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ABSTRACT

MILAD HOSSEINPOUR. Improved Fidelity of Triangulation Sensor Measurements in Optical
Inspection. (Under the direction of Dr. EDWARD P. MORSE)

With the evolution of gear design requirements for new applications, classical gear inspection based
on a time-consuming line-oriented tactile measurement must be replaced with a more rapid, areal inspection
that can capture complex modern gear modifications. Triangulation-based optical instruments provide a
promising path to meet new gear metrology demands with respect to access to the gear flanks and having
sufficient speed and accuracy. In triangulation sensor measurement, the image position of a laser line strip
on the sensor is analyzed to find the measured geometry. This image of the line on the sensor is calculated
through a peak detection algorithm that produces a 'ridge line,' which is the line in the x-y sensor domain
with the highest light intensity.

The physics of optical measurement dictates that speckles and scattered light exist during an optical
inspection. As a result, when a triangulation sensor is used, the deflection of the scattered light may cause
inaccurate peak detection and, therefore, large form deviations in the reconstructed (measured) geometry.
In addition, multiple light reflections that influence point calculations from an optical measurement must
be detected, eliminated, or remedied. This research provides an improved mathematical approach to ridge
line detection in each sensor frame, to detect the peak position of that frame even more accurately. This
algorithm is used to measure four reference geometries to evaluate its influence on point clouds from surface
measurements when compared to the embedded (OEM) algorithm.

This dissertation offers the improved profile fidelity of triangulation sensor measurements for
optical inspection by developing a novel mathematical approach and replacing the original row-by-row
peak detection algorithm by the proposed frame-by-frame algorithm. It can be used in the future closed-
loop control process where the new gear production processes require fast-optical measurement and
evaluation processes to trace back from the produced gear geometry to the manufacturing process. This can
be achieved by equipping the manufacturing machine with suitable optical measuring devices, an

appropriate evaluation strategy, and an inline inspection.



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest appreciation to Prof. Edward P. Morse for
all his help, advice, and support over these five years. He is the one who encouraged me to pursue my Ph.D.
at the University of North Carolina at Charlotte. He also introduced me to the field of metrology and later
mentored me to become a researcher. Not only did he not leave me alone in an overwhelming situation
when my previous advisor had to leave the college, but he also offered me an interesting research project.
The project titled "Advanced Nanometer-class Coordinate Measuring Machine" or ANCMM, funded by
NASA through the SBIR (Small Business Innovation Research) program. His broad vision, intelligence,
and friendly personality have always inspired me. It is a tremendous honor to be one of his doctoral students.
I also need to sincerely appreciate NASA and OptiPro Systems, the primary recipient of the funding, for

having confidence in me and for supporting me over my permanent residency process.

I would love to thank Prof. F. Gert Goch, who motivated me to focus my research on gear
metrology, specifically on developing a fast optical measurement of cylindrical gears. He trusted me by
offering a two-year Nikon Corporation-funded industrial project. He also broadened my industrial
perspective by assigning me various duties, including solving many complex measuring tasks requested
from several regional industrial enterprises at the Siemens Large Scale Manufacturing Laboratory. Thanks
to his consistent financial support from the Energy Production & Infrastructure Center, I could make
impressive progress toward earning my Ph.D. I must thank Nikon Corporation at Tokyo, Japan support

over the project, especially I value the insights and guidance Mr. Nakano Sumito provided.

I would like to express my appreciation to Prof. Jimmie Miller. From his lectures, I learned a lot
about precision metrology, particularly the measurement of machine tools for evaluating and correcting
geometric errors. He made the metrology principles more visible and understandable through laboratory
experiments. I can never forget his dedication and support that are still going on during the current ANCMM

project.



I thank Prof. Wesley Williams, who supported me indirectly while publishing a conference paper
and directly during my permanent residency process at its most difficult time. I appreciate the opportunity

to work with you on one part of the "Evaluation of a coaxial multi-stage magnetic gear" research project.

Special thanks go to Prof. Robert Cox, who kindly accepted to serve as the Graduate Faculty

Representative.

I am sincerely thankful for the support from the American Gear Manufacturers Association
(AGMA) through their scholarships for three academic years, which made a lot of opportunities possible

for me in the past three years.

I am grateful to Dr. Yue Peng, who taught me how to operate the large Coordinate Measuring
Instrument "Leitz PMMF" and a new 6-axes optical instrument "Nikon-HN3030" and how to work with
the software platforms "Quindos" and "HN Metrology" running these measuring devices. Her efforts to

educate the next generation of ME graduate students cannot be forgiven.

Center for Precision Metrology (CPM) and the Energy Production and Infrastructure Center (EPIC)
at UNC Charlotte have my gratitude for providing a great environment, facilities, and financial support to
promote precision metrology. My thanks and appreciation go to the current and previous MEES, EPIC, and

CPM staff members, Mrs. Tracy Beauregard, Lori Brown, Jennifer Chastain, and Mr. Brian Dutterer.

Finally, I would love to say how grateful I am for my wonderful family's unwavering love and
support during this difficult time, especially the past three years since my father's passing. Words are not
enough to describe how inspiring they have been for me. Among thousands of their lessons, my lovely
mom taught me the lessons of liberty, liberalism, and dedication to others. My dear dad taught me not to
give up but to keep on. My beloved sister has been my role model throughout my education and

simultaneously has always supported the family.



DEDICATION

To My Lovely Brave People and Their Meaningful Message

WOMAN LIFE FREEDOM

ST §W 0

Vi



Vi

CONTENTS

LIST OF TABLES ...ttt ettt ettt sttt et s bt et e bt s bt et et e ebe et e naesbeentebe s ix
LIST OF FIGURES ...ttt ettt sttt sttt et et e st e e e e st enteee s st eneesseeseensansesseensenseeseensenes X
NOMENCLATURE ...ttt ettt et e et et e st e st et e sseestenseeseeseenseaseeneensesneanean xiii
LIST OF ABREVIATIONS ...ttt bttt ettt et sttt be et ee e Xvi
CHAPTER 1: INTRODUCTION ..ottt ettt sttt ettt ettt st ste et e e seeetesbeeaeeneene 1
1.1 Motivation and back@roUnd ...........ceeeciiiiiiiiiiiicie e e e e e 1
1.2 Instrument Evaluation ............cooiiioiiiii ettt st 7
1.3 COMMETCIAL SYSLEIMIS ....veeuvieuiieiiesiiesiiesteeseestestteseeseestteesessseasseesseesseesseesseessaesseesseesseesseesseesssens 14
1.4 DiSSErtation Y OUL .......eeeeiiieiiieeiieeiie et eetee et e et e e s eeeteeetaeesebeessseeessbeessseessseesssaeessseessseens 15
CHAPTER 2: METHODOLOGY ..ottt ettt sttt ettt et estesseeneensesseeneensessesnsensensens 18
2.1 Mathematical DESCTIPLION .......cevviiiiiieiie ettt et eteeie ettt e steesaesaesbesnseesseesseesseesseessaesseeseesns 21
2.1.1 Quadratic RIAZE LINE........cecciiiiiieiieiieieeiieeeree ettt stae e e ssaessaesnnesnnes 23
2.1.2 Elliptical RIAZE LINE ....cccuviiciiieiiieciieciie ettt sre e e teeesta e e seveessveeeneaeeeseeeareens 29

2.2 Peak Detection IMPrOVEIMENL. .......c.cccveiiieiiieiiieieeiiesieeseeseesteesresresssessseesseesseesseessaesseesseesseesses 31
2.2.1 UNCC Algorithm for Peak Detection Improvement............c.cceceverienininiieneneeieneneeene 33
CHAPTER 3: EVALUATION WITH SIMULATED DATA .....oooiieeeeteee et 40
3.1 Quadratic RIAZE LINE.......ccoviiiiiiiiieciie ettt ettt et e ve e st e e ab e e s tbe e ssbeeeabaeessseessseeennes 40
3.1.1 Simulation Based on Exponential Distribution of the Intensities over Each Row.............. 41
3.1.2 Simulation Based on Quadratic Distribution of the Intensities over Each Row ................. 42

3.2 EIPtical RIAZE LINE ....ccuviiiiiieiiieciiieciie ettt ettt ettt sive e s vee et eeaveessbaeenraesssaeesssaesaseeennes 43
3.2.1 Simulation Based on Exponential Distribution of the Intensities over Each Row.............. 44
322 Simulation Based on Quadratic Distribution of the Intensities over Each Row ................. 45
CHAPTER 4: IMPLEMENTATION OF ALGORITHM ON ACTUAL SENSOR DATA ........cccceeueeee. 47
4.1 Preprocessing for Actual SEnSor Data ...........c.eeevuiieiiiiiiiecie et 47
4.2 Postprocessing for Actual Sensor Data...........ccverierierieniiiiie e 49
4.3 Estimation of Rough IMprovement............ccccviieiiiiiieiiie ettt eeeeeesiveesvee e 53
4.4 Comparison between UNCC and Nikon Peak Detection Algorithms..........cccccccvveviveeciereneeenee. 54
CHAPTER 5: AREAL EVALUATION AND RESULTS ....outiiiiieeeeereee e 56
5.1 Flat Surface MEaSUIEINENL ..........ceouiiuiriiiiriieieie sttt ettt ettt ettt et st sae et ee e eenees 57
5.2 Cylinder MEASUICINENL ..........eecvieetieerieeereeeiteeesiteesteeeteeessaeeseseessseeesseessseessseeesssessssessssessnsssenns 62
5.3 SPhere MEASUIEIMENL........ccvieiiieeiieeieeeteeete ettt esteeebee e tbeesbeessseeessaeessseessseeessseessseesssesenseeensses 66

5.4  Helical Cylindrical Gear M@aSUIrEmMENL...........ccverveerieereereerreriesresressesseesseesseesseessessseesseessaens 70



5.4.1 Areal Distance Map and Surface DecOmMpPOSItION ........c.cccvverveeriierieerieeniereenee e sneseresenennns 70
54.2 Evaluation RESUILS.......ccc.oiiiiiiee ettt e 72
CHAPTER 6: CONCLUSION AND FUTURE WORK ......cocoiiiiiiieeeieee et 76
6.1 COMCIUSION ...ttt ettt b ettt s b et e e s bt e st et e e bt es e e et e bt et e tesbeemtebesaeemeeneens 76
0.2 FUIUIE WOTK ..ottt ettt ettt sb et b e e bttt eae et nees 77
6.2.1 Calibration across the Entire Sensor Domain ..........cccccovoiiiiiiiiiiiiiienieceeeeeeeeee 77
6.2.2 Frame-by-Frame APProachi.......c..cociiiiiiiiiiieiie ettt et evae e 78
6.2.3 (0 (0 T1<Ta B a0 o 07 Vi o) SRS STURI 78
REFERENCES ...ttt ettt et e e et e st et e s st ent e sesseenseseeseeneenseeseensenseeneensenses 79

APPENDIX A: PEAK DETECTION ALGORITHM OR DERIVATION OF ANALYTICAL
DESCRIPTION OF RIDGE LINE ....cciiiiiiiitiiiiieiitetee ettt ettt st sttt st sv st sae s ne e 82



LIST OF TABLES

Table 3.1: Coefficients describing exponential distribution of the intensities over each row for quadratic
TIAZE LINC ...evieieeiie ettt e et e et e et e st e e st e et e e ta e se e seesseesssessseasseasseasseensaesseessaessaensaessnensnesnsennns 41
Table 3.2: Coefficients describing quadratic distribution of the intensities over each row for quadratic
TIA@E LIN@ ..ttt ettt e et e et e e e stbeeetbeeesbeeesese e sbaeaaseeessseessseeassaeessseessseesssaeansaeenssesssseennses 42
Table 3.3: Coefficients describing exponential distribution of the intensities over each row for elliptical
TIA@E LIN@ ...veeeiii ettt ettt e sttt e et eestbeestbeeesbaeestseessbeeeaseeessseesseeassaesssseessseesssaeensaeenssaessseennses 44
Table 3.4: Coefficients describing quadratic distribution of the intensities over each row for elliptical

Fu e e 14T PSP 45



LIST OF FIGURES

Figure 1.1: Substitute gear flank and measuring points. Mathematical equation correlates nominal

geometrical parameters with Cartesian coordinates [after 9]........oocevviiiiriiiniiiiiiieeee e 2
Figure 1.2: Gear flank with modification/deviation of involute helical gears [after 11, 12] .....ccceevevverrunenne 3
Figure 1.3: Three various deviations between the measured point and the nominal geometry [after 14, 15]

...................................................................................................................................................................... 5
Figure 1.4: Local UV coordinates commensurate with the description of flank modifications .........c......... 6
Figure 1.5: First eight terms of 2D Chebyshev polynomials [after 12] .......ccecneevenineenieniceeeneecee, 6
Figure 1.6: Involute artifact with base cylinder [after 16] .......c.ceeeeeiriirieiiiir e 8

Figure 1.7: Takeoka et al.'s setup for involute artifact measurement using laser interferometry [after 16]..8
Figure 1.8: Instrument arrangement and schematic representation of the two-path interferometric system

[AFEET 1 7] 1ottt ettt ettt ettt e b e bt s bt e s ae e shee st e eate s ab e e bt e b e e bt e bt e e ae e eh b e sh e e e he e ehbe e bt eabeeteebeenteas 9
Figure 1.9: Results of measured flank using laser interferometry [after 17] .......ccoovvvevineneninenienineenee, 9
Figure 1.10: Stretch of gear measurement using Phase-shift optical triangulation [after 18]..................... 10
Figure 1.11: Principle of laser line triangulation [after 20] ........cccoveeiiiinieneninee e 10
Figure 1.12: gear measurement using structured light pattern: a) Hardware setup b) Result of areal

MEASUTEIMENE [AFEET 21 ..ottt et ettt et e s bt e s bt sae e saeesat e be st e st e enbeenees 11
Figure 1.13 A) Principles of triangulation B) Fringe projection [after 22]......ccccovevvvieiiiiiiniiiinieeerneennens 12
Figure 1.14: Components of Leopold et al.'s optical system [after 22] .......ccceveeerireeneniinienienenirseneenens 12

Figure 1.15: Conceptual framework and experimental setup of the projection moiré system [after 24]....13
Figure 1.16: Commercial optical measuring instruments: a) MS3D [27] b) Nikon HN-C3030 [28] ¢)

Gleason 300GMSL [29] [AftEr 20]...cccieiriiiriiieiieeiieeseeeite et se e st e ste e sbe e ssaee s steesbaesbaesnabaesnbeeessseenens 14
Figure 2.1: Schematic principles of laser triangulation sensor [after 19] .......cccoeevnieienincnincceeee 18
Figure 2.2: Intensity distribution of reflected laser stripe on CCD camera in one sensor image frame ..... 19
Figure 2.3: Nikon instrument’s COOrdinate SYSTEMIS. .....ccuvierveirreerrieeerrereririeriireesireessseeeseeesssesssseessseeessesses 20
Figure 2.4: Intensity distribution of the sensor image frame vs. the ridge line in triangulation sensor [after
PSR 21
Figure 2.5: Best fit to the ridge line profile for cylinder and sphere measurement ...........ccccevveveercreennenn. 22
Figure 2.6: [llustration of ridge line profile in the sensor's X-Y-plane and intensity distribution along one
10CAl COOTAINALE (£) 1vvveruvrerrurieriiieirieeeriee sttt ettt rte e ettt etreesbeesbeessaeeesbeesbeessatesssaessseessesssaesnsaessssessnseesnses 23
Figure 2.7: 3D and 2D plotted sensor image frame for linear (left) and quadratic (right) polynomials as the
TIAEE LINIE 1ottt et et b e e b e h e b e bt e r e e st e s bt sae e st e Rt et e R e b e e s e e ne e sr e ae e R nreenee e 24
Figure 2.8: [llustration of the ridge line in the sensor's X-Y plane and intensity distribution along yloc
COOTAITIALE. ...ttt ettt ettt ettt et e bt e bt e bt e she e s aeesa e e s bt e e abesateeateeab e e beeabeeeb e e b eeebeesaeesabeeabeeabeenbeebeesbeesueas 26
Figure 2.9: UNCC Optimization vs. fminsearch function for cylinder measurement ..........ccccevceeerveennnnnn 31
Figure 2.10: Original and proposed peak detection ProCess .........ceveerurrrereerereriesreseseesesreereesresreeeennenne 32
Figure 2.11: Algorithm for peak detection IMProVeMENt ........cccveevveerciieriieerieesreeeie e sieesire e e sree e 33
Figure 2.12: Sensor image data vS RIAZE LINE........covcveiiiiiiiiiiiiniiiiiec ettt see e see e siee e 34
Figure 2.13: Lin fIle SIIUCIUTE .....ecuveviiieeeieieeerte ettt st s s 35
Figure 2.14: Multiple light reflections in SENSOT fTaAME........cccevviiiriiieiiieiriee et ssee b 36
Figure 2.15: Cropped sensor data for the Optimization...........ceceeeereerienienieieneneeseseree e 37
Figure 2.16: UNCC solution vs. Nikon solution in cylinder measurement ..............cecueveeeenereneenenenens 39

Figure 3.1: Simulation Data vs. the algorithm solution for exponential distribution..........ccccceevveercreernennn 40



Xi

Figure 3.2: Simulation Data vs. the algorithm solution for quadratic distribution ........c.ccccecvvevvcverriernnenn. 41
Figure 3.3: Simulation Data vs. the algorithm SOIUHON .......c.ceeveeiiiieriirirrreee e 42
Figure 3.4: Objective function vs. iteration NUMDET .......c.ccovviiriiiriierniieiniee e esiieesieesiaeesireesbeessaeessree e 42
Figure 3.5: Simulation Data vs. the algorithim SOIULION .......c.eeiviiiriiriiieiie e 43
Figure 3.6: Objective function vs. iteration NMUMDET ..........cccceeveerireneerinieee e 43
Figure 3.7: Simulation Data vs. the algorithm solution for exponential distribution...........cccceevveercveernennn 43
Figure 3.8: Simulation Data vs. the algorithm solution for quadratic distribution ..........c.ccccceveeveervrenene 44
Figure 3.9: Simulation Data vs. the algorithm SOIUHON .........ceeeeeiiiieieirirrereeee e 44
Figure 3.10: Objective function vs. iteration NUMDET .......ccccuveriuieiiieriieeniieenieerieeeieeesieeesieeesteesveeensseenns 45
Figure 3.11: Simulation Data vs. the algorithm SOIUtION .....ccceeveviirierieriie e 45
Figure 3.12: Objective function vs. iteration NUMDET ........cccuveriuieirieeiieeiiieenieesieeeieeeieeesieeesreesveeensseenns 46
Figure 4.1: Transposed SENSOT fTAME .....cccuveiriiiiiiiiiiieeiitee et rteesrteeertteesteesbeessteeesbeeesabeesbaessseessaseesssesnn 48
Figure 4.2: Rearranged iNtenSity MATTIX ....eevereerereeerereeienreseetete e eseesresseeseeseesseseneseesseessesresseeneesnesneenes 49
Figure 4.3: X and Y Coordinates of the primary intensity band.......cc.cccvveverriierinieeinieenieenieenieeseee e 49
Figure 4.4: Light intensity distribution vs. UNCC solution for a straight ridge line in flat surface

00 LEE YD1 (<) 101S) 4L TP 50
Figure 4.5: UNCC solution vs. Nikon solution for a straight ridge line ..........cceccevererieniniencnceecne 50
Figure 4.6: Objective function for a straight ridge HNe........cccoeveiiiiiiiiiiiiii e 50
Figure 4.7: Light intensity distribution vs. UNCC solution for a quadratic ridge line in cylinder

00T YD1 (<) 101S) 4L PP 51
Figure 4.8: UNCC solution vs. Nikon solution for a quadratic ridge line .........cccccovererieneneenenieneeinne 51
Figure 4.9: Objective function for a quadratic ridge lINe.......ccceiiviiiriiiiiniiirie e 51
Figure 4.10: Light intensity distribution vs. UNCC solution for a quadratic ridge line in gear measurement
.................................................................................................................................................................... 52
Figure 4.11: UNCC solution vs. Nikon solution for a quadratic ridge line .......cc.ccoceeveevereenenenreesenenens 52
Figure 4.12: Objective function for a quadratic ridge liNe........ccccevceerivieiiniiniiiirte e e 52
Figure 4.13: Light intensity distribution vs. UNCC solution for an elliptical ridge line in sphere

00 LEE YD1 (<) 10 1S) 4L TSP 53
Figure 4.14: UNCC solution vs. Nikon solution for an elliptical ridge line ..........ccccecuvvereenerncescnenenns 53
Figure 4.15: Objective function for an elliptical ridge lINe.........ccovcveereiiiiiiiiiiiiree e 53
Figure 4.16: Measurement of machine chuck step using Nikon HN Machine ..........c.cccceevveeiriiniccineenenns 54
Figure 4.17: Fitted circle and residuals for detected peak pOSItIONS ..........cccvereereerereeirineeieerineree e 55
Figure 4.18: Comparison between UNCC and Nikon residuals from a circle fit ........ccooceevveiineennieennnnn. 55
Figure 5.1: Process of peak detection impProVemMENt..........ccueervieeerieerieerieeetieeeieeesveeeveeereeesereesereessveeenens 57
Figure 5.2: Original vs. modified point clouds in flat surface measurement...........c.cccceeevvveeveeerreenreenne. 60
Figure 5.3: Reconstructed point clouds of consecutive frames vs. one individual frame in flat surface
TNEASUTEITICIIE ....eueteiteriteeite et et ettt et e bt e sbeesbeesbeesuteeateeateeae e eateeat e e bt e bt e bt e bt ebeeebeesbeesueesatesaneeabeembeenseenseen 60
Figure 5.4: Magnified 3D deviations for sampled modified point clouds ..........cccceeveevenininiinencesienene. 60
Figure 5.5: 2D deviations of the first frame from the fitted plane for original and modified point clouds 61
Figure 5.6: 2D deviations of the first 20 frames for the modified point clouds..........cccceevevierciieeciirennnennee. 61
Figure 5.7: 2D transformed deviations of the first 20 frames for the modified point clouds...................... 61
Figure 5.8: Flat surface Calibration ..........c.ccocuiieiiiiiiieiie ettt e e ree e ea e e s ebeeesraeenes 62
Figure 5.9: Original vs. modified point clouds in cylinder measurement..............ccceeeveereieeenieeenveenveeenne. 64

Figure 5.10: Reconstructed point clouds of consecutive frames vs. one individual frame in cylinder
INEASUTEITICII ..ottt sttt a e sh et b e bt e e bt s bt eseesa s sa e e saesaesh e e b e e b e sbeesn e bt saeennesneennennes 64



xii

Figure 5.11: Magnified 3D deviations for sampled original and modified point clouds..........cccccceeueneene. 64
Figure 5.12: 2D deviations of the first frame from the fitted cylinder for original and modified point
CLOTAS .ottt ettt b ettt s bt et e b sb e at et e e bt e st et e e bt e st et e eb e et et e ebeeat e tesbeeatens 65
Figure 5.13: 2D deviations of the first 20 frames for the modified point clouds..........cccccccvveviieecrieennennee. 65
Figure 5.14: 2D transformed deviations of the first 20 frames for the modified point clouds.................... 65
Figure 5.15: Cylinder CaliDration ...........cccuiiiciiieiiieiiiecieeeite et ecreeeiteestre st e e e teeeeaeesebeesssaeensaeessesssseeenses 66
Figure 5.16: Original vs. modified point clouds in sphere measurement ............ccocceeeeveercreeecreeesveesveennnes 68
Figure 5.17: Reconstructed point clouds of consecutive frames vs. one individual frame in sphere
TMEASUTEITICIIE ....euvteiteeiteeite ettt et ettt e bt esbeesbtesbtesut e s at e eat e eae e eateeat e et e e bt e bt e bt enbeesbeesaeesueesatesaneeaneemneenseeseen 68
Figure 5.18: Magnified 3D deviations for sampled original and modified point clouds.............ccevenenee. 68
Figure 5.19: 2D deviations of the first frame from the fitted Sphere for original and modified point clouds
.................................................................................................................................................................... 69
Figure 5.20: 2D deviations of the first 20 frames for the modified point clouds..........cccceccvvevvieecriennnennee. 69
Figure 5.21: 2D transformed deviations of the first 20 frames for the modified point clouds.................... 69
Figure 5.22: Sphere Calibration..........ccuciiiiiiiiiiiireiieciee ettt etee et e st e e s te e saee e eaeeseseesssaeessseessseesnnes 70
Figure 5.23: Mapping the measured points to the areal surface coordinate system (uvd), and surface
deCOMPOSILION [AFLEI 32] .. .iiiiiiieiiesiesie ettt ettt ettt et et e e s e e steessaessbesssesssessseenseesseesseesseesseenseesees 72
Figure 5.24: Geometric resemblance of areal flank modifications/deviations by low order 2D Chebyshev
POLYNOMIALS [AFLET 6,32]...cuuiiiieieiiiiiiie ettt ettt ettt e st e s e st e e s e e se e s e essaessaesseesseesssesssenssesssennsennes 72
Figure 5.25: Deviation map and evaluated results for the first flank of Gear T without peak detection
TITPTOVEIMICIIE ..e..uviieiiieeeeieeeteeestte ettt eseteeetee e tseessseeasseeesssaessseeasseeassaeesssaeassaeassseasssaessesasseeassseesssesasseesnsesessenn 73
Figure 5.26: Deviation map of the first flank of Gear T without peak detection improvement in different
VIEWS -t euttenttestteetteetteeut e et eat e eate e bt e bt e bt e bt e bt e ab e e aa e e ea e e ea bt ea et e a bt ea bt ea bt e bt e bt e ehe e eh e e eh b e ea b e eateen bt eate e bt e bt ebeenbeenaeenaes 73
Figure 5.27: Deviation map and evaluated results for the first flank of Gear T with peak detection
TINPTOVEITICNIE ....evvveeiveeeteeeteesteesteesseesseesseessaesssesssessseasseasseasseesseasseesseessessseessesssesssessssssseasseensessseenseessenssenssenns 74
Figure 5.28: Deviation map of the first flank of Gear T with peak detection improvement in different
VIBWS 1ttt ettt et ettt e et et st e e et e e bt e bt et e eh e e a e em e e bt e a e et e sh e e et e bt eh e e Rt et bt e a e e bt eh e et e ke eheea b e beehe et e beehe et e bt eneentes 74



OO S N N X

<

Tp
o
Bo

Eva

I T

A

b

NOMENCLATURE

X-axis of a Cartesian coordinate system

Y-axis of a Cartesian coordinate system

Z-axis of a Cartesian coordinate system

U axis of a curvilinear coordinate system

V axis of a curvilinear coordinate system

D axis of a curvilinear coordinate system

surface parametric coordinate of point P of the U axis
surface parametric coordinate of point P of the V axis
measured point of a gear feature

p coordinate of Pm in cylindrical coordinate system
¢ coordinate of Pm in cylindrical coordinate system
z coordinate of Pm in Cartesian coordinate system
radial distance from origin to the projection of point P on the X-Y plane
transverse

normal

base radius of the flank origin

polar angle of the origin

base helix angle

helix coefficient

involute function

pressure angle

transverse pressure angle at reference circle

roll angle of the involute

flank direction

a mathematical point

face width

profile evaluation length

helix evaluation length

helical angle at reference circle

space width half angle at reference circle

space width half angle of base circle

xiii



Xiv

|@’| plump line distance
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1 CHAPTER 1: INTRODUCTION

1.1  Motivation and background

Gears are the crucial elements of power transmission systems whose efficiency is determined by the quality
of their gears. Gears have a wide range of applications, from wind energy applications to automotive
industries. Over the past decades, the functional properties of transmission systems, including generated
noise, vibration, transmission capacity, lifetime, and weight, have been enhanced dramatically due to
improved gear geometry [1]. Many efforts have been made on different aspects of gear manufacturing from
cutting to the finishing stage, to achieve more repeatable, reliable, and efficient techniques in precision gear
manufacturing to meet quality grade requirements [2-5]. Precision gear manufacturing needs to accurately
capture gear surface features. Advancements in gear design and manufacturing over the past few decades
require more robust gear metrology in terms of reliability and evaluation speed with a higher accuracy level.
Therefore, manufacturing precision gears requires precision metrology to control the gear geometry in size
and shape. Before the 1970s, when CNC technology had not been invented for the metrology purpose, gear
metrology had been performed by manual gauging and electro-mechanical instruments. However, CNC-
based contact methods made a paradigm shift in gear metrology which are still state-of-the-art techniques
with high accuracy dominating in the industry. In the design and manufacturing stage of many gear
applications, the gear flank follows an involute profile that requires tight tolerancing in the range of single-
digit micrometers [6]. Conventionally, gears are measured by Gear Measuring Instruments (GMI) or tactile
Coordinate Measuring Machines (CMM) [1,7,8]. Although they are able to measure gear tooth shape with
a micrometer level accuracy, the technology is limited in speed due to the tactile nature of the measurement.
Basically, classical gear measurement is based on two characteristic lines on both flanks of only four teeth
oriented approximately 90 degrees apart [9,24]. One is a profile line in a transverse plane, and the other is
a lead line in a pitch cylinder. Clearly, two lines per flank only for a limited number of teeth cannot
extensively represent the entire gear surface. Lotze et al. offered an analytical full 3D substitute gear model

for helical and spur gears to use the measuring capability of Coordinate Measuring Machines (CMM) to be



extended to gear evaluation [9]. They used three independent parameters, i.e., the base radius of the flank
origin 1y, polar angle of the origin @,,, and base helix angle 8, to analytically model the nominal gear flank.
Their work initiated the fundamentals of using CMM in gear inspection. In contrast with the conventional
cross-section method, this method did not require capturing points exactly on a transverse plane for profile
testing or pitch cylinder for lead testing as described in the standards. However, the points could be
measured at any arbitrary coordinates. This gave remarkable flexibility and accuracy for the gear
measurement and evaluation using a CMM. Flank modifications could also be added to the model using
some additional geometrical parameters. However, gear deviation parameters were only limited to those of

the predefined parameters in the mathematical model.
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Figure 1.1: Substitute gear flank and measuring points. Mathematical equation correlates nominal geometrical
parameters with Cartesian coordinates [after 9]

In the high volume production of automotive gears, the environmental situation, including the temperature
behavior of machine tools and tool wear affecting the precision of production, remains constant; therefore,
a random sample seems to be a rational strategy to save inspection time [10]. Consequently, the time-
consuming tactile measurement requires a random inspection, especially when it comes to the high volume
production of mid-size gears.

In addition, geometrical modifications such as slope and crowning are intentionally added to the nominal
involute of modern gear flanks in automotive and wind energy transmission systems to enhance their
functionality in terms of generated noise, transmitted power, vibration, and lifetime [11]. On the other hand,
there are some undesired deviations from the nominal involute which are an inevitable result of the

manufacturing process. Those deviations include but are not limited to distortion and twist caused mainly



by heat treatment process and continuous generating grinding [1]. However, the above-mentioned analytical
model suffered from the lack of any parameters describing flank modifications and deviations which have
seemed to be highly demanding and inevitable, especially over recent decades as the automotive industry

and renewable energy are growing rapidly.
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Figure 1.2: Gear flank with modification/deviation of involute helical gears [after 11, 12]
a) Profile slope b) Profile crowning c¢) Tip and root relief d) Lead slope e) Lead crowning f) End reliefs

However, those desired modifications and undesired deviations cannot be captured when a line-oriented
approach is used in which a few lines represent the entire gear flank. All the above-mentioned reasons can
support the argument that a comprehensive measurement is required to capture the 3D feature of gear flanks
to feed the manufacturing section with holistic information about the measured gears. This can improve the

assessment of the measured gears and the gear manufacturing process.



A set of explicit equations were introduced by Guenther et al. to add a nominal description of helical gear
modifications to the nominal gear flank in 2D. The equations comprised profile slope modification, profile
crowning modification, helix slope modification, and helix crowning modification [13]. During the initial
gear manufacturing process, these deviations can intentionally be added to the gear flank to compensate
later for the negative effect of undesired manufacturing deviations caused predominantly by the subsequent
heat treatment process and continuous generating grinding [3]. Also, adding modifications in the finishing
stage of manufacturing can provide a smooth meshing between mating gears under various loading
conditions. The modifications can reduce stress concentration and, as a result, wear damage on the meshing
area of mating gears leading to a substantial increase in the gear's lifetime. Mechanical components' fatigue
life under dynamic loads is exponentially proportional to the applied load. The modification can play a
promising role in specifically Wind Energy Systems (WES), where developing robust gearbox technology
that requires relatively little maintenance is essential. Therefore, it seems crucial to qualitatively evaluate
and control the desired modifications and undesired deviations to reach a sufficient quality level of
manufactured gears and to control the manufacturing process as well.

Goch discussed the current challenges that modern numerically controlled (NC) measuring instruments
encountered when the only available standards and guidelines were the conventional probing and evaluation
along the prescribed cross-section lines [1]. Gear alignment and mounting were considered the first problem
when a tactile probe was supposed to precisely scan the standardized profiles. A mechanical alignment
together with a numerical compensation could only partially fulfill those requirements. Secondly, the non-
contact optical devices could scan several tens of thousands points in a few seconds, reflecting helpful
information of the flank topography; however, the lack of comprehensive standards covering the entire gear
flank would waste the majority of the captured information. Unavoidable gear modifications, on the other
hand, due to the growing demand for higher gear drives' functional properties, would require a significant
change in the evaluation rules and conditions. Hence, he proposed a self-contained mathematical model of
the flank surface, including a geometry description of nominal points along with their normal directions.

This could remove the requirement of measuring points along specific profiles; instead, all the 3D measured



points could be utilized in evaluating the gear. This model could also provide an iterative numerical
alignment to reach a 3D coordinate transformation of the entire measured points to meet the conformance
alignment requirements. Following the mentioned alignment and selecting the measured point clouds in a
tight region along the conventional evaluation tracks, there would be an acceptable agreement between the
new and traditional evaluation results. Given the mathematical model and normal unit vector of the nominal
surface [13], he showed that the Plumb line distance is dependent on the actual coordinates of the gear
flank. Thus, di«: is independent of the position of the corresponding nominal point to any measured point,
which is considered a significant advantage of this method. Due to its analytical nature, this method could
also drive the deviation values at the presence of superimposed flank modifications. His work significantly

contributed to areal evaluation methods in future gear metrology.
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Figure 1.3: Three various deviations between the measured point and the nominal geometry [after 14, 15]
a) Euclidean distance dgukia b) Projected distance dproj ¢) Plumb line distance dio



Ni et al. dealt with current major challenges in gear metrology, including a lack of areal information of gear
flank, complex flank modifications, and improved closed-loop control of the manufacturing process [12].
Following the prementioned Plumb line distance concept, they presented implicit equations describing a
full 3D gear geometry for both sides of all gear teeth. An areal description of the flank surface named the
areal distance map was defined independent of the nominal geometry of the flank containing all flank

modifications and deviation parameters.
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Figure 1.4: Local UV coordinates commensurate with the description of flank modifications
Plumb line distance equation for helical gears [after 12]

They proposed a meaningful revision to the conventional line-oriented standard parameters. Furthermore,
using the orthogonal characteristics of Chebyshev polynomials, a robust evaluation method was proposed

in which gear deviation parameters can directly be extracted from an areal distance map.
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Figure 1.5: First eight terms of 2D Chebyshev polynomials [after 12]

They performed simulation techniques for various types of point distributions to obtain areal parameters
out of simulated data points. Later, they successfully verified the evaluation method by measuring a gear

artifact and comparing line-oriented with area-oriented parameters. The maximum relative deviation



between the areal method and the conventional certified one was about 1.5 micrometers which was within
the measurement uncertainty. The developed areal distance map initiated a fundamental change in gear
evaluation algorithms in future studies and applications of gear metrology. It expanded a holistic gear
assessment in the gear production industry.

As discussed earlier, a holistic measurement cannot be achieved in a reasonable time when the measurement
technology is restricted to widely used tactile measurement. This deficiency highlights the emerging need
for an essential shift in the measurement and inspection strategy for transmission gears. It is exactly where
an alternative non-contact measurement approach can compensate for these drawbacks and introduce a fast
assessment approach. A non-contact measurement can always be realized using an optical instrument;
however, the measurement reliability is a challenging factor to agree with the required accuracy grade.
Nonetheless, due to the high measurement speed and high-resolution measured point clouds, optical

methods are becoming more of industrial interest for mass production.

1.2 Instrument Evaluation

A gear measuring instrument and an involute artifact are conventionally used to control the standard of
quality gears. The standard calibration of the involute artifact, on the other hand, is insufficiently accurate.
Takeoka et al. adopted a straightforward approach for measuring the involute artifact using a laser
interferometer with a laser beam diameter of 6 um and measurement resolution of 158 nm (a quarter of the
laser wavelength) [16]. The impacts of the surface condition of the measured item and the influence of the
driving of the artifact were addressed in the essential experiments shown in their proposed measuring
device. It was verified that the suggested approach was capable of measuring the profile form deviation of

an involute tooth flank and had the potential to measure an involute artifact with an ultraprecise level.
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Figure 1.7: Takeoka et al.'s setup for involute artifact measurement using laser interferometry [after 16]

As illustrated in Figure 8, Fang et al. established a laser interferometric setup to measure the flank surface
of helical cylindrical gears [17]. With enhanced equipment, the oblique-incidence-based approach was
expanded from measuring spur gears to helical gears. They offered a ray-tracing-based approach for
simulating interference fringe patterns (IFPs) while using a two-path interferometer to measure gear tooth
flanks. There were two phases involved in this simulation process. The profile of an IFP was created in the
first stage by ray tracing within the interferometer's object path. The profile of an IFP was then illuminated
by interference fringes in the second stage. Simulations of two spur involute gears were conducted to assess
the accuracy of the simulation, and the simulated IFPs were confirmed using an actual two-path

interferometer established on an optical bench.



half mirror imaging
mirror lens E[:,
g V CCcD
S —Jwedge camera
@ - prism
e 5
[&]
bt @
2 o measured gear
[ O
o ——fwedge
intensity prism
_-adjuster
mirror =1 =
L. A |
. Y| HeneLaser
quarter  beam heam heam
waveplate splitter spltter  expander

Figure 1.8: Instrument arrangement and schematic representation of the two-path interferometric system [after 17]
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Figure 1.9: Results of measured flank using laser interferometry [after 17]

Goch stated that many triangulation-based optical instruments satisfying gear metrology demands could
provide sufficient accessibility to gear flanks, speed, and accuracy [1]. In contrast, minor accessibility of
gear flanks in interferometry-based measurements could make them unsatisfactory measurement methods,
despite their potential to achieve the highest accuracy level.

The gear profile was measured using a phase-shift optical triangulation approach by Lu et al., which
benefited from comprehensive information, speed, and non-contact nature [18]. The technology had
successfully exhibited comparative measuring accuracy greater than 1 um and resolution of about 0.1 um
while inspecting a 2 cm? region. The optical system's measurement findings were in good accordance with
those from a mechanical probe on a coordinate measuring machine. It was also fair to realize a few teeth
per second measuring speed. Different factors that affected measurement accuracy and potential remedies

were examined. They, however, did not offer any standard metrics to be used in gear production metrology.
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Figure 1.10: Stretch of gear measurement using Phase-shift optical triangulation [after 18]

Optical instruments equipped with a light section triangulation sensor are commonly used to enable data
acquisition of dense point clouds on each gear flank in a reasonable time to capture surface topography. A
laser beam is emitted from a laser source, passing through a focus lens to project the surface to be measured.
Then the reflected scattered light passing through a collection lens is focused onto a photosensitive detector
to form an image. The position of the image on the pixels of the detector is then analyzed to find the target's
distance to the instrument [19]. This technique is called triangulation because the emitted beam, the
reflected light, and the detector form a triangulation.
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Figure 1.11: Principle of laser line triangulation [after 20]
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The line structured light sensor based on point-to-point triangulation principles can also accurately be used
for distance measurement. Structured light is emitted to the 3D surface to be measured, and the reflected
light from other perspectives than that of the emitter is captured on a photosensitive detector. The distorted
reflected light on the detectors can be used to measure the geometrical features of the surface. The
significant advantages of this method are high precision, high speed, and an anti-interference nature.

The structured light technique was used first to measure a helical gear by Peters et al. [21]. They illuminated
a gear flank by a structured light pattern. The distorted reflected pattern was captured by a CCD camera.
Then a calibrated algorithm transferred the registered pattern along with system design data into 3D
coordinates of the measured flank. They could reach the resolution on the order of 1 micrometer for a few
square centimeters measuring area. The maximum deviation between the measured data and the theoretical

curve did not exceed 10 micrometers.

Figure 1.12: gear measurement using structured light pattern: a) Hardware setup b) Result of areal measurement
[after 21]

Using a structured light pattern, Leopold et al. developed a test instrument and its supporting software to
measure the entire gear flank in less than a square centimeter [22]. Fringe patterns were projected to a tooth
flank, and a CCD camera recorded the distorted light due to interaction between the projected stripes and
the measured surface. Their device consisted of a CCD camera as a detector and a commercially available
LCD as a fringe projector which made them able to use phase correct measurements with sinusoidal fringe
patterns. The sequence of the fringe pattern was used aiming at higher accuracy and a better measuring

range. They recorded 10 micrometers as the best resolution achieved in the measurement area.
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Figure 1.14: Components of Leopold et al.'s optical system [after 22]

Kumar et al. took advantage of reverse engineering in measuring gear surfaces using a 3D laser scanner
[23]. They used the K-mean method and a proposed MATLARB algorithm to reconstruct the 3D coordinates
of the scanned surface. This method used a noise-free scanned point cloud as the input to compute the K-
mean neighbors of the points in order to regenerate the tooth profile. Although they could improve the
distance sensitivity by several orders of magnitude, they did not quantitatively mention how accurately they
could reconstruct the gear surface.

The Moiré method was established by Chen et al. to optically measure a gear tooth surface. A halogen lamp
was used as a light source, an autocollimator was used to provide a collimated beam, and the collimated
beam passing through two linear gratings formed Moir¢ fringes to illuminate the flank surface. The recorded

fringes on a CCD camera were later used by their developed computer code to reconstruct the contour of
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the gear tooth surface. Then the reconstructed data were compared to the data from a Coordinate Measuring

Machine as a reference to verify the results.
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Figure 1.15: Conceptual framework and experimental setup of the projection moiré system [after 24]

An unambiguous definition of a 3D involute coordinate system for helical cylindrical gears was presented
by Hartig et al., which was in reasonable agreement with conventional evaluation cross sections [25]. The
presented involute coordinate system could facilitate the performance of gear evaluation. They also showed
that the gear deviations in pitch, profile, and helix directions could be correlated with one another if the

gear is modeled in one workpiece coordinate system, although that correlation is unknown in the current
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flank evaluation strategy. Compared to cartesian-based models, this can better describe the dynamic
behaviors of the mating gears as well. They did not, however, include an appropriate measuring technique.

Despite the multitude of optical techniques reviewed, no gear deviation parameters were offered.

1.3 Commercial Systems

Alternatively, since 2015, numerous commercial devices with various opto-mechanical setups have been
developed due to state-of-the-art laser triangulation technology. MS3D [27], Nikon [28], and Gleason [29],
for example, provided instruments that can collect dense areal data over the entire flank surface in a few
seconds.

Hexagon designed a structured light-based point cloud measuring machine. The instrument measures a gear
flank with four structured light sensors facing the target flank and an inner bore with a separate line
structured light sensor mounted above the upper face. However, areal gear measurement with such a

commercial instrument is still under experimental investigation.
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Figure 1.16: Commercial optical measuring instruments: a) MS3D [27] b) Nikon HN-C3030 [28] ¢) Gleason
300GMSL [29] [after 26]

Nikon also developed the HN-C3030, a high-speed, high-precision flank topography measurement
instrument that can be applied for gear inspection of a variety of gears with diameters of less than 300 mm.
The contactless HN-C3030 3D measuring instrument is designed for precision and fast measurement of
sophisticated components such as gears, impellers, turbine blades, etc. Nikon has made a big step ahead in
ultra-fast shape evaluation compared to conventional tactile measurement techniques with the HN-C3030,

which has an innovative laser scanner. Customers can gain superior insights into product compliance by
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inspecting and correlating the measured surface to the original CAD file, resulting in rapid problem-
solving.

Gear vibration and noise cause lots of problems for power transmission systems of automotive and wind
turbines. A critical consideration in gear vibration and noise is the micrometer-order form deviations
[16,34]. On the other hand, the presence of speckles and other types of scattered light in optical inspection
is an inevitability according to the physics of optical measurement. As a result, when triangulation sensors
are used, the scattered-based light deflection might cause unexpected, large form deviations. It has always
been challenging to compare optical evaluation results with reference results, i.e., acquired by tactile
measurement since large form deviations increase measurement uncertainty.

Aside from that, it is essential to detect and remedy or avoid multiple light reflections, which might lead to
inaccurate point clouds evaluated from an optical measurement of the flank surface [34]. In order to be
recognized by the automotive industry, the holistic areal evaluation will also have to be consistent with the
present conventional line-oriented evaluation within a few microns.

This dissertation contributes toward addressing the problem of large, evaluated form deviations and
multiple light reflection. An optical instrument equipped with a light section triangulation sensor is used to
measure certain reference geometries, i.e., flat surface, cylinder, and sphere, as well as certain commercial

gears to investigate and improve the fidelity of triangulation sensor measurements in optical inspections.

1.4 Dissertation layout

Chapter 1 has provided an overview of this study's background, motivation, and importance. The
measurement and evaluation aspects of modern gear metrology technologies have been discussed. Classical
gear inspection, based on a line-oriented tactile measurement, must be replaced with a faster, areal
inspection that can capture complex modern gear modifications to adapt to the current needs of new
applications. New requirements for gear metrology, including sufficient speed and accuracy, can be met
through triangulation-based optical instruments. Since speckles and scattered light are inevitable during an

optical inspection, they can cause large form deviations in the reconstructed geometry. This large, evaluated
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form deviation imposes a severe technical gap for further adapting optical areal measurement systems in
the industry.

Chapter 2 describes the triangulation principle and peak detection algorithm and how the current embedded
(OEM) algorithm can lead to large, evaluated form deviation. Then an improved mathematical approach is
introduced for peak detection in each sensor frame to detect the peak position of that frame even more
accurately. A MATLAB algorithm is developed based on the current mathematical approach. The impact
of this algorithm on point clouds derived from surface measurements is analyzed in comparison to that of

the embedded algorithm by measuring four reference geometries.

Chapter 3 focuses on assessing the algorithm on various sets of simulated data. Each actual sensor frame
consists of 1024 rows. The data is simulated based on the both exponential and quadratic distribution of
light intensities over each row for both quadratic and elliptical ridge line profiles, which is the line in the

x-y sensor domain with the highest light intensity.

Chapter 4 studies the structure of actual sensor data to perform preprocessing on individual frames.
Depending on the measured geometry, the ridge line profile that appears on the sensor varies. Four reference
geometries are measured in this dissertation whose ridge line profiles are either quadratic or elliptical. Then
the preprocessed frame is fed into the algorithm for the peak detection purpose for two types of ridge line
profiles. The ridge line detected by the UNCC algorithm is compared with that by the Nikon algorithm to
illustrate peak detection improvement. Then a rough correlation between the sensor coordinate system and
the workpiece coordinate system is derived by performing an experimental measurement. This correlation
offers a rough estimation of how implementing the UNCC algorithm can improve the evaluated form
deviations.

Chapter 5 gives the experimental verification of applying the UNCC algorithm in the measurement process
of four reference geometries. The instrument creates two sets of information from any surface measurement;
the sensor data and the lin file, including all the measurement information, which later forms the point

clouds. This chapter uses the sensor data exported from the instrument to find the modified peak positions.
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First, the sensor data, including several successive sensor frames, is used as the algorithm input. Then the
peak detection algorithm is applied on every frame to find the modified peak positions of all frames. Then
the original peak positions in the lin file are replaced with the modified ones to create the modified lin file.
Finally, the modified lin file is converted to modified point clouds. The entire process is performed for four
measured reference geometries to show the fidelity improvement of triangulation sensor measurement.

Chapter 6 presents the conclusion of this dissertation and suggests several future works.
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2 CHAPTER 2: METHODOLOGY

The use of laser triangulation sensors is one methodology for precisely measuring the distance between a
single point or line of points and the sensor reference. A light section triangulation sensor is widely adopted
in optical instruments to enable the acquisition of extensive point clouds in a fair period of time in order to
obtain surface topography. After a laser beam passes through a focusing lens to project onto the surface to
be measured, the scattered light reflected from the surface passes through a collecting lens and is focused
onto a photosensitive detector to create a spot image. As the target's relative distance varies, the spot's
absolute position in the detector's coordinate system varies correspondingly. Hence, the spot's location on
the detector is then processed to evaluate the target's distance from the light section. The approach is referred
to as triangulation because the sensor, the emitted laser, and the reflected laser together resemble a triangle
when seen from different perspectives. To speed up the measurement process, a laser spot is usually
replaced with a laser stripe to swipe the target surface. This can be accomplished by passing the beam

through a cylindrical lens or a Powell lens.

Figure 2.1: Schematic principles of laser triangulation sensor [after 19]

Since the triangulation principle used to measure a target surface is based on a laser light source, speckles
and other scattered light phenomena may appear on the sensor detector as a result of the deflected laser

stripe. The reflected stripe on the CCD camera would be detected as a series of bright successive rows with
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an uneven intensity distribution in one sensor frame as depicted in Figure 2.2. Depending on the machine
capturing frequency, which will be covered in detail in section 2.2, the result of the scanned surface consists
of multiple consecutive sensor image frames. In each bright row, the light intensities form a bell-shaped
distribution. Meaning that the intensity values start at zero, rise to a major peak, then fall to zero
in each nonzero intensity row. In a simplified manner, the position of the pixel with the highest intensity is
referred to as the peak position value of each successive row. In the original evaluation method, a 2D profile
connecting all successive peaks over the CCD camera, referred to as a ridge line in this dissertation, is used

as the 2D profile of the reflected stripe. This profile on the detector is then used to evaluate the location in

space of the physical measured profile on the target surface.
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Figure 2.2: Intensity distribution of reflected laser stripe on CCD camera in one sensor image frame

The above-mentioned light phenomena might cause some inaccurate peak position detection in the original
evaluation method. The peak shift in sensor X-Y direction leads to a deviation in the evaluated distance,
approximately perpendicular to the part surface. This is considered the main reason for the apparent form

deviation in the measured results, which are not plausible in physical or technical terms since the measured
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references have finished surfaces with a form deviation in the single-digit micrometer range (e.g., 3-5 um).
The objective of the performed research is to develop a mathematical approach to improve the detection of
the ridge line within each frame for all the consecutive frames. The ridge line is the line in the X-Y domain
with the highest intensity, as illustrated in the contour plot in Figure 2.4 as a blue dashed line. Using
information about the sensor position relative to the workpiece, each scanned ridge line is transformed to
spatial XYZ coordinates. Combining the XYZ data from consecutive ridge lines will form a representation

of the entire surface (referred to as measured points).

Tilt head
rotation axis

Laser scanner
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(HC axis)
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Laser scanner

Table
rotation axis
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Figure 2.3: Nikon instrument’s coordinate systems
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The advantage of the presented frame-by-frame approach to finding the ridge line compared to the original
row-by-row approach is that in the original approach, the continuity of the measured profile is not
considered when the peak detection of each row is independent of its adjacent rows. This makes the original
method vulnerable to any dislocation of the intensity peaks due to environmental issues. In Contrast, the
presented method follows a more global approach by enforcing continuity of the ridge line through the
simultaneous evaluation of all the nonzero-intensity rows in a scanned frame. Some alternative
mathematical approaches will be considered for the instrument to detect the peak position even more

accurately.
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Figure 2.4: Intensity distribution of the sensor image frame vs. the ridge line in triangulation sensor [after 1]

2.1  Mathematical Description

Suppose the intensity at any given point, described by (x,y) coordinates in the sensor plane, can be found
as an analytical function of x and y. The deviation between the measured and analytical model-based
intensity can be calculated. To do so, a description of the intensity ridge line is needed depending on the
geometry to be measured. According to the investigated geometries in this dissertation, i.e., flat surface,

cylinder, sphere, and helical cylindrical gear, and based on the performed optimization that will be



covered in detail later, the ridge line profile is considered a quadratic polynomial for all the references
except for sphere whose ridge line can be modeled best with an ellipse.

Figure 2.5 illustrates the ridge lines in the cases of cylinder and sphere measurements. In both cases, the
ridge line detected by the original evaluation method is shown in green and referred to as the rough
solution. Different fitting methods are tested in each case to determine which can best fit the rough
solution; in other words, which profile can better describe the rough solution.

In the case of the cylinder measurement, a circle fit, an ellipse fit, and a quadratic polynomial fit are
examined, among which the quadratic polynomial profile can interestingly fit the rough solution.
Similarly, a quadratic polynomial can best model the ridge line profile of flat surfaces and cylindrical
gears as shown in chapter 4. In the case of the sphere measurement, on the other hand, the ellipse fit
offers a better match with the rough solution compared to the circle fit.

Cylinder Measurement
* Rough
Circle
Poly2
+ Ellipse

Y Detector [pixels]

X Detector [pixels]

Sphere Measurement

Circle Fit
+ Rough Solution
+ Ellipse Fit

Y Detector

X Detector

Figure 2.5: Best fit to the ridge line profile for cylinder and sphere measurement
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2.1.1  Quadratic Ridge Line

Following the results given in the current dissertation, a quadratic polynomial can best represent the ridge
line profile of the flat surface, cylinder, and helical cylindrical gear on the sensor plane. Then the local

coordinate (&) on the ridge line can be defined in any of the three following directions, as demonstrated

in Figure 2.6.
A) Perpendicular to the ridge line
B) Along the x direction

C) Along the y direction

A)

Intensity

Figure 2.6: Illustration of ridge line profile in the sensor's X-Y-plane and intensity distribution along one local
coordinate (&)
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Figure 2.7: 3D and 2D plotted sensor image frame for linear (left) and quadratic (right) polynomials as the ridge line

This section aims to find a 3D analytical model for the Intensity distribution across the 2D sensor plane.
Three possible cases mentioned above will be described depending on how the orientation of the local
coordinate is defined with respect to the projected ridge line profile on the sensor plane.

2.1.1.1  Local Coordinate Perpendicular to Ridge Line

In the first case, the local x coordinate is perpendicular to the ridge line profile (¢ = X;,.), and the ridge

line is considered a quadratic curve where y, is a function of x.

2.1
YC(x) = Qo + a1 X¢ + azxcz Eref)A. a. 1)1

Xioc\ _ ( COS® sin@y (x —x. (2.2)
(y,oc> h (—sin @ cos go) (y - yc> (ref A.a.3)
I(f: Xc» yc) = bO (xc: YC) - b2 (xc' yc)fz Efe;)A a 4)

! The ref equation numbers relate to the full derivation in Appendix A.

Since the slope of the perpendicular line (¢) can be calculated having the slope of the tangent line to the

ridge line (%), which is known for any point along y.(x.), and X, is equal to &, then the intensity

distribution can be determined as the function of x and y coordinates of the ridge line (I(x.y.)). The
straight line perpendicular to the ridge line passing through (x.,y.) is described by equation (2.4). Then,
combining equations (2.1) to (2.4), & can be found to be substituted in equation (2.3). It is also assumed
that by and b, are constant over the ridge line. This means that the height of the intensity peaks along the
ridge line and the width of the intensity stripe are both assumed to be constant. Plugging equation (2.5)

into (2.3) gives equation (2.6):



25

Y=y, = —y1 (x—x,) (2.4)
Qe (ref A.a.10)

O\ (2.5)
§= (x—x) 1+ (%) (refA.a.13)

1 2 2.6
I1(§,%c,¥c) = by — by (x — x.)? (1 + (a1+2a2xc) ) Eref)A. a.15)

Equations (2.1) and (2.4) are combined to remove Yy, and obtain equation (2.7) for x, . Considering the
known values for x and y, which are the locations of any given pixel in the sensor coordinate system,
equation (2.7) can be solved for x.. Since x, is a non-linear function of the a; coefficients leading to a
highly non-linear distance function, the other two directions for x,. are going to be assessed, hoping to

reach a more linear distance function in terms of a; and b; coefficients.

(2.7)

(x + a1y — a1a0) + 2a,y — a;? — 2a,a5 — Dx. + (=3a,a.)x.2 + (—2a,2)x.2 =0 (refA.a.17)
~ (2.8)

xe=f(x,y) (refA.a.18)

2.1.1.2  Local Coordinate Along with X Direction

In the second case, the local x coordinate is along with the sensor x direction (§ =x — x.) and y = y,.
Therefore, the local coordinates can be determined by equation (2.10). Solving the equation (2.9) for x,
and put that in (2.3), equation (2.11) can be derived. Similar to what was done in the previous case and
having an analytical-based model for the intensity distribution, the distance function, which is the residual
between the measured and the model-based intensity (I,,, and I, respectively), can be found for any given
pixel (x,y) on the sensor. The distance function is defined in equation (2.12) in terms of a; and b;

coefficients which are named as the solution and denoted by s and defined by s = (ay, a4, a,, by, b, ) so

that s; is ay and s5 is b,. Then the solution changes, denoted by As and defined by As =
(Aay, Aaq, Aa,, Abg, Ab, ), are added up to the solution in the distance function. Then the objective
function (Q) shown in equation (2.13), which is the root square of the sum of the squares of the distance

function values for all the sensor pixels, is optimized with respect to the solution changes iteratively.
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Since equation (2.14) leads to an extremely complicated non-linear equation in terms of As; the last

direction is going to be assessed.

(2.9)
— 2
yc(x) = Qo + a1 Xc + Az X (refA. b. 1)
(xloc) — (X - xc) (210)
Yioc Ve (ref A.b.4)
PR e—; (2.12)
la(iy) = bo = b, (x (e y)) (ref A.b.8)
di = I,:(Sj + AS]) — m,i (2.12)
(ref A.b.11)
e o (2.13)
Q= (2iz1di (ref A.b.13)
n (s;+A4sy) \/(sz + As,)% — 4(s5 + As3) (s + As; — v;) ’ ad; \ (2.14)
zi:l <S4 + Asy = I — (S5 + Ass) <Xi + ( 2(s, + Asy) )) m) =0 (ref A.b.15)

2.1.1.3  Local Coordinate Along with Y Direction

In the last case, the local y coordinate is along with the sensor y direction £ =y — y. and x = x.. It is
assumed that the ridge line y.(x.) of the intensity distribution in the X-Y plane is known as a starting
solution, i.e., a smooth line following the peaks of the intensity distributions over the successive rows.
Plugging equation (2.15) into (2.3), the analytical model for the intensity of any arbitrary point (x, y) is

found as 1, (x, y).

Intensity

Intensity

Figure 2.8: Tllustration of the ridge line in the sensor's X-Y plane and intensity distribution along y;,. coordinate
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2.15
Ye(x) = ag + arx + apx.? ErefA). c.1)
Xloc _ Xc (216)
(yloc) - <y - yc) (ref A.c.2)
2.17
I,(x,y) = by — b, (y — (ag + a;x + a,x?))* ErefA). c.6)

As discussed earlier, the square root of the sum of the squares of the residuals between the measured and
the model-based intensity (I,,, and I, respectively) for all the sensor pixels is called the objective function
(Q). This objective function needs to be a minimum to find the best approximation for I,. To do so, the
intensity function should be written in terms of s; + As; (a; + Aa; and b; + Ab;). Then, Q should be
iteratively minimized with respect to the five variable changes (As;) as given in equation (2.20) [31]. In

equation (2.19), i denotes the point number, and k denotes the number of iterations.

~ ~ (2.18)
d; = (s + As;) — Iy (refA.c.7)

A (2.19)
k= i=1 ik (ref A.c.9)

An initial solution s (5o = (@o,00 @1,0, @20, boyos b2 ) is needed to start the iterations. One approach to
finding the initial solution which is used in this work is to find the positions of the arrays with maximum
intensities in X-Y sensor coordinate and find a quadratic polynomial regression to find the initial ridge
line coefficients (ag g, a1 0, az) for each sensor frame. Then the 1% nonzero-intensity row of the same
sensor frame is used to find the initial coefficients (bg o, b, o) for the quadratic intensity distribution using
another quadratic polynomial regression. Considering the coefficient changes for the initial solution
labeled as As; o (Asy = (Ag g, Aay g, Aay g, Abg g, Absy ), the initial solution can be improved and used as

the first solution for the next iteration.
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1 Zn (Zd (’)di,O > 0
00 =
2Q 2 3R, dio’ = 0Ado
0
——=0
d0Aag 1 Z” <2d ad; o > ~o
0,0 =
0Q, n g bmdi=1 " 0Aaq
hay, 0 |HEE
1,0
' 1 n ad.
Qmin = & =0, A i =0- 2 i=1 (Zdl’o JdAa, 0) 0 (2.20)
9450 0Aaz 2 |Zit1dio ' (refA.c.12)
0Q,
— =90 1 n adi,
0Ab,0 —Z 2djp=—2-)=0
aQ ' 2 En d 2 i=1 6Ab0_0
k i=1%i,0
<k _p
aAbZ’O 1 n adio
2 Zn d 2 i=1 ! aAbz'O
i=1%i,0

The square roots in the denominators of the five equations in equation (2.20) must be positive and
different from zero in the non-trivial case. Therefore, only the numerators must be considered. However,

. . . . dad; .. . .
the highly non-linear term in the nominator, fj o = YL, (di,o #), is linearized with respect to As; o to
J.0

find a linear equation g; . Performing the same linearization for all five non-linear equations and setting

them to zero ends up with a system of five linear equations in equation (2.22).

n ad:
fio = Z (di_[) ﬁ) - g10:linearized f;  with respect to As; o
i=1 0,0

= g0 linearized f, , with respect to As;

- :linearized ith respect to As
93,0 zed f3 0w p 3,0 (ref A.c.13)

= g4 linearized f, o with respect to As,

)
dd; > (2.21)

ad;
d; L0 ) - gs,o: linearized fs5, with respect to Ass
2,0

Rearranging the five linear equations in terms of the changes (E = (Aay, Aay,Aay, Aby, Aby ), the

following set of five linear equations is obtained.
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A11412A13A14A157 [Aagl  [B17'
Ax1AzA23424 455 |Aay B, (2.22)
[A]'[As]' = [B]* or|A31A432433A34435 | .|Daz| = [B; (refA.c.14)
Ay AspAg3AgaAss| | Abg B,
51452A4534544551  LAb, Bs

where the definition of each of the A;; coefficients is given in APPENDIX A, and superscript 1 refers to
iteration 1. Solving the set of 5 linear equations, all the five coefficient changes are calculated at each
iteration, then the updated coefficients are obtained. Equation (2.23) shows how the five coefficients’
changes in iteration 1 (A—SD is calculated first to update the initial coefficients (Sy) to the coefficients in
iteration 1 (7).

(2.23)

[As]' = [[A]']7'[B]" - 5] =5, + (refA.c.37)

2|
e

The new solution at each iteration s, should be used to reduce the objective function Qj to eventually
find the minimum @ when the convergence criterion is satisfied. The maximum relative error of two
consecutive solutions has been considered the predetermined convergence criterion to terminate the
iteration loop. Although 1% is usually sufficient [31], 0.1 % is considered for this work as this has a
minor effect on the computational expenses of the current algorithm. The optimization results given in
chapter 4 along with the conformance between the results of proposed optimization and those of the
fminsearch function illustrated in Figure 2.9, the considered convergence criterion looks sufficient. Then
1, as the best solution describes the intensity distribution can be found, and consequently, the ridge line
can be achieved using already calculated a; coefficients. The derivations of the analytic expression of

the intensity distribution and the related equations can also be found in APPENDIX A.

2.1.2  Elliptical Ridge Line

In the case of sphere measurement, the ridge line profile is found to be an ellipse. The four first solution
coefficients are defined by the ellipse parameters (center coordinates and diagonals), and the fifth and
sixth coefficients are defined by the quadratic intensity coefficients as S = (xq, Vo, , b, by, b). In other

words, the first four coefficients are determined using an elliptical fit to the initial solution of the ridge
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line, and the last two coefficients are determined using a quadratic fit to the initial solution of the intensity
distribution of the first nonzero row. Plugging equation (2.24) into (2.3), the analytical model for the
intensity of any arbitrary point (x,y) is found as I,(x, y) illustrated in equation (2.26). Following the
same procedure as for the quadratic ridge lines, the distance function given in equation (2.27) is derived
as a function of the solution coefficients (s;) for any given point of sensor coordinates (x,y). Similarly,
the objective function @ is defined to be optimized with respect to the six solution coefficients to achieve
the best intensity distribution out of the measured sensor intensities. Having the best-fitted intensity

distribution, the ridge line profile is then determined.

X — Sq\ 2 (2.24)
S3 (refA.d. 1)

G =655) rofna)

2
, B 1 X — 51\ 2 (2.26)
a,y) =s5—Se|y—s2— 54 [1— ( S5 (ref A.d.5)

Ve(x) =5, + 54 1‘(

2

2
X; — S1 - (2.27)
diy = (Ss,k—1 - Im,i) - (Sﬁ,k—l) Vi = Sz k-1~ S4,k—1\]1 - <—1kl> (refA.d.7)

S3k-1

(2.28)
(refA.d.8)

Since Q in equation (2.28) is a non-linear function of the coefficients and the optimization process explained
earlier, requiring the process of analytical expansion followed by a linearization process, is expensive in
terms of potential numerical errors and computational time, another approach is taken in the case of sphere
measurement. In this case, Q is numerically optimized using Matlab's "fminsearch" function to reach the
best-fitted intensity distribution. To do this, Matlab code is developed to optimize the objective function
and to obtain the s; coefficients describing the ridge line profile. It is noteworthy to mention that in the
earlier ridge line case, the results obtained from the already described optimization process are consistent
with the results from the fminserach function, as shown in Figure 2.9, proving that the fminsearch function

could be used as a powerful alternative in case of the complexity of the objective function.
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Figure 2.9: UNCC Optimization vs. fminsearch function for cylinder measurement

A MATLAB code comprised of several sections has been developed to take the sensor intensity matrix
as the input and to perform the required calculations and the adjustments followed by the optimization

process to achieve the optimized a; coefficients describing the improved ridge line for every single frame.

2.2 Peak Detection Improvement
The method used to modify the peak detection position of the point cloud measured by the Nikon Instrument
is explained below. Figure 2.10 depicts a high-level view of the process of modification. The steps involved
in the process are outlined below. The machine generates two sets of information as the result of measuring
a target profile; dat files, which include sensor image data, and a 1in file which includes peak detection
positions along with the corresponding addresses. The lin file includes the peak detection position of every
line (row) in every scanned sensor frame in a binary form. Software provided by Nikon can convert the dat
files into TIFF files for image processing. The converted TIFF files are then converted to text files; each

text file includes the sensor image data of one scanned frame.
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Figure 2.10: Original and proposed peak detection process

The sensor image data in the text file format is then fed into the UNCC algorithm to find the modified peak
positions. Based on the lin file structure, in which peak positions and the corresponding addresses are saved
in a binary format, the algorithm also generates the corresponding addresses to be later used during the
replacement process so that each original peak position is exactly replaced with the modified peak position
belonging to the same address. The replacement is done by another software provided by Nikon to achieve
amodified lin file. Eventually, the modified lin file is converted to the modified point clouds in the machine
coordinate system through another Nikon software.

Depending on the length to be scanned, the number of frames generated by the Nikon instrument varies
as the machine capturing frequency, the so-called "Pitch Value" in the supporting metrology software, is
set by default to 20 microns per frame. For instance, 1000 frames would be generated by the instrument
once a length of 20 millimeters is supposed to be scanned. Pitch value specifies the pitch value of the

point cloud data to be obtained to change the scan speed. The smaller the pitch value is set in the
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metrology software, the slower the scan will be performed. A recommended pitch value ranges from

0.02mm to 0.05mm.

2.2.1  UNCC Algorithm for Peak Detection Improvement

In this section, the general outline of the UNCC algorithm is explained. The algorithm includes various

parts, each of which is designed to add a capability to the algorithm. These parts are listed below.

Define unique measurement parameters

Import text files

Match the modified lin file with the original lin file
Remove multiple light reflection

Normalize over each row

Crop the window to remove initial minor peaks

Find the initial solution for optimization

. Perform optimization

10. Calibrate the sensor to compensate for the sensor errors numerically

11. Generate the corresponding address for each peak position

12. Find the original Nikon solution and compare it with the algorithm's solution

o R

Input the
measured intensity

Find an initial
- - 9 - AR analytical Intensity
X - g ‘,"*! ‘ - Rt distribution (Sj, )
EEE. TXEEEES
. SR, TEEE
'i ‘ - ._: “j Calculate the
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Hidge line measured intensity
Intensity
oo, A19: Q29
-
A \\‘ hl],i}-r bz'u Calculate the
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\r (Objective
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Figure 2.11: Algorithm for peak detection improvement

Make segments and integrate them for optimization considering the intensity positions

Solve the system
of equations to
find coefficient

changes (AS;)
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Converts

Output the results
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It is worth noting here the structure of sensor image data before discussing the different parts of the
algorithm. As can be seen from Figure 2.12, there are zero intensity lines or void lines (depicted in orange)
and nonzero intensity lines with a band of nonzero intensity elements (depicted in blue frame) surrounded
by zero intensity elements (depicted in red frame) in each frame. One section of a converted text file,
including light intensities, has been demonstrated in Figure 2.12. The maximum intensity of each line is
highlighted in yellow. The highlighted profile across the entire sensor frame can represent a very rough
estimation of the ridge line of this sensor frame illustrated in the dashed red line. Nikon follows a row-by-
row approach to find the peak position. They go through every single line independent of the following
line, find each line's individual peak position using a mathematical method, and consider each line and its
peak position to generate measured points. That’s why the measured profile by the original algorithm is
non-uniform. Since the measured surface is a finished surface, a more or less uniform ridge line and

therefore a uniform measured profile is expected.

In addition to the structure of sensor images, the general structure of lin files is essential to be discussed as
the modified peak positions must sit exactly at their corresponding addresses in the original lin file to form
the modified one. Every line of a sensor frame has a unique address in the lin file, which is attributed to its

corresponding peak position value in a binary format, as illustrated in Figure 2.13.
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g o 0 0 0 0 0 0 0 0 0 0 4 9 0 0 o0 4 o0 0
813 1077 1202 1472 1582 1632 1622 1554 1427 1244 100
1170 1559 lge2 2071 218s .’.‘l 312 1955 1gsl 1341
1502 2478 aba3 2030 104 2872 F 1] 232¢ 1708 113
1530 258¢ a072 Jael asl /31'.'? 32€4 2874 2308 1581

1784 2202 248¢ 2897 r‘i 2587 2388 2080 1548 10€2
1é48 1848 19€0 18§ 164¢ 181€ 1€02 131§ G€B €S0 508

1€80 1813 1873 S5 17¢8 1604 12¢¢ 10€4 741 531 528

14¢8 1581 1¢57 1€€5 1€11 1483 11 1078 814 €00 842 56

- T U‘w# r— p—p T

¢ ¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O

Figure 2.12: Sensor image data vs Ridge line



35

Peak Position

Inthd Qoo 4648156203394206269
Ulnitd g0 to: 4B48156203304206269
AnsiChar / chard t =

WideChar / charlf_t i]

UTF-8 code point = (U+003D)

Single (float32) -2.33145827892004E-17
Double (floatbd)

OLETIME TN5/1901 41912 AM
FILETIME

DOS date 172871885

D05 time 11758 AM

Figure 2.13: Lin file structure

In the first part of the algorithm, the unique parameters of measurement, including the index of the essential
input files (sensor files and the line file), are defined for the algorithm. This would help the algorithm to

load and read the input files automatically.

The next section is designed to import the input files, and to save the associate data on the corresponding
variables. Comparing the modified lin file with the original line file created by the instrument, there seems
to be filtering performed by the company algorithm that excludes the peak position of some lines from the
lin file. Since the eliminated lines are more related to the beginning and ending of nonzero lines of a frame,
there might be a threshold defined for their algorithm to exclude the intensities below the predefined

threshold that cannot form precise point clouds later.

In the third part, a list of peak positions of each frame is extracted from the original lin file, and the index
of void lines is detected. Then lines with the same index are set to zero in the imported sensor file to match
the sensor files with the original lin file in terms of the void lines. In other words, not removing those lines
from the imported sensor file will later lead to extra peak positions in the modified lin file and, thus, extra
points in the modified point clouds. Every nonzero-intensity line corresponds to a peak position value and
a measured point in the XYZ coordinate system. If the modified lin file is not matched with the original

one, it would significantly affect the total number of modified point clouds compared to the original ones.

Then, in the fourth part, intensities out of the primary band intensity, depicted in orange in Figure 2.14, are

detected as multiple light reflection effects and are removed to avoid false surface detection. Multiple light
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reflection has always been a major challenge in optical metrology, especially in the case of shiny surfaces
and small geometrical features such as tiny deep grooves or deep tooth gears. Access to the sensor file and

detecting multiple light reflection effects in this dissertation offer one effective way to resolve this issue.
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Figure 2.14: Multiple light reflections in sensor frame

As can be seen from Figure 2.12, the primary band intensity may include several segments of nonzero lines.
They need to be separately detected to be considered in the optimization process to detect the ridge line.
Although they are separated, they must be integrated and used in the optimization process. These all are

performed in the fifth part of the algorithm.

As the algorithm's objective is to detect the ridge line, the peak position matters. In other words, the three
a; coefficients in the case of a quadratic ridge line, or the 1* four s; coefficients in the case of an elliptical
ridge line, which describe a ridge line profile, are the actual output of the optimization process and the b;
coefficients, which describe the intensity profile across each row (intensity peak values and the intensity
base width) are just used to run the optimization. Having said that, the ridge line coefficients (a; or the 1*
four s; coefficients) must be calculated independent of the intensity peak values and the optimization
process must be isolated from the intensity peak values. Hence, the effect of various peak values across the
sensor frame from line to line must be avoided. To do that, each frame is normalized by dividing the
intensity values of each line by the maximum intensity value of that line so that the maximum intensity

value of all lines is 1.
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Another modification considered in the algorithm is the effect of minor peaks at each line's beginning and
end. Looking at each nonzero intensity line, the intensity values often start from zero then rise to a minor
peak and fall into a lower value followed by a sudden rise and reach a major peak. This approximately
symmetric shape around the central peak can be observed in almost all lines. Minor peaks can cause a severe
problem when the optimization falls into a local minimum instead of the global minimum, leading to false
peak detection and, therefore, a wrong ridge line. In this section, the primary band intensity is cropped, and
a tighter window excluding minor peaks is used for the optimization. Depending on the investigated
geometries followed by the optimization results, a 15-pixel window is considered for the geometries with
quadratic ridge line, i.e., flat surface, cylinder, and gear, and an 11-pixel window is considered for the
geometries with the elliptical ridge line. The above-mentioned window’s width is found based on the results
of the optimization process for various sensor frames of each geometry measurement. Here, two criteria are
considered for determining the width: a visual and numerical comparison using the objective function value.
First, by visually comparing the shape of the optimized ridge line profile with the original ridge line profile.
Second, by checking the objective function value. Since the number of the evaluated pixels varies as the
window width varies, and the objective function values changes as the number of evaluated pixels changes,

the objective function criterion alone does not suffice.
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Figure 2.15: Cropped sensor data for the optimization
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The eighth part of the algorithm is devoted to finding an initial solution to start the optimization with. As
mentioned earlier in sections 2.1.1 and 2.1.2, there are two sets of coefficients; one to describe the ridge
line profile and one to describe the bell-shaped intensity distribution. An initial solution for the first set is
obtained by developing a quadratic polynomial regression to find the initial ridge line coefficients for each
sensor frame by finding the locations of the arrays with the highest intensities in the X-Y sensor coordinates,
as shown in Figures 2.11 and 2.12. The second set's initial values are then found using another quadratic
polynomial regression on the first nonzero-intensity row of the same sensor frame. Having an initial

solution s; o, the iterations can then be started.

The next and most crucial part is the implementation of the optimization process, the mathematics of which

is explained in detail in sections 2.1.1 and 2.1.2.

One of the advantages of the proposed algorithm is the calibration part which includes a 2-step process.
First, the algorithm should run and drive the modified point clouds. In the second step, the modified point
clouds are compared with the original point cloud to eventually find the numerical sensor calibration for
the measured geometry. This calibration can later be used in the algorithm to compensate for the
noncalibrated sensor effects. The deviations between the modified point clouds driven from the algorithm
and the original point clouds are calculated in the calibration part. Then there is a common polynomial in
the deviations of all frames when seen in the same plot. Subtracting the calculated deviation from the
common term, residual deviations can be obtained that all follow a similar trend across various frames. The
mean value of the residuals in the sensor coordinate system gives the calibration values in the sensor
domain. As discussed in Chapter 4, the deviation in the sensor domain is linearly commensurate with the
deviations in the point cloud coordinates system with a linear coefficient. Considering the linear conversion
coefficients, the sensor calibration can be converted from the sensor domain into the machine coordinate

system. The calibration of different geometries will be comprehensively discussed later in Chapter 5.

To be able to modify the original lin file, not only the modified peak positions should be identified, but also

the corresponding addresses should be generated so that each original peak position can be replaced with
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the corresponding modified peak position belonging to the same address. The generation of the
corresponding addresses and assigning each modified peak position to the correct address is performed in

the next part of the algorithm.

In the algorithm’s last part, original peak positions are driven from an original lin file to allow the user to
compare peak positions between modified and original values. This can give one an idea of what change
the UNCC algorithm can make in the sensor domain compared to the original Nikon method, as illustrated

in Figure 2.16. The comparison in the sensor domain will be discussed in detail in Chapter 4.
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Figure 2.16: UNCC solution vs. Nikon solution in cylinder measurement
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3 CHAPTER 3: EVALUATION WITH SIMULATED DATA

This chapter assesses the UNCC algorithm performance using four sets of simulated data. A 3D light intensity
distribution of a sensor frame is simulated using a quadratic and an elliptical ridge line profile. For each ridge line
profile, one quadratic and one exponential profile is considered to simulate the bell-shaped light intensity
distribution over each line of a sensor frame. First, the 3D light intensity distribution is simulated using known
coefficient values. The known coefficients are comprised of three a; coefficients in the case of the quadratic ridge
line, or the 1** four s; coefficients in the case of the elliptical ridge line, to describe a ridge line profile and two b;
coefficients to describe the peak values and the bandwidth, as described earlier in Chapter 2. Then, the simulated
light intensity is fed to the UNCC algorithm in each of the four cases to perform an optimization to iteratively find
the corresponding ridge line profile. Then the simulation coefficients are compared to the UNCC solution to

evaluate the UNCC algorithm.

3.1  Quadratic Ridge Line

An iterative optimization is developed based on the previously mentioned set of five linear equations and then tested
for both the exponential and the quadratic simulated data, as seen in Figures 3.1 and 3.2. The algorithm can perfectly

find the expected ridge line for both sets of simulation data.

Exponential Distribution

Intensity
o

¥ Desaar X Detactor 0

0 50 100 150 200 250
Y

Figure 3.1: Simulation Data vs. the algorithm solution for exponential distribution
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Figure 3.2: Simulation Data vs. the algorithm solution for quadratic distribution

Below, two examples of the simulated data and a comparison of the results are given to show how accurately the
algorithm can converge to the a; simulated coefficients. In the first example, the intensity along the y direction is
simulated using an exponential function, while in the second one, a quadratic polynomial is used to simulate the
intensities along the y direction. As seen from the simulation coefficients and the final solution, the algorithm would
perfectly approach the same values for the three first simulation coefficients, which describe the ridge line

(ao, a4, a5).

3.1.1  Simulation Based on Exponential Distribution of the Intensities over Each Row

y.(x) = ag + a;x, + a,x.? 14

Io(x,y, %, ye) = boe 22070’ 15
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Table 3.1: Coefficients describing exponential distribution of the intensities over each row for quadratic ridge line

Simulation _ o . . -
Coefficients o a, a b, b,
Start
Solution o0 1,0 azo by, bz
120 0 3.5 5 0.005
Final
Solution Qo f s azys bos by s
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Figure 3.3: Simulation Data vs. the algorithm solution
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Figure 3.4: Objective function vs. iteration number
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3.1.2  Simulation Based on Quadratic Distribution of the Intensities over Each Row
V. (x) = ag + ayx. + a,x.? 16

Io(x,¥,%¢,¥c) = by — b (y — yc)z 17

Table 3.2: Coefficients describing quadratic distribution of the intensities over each row for quadratic ridge line

Simulation - - - _ _
Coefficients o a; az by b,
100 2 3
Start
Solution o0 a0 azo bo,o bzp
120 0 3.5 9 0.005
Final
Solution Qo s ayf azf bo s by s
1000000 | 2000 | 30000 _
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Figure 3.6: Objective function vs. iteration number

3.2 Elliptical Ridge Line

In the optimization stage of elliptical ridge line simulation, due to the highly nonlinear nature of the intensity

equations caused by complicated elliptical equation, the MATLAB fminsearch function is used for both the

exponential and the quadratic simulated data. Again, the algorithm can perfectly find the expected ridge line for

both sets of simulation data, as shown in Figures 3.7 and 3.8.
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3.2.1 Simulation Based on Exponential Distribution of the Intensities over Each Row
X, — 51\ 2 18
Ye(x) =53+ 54 |1 (_)
S3
Ia(x:y:ch’c) = SS e_SG(y_yC)Z 19

Table 3.3: Coefficients describing exponential distribution of the intensities over each row for elliptical ridge line

Simulation . .
Coefficients Xo Yo
5.0 0.0

Start
Solution *0,0 Yoo
4.0 0.0

Final
Solution Xof Yos

X Detector il

Figure 3.9: Simulation Data vs. the algorithm solution
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Figure 3.10: Objective function vs. iteration number

3.2.2  Simulation Based on Quadratic Distribution of the Intensities over Each Row

Xc _51)2

Ve(x) =5, + 34 1_(
S3

Io(x,y,x¢,¥c) = 55— s6(y — yc)z 21

Table 3.4: Coefficients describing quadratic distribution of the intensities over each row for elliptical ridge line

Simulation . . _ _ _ _
Coefficients Xo Yo a b by b,
5‘0 0'0 _
Start
Solution *0,0 Yoo ao b, boo bzp
4.0 0.0 10 19.0 -10 1.3
Final
Solution Xof Yos as by bos bz s
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Figure 3.11: Simulation Data vs. the algorithm solution
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Figure 3.12: Objective function vs. iteration number

The above results show that the algorithm can converge the simulated data in both the exponential and the quadratic
cases. Since working with the quadratic polynomial can save computational time, as shown in Figures 3.10 and
3.12, while not affecting the algorithm convergence, the quadratic polynomial will be used for the actual sensor

data.
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4 CHAPTER 4: IMPLEMENTATION OF ALGORITHM ON ACTUAL SENSOR DATA

Following the successful algorithm's performance on the simulated data shown in Chapter 3, the current
chapter explains how the peak detection algorithm is applied to the actual sensor data for all the measured
references in this dissertation, i.e., flat surface, cylinder, sphere, and helical cylindrical gear. The
modified peak positions are then calculated to be compared with the peak positions extracted from the
original Nikon peak detection algorithm. Since the triangulation method is used in the measurement
process, any peak position deflection in the sensor X-Y direction leads to a deviation in the evaluated
distance and, therefore, an inaccurate measured points cloud. To establish a correlation between the
deviations in the sensor coordinate system and the machine XYZ coordinate system, a measurement is
performed and the data in both coordinate systems are compared. This correlation can give one a rough
estimation of how the peak detection modifications in the sensor domain can improve the measurement
accuracy in the YXZ coordinate system. In the last section, a numerical comparison is performed between

the UNCC and the Nikon peak detection algorithms for the same input sensor frame.

4.1  Preprocessing for Actual Sensor Data

Recalling from Chapter 2, sensor data includes multiple sensor frames, each of which consists of 1024
rows (lines), each of which consists of 1024 elements. Therefore, the intensities of each sensor frame
form a 1024x1024 matrix, as the machine laser scanner is equipped with a 1024x1024-pixel CCD
camera. As explained in section 2.2.1 and shown in Figures 2.12 and 2.15, there can exist a primary
intensity band of nonzero-intensity lines, serval zero-intensity lines, and zero-intensity elements around
the primary band in each sensor frame. The primary band may include several segments of nonzero-
intensity lines. Furthermore, since the transposed intensity matrix of sensor frames is used in this chapter,
zero-intensity lines are referred to as void columns.

Initially, the raw sensor frame needs to be preprocessed to be used as the input of the proposed peak
detection algorithm. First, the sensor frame is rearranged so the algorithm can be applied. In other words,

the intensity values are not changed at all, but the primary intensity band is rearranged. Since there are
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some void columns in the sensor frame, as shown in Figure 4.1, the capability to find the location of the
void columns is also added to the algorithm so that the sensor frame would be divided into several
continuous segments, each of which has no void columns.

An effort is made to make simulation data very similar to the actual sensor frame (with many non-intensity
arrays around the primary intensity band as the actual sensor frame looks like), and the algorithm is tested.
The result shows that the solution does not always converge because of the non-intensity arrays. Then the
actual sensor frame is modified so that the non-intensity arrays are removed and only an intensity band is
kept. This way, the solution converges.

In the following, the above-mentioned method is used to rearrange the sensor frame and make the
corresponding X and Y coordinates of the primary intensity band at each array, illustrated in Figures 4.1 to
4.3. It should be noted that the sensor frame is not changed at all; however, the primary intensity band is

rearranged for the purpose of optimization convergence.
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101 0 j 0 0 0 0 0 0 0 [) o 0 —
non-intensity
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08 0 [ 249 e 241 139 123 296 318 ) 0 of
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Figure 4.1: Transposed sensor frame
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[ 15%20 double
1 4 7 8 g 10 1 iz 13

1 246 249 241 138 324 288 343 184 0 199 0 386 141

2 1156 798 648 461 1306 840 1517 1721 725 1730 810 1868 1274

3 2610 1930 1660 1533 2772 2062 3289 4116 2788 4310 2809 4040 3146

4 4064 3200 2879 2931 4190 3509 4975 6511 5588 7204 5514 6355 5184
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Figure 4.2: Rearranged intensity matrix
] M0686_1 Im | |y : | Mos86.1 ¢ i |y
F 15x20 double EH 15%20 double
1 2 4 5 6 2 3 4 5 6

1 255 256 257 258 259 |19 106 106 106 106 107 107
2 254 255 256 257 258 259 |2 107 107 107 107 108 108
3 254 255 256 257 258 259 |3 108 108 108 108 109 109
4 254 255 256 257 258 259 |4 109 109 109 109 110 110
5 254 255 256 257 258 259 |5 110 110 110 110 111 11
6 254 255 256 257 258 259 |6 111 111 111 111 112 112
7 254 255 256 257 258 259 |7 112 112 112 112 113 113
8 254 255 256 257 258 259 |8 113 113 113 113 114 114
9 254 255 256 257 258 259 |9 114 114 114 114 115 115
10 254 255 256 257 258 259 |10 115 115 115 115 116 116
11 254 255 256 257 258 258 |11 116 116 116 116 117 117
12 254 255 256 257 258 259 |12 117 117 117 117 118 118
13 254 255 256 257 258 259 |13 118 118 118 118 119 119
14 254 255 256 257 258 259 |14 119 119 119 19 120 120
15 254 255 256 257 258 259 (15 120 120 120 120 121 121
16 16

4.2 Postprocessing for Actual Sensor Data

Figure 4.3: X and Y Coordinates of the primary intensity band
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Finally, the algorithm is applied to four actual sensor data from measuring a flat surface, a cylinder, a

cylindrical involute gear, and a sphere. In every four cases, the normalized 3D light intensity distribution

of a sensor frame is plotted along with the UNCC solution, which is the ridge line detected by the UNCC

algorithm. In Figures 4.4, 4.7, 4.10, and 4.13, the blue dashed line represents the UNCC-detected ridge

line. Figures 4.5, 4.8, 4.11, and 4.14 illustrate how the Nikon solution oscillates around the UNCC

solution in the different measured geometries. In other words, the UNCC solution offers a more uniform

solution than the current Nikon solution. This is what is expected from the measurement of a finished

surface. The objective function values over the optimization process are given in each case to show the

optimization convergence. The given results show that the UNCC solution converges only after a few
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iterations. The algorithm can perfectly find the ridge line of the sensor frames in various measured

geometries, as demonstrated in Figures 4.4 to 4.15.
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Figure 4.4: Light intensity distribution vs. UNCC solution for a straight ridge line in flat surface measurement
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Figure 4.6: Objective function for a straight ridge line
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Figure 4.10: Light intensity distribution vs. UNCC solution for a quadratic ridge line in gear measurement
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Figure 4.11: UNCC solution vs. Nikon solution for a quadratic ridge line
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Figure 4.13: Light intensity distribution vs. UNCC solution for an elliptical ridge line in sphere measurement
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Figure 4.14: UNCC solution vs. Nikon solution for an elliptical ridge line
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Figure 4.15: Objective function for an elliptical ridge line

4.3  Estimation of Rough Improvement
A rough estimation of the improvement of the implemented UNCC algorithm in terms of the evaluated

form deviation of a ground surface is investigated in the next step. A correlation between the deviations
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in the sensor coordinate system and the machine XYZ coordinate system is essential to find an initial
estimation for the improvement caused by modified peak detection compared to the current Nikon peak
detection. In order to obtain the correlation, a reference geometry is scanned with the triangulation sensor.
The measurement results in both sensor and XYZ coordinate systems are compared to find a correlation
between the sensor and the XYZ coordinates. A laser stripe is illuminated to the surface, as shown in
Figure 4.16-a or the red dash line in Figure 4.16-b, and the reflected light is captured on the detector, as

shown in Figure 4.16-c. Comparing the measured height in two coordinate systems, a correlation is

found.
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Dividing the step height by the number of pixels (= %), every pixel roughly corresponds to 32 microns in the XYZ

spatial distance.

4.4  Comparison between UNCC and Nikon Peak Detection Algorithms

In this section, a method is used to compare the UNCC and Nikon solutions numerically. First, a sensor
frame is considered the algorithm's input. Then, the UNCC peak detection algorithm is applied to the
frame to detect the peak positions of the primary intensity band. After that, a circle is fitted to the positions
on sensor coordinates using the least-squares criterion, and the residuals of every position from the fitted

circle are calculated for all positions, as illustrated in Figure 4.17. Then, the RMS of the residuals is

600
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calculated. Next, the same calculations are performed on the same frame for the Nikon solution to find

the residuals and RMS of the Nikon solution from its own fitted circle. Finally, the RMS of the UNCC

solution is compared with that of the Nikon solution, as shown in Figure 4.18.

Comparing Nikon and UNCC residuals for one sensor frame, the difference between Nikon and UNCC

solution turns out to be in the range of 0.7 pixel, which would correspond to roughly 22 microns. This is

a rough comparison in which the effect of combining all successive ridge lines, which may also lead to

more reduction in total evaluated form deviation, has not been taken into account.
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5 CHAPTER 5: AREAL EVALUATION AND RESULTS

Following the successful peak detection results on an individual sensor frame for different investigated
reference geometries discussed in Chapter 4, the proposed algorithm is used to determine the ridge line
of every consecutive sensor frame. Then the determined ridge line is converted into the machine XYZ
coordinate system as a line of points. Then the converted lines of points are combined to generate the
reconstructed point clouds.

As explained in chapter 2, and depending on the instrument capturing frequency, the so-called "Pitch
Value" in the supporting metrology software, each surface measurement may include hundreds of
consecutive sensor frames. Each frame consists of 1024 rows, zero intensity and nonzero intensity rows.
First, the sensor data is fed to the algorithm as the input data. The algorithm breaks the input data into
separated frames. Then it modifies the peak position of nonzero intensity rows over one frame or modifies
the detected ridge line in each frame. Then it devotes a unique address to each peak position of a row so
that later any row of the frames has its unique peak position and address. Modifying the peak positions
frame-by-frame for the entire sensor frames, the modified peak positions along with their corresponding
addresses are exported from the algorithm.

As illustrated in the below flowchart in Figure 5.1, two sets of information are exported from the Nikon
instrument after a surface is scanned: an original lin file and a set of dat files (sensor data). The overall
strategy of the modification is to take the original lin file and to use the sensor data and the UNCC
algorithm to find the modified peak positions. Having the modified peak positions and their
corresponding addresses, the original peak positions in the original lin file can be replaced with the
modified peak positions to create the modified lin file. The modified lin file in the next step is converted
into the modified point clouds.

In this Chapter, the algorithm is used for the four scanned reference geometries: a flat surface, a cylinder,
a sphere, and a commercial helical involute cylindrical gear. In each case, the modified point clouds

produced are compared with the original point clouds to evaluate form deviations and offer a sensor
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calibration for that particular geometry. It should be noted that although the optical measurement results
have not been compared with the results of an areal tactile measurement, the measured references have

finished surfaces with a form deviation in the single-digit micrometer or sub-micrometer range.
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":‘;Jc:me mﬂa}-:hjne | original lin file I > (4) Modify lin file —‘
¥ " | dat files ‘ Modified lin file
’ dat files ‘ original lin file
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to point cloud file to point cloud file
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(3} UNCC Peak
detection
— program —
Original point =TT Modified point
cloud o | cloud
Peak positions |
(a) Original Nikon process (b) Proposed process

Figure 5.1: Process of peak detection improvement

5.1  Flat Surface Measurement

The first section performs the above-mentioned process to find the modified point clouds for a nominally
flat surface measurement. The original and the modified point clouds are plotted in the same plot as
illustrated in Figure 5.2. A plane is fitted to each set of original and modified point clouds to find the
deviations from the fitted plane in each case. A licensed MATLAB software is used in this section to
determine the fitted plane using the least-squares criterion. Once the number of point clouds exceeds the
limit of the fitting software, 19000 points, sampling with a specified sampling factor is used to reduce

the number of point clouds.
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Then each measured point is projected onto the plane. The normal distance of each measured point from
the plane identifies the magnitude of the point's deviation. The deviation vector, on the other hand, is
determined by the unit vector connecting the projected point to the measured point. Then magnified
deviation magnitude in the deviation vector's direction from the fitted plane forms the magnified
deviation. The magnified deviations can be computed using the point deviation's magnitude and vector
for all the measured points. The magnified 3D deviations of the flat surface measurement with the
magnifying factor of 50 are demonstrated in Figure 5.4. Similar to what was observed earlier in the sensor
domain in chapter 4 and as expected, the points modified using the UNCC method represent more
uniform point clouds than the scattered Nikon point clouds.

Each frame produces a line of points resembling the projected laser line on the measured geometry. In
the case of a flat surface scan, the intersection of two tilted planes forms nominally a line in 3D. In
practice, however, the actual data will not form a perfect line due to the measurement uncertainties and
the surface features, as illustrated in Figure 5.3. Then all these lines with the predefined pitch value are
combined to form a point cloud representing the surface.

The deviations of modified point clouds shown in green dots in Figure 5.4 follows a similar linear pattern
over the consecutive frames. To better illustrate the deviation pattern over the consecutive frames,
deviations are plotted in 2D. Figure 5.5 shows the 2D point cloud's deviations of the first frame for both
the original and modified point clouds. Figure 5.6-a illustrates that if the 2D deviations of the consecutive
frames are plotted in the same plot, they seem to follow a similar interesting linear pattern with different
slopes and offsets. Suppose a straight line is fitted to the deviations of each frame, and the deviations are
subtracted from the fitted line. In that case, the residuals from the fitted line can be derived. Plotting the
residuals (transformed deviations) of all frames in the same plot shows that the residuals over the frames
match each other, as shown in Figure 5.7.

This similar pattern offers a common term in the deviations of the frames. In other words, the deviations
consist of a common term plus an uncommon (a remaining) term. Since the common term repeats for all

the frames, it cannot come from the measurand instead comes from the measurement process. More
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investigations regarding the common term are also performed for other reference geometries. It is
concluded that this common term comes from the sensor and needs to be numerically calibrated to
improve measurement accuracy. The sensor calibration for different measured geometries is another
capability of the UNCC algorithm. Considering the mean of the common term for all the frames in flat
surface measurement, the flat surface calibration in machine XYZ coordinate system is derived. The logic
of the calibration is to be used in the sensor domain so that later it causes the modification in the actual
XYZ domain. The correlation derived in Chapter 4, so-called the correlation factor in this dissertation, is
used to convert the calibration into the sensor domain. Due to the linear relation between the two domains,
dividing the calibration of the XYZ domain by the calibration factor, the calibration of the sensor domain
is calculated.

After the calibration in the sensor domain is calculated, it is used in the UNCC algorithm to find the
modified point cloud after the calibration is used. Figures 5.5 and 5.6 show the effect of calibration in the
point cloud deviations. As shown in Figure 5.5, after calibration is used, the deviations are smoother and
better represent a straight line. These deviations are compatible with the expectation of a finished surface
measurement in which the point clouds and the deviations in each frame are expected to represent a
straight line.

Looking at the deviation of all the measured points, the flatness, which is the maximum deviation minus
minimum deviation, can be calculated in both the original and the modified point cloud. The flatness of
the original point cloud and the modified one is 73 and 46 microns, respectively. Looking more at Figure
5.6, the total form deviation considering only the first 20 frames is roughly 25 microns (15-(-10)),
although the UNCC algorithm offers a smoother solution than the scattered Nikon solution. In other
words, the total form deviation is more influenced by the uncommon term than the common term in each
individual frame. Therefore, the large evaluated form deviation is due to the frame-by-frame approach.
Although the UNCC algorithm improves the peak detection using a frame-by-frame approach instead of
the current Nikon row-by-row approach, it cannot further improve the evaluated form deviation as long

as the frame-by-frame approach is used.
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5.2 Cylinder Measurement

This section implements modified peak detection on sensor data from a cylinder measurement. The
original and modified point clouds are compared in Figure 5.9. A cylinder fit is used to find each case's
fitted geometry and measurement deviations. As a result of cylinder fit to each set of data, the radius,
height, and central axis of the fitted cylinder are calculated using licensed MATLAB software. A unit
vector from the cylinder axes toward the point for every measured point is calculated to represent the
deviation direction. The magnitude of the deviation, on the other hand, is calculated through the distance
of the measured point from the fitted cylinder's axes minus the reference radius. Having the magnitude
and the direction of a deviation, the magnified 3D deviation can be found whose magnitude and direction
are the fitted cylinder's radius plus the magnified deviation magnitude and the deviation vector's direction,
respectively. The magnified 3D deviations of the cylinder measurement with the magnifying factor of
500 are depicted in Figure 5.11.

As explained earlier, every sensor frame generates a line of points in the shape of the illuminated laser
line on the measured geometry. In the current case, the intersection of a tilted plane and a cylinder
nominally forms a 3D elliptical shape, as shown in a red line in Figure 5.10. Then all the consecutive
generated lines with the predefined pitch value sit one after another to form the entire point clouds.
Again, a close look at the deviations of the modified point clouds shows a repetitive pattern over the

consecutive frames. A 2D illustration of the deviations of the first 20 frames is used to investigate the
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pattern. As shown in Figure 5.12-a, the deviations calculated from the two strategies are compared. It is
noted that the UNCC algorithm offers a uniform deviation map and so uniform solution in the case of
cylinder measurement as well. Plotting the 2D deviations of the first 20 consecutive frames together in
Figure 5.13-a, a similar pattern again can be observed. All the frames' deviations consist of different
fourth-order polynomials (uncommon terms) and a common term on top of that. To extract the common
term, each deviation map is subtracted from its fitted fourth-order polynomial. The residuals from the
fitted polynomials of the first 20 frames are plotted in Figure 5.14. The extracted common residuals over
the entire frames, the mean of the frames' residuals, nominates the calibration in the machine coordinate
system for the cylinder measurement. Considering the correlation factor between the sensor and the actual
XYZ domain introduced earlier, the sensor error correction for calibration in the sensor domain is derived
and shown in Figure 5.15.

When the calibration in the sensor domain has been calculated, it is employed in the UNCC algorithm to
identify the updated point cloud. The updated 2D deviations of the same frames are demonstrated in
Figures 5.12-b and 5.13-b to highlight how sensor calibration affects cylinder measurement. The
calibration removes the extra deviations generated due to the noncalibrated sensor. Consequently, the
modified point clouds represent more coherent point clouds compared to the dispersed Nikon point
clouds.

Evaluating the total cylindricity, which is the algebraic difference between the maximum and the
minimum deviations from the best cylinder fit, the UNCC peak detection can improve the measured
result from 50 to 29 microns. Looking at Figure 5.13, although the form deviation within one frame does
not exceed roughly one micron, considering all 20 frames' deviations, the cylindricity of those frames
reaches roughly 4 microns. This example clearly shows how the total evaluated cylindricity is more due
to the uncommon term over different frames. Again, that is due to the frame-by-frame nature of the

current approaches.
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Figure 5.10: Reconstructed point clouds of consecutive frames vs. one individual frame in cylinder measurement
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5.3 Sphere Measurement

Similar to the flat surface and cylinder measurement sections, the UNCC algorithm helps to provide the
modified point clouds out of a sphere measurement. The original and the modified point clouds are
demonstrated in Figure 5.16. To find the point cloud deviations, a sphere fit is employed using another
MATLARB software for both the original and modified sets. Sampling with a specified sampling factor is
also used due to the high volume of the measured point clouds and the limit of the fitting software (19000
points).

A vector from the fitted Sphere's center to the measured point is used to calculate the deviation magnitude
and vector. The magnitude of the vector deducted by the nominal sphere radius determines the deviation's
magnitude and the unit vector's direction. Then magnified deviation magnitude in the deviation vector's
direction from the fitted Sphere forms the magnified deviation. The magnified deviations can be
calculated if the magnitude and vector of each point deviation are available. Figure 5.18 displays the
amplified 3D deviations of the sphere measurement when the magnification factor is set to 500.

In the case of sphere measurement, every sensor frame produces a line of points in the shape of the
intersection of a tilted plane and a sphere section which is nominally a partial circle in 3D, as shown in
Figure 5.17. Combining all the produced lines, as the surface is scanned frame by frame, the entire point

clouds are reconstructed.
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Similar to the calibration section of the other two geometries, the deviation map of each frame is
calculated to eventually find the calibration correction. The 2D deviation maps of the first frame are
depicted in Figure 5.19-a. Comparing the deviation map of the original and the modified methods, again,
the modified point clouds represent more continuous deviations than those of the original one. Figure 20-
a shows a similar pattern in the deviation map of the first 20 frames. Each map comprises a fourth-order
polynomial term superimposed with a repeated term. The repeated term can be extracted using fourth-
order polynomial regression to each deviation map and subtracting the map from the 4th order term.
Again, the residual term of the various frames resembles each other, as demonstrated in Figure 5.21.
The observed similar pattern can be used to extract the sensor error correction for calibration. Considering
the mean of the common term for all the frames in sphere measurement, the sphere calibration in XYZ
coordinate system is calculated. Then, the sphere calibration in the sensor domain illustrated in Figure
5.22 is calculated using the linear correlation factor.

Next, the calculated sphere calibration in the previous step is imported into the UNCC algorithm to
improve the point clouds further. The improvement can be seen in Figures 5.19-b and 5.20-b, where the
calibration eliminates the sensor error, which, in turn, generates a smoother measured profile in each
frame and total.

The sphericity, defined as the maximum deviation minus the minimum deviation, can be obtained by
evaluating the original and the modified point cloud's deviation values. Sphericity measures 44 microns
for the original point cloud versus 7 microns for the modified version. Similar to what was discussed
earlier and having a careful look at Figure 5.20, the origin of the smaller evaluated sphericity compared
to the larger values for the evaluated flatness and cylindricity is the similar value of the uncommon terms

over consecutive frames.
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Figure 5.18: Magnified 3D deviations for sampled original and modified point clouds
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54  Helical Cylindrical Gear Measurement

Once the algorithm is tested on three reference geometries, i.e., flat surface, cylinder, and Sphere, it is
implemented for gear evaluations in the current section. As discussed earlier in the literature review,
using the Plumb line distance concept, an equation has been presented to describe the 3D geometry of a
gear flank surface; based on that, an areal description of the flank surface named the areal distance map
has been defined. An areal evaluation method [26] has been proposed in which gear deviation parameters
can be extracted directly from an areal distance map. This method maps the nominal flank geometry and
the deviations from the nominal geometry into a local uvd coordinate system, as illustrated in Figure
5.23. This coordinate system is an essential part of Ni's algorithm for areal gear evaluations. Hence,
regarding gear measurement, first, the coordinate system and deviations are discussed to elaborate later

on the effect of using peak detection modifications.

5.4.1 Areal Distance Map and Surface Decomposition

Figure 5.23 depicts a coordinate system on the flank surface that can be constructed using the direction
of profile generation as one axis (labeled u), the direction of helix generation (labeled v) (which is the
same as the z-axis), and the surface normal direction (labeled d). Probing in the v direction is equivalent
to a helix measurement, and measuring in the u direction is the same as a profile measurement in the
conventional gear measurement. At various points along the flank, the direction of the surface normal

changes. Accordingly, this coordinate system varies with respect to the gear coordinate system at various
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measurement points. Each point's plumb line distance, denoted by the value d, is the height of the point
in the uvd coordinate system. The nominal flank surface is transformed into the u-v plane with the plumb
lines of zero. A distance map is constructed using the point's plumb line distances from the set of
measured points. This distance map is identical to the deviation map (containing only undesirable
deviations) in the absence of gear modification. In the case of modified gear, on the other hand, the
distance map is a combination of undesired deviations and the desired modifications.

The distance map then incorporates all modifications. Figure 5.23 shows that all distances from the pure
involute surface along the surface normal can be linearly combined and, conversely, removed from the
distance map. Once the intended modifications to a measured gear are eliminated, eventual deviations
from the nominal modified surface are either undesirable or should be kept to a minimum. Two-
dimensional orthogonal Chebyshev polynomials are used for surface decomposition.

When an orthogonal series of polynomials on the [-1,1] domain is available, a linear combination of these
features can decompose any function. This decomposition method is analogous to the Fourier series and
the Zernike polynomials. Therefore, decomposing the deviation map into these features with certain
coefficients would indicate the contribution of each on the surface. The coefficients in this method have
the benefit of being orthogonal, meaning they do not interact with one another [32,33]. The polynomials
also have a shape resembling the desired gear modifications. Figure 5.24 shows a comparison between

six gear parameters and the Chebyshev term up to the second order.



72

2asl { de n ma
/deal involute surface Measured deviation map

:
? H
E l dh!rf
s

Nominal flank

surface
u
ca
4
L
K 0 L o L ’, 00 ‘e
0 o
v u v 00 u @« v u
Figure 5.23: Mapping the measured points to the areal surface coordinate system (uvd), and surface decomposition
[after 32]
S . w1 ek pA |
th 2 iy
oth order A 2" order
C!JmUIatNE 4 . Crowning X Iy Profile
pitch e =, i
deviation y v crowning

o i o, | i, | | i o s i Nl | |

20 Chebyshev tem #:1 A
1%t order . 2" order
. Slope - i
Profile 4 =
0 Wi L
y x T

Lead
crowning

2" order

Flank twist

Figure 5.24: Geometric resemblance of areal flank modifications/deviations by low order 2D Chebyshev
polynomials [after 6,32]

5.4.2 Evaluation Results

With this background in mind, commercial gear is measured by the Nikon Instrument, and the algorithm
is implemented on a full flank measurement. Then an evaluation MATLAB software developed by Yue
Peng is used to provide the gear evaluation results to investigate the effect of the peak detection
algorithm on the generated point clouds. The input of the evaluation software is a CSV file, including

the measured point clouds in gear coordinate system, which is the output of the peak detection algorithm.
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The evaluation results are given below to see the new algorithm's improvement on the evaluated form

deviation values.
Figure 5.25 shows the deviation map of one measured flank without applying the UNCC peak detection
algorithm. The form deviation, the algebraic difference between the maximum and the minimum

deviations from the nominal flank surface, turns out to be 43.8 microns.
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Figure 5.27 shows the deviation map of the same flank after applying the UNCC peak detection algorithm.
The evaluated form deviation is reduced to 9 microns over the same evaluation range. As can be seen from
Figures 5.27 and 5.28, a higher-order term along the U direction can be observed from the form deviation
map that repeats in the V direction. Similar to other reference geometries, this is due to the frame-by-frame

nature of the algorithm. In the case of gear measurement, the calibration is not performed due to limited

access to the evaluation software.
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Figure 5.27: Deviation map and evaluated results for the first flank of Gear T with peak detection improvement
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Figure 5.29 shows the contribution of a ridge line of one sensor frame from gear measurement in different

coordinate systems.
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Figure 5.29: One sensor frame in different CSY's
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6 CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

In summary, this dissertation improves the profile fidelity of triangulation sensor measurement in
optical inspection. An alternative mathematical approach to improving the ridge line detection at each
sensor frame, which is the line in the x-y sensor domain with the highest light intensity, is proposed for the
instrument to detect the peak position of that frame even more accurately. An analytical model of the sensor
pixels' intensities is introduced to be compared with the measured intensities. The method uses three or four
coefficients to model a ridge line profile across the sensor; depending on the investigated geometries, three
coefficients are used for a quadratic ridge line, and four coefficients are used for an elliptical one. It also
uses two additional coefficients to model the light intensity distribution over every sensor row. An iterative
optimization is then proposed to find the best approximation for the model-based intensities out of the
measured ones. Having the optimized solution for each frame, the modified ridge line can be detected.

A MATLAB algorithm that includes various sections, each designed to add a capability, is
developed based on the proposed peak detection method. One algorithm's preprocessing section removes
multiple light reflections from the input frames. The instrument capturing frequency, known as "pitch
value," determines the total count of the scanning frames. Performing the same peak detection for all the
scanning frames, all the modified ridge lines across the successive frames are found. The algorithm also
devotes a unique address to every sensor row for all the sensor frames to be used later to replace the original
(Nikon) ridge lines with the modified ridge lines. The modified ridge lines are replaced, and the modified
point clouds are extracted.

The proposed algorithm uses numerical simulations on four sets of simulation data (based on
various ridge line profiles and intensity distributions) to obtain the model-based ridge line from the
simulated intensities in a sensor frame. Conformance between the optimized coefficients and the given
simulated ones is obtained on four simulations. Then the actual sensor data of a single frame for various

reference geometries, i.e., flat surface, cylinder, sphere, and gear, are fed to the algorithm to detect the
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improved ridge lines. The modified ridge line offered a smoother profile in each case compared to the
current scattered original ridge line, which is compatible with the expectation of measuring a finished
surface. Then a numerical correlation between the sensor coordinates system and the workpiece one is
calculated to roughly estimate the improvement of the implemented proposed algorithm in terms of the
evaluated form deviation of a ground surface. One pixel in the sensor coordinates system roughly
corresponds to 32 microns in the coordinates system.

The algorithm is then used to measure the four above-mentioned reference geometries to find the
modified evaluated point clouds out of the surface measurements. The deviation of each set of measured
point clouds from its best fit after the algorithm is implemented is calculated to illustrate a common pattern
in the deviations of the successive scanning frames for each geometry. Using the mean of the residuals
between the deviations and the common deviation term for all the scanning frames in each geometry
measurement, the sensor calibration for that measured reference geometry is offered.

The modified point clouds showed a smaller evaluated form deviation for all four reference
geometries. Having a closer look at the above-mentioned deviations in a few successive frames, the total
form deviation is more influenced by the start and the end deviations in each frame than the change of the
deviations across each individual frame. Therefore, the large, evaluated form deviation is due to the frame-

by-frame approach.

6.2  Future Work

Although there is promise in the proposed peak detection algorithm's potential applications, several
significant issues still need to be researched in depth.
6.2.1 Calibration across the Entire Sensor Domain

As mentioned in Chapter 5, either the Nikon instrument or software adds a repeated pattern to the
reconstructed point clouds when the modified peak detection process is used, or during the original Nikon
process, they internally calibrate the sensor data that the modified process does not have access to.

Therefore, an extra repeated pattern exists once the modified peak detection process is used that needs to
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be numerically removed through sensor calibration. The proposed calibration process does not cover the
entire sensor domain; hence, a comprehensive calibration can be performed in the future. This calibration
can be done either by using a longer artifact for the entire sensor to be covered or by performing a set of

measurements so that the entire sensor is used.

6.2.2 Frame-by-Frame Approach
Although the proposed algorithm improves the peak detection using a frame-by-frame approach
instead of the current original row-by-row approach, it cannot further improve the evaluated form deviation

as long as the frame-by-frame approach is used.

6.2.3  Closed-Loop Control

The proposed algorithm can be used in the future closed-loop control process where the new gear
production processes require fast-optical measurement and evaluation processes to trace back from the
finally achieved gear geometry to its origins in the manufacturing process. This extension can be achieved
by equipping the manufacturing machine with suitable optical measuring devices, an appropriate evaluation

strategy, and an inline inspection.
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APPENDIX A: PEAK DETECTION ALGORITHM OR DERIVATION OF

ANALYTICAL DESCRIPTION OF RIDGE LINE

a. Quadratic ridge line- Local coordinate perpendicular to the ridge line
b. Quadratic ridge line- Local coordinate along with the x direction
c. Quadratic ridge line- Local coordinate along with the y direction

d. Elliptical ridge line- Local coordinate along with the y direction

a. Quadratic ridge line and & =xo,

yC(x) =ag+a;xc + azxcz (A.a.1)

e = ay +2az%, (A.a.2)

(c) = (o8 aine) (372) (A.a.3)

1§, %0, ) = bo(xc, ¥e) — by (xg, yc) &2 (A.a.4)

. . . . d S .
where y, is a function of x.. Since ¢ can be calculated as having d—zc which is known for any point along
c

ve(x.), and x;,. is equal to &, then I(x, y,) can be calculated.

-1
dy. (A.a.5)
dx,

tang =

2 (A.a.6)

2 (A.a.7)

.sin ¢ (A.a.8)

The straight line perpendicular to the ridge line passing through (x..y,) is described by:

y—Y.=tang (x — x.) (A.a.9)
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=y, F %) (A.a.10)
dx,

Y=Y

Using equation (4. a. 3), x;,. and y;,. can be calculated as follows:
Xioe = (x —xc)cos@p + (y —y.)sing = ¢ (A.a.11)
Yioe = —(x —x)sing +(y—y)cosp =0 (A.a.12)

From equations (4.a.5), (4.a.11) and (4. a. 12), & can be found as follows:

2

E= (x—x,) |1+ <%> (A.a.13)
dxc

It is also assumed that by and b, are constants over the ridge line. This means that the intensity peaks

along the ridge line and the width of the intensity stripe are both assumed to be constant. Plugging

equation (4. a.13) into (4. a.4) gives:

2
I(§,%c,Ye) = bg — by (x — x.)? (H(i) ) (A.a.14)
dxc
I1(E, %0 Ye) = bg — by (x — x,)? (1 + (m)z) (A.a.15)

Equations (A.a.1) and (A. a. 10) are combined to remove y, in equation (4.a.16).

-1
y — (ap + a;x; + azx.?) = m(x —X.) (A.a.16)

(x + a1y — ayay) + Rayy — a;? — 2a,ay — Dx, + (—3a,a;)x.?

 Coades = o (A.a.17)

Considering the known values for x and y which are the locations of any given pixel in the sensor

coordinate system, equation (4. a.17) can be solved for x,.

x. = f(x,y) (A.a.18)

Since the x. is a complicated non-linear function of x and y leading to a highly non-linear deviation

function; the other two directions for x;,. will be assessed.

b. Quadratic ridge line and & =xjoc=x — x. andy =y,



yc(x) =apt+asx; + azxcz

(ap = ye) + arx. + azxcz =0

_—a k \/‘112 —4ay(ag — yc)
2a,

(xloc) _ (x - xc)
Yioc Ve

Xloc = (x _xc) =

c

Yioc=Yc =Y

1o(x,y, %0, ¥c) = by — by(x — xc)z
—a;+ya,%—4az(ag—y) 2
T, ) = by — by (v — (Feb{t 0o,

Solution: § = (ay, ay, az, by, by )
coefficient change: As = (Aag, Aay, Ay, Abg, Ab, )

Distance definition: d; = [; (sj + Asj) — I
di = (bo + Abo - Im,L) - (bz + Abz)

<_(a1 +Aa;) \/(al + Aay)? — 4(ay + Aay)(ag + Aag — yi))
X —
2(ay + Aay)

Q= ,/ ?:1 diz
Zn d adl —0
i=1 iaASj B

(bo + Abg — Iy;) — (by + Aby).

2

2
ad;

27_ —(as +Aay) +/(a; +Aay)? — 4(az + Aaz)(ag + Aag — )
AN G 2(a; + Aay)

=0

)

aAS]
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(A.b.1)
(A.b.2)
(A.b.3)
(A.b.4)
(A.b.5)
(A.b.6)
(A.b.7)
(A.b.8)
(A.b.9)
(A.b.10)

(A.b.11)

(A.b.12)

(A.b.13)

(A.b.14)

(A.b.15)

Since equation (4. b.15) leads to an extremely complicated non-linear equation in terms of As; the last

direction is going to be assessed.

c.  Quadratic ridge line and & =y.=y — y. and x = x,

It is assumed that the ridge line y.(x) of the intensity distribution in the X-Y plane is known as a starting

solution, i.e., a smooth line following the peaks of the distribution.
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ye(x) = ag + a;x; + azx,? (A.c.1)
X X
o) =(, %) (A.c.2)
Yioc Y=Y
Xioe = (X)) = ¢ (A.c.3)
Yioc =Y — Ve (A.c.4)
Io(x,y,%c,¥e) = bg — by (y — ¥c)? (A.c.5)

Plugging equation (4.c. 1) into (4. c.5), the analytical solution for the intensity of any arbitrary point

(x,y) is found as I, (x, y).
Io(x,y) = by — bo(y — (ap + arx + a,x?))? (A.c.6)

The sum of the squares of the residuals between the measured and the model-based intensity (I, and I,
respectively) for all the sensor pixels is called the objective function (Q). This objective function needs
to be a minimum to find the best approximation for I,. To do so, the intensity function should be written
in terms of a; + Aa; and bj + Ab;. Then, Q should be iteratively minimized with respect to the five

variable deviations Aa;and Ab; (As;) [3].

Distance definition: d; = Ia_i(sj + Asj) — I (A.c.7)
di = (bog—1+ Aboy — Imi) = (bax—1 + Aby ).
(vi — (ao-1 +Bagy + (ag—1 + Aay e )x; + (azp—1 + Aaz,k)xiz)z -8
In equation (4. c. 8), i denotes the point number and k denotes the number of iterations.
Objective function: Qx = Y7, d;° (A.c.9)
Initial solution: S5 = (aq,0, @10, 42,0, bo,0, b0 ) (A.c.10)
Initial change: A—so) = (Aao,o, Aay o, Aay o, Abg o, Ab, ) (A.c.11)

An initial solution s; ¢ is needed to start the iterations. One approach to finding the initial solution which

is used in this work is to find the positions of the arrays with max intensities in X-Y sensor coordinate

and find a quadratic polynomial regression to find the initial ridge line coefficients (ag o, @y 9, az,0) for
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each sensor frame. Then the 1* nonzero-intensity row of the same sensor frame is used to find the initial
coefficients (bg,b, o) for the quadratic intensity distribution using another quadratic polynomial
regression. Considering the coefficient changes for the initial solution labeled as As; o, the initial solution

can be improved and used as the first solution for the next iteration.

1

ad;
n L0 —
—Zizl (Zdl,o dAa ) - 0
’ nog. 2 0,0
aQ 2 Zl=1 1,0
—0_ —9
dhago ;Z?L 2d; Odip |\ _ 0
20 . S —i=1 L0 dha,
aA_O = 0 2 Zi:l di,() ’
a1,0
1 ad;
20, 20, __1 _ym (Zd- )~ g
N =O, <—=0_) < =1 1,0 A.c.12
len 6Asj,0 0hay o 2 211‘1=1 di,Oz 9Adz0 ( )
0Qq
—_— = 0 1 n adiO
o TZi:l (Zdi'o 0Abg 0) =0
0Qr  _ 2 |Zi=1 %o '
\8Ab,, 0
) 1 Zn Zd adi'o — O
- — i=1 1,0 aAbz’o
\2 Zi:1 dL,O

The square roots in the denominators of the five equations in (A.c.12) must be positive and different

from zero in the non-trivial case. Therefore, only the numerators in equation (A.c.12) must be

adi'o
L0 aASj'O

considered. However, the term in the nominator, d , which is highly non-linear, should be

linearized to end up with a system of five linear equations.

n od:
fi0 = Z <di_0 #) — gi,0: linearized f; o with respect to As;
i=1 0,0

n od;
f20= z <d L0 ) — g0:linearized f, o with respect to As;

=1\ ° dAay o
" dd; o . . .

f30 = Z dio W — g3 0:linearized f;3 o with respect to As; o (A.c.13)
i=1 2,0

n od;
fao = z <di,0 ﬁ) — g4 linearized f, o with respect to As,
i=1 0,0

n od:
fs0 = Z <di_0 #) — gso: linearized fs5 o with respect to Ass o
i=1 2,0

After calculations for all the coefficient changes (E = (Aay, Aay,Aa,, Aby, Ab, )) the following set of

five linear equations is obtained, where superscript 1 refers to iteration 1.



A11412A13A144151 [Aag]” By

Ax1AzA23424 455 |Aay B,

[A]*[As]! = [B]" or|A31A32A33434435| .|Aay| = B3
Ay AspAg3AgaAss| | Abg B,

51452A4534544551  LAb, Bs

in which:

M; = —y; + ag + a;x; + ayx;”

N; = Iy; — (bo — byM;%)
A =21 ( b,?(2M)? + 2b,N;)

Ary = Azy = XLy (" (2M)? + 2b,y)
A1z = A3y = Xy x2(b,°(2M;)? + 2b,Ny)
Ayy = Ay = Xis1(—2b, M)

Ars = Asy = X7y 2M;(Ln; — bo + 2b, M;?)
By = XL (—2b;M;N;)

Agy = X1 xi*(by" (2M)? + 2b,Ny)
Azz = Asy = Y1y %2 (by° (2My)? + 2b,Ny)
Azy = Agz = Xiz1 %i(—2b; M)

Aps = Asy = Yieq 2Mix;( Ny + by M;?)
By = Xiz1 xi(—=2b;M;Ny)

Agz = By xi*(by" (2M)* + 2b,Ny)
Azq = Agz = X1 X2 (—2b, My)

Azs = Asz = Xi; 2Mx;*(N; + b, M)
By = X1 x;*(—2b;M;N;)

A =X 1=n
Ays = Asq = Y=g _Mi2

B, = ?:1 N;

(A.c.14)

(A.c.15)
(A.c.16)
(A.c.17)
(A.c.18)
(A.c.19)
(A.c.20)
(A.c.21)
(A.c.22)
(A.c.23)
(A.c.24)
(A.c.25)
(A.c.26)
(A.c.27)
(A.c.28)
(A.c.29)
(A.c.30)
(A.c.31)
(A.c.32)
(A.c.33)

(A.c.34)
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Ags = Z?=1 Mi4

Bs = Z?=1 _NiMiZ

(A.c.35)

(A.c.36)

Solving the set of 5 linear equations, all five coefficient changes can be calculated at each iteration.

[As]* = [[A]']7'[B]* =57 = 5¢ + &s,

(A.c.37)
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The new solution at each iteration s, should be used to reduce the objective function Qj, to eventually

find the minimum Q. Then [, as the best solution describes the intensity distribution can be found, and

consequently, the ridge line can be achieved using already calculated a; coefficients.

d. Elliptical ridge line and & =yj,.=y — y, and x = x,

_ 2
ye(®) = yo + BJ1 - (%)
(xloc> — ( Xc )
Yioc Y — Ve

Xioc = (xc) = ¢

Yioc=Y XY

2

[ N
Ia(x,y,xc,yc)=b0—b2 <y_y0_ B 1_(chxo) >

di = 11(51) - Im,i

dig = (bog—1 = Imi) — (ba-1) (yi — Yok-1— Bk—l\/l - (

Objective function: Q, = [Xi-, di,kz

Xc,k-1"%X0,k-1

Ag—-1

7)

(A.d.1)
(A.d.2)
(A.d.3)
(A.d.4)
(A.d.5)
(A.d.6)

(A.d.7)

(A.d.8)



