0.5 

Start 
Solution 𝒙𝟎,𝟎 𝒚𝟎,𝟎 𝒂𝟎 𝒃𝟎 𝒃𝟎,𝟎 𝒃𝟐,𝟎 

4.0 0.0 10 17.0 -10 0.1 

Final 
Solution 𝒙𝟎,𝒇 𝒚𝟎,𝒇 𝒂𝒇 𝒃𝒇 𝒃𝟎,𝒇 𝒃𝟐,𝒇 

5.000 -0.004 6.001 20.005 6.100 0.531 

 
 

  
Figure 3.9: Simulation Data vs. the algorithm solution 

𝒚 − 𝒚𝒄 

𝒚 − 𝒚𝒄 
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Figure 3.10: Objective function vs. iteration number 

 

3.2.2 Simulation Based on Quadratic Distribution of the Intensities over Each Row 

 𝑦௖(𝑥) = 𝑠ଶ +  𝑠ସඨ1 − ൬
𝑥௖ − 𝑠ଵ

𝑠ଷ

൰
 ଶ
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𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑠ହ − 𝑠଺(𝑦 − 𝑦௖)ଶ     
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Table 3.4: Coefficients describing quadratic distribution of the intensities over each row for elliptical ridge line 

Simulation 
Coefficients 𝒙𝟎തതത 𝒚𝟎തതത 𝒂ഥ 𝒃ഥ 𝒃𝟎

തതത 𝒃𝟐
തതത 

5.0 0.0 6.0 20.0 10.0 1.6 

Start 
Solution 𝒙𝟎,𝟎 𝒚𝟎,𝟎 𝒂𝟎 𝒃𝟎 𝒃𝟎,𝟎 𝒃𝟐,𝟎 

4.0 0.0 10 19.0 -10 1.3 

Final 
Solution 𝒙𝟎,𝒇 𝒚𝟎,𝒇 𝒂𝒇 𝒃𝒇 𝒃𝟎,𝒇 𝒃𝟐,𝒇 

5.0 0.0 6.0 20.0 10.0 1.6 

 
 

  
Figure 3.11: Simulation Data vs. the algorithm solution 

𝒚 − 𝒚𝒄 
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Figure 3.12: Objective function vs. iteration number 

 
The above results show that the algorithm can converge the simulated data in both the exponential and the quadratic 

cases. Since working with the quadratic polynomial can save computational time, as shown in Figures 3.10 and 

3.12, while not affecting the algorithm convergence, the quadratic polynomial will be used for the actual sensor 

data.  
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4 CHAPTER 4: IMPLEMENTATION OF ALGORITHM ON ACTUAL SENSOR DATA  

Following the successful algorithm's performance on the simulated data shown in Chapter 3, the current 

chapter explains how the peak detection algorithm is applied to the actual sensor data for all the measured 

references in this dissertation, i.e., flat surface, cylinder, sphere, and helical cylindrical gear. The 

modified peak positions are then calculated to be compared with the peak positions extracted from the 

original Nikon peak detection algorithm. Since the triangulation method is used in the measurement 

process, any peak position deflection in the sensor X-Y direction leads to a deviation in the evaluated 

distance and, therefore, an inaccurate measured points cloud. To establish a correlation between the 

deviations in the sensor coordinate system and the machine XYZ coordinate system, a measurement is 

performed and the data in both coordinate systems are compared. This correlation can give one a rough 

estimation of how the peak detection modifications in the sensor domain can improve the measurement 

accuracy in the YXZ coordinate system. In the last section, a numerical comparison is performed between 

the UNCC and the Nikon peak detection algorithms for the same input sensor frame. 

4.1  Preprocessing for Actual Sensor Data 

Recalling from Chapter 2, sensor data includes multiple sensor frames, each of which consists of 1024 

rows (lines), each of which consists of 1024 elements. Therefore, the intensities of each sensor frame 

form a 1024×1024 matrix, as the machine laser scanner is equipped with a 1024×1024-pixel CCD 

camera. As explained in section 2.2.1 and shown in Figures 2.12 and 2.15, there can exist a primary 

intensity band of nonzero-intensity lines, serval zero-intensity lines, and zero-intensity elements around 

the primary band in each sensor frame. The primary band may include several segments of nonzero-

intensity lines. Furthermore, since the transposed intensity matrix of sensor frames is used in this chapter, 

zero-intensity lines are referred to as void columns. 

 Initially, the raw sensor frame needs to be preprocessed to be used as the input of the proposed peak 

detection algorithm. First, the sensor frame is rearranged so the algorithm can be applied. In other words, 

the intensity values are not changed at all, but the primary intensity band is rearranged. Since there are 
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some void columns in the sensor frame, as shown in Figure 4.1, the capability to find the location of the 

void columns is also added to the algorithm so that the sensor frame would be divided into several 

continuous segments, each of which has no void columns. 

An effort is made to make simulation data very similar to the actual sensor frame (with many non-intensity 

arrays around the primary intensity band as the actual sensor frame looks like), and the algorithm is tested. 

The result shows that the solution does not always converge because of the non-intensity arrays. Then the 

actual sensor frame is modified so that the non-intensity arrays are removed and only an intensity band is 

kept. This way, the solution converges.  

In the following, the above-mentioned method is used to rearrange the sensor frame and make the 

corresponding X and Y coordinates of the primary intensity band at each array, illustrated in Figures 4.1 to 

4.3. It should be noted that the sensor frame is not changed at all; however, the primary intensity band is 

rearranged for the purpose of optimization convergence. 

 
Figure 4.1: Transposed sensor frame 
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Figure 4.2: Rearranged intensity matrix 

   
Figure 4.3: X and Y Coordinates of the primary intensity band 

4.2  Postprocessing for Actual Sensor Data 

Finally, the algorithm is applied to four actual sensor data from measuring a flat surface, a cylinder, a 

cylindrical involute gear, and a sphere. In every four cases, the normalized 3D light intensity distribution 

of a sensor frame is plotted along with the UNCC solution, which is the ridge line detected by the UNCC 

algorithm. In Figures 4.4, 4.7, 4.10, and 4.13, the blue dashed line represents the UNCC-detected ridge 

line. Figures 4.5, 4.8, 4.11, and 4.14 illustrate how the Nikon solution oscillates around the UNCC 

solution in the different measured geometries. In other words, the UNCC solution offers a more uniform 

solution than the current Nikon solution. This is what is expected from the measurement of a finished 

surface. The objective function values over the optimization process are given in each case to show the 

optimization convergence. The given results show that the UNCC solution converges only after a few 
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iterations. The algorithm can perfectly find the ridge line of the sensor frames in various measured 

geometries, as demonstrated in Figures 4.4 to 4.15. 

 
 

 
Figure 4.4: Light intensity distribution vs. UNCC solution for a straight ridge line in flat surface measurement 

 

 
Figure 4.5: UNCC solution vs. Nikon solution for a straight ridge line 

  
Figure 4.6: Objective function for a straight ridge line   
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Figure 4.7: Light intensity distribution vs. UNCC solution for a quadratic ridge line in cylinder measurement 

 

 
Figure 4.8: UNCC solution vs. Nikon solution for a quadratic ridge line 

 
Figure 4.9: Objective function for a quadratic ridge line 
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Figure 4.10: Light intensity distribution vs. UNCC solution for a quadratic ridge line in gear measurement 

 

 
Figure 4.11: UNCC solution vs. Nikon solution for a quadratic ridge line 

 
Figure 4.12: Objective function for a quadratic ridge line 
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Figure 4.13: Light intensity distribution vs. UNCC solution for an elliptical ridge line in sphere measurement 

 

 
Figure 4.14: UNCC solution vs. Nikon solution for an elliptical ridge line 

 
Figure 4.15: Objective function for an elliptical ridge line 

 

4.3  Estimation of Rough Improvement 

A rough estimation of the improvement of the implemented UNCC algorithm in terms of the evaluated 

form deviation of a ground surface is investigated in the next step. A correlation between the deviations 
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in the sensor coordinate system and the machine XYZ coordinate system is essential to find an initial 

estimation for the improvement caused by modified peak detection compared to the current Nikon peak 

detection. In order to obtain the correlation, a reference geometry is scanned with the triangulation sensor. 

The measurement results in both sensor and XYZ coordinate systems are compared to find a correlation 

between the sensor and the XYZ coordinates. A laser stripe is illuminated to the surface, as shown in 

Figure 4.16-a or the red dash line in Figure 4.16-b, and the reflected light is captured on the detector, as 

shown in Figure 4.16-c. Comparing the measured height in two coordinate systems, a correlation is 

found. 

 

 

 

(a) (b) (c) 

Figure 4.16: Measurement of machine chuck step using Nikon HN Machine 
a) Machine XYZ CS b) Measured points cloud c) Ridge line of one sensor frame 

 

Dividing the step height by the number of pixels (= 
௛

୒
), every pixel roughly corresponds to 32 microns in the XYZ 

spatial distance. 

4.4  Comparison between UNCC and Nikon Peak Detection Algorithms  

 In this section, a method is used to compare the UNCC and Nikon solutions numerically. First, a sensor 

frame is considered the algorithm's input. Then, the UNCC peak detection algorithm is applied to the 

frame to detect the peak positions of the primary intensity band. After that, a circle is fitted to the positions 

on sensor coordinates using the least-squares criterion, and the residuals of every position from the fitted 

circle are calculated for all positions, as illustrated in Figure 4.17. Then, the RMS of the residuals is 

Y X 

Z 

h 
N=314 
pixels 
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calculated. Next, the same calculations are performed on the same frame for the Nikon solution to find 

the residuals and RMS of the Nikon solution from its own fitted circle. Finally, the RMS of the UNCC 

solution is compared with that of the Nikon solution, as shown in Figure 4.18. 

Comparing Nikon and UNCC residuals for one sensor frame, the difference between Nikon and UNCC 

solution turns out to be in the range of 0.7 pixel, which would correspond to roughly 22 microns. This is 

a rough comparison in which the effect of combining all successive ridge lines, which may also lead to 

more reduction in total evaluated form deviation, has not been taken into account. 

 

 

Figure 4.17: Fitted circle and residuals for detected peak positions 

 
 

Figure 4.18: Comparison between UNCC and Nikon residuals from a circle fit  
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5 CHAPTER 5: AREAL EVALUATION AND RESULTS 

Following the successful peak detection results on an individual sensor frame for different investigated 

reference geometries discussed in Chapter 4, the proposed algorithm is used to determine the ridge line 

of every consecutive sensor frame. Then the determined ridge line is converted into the machine XYZ 

coordinate system as a line of points. Then the converted lines of points are combined to generate the 

reconstructed point clouds.  

As explained in chapter 2, and depending on the instrument capturing frequency, the so-called "Pitch 

Value" in the supporting metrology software, each surface measurement may include hundreds of 

consecutive sensor frames. Each frame consists of 1024 rows, zero intensity and nonzero intensity rows. 

First, the sensor data is fed to the algorithm as the input data. The algorithm breaks the input data into 

separated frames. Then it modifies the peak position of nonzero intensity rows over one frame or modifies 

the detected ridge line in each frame. Then it devotes a unique address to each peak position of a row so 

that later any row of the frames has its unique peak position and address. Modifying the peak positions 

frame-by-frame for the entire sensor frames, the modified peak positions along with their corresponding 

addresses are exported from the algorithm.  

As illustrated in the below flowchart in Figure 5.1, two sets of information are exported from the Nikon 

instrument after a surface is scanned: an original lin file and a set of dat files (sensor data). The overall 

strategy of the modification is to take the original lin file and to use the sensor data and the UNCC 

algorithm to find the modified peak positions. Having the modified peak positions and their 

corresponding addresses, the original peak positions in the original lin file can be replaced with the 

modified peak positions to create the modified lin file. The modified lin file in the next step is converted 

into the modified point clouds. 

In this Chapter, the algorithm is used for the four scanned reference geometries: a flat surface, a cylinder, 

a sphere, and a commercial helical involute cylindrical gear. In each case, the modified point clouds 

produced are compared with the original point clouds to evaluate form deviations and offer a sensor 
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calibration for that particular geometry. It should be noted that although the optical measurement results 

have not been compared with the results of an areal tactile measurement, the measured references have 

finished surfaces with a form deviation in the single-digit micrometer or sub-micrometer range. 

 
 

(a) Original Nikon process (b) Proposed process 

Figure 5.1: Process of peak detection improvement 

5.1 Flat Surface Measurement 

The first section performs the above-mentioned process to find the modified point clouds for a nominally 

flat surface measurement. The original and the modified point clouds are plotted in the same plot as 

illustrated in Figure 5.2. A plane is fitted to each set of original and modified point clouds to find the 

deviations from the fitted plane in each case. A licensed MATLAB software is used in this section to 

determine the fitted plane using the least-squares criterion. Once the number of point clouds exceeds the 

limit of the fitting software, 19000 points, sampling with a specified sampling factor is used to reduce 

the number of point clouds.  
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Then each measured point is projected onto the plane. The normal distance of each measured point from 

the plane identifies the magnitude of the point's deviation. The deviation vector, on the other hand, is 

determined by the unit vector connecting the projected point to the measured point. Then magnified 

deviation magnitude in the deviation vector's direction from the fitted plane forms the magnified 

deviation. The magnified deviations can be computed using the point deviation's magnitude and vector 

for all the measured points. The magnified 3D deviations of the flat surface measurement with the 

magnifying factor of 50 are demonstrated in Figure 5.4. Similar to what was observed earlier in the sensor 

domain in chapter 4 and as expected, the points modified using the UNCC method represent more 

uniform point clouds than the scattered Nikon point clouds. 

Each frame produces a line of points resembling the projected laser line on the measured geometry. In 

the case of a flat surface scan, the intersection of two tilted planes forms nominally a line in 3D. In 

practice, however, the actual data will not form a perfect line due to the measurement uncertainties and 

the surface features, as illustrated in Figure 5.3. Then all these lines with the predefined pitch value are 

combined to form a point cloud representing the surface.  

The deviations of modified point clouds shown in green dots in Figure 5.4 follows a similar linear pattern 

over the consecutive frames. To better illustrate the deviation pattern over the consecutive frames, 

deviations are plotted in 2D. Figure 5.5 shows the 2D point cloud's deviations of the first frame for both 

the original and modified point clouds. Figure 5.6-a illustrates that if the 2D deviations of the consecutive 

frames are plotted in the same plot, they seem to follow a similar interesting linear pattern with different 

slopes and offsets. Suppose a straight line is fitted to the deviations of each frame, and the deviations are 

subtracted from the fitted line. In that case, the residuals from the fitted line can be derived. Plotting the 

residuals (transformed deviations) of all frames in the same plot shows that the residuals over the frames 

match each other, as shown in Figure 5.7.  

This similar pattern offers a common term in the deviations of the frames. In other words, the deviations 

consist of a common term plus an uncommon (a remaining) term. Since the common term repeats for all 

the frames, it cannot come from the measurand instead comes from the measurement process. More 
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investigations regarding the common term are also performed for other reference geometries. It is 

concluded that this common term comes from the sensor and needs to be numerically calibrated to 

improve measurement accuracy. The sensor calibration for different measured geometries is another 

capability of the UNCC algorithm. Considering the mean of the common term for all the frames in flat 

surface measurement, the flat surface calibration in machine XYZ coordinate system is derived. The logic 

of the calibration is to be used in the sensor domain so that later it causes the modification in the actual 

XYZ domain. The correlation derived in Chapter 4, so-called the correlation factor in this dissertation, is 

used to convert the calibration into the sensor domain. Due to the linear relation between the two domains, 

dividing the calibration of the XYZ domain by the calibration factor, the calibration of the sensor domain 

is calculated.  

After the calibration in the sensor domain is calculated, it is used in the UNCC algorithm to find the 

modified point cloud after the calibration is used. Figures 5.5 and 5.6 show the effect of calibration in the 

point cloud deviations. As shown in Figure 5.5, after calibration is used, the deviations are smoother and 

better represent a straight line. These deviations are compatible with the expectation of a finished surface 

measurement in which the point clouds and the deviations in each frame are expected to represent a 

straight line. 

Looking at the deviation of all the measured points, the flatness, which is the maximum deviation minus 

minimum deviation, can be calculated in both the original and the modified point cloud. The flatness of 

the original point cloud and the modified one is 73 and 46 microns, respectively. Looking more at Figure 

5.6, the total form deviation considering only the first 20 frames is roughly 25 microns (15-(-10)), 

although the UNCC algorithm offers a smoother solution than the scattered Nikon solution. In other 

words, the total form deviation is more influenced by the uncommon term than the common term in each 

individual frame. Therefore, the large evaluated form deviation is due to the frame-by-frame approach. 

Although the UNCC algorithm improves the peak detection using a frame-by-frame approach instead of 

the current Nikon row-by-row approach, it cannot further improve the evaluated form deviation as long 

as the frame-by-frame approach is used. 
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Figure 5.2: Original vs. modified point clouds in flat surface measurement 

 

Figure 5.3: Reconstructed point clouds of consecutive frames vs. one individual frame in flat surface measurement 

 

 
Figure 5.4: Magnified 3D deviations for sampled modified point clouds 
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Figure 5.5: 2D deviations of the first frame from the fitted plane for original and modified point clouds 

a. Before calibration b. After calibration 

  
Figure 5.6: 2D deviations of the first 20 frames for the modified point clouds 

a. Before calibration b. After calibration 

 
Figure 5.7: 2D transformed deviations of the first 20 frames for the modified point clouds 
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Figure 5.8: Flat surface calibration 

5.2  Cylinder Measurement 

This section implements modified peak detection on sensor data from a cylinder measurement. The 

original and modified point clouds are compared in Figure 5.9. A cylinder fit is used to find each case's 

fitted geometry and measurement deviations. As a result of cylinder fit to each set of data, the radius, 

height, and central axis of the fitted cylinder are calculated using licensed MATLAB software. A unit 

vector from the cylinder axes toward the point for every measured point is calculated to represent the 

deviation direction. The magnitude of the deviation, on the other hand, is calculated through the distance 

of the measured point from the fitted cylinder's axes minus the reference radius. Having the magnitude 

and the direction of a deviation, the magnified 3D deviation can be found whose magnitude and direction 

are the fitted cylinder's radius plus the magnified deviation magnitude and the deviation vector's direction, 

respectively. The magnified 3D deviations of the cylinder measurement with the magnifying factor of 

500 are depicted in Figure 5.11. 

As explained earlier, every sensor frame generates a line of points in the shape of the illuminated laser 

line on the measured geometry. In the current case, the intersection of a tilted plane and a cylinder 

nominally forms a 3D elliptical shape, as shown in a red line in Figure 5.10. Then all the consecutive 

generated lines with the predefined pitch value sit one after another to form the entire point clouds. 

Again, a close look at the deviations of the modified point clouds shows a repetitive pattern over the 

consecutive frames. A 2D illustration of the deviations of the first 20 frames is used to investigate the 
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pattern. As shown in Figure 5.12-a, the deviations calculated from the two strategies are compared. It is 

noted that the UNCC algorithm offers a uniform deviation map and so uniform solution in the case of 

cylinder measurement as well. Plotting the 2D deviations of the first 20 consecutive frames together in 

Figure 5.13-a, a similar pattern again can be observed. All the frames' deviations consist of different 

fourth-order polynomials (uncommon terms) and a common term on top of that. To extract the common 

term, each deviation map is subtracted from its fitted fourth-order polynomial. The residuals from the 

fitted polynomials of the first 20 frames are plotted in Figure 5.14. The extracted common residuals over 

the entire frames, the mean of the frames' residuals, nominates the calibration in the machine coordinate 

system for the cylinder measurement. Considering the correlation factor between the sensor and the actual 

XYZ domain introduced earlier, the sensor error correction for calibration in the sensor domain is derived 

and shown in Figure 5.15. 

When the calibration in the sensor domain has been calculated, it is employed in the UNCC algorithm to 

identify the updated point cloud. The updated 2D deviations of the same frames are demonstrated in 

Figures 5.12-b and 5.13-b to highlight how sensor calibration affects cylinder measurement. The 

calibration removes the extra deviations generated due to the noncalibrated sensor. Consequently, the 

modified point clouds represent more coherent point clouds compared to the dispersed Nikon point 

clouds. 

Evaluating the total cylindricity, which is the algebraic difference between the maximum and the 

minimum deviations from the best cylinder fit, the UNCC peak detection can improve the measured 

result from 50 to 29 microns. Looking at Figure 5.13, although the form deviation within one frame does 

not exceed roughly one micron, considering all 20 frames' deviations, the cylindricity of those frames 

reaches roughly 4 microns. This example clearly shows how the total evaluated cylindricity is more due 

to the uncommon term over different frames. Again, that is due to the frame-by-frame nature of the 

current approaches.  
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Figure 5.9: Original vs. modified point clouds in cylinder measurement 

 

Figure 5.10: Reconstructed point clouds of consecutive frames vs. one individual frame in cylinder measurement 

 
Figure 5.11: Magnified 3D deviations for sampled original and modified point clouds 
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Figure 5.12: 2D deviations of the first frame from the fitted cylinder for original and modified point clouds 

a. Before calibration b. After calibration 

  
Figure 5.13: 2D deviations of the first 20 frames for the modified point clouds 

a. Before calibration b. After calibration 

 
Figure 5.14: 2D transformed deviations of the first 20 frames for the modified point clouds 
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Figure 5.15: Cylinder calibration 

5.3  Sphere Measurement 

Similar to the flat surface and cylinder measurement sections, the UNCC algorithm helps to provide the 

modified point clouds out of a sphere measurement. The original and the modified point clouds are 

demonstrated in Figure 5.16. To find the point cloud deviations, a sphere fit is employed using another 

MATLAB software for both the original and modified sets. Sampling with a specified sampling factor is 

also used due to the high volume of the measured point clouds and the limit of the fitting software (19000 

points). 

A vector from the fitted Sphere's center to the measured point is used to calculate the deviation magnitude 

and vector. The magnitude of the vector deducted by the nominal sphere radius determines the deviation's 

magnitude and the unit vector's direction. Then magnified deviation magnitude in the deviation vector's 

direction from the fitted Sphere forms the magnified deviation. The magnified deviations can be 

calculated if the magnitude and vector of each point deviation are available. Figure 5.18 displays the 

amplified 3D deviations of the sphere measurement when the magnification factor is set to 500. 

In the case of sphere measurement, every sensor frame produces a line of points in the shape of the 

intersection of a tilted plane and a sphere section which is nominally a partial circle in 3D, as shown in 

Figure 5.17. Combining all the produced lines, as the surface is scanned frame by frame, the entire point 

clouds are reconstructed. 
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Similar to the calibration section of the other two geometries, the deviation map of each frame is 

calculated to eventually find the calibration correction. The 2D deviation maps of the first frame are 

depicted in Figure 5.19-a. Comparing the deviation map of the original and the modified methods, again, 

the modified point clouds represent more continuous deviations than those of the original one. Figure 20-

a shows a similar pattern in the deviation map of the first 20 frames. Each map comprises a fourth-order 

polynomial term superimposed with a repeated term. The repeated term can be extracted using fourth-

order polynomial regression to each deviation map and subtracting the map from the 4th order term. 

Again, the residual term of the various frames resembles each other, as demonstrated in Figure 5.21. 

The observed similar pattern can be used to extract the sensor error correction for calibration. Considering 

the mean of the common term for all the frames in sphere measurement, the sphere calibration in XYZ 

coordinate system is calculated. Then, the sphere calibration in the sensor domain illustrated in Figure 

5.22 is calculated using the linear correlation factor. 

Next, the calculated sphere calibration in the previous step is imported into the UNCC algorithm to 

improve the point clouds further. The improvement can be seen in Figures 5.19-b and 5.20-b, where the 

calibration eliminates the sensor error, which, in turn, generates a smoother measured profile in each 

frame and total. 

The sphericity, defined as the maximum deviation minus the minimum deviation, can be obtained by 

evaluating the original and the modified point cloud's deviation values. Sphericity measures 44 microns 

for the original point cloud versus 7 microns for the modified version. Similar to what was discussed 

earlier and having a careful look at Figure 5.20, the origin of the smaller evaluated sphericity compared 

to the larger values for the evaluated flatness and cylindricity is the similar value of the uncommon terms 

over consecutive frames.  
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Figure 5.16: Original vs. modified point clouds in sphere measurement 

 
Figure 5.17: Reconstructed point clouds of consecutive frames vs. one individual frame in sphere measurement 

 
Figure 5.18: Magnified 3D deviations for sampled original and modified point clouds 
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Figure 5.19: 2D deviations of the first frame from the fitted Sphere for original and modified point clouds 

a. Before calibration b. After calibration 

 
Figure 5.20: 2D deviations of the first 20 frames for the modified point clouds 

a. Before calibration b. After calibration 

 
Figure 5.21: 2D transformed deviations of the first 20 frames for the modified point clouds 
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Figure 5.22: Sphere calibration 

5.4  Helical Cylindrical Gear Measurement 

Once the algorithm is tested on three reference geometries, i.e., flat surface, cylinder, and Sphere, it is 

implemented for gear evaluations in the current section. As discussed earlier in the literature review, 

using the Plumb line distance concept, an equation has been presented to describe the 3D geometry of a 

gear flank surface; based on that, an areal description of the flank surface named the areal distance map 

has been defined. An areal evaluation method [26] has been proposed in which gear deviation parameters 

can be extracted directly from an areal distance map. This method maps the nominal flank geometry and 

the deviations from the nominal geometry into a local uvd coordinate system, as illustrated in Figure 

5.23. This coordinate system is an essential part of Ni's algorithm for areal gear evaluations. Hence, 

regarding gear measurement, first, the coordinate system and deviations are discussed to elaborate later 

on the effect of using peak detection modifications. 

5.4.1 Areal Distance Map and Surface Decomposition 

Figure 5.23 depicts a coordinate system on the flank surface that can be constructed using the direction 

of profile generation as one axis (labeled u), the direction of helix generation (labeled v) (which is the 

same as the z-axis), and the surface normal direction (labeled d). Probing in the v direction is equivalent 

to a helix measurement, and measuring in the u direction is the same as a profile measurement in the 

conventional gear measurement. At various points along the flank, the direction of the surface normal 

changes. Accordingly, this coordinate system varies with respect to the gear coordinate system at various 
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measurement points. Each point's plumb line distance, denoted by the value d, is the height of the point 

in the uvd coordinate system. The nominal flank surface is transformed into the u-v plane with the plumb 

lines of zero. A distance map is constructed using the point's plumb line distances from the set of 

measured points. This distance map is identical to the deviation map (containing only undesirable 

deviations) in the absence of gear modification. In the case of modified gear, on the other hand, the 

distance map is a combination of undesired deviations and the desired modifications.  

The distance map then incorporates all modifications. Figure 5.23 shows that all distances from the pure 

involute surface along the surface normal can be linearly combined and, conversely, removed from the 

distance map. Once the intended modifications to a measured gear are eliminated, eventual deviations 

from the nominal modified surface are either undesirable or should be kept to a minimum. Two-

dimensional orthogonal Chebyshev polynomials are used for surface decomposition. 

When an orthogonal series of polynomials on the [-1,1] domain is available, a linear combination of these 

features can decompose any function. This decomposition method is analogous to the Fourier series and 

the Zernike polynomials. Therefore, decomposing the deviation map into these features with certain 

coefficients would indicate the contribution of each on the surface. The coefficients in this method have 

the benefit of being orthogonal, meaning they do not interact with one another [32,33]. The polynomials 

also have a shape resembling the desired gear modifications. Figure 5.24 shows a comparison between 

six gear parameters and the Chebyshev term up to the second order. 
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Figure 5.23: Mapping the measured points to the areal surface coordinate system (uvd), and surface decomposition 

[after 32] 

 
Figure 5.24: Geometric resemblance of areal flank modifications/deviations by low order 2D Chebyshev 

polynomials [after 6,32] 

5.4.2 Evaluation Results 

With this background in mind, commercial gear is measured by the Nikon Instrument, and the algorithm 

is implemented on a full flank measurement. Then an evaluation MATLAB software developed by Yue 

Peng is used to provide the gear evaluation results to investigate the effect of the peak detection 

algorithm on the generated point clouds. The input of the evaluation software is a CSV file, including 

the measured point clouds in gear coordinate system, which is the output of the peak detection algorithm. 

… 
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The evaluation results are given below to see the new algorithm's improvement on the evaluated form 

deviation values. 

Figure 5.25 shows the deviation map of one measured flank without applying the UNCC peak detection 

algorithm. The form deviation, the algebraic difference between the maximum and the minimum 

deviations from the nominal flank surface, turns out to be 43.8 microns. 

  

Figure 5.25: Deviation map and evaluated results for the first flank of Gear T without peak detection improvement 

  

 

Figure 5.26: Deviation map of the first flank of Gear T without peak detection improvement in different views 
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Figure 5.27 shows the deviation map of the same flank after applying the UNCC peak detection algorithm. 

The evaluated form deviation is reduced to 9 microns over the same evaluation range. As can be seen from 

Figures 5.27 and 5.28, a higher-order term along the U direction can be observed from the form deviation 

map that repeats in the V direction. Similar to other reference geometries, this is due to the frame-by-frame 

nature of the algorithm. In the case of gear measurement, the calibration is not performed due to limited 

access to the evaluation software. 

 

 

Figure 5.27: Deviation map and evaluated results for the first flank of Gear T with peak detection improvement 

  

 

Figure 5.28: Deviation map of the first flank of Gear T with peak detection improvement in different views 
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Figure 5.29 shows the contribution of a ridge line of one sensor frame from gear measurement in different 

coordinate systems. 

 

   

(a) Sensor CSY (b) Workpiece CSY  (c) Evaluation CSY 

Figure 5.29: One sensor frame in different CSYs 
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6 CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In summary, this dissertation improves the profile fidelity of triangulation sensor measurement in 

optical inspection. An alternative mathematical approach to improving the ridge line detection at each 

sensor frame, which is the line in the x-y sensor domain with the highest light intensity, is proposed for the 

instrument to detect the peak position of that frame even more accurately. An analytical model of the sensor 

pixels' intensities is introduced to be compared with the measured intensities. The method uses three or four 

coefficients to model a ridge line profile across the sensor; depending on the investigated geometries, three 

coefficients are used for a quadratic ridge line, and four coefficients are used for an elliptical one. It also 

uses two additional coefficients to model the light intensity distribution over every sensor row. An iterative 

optimization is then proposed to find the best approximation for the model-based intensities out of the 

measured ones. Having the optimized solution for each frame, the modified ridge line can be detected. 

A MATLAB algorithm that includes various sections, each designed to add a capability, is 

developed based on the proposed peak detection method. One algorithm's preprocessing section removes 

multiple light reflections from the input frames. The instrument capturing frequency, known as "pitch 

value," determines the total count of the scanning frames. Performing the same peak detection for all the 

scanning frames, all the modified ridge lines across the successive frames are found. The algorithm also 

devotes a unique address to every sensor row for all the sensor frames to be used later to replace the original 

(Nikon) ridge lines with the modified ridge lines. The modified ridge lines are replaced, and the modified 

point clouds are extracted. 

The proposed algorithm uses numerical simulations on four sets of simulation data (based on 

various ridge line profiles and intensity distributions) to obtain the model-based ridge line from the 

simulated intensities in a sensor frame. Conformance between the optimized coefficients and the given 

simulated ones is obtained on four simulations. Then the actual sensor data of a single frame for various 

reference geometries, i.e., flat surface, cylinder, sphere, and gear, are fed to the algorithm to detect the 
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improved ridge lines. The modified ridge line offered a smoother profile in each case compared to the 

current scattered original ridge line, which is compatible with the expectation of measuring a finished 

surface. Then a numerical correlation between the sensor coordinates system and the workpiece one is 

calculated to roughly estimate the improvement of the implemented proposed algorithm in terms of the 

evaluated form deviation of a ground surface. One pixel in the sensor coordinates system roughly 

corresponds to 32 microns in the coordinates system. 

The algorithm is then used to measure the four above-mentioned reference geometries to find the 

modified evaluated point clouds out of the surface measurements. The deviation of each set of measured 

point clouds from its best fit after the algorithm is implemented is calculated to illustrate a common pattern 

in the deviations of the successive scanning frames for each geometry. Using the mean of the residuals 

between the deviations and the common deviation term for all the scanning frames in each geometry 

measurement, the sensor calibration for that measured reference geometry is offered.   

The modified point clouds showed a smaller evaluated form deviation for all four reference 

geometries. Having a closer look at the above-mentioned deviations in a few successive frames, the total 

form deviation is more influenced by the start and the end deviations in each frame than the change of the 

deviations across each individual frame. Therefore, the large, evaluated form deviation is due to the frame-

by-frame approach.  

6.2 Future Work 

Although there is promise in the proposed peak detection algorithm's potential applications, several 

significant issues still need to be researched in depth. 

6.2.1 Calibration across the Entire Sensor Domain 

As mentioned in Chapter 5, either the Nikon instrument or software adds a repeated pattern to the 

reconstructed point clouds when the modified peak detection process is used, or during the original Nikon 

process, they internally calibrate the sensor data that the modified process does not have access to. 

Therefore, an extra repeated pattern exists once the modified peak detection process is used that needs to 
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be numerically removed through sensor calibration. The proposed calibration process does not cover the 

entire sensor domain; hence, a comprehensive calibration can be performed in the future. This calibration 

can be done either by using a longer artifact for the entire sensor to be covered or by performing a set of 

measurements so that the entire sensor is used.  

6.2.2 Frame-by-Frame Approach 

Although the proposed algorithm improves the peak detection using a frame-by-frame approach 

instead of the current original row-by-row approach, it cannot further improve the evaluated form deviation 

as long as the frame-by-frame approach is used. 

6.2.3 Closed-Loop Control 

The proposed algorithm can be used in the future closed-loop control process where the new gear 

production processes require fast-optical measurement and evaluation processes to trace back from the 

finally achieved gear geometry to its origins in the manufacturing process. This extension can be achieved 

by equipping the manufacturing machine with suitable optical measuring devices, an appropriate evaluation 

strategy, and an inline inspection. 

 

 

  



79 
 

 

REFERENCES 

[1] Goch, G. "Gear metrology." CIRP Annals-Manufacturing Technology 52.2 (2003): 659-695.  
[2]  K. D. Bouzakis, E. Lili, N. Michailidis, and O. Friderikos, "Manufacturing of cylindrical gears by 
generating cutting processes: A critical synthesis of analysis methods," CIRP Annals - Manufacturing 
Technology, vol. 57, no. 2, pp. 676–696, 2008.  
[3]  B. Karpuschewski, H. J. Knoche, and M. Hipke, "Gear finishing by abrasive processes," CIRP 
Annals - Manufacturing Technology, vol. 57, no. 2, pp. 621–640, 2008.  
[4] C. Heinzel and A. Wagner, "Fine finishing of gears with high shape accuracy," CIRP Annals - 
Manufacturing Technology, vol. 62, no. 1, pp. 359–362, 2013.  
[5]  K. Erkorkmaz, A. Katz, Y. Hosseinkhani, D. Plakhotnik, M. Stautner, and F. Ismail, "Chip 
geometry and cutting forces in gear shaping," CIRP Annals - Manufacturing Technology, vol. 65, no. 1, 
pp. 133–136, 2016.  
[6] International Organization for Standardization. ISO1328-1: Cylindrical Gears—ISO System of Flank 
Tolerance Classification—Part 1: Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth; 
ISO: Geneva, Switzerland, 2013. 
[7] Peggs, G.N.; Maropoulos, P.G.; Hughes, E.B.; Forbes, A.B.; Robson, S.; Ziebart, M.; 
Muralikrishnan, B. Recent developments in large-scale dimensional metrology. Proc. Inst. Mech. Eng. B 
2009, 223, 571–595, doi:10.1243/09544054JEM1284. 
[8] Franceschini, F.; Galetto, M.; Maisano, D.; Mastrogiacomo, L. Large-scale dimensional metrology 
(LSDM): From tapes and theodolites to multi-sensor systems. Int. J. Precis. Eng. Manuf. 2014, 15, 1739–
1758, doi:10.1007/s12541-014-0527-2. 
[9]  Lotze, W., Hartig, F., 2001, 3D gear measurement by CMM. Laser Metrology and Machine 
Performance "Lambdamap" in Birmingham, UK, p. 333. ISBN 1- 8531 2-890-2. 
[10] Laser line triangulation for fast 3D measurements on large gears 
[11] ISO/FDIS 21771, Gears – Cylindrical Involute Gears and Gear Pairs – Concepts and geometry; 
2007(E). 
[12]  G. Goch, K. Ni, Y. Peng, and A. Guenther, "Future gear metrology based on areal measurements 
and improved holistic evaluations," CIRP Annals - Manufacturing Technology, vol. 66, no. 1, pp. 469–474, 
2017. 
[13]  A. Guenther, “Flaechenhafte Beschreibung und Ausrichtung von Zylinderraedern mit 
Evolventenprofil,” Universitaet Ulm, 1996. 
[14]  Goch, G., Gunther, A, 2002, Future Gear Metrology, Superficial Description and Inspection of 
Flanks, in: 
International Conference on Gears Vol. 2, VDIBerichte 1665, p. 751-768. 
[15]  Gunther, A. et al., 2002, Austauschformat fur Verzahnungsdaten, VDI-Berichte 1673, p. 159-1 70. 
[16] F. Takeoka et al., "Design of Laser Interferometric Measuring Device of Involute Profile," Journal 
of Mechanical Design, vol. 130, no. 5, p. 52602, 2008. 
[17] S. Fang, L. Wang, M. Komori, and A. Kubo, "Simulation method for interference fringe patterns 
in measuring gear tooth flanks by laser interferometry. " Applied optics, vol. 49, no. 33, pp. 6409–15, 2010. 



80 
 

 

[18] G. Lu, S. Wu, N. Palmer, and H. Liu, "Application of Phase Shift Optical Triangulation to 
Precision Gear Gauging," vol. 3520, no. November, pp. 52–63, 1998. 
[19] https://www.acuitylaser.com/sensor-resources/laser-triangulation-sensors/#01 
[20] https://en.wikipedia.org/wiki/File:Laserprofilometer_EN.svg 

[21] Peters J, Goch G, Günther A. Helical gear measurement using structured light. In: Proceedings of 
the XVI IMEKO world congress. Wien; 2000. p. 227–30. 
[22] Leopold J, Günther H. Fast 3D measurement of gear wheels. In: Seventh international symposium 
on laser metrology applied to science, industry, and everyday life, vol. 4900. International Society for 
Optics and Photonics; 2002, p. 185–94. 
[23] Kumar A, Jain P, Pathak P. Curve reconstruction of digitized surface using k-means algorithm. 
Procedia Eng 2014;69:544–9. http://dx.doi.org/10. 1016/j.proeng.2014.03.024, URL 
http://www.sciencedirect.com/science/article/ 
pii/S1877705814002707. 
[24] Chen Y, Chen J. Optical inspection system for gear tooth surfaces using a projection Moiré 
method. Sensors 2019;19(6):1450. http://dx.doi.org/10.3390/ s19061450. 
[25] Härtig F, Stein M. 3D involute gear evaluation – Part I: Workpiece coordinates. Measurement 
2019;134:569–73. http://dx.doi.org/10.1016/j. measurement.2018.10.088, URL 
http://www.sciencedirect.com/science/article/ 
pii/S0263224118310315. 
[26] Ni K. Areal gear metrology with modified flanks [Ph.D. thesis], The University of North Carolina 
at Charlotte; 2017. 
[27] MS3D, "3D INSPECTION OF GEAR." [Online]. Available: http://www.ms3d.eu/en/our-
machines/3d-inspection-of-gear-gearinspection/. 
http://www.manufacturing-technologies.com/libo/files/pdfuk/fiche_soc-1029.pdf 
[28] Nikon HN-C3030, Non-contact sensor 3D measuring system, Product information, Nikon 
Metrology NV 
, Apr 21, 2016. Accessed on Apr 22, 2022. [Online]. 
Available: https://www.nikonmetrology.com/en-gb/about-us/latest-news/the-hn-c3030-delivers-high-
speed,-high-precision,-non-contact-gear-inspection 
[29] Gleason, "300GMSL Multi-Sensor Inspection Machine." [Online]. Available: 
http://www.gleason.com/en/news/472/300gmsl-multi-sensor-inspection-machine. 
https://www.gleason.com/en/facts-and-news/news-room/want-quiet-go-nano-sub-micron-gear-
inspection-control-2022 
[30] Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance 
Sensors 

[31] G. Goch and K. Luebke, "Tschebyscheff approximation for the calculation of maximum 
inscribed/minimum circumscribed geometry elements and form deviations," CIRP Annals - 
Manufacturing Technology, vol. 57, no. 1, pp. 517–520, 2008.  
[32] G. Goch, Y. Peng, K. Ni, A. Guenther, "Optical and areal measurement and evaluations of 
cylindrical gears," In: 17th international VDI congress, Bonn, 2017.  



81 
 

 

[33] Y. Peng, K. Ni, G. Goch, "Areal evaluation of involute gear flanks with three-dimensional surface 
data," AGMA FTM, 2017, 15.  

[34] A. Hosseinpour, Y. Peng, G. Goch, K. Ni, A. Guenther "Optical gear inspection using a 
triangulation sensor and an areal evaluation," 35th American Society for Precision Engineering Annual 
Meeting (ASPE), 2020, 166-169. 
 
 

 

 

  



82 
 

 

APPENDIX A: PEAK DETECTION ALGORITHM OR DERIVATION OF 

ANALYTICAL DESCRIPTION OF RIDGE LINE 

a. Quadratic ridge line- Local coordinate perpendicular to the ridge line  

b. Quadratic ridge line- Local coordinate along with the x direction 

c. Quadratic ridge line- Local coordinate along with the y direction 

d. Elliptical ridge line- Local coordinate along with the y direction 

 
a. Quadratic ridge line and ξ =xloc  
 

 𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ (A. a. 1) 

 
ௗ௬೎

ௗ௫೎
= 𝑎ଵ + 2𝑎ଶ𝑥௖  (A. a. 2) 

 ቀ௫೗೚೎
௬೗೚೎

ቁ = ቀ ୡ୭ୱ ఝ
ିୱ୧୬ ఝ

ୱ୧୬ ఝ
ୡ୭ୱ ఝ

ቁ ቀ௫ି௫೎
௬ି௬೎

ቁ  (A. a. 3) 

 𝐼(𝜉, 𝑥௖ , 𝑦௖) = 𝑏଴(𝑥௖ , 𝑦௖) − 𝑏ଶ(𝑥௖, 𝑦௖)𝜉ଶ (A. a. 4) 

 

where 𝑦௖ is a function of 𝑥௖. Since 𝜑 can be calculated as having 
ௗ௬೎

ௗ௫೎
 which is known for any point along 

𝑦௖(𝑥௖), and 𝑥௟௢௖ is equal to 𝜉, then I(𝑥௖ ,𝑦௖) can be calculated.  

 

tan 𝜑 =
−1

𝑑𝑦௖
𝑑𝑥௖

 
 (A. a. 5) 

 

sin 𝜑 = −
±1

ඨ1 +
𝑑𝑦௖
𝑑𝑥௖

ଶ

 
(A. a. 6) 

 

cos 𝜑 =
±

𝑑𝑦
𝑑𝑥

ඨ1 +
𝑑𝑦௖
𝑑𝑥௖

ଶ

 
(A. a. 7) 

 
cos 𝜑 = −

𝑑𝑦௖

𝑑𝑥௖
 . sin 𝜑 (A. a. 8) 

 
The straight line perpendicular to the ridge line passing through (𝑥௖ ,𝑦௖) is described by: 

 𝑦 − 𝑦௖ = tan 𝜑 (𝑥 − 𝑥௖) (A. a. 9) 
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𝑦 − 𝑦௖ =
−1

𝑑𝑦௖
𝑑𝑥௖

(𝑥 − 𝑥௖) (A. a. 10) 

 
Using equation (𝐴. 𝑎. 3), 𝑥௟௢௖ and 𝑦௟௢௖ can be calculated as follows: 

 𝑥௟௢௖ = (𝑥 − 𝑥௖) cos 𝜑 + (𝑦 − 𝑦௖) sin 𝜑 =  𝜉 (A. a. 11) 

 𝑦௟௢௖ = −(𝑥 − 𝑥௖) sin 𝜑 + (𝑦 − 𝑦௖) cos 𝜑 = 0  (A. a. 12) 

 
From equations (𝐴. 𝑎. 5), (𝐴. 𝑎. 11) and (𝐴. 𝑎. 12), 𝜉 can be found as follows: 

 
𝜉 =  (𝑥 − 𝑥௖)ඨ1 + ቆ

ଵ
೏೤೎
೏ೣ೎

ቇ

ଶ

  (A. a. 13) 

 
It is also assumed that 𝑏଴ 𝑎𝑛𝑑 𝑏ଶ 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡ants over the ridge line. This means that the intensity peaks 

along the ridge line and the width of the intensity stripe are both assumed to be constant. Plugging 

equation (𝐴. 𝑎. 13) into (𝐴. 𝑎. 4) gives: 

 
𝐼(𝜉, 𝑥௖ , 𝑦௖) = 𝑏଴ − 𝑏ଶ(𝑥 − 𝑥௖)ଶ ൭1 + ቆ

ଵ
೏೤೎
೏ೣ೎

ቇ

ଶ

൱  (A. a. 14) 

 𝐼(𝜉, 𝑥௖ , 𝑦௖) = 𝑏଴ − 𝑏ଶ(𝑥 − 𝑥௖)ଶ ൬1 + ቀ
ଵ

௔భାଶ௔మ௫೎ 
ቁ

ଶ
൰  (A. a. 15) 

 
Equations (𝐴. 𝑎. 1) and (𝐴. 𝑎. 10) are combined to remove 𝑦௖ in equation (𝐴. 𝑎. 16). 

 𝑦 − (𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ) =

−1

𝑎ଵ + 2𝑎ଶ𝑥 
(𝑥 − 𝑥௖) (A. a. 16) 

 
(𝑥 + 𝑎ଵ𝑦 − 𝑎ଵ𝑎଴) + (2𝑎ଶ𝑦 − 𝑎ଵ

ଶ − 2𝑎ଶ𝑎଴ − 1)𝑥௖ + (−3𝑎ଶ𝑎ଵ)𝑥௖
ଶ

+ (−2𝑎ଶ
ଶ)𝑥௖

ଷ = 0 
(A. a. 17) 

 
Considering the known values for x and y which are the locations of any given pixel in the sensor 

coordinate system, equation (𝐴. 𝑎. 17) can be solved for 𝑥௖. 

 𝑥௖ = 𝑓(𝑥, 𝑦) (A. a. 18) 

 
Since the 𝑥௖ is a complicated non-linear function of x and y leading to a highly non-linear deviation 

function; the other two directions for xloc will be assessed. 

 
b. Quadratic ridge line and ξ =xloc=𝑥 − 𝑥௖ 𝑎𝑛𝑑 𝑦 = 𝑦௖ 
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 𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ (A. b. 1) 

 (𝑎଴ − 𝑦௖) + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ = 0 (A. b. 2) 

 𝑥௖ =
−𝑎ଵ ± ඥ𝑎ଵ

ଶ − 4𝑎ଶ(𝑎଴ − 𝑦௖)

2𝑎ଶ
 (A. b. 3) 

 
൬

𝑥௟௢௖

𝑦௟௢௖
൰ = ൬

𝑥 − 𝑥௖

𝑦௖
൰ (A. b. 4) 

 𝑥௟௢௖ = (𝑥 − 𝑥௖) = 𝜉 (A. b. 5) 

 𝑦௟௢௖ = 𝑦௖ = 𝑦 (A. b. 6) 

 𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑏଴ − 𝑏ଶ(𝑥 − 𝑥௖)ଶ (A. b. 7) 

 𝐼௔(𝑥, 𝑦) = 𝑏଴ − 𝑏ଶ ൬𝑥 − (
ି௔భ±ඥ௔భ

మିସ௔మ(௔బି௬)

ଶ௔మ
)൰

ଶ

  (A. b. 8) 

 Solution: 𝑠 = (𝑎଴, 𝑎ଵ, 𝑎ଶ, 𝑏଴, 𝑏ଶ ) (A. b. 9) 

 coefficient change: ∆𝑠ሬሬሬሬ⃗ = (∆𝑎଴, ∆𝑎ଵ, ∆𝑎ଶ, ∆𝑏଴, ∆𝑏ଶ ) (A. b. 10) 

 Distance definition: 𝑑௜ = 𝐼௜൫𝑠௝ + ∆𝑠௝൯ − 𝐼௠,௜ (A. b. 11) 

 

𝑑௜ = ൫𝑏଴ + ∆𝑏଴ − 𝐼௠,௜൯ − (𝑏ଶ + ∆𝑏ଶ).  

. ቌ𝑥௜ − ൭
−(𝑎ଵ + ∆𝑎ଵ) ± ඥ(𝑎ଵ + ∆𝑎ଵ)ଶ − 4(𝑎ଶ + ∆𝑎ଶ)(𝑎଴ + ∆𝑎଴ − 𝑦௜)

2(𝑎ଶ + ∆𝑎ଶ)
൱ቍ

ଶ

 
(A. b. 12) 

 𝑄 = ට∑ 𝑑௜
ଶ௡

௜ୀଵ   (A. b. 13) 

 
෍ ቆ𝑑௜

𝜕𝑑௜

𝜕∆𝑠௝
ቇ = 0

௡

௜ୀଵ
 (A. b. 14) 

 

෍ ൮

൫𝑏଴ + ∆𝑏଴ − 𝐼௠,௜൯ − (𝑏ଶ + ∆𝑏ଶ).

൭𝑥௜ − (
−(𝑎ଵ + ∆𝑎ଵ) ± ඥ(𝑎ଵ + ∆𝑎ଵ)ଶ − 4(𝑎ଶ + ∆𝑎ଶ)(𝑎଴ + ∆𝑎଴ − 𝑦௜)

2(𝑎ଶ + ∆𝑎ଶ)
)൱

ଶ
𝜕𝑑௜

𝜕∆𝑠௝

൲  
௡

௜ୀଵ

= 0 

(A. b. 15) 

 
Since equation (𝐴. 𝑏. 15) leads to an extremely complicated non-linear equation in terms of ∆𝑠௝ the last 

direction is going to be assessed. 

c. Quadratic ridge line and ξ =yloc=𝑦 − 𝑦௖  𝑎𝑛𝑑 𝑥 = 𝑥௖ 
 

It is assumed that the ridge line 𝑦௖(𝑥) of the intensity distribution in the X-Y plane is known as a starting 

solution, i.e., a smooth line following the peaks of the distribution.   
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 𝑦௖(𝑥) = 𝑎଴ + 𝑎ଵ𝑥௖ + 𝑎ଶ𝑥௖
ଶ (A. c. 1) 

 
൬

𝑥௟௢௖

𝑦௟௢௖
൰ = ൬

𝑥௖

𝑦 − 𝑦௖
൰ (A. c. 2) 

 𝑥௟௢௖ = (𝑥௖) = 𝜉 (A. c. 3) 

 𝑦௟௢௖ = 𝑦 − 𝑦௖  (A. c. 4) 

 𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑏଴ − 𝑏ଶ(𝑦 − 𝑦௖)ଶ (A. c. 5) 

 
Plugging equation (𝐴. 𝑐. 1) into (𝐴. 𝑐. 5), the analytical solution for the intensity of any arbitrary point 

(𝑥, 𝑦) is found as 𝐼௔(𝑥, 𝑦). 

 𝐼௔(𝑥, 𝑦) = 𝑏଴ − 𝑏ଶ(𝑦 − (𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ))ଶ (A. c. 6) 

 
The sum of the squares of the residuals between the measured and the model-based intensity (𝐼௠ and 𝐼௔ 

respectively) for all the sensor pixels is called the objective function (Q). This objective function needs 

to be a minimum to find the best approximation for 𝐼௔. To do so, the intensity function should be written 

in terms of  𝑎௝ + ∆𝑎௝ and 𝑏௝ + ∆𝑏௝. Then, Q should be iteratively minimized with respect to the five 

variable deviations ∆𝑎௝𝑎𝑛𝑑 ∆𝑏௝ (∆𝑠௝) [3]. 

 Distance definition: 𝑑௜ = 𝐼௔,௜൫𝑠௝ + ∆𝑠௝൯ − 𝐼௠,௜ (A. c. 7) 

 

𝑑௜,௞ = ൫𝑏଴,௞ିଵ + ∆𝑏଴,௞ − 𝐼௠,௜൯ − ൫𝑏ଶ,௞ିଵ + ∆𝑏ଶ,௞൯. 

൫𝑦௜ − ൫𝑎଴,௞ିଵ + ∆𝑎଴,௞ + (𝑎ଵ,௞ିଵ + ∆𝑎ଵ,௞൯𝑥௜ + ൫𝑎ଶ,௞ିଵ + ∆𝑎ଶ,௞൯𝑥௜
ଶ൯

ଶ
 

(A. c. 8) 

 
In equation (𝐴. 𝑐. 8), i denotes the point number and k denotes the number of iterations. 

 Objective function:  𝑄௞ = ට∑ 𝑑௜,௞
ଶ௡

௜ୀଵ  (A. c. 9) 

 Initial solution: 𝑠଴ሬሬሬ⃗ = ൫𝑎଴,଴, 𝑎ଵ,଴, 𝑎ଶ,଴, 𝑏଴,଴, 𝑏ଶ,଴ ൯ (A. c. 10) 

 Initial change: ∆𝑠଴
ሬሬሬሬሬሬ⃗ = ൫∆𝑎଴,଴, ∆𝑎ଵ,଴, ∆𝑎ଶ,଴, ∆𝑏଴,଴, ∆𝑏ଶ,଴ ൯ (A. c. 11) 

 
An initial solution 𝑠௝,଴ is needed to start the iterations. One approach to finding the initial solution which 

is used in this work is to find the positions of the arrays with max intensities in X-Y sensor coordinate 

and find a quadratic polynomial regression to find the initial ridge line coefficients (𝑎଴,଴, 𝑎ଵ,଴, 𝑎ଶ,଴) for 
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each sensor frame. Then the 1st nonzero-intensity row of the same sensor frame is used to find the initial 

coefficients (𝑏଴,଴, 𝑏ଶ,଴) for the quadratic intensity distribution using another quadratic polynomial 

regression. Considering the coefficient changes for the initial solution labeled as ∆𝑠௝,଴, the initial solution 

can be improved and used as the first solution for the next iteration. 

𝑄௠௜௡ →
డொబ

డ∆௦ೕ,బ
= 0,    

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

డொబ

డ∆௔బ,బ
= 0

డொబ

డ∆௔భ,బ
= 0

డொబ

డ∆௔మ,బ
= 0

డொబ

డ∆௕బ,బ
= 0

డொೖ

డ∆௕మ,బ
= 0

→   

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

ଵ

ଶට∑ ௗ೔,బ
మ೙

೔సభ

∑ ൬2𝑑௜,଴
డௗ೔,బ

డ∆௔బ,బ
൰௡

௜ୀଵ = 0

ଵ

ଶට∑ ௗ೔,బ
మ೙

೔సభ

∑ ൬2𝑑௜,଴
డௗ೔,బ

డ∆௔భ,బ
൰௡

௜ୀଵ = 0

ଵ

ଶට∑ ௗ೔,బ
మ೙

೔సభ

∑ ൬2𝑑௜,଴
డௗ೔,బ

డ∆௔మ,బ
൰௡

௜ୀଵ = 0

ଵ

ଶට∑ ௗ೔,బ
మ೙

೔సభ

∑ ൬2𝑑௜,଴
డௗ೔,బ

డ∆௕బ,బ
൰௡

௜ୀଵ = 0

ଵ

ଶට∑ ௗ೔,బ
మ೙

೔సభ

∑ ൬2𝑑௜,଴
డௗ೔,బ

డ∆௕మ,బ
൰௡

௜ୀଵ = 0

  (A. c. 12) 

 
The square roots in the denominators of the five equations in (𝐴. 𝑐. 12) must be positive and different 

from zero in the non-trivial case. Therefore, only the numerators in equation (𝐴. 𝑐. 12) must be 

considered. However, the term in the nominator, 𝑑௜,଴
డௗ೔,బ

డ∆௦ೕ,బ
 , which is highly non-linear, should be 

linearized to end up with a system of five linear equations. 

 

𝑓ଵ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑎଴,଴
ቇ → 𝑔ଵ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ଵ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ଵ,଴

௡

௜ୀଵ
 

𝑓ଶ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑎ଵ,଴
ቇ → 𝑔ଶ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ଶ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ଶ,଴

௡

௜ୀଵ
 

𝑓ଷ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑎ଶ,଴
ቇ → 𝑔ଷ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ଷ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ଷ,଴

௡

௜ୀଵ
 

𝑓ସ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑏଴,଴
ቇ → 𝑔ସ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ସ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ସ,଴

௡

௜ୀଵ
 

𝑓ହ,଴ = ෍ ቆ𝑑௜,଴

𝜕𝑑௜,଴

𝜕∆𝑏ଶ,଴
ቇ → 𝑔ହ,଴: 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑓ହ,଴ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 ∆𝑠ହ,଴

௡

௜ୀଵ
 

(A. c. 13) 

 

After calculations for all the coefficient changes (∆𝑠ሬሬሬሬ⃗ = (∆𝑎଴, ∆𝑎ଵ, ∆𝑎ଶ, ∆𝑏଴, ∆𝑏ଶ )) the following set of 

five linear equations is obtained, where superscript 1 refers to iteration 1. 
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[𝐴]ଵ[∆𝑠]ଵ = [𝐵]ଵ or 

⎣
⎢
⎢
⎢
⎡
𝐴11

𝐴21

𝐴31

𝐴41

𝐴51

𝐴12

𝐴22

𝐴32

𝐴42

𝐴52

𝐴13

𝐴23

𝐴33

𝐴43

𝐴53

𝐴14

𝐴24

𝐴34

𝐴44

𝐴54

𝐴15

𝐴25

𝐴35

𝐴45

𝐴55⎦
⎥
⎥
⎥
⎤

ଵ

.

⎣
⎢
⎢
⎢
⎡
∆𝑎0

∆𝑎1

∆𝑎2

∆𝑏0

∆𝑏2⎦
⎥
⎥
⎥
⎤

ଵ

=

⎣
⎢
⎢
⎢
⎡
𝐵1

𝐵2

𝐵3

𝐵4

𝐵5⎦
⎥
⎥
⎥
⎤

ଵ

 (A. c. 14) 

 
in which: 

 𝑀௜ =  −𝑦௜ + 𝑎଴ + 𝑎ଵ𝑥௜ + 𝑎ଶ𝑥௜
ଶ (A. c. 15) 

 𝑁௜ = 𝐼௠,௜ − (𝑏଴ − 𝑏ଶ𝑀௜
ଶ) (A. c. 16) 

 
𝐴ଵଵ = ∑ ( 𝑏ଶ

ଶ(2𝑀௜)ଶ + 2𝑏ଶ𝑁௜)௡
௜ୀଵ   (A. c. 17) 

 
𝐴ଵଶ = 𝐴ଶଵ = ∑ 𝑥௜( 𝑏ଶ

ଶ(2𝑀௜)ଶ + 2𝑏ଶ𝑁௜)௡
௜ୀଵ   (A. c. 18) 

 
𝐴ଵଷ = 𝐴ଷଵ = ∑ 𝑥௜

ଶ( 𝑏ଶ
ଶ(2𝑀௜)ଶ + 2𝑏ଶ𝑁௜)௡

௜ୀଵ   (A. c. 19) 

 
𝐴ଵସ = 𝐴ସଵ = ∑ (−2𝑏ଶ𝑀௜)௡

௜ୀଵ   (A. c. 20) 

 
𝐴ଵହ = 𝐴ହଵ = ∑ 2𝑀௜( 𝐼௠,௜ − 𝑏଴ + 2𝑏ଶ

 𝑀௜
ଶ)௡

௜ୀଵ   (A. c. 21) 

 
𝐵ଵ = ∑ (−2𝑏ଶ𝑀௜𝑁௜)௡

௜ୀଵ   (A. c. 22) 

 
𝐴ଶଶ = ∑ 𝑥௜

ଶ( 𝑏ଶ
ଶ(2𝑀௜)ଶ + 2𝑏ଶ𝑁௜)௡

௜ୀଵ   (A. c. 23) 

 
𝐴ଶଷ = 𝐴ଷଶ = ∑ 𝑥௜

ଷ( 𝑏ଶ
ଶ(2𝑀௜)ଶ + 2𝑏ଶ𝑁௜)௡

௜ୀଵ   (A. c. 24) 

 
𝐴ଶସ = 𝐴ସଶ = ∑ 𝑥௜(−2𝑏ଶ𝑀௜)௡

௜ୀଵ   (A. c. 25) 

 
𝐴ଶହ = 𝐴ହଶ = ∑ 2𝑀௜𝑥௜( 𝑁௜ + 𝑏ଶ

 𝑀௜
ଶ)௡

௜ୀଵ   (A. c. 26) 

 
𝐵ଶ = ∑ 𝑥௜(−2𝑏ଶ𝑀௜𝑁௜)௡

௜ୀଵ   (A. c. 27) 

 
𝐴ଷଷ = ∑ 𝑥௜

ସ( 𝑏ଶ
ଶ(2𝑀௜)ଶ + 2𝑏ଶ𝑁௜)௡

௜ୀଵ   (A. c. 28) 

 
𝐴ଷସ = 𝐴ସଷ = ∑ 𝑥௜

ଶ(−2𝑏ଶ𝑀௜)௡
௜ୀଵ   (A. c. 29) 

 
𝐴ଷହ = 𝐴ହଷ = ∑ 2𝑀௜𝑥௜

ଶ( 𝑁௜ + 𝑏ଶ
 
𝑀௜

ଶ
)௡

௜ୀଵ   (A. c. 30) 

 
𝐵ଷ = ∑ 𝑥௜

ଶ(−2𝑏ଶ𝑀௜𝑁௜)௡
௜ୀଵ   (A. c. 31) 

 
𝐴ସସ = ∑ 1௡

௜ୀଵ = 𝑛  (A. c. 32) 

 
𝐴ସହ = 𝐴ହସ = ∑ −𝑀௜

ଶ௡
௜ୀଵ   (A. c. 33) 

 
𝐵ସ = ∑ 𝑁௜

௡
௜ୀଵ   (A. c. 34) 
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𝐴ହହ = ∑ 𝑀௜

ସ௡
௜ୀଵ   (A. c. 35) 

 𝐵ହ = ∑ −𝑁௜𝑀௜
ଶ௡

௜ୀଵ   (A. c. 36) 

Solving the set of 5 linear equations, all five coefficient changes can be calculated at each iteration. 

 [∆𝑠]ଵ = [[𝐴]ଵ]−1[𝐵]ଵ → 𝑠1ሬሬሬ⃗ = 𝑠0ሬሬሬ⃗ + ∆𝑠1
ሬሬሬሬሬሬ⃗  (A. c. 37) 

 
The new solution at each iteration 𝑠௞ሬሬሬ⃗  should be used to reduce the objective function 𝑄௞ to eventually 

find the minimum Q. Then 𝐼௔ as the best solution describes the intensity distribution can be found, and 

consequently, the ridge line can be achieved using already calculated 𝑎௜ coefficients. 

d. Elliptical ridge line and ξ =yloc=𝑦 − 𝑦௖  𝑎𝑛𝑑 𝑥 = 𝑥௖ 
 

 𝑦௖(𝑥) = 𝑦଴ +  𝐵ට1 − ቀ
௫೎ି௫బ

஺
ቁ

 ଶ

  (A. d. 1) 

 ൬
𝑥௟௢௖

𝑦௟௢௖
൰ = ൬

𝑥௖

𝑦 − 𝑦௖
൰ (A. d. 2) 

 𝑥௟௢௖ = (𝑥௖) = 𝜉 (A. d. 3) 

 𝑦௟௢௖ = 𝑦 − 𝑦௖  (A. d. 4) 

 
𝐼௔(𝑥, 𝑦, 𝑥௖ , 𝑦௖) = 𝑏଴ − 𝑏ଶ ቆ𝑦 − 𝑦଴ −  𝐵ට1 − ቀ

௫೎ି௫బ

஺
ቁ

 ଶ
 ቇ

ଶ

  (A. d. 5) 

 𝑑௜ = 𝐼௜൫𝑠௝൯ − 𝐼௠,௜  (A. d. 6) 

 
𝑑௜,௞ = ൫𝑏଴,௞ିଵ − 𝐼௠,௜൯ − ൫𝑏ଶ,௞ିଵ൯ ቆ𝑦௜ − 𝑦଴,௞ିଵ −  𝐵௞ିଵට1 − ቀ

௫೎,ೖషభି௫బ,ೖషభ

஺ೖషభ
ቁ

 ଶ

 ቇ

ଶ

  (A. d. 7) 

 

Objective function:  𝑄௞ = ට∑ 𝑑௜,௞
ଶ௡

௜ୀଵ   

 

(A. d. 8) 

 
 

 


