
TRAJECTORY TRACKING CONTROL FOR NONHOLONOMIC ROBOTS
WITH ACTUATION NOISE AND IMPERFECT COMMUNICATION

by

Frank Lawless

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2022

Approved by:

Dr. Dipankar Maity

Dr. Yogendra Kakad

Dr. Artur Wolek

Dr. Jim Conrad

ii

©2022
Frank Lawless

ALL RIGHTS RESERVED

iii

ABSTRACT

FRANK LAWLESS. Trajectory tracking control for nonholonomic robots with
actuation noise and imperfect communication. (Under the direction of DR.

DIPANKAR MAITY)

When executing safety-critical missions, tracking algorithms must be dependable, ac-

curate, and have quantifiable tracking performance in non-ideal environments (e.g.,

actuation noise, delayed communication, and noisy measurement). Trajectory track-

ing has already been widely explored using sophisticated control tools (e.g., feedback

linearization, optimal and adaptive control, and sliding-mode control). However,

tracking stability analyses are often centered around Lyapunov designs in an ideal

environment with full state observation. The proposed state-feedback trajectory

tracking control guarantees high precision trajectory tracking for differential drive

robots. Operational bounds on output velocities, heading angle error, and tracking

error are formulated and explored to guarantee tolerances in non-ideal conditions.

It is common that autonomous systems will operate using communication devices

that provide non-instantaneous positional measurements subjected to package loss,

delay time, and inaccuracies. The latter part of this thesis will introduce a new

control function to the state-feedback controller to be carried out as an intermittent

feedback controller. The control function is designed as the optimal control that mini-

mizes the average energy in the system during the time between each triggering event.

The event-generator determines each triggering instance that provides sensor infor-

mation to the plant based on the main objective of guaranteeing tracking stability.

The analysis develops the appropriate communication policy (an integral part of the

event-generator) for the open-loop critical time instance such that the tracking error

asymptotically converges to subsequently remain bounded under a user-defined tol-

erance. The communication policy provides a direct relationship between the system

parameters (e.g., actuation noise, control parameters, and reference velocity) and the

iv

sporadic communication frequency as well as the demanded velocities on the robot.

The theoretical, simulation, and hardware experimentation results demonstrate op-

erability and efficiency of the proposed algorithms in non-ideal environments with set

physical limitations and constraints.

v

ACKNOWLEDGEMENTS

The research presented in this thesis was conducted through the Department of

Electrical and Computer Engineering at the William States Lee College of Engineer-

ing, under the guidance of Dr. Dipankar Maity. The work was funded in parts by

the Faculty Research Grant of the University of North Carolina at Charlotte.

I cannot overstate the value of the dedication Dr. Maity has to his students. He

has consistently provided me with exceptional assistance throughout my time working

under his guidance. I’m deeply grateful; I know that he has assisted me in discovering

my passion for research.

I would like to thank my parents for their never ending devotion and belief in me.

Thanks to my brother for inspiring me to become who I am today. Finally, thanks

to my fiancée for her constant support and encouragement during this time.

vi

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF SYMBOLS ix

CHAPTER 1: INTRODUCTION 2

1.1. Literature Review 4

1.2. Contributions 6

1.3. Problem Formulation 8

CHAPTER 2: STATE-FEEDBACK CONTROLLER 9

2.1. Tracking Performance 13

2.2. Simulation Results 18

2.2.1. Experiment 1: Controller Performance 18

CHAPTER 3: EFFECTS OF ACTUATION NOISE AND MEASURE-
MENT DELAY

21

3.1. Bound on the Tracking Error 23

3.2. Simulation Results 27

3.2.1. Experiment 2: The Charlotte Logo 28

3.2.2. Experiment 3: Traffic Circle 28

3.2.3. Experiment 4: Lane Change 29

3.3. Hardware Results 31

3.3.1. The Charlotte Logo 31

3.3.2. Experiment 5: City Street 31

vii

CHAPTER 4: INTERMITTENT-FEEDBACK CONTROLLER 33

4.1. Cases of Tracking Error 36

4.1.1. Case 1: Converging Tracking Error 36

4.1.2. Case 2: Satisfied Tracking Error 40

4.2. Choice of pk 41

4.3. Simulation Results 42

4.3.1. Experiment 6: Intermittent Feedback Control 43

4.3.2. Experiment 7: Lane Change with Intermittent Feed-
back

44

CHAPTER 5: CONCLUSION 46

5.1. Discussion 48

CHAPTER 6: SOFTWARE AND HARDWARE IMPLEMENTATION
DETAILS

50

6.1. Simulations 50

6.2. Hardware Experiments 51

6.2.1. TurtleBot3 Startup 52

6.2.2. Running an Experiment 53

6.2.3. Trajectory Planning Program 53

REFERENCES 55

APPENDIX A: Optimal Steering of Linear Systems 60

viii

LIST OF FIGURES

FIGURE 2.1: Base-point dynamics of a differential drive robot 9

FIGURE 2.2: Continuous state-feedback control system 13

FIGURE 2.3: Control parameter comparison. 19

FIGURE 2.4: Velocity comparison in both cases of Fig. 2.3. 20

FIGURE 3.1: UNC Charlotte logo: simulation and hardware results 28

FIGURE 3.2: UNC Charlotte campus traffic circle: error bounds 29

FIGURE 3.3: Lane change scenario: noise and delay 30

FIGURE 3.4: City street traversal 32

FIGURE 4.1: Intermittent feedback control system 33

FIGURE 4.2: Intermittent feedback performance with a circular reference
trajectory

43

FIGURE 4.3: Performance characteristics of (4.14) in Fig. 4.2 44

FIGURE 4.4: Lane change scenario: intermittent feedback 45

FIGURE 6.1: Example of appropriate marker locations 52

FIGURE 6.2: Trajectory planning features 54

ix

LIST OF SYMBOLS

Throughout this thesis, scalars are denoted by lowercase symbols (e.g., x, y, θ),

vectors are denoted by bold lowercase symbols (e.g., e), and matrices by up-

percase symbols (e.g., J). The following table lists all of the system, function,

control, and physical parameters in the order that they are presented.

Parameter Description Type

zc Centroid position position

zb Base-point position position

zr Reference position position

` Distance between base-point and centroid distance

v Linear velocity velocity

w Angular velocity velocity

θ Heading angle degree

e Tracking error distance

K State-feedback control function –

k Proportional gain control –

m Saturation control –

t∗ Control switching point time

l Lipschitz constant –

V Lyapunov function –

vr Linear reference velocity velocity

wr Angular reference velocity velocity

vmax Maximum linear velocity velocity

wmax Maximum angular velocity velocity

nv Linear actuation noise –

nw Angular actuation noise –

x

n̄v Maximum linear actuation noise –

n̄w Maximum angular actuation noise –

δ Communication delay time

θ̂ Estimated heading angle degree

θe Heading angle error degree

ε Tracking error tolerance distance

tk Triggering instance time

ẑb Estimated base-point position position

ê Estimated tracking error distance

∆ Base-point estimation error distance

u Intermittent feedback control function –

tf Triggering function time

pk Intermittent communication control –

p̄ Maximum intermittent communication control –

N Number of triggers until desired tolerance –

eupper Tracking error upper bound distance

1

PREFACE

The objective of this thesis is to provide efficient trajectory tracking algorithms with

theoretical guarantees. The developed theory is based on standard control theoretic

tools that are easy to interpret and implement for researchers interested in controls

and trajectory tracking for nonholonomic robots. It will discuss how to solve realistic

trajectory tracking problems by presenting a clear solution with a concrete step-by-

step analysis. The basis of this work uses a “state-feedback linearization” control

approach which is implemented in the analysis by using the nonlinear dynamics of a

nonholonomic differential drive robot.

I have structured the text in a chronological manner. The chapters are intended

to build on the previous one to further improve robustness by sequentially adding

real-world environmental components. There are three main parts to the analysis:

Part 1 includes Chapters 1 to 2 of which discuss the different approaches and basic

analysis of the state-feedback controller. Part 2 adds environmental factors (hardware

noise and sensor delay) to Part 1 in Chapter 3. Parallel to Part 2, Part 3 introduces

a intelligent communication and sensing mechanism in Chapter 4.

In each chapter, I have provided simulations of the proposed controller with various

scenarios that corroborates the theoretical analysis and will help the reader internalize

the key concepts. I have also fully implemented the controller (which considers real-

world aspects such as “actuation noise” and “communication delay”) into hardware to

demonstrate realistic scenarios and some appealing applications. In order to provide

users an easy way to replicate the experiments demonstrated in this thesis, I have

developed an user friendly “trajectory planning” Python program. At the end of the

thesis in Chapter 6 there are instructions for the reader to carry out these experiments.

Additionally, the code and setup steps to replicate all of the simulations presented in

this thesis are provided in the instructions.

CHAPTER 1: INTRODUCTION

Autonomous robotic controls are essential to society with healthcare, military, and

safety applications (see Refs. [1–3]). In many cases (e.g., self-driving vehicles, medical

assistance robots, and bomb disposal robots), autonomous maneuvers must be com-

pleted in a pre-determined time period. Common path planning approaches designed

for robotic tracking controls such as Refs. [4,5] are designed without the consideration

of where the robot will be with time. A trajectory planning approach considers both

the position and time of the robot at each pre-determined instance. The advantages

of a velocity based controller centered around a design to guarantee the execution

stage of a trajectory planning approach fit directly in these high responsibility based

applications.

The authors in Ref. [6] explore safe autonomous control. One major statement they

consider is, “...in a more realistic setting, how to deal with the existence of uncertainty

remains a problem”. They analyze a probabilistic case study for ‘lane changing’ and

‘intersection’ scenarios by incorporating the finite state machine method in Ref. [7].

The low-level trajectory tracking controller must work at high update frequencies to

help provide a fast updating control barrier function. When the control scheme is

intruded to disturbance, the barrier functions must provide a quantifiable result. To

eliminate the uncertainty, it is greatly useful when the controller provides a relation-

ship between tracking performance and time, such that the barriers are time-variant.

This thesis explores the uses of the proposed controller in a similar ‘lane change’ simu-

lation and hardware experiment. It is noteworthy that the tracking error and velocity

bounds are shown to be significant to plan and execute safety-critical maneuvers.

In this thesis, a novel state-feedback controller is proposed with continuous and

3

intermittent feedback to provide trajectory tracking for nonholonomic robots. First,

the tracking performance is guaranteed with continuous feedback under disturbance

by analyzing the system with noise and measurement delay. Noise is commonly rep-

resented as hardware disturbances. In this analysis, noise is implemented in the

dynamics as linear and angular velocity actuation noise. Measurement delay is a

major factor when communicating with positional estimation devices such as GPS

and cameras. Delay is incorporated in the analysis, and it is shown that an esti-

mated heading angle is needed to determine the direction of the robot when only

2D positional coordinates are provided. Then, the track performance is guaranteed

with intermittent feedback to consider limited sensor communication to the robot.

The analysis for the intermittent feedback portion develops a communication policy

dependent on the system parameters such as the actuation noise and the desired

performance.

The analysis is completed by implementing the nonholonomic dynamics of a dif-

ferential drive robot with a linear and angular velocity scheme. The necessary con-

straints to guarantee stability and tracking performance are developed. Stability is

guaranteed when introduced to noisy environments and measurement delay through a

Lyapunov approach. In applications where an error tolerance is provided (i.e., safety-

critical), the controller must be able to adjust the tracking bounds with disturbances

to not surpass the desired performance. The analysis shows that the tracking error

bounds are adjustable and time-varying. The linear and angular velocity bounds are

provided a relationship with the control parameters to easily adjust the magnitudes to

user-desired maximums in the controller. To accomplish this, relationships between

the physical constrains and control velocities are formulated with dependence on the

reference trajectory and control parameters.

4

1.1 Literature Review

Trajectory tracking control problems have been approached in numerous ways -

commonly adaptive control methods [8–14], sliding mode control [15–25], kinematic

approaches [26–29], neural network based learning methods [30–33], and look ahead

approaches [34–38]

Ref. [8] uses a Lyapunov approach to derive the tracking performance of their pro-

posed adaptive feedback linearization controller. Their results show the advantages

in tracking performance of the adaptive controller versus a non-adaptive controller.

However, the cost of linearizing the system dynamics by approximation is demon-

strated during more complex trajectories (i.e., sharp turns).

Sliding mode control approaches such as in Ref. [15] are often developed to avoid

singularity commonly found in kinematic controls. The tracking performance is

bounded through a Lyapunov approach, however, it is achieved without time de-

pendence. When stability is analyzed without a time dependence, the theoretically

derived tracking performance is time-invariant resulting in an unknown of how long

the tracking performance increases. Furthermore, a key observation is that their

second-order subsystem introduces the sliding mode surface which relies on the head-

ing angle error. When the controller is implemented, the heading angle must be

observed using tools which provide orientational measurements.

Neural network based controllers have an advantage by providing output feedback

control without the knowledge of kinematics. In Ref. [30], the authors propose an

observer-based neural network control of a differential drive robot. The control de-

sign inherently derives estimations for the angular and linear velocities. The learning

controller is based on neural weights. Due to the nature of a weighted-based con-

trol, tracking performance will converge to the reference trajectory in an inconsistent

manner. When the system is introduced to disturbance, this characteristic will be

exaggerated and often tracking performance will become unstable.

5

A look-ahead control Refs. [34, 35] tracks an offset ‘look-ahead’ point from the

robot to follow a provided reference trajectory. The control parameters are non-

proportional, which require the eigenvalues of the error dynamics to be computed

in order to be properly tuned. The error dynamics are approximated via lineariza-

tion where its convergences rely on the shape of the reference trajectory. It is not

guaranteed that the error will converge to zero or a constant value. Furthermore,

the control only considers the angular velocity which eliminates any control over the

robot’s linear velocity.

State-feedback control approaches Refs. [39–41] provide time dependent analyses

which allow for the tracking performance to be quantified. Ref. [39] derives a con-

tinuous vision-based error model to adjust the linear and angular velocities. The

control strategy uses a state-feedback control and a model predictive control. The

state-feedback controller is introduced to eliminate bounded uncertainties due to the

nominal control. A neural network is then used to solve the feedback gain such that

the state variables can be constrained. The paper demonstrates the robustness of a

state-feedback controller as it is the underlying control.

Event-triggered controls are used to transition from a continuous feedback control

scheme to intermittent feedback. The authors in Ref. [42] develop an event-based

control scheme for linear systems. They compare the results with the sporadic con-

trol versus a non-continuous but periodically active feedback control scheme. Their

conclusion is that the event-triggered control provides better performance with a re-

duction to the control action frequency.

Ref. [43] develops a state observer based intermittent feedback control extended

for a state-feedback control with added output noise. The stability analysis shows

that the design provides a guaranteed observation error which directly determines the

communication frequency. This approach is extended in this thesis as the estimated

positional error.

6

An event-based tracking control of nonholonomic robots without velocity measure-

ments was studied in Ref. [44]. In Ref. [45] an event-triggered control is implemented

with constrained disturbances for unicycle dynamics. The authors in Ref. [46] provide

an event-triggered control with nonlinear state-feedback for the centroid dynamics of

a differential drive robot.

One major objective of this thesis is to provide a functional control design that

can be smoothly implemented with new robotic projects. The authors in Ref. [47]

have proposed a trajectory tracking and planning human-in-the-loop approach that

has served as a large motivation of this thesis. Their state-feedback linearization

controller provides a straightforward tuning relationship for the tracking performance

and velocities. They mention that the design lacks velocity saturation to consider

physical hardware constraints and stability guarantees with input/actuation noise or

communication interference that appears in realistic environments. These drawbacks

are fully addressed in this thesis, and the results show that the work proposed may be

fully implemented with hardware for a similar trajectory tracking human-in-the-loop

design.

1.2 Contributions

The contributions of this thesis are as follows. (i) A state-feedback controller is

proposed which provides a linear and saturated control response. The saturated

control is implemented to remove the controller velocities’ dependence on tracking

error, and the linear control provides exponential tracking. (ii) The time-varying

tracking error is quantified through a Lyapunov approach for both the linear and

saturated control cases. The quantified error provides the exact time-varying tracking

error of the robot. (iii) The linear and angular output velocities in the controller

are upper-bounded based on the reference trajectory, positional error, and controller

parameters. (iv) A bounded relationship between the maximum output velocities and

adjustable control parameters k,m is provided for tuning. (v) Measurement delay

7

and noisy dynamics are introduced to the controller. As a result, the heading angle is

estimated and bounded with the induced measurement delay. We derive bounds on

the noise and delay in order to guarantee bounded tracking error. (vi) An intermittent

state-feedback linearization controller is proposed which provides an optimal control

function that minimizes the average energy. Furthermore, an efficient communication

policy is provided which directly depends on the disturbances and system parameters.

(vii) The linear and angular velocities of the robot are bounded by the disturbance and

a tunable parameter pk. We further analyze how the communication intermittency

and the robot velocities are depended on this parameter.

The overview of this thesis is as follows. In Chapter 2 the base-point dynamics of

a differential drive robot and controller are proposed. Later in the introduction to

the chapter, the control function is analyzed under the Lipschitz continuous function

for each control case. In the next Section 2.1, tracking error is quantified and the

velocities are bounded. Furthermore, the velocity bounds are analyzed to provide

relationship between the control parameters and maximum velocities. In Chapter 3

actuation noise is introduced to the dynamics and the heading angle is estimated as

result of the induced measurement delay. Then, in Section 3.1 the tracking perfor-

mance is upper-bounded under noisy dynamics and measurement delay. In Chapter 2

and Chapter 3 the controller and control parameters are demonstrated through sim-

ulations in Sections 2.2 and 3.2. In Chapter 3 Section 3.3 hardware results are pro-

vided to demonstrate the controller with real world disturbances and measurement

delay. Chapter 4 introduces the proposed intermittent state-feedback linearization

controller. In Section 4.1 the tracking error is bounded by the observed error at

each triggering time and estimated error. The system’s energy and communication

frequency are provided an adjustable relationship in Section 4.2. The intermittent

feedback control is demonstrated with simulation results in Section 4.3. In Chapter 5

the thesis is concluded and in Section 5.1 there is a short discussion of current and

8

alternative works. Finally, the instructions to replicate the simulation and hardware

experiments are provided in Chapter 6.

1.3 Problem Formulation

Given a reference trajectory, we desire a time dependent tracking approach for a

differential drive robot. The tracking point is located at an offset point from the

centroid of the robot by distance `. The tracking error e(t) must be quantified ∀t

and converge to zero as t→∞.

The linear and angular velocities outputted by the controller must be bounded to

maximum speeds, vmax and wmax respectively. The user-defined velocity bounds must

saturate and have the ability to be tuned by adjusting the control parameters.

The stability analysis must include additive input/actuation noise on the dynam-

ics and measurement delay in the controller. The analysis must provide an upper

bound for e(t) which guarantees the tracking error is bounded under a tolerance

‖e(t)‖ ≤ ε, ∀t.

The continuous feedback time dependent tracking controller must then advance

to an intermittent feedback control. The intermittent feedback control must provide

limited communication while considering actuation noise. Similar to the continuous

feedback controller, the communication policy must guarantee that e(t) is bounded

by a user-desired tolerance ε, ∀t ≥ tN .

CHAPTER 2: STATE-FEEDBACK CONTROLLER

We first need to model the dynamics of our robot. We know the configuration

transition equation for a differential drive robot from Eq. (13.17) in Ref. [48]. We

can derive the linear and angular velocity scheme for the centroid dynamics of a

differential drive robot as 
ẋ

ẏ

θ̇

 =


cos θ 0

sin θ 0

0 1


v
w

 , (2.1)

where x(t), y(t) denote the position of the robot centroid with respect to a static global

frame and θ(t) denotes its heading angle with respect to the x-axis (see Fig. 2.1). The

linear and angular velocity inputs at time t are denoted by v(t) and w(t), respectively.

zr

v

θ

zc

zb

`

e

x

y

Figure 2.1: Base-point dynamics of a differential drive robot

10

An offset point zb, which is at a distance ` from the centroid, is required to track

the given reference trajectory. More specifically, we are interested in the point

zb =

xb
yb

 =

x+ ` cos θ

y + ` sin θ

 . (2.2)

Therefore the base-point dynamics are the following:


ẋb

ẏb

θ̇

 =


cos θ −` sin θ

sin θ ` cos θ

0 1


v
w

 . (2.3)

The difference between the base-point zb and reference position at time t is defined

as the tracking error e(t):

e(t) =

ex(t)
ey(t)

 ,
xr(t)− xb(t)
yr(t)− yb(t)

 , (2.4)

where zr(t) = [xr(t), yr(t)]
T denotes the coordinates of the reference trajectory at

time t. Taking the derivative of (2.4) and then using the dynamics from (2.3), we

obtain

ė =

ẋr
ẏr

− J(θ)

v
w

 , (2.5)

where

J(θ) =

cos θ −` sin θ

sin θ ` cos θ

 . (2.6)

Therefore, our objective is to design a controller to ensure e(t) goes to zero or remains

bounded in presence of actuation noise and measurement delay.

11

The proposed state-feedback controller in this thesis is as follows

v
w

 = J(θ)−1


ẋr
ẏr

+K(e)

 , (2.7)

where the control function K : R2 → R2 is considered to be the following:

K(e) =


ke, if ‖e‖ ≤ m,

km e
‖e‖ , otherwise,

(2.8)

where k > 0 andm ≥ 0 are two user chosen parameters. The effects of k andm on the

tracking performance will be discussed in detail, and the choice of these parameters

will be discussed as well. When (2.7) is substituted into (2.5), we obtain

ė = −K(e). (2.9)

Remark 1 When K(e) = ke, then the error e converges to zero exponentially fast

with rate k. On the other hand, when K(e) is the saturated function, the error conver-

gences to zero linearly with time. Thus, the proposed control law ensures exponential

convergence when the error magnitude is less than the user-defined threshold m. Oth-

erwise a linear convergence is guaranteed. Furthermore, the magnitude of K(e) is

upper bounded by km at any time t, where both k and m are chosen by the user. We

will show later (Lemmas 3, 4) that the proposed design in (2.8) helps us to bound the

magnitude of the linear and angular velocities directly.

Next, we state an important characteristic of our proposed controller which ensures

that a unique solution exists to the differential equation (2.9).

Lemma 1 K(e) is a Lipschitz function with the Lipschitz constant l = 2k.

12

Proof: The proof follows directly from the expression of K(e) in (2.8) and the

definition of Lipschitz functions. To see this, consider the case e1 and e2 such that

‖e1‖, ‖e2‖ ≤ m. Then,

‖K(e1)−K(e2)‖ = ‖ke1 − ke2‖

= k‖e1 − e2‖ = l‖e1 − e2‖.

Now, consider the second case that ‖e1‖, ‖e2‖ > m. Then,

‖K(e1)−K(e2)‖ =
∥∥∥ km‖e1‖

e1 −
km

‖e2‖
e2

∥∥∥
=

km

‖e1‖‖e2‖
∥∥‖e2‖e1 − ‖e1‖e2

∥∥
=

km

‖e1‖‖e2‖

∥∥∥‖e2‖(e1 − e2) + (‖e2‖ − ‖e1‖)e2

∥∥∥
≤ km

‖e1‖‖e2‖

(
‖e2‖‖e1 − e2‖+ ‖e2‖

∣∣∣‖e1‖ − ‖e2‖
∣∣∣)

≤ k
(
‖e1 − e2‖+

∣∣‖e1‖ − ‖e2‖
∣∣)

≤ 2k‖e1 − e2‖ = l‖e1 − e2‖.

Finally, when ‖e1‖ ≤ m and ‖e2‖ > m,

‖K(e1)−K(e2)‖ = ‖ke1 −
km

‖e2‖
e2‖

≤ k‖e1 − e2‖+

∣∣∣∣k − km

‖e2‖

∣∣∣∣‖e2‖

= k‖e1 − e2‖+ k‖e2‖ − km

≤ k‖e1 − e2‖+ k‖e1 − e2‖

= 2k‖e1 − e2‖ = l‖e1 − e2‖.

�

Lipschitz continuity is a desired characteristic in ensuring that a differential equa-

13

tion has a unique well-defined solution (see Ref. [49]).

Remark 2 Since K(e) is a Lipschitz continuous function with the maximum Lips-

chitz constant of l = 2k, there is a unique solution to (2.9) for all time even when

the controller (2.7) switches between the linear and nonlinear control modes. This

characteristic allows the tracking error stability to be analysed through a Lyapunov

approach in the next section.

e
K(e) zb

zr
w

v
Robot

Figure 2.2: Continuous state-feedback control system

2.1 Tracking Performance

In this section, we analyze the error dynamics (2.9) to quantify the tracking per-

formance. For the proposed controller (2.8), we provide the exact error magnitude

for all time.

Lemma 2 Given an initial error ‖e(0)‖ > m, the tracking error at any time t is

given by

‖e(t)‖ =


‖e(0)‖ − kmt, if t ≤ t∗,

me−k(t−t∗), otherwise,
(2.10)

where t∗ , ‖e(0)‖−m
mk

is the time such that ‖e(t∗)‖ = m. On the other hand, if ‖e(0)‖ ≤

m, then ‖e(t)‖ = ‖e(0)‖e−kt.

14

Proof: We consider a Lyapunov based approach to prove this lemma. To that

end, we take the Lyapunov function

V = eTe. (2.11)

Taking the derivative of V , and using the dynamics (2.9) we obtain

V̇ = ėTe + eTė = −2eTK(e)

=


−2mk eTe

‖e‖ , if ‖e‖ > m

−2keTe, otherwise

=


−2mk

√
V , if V > m2

−2kV, otherwise.
(2.12)

From (2.12) we notice that V (t) is a strictly decreasing function with time.

When ‖e(0)‖ > m (or equivalently V (0) > m2), V follows the differential equation

V̇ = −2km
√
V according to (2.12). Integrating V̇ , we obtain

√
V (t) =

√
V (0)−mkt.

Therefore,
√
V (t) (or equivalently ‖e(t)‖) decreases linearly with time and at time

t∗ = (‖e(0)‖−m)/mk, we have ‖e(t∗)‖ =
√
V (t∗) = m. At this moment, V will follow the

differential equation V̇ = −2kV and will have the solution V (t) = V (t∗)e−2k(t−t∗) =

m2e−2k(t−t∗), which is exponentially decreasing with time. Thus, we may write com-

pactly,

√
V (t) =


√
V (0)− kmt, if t ≤ t∗

me−k(t−t∗), otherwise.
(2.13)

15

On the other hand, if V (0) ≤ m2 then,

V (t) = e−2ktV (0), t ≥ 0. (2.14)

The lemma is proved by substituting V = ‖e‖2 in equations (2.13) and (2.14) where

the final result is (2.10). �

Corollary 1 The tracking error ‖e(t)‖ converges to zero at a linear rate until switch-

ing to an exponential rate after time t∗.

Proof: The proof follows directly from the expression of ‖e(t)‖ in (2.10) where

we notice that for an initial error magnitude higher than m, the error converges to

zero in a linear manner until t∗ and exponentially afterwards. Otherwise when the

initial error magnitude is lower than m, the error converges to zero exponentially for

all time. �

Next, we analyze the upper bounds on the linear and angular velocities v and w.

The following lemma provides an upper bound for each velocity. These upper bounds

can be tuned via the user-defined parameters k,m.

Lemma 3 For the proposed controller, the linear and angular velocities are upper

bounded by the following

|v(t)| ≤ vr(t) + kmin(m, ‖e(t)‖) (2.15a)

|w(t)| ≤ wr(t) +
kmin(m, ‖e(t)‖)

`
, (2.15b)

where vr = ‖[ẋr, ẏr]T‖ is the linear reference velocity of the given trajectory and

wr = vr
`
.

16

Proof: From (2.7), when ‖e(t)‖ ≤ m we can directly obtain

v = ẋr cos θ + ẏr sin θ + k(cos θex + sin θey),

w =
− sin θẋr + cos θẏr

`
+
k(− sin θex + cos θey)

`
.

Using the trigonometric inequality a sin θ + b cos θ ≤
√
a2 + b2, we obtain

|v| ≤ ‖[ẋr, ẏr]T‖+ k‖e‖,

|w| ≤ ‖[ẋr, ẏr]
T‖

`
+
k

`
‖e‖.

(2.16)

Similarly, (2.7) is upper bounded when ‖e(t)‖ > m.

|v| ≤ ‖[ẋr, ẏr]T‖+mk,

|w| ≤ ‖[ẋr, ẏr]
T‖

`
+
mk

`
.

(2.17)

The lemma is proved by combining (2.16) and (2.17) and substituting the expres-

sions vr and wr. �

Remark 3 From (2.15b) we can see that the upper bound of the angular velocity

is inversely proportional to the physical distance between the centroid and base-point

distance `. This relationship is important to note for certain applications (e.g., when

tight turns are required with constrained velocities). Robots which have higher ` dis-

tances, demand lower velocities in relation to the turn’s sharpness. Also, we can see

that as max ‖e‖ increases, the upper bound increases until ‖e‖ = m. When taking in

consideration physical constraints, it may be desired to decrease the maximum veloci-

ties at high positional error which is accomplished by introducing the saturated control.

This controller decreases the linear and angular velocities by normalizing the tracking

error e with the introduction of 1
‖e‖ .

The next lemma analyzes how the control parameters m and k can be tuned to

17

guarantee maximum linear and angular velocities.

Lemma 4 (2.15) are tuned for user-desired velocity bounds by using the control pa-

rameters k,m in the following relationship:

mk ≤ min(vmax, `wmax)− vr. (2.18)

Proof: Consider vmax and wmax the maximum velocity of v and w respectively.

When these constraints are substituted into (2.15) during the time ‖e(t)‖ > m we

obtain,

vmax ≥ vr +mk,

wmax ≥ wr +
mk

`
.

The lemma is proved after solving for mk which provides two inequalities that are

compacted into one relationship between the minimum values of vmax and `wmax in

(2.18). �

Remark 4 The linear and angular velocities are physically limited in robotic systems.

Using the relationship in (2.18), vmax and wmax can be directly tuned by m, k to

saturate the linear and angular velocities in the controller. Notice that the bounds are

only dependent on the case ‖e(t)‖ > m where the dependence on the tracking error is

normalized.

In this chapter we proposed and analyzed the state-feedback controller in an ideal

environment. The controller provided exponential stability without the cost of spiked

velocities as a result of the switching control function. In (2.18) we are provided

a direct relationship to the control parameters and reference trajectory to tune the

18

saturated velocities. In the next chapter, we discuss the controller in a non-ideal noisy

environment with the goal to observe similar results.

2.2 Simulation Results

The following simulations are completed using MATLAB to demonstrate the con-

troller in an ideal environment with zero communication delay and noiseless actuation.

The directions to replicate these and all other simulations in this thesis can be found

in Chapter 6.

2.2.1 Experiment 1: Controller Performance

Fig. 2.3 demonstrates the tracking characteristics and performance when using the

controller (2.7). The robot is initially placed with a large positional error and an

initial heading angle of θ(0) = π
4

[rad]. In this experiment we study the effects of

the design parameter m. To that end, we pick two m values (1 and 0.3, respectively)

such that the m > ‖e(0)‖ for one case and m < ‖e(0)‖ for the other. Case 1 ensures

only the linear control is used for the entire duration, whereas Case 2 demonstrates

the use of both control modes as defined in (2.8). The reference trajectory is a circle

with constant linear and angular velocities, vr and ωr, respectively. The robot’s

trajectory for Case 1 (i.e., m = 1) is shown in green and for Case 2 (i.e., m = 0.3)

in red. The −ke control ensures an exponential convergence, whereas the −ke/‖e‖

control ensures a slower linear convergence, which are reflected in the green and red

trajectories, respectively. In the figure, the robot is shown at four separate time

instances for Case 2. Their respective time instances for the reference trajectory are

shown as blue dots.

In Fig. 2.4 we plot the linear and angular velocities along with their corresponding

upper-bounds derived from (2.15). The control parameters were chosen for Case 2

from the relationship provided in (2.18) given vmax and wmax. The system parameters

of the experiment are as follows: vmax = 1.5 [m/s], wmax = 5 [rad/s], vr = 1 [m/s], ` =

19

0.3, for Case 1: k = 2, m = 1 and for Case 2: k = 1.3, m = 0.3.

Figure 2.3: Control parameter comparison.

20

t∗

vr

wr

Figure 2.4: Velocity comparison in both cases of Fig. 2.3.

CHAPTER 3: EFFECTS OF ACTUATION NOISE AND MEASUREMENT

DELAY

In the previous chapter we analyzed the error dynamics (2.9) without any dis-

turbance or communication delay. In this chapter we will consider the following

extensions: (1) We introduce actuation noise to the linear and angular velocities v

and w, (2) The controller only receives information about the position (xb, yb) and

not the orientation θ, and (3) A nonzero measurement delay δ is introduced to the

controller. That is, the controller at time t receives the position information for time

t− δ.

Let nv and nw denote the unknown but smooth and time-varying input noise on

the linear and the angular velocities respectively. Therefore, under noisy actuation,

the dynamics (2.3) become


ẋb

ẏb

θ̇

 =


cos θ −` sin θ

sin θ ` cos θ

0 1


 v + nv

w + nw

 , (3.1)

where we assume that actuation noise is bounded (i.e., |nv(t)| ≤ n̄v and |nw(t)| ≤ n̄w

for all t).

Recall that our proposed controller in (2.7) requires the perfect knowledge of θ(t).

Since the measurement information does not contain θ, we construct an estimate of

θ̂ and use the following updated controller:

v
w

 = J(θ̂)−1


ẋr
ẏr

+K(e)

 . (3.2)

22

In the following lemma, the heading angle θ is estimated as θ̂ and the heading angle

error θe is upper-bounded. We assume that we have knowledge of the control inputs

v(t) and w(t) during the time t ∈ [t− δ, t]. The result shows that the heading angle

error is dependent on the angular noise and delay time.

Lemma 5 The heading angle error θe(t) is bounded by the delay time and maximum

angular noise in each measurement delay period by the following inequality:

|θe(t)| ≤ δmax |nw(s)|, s ∈ [t− δ, t]. (3.3)

Proof: θe(t) is defined as

θe(t) , θ(t)− θ̂(t), (3.4)

where θ(t) is the actual heading angle and θ̂(t) is the estimated heading angle. θ̇ is

derived from (3.1)

θ̇ = w + nw,

where

θ(t) = θ(t1) +

∫ t

t1

θ̇(s)ds,

for t ≥ t1. Therefore, with t1 = t− δ, we have

θ(t) = θ(t− δ) +

∫ t

t−δ
w(s)ds+

∫ t

t−δ
nw(s)ds. (3.5)

We can measure ẋ, ẏ by the change in position while using an initial guess of θ at

t = 0. The heading angle estimate is to be

θ̂(t) = tan−1

(
ẏb(t− δ)
ẋb(t− δ)

)
+

∫ t

t−δ
w(s)ds. (3.6)

23

The difference between the actual heading angle (3.5) and the estimated (3.6) is

θe(t) = θ(t)− θ̂(t) =

∫ t

t−δ
nw(s)ds. (3.7)

We prove the lemma by upper bounding (3.7) with the delay time and maximum

angular noise using maximum L∞ norm. �

In the next section, the heading angle error is constrained in order to upper bound

the tracking error with noise and measurement delay.

3.1 Bound on the Tracking Error

This section analyzes the error dynamics for the control (3.2) that includes noise

and measurement delay. Through the Lyapunov function proposed previously (2.11),

the next lemma proves that under a heading angle constraint the tracking error is

upper bounded and guaranteed to asymptotically converge to a constant value. Fur-

thermore, the switching time t∗ required for the control (2.7) to switch from the

saturated to the linear response is upper bounded.

Lemma 6 ‖e(t)‖ is bounded ∀t when |θe(t)| ≤ π
2
by the following:

‖e(t)‖ ≤


√(
‖e(0)‖2 − c3

γ

)
eγt + c3

γ
, if t ≤ t∗√

(m2 − c2
c4

)e−c4(t−t∗) + c2
c4
, otherwise,

(3.8)

where

t∗ ≤ 1

γ
ln
(m2 − c3/γ

‖e(0)‖2 − c3/γ

)
is the bounded time before switching from the saturated to linear control.

Proof: By substituting the noisy dynamics (3.1) and control (3.2) into the track-

24

ing error dynamics (2.5) we obtain,

ė = żr − J(θ)

[
J(θ̂)−1[żr +K(e)] +

[
nv nw

]T]
= [I −M(θ − θ̂)]żr −M(θ − θ̂)K(e)− J(θ)

[
nv nw

]T
= Ażr −BK(e)− d, (3.9)

where
M(θ − θ̂) = J(θ)J(θ̂), A = I −M(θ − θ̂),

B = M(θ − θ̂), d = J(θ)
[
nv nw

]T
.

(3.10)

The error dynamics (3.9) now include the non-linearizable matrices A, B. d is the

added disturbance to the equality, while A and B consider the actual and estimated

dynamics J(θ)J(θ̂)−1 which are equivalent to the rotation matrix M(θ − θ̂). Notice,

when there is no disturbance or delay (i.e., d = 0 and θ = θ̂), M(θ − θ̂) = I and

(3.9) = (2.9), however, as a result of the added disturbance, θ 6= θ̂ and (3.9) 6= (2.9).

Next, we apply the Lyapunov function (2.11) to (3.9) and obtain

V̇ = (Ażr −BK(e)− d)Te + eT(Ażr −BK(e)− d)

= −(eTBK(e) +K(e)TBTe)

+ żr
TATe + eTAżr − (eTd + dTe).

Through Young’s inequality, V̇ is upper bounded:

V̇ ≤ −q + γeTe +
1

α2
żr

TATAżr +
1

β2
dTd, (3.11)

where q = eTBK(e) + K(e)TBTe and γ = α2 + β2. Further bounding V by its

maximum quantities (denoted as max) and maximum eigenvalues (denoted as λmax),

25

we obtain the maximum relationship of the inequality

V̇ ≤ −q + γ‖e‖2 +
1

α2
λmax{ATA}‖żr‖2 +

1

β2
max{dTd}. (3.12)

We will now analyze the conditional manner of V̇ in order to guarantee stability.

First, let us look into each component of (3.12).

q = eTBK(e) +K(e)TBTe =


keT(B +BT)e, ‖e‖ ≤ m

km
‖e‖e

T(B +BT)e, ‖e‖ > m

≤ 2 cos(θe)e
TK(e),

where we used (3.10) to obtain

BT +B = 2 cos(θe)I. (3.13)

We can also see that

λmax{ATA} = 2 sin2(
θe
2

), max{dTd} = n̄2
v + n̄2

w`
2.

We need q > 0 for the Lyapunov analysis and thus we want to ensure 2 cos(θe) > 0.

Therefore, (3.12) is guaranteed to be stable under the constraint that the heading

angle error is bounded by θe ∈ [−π/2, π/2]. We can now look into the Lyapunov

function with both cases of K(e) as

V̇ ≤


−(c1 − γ)‖e‖2 + c2, if V ≤ m2,

γ‖e‖2 −mc1‖e‖+ c2, otherwise,
(3.14)

26

where

c1 = 2k cos(max θe), c2 =
2v2

r

α2
max{sin2(

θe
2

)}+
η

β2
,

η = n̄2
v + n̄2

w`
2.

Alternatively, (3.14) can be simplified in terms of V

V̇ ≤ −c1 min{m
√
V , V }+ γV + c2, (3.15)

In the case ‖e‖ > m, (3.15) uses the saturated control and V̇ becomes

V̇ ≤ −mc1

√
V + γV + c2. (3.16)

We can further simplify (3.16) to a linear differential equation by using the inequality
√
V > m for the first term. This way, for the saturated control case, we obtain the

upper bound

‖V (t)‖ ≤
(
‖V (0)‖ − c3

γ

)
eγt +

c3

γ
, (3.17)

where

c3 = m2c1 − c2.

In the other case ‖e‖ ≤ m, (3.15) uses the linear control since V ≤ m
√
V . V̇ is

now

V̇ ≤ −c4V + c2, (3.18)

where c4 = c1 − γ. We can now easily solve for ‖V (t)‖ since (3.18) is the form of a

linear differential equation,

‖V (t)‖ ≤
(
‖V (t∗)‖ − c2

c4

)
e−c4(t−t∗) +

c2

c4

. (3.19)

27

The lemma is proved after substituting e into (3.17) and (3.19) by V = ‖e‖2 which

results in the compact equation (3.8). �

Remark 5 Notice from (3.8) that when t→∞, the linear control is used where ‖e‖

converges to the constant

lim
t→∞
‖e(t)‖ ≤

√
c2

c4

. (3.20)

We now know that even with actuation noise and communication, the tracking error

will converge in a linear manner until time t∗ and exponentially after to a constant

value dependent on the measurement delay and noise amount. As expected, the track-

ing error bounds show that the tracking accuracy will increase with lower amounts

of measurement delay and actuation noise. The bounds can be further decreased by

adjusting the control parameters. By increasing k, c1 will increase, and in both cases

of (3.8) the bounds will decrease faster with time. Furthermore, (3.20) will decrease

with increasing k.

This concludes the continuous feedback trajectory tracking controller analysis. We

have observed that the tracking error is bounded even with actuation noise and com-

munication noise. In the next chapter, the continuous feedback controller will be

developed into an intermittent feedback controller. Similar to the previous analysis,

the goal of the intermittent analysis is to demonstrate stable and bounded tracking

error with relation to the system parameters.

3.2 Simulation Results

The following simulations are developed to visualize and verify the controller per-

formance with actuation noise and communication delay. In these simulations the

parameters are chosen by the derived relationships in the previous two chapters, such

as the velocity saturation bounds (2.18) and tracking error bounds (3.8).

28

3.2.1 Experiment 2: The Charlotte Logo

Fig. 3.1 showcases the controller with a reference trajectory drawing UNC Char-

lotte’s logo. This experiment demonstrates the tracking performance provided a com-

plicated trajectory and sharp corners. The hardware results of this reference trajec-

tory are also provided in this figure and are further discussed in the next section. The

parameters of the scenario are as follows: vmax = 0.3 [m/s], vr = 1 [m/s], ` = 0.3, for

Case 1: k = 1, m = 1, and for Case 2: k = 1, m = 0.3.

zb(0)
•

Figure 3.1: UNC Charlotte logo: simulation and hardware results

3.2.2 Experiment 3: Traffic Circle

Fig. 3.2 demonstrates the controller (3.2) with noise and communication delay. The

trajectory is a realistic outdoor scenario where the robot is required to traverse a traffic

29

circle, and the tracking bounds (3.8) are required to guarantee that the robot will

remain in the appropriate traffic lane. The grey circles are the time-varying tracking

error upper-bounds. The robot starts on the adjacent sidewalk from the reference

trajectory to simulate a large initial error. The parameters of the simulations are as

follows: nv = 0.5vr, nw = 0.5wr, ` = 1.5, k = 1, m = 3.

Figure 3.2: UNC Charlotte campus traffic circle: error bounds

3.2.3 Experiment 4: Lane Change

Fig. 3.3 is a simulation of the previously discussed lane change scenario. The ref-

erence trajectory provides the appropriate maneuver for a vehicle to merge from the

left to right lane. The simulation is set up to have four different levels of measure-

ment delay and noise with twenty tests being completed for each level. The tracking

bounds are generated for the worst case possible for each level, and multiple tests are

completed to demonstrate the tracking performance with random noise levels and set

delay.

30

t 2
t 3

t 2

t 3

t 1
t 2

t 3

δ
=

0,
n̄
v

=
0,
n̄
w

=
0

δ
=

4,
n̄
v

=
v r

[−
0.

25
,0
.2

5]
,
n̄
w

=
w
r
[−

0.
5,

0.
5]

δ
=

8,
n̄
v

=
v r

[−
0.

5,
0.

5]
,
n̄
w

=
w
r
[−

1,
1]

δ
=

12
,
n̄
v

=
v r

[−
0.

75
,0
.7

5]
,
n̄
w

=
w
r
[−

1.
5,

1.
5]

F
ig
ur
e
3.
3:

La
ne

ch
an

ge
sc
en
ar
io
:
no

is
e
an

d
de
la
y

31

3.3 Hardware Results

This section presents the proposed state-feedback linearization controller imple-

mented with a TurtleBot3 through the ROS framework. The TurtleBot3 uses an

onboard ROS Noetic image installed on a Rasberry Pi to allow communication to a

Host computer which uses a SSH Protocol. In the following experiments, the linear

and angular velocities are published to the robot through the cmd_vel topic at 120 Hz.

Eight OptiTrack cameras are used to provide positional tracking of the robot’s rigid

body pivot point at a frequency of 10 Hz. The pivot point is set to the robot’s

base-point at distance ` = .0476 [m] from the centroid of the robot.

Host PC specifications: Ubuntu 20.04 OS, Intel i7-10700 CPU @ 2.90GHzx16,

AMD Radeon rx 640 GPU, 16 GB DDR4 RAM.

TurtleBot3 specifications: vmax = 0.22 [m/s], wmax = 2.84 [rad/s]

3.3.1 The Charlotte Logo

The first hardware experiment uses the UNC Charlotte logo reference trajectory

provided in the simulation results from Experiment 2. The robot’s base-point trajec-

tory is plotted in Fig. 3.1 with the simulated base-point trajectory to compare the

results. The base-point position was initially placed where shown in the figure as

zb(0) with an initial heading angle of roughly θ(0) = π
4

[rad].

3.3.2 Experiment 5: City Street

This experiment in shown in Fig. 3.4. The environment represents a city street

layout with three 90◦ turns, one traffic circle, and one stop half way through the tra-

jectory. The street layout is physically traversed by the Turtlebot3, as well as virtually

in a trajectory planning program created to tune the bounded velocities in the con-

troller and observe the real-time base-point trajectory. The robot traverses the first

half of the trajectory with a upper bounded linear velocity of vmax = 0.20 [m/s] until

the stop at [1.5,−0.6] where the linear velocity is increased to vmax = 0.22 [m/s] for the

32

remainder of the trajectory. The control parameters are as follows: vr = 0.07 [m/s],

k = 1, m = 1.

Figure 3.4: City street traversal

CHAPTER 4: INTERMITTENT-FEEDBACK CONTROLLER

Event-generator

Trajectory Planner

Controller Plant Sensor

v

w

nv

nw

Figure 4.1: Intermittent feedback control system

We will now consider intermittent feedback and, as a result, design an appropriate

communication policy. The communication policy must guarantee that the tracking

error is eventually bounded by any desired upper bound ε. The time tk denotes the

k-th triggering time when the controller received the position zb(tk) and pose θ(tk).

1

During the interval [tk, tk+1), the controller is open-loop and must use the estimated

dynamics of our robot. Let the controller’s estimate of zb at time t be ẑb(t) ,

x̂b(t)
ŷb(t)


and its estimation of the heading angle be θ̂(t). The controller uses the estimated

1In cases where θ(tk) cannot be measured, the robot can compute this quantity by measuring
both zb(tk) and zc(tk) and using (2.2) to obtain

θ(tk) = tan−1

(
yb(tk)− yc(tk)
xb(tk)− xc(tk)

)
.

34

dynamics for all t ∈ [tk, tk+1),


˙̂xb

˙̂yb

˙̂
θ

 =


cos θ̂ −` sin θ̂

sin θ̂ ` cos θ̂

0 1


v
w

 ,

x̂b(tk)

ŷb(tk)

θ̂(tk)

 =


xb(tk)

yb(tk)

θ(tk)

 . (4.1)

Recall from Chapter 3 that, under continuous state observation and noisy actuation,

the dynamics of the robot were


ẋb

ẏb

θ̇

 =


cos θ −` sin θ

sin θ ` cos θ

0 1


 v + nv

w + nw

 . (4.2)

We must now consider an estimated tracking error,

ê(t) , zr(t)− ẑb(t), (4.3)

and the error between our estimated and actual base position,

∆(t) , zb(t)− ẑb(t). (4.4)

The actual tracking error at time t is defined to be

e(t) , zr(t)− zb(t).

Therefore, due to (4.3) and (4.4) we obtain

e(t) = ê(t)−∆(t). (4.5)

Remark 6 From the above decomposition of e(t) in (4.5), one may notice that the

35

part ê does not depend on the actuation noise and the part ∆ does. As we will show

soon, the dynamics of ê are controllable and thus the value of ê(t) can be controlled

at time t by an appropriately chosen controller. We also notice that ∆(tk) = 0 at any

triggering instance and thus its growth can be controlled by an appropriate choice of

a triggering function. In the subsequent analysis, our objective is to minimize ê and

make it 0 by designing an intelligent controller while also ensuring that (the upper

bound) ∆ does not grow large by designing an intelligent triggering function.

The proposed intermittent feedback controller is as follows:

v
w

 = J(θ̂)−1


ẋr
ẏr

+ u

 , (4.6)

with the control function to be defined.

Remark 7 The proposed controller in (4.6) is similar in structure to the controllers

(2.7) and (3.2) in Chapters 2 and 3, respectively. The major difference is, due to the

lack of continuous communication, the intermittent feedback controller does not have

access to the error e(t) for all time and consequently the K(e) part of (2.7) and (3.2)

cannot be implemented. However, the controller can compute ê(t) and therefore, we

use this information to design an intelligent controller u as described in Lemma 7.

Lemma 7 For any tf > tk, the optimal control u that ensures ê(tf) = 0 while

minimizing the quadratic control cost
∫ tf

tk

‖u(s)‖2ds is

u(t) =


ê(tk)
tf−tk

, if t ≤ tf

0, otherwise.
(4.7)

36

Proof: Let us compute ˙̂e and use (4.1) and (4.6) to obtain

˙̂e = −u. (4.8)

Given the linear dynamics of (4.8) and the quadratic cost function
∫ tf

tk

‖u(s)‖2ds, we

may invoke the standard results from linear systems (c.f. Lemma 12 in Appendix A

for details) to show that (4.7) is the optimal control. �

The time tf in (4.7) is a design parameter and its choice will be discussed later in

this chapter (see Lemma 8).

4.1 Cases of Tracking Error

It will be shown in this section that the relationship of ‖e(tk)‖ with ε changes the

choice of tk+1. Case 1 represents when ‖e(tk)‖ > ε, where error will decrease for all

t ∈ [tk, tk+1), while Case 2 is when ‖e(tk)‖ ≤ ε, where error is bounded by ε.

4.1.1 Case 1: Converging Tracking Error

By substituting (4.7) in (4.8) and integrating, we obtain for all t ≤ tf that

ê(t) =
tf − t
tf − tk

ê(tk) =
tf − t
tf − tk

e(tk), (4.9)

where the last equality is due to the fact that

ê(tk) = zr(tk)− ẑb(tk) = zr(tk)− zb(tk) = e(tk).

Given (4.9), we need to solve for ∆(t) to compute e(t). To that end, let us take

the derivative of (4.4) and use (4.6) to obtain

∆̇(t) = żb(t)− żr(t) + u. (4.10)

Substituting the noisy dynamics (4.2) along with the chosen controller (4.6) into

37

(4.10) and integrating over [tk, t], we obtain

∆(t) =

∫ t

tk

d(s)ds−
∫ t

tk

A(żr(s)− u)ds, (4.11)

where A and d are defined in (3.10) and we have used the fact that ∆(tk) = 0.

We can now obtain the tracking performance by substituting (4.9) and (4.11) into

(4.5),

e(t) =
tf − t
tf − tk

e(tk)−
∫ t

tk

d(s)ds+

∫ t

tk

A(żr(s)− u)d(s). (4.12)

Since tf is a design parameter, we will choose tf big enough such that tk+1 ≤ tf

whenever ‖e(tk)‖ > ε. We will discuss soon how to conduct the design such that

tk+1 ≤ tf is ensured. Therefore, for any time t ∈ [tk, tk+1), the tracking error norm is

upper bounded by

‖e(t)‖ ≤ tf − t
tf − tk

‖e(tk)‖+

∫ t

tk

‖d(s)‖ds+

∫ t

tk

‖A(żr(s)− u)‖ds,

†1
≤ tf − t
tf − tk

‖e(tk)‖+ η1

∫ t

tk

ds+

∫ t

tk

2

∣∣∣∣ sin(θe(s)2

)∣∣∣∣√(żr − u)T(żr − u)ds

†2
≤ tf − t
tf − tk

‖e(tk)‖+ η1

∫ t

tk

ds+

(
vr +

‖e(tk)‖
tf − tk

)∫ t

tk

|θe(s)|ds

≤ tf − t
tf − tk

‖e(tk)‖+ η1

∫ t

tk

ds+

(
vr +

‖e(tk)‖
tf − tk

)
n̄w

∫ t

tk

(s− tk)ds

=
tf − t
tf − tk

‖e(tk)‖+ (t− tk)η1 +

(
vr +

‖e(tk)‖
tf − tk

)
n̄w
2

(t− tk)2, (4.13)

where

η1 =
√
n̄2
v + `2n̄2

w.

The inequality †1 follows directly from the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖

and †2 by Lagrange’s theorem sin(x) ≤ |x|. We can rearrange (4.13) in the form of a

38

polynomial with respect to (t− tk) as

‖e(t)‖ ≤ ‖e(tk)‖ − b1(t− tk) + b2(t− tk)2 , eupper(t), (4.14)

where

b1 =

(
‖e(tk)‖
tf − tk

− η1

)
, b2 =

(
vr +

‖e(tk)‖
tf − tk

)
n̄w
2
. (4.15)

To reduce the tracking error, it is sufficient to reduce the upper bound eupper(t).

Remark 8 Given eupper(t) depends on t as a quadratic polynomial, it is efficient

to find conditions to determine whether eupper(t) decreases with time. The following

lemma prescribes such a condition on tf .

Lemma 8 Pick any pk ∈ [0, 1) such that

tf , tk + pk
‖e(tk)‖
η1

≥ tk +
b1

2b2

. (4.16)

Then, eupper(t) decreases in the interval [tk, tk + b1
2b2

].

Proof: A necessary condition to ensure eupper(t) is decreasing for t > tk is b1 > 0.

Thus, from the expression of b1 in (4.15), we obtain the condition

tf < tk +
‖e(tk)‖
η1

. (4.17)

We can observe that any tf satisfying (4.17) can be expressed as

tf = tk + pk
‖e(tk)‖
η1

,

for some pk ∈ [0, 1).

39

Since tf > tk + b1
2b2

as per the lemma condition, (4.13) holds true for all t ∈

[tk, tk + b1
2b2

]. By taking the derivative of eupper(t) we obtain that ėupper(t) ≤ 0 only

for t ∈ [tk, tk + b1
2b2

]. �

Corollary 2 Let tf be chosen according to Lemma 8 for some pk ∈ [0, 1), then the

optimal trigger time tk+1 > tk that minimizes eupper(t) is

tk+1 = tk +
b1

2b2

. (4.18)

Proof: From the quadratic nature of eupper(t), we obtain that eupper(t) is minimum

at tk + b1
2b2

and thus, the triggering must be done at that time. �

In this work we use (4.18) to generate the triggering instances. As shown in the

above analysis, this choice ensures that the upper bound on the error is minimized.

Therefore, at the next trigger time tk+1, we have

‖e(tk+1)‖ ≤ eupper(tk+1) = ‖e(tk)‖ −
b2

1

4b2

. (4.19)

Clearly the error norm decreases with each triggering and there exists an integer

N such that ‖e(tN)‖ ≤ ε for a user defined tolerance parameter ε. The decrease in

actual error norm ‖e(t)‖ from time tk to tk+1 is at least

b2
1

4b2

=
η2

1(1− pk)2

2n̄w(vrp2
k + η1pk)

. (4.20)

This quantity depends on the choice of pk and it increases as pk decreases. While

pk can be chosen as desired by the user, for the subsequent analysis we will assume

that pk ≤ p̄ for all k. The triggering instances depend on pk. In fact,

tk+1 − tk =
b1

2b2

=

‖e(tk)‖
tf−tk

− η1

(vr + ‖e(tk)‖
tf−tk

)n̄w
=

η1(1− pk)
(vrpk + η1)n̄w

.

40

Lemma 9 Let N =
⌈

2n̄w(vr p̄2+η1p̄)(‖e(t0)‖−ε)
η21(1−p̄)2

⌉
, then

‖e(t)‖ ≤ ε,

for all t ≥ tN , where tk’s are found from (4.18) for all k = 0, . . . , N − 1 with t0 = 0.

Proof: From (4.19) we notice that ‖e(tk)‖ decreases with k. Furthermore, (4.19)

along with (4.20) provide us with

‖e(tk)‖ ≤ ‖e(t0)‖ −
k−1∑
i=0

η2
1(1− pi)2

2n̄w(vrp2
i + η1pi)

. (4.21)

Given that pk ≤ p̄ for all k, we can observe from 4.21 that

‖e(tk)‖ ≤ ‖e(t0)‖ − k η2
1(1− p̄)2

2n̄w(vrp̄2 + η1p̄)
.

Therefore, for k = N where N is given in the lemma statement, we obtain

‖e(tN)‖ ≤ ‖e(t0)‖ −N η2
1(1− p̄)2

2n̄w(vrp̄2 + η1p̄)
≤ ε.

�

4.1.2 Case 2: Satisfied Tracking Error

When ‖e(tk)‖ ≤ ε we must consider tk+1 > tf . In Case 1, we designed tf such that

t ≤ tf ∀t ∈ [tk, tk+1). For this case we may still choose tf from (4.16) but must also

consider that tk+1 > tf since tf can be very close to tk.

41

Lemma 10 When ‖e(tk)‖ ≤ ε, tk+1 is maximized by the following:

tk+1 =


tk +

b1+
√
b21−4b2(‖e(tk)‖−ε)

2b2
, if tk+1 ≤ tf

tk + max

(
−η1+
√
η21+4b2ε

2b2
, pk

‖e(tk)‖
η1

)
otherwise.

(4.22)

Proof: We must consider tk+1 > tf , where tf is chosen from (4.16). When t ≤ tf ,

we have found tk+1 from (4.18). When t > tf the control from (4.7) is u(t) = 0,

resulting in the following new bound of ‖e(t)‖ in replace of (4.13),

‖e(t)‖ ≤ (t− tk)η1 +

(
vr +

η1

pk

)
n̄w
2

(t− tk)2. (4.23)

Substituting t = tk+1 into (4.23) when the r.h.s. of (4.23) is ε, we can solve for tk+1:

tk+1 = tk +
−η1 +

√
η2

1 + 4b2ε

2b2

. (4.24)

�

4.2 Choice of pk

In this section we discuss the choice of pk and the trade-offs associated with that

choice. Notice that the choice of pk directly affects the triggering instances; hence,

the total number of triggers before the error becomes small enough (i.e., less than ε).

It also affects the magnitude of the control input u.

Lemma 11 The linear and angular velocity are dependent on the choice of pk and

are bounded by the following,

|v(t)| ≤ vr + ‖u(t)‖ = vr +
η1

p̄
, (4.25a)

|w(t)| ≤ wr +
‖u(t)‖
`

= wr +
η1

`p̄
. (4.25b)

42

Proof: Recall that when t ≤ tf ,

u(t) =
e(tk)

tf − tk
=
η1

pk

e(tk)

‖e(tk)‖

for all t ∈ [tk, tk+1). Therefore, ‖u(t)‖ = η1/pk.

From (4.6), we obtain

|v(t)| ≤ vr + ‖u(t)‖ = vr +
η1

pk
,

|w(t)| ≤ wr +
‖u(t)‖
`

= wr +
η1

`pk
.

Similarly, when t > tf , u(t) = 0 and we obtain,

|v(t)| ≤ vr,

|w(t)| ≤ wr.

Therefore, the actuated velocity when t ≤ tf depends on pk. �

By this point, the intermittent feedback controller has a communication policy

from (4.18) when ‖e(tk)‖ > ε and (4.22) when ‖e(tk)‖ ≤ ε. The policy guarantees

that the tracking performance converges to the desired tolerance ε. The simulation

results for this chapter demonstrate the decrease in required communications after

the time tN when the tracking error becomes e ≤ ε. This is a direct result of the

policy allowing the tracking bound (4.14) to increase to ε after time tN .

4.3 Simulation Results

The following simulations implement the proposed intermittent feedback controller

(4.6). The figures show the locations of where each triggering instance tk occurs by

magenta colored dots. The actuation noise is generated based on a percentage of the

reference linear and angular velocity which will be mentioned for each figure.

43

4.3.1 Experiment 6: Intermittent Feedback Control

Fig. 4.2 demonstrates the intermittent feedback controller with the circular refer-

ence trajectory in Fig. 2.3. The blue and magenta colored dots visualize the corre-

sponding reference trajectory and base-point positions, respectively, for each trigger.

The grey boundary shows the user-desired tracking error upper-bound, ε = 0.2 [m].

The actuation noises are bounded: n̄v = 0.1vr, n̄w = 0.1wr, where vr = 1 [m/s],

wr = 3.33 [rad/s]. It is shown that N = 9 and after the trigger time t9 the tracking

error remains bounded by ε. The error performance of this simulation is provided in

Fig. 4.3. The figure demonstrates time-varying triggering instances which are provid-

ing a guarentee that the tracking error will decrease. After tN , the time between each

trigger is increased since ‖e(t)‖ ≤ ε, ∀t ≥ tN . It can be observed that because the

communication policy is determined for the worst case possible, the tracking perfor-

mance remains much less than ε. The next lane change scenario demonstrates that

the worst case is possible, however, the tracking error remains bounded.

tN

Figure 4.2: Intermittent feedback performance with a circular reference trajectory

44

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tN

Figure 4.3: Performance characteristics of (4.14) in Fig. 4.2

4.3.2 Experiment 7: Lane Change with Intermittent Feedback

Fig. 4.4 showcases the intermittent control in the lane change scenario. There are

four levels of actuation noise with twenty trials in each. Both actuation noise and ε

are increased for each level. The first level demonstrates that with low amounts of

noise fewer communications are required. The even-triggered communication policy

provides the requirement of more communications in each increasing level as a direct

result of the added noise. In the highest noise level it can be seen that the base-point

trajectory will often diverge close to ε during the time t ∈ [tk, tk+1) but right after

the time t = tk+1 the trajectory will converge.

45

F
ig
ur
e
4.
4:

La
ne

ch
an

ge
sc
en
ar
io
:
in
te
rm

it
te
nt

fe
ed
ba

ck

CHAPTER 5: CONCLUSION

The proposed state-feedback controller (2.7) provides exponentially accurate trajec-

tory tracking when ‖e‖ ≤ m without the expense of high velocities by incorporating

the saturated control when ‖e‖ > m. One can see in the simulation results from

Fig. 2.3 that the controller preforms accurately even when the reference trajectory

demands higher angular velocities. The velocities were upper bounded by (2.15) and

can be tuned with (2.18) by adjusting the control parameter k amd m. Fig. 2.4 pro-

vides a visualization to the reader for the guarantee that the velocities will not exceed

a set user-defined threshold.

The dynamics were introduced to linear and angular actuation noise while the

heading angle estimation incorporates delayed measurements. The estimated heading

angle was then calculated without the knowledge of the noise in the system with a

defined delay period. The analysis shows that the estimated heading angle error

|θe(t)| is upper bounded by the delay period and maximum angular noise. Through

a Lyapunov approach the tracking error ‖e‖ was shown to be upper bounded ∀t

under the constraint |θe(t)| ≤ π/2. The bounds guarantee that the tracking error is

constrained by (2.10).

First in the simulation results, the controller (2.7) is tested with a circular refer-

ence trajectory as shown in Figs. 2.3, 2.4. These figures show that the controller

provides exponential tracking accuracy with the linear control without the cost of

unconstrained velocities by incorporating the saturated control. Furthermore, the

results demonstrate the ease of tuning the controller with the derived relationship

(2.18). Next, the controller with actuation noise and communication delay (3.2) was

demonstrated with a complicated reference trajectory (the UNC Charlotte logo) in

47

Fig. 3.1, a realistic traffic circle scenario in Fig. 3.2, and a lane change scenario in

Fig. 3.3. The UNC Charlotte logo scenario demonstrates the effectiveness with a

trajectory that has sharp corners and high angular velocities. In the traffic circle

scenario, the tracking bounds (3.8) are demonstrated to provide safety-critical tra-

jectory tracking. The final lane change scenario demonstrates the reliability of the

controller with multiple tests at varying actuation noise and measurement delay. As

observed, none of the trails crossed the guaranteed tracking bound. Videos for both

the simulation and hardware results can be found in Ref. [50].

In the hardware experimentation results, the controller (2.7) is implemented into

hardware through ROS with the TurtleBot3 Burger. The tracking performance was

shown to be excellent even with a complicated reference trajectory. The results are

compared directly to the noiseless simulation expectation in Fig. 3.1. The city street

layout in Fig. 3.4 demonstrated the true tracking performance and shows that the

vehicle is able to remain in its appropriate lane.

The trajectory tracking intermittent state-feedback linearization controller provides

the optimal control function to minimize energy. The tracking performance is guar-

anteed to be bounded by any desired ε after time tN . The control policy was shown

to provide a direct relationship to the actuation noise and control parameters. The

triggering time is designed to be tuned by pk which directly determines the magni-

tude of the linear and angular velocities as shown in (4.25) versus the communication

requirement in (4.18), (4.22). The velocities are shown to be saturated and bounded

by the disturbance, reference velocity, and control parameter pk. The intermittent

feedback control is simulated in Figs. 4.2 and 4.3 with a circular reference trajec-

tory. The figure shows the time-varying event-based triggering and shows that the

true performance will often be below the desired tolerance. The controller was also

implemented with the lane change scenario in Fig. 4.4. One can observe that the per-

formance of the intermittent feedback controller can be comparable to the continuous

48

feedback controller but with limited communication.

The advantages and trade-offs have been made clear for when deciding between im-

plementation of the proposed continuous and intermittent feedback controller. When

communication costs are not an issue, the continuous state-feedback controller could

be chosen to provide exponential stability. The tracking performance was guaran-

teed with direct relationship to communication delay and actuation noise. However,

when limited communication is desired, the intermittent feedback control has a ma-

jor advantage by only requiring sensor information at specific event generated by the

desired performance, actuation noises, and system parameters.

5.1 Discussion

This thesis provides a robust trajectory tracking approach that can be extended

with numerous autonomous nonholonomic robots. Time constrained maneuvers are

necessary for applications such as multi-robot surveillance and mapping, similar to

the underwater vehicle control proposed in Ref. [51]. Game theory for robotic sys-

tems require time dependent and optimal maneuvers with as limited information as

possible. These requirements are directly answered by the proposed optimal intermit-

tent feedback control. Military applications, such as guided missiles, need a reliable

control to guarantee accuracy. The proposed controller could be expanded into this

military application with its highly tunable time-varying tracking guarantees, similar

to what has been done in Ref. [52]. These are just a few examples among the countless

other works that can incorporate this control synthesis.

Many real-life factors and constraints are considered in this thesis, but it could

be further enhanced. The intermittent feedback control analysis considers actuation

noise but can also be further expanded by considering communication delay. The con-

tinuous feedback analysis reveals that, due to the communication delay, the heading

angle must be estimated. It can be assumed that communication delay would show a

similar effect on the intermittent feedback control but, because the exact base-point

49

position is not provided until each trigger, the analysis must then consider more fac-

tors. Furthermore, one could also expand the analysis by incorporating observation

noise and analyze the differences of the tracking bounds with observation versus ac-

tuation noise. Kalman filtering is a sophisticated and widely used state estimation

method that works hand-in-hand with a state-feedback controller. The effects of ac-

tuation noise on the tracking bounds could be reduced by incorporating a Kalman

filter which will further decrease the tracking tolerance. While the bounds and the

analyses in the thesis consider the worst case scenarios, one could possibly consider a

probabilistic scenario where probabilistic guarantees on the bounds can be provided.

Such bounds are generally less conservative than the ones derived in this thesis under

worst case scenario. These probabilistic bounds are of particular interest for several

less safety-critical scenarios (e.g., surveillance of an empty land). Under these scenar-

ios, it would be possible to account for unbounded noise and time-varying random

communication delay.

This thesis was developed to provide a strong and conclusive analysis with the

intention to motivate and influence future extensions and implementations. Exten-

sions of this thesis along the lines of above-mentioned items will further contribute

to the controls and robotics community and push the frontiers of trajectory tracking

research.

50

CHAPTER 6: SOFTWARE AND HARDWARE IMPLEMENTATION DETAILS

This chapter provides the necessary instruction for readers to replicate the simu-

lation and hardware experiments performed in this thesis. The required code for the

MATLAB simulations and ROS hardware experiments can be found in Ref. [50] or

the following repository:

https://github.com/frankllawless/Trajectory-Tracking-Control.git.

Software

• MATLAB R2022b

• Ubuntu 20.04

• ROS Noetic

• Python 3.7.3

Python Libraries

• Numpy

• Pygame

• Pygame.camera

• Rospy

• Matplotlib.pyplot

• Math

6.1 Simulations

Experiment 1 (see Figs. 2.3,2.4) provides the state-feedback controller (2.7) with-

out any actuation noise or communication noise. The reference trajectory for each

experiment are provided in their respective experiment folder. Experiment 2 pro-

vides a comparison between the simulation results and the hardware results saved in

hardware_results.csv.

Experiments 2-4 (see Figs. 3.1,3.2,3.3) provide the controller (3.2) with an esti-

mated heading angle and noisy actuation. Experiment 4 provides the lane change

scenario where the user may adjust the control parameters, number of trails, actu-

ation noise, and communication delay for each level to observe their direct effect to

the tracking error upper-bounds. Experiments 6-7 (see Figs. 4.2,4.4) provide the in-

termittent feedback controller (4.6) with the estimated dynamics and heading angle.

51

In these experiments the user may adjust the desired tracking performance ε and

the control parameter p to adjust the convergence rate, communication frequency,

and velocities. The actuation noises can be adjusted by changing the parameters

angular_noise, linear_noise ∈ [0.1, 1]. The user may also adjust the initial state

conditions, such as zc(0) and θ(0) for all of the provided experiments. 1

6.2 Hardware Experiments

The following section provides the appropriate steps to perform the hardware ex-

periments with the developed trajectory planning Pygame program. The provided

code is formatted to be created as ROS catkin packages. The executable files pro-

vided in the trajectory_tracking folder are completed open-loop (i.e., they do

not use any positional feedback and the dynamics are approximated). The files pro-

vided in OptiTrack_trajectory_tracking are specifically designed to use OptiTrack

motion capture cameras as base-point and centroid positional feedback. To use Op-

tiTrack cameras with the provided program, the user must place enough physical

tracking markers on the robot (see Fig. 6.1) in-order to create a rigid body with

pivot points placed specifically at the centroid and desired base-point position on

the robot (multiple rigid bodies may be created with the same unique markers).

For further information please refer to the following OptiTrack quick start guide:

https://docs.optitrack.com/quick-start-guides
1Note that Eurlers-method is used for all simulation experiments to approximate the dynamics

with a sample time of h which should be set to a small value for higher accuracy i.e., h = 0.02.

https://docs.optitrack.com/quick-start-guides

52

zb

zc

`

Figure 6.1: Example of appropriate marker locations

6.2.1 TurtleBot3 Startup

ROBOTIS provides the TurtleBot3 with an e-Manual that contains all of the nec-

essary steps to install a ROS Noetic image into the on-board Raspberry Pi:

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/

Make sure to connect the TurtleBot3 to the same WiFi network as the Host PC by

changing the access point in 50-cloud-init.yaml located in the netplan directory.

The IP of both the Host machine and Raspberry Pi should be exported in .bashrc

on the Raspberry Pi.

Enter the following into the Host terminal to check connection to Raspberry PI:

$ ping {IP_ADDRESS_OF_RASPBERRY_PI}

If the connection is successful proceed with the following commands to bring up

the TurtleBot3:

$ r o s c o r e

$ shh ubuntu@{IP_ADDRESS_OF_RASPBERRY_PI}

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/

53

By default – Username: ubuntu, Password: turtlebot.

$ export TURTLEBOT3_MODEL=burger

$ ros launch turt lebot3_br ingup turt l ebot3_robot . launch

If bring up is successful, the topic cmd_vel is shown after running the following

command:

$ r o s t op i c l i s t

6.2.2 Running an Experiment

For each experiment the velocity publisher is initialized as a twist class to the

parameter pub. By default this publishes to the cmd_vel topic. Double check that

the publisher matches the TurtleBot3’s topic. To run the open-loop experiments,

execute the appropriate .py file in the terminal with rosrun. When executed, the

reference trajectory will display and the experiment will begin after the user exits out

of the figure. After exiting, the published linear and angular velocities will be visible

in the terminal, and the TurtleBot3 should now be performing the experiment. Once

the experiment is completed, the ideal simulation environment is displayed with the

linear and angular velocities. The user may use the displayed simulation to compare

the ideal environment versus the actual hardware trajectory.

In all experiments that use the OptiTrack cameras, the parameter pos is defined

as the currently subscribed pivot point position. The pose subscriber should be set

to the rigid body base-point location. The parameter ` should be set to the physical

distance between the base-point and centroid position on the robot.

6.2.3 Trajectory Planning Program

The user may provide hand-drawn reference trajectories to the TurtleBot3 by ex-

ecuting the hand-drawn.py file in both the open-loop and closed-loop experiments.

The user may then draw out any trajectory by holding left-click in the Pygame win-

dow. After the trajectory is drawn, press the space key to then adjust the maximum

54

velocities allowed for the experiments by using the up and down arrows keys. Once

the user presses the space key one more time, the experiment will begin and the tra-

jectory planning Pygame program will display the live position and orientation of the

robot in the closed-loop experiments or the simulated position and orientation in the

open-loop experiments. See Fig. 6.2 for the expected visualization.

x distance

y distance

total traversal time maximum velocity

zb

reference trajectory

Figure 6.2: Trajectory planning features

55

REFERENCES

[1] A. G. Ozkil, Z. Fan, S. Dawids, H. Aanes, J. K. Kristensen, and K. H. Chris-
tensen, “Service robots for hospitals: A case study of transportation tasks in a
hospital,” in International Conference on Automation and Logistics, pp. 289–294,
2009.

[2] L. G. Weiss, “Autonomous robots in the fog of war,” IEEE Spectrum, vol. 48,
no. 8, pp. 30–57, 2011.

[3] R. R. Murphy, V. B. M. Gandudi, and J. Adams, “Applications of robots for
COVID-19 response,” CoRR, 2020.

[4] E. Masehian and N. Mohamadnejad, “Path planning of nonholonomic flying
robots using a new virtual obstacle method,” in 3rd RSI international conference
on robotics and mechatronics, pp. 612–617, IEEE, 2015.

[5] G. Indiveri, A. Nuchter, and K. Lingemann, “High speed differential drive mobile
robot path following control with bounded wheel speed commands,” in Interna-
tional Conference on Robotics and Automation, pp. 2202–2207, IEEE, 2007.

[6] S. Van Koevering, Y. Lyu, W. Luo, and J. Dolan, “Provable probabilistic safety
and feasibility-assured control for autonomous vehicles using exponential control
barrier functions,” arXiv preprint, 2022.

[7] S. He, J. Zeng, B. Zhang, and K. Sreenath, “Rule-based safety-critical control de-
sign using control barrier functions with application to autonomous lane change,”
in American Control Conference, pp. 178–185, IEEE, 2021.

[8] K. Shojaei, A. M. Shahri, A. Tarakameh, and B. Tabibian, “Adaptive trajectory
tracking control of a differential drive wheeled mobile robot,” Robotica, vol. 29,
no. 3, pp. 391–402, 2011.

[9] J. Wu, G. Xu, and Z. Yin, “Robust adaptive control for a nonholonomic mobile
robot with unknown parameters,” Journal of Control Theory and Applications,
vol. 7, no. 2, pp. 212–218, 2009.

[10] E. Canigur and M. Ozkan, “Model reference adaptive control of a nonholonomic
wheeled mobile robot for trajectory tracking,” in International Symposium on
Innovations in Intelligent Systems and Applications, pp. 1–5, IEEE, 2012.

[11] P. Guo, Z. Liang, X. Wang, and M. Zheng, “Adaptive trajectory tracking of
wheeled mobile robot based on fixed-time convergence with uncalibrated camera
parameters,” ISA transactions, vol. 99, pp. 1–8, 2020.

[12] S. Xiao and S. Wuxi, “Adaptive trajectory tracking control of wheeled mobile
robot,” in Chinese Control And Decision Conference, pp. 5161–5165, IEEE, 2019.

56

[13] D. Huang, J. Zhai, W. Ai, and S. Fei, “Disturbance observer-based robust control
for trajectory tracking of wheeled mobile robots,” Neurocomputing, vol. 198,
pp. 74–79, 2016.

[14] B. Moudoud, H. Aissaoui, and M. Diany, “Finite-time adaptive trajectory track-
ing control based on sliding mode for wheeled mobile robot,” in 18th International
Multi-Conference on Systems, Signals & Devices, pp. 1148–1153, IEEE, 2021.

[15] J.-y. Zhai and Z.-b. Song, “Adaptive sliding mode trajectory tracking control
for wheeled mobile robots,” International Journal of Control, vol. 92, no. 10,
pp. 2255–2262, 2019.

[16] N. Wang, H. R. Karimi, H. Li, and S.-F. Su, “Accurate trajectory tracking of
disturbed surface vehicles: A finite-time control approach,” IEEE Transactions
on Mechatronics, vol. 24, no. 3, pp. 1064–1074, 2019.

[17] N. K. Goswami and P. K. Padhy, “Sliding mode controller design for trajec-
tory tracking of a non-holonomic mobile robot with disturbance,” Computers &
Electrical Engineering, vol. 72, pp. 307–323, 2018.

[18] R. Solea, A. Filipescu, and U. Nunes, “Sliding-mode control for trajectory-
tracking of a wheeled mobile robot in presence of uncertainties,” in 7th Asian
Control Conference, pp. 1701–1706, IEEE, 2009.

[19] L. Kunpeng, W. Xuewen, Y. Mingxin, L. Xiaohu, and W. Sunan, “Adaptive
sliding mode trajectory tracking control of mobile robot with parameter uncer-
tainties,” in International Symposium on Computational Intelligence in Robotics
and Automation, pp. 148–152, IEEE, 2009.

[20] V. Alakshendra and S. S. Chiddarwar, “Adaptive robust control of mecanum-
wheeled mobile robot with uncertainties,” Nonlinear Dynamics, vol. 87, no. 4,
pp. 2147–2169, 2017.

[21] B. Moudoud, H. Aissaoui, and M. Diany, “Robust trajectory tracking control
based on sliding mode of differential driving four-wheeled mobile robot,” in 6th
International Conference on Optimization and Applications, pp. 1–5, IEEE, 2020.

[22] H. Yu, N. Sheng, and Z. Ai, “Sliding mode control for trajectory tracking of
mobile robots,” in 40th Chinese Control Conference, pp. 13–17, IEEE, 2021.

[23] M. Galicki and M. Banaszkiewicz, “Optimal trajectory tracking control of omni-
directional mobile robots,” in 12th International Workshop on Robot Motion and
Control, pp. 137–142, IEEE, 2019.

[24] J. Zhang, F. Wang, and G. Wen, “Sliding mode observer-based control of teleop-
eration system with uncertain dynamics and kinematics,” 2021.

57

[25] Y. Yang, X. Yan, K. Sirlantzis, and G. Howells, “Application of sliding mode
trajectory tracking control design for two-wheeled mobile robots,” in Conference
on Adaptive Hardware and Systems, pp. 109–114, IEEE, 2019.

[26] S. Blažič, “A novel trajectory-tracking control law for wheeled mobile robots,”
Robotics and Autonomous Systems, vol. 59, no. 11, pp. 1001–1007, 2011.

[27] M. Vazquez, M. Ardito-Proulx, and S. Wadoo, “Nonlinear kinematic control of
qbot2-trajectory tracking,” in MIT Undergraduate Research Technology Confer-
ence, pp. 1–4, IEEE, 2019.

[28] G. Díaz-García, L. F. Giraldo, and S. Jimenez-Leudo, “Dynamics of a differ-
ential wheeled robot: Control and trajectory error bound,” in 5th Colombian
Conference on Automatic Control, pp. 25–30, IEEE, 2021.

[29] M. Vazquez, M. Ardito-Proulx, and S. Wadoo, “Lyapunov based trajectory track-
ing dynamic control for a qbot-2,” in Integrated STEM Education Conference,
pp. 1–6, IEEE, 2020.

[30] W. Zeng, Q. Wang, F. Liu, and Y. Wang, “Learning from adaptive neural net-
work output feedback control of a unicycle-type mobile robot,” ISA transactions,
vol. 61, pp. 337–347, 2016.

[31] Z. Chen, Y. Liu, W. He, H. Qiao, and H. Ji, “Adaptive-neural-network-based
trajectory tracking control for a nonholonomic wheeled mobile robot with ve-
locity constraints,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6,
pp. 5057–5067, 2020.

[32] M. Asai, G. Chen, and I. Takami, “Neural network trajectory tracking of tracked
mobile robot,” in 16th International Multi-Conference on Systems, Signals &
Devices, pp. 225–230, IEEE, 2019.

[33] N. Hassan and A. Saleem, “Neural network-based adaptive controller for trajec-
tory tracking of wheeled mobile robots,” IEEE Access, vol. 10, pp. 13582–13597,
2022.

[34] P. Petrov and I. Kralov, “A look-ahead approach to mobile robot path tracking
based on distance-only measurements,” in AIP Conference Proceedings, vol. 2172,
p. 110005, AIP Publishing LLC, 2019.

[35] A. Bayuwindra, E. Lefeber, J. Ploeg, and H. Nijmeijer, “Extended look-ahead
tracking controller with orientation-error observer for vehicle platooning,” Trans-
actions on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4808–4821,
2020.

[36] Z. Zheng and M. Feroskhan, “Path following of a surface vessel with prescribed
performance in the presence of input saturation and external disturbances,” IEEE
Transactions on Mechatronics, vol. 22, no. 6, pp. 2564–2575, 2017.

58

[37] A. Bayuwindra, E. Lefeber, J. Ploeg, and H. Nijmeijer, “Extended look-ahead
tracking controller with orientation-error observer for vehicle platooning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4808–
4821, 2019.

[38] N. Wang, Z. Sun, J. Yin, Z. Zou, and S.-F. Su, “Fuzzy unknown observer-based
robust adaptive path following control of underactuated surface vehicles subject
to multiple unknowns,” Ocean Engineering, vol. 176, pp. 57–64, 2019.

[39] F. Ke, Z. Li, and C. Yang, “Robust tube-based predictive control for visual ser-
voing of constrained differential-drive mobile robots,” Transactions on Industrial
Electronics, vol. 65, no. 4, pp. 3437–3446, 2017.

[40] Z. Liu and Y. Wang, “Trajectory tracking of mobile service robot,” in Chinese
Control And Decision Conference, pp. 1516–1520, IEEE, 2019.

[41] S. Miah, W. Gueaieb, P. A. Farkas, S. Al-Sharhan, and D. Spinello, “Linear
time-invariant feedback operator for mobile robot trajectory tracking,” in Inter-
national Instrumentation and Measurement Technology Conference Proceedings,
pp. 751–756, IEEE, 2015.

[42] T. Henningsson, E. Johannesson, and A. Cervin, “Sporadic event-based control of
first-order linear stochastic systems,” Automatica, vol. 44, no. 11, pp. 2890–2895,
2008.

[43] D. Lehmann and J. Lunze, “Event-based output-feedback control,” in 19th
Mediterranean Conference on Control & Automation, pp. 982–987, 2011.

[44] J. Yang, F. Xiao, and T. Chen, “Event-triggered formation tracking control
of nonholonomic mobile robots without velocity measurements,” Automatica,
vol. 112, p. 108671, 2020.

[45] A. Eqtami, S. Heshmati-Alamdari, D. V. Dimarogonas, and K. J. Kyriakopou-
los, “Self-triggered model predictive control for nonholonomic systems,” in 2013
European Control Conference, pp. 638–643, IEEE, 2013.

[46] C. Xie, Y. Fan, and J. Qiu, “Event-based tracking control for nonholonomic
mobile robots,” Nonlinear Analysis: Hybrid Systems, vol. 38, p. 100945, 2020.

[47] F. Lawless, H. Suthar, T. Chambers, S. Butts, D. Eure, N. Bousaba, and
D. Maity, “Trajectory tracking for mobile robots with human-in-the-loop,” in
SoutheastCon, pp. 385–390, IEEE, 2022.

[48] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006.

[49] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ: Prentice-Hall,
2002.

59

[50] F. Lawless, “Trajectory tracking simulation and hardware code,”
2022. available at: https://drive.google.com/drive/folders/
13WPrQLB3peyvEUG3f659AAQZ6YZBawin?usp=sharing.

[51] O. Egeland, M. Dalsmo, and O. J. Soerdalen, “Feedback control of a nonholo-
nomic underwater vehicle with a constant desired configuration,” The Interna-
tional journal of robotics research, vol. 15, no. 1, pp. 24–35, 1996.

[52] M. Yaghi and M. Ãnder Efe, “H2/H∞-neural-based fopid controller applied for
radar-guided missile,” Transactions on Industrial Electronics, vol. 67, no. 6,
pp. 4806–4814, 2020.

https://drive.google.com/drive/folders/13WPrQLB3peyvEUG3f659AAQZ6YZBawin?usp=sharing
https://drive.google.com/drive/folders/13WPrQLB3peyvEUG3f659AAQZ6YZBawin?usp=sharing

60

APPENDIX A: Optimal Steering of Linear Systems

Let us consider a linear time invariant system

Ẋ = AX +BU, X(t0) = Xinitial

where the objective is to construct a control input U∗ that steers the initial state

Xinitial at time t0 to a final state Xfinal at time tf .

Lemma 12 The optimal controller U∗ to steer initial state Xinitial at time t0 to a

final state Xfinal at time tf while minimizing
∫ tf

t0

‖U∗(t)‖2dt is

U∗(t) = −BTeA
T(tf−t)W (tf , t0)−1

(
eA(tf−t0)Xinitial −Xfinal

)
, ∀t ∈ [t0, tf]

where

W (tf , t0) =

∫ tf

t0

eA(tf−t)BBTeA
T(tf−t)dt.

	LIST OF FIGURES
	LIST OF SYMBOLS
	INTRODUCTION
	STATE-FEEDBACK CONTROLLER
	EFFECTS OF ACTUATION NOISE AND MEASUREMENT DELAY
	INTERMITTENT-FEEDBACK CONTROLLER
	CONCLUSION
	SOFTWARE AND HARDWARE IMPLEMENTATION DETAILS
	REFERENCES
	Optimal Steering of Linear Systems

