
AUTOMATED CLASSIFICATION AND MITIGATION OF CYBERSECURITY
VULNERABILITIES

by

Ehsan Aghaei

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computer Science

Charlotte

2022

Approved by:

Dr. Xi (Sunshine) Niu

Dr. Bei-Tseng Chu

Dr. Waseem Shadid

Dr. Yasin Raja

ii

©2022
Ehsan Aghaei

ALL RIGHTS RESERVED

iii

ABSTRACT

EHSAN AGHAEI. Automated Classification and Mitigation of Cybersecurity
Vulnerabilities. (Under the direction of DR. XI (SUNSHINE) NIU)

With the widespread use of computers and networks today, cybersecurity has emerged

as a crucial concern for many businesses as they fight with growing cyber threats by

vulnerability exploitation. To identify and mitigate zero-day or unpatched vulner-

abilities, intensive defensive measures are required, which calls for a thorough un-

derstanding of vulnerability characteristics and threat behavior from several angles.

This compels enterprises to spend a considerable amount of money to safeguard their

infrastructure from cyberattacks, relying on the costly, ineffective, error-prone, and

slow process of experts’ input. Therefore, security automation has been a solution

for many business owners in the battle against the growing number of cyber threats

by vulnerability exploitation.

In recent years, advanced AI technologies in text analytics are gaining wide atten-

tion due to their success in a wide range of applications for automating cybersecurity

processes. The modern text analytics architectures have been built in novel ways for

a variety of applications, assisting cybersecurity professionals in developing resilient

mechanisms against threats. Utilizing such technologies can therefore be a viable ap-

proach for processing, understanding, and predicting vulnerabilities that are typically

reported through unstructured text.

This dissertation utilizes a variety of technologies including deep learning (DL)

models, natural language processing (NLP) approaches, and information retrieval (IR)

techniques to build a series of models that are able to effectively and efficiently parse,

assess, analyze, and mitigate the vulnerabilities based on their textual descriptions

reported in Common Vulnerabilities and Exposures (CVE) format. Particularly, it

offers a cybersecurity language model, as the core component, which is then utilized

iv

for characterizing the vulnerabilities as well as retrieving the corresponding course of

defense actions. As a result of this work, enterprises and cybersecurity researchers

will be able to automatically process domain-specific texts, classify vulnerabilities to

cybersecurity standards to obtain high-level knowledge, and retrieve the course of

defense actions for the underlying threats.

v

ACKNOWLEDGEMENTS

First and foremost, I want to express my admiration to my father, mother, and two

gorgeous sisters for their love and support throughout my life. Thank you for giving

me the courage to reach for the stars and pursue my dreams. You don’t just mean

the world to me, you are my world.

I would like to express my deepest appreciation to my esteemed Ph.D. advisor,

Dr. Xi Niu, for her invaluable supervision, support, and tutelage all across my PhD

degree. I have benefited greatly from her wealth of knowledge and meticulous su-

pervision in the years of my Ph.D. study. Her unassuming approach to research and

outstanding flexibility in communication is a source of inspiration. I hope to carry

forward whatever I learnt from her throughout my career.

I could not have undertaken this journey without Dr. Ehab Al-Shaer, whose vast

knowledge and wealth of experience have inspired me throughout my academic re-

search and personal life. Dr. Al-Shaer kept in contact with me after he left UNC

Charlotte to become a Distinguished Career Professor at Carnegie Mellon University.

I’d like to express my appreciation to him for those lengthy brainstorming sessions,

technical feedback, and trial-and-error efforts on my proposed models, for which I

will be eternally grateful.

Words cannot express my gratitude to Dr. Waseem Shadid for his invaluable as-

sistance in shaping my experiment methods, evaluating my work, and critiquing my

results. In addition, I would also thank Dr. Bill Chu and Dr. Yasin Akhtar Raja for

their thoughtful comments and recommendations for this dissertation.

Last but not least, I would like to express my sincerest gratitude to Dr. Juile

Goodliffe and Sandra Krause not only for their prompt help but also for their kind

care. I am immensely thankful to have met such professional and charming people,

whose personalities have left an indelible impression on me.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES xii

CHAPTER 1: Introduction 1

1.1. Problem Statement 3

1.2. Research Questions 11

1.3. Research Challenges 12

1.4. Contribution to the Knowledge 13

CHAPTER 2: A Domain Specific Language Model for Cybersecurity 18

2.1. Introduction 18

2.2. Overview of BERT Language Model 21

2.3. Data Collection 22

2.4. Methodology 23

2.4.1. Customized Tokenizer 23

2.4.2. Weight Adjustments 25

2.5. Masked Language Model Evaluation 29

2.5.1. Masked Language Model (MLM) 29

2.5.2. Ablation Study 31

2.6. Related Works 36

2.7. Conclusions and Future Works 37

CHAPTER 3: Automated CVSS Prediction 38

3.1. Introduction 38

vii

3.2. Related Works 41

3.3. Challenges 43

3.4. Model Design 44

3.5. Evaluation 50

3.6. Conclusions and Future Works 54

CHAPTER 4: Automated Classification of CVEs to CWEs and to Vul-
nerability Types

55

4.1. Introduction 55

4.2. Problem Definition 57

4.3. Related Works 59

4.4. Challenges 61

4.5. Methodology 62

4.6. Evaluation 66

4.6.1. Hierarchical CVE to CWE Classification Model 67

4.6.2. CVE to Vulnerability Type (VT) Classification Model 70

4.7. Conclusions and Future Works 71

CHAPTER 5: Automated Context-based Classification of CVEs to Func-
tionalities

73

5.1. Introduction 73

5.2. Problem Definition 76

5.3. Related Works 81

5.4. Challenges 82

viii

5.5. Data Assessment and Annotation 82

5.5.1. Functionality Documentation 83

5.5.2. EXTRACTOR 88

5.5.3. SVO Extraction Framework 91

5.6. Methodology 94

5.7. Evaluation 98

5.8. Discussions on Model Performance 100

5.9. Conclusions and Future Works 104

CHAPTER 6: Neural Information Retrieval (IR) Model for Retrieving
Course of Defense Actions for CVEs

106

6.1. Introduction 107

6.2. Related Works 109

6.3. Problem Definition 109

6.4. Challenges 111

6.5. Methodology 112

6.5.1. Data Augmentation 112

6.5.2. Model Design 113

6.6. Evaluation 117

6.7. Conclusions 121

REFERENCES 123

APPENDIX A: Vulnerability Types Definitions 128

APPENDIX B: Functionality to MITRE ATT&CK Technique Mappings 132

APPENDIX C: Examples of Automated CVEs to Functionalities Classi-
fication

134

ix

LIST OF TABLES

TABLE 2.1: The statistics of collected cybersecurity corpora for training
the SecureBERT.

23

TABLE 2.2: The resources collected for cybersecurity textual data. 24

TABLE 2.3: Shows the masked word prediction results returned by Se-
cureBERT (SB), SecureBERT without weight adjustment (SB*),
RoBERTa-base (RB) and RoBERTa-large (RL) in sentences contain-
ing homographs

32

TABLE 2.4: the performance of different models trained on Malware-
TextDB dataset for NER task.

35

TABLE 3.1: Shows different vectors required to represent CVSS V3. 39

TABLE 3.2: Shows the CVSS V3 Base metrics and the potential values. 40

TABLE 3.3: CVSS metric value prediction results 51

TABLE 3.4: Confusion matrix for the proposed model 52

TABLE 3.5: Shows an example of uninformative CVE description for the
purpose of "Attack Complexity" metric prediction.

53

TABLE 4.1: Mapping CWEs to vulnerability types. 66

TABLE 4.2: SecureBERT performance evaluation on hierarchical classi-
fication of CVEs to top 25, 50, and 100 CWEs where HR indicates
the hit rate (accuracy in this case) and F1 refers to the F1-score.

69

TABLE 4.3: SecureBERT performance evaluation on hierarchical classifi-
cation of CVEs to top 25, 50, and 100 CWEs.

70

TABLE 4.4: SecureBERT performance evaluation in classifying CVEs to
top 5, 10, and all vulnerability types.

71

TABLE 5.1: List of common functionalities defined by MITRE. 74

TABLE 5.3: PropBank proposition definitions. 78

TABLE 5.4: Examples of retrieving sentences based on the given rules
using SRL.

79

x

TABLE 5.5: Example of extracted SVOs for four functionalities 92

TABLE 5.6: An example of contents and context as two inputs to the
classification model.

98

TABLE 5.7: The performance of the CVE to functionality classification
model using all testing dataset.

100

TABLE 5.8: The confusion matrix of CVE to functionality classification
model using all testing dataset (TS1 dataset).

101

TABLE 5.9: The confusion matrix of CVE to functionality classification
model using 494 pairs of content and CVE descriptions as context
(TS2 dataset).

101

TABLE 6.1: CoAs offered by different cybersecurity standards for different
defensive methods.

115

TABLE 6.2: Shows the number of mitigations each cybersecurity standard
provides for the CVEs.

118

TABLE 6.3: This table represents to number of CVEs associated with
each cybersecurity standard, and shows the total number of CVE-
CoA pairs generated tp train each model.

118

TABLE 6.4: The evaluation of three proposed models for retrieving course
of actions for CVEs.

120

TABLE A.1: Vulnerability types mappings to MITRE ATT&CK tech-
niques by MITRE guideline.

131

TABLE B.1: Functionalities’ mapping to MITRE ATT&CK techniques
by MITRE guideline.

133

TABLE C.1: List of verbs and objects extracted to represent functionality
classes

139

TABLE C.2: List of objects extracted to represent causal links in func-
tionality classes

140

xi

TABLE C.3: The evaluation of classifying 66 CVE into one or more func-
tionalities based on only the description without considering the sec-
ond input. The table shows the top K prediction for each CVE
description where K equals to the total number of predictions un-
til all the correct classes are predicted. The correct predictions are
depicted by bold font.

154

xii

LIST OF FIGURES

FIGURE 1.1: An example of associating CVEs to CWEs and MITRE
ATT&CK.

5

FIGURE 1.2: An example of associating CVEs to course of actions from
CWEs, MITRE ATT&CK, and critical security controls..

8

FIGURE 1.3: Project overview 16

FIGURE 2.1: SecureBERT architecture for pre-training against masked
words.

28

FIGURE 2.2: Cybersecurity masked word prediction on RoBERTa-base,
RoBERTa-large, SciBERT, and SecureBERT.

30

FIGURE 2.3: A comparative example of predicting masked token. When
compared to the off-the-shelf model, RoBERTa-large, SecureBERT
demonstrates a better performance in processing the cybersecurity
context.

31

FIGURE 2.4: Demonstrating the impact of the customized tokenizer in
masked word prediction performance.

33

FIGURE 2.5: SecureBERT architecture for named entity recognition
(NER).

35

FIGURE 3.1: Numbers of available labeled records in each value for each
CVSS metric. This shows the imbalance data problem in CVSS
dataset

44

FIGURE 3.2: CVSS metric value prediction model design. For each CVSS
metric, there is a separate model that is trained independently.

45

FIGURE 3.3: Shows the different steps in generating customized TF-IDF
vectors to represent CVE descriptions.

47

FIGURE 3.4: An example of TF-IDF module creation and usage. 50

FIGURE 4.1: It depicts the hierarchical representation of the CWEs. The
red boxes show the CWE-89’s relatives in the higher levels. This
hierarchy plays an important role in understanding the character of
the weaknesses in different level of details.

58

xiii

FIGURE 4.2: the distribution of common CWEs 62

FIGURE 4.3: the CWE tree structure. 63

FIGURE 4.4: CVE to CWE hierarchical classification model design. 64

FIGURE 4.5: CVE to vulnerability type classification model design. 67

FIGURE 4.6: Distribution of CWEs in CVE to CWE classification. 68

FIGURE 4.7: Distribution of CWEs in CVE to CWE classification. 71

FIGURE 5.1: Shows the different implication of "deleting a file" action
in different contexts.

76

FIGURE 5.2: SRL breaks down a text into the words or phrases as argu-
ments and return their semantic role in the sentence.

77

FIGURE 5.3: Shows the functionalities and their relationships. In rela-
tionship definitions, The term "inheritance" denotes that the child
functionality inherits all of its parent’s characteristics in addition to
its own unique ones. The characteristics refers to the same threat
action(s) and/or same MITRE technique(s). "commonality" on the
other hands refers to semantic similarity between two functionalities,
but not necessarily the same behavior.

86

FIGURE 5.4: The overview of EXTRACTOR framework 88

FIGURE 5.5: The model architecture for classifying CVEs to functional-
ities

97

FIGURE 5.6: Data distribution in CVE to functionality classification
dataset

99

FIGURE 6.1: CVEs’ connections and the source of course of actions. 112

FIGURE 6.2: The initial neural information retrieval model. 113

FIGURE 6.3: Show the model design for retrieving CoAs. 116

1

CHAPTER 1: Introduction

With the increasing use of computers and networks in modern day, cybersecurity

has emerged as a crucial concern for many businesses as they fight with growing

cyberthreats induced by vulnerability exploitation. Vulnerability exploitation consis-

tently results in significant loss of personal and organizational information, as well

as billions of dollars for businesses and individuals. Many vulnerabilities remain

unpatched for a lengthy period of time. Zero-day vulnerabilities with no available

patch, or those that cannot be patched (unpatchable vulnerabilities), require inten-

sive defensive measures to identify, prevent, and/or mitigate, necessitating a thorough

understanding of vulnerability characteristics and threat behavior. In the meanwhile,

vulnerabilities are required to be classified according to their severity and exploitabil-

ity, which is critical when prioritizing investigation and defense actions. Hence, mea-

suring the severity of a vulnerability and delivering an impression of how quickly an

impacted system should respond to a threat can significantly improve the protection

against the threat

According to the CWE/SANS Top 251, the primary forms of security vulnera-

bilities are insecure connections between elements, defective defense, and inefficient

resource management. By establishing insecure connections between various sys-

tems/networks, an enterprise might become vulnerable to a range of cyber attacks,

including SQL injection and cross-site scripting. A defective defense refers to insuffi-

cient security methods used to monitor data transfer through a network that does not

adequately safeguard the system from adversaries. The term "resource management"

refers to the process of allocating, utilizing, producing, and even destroying resources

inside a system. A system with insufficient resource management is vulnerable to

path traversal and buffer overflow problems.

Corporations invest a significant amount of money each year in safeguarding their
1https://www.sans.org/top25-software-errors/

2

infrastructure from cyberattacks. This operation is commonly labor-intensive and

requires expert knowledge, making it expensive, inefficient, error-prone, and slow.

Thus, security automation has been a major concern for many business owners in the

battle against evolving cyberthreats enabled by attacks. Cybersecurity automation is

an ongoing information technology effort that enables organizations and individuals

to focus their efforts on more effective defensive measures. While methodologies

for data protection have evolved throughout time, the sophistication necessary to

assure security has stayed unchanged. Without security automation, analysts must

manually handle threats that require investigating and comparing the issue to the

threat posed by company information in order to determine its validity, agreeing

on a course of action, and then manually resolving the issue, all while dealing with

potentially millions of indicators and typically inadequate data.

Modern AI technologies such as deep learning (DL), natural language processing

(NLP), and information retrieval (IR) are receiving wide attention due to their ef-

fective use in many different tasks as compared to traditional ML models. Recent

architectures for text analytics have been modeled in novel ways for a variety of ap-

plications that are quite beneficial for cybersecurity professionals striving to provide

advanced automation for assessments, minimizing the need for manual work, and

leading to millions of dollars in cost savings for industries around the world. Utilizing

such technologies can therefore be a viable approach for processing vulnerabilities

that are typically reported through unstructured text.

The primary contribution of this dissertation is to automate data assessment and

analysis on vulnerabilities, exploits, and, ultimately, effective security measures. It

employs a variety of technologies, including deep learning (DL), natural language

processing (NLP), and information retrieval (IR), to generate a series of models ca-

pable of parsing, assessing, analyzing, and mitigating vulnerabilities based on textual

descriptions reported in Common Vulnerabilities and Exposures (CVE) format. This

3

dissertation, in particular, introduces a cybersecurity language model as the core

component, which is then used for characterizing vulnerabilities and retrieving the

corresponding course of defense actions, which will enable business organizations and

enterprises to automatically process domain-specific texts, classify vulnerabilities to

cybersecurity standards to obtain high-level knowledge, and retrieve the course of

defense actions for the underlying threats.

1.1 Problem Statement

Malicious users and adversaries are ever racing to exploit newly discovered vulner-

abilities before defenders can react. According to FireEye Mandiant Threat Intelli-

gence analysis2 on vulnerabilities exploited in 2018 and 2019, the bulk of in-the-wild

exploitation happens prior to or within a few days following patch deployment, while

many other vulnerabilities remain unpatched for a much longer time putting the sys-

tems under significant risk. The speed and accuracy with which threats are identified

and responded to are two critical factors in cyber defense. According to the Ponemon

Institute study3, the average cost of a data breach is $3.86 million, with a 280-day de-

tection and containment period. Therefore, any approach that can lower such critical

factors would be highly beneficial.

Common Vulnerabilities and Exposures4 (CVEs) are defined as a low-level and

product-oriented description of publicly disclosed cybersecurity vulnerabilities which

in most cases, they are unable to adequately deliver the characteristic of the threat,

including attackers’ actions, purposes, and methods. Therefore, CVEs must be de-

fined in a higher abstraction level to expand upon their both threat and defensive

utility for vulnerability management, threat hunting, and cyber defense planning.This

entails characterizing the CVEs in order to determine the "cause" and "impact" of
2https://www.mandiant.com/resources/time-between-disclosure-patch-release-and-

vulnerability-exploitation
3https://www.ibm.com/security/data-breach
4https://cve.mitre.org/

4

the attack as well as the "methods" leading to the exploit.

There are different standard sources including Common Weakness Enumeration

(CWE) and MITRE ATT&CK that offer abstract threat and concrete vulnerability

information. The CWE is defined as a hierarchically-designed dictionary of software

weaknesses for understanding software flaws, their potential impacts, and identify-

ing means to detect, fix, and prevent the shortcoming [1]. CWEs typically provide

knowledge about the system’s weaknesses as well as specific information regarding

the impact(s) of the associated vulnerabilities if exploited, and a high-level mitiga-

tion strategies to minimize the risk. MITRE ATT&CK, on the other hand, is a

publicly available knowledge source of adversary tactics and techniques based on real

cyber attack observations. These techniques and tactics are organized into matrices

by attack stage, ranging from initial system access to data theft or machine control.

The MITRE ATT&CK’s objective is to compile a thorough list of known adversary

tactics and techniques utilized throughout a cyber-attack, encompassing a broad and

presumably exhaustive spectrum of attack stages and sequences. MITRE ATT&CK

is meant to establish a standardized taxonomy to facilitate communication between

organizations. These common security standards are useful for establishing a high-

level understanding and for approaching the threat from a variety of angles. In other

words, several components of a vulnerability, such as a system weakness, the threat

impact, and the techniques used to exploit can be recognized and appraised for effec-

tive risk management and subsequently, an efficient and real-time defensive plan.

For example, as illustrated in Fig. 1.1, CVE-2018-17908 describes a vulnerability

in WebAccess/NMS (versions prior to 3.0.2) referring to improper input sanitization

that can lead to command injection attack. This CVE provides concrete information

about affected products while the associated CWE defines "why" the command in-

jection can exploit by addressing the weakness as improper neutralization of special

elements, as well as defining "what" the impacts of exploits are as unauthorized ex-

5

ecution of codes/commands, denial of service, read/modify files, directories, and/or

data, and hide activities. In the meantime, the MITRE ATT&CK defines "how"

the attacker can exploit the vulnerability by representing the techniques involved,

as well as the abstract goal of the exploit, which is to run malicious code. Such

information provides insights commencing with a threat and progressing to a vul-

nerability or vice versa and has complementary value for assessing the vulnerabil-

ity and mitigating the underlying threats. Associating CVE reports with MITRE

ATT&CK techniques helps vulnerability report authors to establish a clear and uni-

form approach to defining the impacts and exploitation methods of vulnerabilities

for individuals who prepare CVEs, including vulnerability researchers and product

vendors. By utilizing ATT&CK, CVEs can convey the tale of what the attacker is

attempting to accomplish by exploiting a particular vulnerability. Numerous CVEs

focus exclusively on the technical details of exploitation and impact, omitting the ma-

licious actor’s higher-level objective. ATT&CK bridges this gap and enables users to

comprehend the context of a vulnerability inside an attack scenario and their environ-

ment. Utilizing ATT&CK enables consistent reporting of impacts and exploitation

methods. While many reporters use the same terminology in their reporting, they

commonly used it to describe the same impact differently.

Figure 1.1: An example of associating CVEs to CWEs and MITRE ATT&CK.

6

In a sense, CWEs and MITRE ATT&CK can assist security analysts in selecting the

most effective defense actions to mitigate the threats and safeguard systems. When an

attack happens, the threat information contained in the CWE and ATT&CK matrix5

can help analysts better comprehend the incident and apply the obtained knowledge

to improve the security.

In addition, it is crucial to consider that some ATT&CK may not be reachable by

CVEs, the mapping is infeasible, the information provided by the technique is limited,

or the recommended defense strategy by each standard may not be rich enough to

infer the proper countermeasure. CWE and MITRE ATT&CK are primarily used to

portray malicious behavior from the adversary’s perspective, as well as to provide cor-

responding defense actions for mitigation and detection. CVEs that are connected to

CWEs and ATT&CK techniques enable defenders to promptly analyze the risk asso-

ciated with a new vulnerability and formulate a mitigation strategy. Such standards

offer detection and mitigation methods that can be used to determine whether the

mitigations in place are sufficient to address the vulnerability or whether additional

mitigations are required. If the defender concludes that additional mitigations are re-

quired, they can apply the mappings from MITRE ATT&CK to other resources such

as NIST 800-536 or CIS Critical Security Controls (CSC)7 to determine the appro-

priate actions. The CIS CSC is a recommended set of actions for cyber defense that

provide specific and actionable ways to stop today’s most pervasive and severe attacks

in twenty major security controls. The CSC framework is a set of principles, ideas,

etc., that can be used in decisions and judgments (from the MacMillan Dictionary8)

and it enables the organization, conduct, and management of discussions on security

goals and improvements, both within and across communities of enterprises. NIST

security controls are the safeguards or countermeasures prescribed for an information
5https://attack.mitre.org/matrices/enterprise/
6https://ctid.mitre-engenuity.org/our-work/nist-800-53-control-mappings/
7https://www.cisecurity.org/controls
8https://www.macmillandictionary.com/us

7

system or an organization to protect the confidentiality, integrity, and availability of

the system and its information, components, processes, and data. Therefore, imple-

menting an end-to-end automated framework capable of inferring all possible defense

operations against a vulnerability will dramatically improve cyber threat protection

in terms of speed, efficiency, and cost, and helpful in efficient defense management.

Fig. 1.2 shows an example of defense actions in terms of mitigation for a given CVE

recommended by each standard. It is important to note that such mitigations are

different from the patch or a low-level security advisory provided by the vendor. In a

nutshell, vulnerability refers to an illness or infection for which there is no vaccination

or medication. In this scenario, one must conduct a thorough examination of the

cause, symptoms, and impacted areas, and then apply the discoveries to minimize

the adverse impact, reduce the risk, and address the underlying causes to avoid it

from happening again in the future. In cybersecurity context, the vaccine is a patch

that can fix the problem completely, antibiotic is a low-level security advisory that

is prescribed by an expert who exactly knows the problem (e.g., vendor) to cure

or avoid the exploit until the patch is available. However, as mentioned earlier in

many cases patch is unavailable or undesirable and similarly, the vendor security

advisory is not released yet. Therefore, to minimize the risk and reduce the impact

of the vulnerability, one should take pain relief or antihistamine as mitigation, where

mitigations are typically a high-level solution targeting to counter different high-level

properties of the threat.

Although investigating entire existing vulnerabilities is important, those commonly

exploited and more severe must be the top priority. Hence, automatically ranking the

vulnerabilities is required to protect systems against severe threats first. The Com-

mon Vulnerability Scoring System (CVSS) is a free and open industry standard for

measuring the severity of security vulnerabilities. This provides a way to capture the

principal characteristics of a vulnerability and produce a numerical score reflecting its

8

Figure 1.2: An example of associating CVEs to course of actions from CWEs, MITRE
ATT&CK, and critical security controls..

severity. The numerical score can then be translated into a qualitative representation

(such as low, medium, high, and critical) to help organizations properly assess and

prioritize their vulnerability management processes.

Currently, the CVSS is calculated through manual engineering effort that is ex-

pensive, inefficient, inconsistent, and problematic. The NIST’s security experts take

days or even longer to analyze CVEs and measure their severities such that many

CVEs may remain indeterminate. This controversial cycle simply means cybersecu-

rity analysts cannot rely on the availability of perpetual severity metrics for every

CVE. Thus, they are limited to available CVE elements such as description to fo-

9

cus. Therefore, the only way to overcome this manual prediction challenge is to

replicate the expert thinking process and automate the entire scoring method. With

this clear goal, automated CVSS score prediction is helpful in CVE characterization

from a variety of perspectives. First, it aids in the prioritization of vulnerabilities

for threat analysis and risk management. Second, extracting different CVSS factors

means obtaining new CVE characteristics that could support in the discovering of an

appropriate defense action.

There are two versions of CVSS, V2 and V3 where they are fundamentally different

in used metrics and score calculation. Since the newer version introduces several

changes in the scoring system that addresses V2’s shortcomings reflecting CVEs’

characteristics more accurately, in this study, our focus is mainly on V3. CVSS V3

is composed of three metric groups: Base, Temporal, and Environmental. The Base

Score reflects the severity of a vulnerability according to its intrinsic characteristics,

which are constant over time and assume the reasonable worst-case impact across

different deployed environments. The Temporal Metrics adjust the Base severity of

a vulnerability based on factors that change over time, such as the availability of

exploit code. The Environmental Metrics adjust the Base and Temporal severities

to a specific computing environment. They consider factors such as the presence of

mitigations in that environment.

Typically, base scores are generated by the organization responsible for the vulner-

able product or by a third party scoring on their behalf. It is common to provide just

the basic metrics, as these do not vary over time and are applicable to all environ-

ments. The base metric group, including exploitability and impact metrics, represents

the intrinsic characteristic of CVEs which are everlasting over time and in different

environments. The exploitability metrics reflect the ease and technical means by

which the CVE can be exploited by presenting the vulnerable components. On the

other hand, impact metrics present the direct consequence of a successful exploit by

10

presenting the impacted components.

CVEs are issued in the form of text that describes the malicious actions needed

to exploit the vulnerability as well as other threat characteristics. Understanding

such properties is a master key to successful vulnerability analysis and cyber defense,

and automating this process requires a robust text analytic approach capable of cap-

turing context and semantic relationships within the text. Traditional text mining

approaches may identify the links between words in textual documents using quanti-

tative analysis or statistics. In the past few decades, these approaches are adequately

reasonable for representing text. However, in order to correlate texts with different

structures, styles, contexts, and concepts, we need a deep language model that can

capture the semantic meaning of the text and its surrounding context. In recent years,

NLP researchers used off-the-shelf word embedding models such as Word2Vec [2] and

GloVe [3] to initialize the first layer of their neural network model, designed for spe-

cific tasks to train in a supervised way over a single dataset. With the rapid growth of

unstructured data, emerging technologies such as transfer learning and transformers

have brought context understanding to a new level that was not possible before. This

dissertation emphasizes the importance of using the state-of-the-art AI technologies

such as deep learning and natural language processing to automate this cybersecurity

process.

Language modeling is an essential AI application, and the use of neural networks

to form language models, known as neural language modeling, has grown in popu-

larity. Neural language modeling (NLM) is a key technology in artificial intelligence

and natural language processing (NLP), with applications such as speech recognition,

document classification, information retrieval, text production, and machine transla-

tion. A language method is a technique for capturing the most important statistical

features of the distribution of word sequences in a natural language, often allowing

for probabilistic predictions of the next word given the preceding ones. Before neural

11

networks, traditional language model techniques require creating an nth order Markov

chain and estimating n-gram probabilities via counting and subsequent smoothing.

Although these statistical models are straightforward to train, the probability of rare

n-grams can be underestimated due to data sparsity, even when smoothing techniques

are used. NLM address the sparsity of n-gram data by representing words as vectors.

Language modeling is critical in modern NLP applications since it enables machines

to represent qualitative text features and convert it to quantitative information, which

the machines may then use for the downstream tasks. This technology applies to a

wide variety of cybersecurity tasks, including threat hunting, vulnerability analysis

and assessment, and cyber threat intelligence. [4, 5].

Given the knowledge of CVEs and associated cybersecurity standards, as well as the

availability of modern technologies for an effective and efficient text analytic and clas-

sification process, we propose to use these methodologies for processing vulnerability

reports in order to characterize, classify, and infer the appropriate course of defense

actions. As a result, we develop a cybersecurity language model that represents the

cybersecurity-specific language and then fine-tune it for particular cybersecurity tasks

in terms of processing vulnerabilities.

1.2 Research Questions

1- Cybersecurity Text Representation

RQ1.1 : Does developing a new pre-trained domain-specific language model really

help in better representation of cybersecurity text?

2- Cybersecurity Vulnerability Characterization

RQ2.1 : Is the cybersecurity specific language model able to prioritize a CVE using

CVSS metrics?

RQ2.2 : Is the cybersecurity specific language model able to enrich CVE with CWE?

12

RQ2.3 : Is the cybersecurity-specific language model able to detect malicious behav-

iors in the text?

3- Inferring Course of Action (CoA)

RQ3.1 : Is the automated model effective at connecting CVEs to defense actions

(CWE mitigation, ATT&CK mitigation, and Critical Security Controls)?

1.3 Research Challenges

Cyber automation has always been a difficult problem due to variety of reasons.

In this section, we describe the current challenges in answering the aforementioned

research questions.

Semantic Gap

Due to language structure disparities between vulnerability reports and cybersecurity

standards, it is difficult to represent vulnerabilities in another structure and view.

CVEs are product-specific identifiers that are used to deliver detailed descriptions

of vulnerabilities. However, the descriptions of cybersecurity standards are high-

level and product agnostic, and each one presents a distinct insight on a threat’s

property and potential exploitation. On the other hand, similar gaps exist between

two reports when one discusses a threat action (e.g., send a large number of packets)

and the other represents a defense response (e.g., block the IP address). Thus, in

order to establish the link between these disparate language structures, an effective

and efficient semantic analysis is required.

Data Scarcity

While data-driven models such as natural language processing and deep learning re-

quire a large amount of data for training, a prevalent issue in cyber analytic problems

is a lack of ground truth and labeled data. There are no or a small number of CVEs

13

that map to standard reference knowledge in this domain. Another major issue in

this work is the data imbalance problem. When the incidence of examples belonging

to one class is much greater than the incidence of samples belonging to other classes,

data imbalancity arises. This may result in inconsistencies in the training process

and overfitting. Certain CWEs, for example, are relatively common and have a large

number of associated CVEs, whereas others have as few as one sample. Additionally,

there are several common CVSS metrics that leave the others with a low frequency.

Lack of Domain-Specific Language Model for Cybersecurity

There are several pre-trained language models for the English language, all of which

are made up of general corpora with no domain knowledge. (e.g., word2vec, ELMO,

BERT). The drawbacks of domain-agnostic methods are: (1) word representations

are general and not tailored for specialized domains; (2) the pre-trained model has

only been tested on common English tasks and has never been evaluated on cyber-

security data. For example, BERT and ELMO make the word vector dependent on

the word sequence that the word occurs in. While these models reflect the required

representation for context, they fail to represent cybersecurity text since it contains

many advanced terminologies that are rare or have different meanings in general En-

glish. Meanwhile, there is no high-quality off-the-shelf cybersecurity textual dataset

to train and evaluate such a model. Lack of data has always been a significant con-

cern in the cybersecurity area, and training a new domain-specific language model

requires a massive amount of textual resources, which is not readily available. There-

fore, collecting this data and constructing a domain-specific language model is another

challenge in this work.

1.4 Contribution to the Knowledge

As mentioned earlier, the main objective of this dissertation is to develop an au-

tomated model capable of characterizing and prioritizing vulnerabilities as well as

14

predicting defense strategies for the underlying attacks based on threat behavior.

Our contribution is been divided into three interdependent parts: (1) cybersecurity

language model development; (2) CVE characterization; and (3) course of defense

action inference.

We begin by crawling and cleaning a large cybersecurity-related corpus from the

web and customizing the state-of-the-art language model architecture, namely BERT

[6]. This model serves as the foundation for all other parts. In the CVE characteri-

zation phase, we provide two different steps "CVE Prioritization" and "CVE Enrich-

ment" frameworks. The former is a stand-alone component for automatically predict-

ing the CVSS metrics of CVEs. In the latter step, we follow the most recent guideline9

recommended by MITRE to represent the vulnerabilities in higher abstractions using

cybersecurity standards. This guideline that is built upon a project defined by Center

for Threat-Informed Defense10, which is a non-profit, privately funded research and

development organization operated by MITRE Engenuity. This project establishes a

mechanism for assessing the impact of a CVE-listed vulnerabilities using CWEs and

MITRE ATT&CK. CWE is a classification of software weaknesses, which are abused

by attackers to exploit a vulnerability, rather than a list of specific flaws in products

or systems. It returns useful information about the common flaws in the systems and

the impact of attacks if exploited. ATT&CK techniques, on the other hand, define

how adversaries exploit a vulnerability and what they may accomplish by exploiting

the vulnerability. When a vulnerability is described using ATT&CK techniques, it

becomes easier for defenders to incorporate it into their threat modeling. The mission

is to unify the way vendors, researchers, vulnerability databases, and other sources of

vulnerability information describe the impact of vulnerabilities. Defenders can utilize

this knowledge to improve the quality of vulnerability management systems, advance

the risk models, and enhance the performance of counter-attack approach. The ab-
9https://github.com/center-for-threat-informed-defense/attacktocve/blob/master/methodology.md

10https://ctid.mitre-engenuity.org/

15

stractions derived by CWEs and MITRE ATT&CK, when combined with security

control, could help defenders better understand their compensating measures for a

particular CVE. Finally, this methodology aspires to establish a key link between

vulnerability management and threat modeling in order to come up with an effective

course of defense actions.

The guideline defines two categories including "Vulnerability Type" and "Function-

ality" for CVEs where each category is connected to one or more MITRE ATT&CK

technique(s). Vulnerability type is defined as a set of similar CWEs that share

similar characteristics such as SQL Injection, Unrestricted File Upload, and XML

External Entity (XXE). On the other hand, Functionality refers to abilities, in-

cluding obtaining sensitive information, deleting file, or install App, gained by the

attacker, which did not have before, as a result of the vulnerability exploitation. We

discuss the vulnerability types and functionalities in details in Section 4 and 5, re-

spectively.

We begin by mapping CVEs to CWEs, then to vulnerability types, in accordance

with this guideline. Besides that, we link the CVEs to the functionalities that at-

tackers gain access to as a result of the exploit. The CVE classifications mentioned

above are not only useful for vulnerability analysis tasks in cyber threat intelligence,

but they also provide the researchers with a path to defense actions recommended by

CWEs, MITRE ATT&CK techniques, and security controls, which is a crucial step

toward creating the required labeled dataset for training an AI model for automating

course of action inference. Therefore, we integrate all knowledge gained in the pre-

vious step and automatically link CVEs to different set of course of defense actions

(mitigations) derived from CWEs, MITRE ATT&CK, and security controls. Fig. 1.3

shows the overview of different phases in this dissertation.

To summarize, we (1) creating a domain-specific language model to represent

16

Figure 1.3: Project overview

the cybersecurity language. Then, utilize a reference method for publicly known

information-security vulnerabilities and exposures, we characterize the vulnerabilities

by enriching CVE reports by (2) prioritizing the CVEs by automatically evaluating

the severity score for each vulnerability, leveraging the Common Vulnerability Scor-

ing System (CVSS), and (3) mapping them to CWEs and vulnerability types that

are groups of similar CWEs, as well as (4) associating CVEs to threat behaviors and

accordingly linking them to a group of MITRE ATT&CK techniques. Finally, (5) we

associate vulnerabilities to defense techniques supplied by CWEs, MITRE ATT&CK,

and security controls based on the vulnerability characterization. This dissertation

contributes to the areas of deep learning, natural language processing, and more im-

portantly cybersecurity by offering a variety of novel predictive model designs to solve

important cybersecurity problems.

This dissertations’ contributions are summarized as four-fold:

• To our knowledge, SecureBERT is the first cybersecurity-specific language model,

which is trained on a large-scale cybersecurity corpus.

• I innovatively applied SecureBERT as a pre-trained model for the important

downstreaming cybersecurity tasks through a series of fine-tuning. The down-

streaming tasks include characterizing cyber vulnerabilities and retrieving cor-

responding mitigation methods.

17

• I collected a large-scale corpus of cybersecurity text for training and evaluating

SecureBERT. In addition, using a semi-automatic approach with minimum ex-

pert annotations, I made a ground truth dataset for fine-tuning and evaluating a

downstreaming vulnerability characterization model, and more importantly for

making connections to another downstreaming mitigation identification model.

These two datasets are publicly available and can be used by researchers in the

cybersecurity community.

• I contributed a unique approach to piece together several important cybersecu-

rity common reference knowledge standards: CWE, CVSS, MIRTRE ATT&CK,

CIS Security Controls, and NIST, in order to paint a comprehensive picture of

cyber threats from the understanding stage to the mitigation strategies.

18

CHAPTER 2: A Domain Specific Language Model for Cybersecurity

Natural Language Processing (NLP) has recently gained wide attention in cyber-

security, particularly in Cyber Threat Intelligence (CTI) and cyber automation. In-

creased connection and automation have revolutionized the world’s economic and

cultural infrastructures, while they have introduced risks in terms of cyber attacks.

CTI is information that helps cybersecurity analysts make intelligent security deci-

sions, that is often delivered in the form of natural language text, which must be

transformed into machine-readable format through an automated procedure before it

can be used for automated security measures.

This section proposes SecureBERT, a cybersecurity language model capable of

representing cybersecurity text (e.g., CTI) and therefore successful in automation for

many critical cybersecurity tasks that would otherwise rely on human expertise and

time-consuming manual efforts. SecureBERT has been trained using a large corpus of

cybersecurity text. It preserves general English representation and more importantly

gains comprehension of cybersecurity text through a customized tokenizer as well as

an adjustment of word importance. The SecureBERT is evaluated using the stan-

dard Masked Language Model (MLM) test as well as two additional standard NLP

tasks. Our evaluation studies show that SecureBERT outperforms existing similar

models, confirming its capability for solving crucial language understanding tasks in

cybersecurity.

2.1 Introduction

The adoption of security automation technologies has grown year after year. The

cybersecurity industry is saturated with solutions that protect users from malicious

sources, safeguard mission-critical servers, and protect personal information, health-

care data, intellectual property, and sensitive financial data. Enterprises invest on up-

to-date technologies to handle such security solutions, typically aggregating a large

19

amount of data into a single system to facilitate organizing and retrieving key infor-

mation in order to better identify where they face the risk or where specific traffic

originates or terminates. Recently, as social networks and ubiquitous computing have

grown in popularity, the overall volume of digital text content has increased. These

textual contents span a range of domains, from a simple tweet or news blog article

to more sensitive information such as medical records or financial transactions. In

cybersecurity context, security analysts process relevant data to detect cyber threat-

related information, such as vulnerabilities, in order to monitor, prevent, and control

potential threats. For example, cybersecurity agencies such as MITRE, NIST, CERT,

and NVD invest millions of dollars in human expertise to analyze, categorize, prior-

itize, publish and fix disclosed vulnerabilities annually. As the number of products

grows, and therefore the number of vulnerabilities increases, it is critical to utilize

an automated system capable of identifying vulnerabilities and quickly delivering an

effective defense measure.

By enabling machines to swiftly build or synthesize human language, natural lan-

guage processing (NLP) has been widely employed to automate text analytic opera-

tions in a variety of domains including cybersecurity. Language models, as the core

component of modern text analytic technologies, play a critical role in NLP appli-

cations by enabling computers to interpret qualitative input and transform it into

quantitative representations. There are several well-known and well-performing lan-

guage models, such as ELMO [7], GPT [8], and BERT [6], trained on general English

corpora and used for a variety of NLP tasks such as machine translation, named entity

recognition, text classification, and semantic analysis. There is continuous discussion

in the research community over whether it is beneficial to employ these off-the-shelf

models, and then fine-tune them through domain-specific tasks. The assumption is

that the fine-tuned models will retain the basic linguistic knowledge in general English

and meanwhile develop "advanced" knowledge in the domain while fine tuning [9].

20

However, certain domains, such as cybersecurity, are indeed highly sensitive to

errors, dealing with the processing of critical data and any misconception in this

procedure may expose the entire infrastructure to cyber threats, and therefore, au-

tomated processing of cybersecurity text requires a robust and reliable framework.

Cybersecurity terms are either uncommon in general English (such as ransomware,

API, OAuth, exfiltrate, and keylogger) or have multiple meanings (homographs) in

different domains (e.g., honeypot, patch, handshake, and virus). This existing gap

in language structure and semantic contexts complicates text processing and demon-

strates the pre-trained English language model may be incapable of accommodating

the vocabulary of cybersecurity texts, leading to a restricted or limited comprehension

of cybersecurity implications.

In this study, we address this critical cybersecurity problem by proposing a new lan-

guage model called SecureBERT by employing the state-of-the-art NLP architecture

called BERT [6], which is capable of processing texts with cybersecurity implications

effectively. SecureBERT is generic enough to be applied in a variety of cybersecurity

tasks, such as phishing detection [10], code and malware analysis [11], intrusion de-

tection [12], etc. SecureBERT is a pre-trained cybersecurity language model that can

represent both word-level and sentence-level semantics, which is an essential build-

ing block for any cybersecurity report. In this context, we collected and processed

a large corpus of 1.1 billion words (1.6 million in vocabulary size) from a variety of

cybersecurity text resources, including news, reports and textbooks, articles, research

papers, and video captions. On top of the pre-trained tokenizer, we developed a cus-

tomized tokenization method that preserves standard English vocabulary as much as

possible while effectively accommodating new tokens with cybersecurity implications.

Additionally, we utilized a practical way to optimize the retraining procedure by in-

troducing random noise to the pre-trained weights. To demonstrate SecureBERT’s

performance in processing both cybersecurity and general English inputs, we conduct

21

a thorough evaluation using two different tasks: standard Masked Language Model

(MLM) and Named Entity Recognition (NER).

2.2 Overview of BERT Language Model

BERT (Bidirectional Encoder Representations from Transformers) [6] is a transformer-

based neural network technique for natural language processing pre-training. BERT

can train language models based on the entire set of words in a sentence (bidirectional

training) rather than the traditional way of training on the ordered sequence of words

(left-to-right or combined left-to-right and right-to-left). BERT allows the language

model to learn word context based on all surrounding words rather than just the word

that immediately precedes or follows it.

BERT leverages Transformers [13], an attention mechanism that can learn contex-

tual relations between words and subwords in a sequence. The Transformer includes

two separate mechanisms, an encoder that reads the text inputs and a decoder that

generates a prediction for the given task. Since BERTś goal is to generate a language

model, only the encoder mechanism is necessary [13]. This transformer encoder reads

the entire data at the same time instead of reading the text in order.

Building a BERT model requires two steps: pre-training and fine-tuning. In the

pre-training stage, the model is trained on unlabeled data against two different pre-

training tasks, namely Masked LM (MLM) and Next Sentence Prediction (NSP).

MLM typically masks some percentage of the input tokens (15%) at random and

then predicts them through a learning procedure. In this case, the final hidden

vectors corresponding to the mask tokens are fed into an output softmax over the

vocabulary. NSP is mainly designed to identifies the relationship between two sen-

tences, which is not directly captured by language modeling. In order to train a model

that captures sentence relationships, it trains for a binarized next sentence prediction

task that can be trivially generated from any monolingual corpus, in which it takes

a pair of sentences as input and in 50% of the times it replaces the second sentence

22

with a random one from the corpus. To perform fine-tuning, the BERT model is

launched with pre-trained parameters and then all parameters are fine-tuned using

labeled data from downstream tasks. BERT model has a unified architecture across

different tasks, and there is a minor difference between pre-trained and final down-

stream architecture. The pre-trained BERT model used Books Corpus (800M words)

and English Wikipedia (2,500M words) and improved the state-of-the-art for eleven

NLP tasks such as getting a GLUE [14] score of 80.4%, which is 7.6% improvement

from the previous best results and achieving 93.2% accuracy on Stanford Question

Answering Dataset (SQuAD) [15].

A variant of BERT, which is claimed to be a robustly optimized version of BERT

with certain modifications in the tokenizer and the network architecture, and ignored

NSP task during training, is called RoBERTa [16]. RoBERTa extends BERT’s MLM,

where it intentionally learns to detect the hidden text part inside otherwise unanno-

tated language samples. With considerably bigger mini-batches and learning rates,

RoBERTa changes important hyperparameters in BERT training, enabling it to no-

ticeably improve on the MLM and accordingly the overall performance in all standard

fine-tuning tasks. As a result of the enhanced performance and demonstrated efficacy,

we develop SecureBERT on top of RoBERTa.

2.3 Data Collection

We collected a large number (98, 411) of online cybersecurity-related text files in-

cluding books, blogs, news, security reports, videos (subtitles), journals and confer-

ences, white papers, tutorials, and survey papers, using our web crawler tool1. We

created a corpus of 1.1 billion words splitting it into 2.2 million documents each

with the average size of 512 words using the Spacy 2 text analytic tool. Table 2.1

shows the resources and the distribution of our collected dataset for pre-training the
1Sampledata:dropbox.com/sh/jg45zvfl7iek12i/AAB7bFghED9GmkO5YxpPLIuma?dl=0
2https://spacy.io/usage

Sample data: dropbox.com/sh/jg45zvfl7iek12i/AAB7bFghED9GmkO5YxpPLIuma?dl=0
https://spacy.io/usage

23

SecureBERT.

Table 2.1: The statistics of collected cybersecurity corpora for training the Secure-
BERT.

Type No. Documents

Articles 8,955
Books 180
Survey Papers 515
Blogs/News 85,953
Wikipedia (cybersecurity) 2,156
Security Reports 518
Videos (subtitles) 134
Total 98,411

Vocabulary size 1,674,434 words
Corpus size 1,072,798,637 words
Document size 2,174,621 documents (paragraphs)

This corpora contains various forms of cybersecurity texts, from basic information,

news, Wikipedia, and tutorials, to more advanced texts such as CTI, research articles,

and threat reports. When aggregated, this collection offers a wealth of domain-specific

connotations and implications that is quite useful for training a cybersecurity language

model. Table 2.2 lists the web resources from which we obtained our corpus.

2.4 Methodology

In this section, we present two approaches for training the domain-specific language

model. We begin by describing a strategy for building a customized tokenizer on top

of a pre-trained generic English tokenizer, followed by a practical approach for biasing

the training weights to improve weight adjustment and, consequently, a more efficient

learning process.

2.4.1 Customized Tokenizer

A word-based tokenizer primarily extracts each word as a unit of analysis, called

a token. It assigns each token a unique index, then uses those indices to encode any

24

Table 2.2: The resources collected for cybersecurity textual data.

Websites
Trendmicro, NakedSecurity, NIST, GovernmentCIO Media, CShub, Threatpost,
Techopedia, Portswigger, Security Magazine, Sophos, Reddit, FireEye, SANS,
Drizgroup, NETSCOUT, Imperva, DANIEL MIESSLER, Symantec, Kaspersky,
PacketStorm, Microsoft, RedHat, Tripwire, Krebs on Security, SecurityFocus,
CSO Online, InfoSec Institute, Enisa, MITRE

Security Reports and Whitepapers
APT Notes, VNote, CERT, Cisco Security Reports , Symantec Security Reports

Books, Articles, and Surveys
Tags: cybersecurity, vulnerability, cyber attack, hack

ACM CCS: 2014-2020 , IEEE NDSS (2016-2020), IEEE Oakland (1980-2020)
ACM Security and Privacy (1980-2020), Arxiv , Cybersecurity and Hacking books

Videos (YouTube)
Cybersecurity courses, tutorial, and conference presentations

given sequence of tokens. Pre-trained BERT models mainly return the weight of each

word according to these indices. Therefore, in order to fully utilize a pre-trained

model to train a specialized model, the common token indices must match, either

using the indices of the original or the new customized tokenizer.

For building the tokenizer, we employ a byte pair encoding (BPE) [17] method

to build a vocabulary of words and subwords from the cybersecurity corpora, as it

is proven to have better performance versus a word-based tokenizer. The character-

based encoding used in BPE allows for the learning of a small subword vocabulary

that can encode any input text without introducing any "unknown" tokens [18].

Our objective is to create a vocabulary that retains the tokens already provided in

RoBERTa’s tokenizer while also incorporating additional unique cybersecurity-related

tokens. In this context, we extract 50, 265 tokens from the cybersecurity corpora to

generate the token vocabulary ΨSec. We intentionally make the size of ΨSec the same

with that of the RoBERTa’s token vocabulary ΨRoBERTa as we intended to follow

the original RoBERTa’s settings as the original works indicated the higher number of

25

dictionary size does not necessarily lead to better performance.

If ΨSec represents the vocabulary set of SecureBERT, and ΨRoBERTa denotes the

vocabulary set of original RoBERTa, both with a size of 50, 265, ΨSec shares 32, 592

mutual tokens with ΨRoBERTa leaving 17, 673 tokens contribute uniquely to cyberse-

curity corpus, such as firewall, breach, crack, ransomware, malware, phishing, mysql,

kaspersky, obfuscated, and vulnerability, where RoBERTa’s tokenizer analyzes those

using byte pairs:

Vmutual = ΨSec ∩ΨRoBERTa → 32, 592 tokens

Vdistinct = ΨSec −ΨRoBERTa → 17, 673 tokens

Studies [19] show utilizing complete words (not subwords) for those that are com-

mon in a specific domain, can enhance the performance during training since putting

subwords back together may be more challenging to understand during model train-

ing, as the target word often require attention from multiple subwords. Hence, we

choose all mutual terms and assign their original indices, while the remainder of new

tokens are assigned random indices with no conflict, where the original indices refer

to the indices in RoBERTa’s tokenizer, to build our tokenizer. Ultimately, we de-

velop a customized tokenizer with a vocabulary size similar to that of the original

model, which includes tokens commonly seen in cybersecurity corpora in addition to

cross-domain tokens. Our tokenizer encodes mutual tokens Vmutual as original model,

ensuring that the model returns the appropriate pre-trained weights, while for new

terms Vdistinct the indices and accordingly the weights would be random.

2.4.2 Weight Adjustments

The RoBERTa model already stores the weights for all the existing tokens in its

general English vocabulary. Many tokens such as email, internet, computer, and

phone in general English convey similar meanings as in the cybersecurity domain.

26

On the other hand, some other homographs such as adversary, virus, worm, exploit,

and crack carry different meanings in different domains. Using the weights from

RoBERTa as initial weights for all the tokens, and then re-training against the cyber-

security corpus to update those initial weights will in fact not update much leading to

overfitting condition in training on such tokens because the size of the training data

for RoBERTa (16 GB) is 25 times larger than that for SecureBERT. When a neural

network is trained on a small dataset, it may memorize all training samples, resulting

in overfitting and poor performance in evaluation. Due to the unbalance or sparse

sampling of points in the high-dimensional input space, small datasets may also pose

a more difficult mapping task for neural networks to tackle.

One strategy for smoothing the input space and making it simpler to learn is to add

noise to the model during training to increase the robustness of the training process

and reduces generalization error. Referring to previous works on maintaining robust

neural networks [20–22], incorporation of noise to an unstable neural network model

with a limited training set can act as a regularizer and help reduce overfitting during

the training. It is generally stated that introducing noise to the neural network during

training can yield substantial gains in generalization performance in some cases. Pre-

vious research has demonstrated that such noise-based training is analogous to a form

of regularization in which an additional term is introduced to the error function [23].

This noise can be imposed on either input data or between hidden layers of the deep

neural networks. When a model is being trained from scratch, typically noise can be

added to the hidden layers at each iteration, whereas in continual learning, it can be

introduced to input data to generalize the model and reduce error [24,25].

For training SecureBERT as a continual learning process, rather than using the

initial weights from RoBERTa directly, we introduce a small "noise" to the weights of

the initial model for those mutual tokens, in order to bias these tokens to "be a little

away" from the original tokens meanings in order to capture their new connotations

27

in a cybersecurity context, but not "too far away" from standard language since any

domain language is still written in English and still carries standard natural language

implications. If a token conveys a similar meaning in general English and cyberse-

curity, the adjusted weight during training will conceptually tend to converge to the

original vector space as the initial model. Otherwise, it will deviate to accommodate

its new meaning in cybersecurity. For those new words introduced by the cyberse-

curity corpus, we use the Xavier weight initialization algorithm [26] to assign initial

weights.

We instantiated the SecureBERT by utilizing the architecture of the pre-trained

RoBERTa-base model, which consists of twelve hidden transformer layers, and one

input layer. We adopted the base version (RoBERTa-base) given the efficiency and

usefulness. Smaller models are less expensive to train, and the cybersecurity domain

has far less diversity of corpora than general language, implying that a compact model

would suffice. The model’s size is not the only factor to consider; usability is another

critical factor to consider when evaluating a model’s quality. Since large models are

difficult to use and expensive to maintain, it is more convenient and practical to use

a smaller and portable architecture.

Each input token is represented by an embedding vector with a dimension of 768

in pre-trained RoBERTa. Our objective is to manipulate these embedding vector

representations for each of the 50, 265 tokens in the vocabulary by adding a small

symmetric noise. Statistical symmetric noise with a probability density function

equal to the normal distribution is known as Gaussian noise. We introduce this noise

by applying a random Gaussian function to the weight vectors. Therefore, for any

token t, let W⃗t be the embedding vector of token tas follows:

W⃗t = [wt
1, w

t
2, ..., w

t
768] (2.1)

28

Figure 2.1: SecureBERT architecture for pre-training against masked words.

where wt
k represents the kth element of the embedding vector for token t.

Let notation N (µ, σ) be normal distribution where µ denotes the mean and σ the

standard deviation. For each weight vector W⃗t, the noisy vector W⃗ ′
t is defined as

follows:

W⃗ ′
t ← W⃗t ⊕ (W⃗t ⊙ ϵ), ϵ ∼ N (µ, σ) (2.2)

where ϵ represents the noise value, and ⊕ and ⊙ means element-wise addition and

multiplication, respectively.

The SecureBERT model is designed to emulate RoBERTa’s architecture, as shown

in 2.1. To train SecureBERT for a cybersecurity language model, we use our collected

corpora and customized tokenizer. SecureBERT model contains 12 hidden layers and

12 attention heads, where the size of each hidden state has the dimension of 768, and

the input word size is 512, and the dimension size is 768. the same as RoBERTa.

In RoBERTa (768 × 50, 265 elements), the average and variance of the pre-trained

embedding weights are −0.0125 and 0.0173, respectively. We picked mu = 0 and

sigma = 0.01 to generate a zero-mean noise value since we want the adjusted weights

to be in the same space as the original weights. We replace the original weights in

the initial model with the noisy weights calculated using Eq. 2.2.

29

2.5 Masked Language Model Evaluation

We trained the model against MLM task utilizing dynamic masking using RoBERTa’s

hyperparameters running for 250, 000 training steps for 100 hours on 8 Tesla V100

GPUs with Batch_size = 18, the largest possible mini-batch size for V100 GPUs.

We evaluate the model on cybersecurity masked language modeling and other general

purpose underlying tasks including named entity recognition (NER) to further show

the performance and efficiency of SecureBERT in processing the cybersecurity text

as well as reasonable effectiveness in general language.

2.5.1 Masked Language Model (MLM)

In this section, we evaluate the performance of SecureBERT in predicting the

masked word in an input sentence, known as the standard Masked Language Model

(MLM) task.

Owing to the unavailability of a testing dataset for the MLM task in the cyberse-

curity domain, we create one. We extracted sentences manually from a high-quality

source of cybersecurity reports - MITRE technique descriptions, which are not in-

cluded in pre-training dataset. Rather than masking an arbitrary word in a sen-

tence, as in RoBERTa, we masked only the verb or noun in the sentence because

a verb denotes an action and a noun denotes an object, both of which are impor-

tant for representing the sentence’s semantics in a cybersecurity context. Our test-

ing dataset contains 17, 341 records, with 12, 721 records containing a masked noun

(2, 213 unique nouns) and 4, 620 records containing a masked verb (888 unique masked

verbs in total). Figure 2.2a and 2.4b show the MLM performance for predicting the

masked nouns and verbs respectively. Both figures present the hit rate of the masked

word in topN model prediction. SecureBERT constantly outperforms RoBERTa-base,

RoBERTa-large and SciBERT even though the RoBERTa-large is a considerably large

model trained on a massive corpora with 355M parameters.

30

(a) Performance in predicting objects. (b) Performance in predicting verbs.

Figure 2.2: Cybersecurity masked word prediction on RoBERTa-base, RoBERTa-
large, SciBERT, and SecureBERT.

Our investigations show that RoBERTa-large (much larger than RoBERTa-base

which we used as initial model) is pretty powerful language model in general cy-

bersecurity language. However, when it comes to advance cybersecurity context,

it constantly fails to deliver desired output. For example, three cybersecurity sen-

tences are depicted in Fig. 2.3, each with one word masked. Three terms including

reconnaissance, hijacking, and DdoS are commonly used in cybersecurity corpora. Se-

cureBERT is able to represent the context and properly predict these masked words,

while RoBERTa’s prediction is remarkably different. When it comes to cybersecurity

tasks including cyber threat intelligence, vulnerability analysis, and threat action ex-

traction [27, 28], such knowledge is crucial and utilizing a model with SecureBERT’s

properties would be highly beneficial. The models do marginally better in predicting

verbs than nouns, according to the prediction results.

31

Figure 2.3: A comparative example of predicting masked token. When compared to
the off-the-shelf model, RoBERTa-large, SecureBERT demonstrates a better perfor-
mance in processing the cybersecurity context.

2.5.2 Ablation Study

SecureBERT outperforms existing language models in predicting cybersecurity-

related masked tokens in texts, demonstrating its ability to digest and interpret

in-domain texts. To enhance its performance and maintain general language un-

derstanding, we used specific strategies such as the development of custom tokenizers

and weight adjustment.

SecureBERT employs an effective weight modification by introducing a small noise

to the initial weights of the pre-trained model when trained on a smaller corpus than

off-the-shelf large models, enabling it to better and more efficiently fit the cyber-

security context, particularly in learning homographs and phrases carrying multiple

meanings in different domains. As a result of the noise, this technique puts the to-

ken in a deviated space, allowing the algorithm to adjust embedding weights more

effectively.

In Table 2.3, given a few simple sentences containing common homographs in cy-

bersecurity context, we provide the masked word prediction of four different models,

including SB (SecureBERT), SB* (SecureBERT trained without weight adjustment),

RB (RoBERTa-base), and RL (RoBERTa-large). For example, word Virus in cyber-

32

Table 2.3: Shows the masked word prediction results returned by SecureBERT (SB),
SecureBERT without weight adjustment (SB*), RoBERTa-base (RB) and RoBERTa-
large (RL) in sentences containing homographs

Masked Sentence Model Predictions

Virus causes <mask>.

SB: DoS | crash | reboot
SB*: problems | disaster | crashes
RB: cancer | autism | paralysis
RL: cancer | infection | diarrhea

Honeypot is used in <mask>.

SB: Metasploit | Windows | Squid
SB*: images | software | cryptography
RB: cooking | recipes | baking
RL: cooking | recipes | baking

A worm can <mask> itself to spread.

SB: copy | propagate | program
SB*: use | alter | modify
RB: allow | free | help
RL: clone | use | manipulate

Firewall is used to <mask>.

SB: protect | prevent | detect
SB*: protect | hide | encrypt
RB: protect | communicate | defend
RL: protect | block | monitor

zombie is the other name for a <mask>.

SB: bot | process | trojan
SB*: worm | computer | program
RB: robot | clone | virus
RL: vampire | virus | person

security context refers to a malicious code that spreads between devices to damage,

disrupt, or steal data. On the other hand, a Virus is also a nanoscopic infectious

agent that replicates solely within an organism’s live cells. In simple sentence such as

"Virus causes <mask>.", four models deliver different prediction, each correspond-

ing to associated context. RB and RL return cancer, infection and diarrhea, that

are definitely correct in general (or medical) context, they are wrong in cybersecurity

domain though. SB* returns a set of words including problem, disaster and crashes,

which differ from the outcomes of generic models, yet far away from cybersecurity

implication. Despite, SB predictions which are DoS, crash, and reboot clearly demon-

strate how weight adjustment helps in improved inference of the cybersecurity context

by returning the most relevant words for the masked token.

Customized tokenizer, on the other hand, also plays an important role in enhancing

the performance of SecureBERT in MLM task, by indexing more cybersecurity related

33

tokens (specially complete words as mentioned in Section 2.4.1). To further show the

impact of SecureBERT tokenizer in returning correct mask word prediction, we train

SecureBERT with original RoBERTa’s tokenizer without any customization (but with

weight adjustment). As depicted in Fig. 2.4a and Fig. 2.4b, when compared to the

pre-trained tokenizer, SecureBERT’s tokenizer clearly has a higher hit rate, which

highlights the significance of creating a domain-specific tokenizer for any domain-

specific language model.

(a) Performance in predicting objects. (b) Performance in predicting verbs.

Figure 2.4: Demonstrating the impact of the customized tokenizer in masked word
prediction performance.

Evaluation: Named Entity Recognition In this section, we fine-tune the Secure-

BERT to conduct cybersecurity-related name entity recognition (NER). NER is a spe-

cial task in information extraction that focuses on identifying and classifying named

entities referenced in unstructured text into predefined entities such as person names,

organizations, places, time expressions, etc.

Since general-purpose NER models may not always function well in cybersecurity

text, we must employ a domain-specific dataset to train an effective model for this

particular field. Training a NER model in cybersecurity is a challenging task since

34

there is no publicly available domain-specific data and, even if there is, it is unclear

how to establish consensus on which classes should be retrieved from the data. Never-

theless, here we aim to fine-tune the SecureBERT on a relatively small-sized dataset

that is related to cybersecurity just to show the overall performance and compare it

with the existing models. MalwareTextDB [29] is a dataset containing 39 annotated

APT reports with a total of 6,819 sentences. In the NER version of this dataset, the

sentences are annotated with four different tags including:

Action: referring to an event, such as "registers", "provides" and "is written".

Subject: referring to the initiator of the Action such as "The dropper" and "This

module"

Object: referring to the recipient of the Action such as "itself ", "remote persistent

access" and "The ransom note"; it also refers to word phrases that provide elabora-

tion on the Action such as "a service", "the attacker" and "disk".

Modifier: referring to the tokens that link to other word phrases that provide elab-

oration on the Action such as "as" and "to".

In each sentence, in addition, all the words that are not labeled by any of the

mentioned tags as well as pad tokens will be assigned by a dummy label ("O") to

exclude them in calculating performance metrics.

For Named Entity Recognition, we take the hidden states (the transformer output)

of every input token from the last layer of SecureBERT. These tokens are then fed to a

fully connected dense layer with N units where N equals the total number of defined

entities. Since SecureBERT’s tokenizer breaks some words into pieces (Bytes), in

35

Figure 2.5: SecureBERT architecture for named entity recognition (NER).

such cases we just predict the first piece of the word. Fig. 2.5 shows the architecture

of this model.

We trained two versions of the SecureBERT called raw SecureBERT and modified

SecureBERT. The former model is the version of our model in which we utilized cus-

tomized tokenizer and the weight adjustment method, while the latter is the original

RoBERTa model trained as is, using the collected cybersecurity corpora. We trained

the model for 1,500 steps with learningrate = 1e − 5 and Batch_size = 32, to

minimize the error of CrossEntropy loss function employing Adam optimizer and

Softmax as the activation function in the classification layer. Fig. 2.5 shows the

SecureBERT’s architecture for sentiment analysis.

Table 2.4: the performance of different models trained on MalwareTextDB dataset
for NER task.

Model Name Precision Recall F1-Score
RoBERTa-base 84.92 87.53 86.20
SciBERT 83.19 85.84 84.49
SecureBERT (raw) 86.08 86.81 86.44
SecureBERT (modified) 85.24 88.10 86.65

Table 2.4 shows the performance of both SecureBERT’s version as well as two

other models. Even though the MalwareTextDB dataset contains many sentences

with general English implications with limited cybersecurity-specific corpus, modified

36

SecureBERT outperforms all other models in predicting correct entities.

2.6 Related Works

Beltagy et al. [9] unveiled SciBERT following the exact BERT’s architecture, a

model that improves performance on downstream scientific NLP tasks by exploiting

unsupervised pretraining from scratch on a 1.14M multi-domain corpus of scientific

literature, including 18% computer science and 82% biomedical domain documents.

In a similar work, Gu et al. [30] introduced BioBERT focusing particularly on

the biomedical domain using BERT architecture and publicly available biomedical

datasets. This work also creates a benchmark for biomedical NLP featuring a diverse

set of tasks such as named entity recognition, relation extraction, document classi-

fication, and question answering. ClinicalBERT [31] is another domain adaptation

model based on BERT which is trained on clinical text from the MIMIC-III database.

Thus far, utilizing language models such as BERT for cybersecurity applications is

quite limited. CyBERT [32] presents a classifier for cybersecurity feature claims by

fine-tuning a pre-trained BERT language model to identify cybersecurity claims from

a large pool of sequences in ICS device documents. There are also some other studies

working on fine-tuning BERT in the cybersecurity domain. Das et al. [33] fine-tunes

BERT to hierarchically classify cybersecurity vulnerabilities to weaknesses. Addition-

ally, there are several studies on fine-tuning BERT for NER tasks such as [34], [35]

and [36]. Yin et al. [37] fine-tuned pre-trained BERT against cybersecurity text and

developed a classification layer on top of their model, ExBERT, to extract sentence-

level semantic features and predict the exploitability of vulnerabilities. There is

also another model called SecBERT 3 published in Github repository which trains

BERT on cybersecurity corpus from "APTnotes"4, "Stucco-Data: cybersecurity data
3https://github.com/jackaduma/SecBERT
4https://github.com/kbandla/APTnotes

https://github.com/jackaduma/SecBERT
https://github.com/kbandla/APTnotes

37

sources"5, "CASIE: Extracting Cybersecurity Event Information from Text"6, and

"SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports using Nat-

ural Language Processing (SecureNLP)"7. However, at the time of this dissertation,

we could not find any article presenting this work to learn more about the details and

the proof-of-concept to discuss.

2.7 Conclusions and Future Works

This study introduces SecureBERT, a transformer-based language model for pro-

cessing cybersecurity text language based on RoBERTa. We presented two practical

ways for developing a successful model that can capture contextual relationships and

semantic meanings in cybersecurity text by designing a customized tokenization tool

on top of RoBERTa’s tokenizer and altering the pre-trained weights. SecureBERT

is trained to utilize a corpus of 1.1 billion words collected from a range of online

cybersecurity resources. SecureBERT has been evaluated using the standard Masked

Language Model (MLM) as well as the named entity recognition (NER) task. The

evaluation outcomes demonstrated promising results in grasping cybersecurity lan-

guage.

5https://stucco.github.io/data/
6https://ebiquity.umbc.edu/_file_directory_/papers/943.pdf
7https://ebiquity.umbc.edu/_file_directory_/papers/943.pdf

https://stucco.github.io/data/
https://ebiquity.umbc.edu/_file_directory_/papers/943.pdf
https://ebiquity.umbc.edu/_file_directory_/papers/943.pdf

38

CHAPTER 3: Automated CVSS Prediction

The previous chapter introduced a new pre-trained cybersecurity language model,

a.k.a SecureBERT, that delivered a competitive performance in processing cybersecu-

rity texts. This chapter proposes an innovative methodology to fine-tune SecureBERT

to process CVE descriptions and predict the corresponding CVSS metric values for

the purpose of vulnerability prioritization.

3.1 Introduction

The Common Vulnerability Scoring System is a free and open industry standard for

measuring the severity of security vulnerabilities. This provides a way to capture the

principal characteristics of a vulnerability and produce a numerical score reflecting its

severity. The numerical score can then be translated into a qualitative representation

(such as low, medium, high, and critical) to help organizations properly assess and

prioritize their vulnerability management processes.

Currently, the CVSS is calculated through manual engineering effort that is expen-

sive, inefficient, inconsistent, and problematic. The NIST’s security experts take days

or even longer to analyze CVEs and measure their severities such that many CVEs

may remain undecided for a long period of time. Such a controversial cycle implies

that cybersecurity analysts cannot rely on the availability of perpetual severity met-

rics for all CVEs and therefore, they must focus on available CVE elements such as

descriptions to obtain crucial CVE severity measures. This controversial cycle sim-

ply means cybersecurity analysts cannot rely on the availability of perpetual severity

metrics for every CVE. Thus, they are limited to available CVE elements such as

description to focus.

Therefore, mimicking expert thinking and automating the entire scoring procedure

is the ultimate solution to tackle this manual prediction problem. With this aim in

mind, the automatic prediction of CVSS score is beneficial in CVE characterization

39

Table 3.1: Shows different vectors required to represent CVSS V3.

CVSS V3
Base Vector Temporal Vector Environmental Vector

Attack Vector (AV)
Attack Complexity (AC) Modified Base Metrics (M*)
Privileges Required (PR) Exploit Code Maturity (E) Confidentiality
User Interaction (UI) Remediation Level (RL) Requirement (CR)
Confidentiality (C) Report Confidence (RC) Integrity Requirement (IR)
Availability (A) Availability Requirement (AR)
Integrity (I)
Scope (S)

from two points of view. First, it helps to prioritize vulnerabilities for threat analysis

and risk management. Second, extracting different CVSS factors means obtaining

new characteristics of CVEs which might help discover an appropriate defense action.

When it comes to properly document the features and severities of software vul-

nerabilities, CVSS is the standard protocol, which has been issued in two versions,

with CVSS V2, and CVSS V3 (and CVSS V3.1) 1 both being extensively utilized

in the computer security domain. NVD analysts assign CVSS scores by evaluating

the CVEs using specific instructions. Both CVSS versions are structured similarly,

providing a series of multiple-choice questions to the vendors concerning the vulner-

ability’s properties.

In general, CVSS is classified into three vectors including base, temporal, and en-

vironmental. The base vector defines the inherent properties of the vulnerability, the

temporal vector defines how those properties vary over time, and the environmental

vector illustrates the severity of a vulnerability in the context of a particular organi-

zation. We will concentrate on CVSS V3 in this work as it is more recent and broadly

applied recently than the former version.

Table 3.1 shows the different vectors required by CVSS V3. When the security

analysts have calculated all of the vectors and values for the underlying metrics, they

are integrated using a common syntax to generate a CVSS Vector. Each CVSS version
1https://www.first.org/cvss/

https://www.first.org/cvss/

40

Table 3.2: Shows the CVSS V3 Base metrics and the potential values.

CVSS V3 Base Metric
Metric Values (classes)

Attack Vector (AV) Network (N) | Adjacent (A) | Local (L) | Physical (P)
Attack Complexity (AC) Low (L) | High (H)
Privileges Required (PR) None (N) | Low (L) | High (H)
User Interaction (UI) None (N) | Required (R)
Confidentiality (C) None (N) | Low (L) | High (H)
Availability (A) None (N) | Low (L) | High (H)
Integrity (I) None (N) | Low (L) | High (H)
Scope (S) Unchanged (U) | Changed (C)

has a non-linear severity formula that takes all the metric values from each vector as

input and returns a severity score between 0.0 and 10.0.

Since this equation is not linear, slight changes in the vector can result in significant

variances in the severity score. CVSS V3 and V3.1 have the same vectors and differ

solely in some metrics and accordingly severity calculation algorithm, which affects a

small number of vulnerabilities. In the rest of our work we use the term "CVSS V3"

to describe both the CVSS V3 and V3.1 specifications. In addition, since Temporal

and Environmental vectors are derivable from Base Vector, we only process the Base

vector, which consists of eight different metrics including Attack Vector (AV), Attack

Complexity (AC), Privileges Required (PR), User Interaction (UI), Confidentiality

(C), Availability (A), Integrity (I), and Scope (S). Each metric also can get different

values which is demonstrated in Table 3.2. Our target in this work is to automatically

predict the value of each eight metrics for a given vulnerability using the corresponding

CVE ID description, utilizing the pretrained SecureBERT language model.

For security analysts such as NIST’s, it typically takes days or weeks to assess

and annotate vulnerabilities resulting in a huge number of unprocessed vulnerabilities

which have been publicly disclosed for a long time. Therefore, relying solely on human

expertise provided by databases such as NVD to analyze and prioritize vulnerabilities

is not practical and researchers must focus on the early available piece of data at the

41

time of disclosure such as human-readable descriptions and possibly public references

like vendor reports.

Such a manual procedure is costly, and a real-time threat evaluation of new vulner-

abilities necessitates a large amount of labor due to the growing number of disclosed

vulnerabilities every day; thus, it would be more affordable to organizations if it could

be automated, which consequently allows timely manner and intuitive defense plan-

ning including security policy reconfiguration, limiting access, and/or shutting them

down while waiting for remediation to be applied, all based on the severity of the vul-

nerability. In this chapter, we propose an automated system that uses the free-form

text descriptions of disclosed vulnerabilities to predict the CVSS base vector of these

vulnerabilities and then we discuss the shortages of automating CVSS prediction and

the limitation of the proposed model.

3.2 Related Works

To the best of our knowledge, there are only a few efforts in automating CVSS

prediction in recent years. Khazaei et al [38] introduced an objective method for

CVSS V2 score calculation by extracting textual features from CVE descriptions and

employing SVM, Random Forest, and fuzzy systems for prediction. In this study, the

descriptions are tokenized, and after performing standard text mining preprocessing

such as filtering the stop-words and stemming, the TF-IDF score of words is calcu-

lated, and the dimension is reduced using PCA and LDA techniques. The CVSS V2

scores are roughly predicted within the interval of [i, i + 1) where i ∈ {0, 1, 2, ..., 9}.

This works reported 88.37% accuracy through testing the fuzzy system implemen-

tation. This work leveraged an off-the-shelf machine learning model and failed to

consider and report many important metrics in CVSS prediction. This work exclu-

sively focused on finding the direct relationship between CVE description and the

final score, while original scores are calculated based on different CVSS metric val-

ues where each metric specifies a variable in the non-linear score calculation formula.

42

This direct method performs as a classification task which is problematic since one

word (feature) might have a different impact on each metric, and training every met-

ric in one shot is error-prone. In the meantime, the bag-of-word approach does not

take the context and semantics into account in to-be-announced CVE reports, such

as synonym words and abbreviations. In addition, there is no evidence showing the

performance of this tool in predicting different value classes since different classes

have a different number of samples, and predicting those who have less number of

samples is important.

In a similar approach, Elbaz et al. [39] implemented another technique based on

linear regression to automatically predict the CVSS vector of newly disclosed vulner-

abilities using their textual description. They used a similar bag-of-word approach

and represented each CVE by word frequency vector. After filtering stop-words, two

different dimension reduction approaches were applied to select the most predictive

features from the corpus. In the first approach, the software vendor, product name,

and software target existing in the Common Platform Enumeration (CPE), and all

the words in CWE titles are collected, and a white-list is generated to find and discard

irrelevant features. In the second approach, the conditional entropy score for each

word associated with each CVSS metric is calculated, and the top N words with the

lowest score are selected for evaluation. Then a linear regression model is created to

predict the scores for each CVSS metric. The accuracy of predicting each metric is

varied from 60% to 95%. This study suffers from certain weaknesses. First, similar

to the previous work, the features are limited to the keywords extracted from CVE

reports and CWE titles. This corpus fails to cover context and accordingly, semantic

features such as synonyms, abbreviations, and similar words. Hence, there might be

some less frequent words uniformly distributed among different values of one metric

with a strong relationship with other words, which is a key signature for one specific

value. The addressed feature extraction method in this study cannot find such a

43

relationship, and therefore, it will assign a high entropy score to this word, and it will

automatically be ignored in the classification. In addition, a limited corpus without

semantic feature analysis may not handle a new word or different writing standard,

which is very likely to have since different vendors have different writing styles and

new concepts might be raised in the future CVE description. In addition, the eval-

uation is incomplete and failed to address some important points. About half of the

metrics are imbalanced, which means that the frequency of instances for one metric

is much higher than the others. E.g, in Attack Vector, there are ∼ 35K instances

with Network value, while there are less than 500 samples with Physical value out of

28, 000 existing labeled CVEs. This can easily lead to poor predictive performance,

specifically for the minority class during training, which has not been addressed in

this study.

3.3 Challenges

Automating CVSS vector prediction is a challenging task. The existing works are

limited or built upon imprecise assumptions. Predicting the CVSS score requires a

deep analysis of each element in the vectors and therefore, a direct approach to obtain

the final severity score would be problematic since any small mistake may compromise

the entire output significantly. Instead, dividing the CVSS into smaller elements and

approaching the problem gradually would provide multi-level information about the

vulnerability (each metric provides unique threat behavior). This would become even

more important since it is proven that vulnerability descriptions often do not provide

enough information about the entire threat characteristics, so any partial information

about the threat would be beneficial in case the automated model cannot provide

exact values for each metric of the CVSS vector.

On the other hand, traditional information extraction methods and machine learn-

ing algorithms may not be the most effective approach to tackle this problem. Such

methods mainly work based on statistical analysis and word frequency, treating the

44

Figure 3.1: Numbers of available labeled records in each value for each CVSS metric.
This shows the imbalance data problem in CVSS dataset

available text as a bag-of-words. This strategy is unable to adequately capture the

context and extract semantic relationships throughout the text, leading to missing

important information and consequently a non-robust predictive model.

The training dataset comprises CVE descriptions whose CVSS vector is already

assigned by NVD. In other words, each CVE in this dataset contains a CVSS base

metric vector. This dataset is highly unbalanced, which implies that the frequency

distribution of a specific value within each metric may be highly different than the

others. Existing works failed to adequately address the imbalanced data problem and

did not provide a detailed performance evaluation regarding this issue in the CVSS

dataset. Table 3.1 shows the value distribution within each metric.

3.4 Model Design

This section describes the CVSS vector prediction pipeline. Since there are eight

metrics, we train eight individual models, where the input is the CVE description of a

vulnerability and the output is the predicted value for the target metric. A high-level

overview of the proposed CVSS analysis pipeline is depicted in Fig. 3.2. We utilized

45

Figure 3.2: CVSS metric value prediction model design. For each CVSS metric, there
is a separate model that is trained independently.

the pre-trained SecureBERT as the base model and added an extra TF-IDF module

to help the model process the imbalance data. In this architecture, the model takes

the CVE description, tokenizes it using SecureBERT’s BPE tokenizer, and passes

it through the transformer layers. Then, the [CLS] token vector representation is

connected to another same-size fully connected layer. This layer, known as pooling

layer, takes the aggregated representation of the entire input and passes it through

another fully connected layer to return the initial output layer with a size equal to

the number of values in a metric. Afterwards, the initial output vector is merged

with another vector (tensor) that represents the customized TF-IDF vector from the

input CVE description. Finally, the merged vector is connected to the final dense

layer (feed-forward neural network) in such a way that its size equals the number of

potential values in the metric of interest.

TF-IDF Module

The TF-IDF which stands for term frequency-inverse document frequency is a sta-

tistical approach that quantifies the semantic importance of a word in a collection of

documents. TF-IDF helps to calculate numeric values for each word in a document

corresponding to its semantic importance to that document. TF-IDF is an effective

46

method in text mining to identify words that contribute much in a particular doc-

ument and rarely or never contribute in other documents [40], whose occurrences

strongly represent a particular category, context, or class, as known as signature

words.

As mentioned earlier, CVSS data is highly unbalanced, and to reduce the impact

of this imbalancity during the training, we utilize a customized TF-IDF module that

generates word-frequency-based vectors, representing the input data concerning the

minority classes (values) in models corresponding to each metric. In a nutshell, our

studies show that when we consider each potential value within each metric as a class,

there are some words, known as signature words, that frequently appear in minority

classes. For example, in CVEs whose the value of Attack Vector (AV) metric is Ad-

jacent Network (A), words like "adjacent", "Bluetooth", "pairing", and "dongle" are

frequently appeared in the description. In another example, when the value of Attack

Complexity (AC) is High (H), "man-in-the-middle", "memory-cache", "padding", and

"prolog" are frequently observed. On the other hand, keyword matching for predict-

ing the value would not be an effective approach as these words do not uniquely

appear in one specific class. In addition, when the training data is not large enough,

even a powerful language model will not be able to learn the context and semantic

relationships sufficiently.

Here, we aim to provide an external hint to the model to help recognize the mi-

nority classes during the training using TF-IDF scores, to extract signature words

and convert them to a vector to merge with SecureBERT’s output. We assume that

an extra emphasis on important yet infrequent signature words during the training

would benefit the model to adjust its weights to better recognize minority class(es).

In this context, we first conduct the standard text cleaning steps on the training

dataset such as removing stop words, special characters, punctuations, and numbers,

performing stemming, and then within each metric, tokenize all reports belonging

47

Figure 3.3: Shows the different steps in generating customized TF-IDF vectors to
represent CVE descriptions.

to minority class and create a dictionary of words. Then, we calculate the TF-IDF

score of each word in this dictionary against all classes. In other words, if metric M

contains n different classes, every words in the dictionary is represented by n TF-IDF

score, each corresponds to an individual class in a vector of size n. This vector then

is normalized to re-scale the scores to a range of 0 to 1. These normalized values

represent the statistical relevance of a term belonging to a class, with values closer to

1 indicating higher importance. Since we aim to only identify minority classes using

TF-IDF score vectors, we implement a filtering procedure based on a hyperparameter

threshold to select words whose scores in minority class(es) are "significantly" higher

than their scores in majority classes. As a result, every vulnerability description is

defined by a set of n-dimension TF-IDF vector if it shares any word with minority

class word dictionary, where n refers to the number of existing classes in metric M.

Then, we take the average of these vectors as the final TF-IDF vector representation

of the input description. Fig. 3.3 shows the high level overview of TF-IDF vector

creation.

Let δ(M) be the dictionary of terms in minority class(es) in metric M :

δ(M) = {w1, w2, ..., wr} (3.1)

If M = {c1, ..., cn} represents the existing classes in metric M , for each w ∈ δ(M),

we return n scores (TF-IDF scores) corresponding to each c ∈M :

T (w,M) = [twc1, ..., t
w
cn]. (3.2)

48

Then we normalize each vector T (wi,M) by dividing all elements by the maximum

value of the vector as MAX[T (wi,M)]+ ϵ (ϵ is a small number added to avoid divide

by zero) and call it T ′(wi,M).

Here, our target is to provide a secondary representation of the input text in addi-

tion to SecureBERT’s output, by conducting a statistical analysis to find those terms

which are highly likely to appear in minor classes and rare in other classes. This vec-

tor representation will be concatenated by the SecureBERT’s output and yield to the

classification layer together. Therefore, given T ′(w,M), we first define a probability

threshold 0 < th < 1. Then, for each T ′(wi,M), make sure its score corresponding to

one potential value within a particular metric is greater than th (twi,fj > th) and the

score corresponding to the other values are smaller than 1− th, otherwise remove the

word from the dictionary. In other words, we compare all n number of TF-IDF scores

associated with each word with the threshold and identify those whose value corre-

sponding to a minority class is significantly higher than other classes (according to

the threshold). Any word that satisfies both conditions will be added to the signature

term dictionary Dict(M) corresponding to each metric. Therefore, Dict(M) contains

words which are highly informative about minority values within each metric.

For any training input CVE description within each metric prediction model, we

check how many terms it shares with Dict(M). Let S = {w′
1, ..., w

′
n} represent the

terms in a CVE description, and g(S,M) = S ∩Dict(M) be the set of shared terms

between S and Dict(M). For any term w′ ∈ g(S,M), we retrieve the TF-IDF vectors

using Eq. 3.3 and take the weighted average (µ) of all vectors to construct the TF-IDF

representation of the CVE:

V(S,M) = µ (T ′(w′,M)), ∀w′ ∈ g(S) (3.3)

V(S,M) is a vector with a size equal to the number of values within a metric

49

representing the probability score of a CVE being associated with each value, with

respect to the signature words. Since signature words are extracted from minor

classes, the vector elements associated with the dominant class samples are quite

often zero or close to zero, indicating that this vector represents the likelihood that a

CVE is associated with minor value, if the CVE shares any words with the signature

word dictionary Dict(M); otherwise, all elements would be zero. Taking the weighted

average is preferable to taking the maximum or minimum in generating representative

vectors. As we aim to maximize the value of the minority class in calculating CVE’s

TF-IDF representation, taking the minimum would not be applicable. On the other

hand, the signature words are not unique implying that such words can occur (even

rarely) in other documents including those associated with dominating classes. In

this case, the maximum value might correspond to the wrong class and hence, return

incorrect vector.

Fig. 3.4 shows an example about how the TF-IDF works in Attack Vector(AV)

metric. Suppose Bluetooth, adjacent, dongle, and lockscreen are the top four most fre-

quent words exist in the minority values of AV, "Adjacent Network" and "Physical",

that build the initial signature word dictionary. After collecting such frequent words,

the TF-IDF score of each word corresponding to each potential value is calculated

and then normalized. If threshold th = 0.85, we exclude the word dongle from this

dictionary since it does not satisfy the two rules to keep the word in the dictionary as

its score corresponding to "Physical" value is 0.2 which is larger than 1− th = 0.15.

After generating the final dictionary, we look for the signature words in the new text

input "Attackers use Bluetooth to get adjacent access.", and extract the vectors as-

sociated with signature words Bluetooth and adjacent and take the average to return

the TF-IDF vector representation of the text, based on the created dictionary of the

signature words.

50

Figure 3.4: An example of TF-IDF module creation and usage.

3.5 Evaluation

In this section, we conduct a comparative evaluation of the performance of our

proposed model in predicting the value of each metric separately, based only on CVE

human-readable text. We also provide the experimental settings to reproduce the

model and discuss the advantages and limitations of the model as well as some sug-

gestions to improve the effectiveness of the CVSS prediction automation.

Experimental Settings

We used NVD dataset that contains 28,090 CVEs reports each assigned by a CVSS

vector for training the proposed model. For each report, we create two vector repre-

sentations, a vector generated by the SecureBERT’s tokenizer, and a customized TF-

IDF vector utilizing the methodology discussed in the previous section. In addition,

51

Table 3.3: CVSS metric value prediction results

Model Metric AV AC PR UI S C I A
SecureBERT Accuracy 89.57 96.04 80.59 93.01 94.60 83.23 84.35 87.40

with F1-Score (Micro) 89.45 95.96 80.58 93.01 94.39 83.23 84.35 87.04
TF-IDF F1-Score (Macro) 76.16 81.10 73.67 91.35 89.91 80.70 83.58 72.47

SecureBERT Accuracy 89.52 95.85 79.42 91.78 92.06 83.25 84.99 86.01
without F1-Score (Micro) 89.38 95.84 79.42 91.78 92.06 83.21 84.59 85.91
TF-IDF F1-Score (Macro) 75.54 80.34 72.03 89.21 86.88 80.37 83.83 71.41

we conduct data resampling for minority class(es) within each metric by randomly

duplicating samples, to reduce the impact of imbalanced data problem and avoid

improper classification while training. We train the model through 10 epochs with a

mini-batch size of 12 with a learning rate equal to 1e − 5. The training objective is

to minimize the CrossEntropy error using the Adam optimizer.

Model Performance

Table 3.3 shows the comparative performance of our model in predicting every eight

values in the CVSS base vector metrics, using a testing dataset of 5, 357 (20% of the

main dataset) CVE reports. We evaluated two versions of the model, one with and one

without the TF-IDF module. This table shows the accuracy and the F-1 score at both

micro and macro level, where micro calculates metrics in each case level by counting

the total true positives, false negatives, and false positives, and macro evaluates

metrics for each label, and find their unweighted mean. Considering the shortage of

key information in CVE reports and imbalance class problem, SecureBERT achieved

80% − 96% prediction weighted accuracy, 80% − 95% micro-level, and 73% − 91%

macro-level F1-score.

According to the performance results, the model with the TF-IDF module out-

performs the other model indicating the effectiveness of this module in identifying

the correct class when the corresponding classes regularly contain specific keywords.

Meanwhile, at first glance, the difference between micro and macro metrics reveals

the impact of the unbalanced data problem in metrics with a greater incidence of

52

unbalance. However, the prediction result of some metrics whose micro-macro per-

formance gap is small, yet unbalanced, such as User Interaction (UI) and Scope (S),

shows the proposed model could successfully identify the correct class. This implies

that the CVE reports typically provide the required information for these metrics.

On the other hand, the high rate of false positives in both minor and dominating

values of some metrics such as Confidentiality (C) and Availability (A) indicates the

lack of key knowledge in CVE reports, leading to a lower rate of correct prediction.

Table 3.4 shows the confusion matrix of each eight individual models.

Table 3.4: Confusion matrix for the proposed model

Predicted
AV N L A P

T
ru

e

N 3671 110 36 12
L 299 961 16 15
A 36 8 115 0
L 18 12 4 44

Predicted
AC H L

T
ru

e L 4954 99

H 113 191

Predicted
PR L N H

T
ru

e

L 2876 275 100

N 404 1086 162

H 58 84 312

Predicted
UI R N

T
ru

e R 3667 145

N 229 1316

Predicted
S U C

T
ru

e U 4323 133

C 169 732

Predicted
C L N H

T
ru

e L 2759 139 201
N 198 797 55
H 259 46 903

Predicted
I L N H

T
ru

e L 2346 73 221
N 154 724 58
H 296 36 1449

Predicted
A L N H

T
ru

e L 2703 261 43
N 290 1909 12
H 56 32 51

Shortages and Limitations

As mentioned earlier, CVEs typically fail to provide all key information about the

CVSS metrics. For example, Table 3.5 shows the description of CVE-2012-1516 that

is describing a vulnerability in VMware. The "Attack Complexity" metric describes

"the conditions beyond the attacker’s control that must exist in order to exploit the vul-

nerability. Such conditions may require the collection of more information about the

53

target, the presence of certain system configuration settings, or computational excep-

tions" 2. This is a pretty deep and conceptual definition requiring some background

knowledge and fine-grain information about the vulnerability to specify if the value of

this metric (Attack Complexity) for the given CVE is low or high. According to the

vendor report, the basic requirement for this attack to exploit is 4GB of memory, and

those with less than 4GB of memory are not affected, hence the "Attack Complexity"

for this CVE is rated as "Low". The CVE description (see Table 3.5) failed to provide

such detailed information (i.e., the 4GB RAM need), making it pretty obscure even

for an expert to predict the metric value based on the provided text.

Table 3.5: Shows an example of uninformative CVE description for the purpose of
"Attack Complexity" metric prediction.

CVE-2012-1516: The VMX process in VMware ESXi 3.5 through 4.1 and ESX 3.5
through 4.1 does not properly handle RPC commands, which allows guest OS users
to cause a denial of service (memory overwrite and process crash) or possibly execute
arbitrary code on the host OS via vectors involving data pointers.
Attack Complexity Low
Reason The only required condition for this attack is for virtual ma-

chines to have 4GB of memory. Virtual machines that have
less than 4GB of memory are not affected. Such metric pre-
diction is based on expert opinion.

CVE database comprises many similar reports making both manual or automated

CVSS perdition hard or even infeasible, solely based on the description. Some works

leveraged other standards such as CWEs to enrich the CVE texts for better prediction.

However, this is highly problematic and leads to inconsistency since such standards

represent the threats with a high-level view and may not provide fine-grain informa-

tion about the vulnerability’s detailed properties. The complementary solution to

improve automated CVSS prediction is to use third-party resources such as vendor

vulnerability reports where in some cases, they provide low-level information about

the vulnerabilities from different angles such as impacts, platforms, specific permis-

sions, techniques, tactics, and procedures. In this case, a powerful text analytic tool
2https://www.first.org/cvss/v3.0/specification-document

https://www.first.org/cvss/v3.0/specification-document

54

such as SecureBERT can be utilized to process the context and analyze the semantic

relationships, and possibly extract particular actions and features to represent each

metric, if the information is provided within the input text properly.

3.6 Conclusions and Future Works

In this work, we proposed a framework that combines the SecureBERT cyberse-

curity domain-specific language model and a TF-IDF module to identify contextual

information and extract key statistical features in order to predict the CVSS base

vector for any given CVE based only on the text description. We conducted a rigor-

ous and comparative evaluation and discussed the advantages and limitations of the

model in detail, and recommended potential solutions to make the automated CVSS

prediction robust and effective. Our approach performs well in detecting the values of

particular metrics if the CVEs provide any important information about that metric.

55

CHAPTER 4: Automated Classification of CVEs to CWEs and to Vulnerability

Types

This chapter discusses the importance of enriching CVE reports and propose a

model on top of the pre-trained SecureBERT to automatically classify CVEs to CWEs

and CVE to vulnerability types (VT). CWEs and VTs both referring to weaknesses

which play an important role in CoA inference.

4.1 Introduction

A cybersecurity vulnerability is any flaw in an information technology system, in-

ternal controls, or system procedures that attackers can exploit. Cyber attackers can

gain access to the systems and acquire data through sources of vulnerability, and

hence they are critical in the field of computer security. Unpatchable or zero-day vul-

nerabilities are the major sources of cybersecurity incidents, which can result in con-

siderable economic losses for enterprises. CVE provides an easy and consistent means

for vendors, companies, researchers, and other interested parties to communicate cy-

bersecurity information. These reports are often low-level and product-oriented that

typically fail to provide a high-level insight about the underlying threats and there-

fore, they are not suitable for risk management and cyber threat intelligence. Thus,

classifying existing vulnerabilities to common weakness enumerations (CWEs) [1] is

a key tool for understanding and mitigating the vulnerabilities. CWEs are designed

in a hierarchical form, with weaknesses in lower levels inheriting the traits of their

parents. Following this tree-based classification scheme is crucial since it reduces the

prediction complexity and provides multi-level information about the threat that is

useful in establishing a comprehensive understanding of the vulnerability and obtain-

ing CWE-level mitigation strategies. In addition to the hierarchical classification,

CWEs sharing similar properties can be grouped by representing particular behavior,

called vulnerability types (VT). This aggregated representation of CWEs is beneficial

56

when the fine-grain CWE classification is not feasible for a CVE, and/or when just a

general threat characteristic is required. Furthermore, as each VT represents several

similar CWEs and therefore, the number of VTs is much smaller than the number

CWEs, the classification model carries less complexity and is easier to deploy. In addi-

tion, in the MITRE guideline, VTs are linked to several common MITRE techniques,

which is effective in connecting CVEs to techniques and critical security controls in

order to identify technique level mitigations and security controls as the potential

course of defense actions against the vulnerabilities. Table A.1in the Appendix shows

the full mapping of vulnerability types to MITRE ATT&CK techniques.

Classifying CVE reports to CWEs has previously been done manually, leaving

dozens of critical and new CVEs unclassified, yet unpatchable. This significantly

limits the utility of CVEs and slows down proactive threat mitigation, due to the

scarcity of security experts and a growing number of vulnerabilities every day. Using

cutting-edge text analytics and NLP technologies is critical for automating the process

of CVE text reports since it demands a deep contextual analysis that traditional

machine learning methods cannot provide. Pre-trained language models (LM), such

as BERT, have lately received a great deal of interest from the research community

for complex text analysis tasks. However, since these models are trained on generic

English, they might be inefficient for processing domain-specific documents, such as

CVEs. Thus, cybersecurity-specific LMs like SecureBERT can be a viable option for

developing a robust and effective predictive model in cybersecurity.

In this chapter, we propose an automated by fine-tuning the SecureBERT to classify

CVEs to CWEs. We evaluated the performance of our proposed model through several

testing methodologies and conducted comparative research with other similar models

to illustrate the efficacy and applicability of our approach.

57

4.2 Problem Definition

Cyber attacks enable malicious actors to break intended security policies by cir-

cumventing protective systems or influencing system resources or behavior. As a

result, the attack leads to behavior that violates the victim’s intended security regu-

lations. Typically, attackers exploit a vulnerability by abusing an existing weakness

in a system. CWE is a hierarchically designed dictionary of software weaknesses for

the purpose of understanding software flaws, their potential impacts if exploited, and

identifying means to detect, fix, and prevent errors. CWE classes are organized hier-

archically, with higher level classes providing higher level attack characteristics and

lower level classes inheriting the parent classes’ features and adding micro granularity

details corresponding to the potential threats. Therefore, determining the best path

from a root to lower-level nodes allows for the acquisition of fundamental and func-

tional directions for detecting and analyzing the different properties of a vulnerability.

For example, given ’CVE-2004-0366: A SQL injection vulnerability in the libpam-

pgsql library before to 0.5.2 allows attackers to execute arbitrary SQL statements.’,

the description captures the attack action (execute arbitrary SQL statements) within

a specific object (libpam-pgsql library) and specifies the consequence (SQL injection).

While this low-level, product-oriented description depicts SQL injection exploitation,

it falls short of clearly defining the characteristics of this malicious behavior, which

is highly required to address possible prevention and/or detection measures. The

supplementary CWE (CWE-89: SQL Injection) 1 gives high-level and non-product-

specific information by addressing three critical questions: (1) why the attack is used:

the system does not properly neutralize special elements; (2) how the attack is used:

by changing the intended SQL query; and (3) what the probable results are: access

or modify application data; and bypass protection mechanism.

The above-mentioned case is a confirmatory example to show how a CWE can paint
1https://cwe.mitre.org/data/definitions/89.html

https://cwe.mitre.org/data/definitions/89.html

58

a clear picture of the existing holes in the systems and reveals potential factors leading

to vulnerability exploitation. Obtaining these factors is closely associated with the

paradigm of pinpointing applicable mitigation or detection methods. For example,

we can apply an "accept known good" input validation strategy, i.e., using a set of

legit inputs that strictly conform to specifications and rejects the rest, to mitigate

SQL injection. Besides, we can detect SQL injection by performing an automated

static analysis (e.g., bytecode or binary weakness analysis), dynamic analysis (e.g.,

database or web service scanners), or design review (e.g., formal methods).

Figure 4.1: It depicts the hierarchical representation of the CWEs. The red boxes
show the CWE-89’s relatives in the higher levels. This hierarchy plays an important
role in understanding the character of the weaknesses in different level of details.

Fig. 4.1 shows the hierarchical representation of the CWEs. Analyzing the path

from the root all the way to any node in the lower levels is indispensable since each

node reveals different functional directions to learn a weakness. For example, by

tracking the path from the root node, CWE-707, to CWE-89, we realize that the

SQL injection (CWE-89) is a result of an improper neutralization of special elements

in data query logic (CWE-943), where both weaknesses are associated with injection

(CWE-74), and the injection itself is the result of improper formation and neutral-

ization of a message within a product before it is read from an upstream component

59

or sent to a downstream component (CWE-707). Incorporating this thorough knowl-

edge graph helps to maintain countermeasures from different senses, even if the most

fine-grain node is not available. For example, assume that only two coarse-grain

candidates in different levels of hierarchy, CWE-707, and CWE-74, are available for

CVE-2004-0366, while the most fine-grain weakness (CWE-89) is not discovered yet.

Although fine-grain SQL injection characteristics is not exposed, investigating the

coarse-grain candidates helps to find the common consequences and impacts, and ac-

cordingly extract defense actions against improper neutralization and injection (e.g.,

filtering control-plane syntax from all input). This example explicitly highlights the

significance of the existing hierarchical structure of CWEs and shows how useful it is

in perceiving the defense actions. A significant number of CVEs are currently mapped

to a small set of CWE classes. Currently, about 70% of the CWE classes have fewer

than 100 CVEs and about 10% have no CVEs mapped to them, and only 10% have

more than 500 CVEs.

4.3 Related Works

A great effort has been made initially by MITRE and NVD2 to manually clas-

sify some CVEs to one or more CWE classes, each one shows critical shortcomings

though. Considering the growing number of CVEs and the high labor cost of manual

classification, MITRE has classified 2553 CVEs (out of 116K) to 364 CWE classes

(out of 719) [1]. On the other hand, NVD has [41] attempted to increase the quan-

tity of CVE classification by mapping about 85,000 CVEs. Although MITRE has

classified a smaller number of CVEs compared with NVD, it considers a higher num-

ber of CWEs and performs hierarchical and a more fine-grain classification. In the

meantime, NVD classified more CVEs but it took a smaller number of CWEs into

the account, without addressing the hierarchy.

In the meantime, there have been several research efforts other than MITRE and
2National Vulnerability Database

60

NVD to analyze CVEs to enhance the searching process and to perform CVE cat-

egorization. Aghaei et al. [27, 28] proposed a hierarchical classification model by

utilizing the TF-IDF weights of N-grams extracted from CVE descriptions as the ini-

tial weights of a simple feed-forward neural network. This neural network is trained

on both MITRE and NVD datasets in a hierarchical fashion and reported the accu-

racy between 75% and 92%. This work is tested on a limited and selected number

of CVEs (10,000 CVEs) and failed to report the model performance at each level. In

addition, vulnerability type classification has not been conducted in this work.

Neuhaus et al. [42] proposed a semi-automatic method to analyze the CVE de-

scriptions using topic models to find prevalent weaknesses and new trends. The test

result reports 28 topics in these entries using Latent Dirichlet Allocation (LDA) and

assigned LDA topics to CWEs [42]. This approach shows a highly limited accuracy

depending on the CWE type.

Na et al. [43] proposed Naïve Bayes classifier to categorize CVE entries into the top

ten most frequently used CWEs with the accuracy of 75.5%. However, the accuracy

of this limited classification significantly decreases as the number of the considered

CWEs increases (i.e., accuracy decreased from 99.8% to 75.5% when the number of

CWE classes increased from 2 to 10). In addition, this approach does not consider the

hierarchical structure for CWEs, which significantly limits its value. Another classifier

was developed to estimate the vulnerabilities in CVEs using the basis of previously

identified ones by Rahman et al. [44]. This approach uses the Term Frequency-Inverse

Document Frequency (TF-IDF) to assign weights to text tokens from the feature

vector and Support Vector Machine (SVM) to map CVEs to CWEs. However, they

use only six CWE classes and 427 CVE instances. In addition, their classifier does

not follow the hierarchical structure for CWEs as well. All these addressed issues and

limitations are resolved in this work.

61

4.4 Challenges

Associating CVEs with CWEs allows cybersecurity researchers to understand the

means, assess the impact, and develop solutions to mitigate threats. However, the

problem is loaded with challenges. A CVE can be mapped to multiple and interde-

pendent CWEs on the same route, leading to uncertainty. On the other hand, the

high-quality mapping information is scarce since CVEs are currently mapped manu-

ally to CWEs, which is neither scalable nor reliable. Manual mapping of CVEs is not

a practical strategy since new CVEs are introduced at a quick rate. Hence, effective

approaches for automating the mapping of CVEs to CWEs are critical for addressing

ever-increasing cybersecurity risks.

CVEs are typically short and low-level descriptions written in an advanced lan-

guage. The format and terminology used in these reports require cybersecurity

knowledge and a deep context understanding for automation. Traditional text min-

ing approaches that work based on word frequency fail to adequately capture the

context and the semantic relationships between the words. Additionally, the modern

NLP tools and pre-trained language models which are trained only on general En-

glish corpus with no specific focus on cybersecurity, may not effectively and optimally

process such advanced language. Therefore, a domain-specific model that is trained

on cybersecurity data can help in more efficient.

Furthermore, the available CVE-to-CWE dataset is highly unbalanced meaning

that some CWEs are much more common than others. A portion of this issue is

justified, as NVD focuses on more general CWEs that encompass a broader range

of specific characteristics, rather than using several distinct CWEs. For example,

"CWE-79: Cross-site Scripting (XSS)" is the most frequently reported vulnerability

in the NVD classification, accounting for 16,019 CVE reports. Meanwhile, NVD has

only used a variant of the XSS vulnerability, the "CWE-87: Improper Neutralization

of Alternate XSS Syntax" only one time. NVD’s similar use of weaknesses to represent

62

CVEs demonstrates that several primary CWEs cover specific properties and can thus

represent a large group of similar CWEs. However, this does not apply to all CWEs

as some of them are not commonly exploited, yet carry unique properties. Therefore,

there must be a robust and well-defined approach to be able to classify CVEs to

uncommon CWEs appropriately. Table 4.2 shows the distribution of the top 50

most commonly used CWEs by NVD. As depicted, the appearance of a few CWEs

such as "CWE-79: Cross-site Scripting (XSS)", "CWE-119: Improper Restriction of

Operations within the Bounds of a Memory Buffer", and "CWE-20: Improper Input

Validation" is much higher than other weaknesses.

Figure 4.2: the distribution of common CWEs

4.5 Methodology

This section presents two automatic approaches to classify CVEs to CWEs and

VTs by fine-tuning the SecureBERT by designing a classification layer on top of

SecureBERT.

For CWE classification, the model takes a CVE description as input and returns

corresponding CWE classes at each level of the hierarchy. To this end, we developed

a top-down strategy, training a classifier on each node (class) at each level in the

CWE hierarchical tree. The classifier chooses each node on whether to belong to

a different sibling. The primary goal of this hierarchical structure is to direct the

63

model’s attention to the commonalities and contrasts between the sibling nodes. This

helps in lowering the model complexity by minimizing the number of output classes

during the training procedure, as well as boosting model performance by allowing

each classifier to focus on its children without being confused with other siblings’

children.

Figure 4.3: the CWE tree structure.

Fig. 4.3 shows the CWE’s tree structure in advance and demonstrates the existing

levels, and "parent-children" and "sibling" relationships between the nodes. Tracing

this tree from left, let’s denote the ith CWE at Level L by cLi where i ∈ {1, ..., N(cL)}

and L ∈ {1, ..., 7}. In our model design, for any given CVE, we aim to start predicting

the associated CWEs from the L = 1 and trace the CWE hierarchical tree for the

correct class at each level to the node in the lowest possible level. Let’s denote each

CWE as a node cLi , and total number of CWEs at level L with N(cL). Let G(cLi)

represents all the children of cLi :

64

Figure 4.4: CVE to CWE hierarchical classification model design.

The model initially classifies the given CVE to one or more cLi and then as a next

step, it only focuses on the children of the predicted parent G(cLi) and moves forward

until it reaches the most fine-grained level possible (or desired). We use the pre-

trained SecureBERT as the base model and add a classification layer on top which

trains hierarchically. As depicted in Fig. 4.4, the model takes the CVE description

tokenized by SecureBERT’s tokenizer and passes it through the transformers stack,

and returns the embedding vector of the first token ([CLS] token). This hidden state

vector [CLS] is an aggregate representation of the entire input used for classification

tasks. This vector is connected to a pooling layer followed by a dense layer of size

N(cL) returning the logits with no activation function, where N(cL) represents the

total number of nodes in layer L.

In order to make the model works in a hierarchical form, we multiply the output

logits with a given masking vector MV , and forward the results (final logits) to the

decision making component. MV is a sparse vector whose size equals to the initial

output layer (N(c(L+1)) generated based on the predicted node in the previous level,

and N(c(L+1)) represents the size of the predicted node’s children. Suppose the model

classifies an input CVE to node cLi . If the total number of nodes (aka, total number

of possible CWE classes) in the next level L + 1 equals to Nc((L+1)), MV would

65

be a vector of 0s and 1s in which, 1s represent the indices of cLi ’s children nodes in

the level L + 1, and 0s refer to the non-children nodes. The initial value of MV ’s

elements in level L = 1 would be all 1s, since in the first round of training, there

are only parents defined. We multiply this vector to the initial output layer using

element-wise multiplication to help the model recognizing which nodes it should be

focusing on during training and backpropagation. In other word, this multiplications

turns off the nodes which are not the children of previously predicted class(es), hence

reducing the complexity by lowering the number of potential classes for each input.

In addition to the hierarchical classification, we design another classification model

to classify CVEs to VTs. Following the MITRE guideline3, similar vulnerabilities

often also have the same attack steps and accordingly similar properties in which, the

similarity refers to the CVEs associated with similar CWE types. MITRE guideline

defines 27 distinct vulnerability types without referring to the CWEs associated with

each type. As mentioned earlier, CWEs have two sorts of relationship including

parent-children and sibling. We leverage such relationships and manually map CWEs

to the corresponding types. Table 4.1 shows our manual effort in mapping CWE to

the vulnerability types (VTs). Note that, VTs are mainly defined for the purpose

of finding CVEs with common set of techniques used to exploit that is useful in

mapping CVEs to MITRE techniques. Therefore, such vulnerability types are not

comprehensive and do not cover all existing CWEs.

Fig. 4.5 shows the CVE-to-VT classification model architecture. It follows a similar

structure as the hierarchical model with two main differences. First, it is a flat

model, and therefore, there is no masking vector. In addition, in the decision-making

component, it utilizes Softmax to return the probability of the predicted output. In

short, the output size of this multiclass classification model is the fixed number 27

which equals the total number of VTs defined in Table 4.1.
3https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/

master/methodology.md

https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/methodology.md
https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/methodology.md

66

Table 4.1: Mapping CWEs to vulnerability types.

ID Vulnerability Type CWE ID(s)
1 General Improper Access Control 284, 285, 287, 862, 863
2 Improper Restriction of Excessive

Authentication Attempts
306, 307

3 Authentication Bypass by Capture-
replay

294

4 Overly Restrictive Account Lockout
Mechanism

645

5 Use of Password Hash Instead of
Password for Authentication

836

6 General Credential Management
Errors

255, 256, 257, 260, 261

7 Cleartext Transmission of Sensitive
Information

319

8 Hard-coded Credentials 798
9 Weak Password/Hashing 328, 916
10 General Cryptographic Issues 310, 324, 325, 326
11 XML External Entity (XXE) 611, 776
12 XML Entity Expansion (XEE) 776
13 URL Redirection to Untrusted Site

(’Open Redirect’)
601

14 Cross-site Scripting (XSS) 79, 692
15 OS Command Injection 78
16 SQL Injection 89, 564, 943
17 Code Injection 94
18 Directory Traversal (Relative and

Absolute)
20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40

19 Symlink Attacks 59, 61, 62, 64, 65, 73, 363
20 Untrusted/Uncontrolled/Unquoted

Search Path
426, 427, 428

21 Unrestricted File Upload 434, 351, 436, 430, 73, 183, 184
22 Deserialization of Untrusted Data 502
23 Infinite Loop 835
24 Cross-site Request Forgery (CSRF) 352
25 Session Fixation 384
26 Uncontrolled Resource Consumption 400, 664, 770, 771, 779, 920, 1235, 410
27 Server-Side Request Forgery (SSRF) 918

4.6 Evaluation

In this section, we undertake a comparative evaluation of our proposed model’s

performance in classifying CVEs to CWEs using only human-readable language from

CVEs. We train two different classification models, a hierarchical CVE to CWE clas-

sification model and a CVE to vulnerability types classification model, and perform

a comparative evaluation on each. Additionally, we provide experimental settings for

reproducing the model and discuss the model’s strengths and drawbacks.

67

Figure 4.5: CVE to vulnerability type classification model design.

4.6.1 Hierarchical CVE to CWE Classification Model

We use a list of 63,481 CVE descriptions to train the hierarchical model and classify

them to one or more CWEs at each level of the hierarchy. Since the lowest level, CWE

used by NVD is L = 5, we train five models separately corresponding to each level.

For each model, we use Binary Cross Entropy (BCE) with logits as loss function for

this multiclass multi-label classification task. This loss function takes the raw logits of

the model (without any non-linearity) and applies the sigmoid internally. We use 10

epochs with Adam optimizer and the initial learning rate of 3e− 5. For training each

model at level L+ 1, we further fine-tune the trained model in level L instead of the

raw pre-trained SecureBERT, to ensure it carries the most recent information about

the CVE texts. In the decision-making component in the output layer of the model,

we perform min-max normalization to produce a probability score corresponding to

each output unit. We have conducted a two-round evaluation to show how well our

model performs when hierarchically classifying CVEs to CWEs. In the first round, we

evaluate the classification using standard metrics to monitor how the model performs

in the top one prediction at each level of the hierarchy. In the second round, we

monitor the performance of the model not in the first returned output, but in the top

K outputs.

68

Figure 4.6: Distribution of CWEs in CVE to CWE classification.

NVD dataset had classified 121,768 CVEs to 296 CWEs as of the date of authoring

this article. However, there is a significant disparity in the frequency with which

CWEs are used, indicating that some CWEs are significantly more prevalent than

others. This implies that infrequent CWEs are either rare or have characteristics in

common with one of the frequent CWEs. As depicted in Table 4.6, 77.3% ((94,176

CVEs)), 87.4% (106,374 CVEs), and 93% (113,211 CVEs) of the CVEs have been

classified to top 25, 50, and 100 CWEs, respectively. Note that, in calculating true

predictions, if the instance was originally labeled by more than one CWE (multilabel

instances), and the model catches one with no false positives, it is considered correct

classification as any correct prediction can lead to the correct label in the lower levels.

In the hierarchical model, we classify CVEs to the common CWEs and evaluated

the model in different stages. Table 4.3 shows the performance of the hierarchical

model in classifying CVEs to the top 25, 50, and 100 most frequent CWEs. Accord-

ing to this table, the success rate of our proposed model ranges from 90.77% to 97.51%

in terms of HR@1 (accuracy), and 84.91% to 96.08% in terms of F1@1, concerning

the CWE space and the level of hierarchy. Such results demonstrate a higher success

rate in classifying CVEs belonging to the top 25 CWEs due to the higher number of

69

samples available for training the model. The hierarchical model provides researchers

Table 4.2: SecureBERT performance evaluation on hierarchical classification of CVEs
to top 25, 50, and 100 CWEs where HR indicates the hit rate (accuracy in this case)
and F1 refers to the F1-score.

Top 25 CWEs Top 50 CWEs Top 100 CWEs
L No. CWEs HR F1 No. CWEs HR F1 No. CWEs HR F1
1 8 91.80 91.11 8 91.24 91.15 9 90.77 90.31
2 18 94.55 91.38 30 93.57 87.48 43 91.11 85.89
3 14 97.51 96.08 36 95.46 85.89 63 94.24 84.91
4 6 95.22 94.35 13 94.02 85.21 27 94.57 90.81
5 - - - 3 91.53 91.53 7 90.80 90.96

with a variety of classification granularity levels. In other words, researchers may

need different levels of information to characterize the properties of CVEs. As a re-

sult, offering level-specific knowledge about CVEs can provide a multitude of CVE

characteristics. CVEs, on the other hand, may exploit multiple weaknesses, which

cannot be addressed if they are assigned to a single CWE. As a result, hierarchical

models are highly useful in identifying such weaknesses and providing broader insight

into exploit to help in better assessment and, consequently, defense planning. As

previously noted, CVEs may be linked with multiple CWEs, however NVD has only

assigned them one. The similarity between CVE characteristics that are mapped to

different CWEs and possibly the similarity across CWEs leads to different classifica-

tion outcomes that are not necessarily incorrect. Since there is no ground truth for

the additional corresponding CWEs with CVEs, we have conducted another experi-

ment trying to show the performance of the model in classifying CVE to the correct

class(es) in the "top K" model prediction outputs. The correct class(es) refers to the

labels originally provided by NVD. For this experiment, we used standard informa-

tion retrieval metrics including hit rate at K (HR@K), precision at K (P@K), and

recall at K (R@K).

Table 4.3 shows the performance of the proposed hierarchical model in classifying

25,915 CVEs to top 25, 50, and 100 CWEs in different levels of hierarchy. Each table

shows the HR@K, P@K, and R@K in each level of hierarchy, as well as the number

70

Table 4.3: SecureBERT performance evaluation on hierarchical classification of CVEs
to top 25, 50, and 100 CWEs.

Top 25 CWEs
L No. CWEs HR@2 P@2 R@2 HR@3 P@3 R@3
1 8 96.82 94.44 92.44 98.92 95.83 94.29
2 18 94.95 94.13 90.28 95.11 94.54 90.79
3 14 97.51 96.63 95.69 97.51 96.69 95.63
4 6 95.42 95.63 93.18 95.61 95.12 95.06

Top 50 CWEs
L No. CWEs HR@2 P@2 R@2 HR@3 P@3 R@3
1 8 95.91 94.41 92.77 98.18 96.46 93.72
2 30 94.29 89.84 86.78 94.33 91.55 87.58
3 36 95.26 86.25 85.95 95.26 91.31 88.60
4 13 94.73 90.44 88.62 94.73 92.02 86.27
5 3 91.53 91.09 89.24 1.0 1.0 1.0

Top 100 CWEs
L No. CWEs HR@2 P@2 R@2 HR@3 P@3 R@3
1 9 95.12 94.21 93.38 97.51 95.17 91.20
2 43 92.30 87.11 87.59 92.30 89.55 88.59
3 63 94.61 87.73 85.55 94.61 88.31 86.16
4 27 95.44 90.81 91.74 95.44 88.96 91.74
5 7 91.11 88.93 86.71 91.11 89.49 88.19

of CWE classes exist at each level. In classifying CVEs to top 25 CWEs, which

covers the majority of CVEs, our model successfully classified CVEs to the correct

CWEs with the hit ratio at top K (HR@K) ranged from 94.95% up to 98.92%, P@K

between 94.13% and 96.69%, and R@K between 90.28% and 95.69%, with K∈ {2, 3}

in different levels. Despite the promising performance in classifying CVEs to top 50

and 100 CWEs, lower performance (particularly in F1-scores) compared to top 25

can be justified by two reasons. First, the additional CWE classes have much lower

number of CVEs in the training set causing less accurate prediction, Furthermore,

many of such additional CWEs share common characteristics with the frequent CWEs

and as a result, CVEs are mostly mapped to the common ones by NVD. Therefore,

as we use such mappings as labels in our training set, our model tends to classify

CVEs that originally associated with uncommon CWEs to frequent CWEs instead.

4.6.2 CVE to Vulnerability Type (VT) Classification Model

Similar to individual CWEs, VTs are not distributed uniformly in NVD dataset.

As depicted in Fig. 4.7, about 72.3% (41,240) and 88.03% (50,174) of the CVEs are

associated with top 5 and top 10 VTs, respectively. In addition, four VT IDs including

71

Figure 4.7: Distribution of CWEs in CVE to CWE classification.

4, 5, 9, and 20 do not have any corresponding CVE in the NVD dataset. For training

the CVE to VTs, we use 70% of the available CVE descriptions to classify them to

one of the top 5, 10, and all 23 VTs provided in Table 4.1.

Table 4.4: SecureBERT performance evaluation in classifying CVEs to top 5, 10, and
all vulnerability types.

Top VT HR@1 P@1 R@1 HR@2 P@2 R@2
Top 5 93.12 91.34 89.08 95.21 92.31 89.46
Top 10 91.66 88.63 86.79 93.71 90.03 87.11
All 87.53 85.79 84.56 90.35 87.32 86.80

Similar to the previous model, Table 4.4 shows the performance of CVE-to-VT

model in terms of HR@K, P@K, and R@K.

4.7 Conclusions and Future Works

In this work, we designed two models on top of the SecureBERT to hierarchically

classify CVEs to CWEs and to classify CVEs to the groups of CWEs, aka vulnerability

types (VT), that share similar properties. We conducted a thorough and comparative

evaluation in different stages and discussed the advantages and limitations of each

model in detail. In short, we made the following contributions:

1. Design a hierarchical classification model on top of SecureBERT to classify

72

CVEs to different CWEs in each level of CWE’s hierarchical design.

2. Manually categorizes similar CWE to different groups known as vulnerability

types where each category represents a particular set of behaviors and proper-

ties.

3. Build a classification model on top of SecureBERT to classify CVEs to vulner-

ability types

4. Conduct a comparative and thorough evaluation of both models and provide

the advantages and limitations in detail.

In the future, we plan to leverage the third party reports in order to further enrich

the descriptions for classifying CVEs to CWE and VTs.

73

CHAPTER 5: Automated Context-based Classification of CVEs to Functionalities

In Chapter 4, we proposed a model for partially enriching vulnerabilities by classi-

fying them to CWEs and vulnerability types. This exemplifies the CVEs properties in

terms of the underlying weaknesses that an attacker may exploit and provides granu-

lar information regarding the potential weakness-level impacts should it be exploited.

In this chapter, we aim to further improve the enrichment by building a model that

identifies the attacker behavior in order to map the CVEs to the common functions

that an attacker could try to access, based on the known functionalities defined by

the MITRE guideline. Therefore, we introduce a semi-automated approach to collect

and annotate data and then utilize the generated dataset to build a predictive model

on top of the SecureBERT to classify CVEs to functionalities.

5.1 Introduction

Enriching the CVEs at CWE-level alone do not provide sufficient information about

the technique, tactic, and procedures, and also omits crucial details about the common

functions that an attacker may be attempting to gain access. Notably, vulnerability

types can help in connecting CVEs to particular MITRE ATTCK techniques which

are related to pre-attack, by adhering to the MITRE guidelines. According to the

guideline, however, several common vulnerability types including "General Improper

Access Control", "Directory Traversal (Relative and Absolute)", "Symlink Attacks",

and "Cross-site Request Forgery (CSRF)" are still required to connect to functionality

to improve CVE enrichment, to deliver the corresponding MITRE technique, and

infer the corresponding course of actions. In the meantime, post-attack knowledge

is also essential for characterizing the CVEs. For a vulnerability to be exploitable,

it must grant the attacker a previously unavailable functionality. Identifying such

cybersecurity functionalities are important since attackers who exploit that particular

vulnerability or similar ones typically seek access to the same functionality in every

74

Table 5.1: List of common functionalities defined by MITRE.

Common Functionalities
Modify Configuration Create Account Disable Protections
Restart/Reboot Install App Read from Memory
Obtain Sensitive Information: Credentials Password Reset
Obtain Sensitive Information: Other Data Read Files
Delete Files Create/Upload File Write to Existing File
Change Ownership or Permissions
Memory Modification (Memory Buffer Errors, Pointer Issues, Type Errors, etc.)
Memory Read (Memory Buffer Errors, Pointer Issues, Type Errors, etc.)

exploits.

The MITRE guideline introduces sixteen functionalities, each of which describes a

specific action that the attacker can undertake if the vulnerability is exploited, such as

disabling protection mechanisms, installing apps, and obtaining sensitive information,

as depicted in Table 5.1. In the meantime, functionalities defined by MITRE are not

completely independent and they may share mutual characteristics (dependencies).

For example in cybersecurity language, "reading a file" by an attacker can infer "ob-

taining sensitive information". CVE descriptions typically deliver such capabilities

either implicitly or explicitly. For example, "attacker uninstalled antivirus software"

and "attacker compromise the firewall’s functionality" both refer to manipulating the

protection systems to work inefficiently. Therefore, studying CVE descriptions would

suffice to gather such information. These functionalities, if recognized by the defen-

sive side, contribute to improved vulnerability management. In addition, similar to

vulnerability types, functionalities are also linked with a range of MITRE techniques

(see Table B.1 in Appendix). This allows cybersecurity researchers to better articu-

late the exploitation process of a vulnerability, resulting in more effective cyber threat

intelligence and defense planning. Section 5.5.1 will go over more details about the

functionalities.

When it comes to natural language processing, there are numerous ways for ex-

tracting information from unstructured text such as part of speech tagging (POS),

75

named entity recognition (NER), and dependency parsing (DP). However, capturing

the particular form of text sequences (e.g., sentences or statements) using stand-alone

methods such as POS, NER, and DP requires well-defined rules. The critical aspect

to remember when extracting text to represent functionalities is to preserve both the

semantic relationship and the context. Therefore, rule-based information extraction

solely based on the above-mentioned methods cannot be effectively applied to this

problem.

Semantic role labeling (SRL) [45], is a semantic parsing task aimed at identifying

the predicate-argument structure of each predicate in a phrase. For example, it pre-

dicts important relationships between predicate such as who did what to whom, where

and when, and so on. SRL, in particular, aims to recognize arguments and classify

their semantic functions in the presence of a predicate leveraging POS and NER.

SRL is a useful method for obtaining semantic information that can be applied to

a variety of natural language processing (NLP) tasks, such as neural machine trans-

lation, question answering, discourse relation sense classification, and text relation

extraction. Thus, SRL is an effective approach to extract information from the CVE

description for the purpose of generating a representative labeled dataset for training

a model than can classify cybersecurity text to its functionalities.

In this chapter, we present a novel approach for identifying context-dependent

threat actions within a CVE text and mapping it to functionalities. Therefore, we

begin by introducing a data collection, labeling, and annotation framework by uti-

lizing an off-the-shelf SRL tool. Then, on top of the SecureBERT, we develop a

novel classification model that takes the generated threat actions and classifies them

to the sixteen functionalities defined by MITRE guidelines, according to the given

context. In the end, we conduct a multi-step performance evaluation and discuss the

advantages and limitations of this classification model.

76

5.2 Problem Definition

As previously stated, our goal is to create a model that will automatically classify

CVEs to functionalities. To that end, because no dataset exists for training such a

model, we first define linguistic structure and create a dataset using SRL, and then

employ that dataset to train and evaluate the predictive model.

Functionalities are defined as a set of malicious actions that attackers perform

when exploit a vulnerability, where each action can be represented by different syntax

and terminologies. In the meantime, an action may imply different meanings within

different contexts. For example, as depicted in Fig. 5.1, "deleting a file" in "<attacker

deletes a file>" implies a malicious action, in "<web admin deletes a file>", it is a

benign action, and in "<attacker tricks the web admin to delete a file>" addresses

a malicious action again. In another example, consider the "read files" as an action

and its meaning in two different contexts such as "Attacker abuse logprop?file = /..

to read files" and "Attacker tricks the victim to read files". In the former context,

reading a file is exactly the main objective of the attacker (threat action) referring

to "reading data from the file", while in the latter sentence, reading file is done by

the victim and tricking the victim to achieve other malicious goal such as phishing

or executing arbitrary code is the main threat action. In order to understand the

Figure 5.1: Shows the different implication of "deleting a file" action in different
contexts.

actual implication and semantic meaning of an action, it is crucial to always analyze

a text within the surrounding context. Similarly for classifying actions within a CVE

description to functionalities, it is required to consider threat actions within entire

description to precisely learn the corresponding functionality.

77

Semantic Role Labeling (SRL) is a powerful NLP tool to extract such actions from

an unstructured text. Off-the-self SRL models such as AllenNLP SRL 1 are able to

break down a text into sentences according to the verbs, and then captures the words

or phrases as arguments, and return their semantic role in that particular sentence.

For example, pre-trained SRL divides "attacker tricks the web admin into deleting a

file" into two sentence based on two existing verbs, tricks and delete, as "attacker

tricks the web admin to delete a file" and "the web admin delete a file". As depicted

in Fig. 5.2, in the first sentence, it identifies attacker as the subject (ARG0), tricks

as the verb (V), the web admin as the object (ARG1), and to delete a file as the

following attribute (ARG2) of the object. Similarly in the second sentence, SRL

identifies the web admin as the subject, delete as the verb, and a file as the object,

It worth noting that, there are multiple arguments (ARGs) returned by the SRL

Figure 5.2: SRL breaks down a text into the words or phrases as arguments and
return their semantic role in the sentence.

based on PropBank [46], which is a corpus of text annotated with information about

basic semantic propositions, as demonstrated in Table 5.3. However, the implications

of all arguments is beyond the scope of this study and can be find in PropBank

documentations.

This capability makes SRL an effective framework for extracting threat actions from

text to generate a labeled dataset. Suppose we aim at retrieving documents that are

referring to "delete file". Traditional bag-of-words techniques may return documents

with large noise such as "admin delete access to the file". Similarly, simple word
1https://demo.allennlp.org/semantic-role-labeling

https://demo.allennlp.org/semantic-role-labeling

78

Table 5.3: PropBank proposition definitions.

Arguments Meaning
V verb
ARG0 giver (subject)
ARG1 thing given (object)
ARG2 entity given to
ARGM-TMP when?
ARGM-LOC where?
ARGM-DIR where to/from?
ARGM-MNR how?
ARGM-PRP/CAU why?

matching is highly limited that fails to detect the phrase if minor difference exist,

such as "delete a file" or delete .exe file. However, instead of creating a large number

of rules considering all possible text variations (which is potentially impractical), we

may define few rules and instructions based on the target corpora to efficiently employ

SRL to extract such information. In other words, for each functionality, we define

a set of representative words or phrases and then employ SRL to extract sentences

corresponding to each functionality. To maximize the accuracy and simplify the

extraction, we only define representative verbs (V), subjects (ARG0), and objects

(ARG1) and utilize SRL to return sequences of sentences. For example, to represent

malicious action "deleting a file", we extract sentences with the following elements:

Verbs: delete, remove, erase

Subjects: attacker, remote attacker, unauthenticated user

Object: file, folder, directory

Accordingly, we retrieve the sentences that its verb is one of the defined verbs and its

ARG0 and ARG1 contains any of the given subjects and objects respectively. Table.

5.4 shows the a few examples of retrieved sentences:

In typical text classification tasks, natural language processing (NLP) models au-

tomatically capture the semantic relationships between tokens during training with

a standard dataset. Based on the input text, the model could classify a CVE into

79

Table 5.4: Examples of retrieving sentences based on the given rules using SRL.

Deleting a file
’remote attackers delete log files ’
’malicious user removes the directory ’
’unauthenticated user clears registry folder ’

one or more classes in this context. In the absence of a standard dataset, we must

first collect sufficient data to construct the dataset and then train a model to au-

tomate the process. As previously stated, the dataset must include both malicious

action (e.g., delete a file) and the surrounding context (e.g., attacker tricks the web

admin into deleting a file) to successfully enhance the semantic understanding and

capture alternative "action representations". For example, an effective NLP model

must recognize the semantic relationship between "attacker disabled protection mech-

anism" and "attacker compromise the firewall’s functionality". Thus, to develop such

a robust model, it must be trained on representative, consistent and accurate labeled

data. A standard dataset for this task should consist of labeled text records, that

each represents a specific functionality. To create such a dataset, we first conduct a

statistical text analysis to identify the common terminologies used in CVE descrip-

tions in terms of subject (malicious actor), verb (action), and object (cyber object).

This helps to identify the corpus domain and establishing the target dataset’s initial

linguistic structure. Leveraging this statistical knowledge, we develop a framework

utilizing SRL and an off-the-shelf tool called EXTRACTOR (see Section 5.5.2).

We manually go through the observed common terminologies to define rules and

extract different statements to represent each functionality. In this context, we utilize

EXTRACTOR to extract short statements (so-called content) from longer documents

(so-called context) given the discovered terminologies. The purpose of this procedure

is to find common statements which imply each functionality in order to train the

model to learn the pattern. For example, we extract sentences such as "remote

attackers delete files" and "a user without administrator privileges delete arbitrary

80

files" to represent "Delete File" functionality. In addition, to further generalize the

dataset and improve data quality, we also manually extract additional textual data

for each functionality. Further details on data collection process will be provided in

Section 5.5).

After data collection, we propose to construct a model that takes two inputs as

content and context and returns the corresponding functionality of the short content

text within the long context document by leveraging SecureBERT and a classification

model on its top. The content is defined as a short and precise text addressing a

particular action whereas context is usually an longer text in terms of size contain-

ing more information, which provides enriched content while also may contain some

irrelevant information (noise). A content may have multiple meanings or represent

different intentions or concepts depending on the context. A particular action, on the

other hand, can also be represented using a variety of terminologies and phrases. For

example, view the file, observe the file, and open the file can infer the same meaning as

"reading the file" in cybersecurity language when refer to a specific action. Therefore

it is critical to identify such meaning and representation by properly understanding

the content and capture its semantic relationship with the context. We train our

model so that it captures the contextual meaning of the threat actions using two

inputs. After training the model and tuning the hyperparameters, this model can

take either two inputs, the content and the context, or just one context input. When

it receives two inputs, similar to training, it returns the functionality associated with

the content "within" the context. For example, the model can use a specific action

expressed as a brief text or a sentence from a CVE description as the content and the

entire description as the context in order to predict the functionality. On the other

hand, the model can also take only one document (e.g., CVE description) as context

without any content input and return the potential functionalities associated with

the input.

81

5.3 Related Works

Chen et al. [47] proposed a model to extract threat actions by using information

retrieval techniques. To capture threat actions, this study use word vector, tagging,

and filtering algorithms. The proposed solution automatically generates a key threat

action list as the foundation of the ontology, uses a two-stage key threat action ex-

traction technique, and uses word vector models for key threat extraction. This work

labels tokens in a phrase with their grammatical word categories using part-of-speech

tagging, but it does not maintain grammatical links between them.

In [48], the authors present a mechanism for automatically extracting threat ac-

tions from APT reports and producing TTPs. Threat actions are extracted from APT

reports using a BERT-BiLSTM-CRF-based extractor, and these extracted threat ac-

tions are then mapped to ontology to construct their related TTPs using TF-IDF. The

actions, which include the subject, verb, and object, are extracted using EX-Action.

Additionally, it offers a technique for extracting entity relations, which connect enti-

ties contextually and semantically. This approach has a problem with its overreliance

on semantic and part-of-speech analysis, which can miss some threat actions and fail

to identify pronoun referents.

Ayoade et al. [49] leveraged natural language processing techniques to extract at-

tacker actions from 18, 257 threat report documents generated by different organi-

zations and automatically classifies them into standardized tactics and techniques.

The lack of labeled data and non-standard report formats are the main challenge this

paper addresses using the bias correction mechanism approach. In this work, text de-

scriptions of reports are tokenized, and the TF-IDF score for each word is calculated

and applied different bias correction mechanisms to overcome non-standard format.

Then using the SVM classifier, they classified 78% of the reports correctly to their

corresponding techniques and tactics.

82

5.4 Challenges

The most critical challenge of this work is the lack of labeled data. As of now, the

only available data is 840 CVEs 2 mapped to a set of MITRE techniques and tactics

by MITRE in which, labels do not precisely correspond to particular functionalities.

Therefore, it is required to collect and annotate a standard dataset manually to train

the predictive model.

Data collection and annotation, on the other hand, are challenging problems since

they require extensive text analysis to fully grasp the language structure of the target

domain (CVEs) and to extract relevant text patterns for concise dataset generation.

The MITRE guideline-defined functionalities are not independent, and some of

them may share similar characteristics. Thus, a single statement (e.g., a threat ac-

tion) may have different implications in different contexts and correspond to multiple

functionalities, which can lead to confusion and inconsistency during dataset gener-

ation and training. To distinguish similar texts, a systematic data collection and a

strategic training model design are required.

5.5 Data Assessment and Annotation

As mentioned earlier, there is no off-the-shelf data for training a supervised method

to predict the CVEs’ corresponding functionality. Therefore, we utilize semantic role

labeling along with some manual work to collect, analyze, and annotate data for this

prediction task. In this section, we introduce a method to generate labeled dataset

leveraging semantic role labeling along with expert knowledge for the purpose of

classifying CVEs to functionalities. In this context, we collect the corresponding

subjects, verbs, and objects (SVOs) for each functionality from CVE description.

Then, leveraging a threat action extractor tool called EXTRACTOR [50], which is

built on top of the BERT for semantic role labeling in cybersecurity, we extract text
2https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/

master/Att&ckToCveMappings.csv

https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/Att&ckToCveMappings.csv
https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/Att&ckToCveMappings.csv

83

containing such SVOs associated with each functionality.

5.5.1 Functionality Documentation

MITRE guideline has provided sixteen functionality names 3 without any We define

sixteen different most common functions an attacker may be trying to gain access to

through the exploitation known as functionalities. If fz denotes the functionality f

with index z, let’s define the functionalities as follows :

1) Create Account (fz=1): the act of unauthorized creation of new accounts or

adding new users to the victim system done by attacker.

2) Create Or Upload File (fz=2): the act of unauthorized creation or upload-

ing any file to any system for any purpose done by attacker.

3) Delete Files (fz=3) : the act of unauthorized deletion or destruction of any

information including but not limited to files, contents, data, etc., done by attacker.

It is different from data manipulation.

4) Disable Protections (fz=4): the act of causing any malfunction, interruption,

or abnormality in any security/defensive process or system such as anti-viruses, anti-

malware, authentication procedures, firewall, security checks, etc., done by attacker.

5) Install App (fz=5): the act of delivering and/or installing any malicious ap-

plication or configuration on victims system causing further threats, done by attacker.

6) Memory Modification (Memory Buffer Errors, Pointer Issues, Type
3https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/

master/methodology.md

https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/methodology.md
https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/methodology.md

84

Errors, etc.) (fz=6): the act of any invalid modification, manipulation, and/or

write to the memory (e.g., buffer, kernel, memory locations, pointers, etc.) leading

to memory issues such as buffer-over read, memory crash, buffer overflow, etc., done

by attacker.

7) Password Reset (fz=7): the act of manipulating account such as modifying

credentials (e.g., ID, username, password, email account name, etc.) for any purpose,

done by attacker.

8) Change Ownership or Permissions (fz=8): the act of changing file owner-

ship, and/or modifying access permission (access controls) for any purpose, done by

attacker.

9) Modify Configuration (fz=9): the act of modifying, editing, and manipulating

any systems configuration and/or settings causing further threats, done by attacker.

NOTE 1 : The actions and intention in "Install App" and "Modify Configuration"

are quiet similar sharing similar techniques (not same), and since there is no ground

truth available to distinguish them, we combine these two and considered them as a

single functionality.

10) Obtain Sensitive Information - Other Data (fz=10): the act of obtain-

ing any non-credential sensitive information without authorization via any method

(unauthorized access to files, databases, memory, etc.) for any purpose, done by at-

tacker.

85

11) Obtain Sensitive Information - Credentials (fz=11): the act of obtain-

ing any user/system credentials without authorization via any method (unauthorized

access to files, databases, memory, etc.) for any purpose, done by attacker.

12) Read From Memory (fz=12): the act of unauthorized reading any information

or data from memory for any purpose, done by attacker.

NOTE 2 : "Obtain Sensitive Information - Other Data" and "Read From Memory"

share exactly the same MITRE technique. However, since the action and the purpose

might differ, they are considered as separate functionalities.

13) Read Files (fz=13): the act of unauthorized reading any information including

from files, done by attacker.

NOTE 4 : This functionality and "Obtain Sensitive Information" ((fz=10) and (fz=11))"

are mainly using "Read" action mentioned in the previous functionalities, hence they

share mutual characteristics with each other in terms of common MITRE techniques.

14) Memory Read (Memory Buffer Errors, Pointer Issues, Type Errors,

etc.) (fz=14): the act of any invalid reading from the memory (e.g., buffer, kernel,

memory locations, pointers, etc.) leading to memory issues such as buffer-over read,

memory crash, buffer overflow, etc., done by attacker.

15) Restart Or Reboot (fz=15): the act of crashing, shutting down, rebooting

any system often leading to denial of services, done by attacker.

16) Write To Existing File (fz=16): the act of modifying the content of the

86

existing file for any purpose, done by attacker.

Figure 5.3: Shows the functionalities and their relationships. In relationship defini-
tions, The term "inheritance" denotes that the child functionality inherits all of its
parent’s characteristics in addition to its own unique ones. The characteristics refers
to the same threat action(s) and/or same MITRE technique(s). "commonality" on
the other hands refers to semantic similarity between two functionalities, but not
necessarily the same behavior.

Fig. 5.3 demonstrates all of the functionalities and their associated dependencies.

We have defined two dependencies such as commonality and inheritance. The term

"inheritance" denotes that the child’s functionality inherits all of its parent’s char-

acteristics in addition to its own unique ones. The characteristics refer to the same

threat action(s) and/or the same MITRE technique(s) the functionalities are asso-

ciated with. For example, to conduct out-of-bound-read, which is associated with

functionality "fz=14: Memory Read (Memory Errors)", an attacker must conduct the

read action which is also associated with functionality "fz=12: Read From Memory",

such as reading arbitrary memory or reading kernel memory. On the other hand,

commonality refers to the semantic similarity of two classes which means both classes

can describe similar impact or action, but not necessarily the same. If the common-

ality is strong, it implies that the impact can be the same and in some cases cannot

87

be differentiated. For example, an attacker can install an extension (fz = 5) and ma-

nipulate the system configuration (fz = 9), or an attacker can read memory locations

(fz = 14) and gain sensitive information (fz = 10). In other words, the actions or the

impact can be used interchangeably for both classes. On the other hand, when the

commonality is weak, a single action or impact can imply two different concepts. For

example, when an attacker gains sensitive information, this can be the list of system

files (fz = 10), and in the meantime, it can be the plain-text password (fz = 11).

Notably, action or impact refers to the same concept using a different language in

strong commonality, but in weak commonality, action or impact refers to a distinct

concept using the same language. According to the table, types 13 and 14 are the

children of type 12 (inheritance), type 10 and 11, and 10 and 12 have strong com-

monality dependency, type 5 and 9 also have strong commonality, and type 10 and 11

have weak commonality dependency. Since types 13 and 14 are inherited from class

12, they have strong commonality with classes 10 and 11 as well. Such dependencies

are critical in corpus generation, dataset creation, and also in model training and

evaluation. To summarize, if fz and f ′
z represent two functionalities and R(fz, f

′
z)

demonstrates the dependency between them:

R(fz, fz′) = Inher IF fz′ is the inheritor of fz (5.1)

R(fz, fz′) = Strong IF fz and fz′ have strong commonality dependency (5.2)

R(fz, fz′) = Weak IF fz and fz′ have weak commonality dependency (5.3)

R(fz′ , fz′′) = Strong IF R(fz, fz′) = Inher and R(fz, fz′′) = Strong (5.4)

Each of the preceding functionality refers to a specific malicious action carried out by

an attacker in order to compromise a system. Specifying the dependencies helps in

better understanding and processing the main concept of each functionality leading

to a strategic text extraction and annotation, discussed in the next section.

88

5.5.2 EXTRACTOR

EXTRACTOR [50] is an off-the-shelf tool that leverages SRL to extract threat

actions from the technical text reports in the form of a graph. SRL can assign

semantic labels to phrases and words in a sentence, where each label specifies the

semantic role that each phrase or word plays in the sentence in association with the

predicate or verb of the sentence. In SRL, the tags assigned to sentence components

are called arguments (denoted by ARG). Table 5.3 shows these arguments and the

definition based on PropBank [51].

EXTRACTOR operates by performing different rounds of transformations on the

text to bring it from a highly complex and potentially ambiguous form to a simpler

form. This simplified text is further processed to obtain a provenance graph that

can be successfully used for threat detection. Fig. 5.4 shows the four major compo-

nents that the EXTRACTOR is composed of including text normalization, resolution,

summarization, and graph generation.

Figure 5.4: The overview of EXTRACTOR framework

Similar works mostly consider limited resources, such as sample malware or limited

types of security reports, to extract threat actions. On the other hand, they focused

on exchanging IOCs4 than describing how those IOCs are connected and how the

attacks behave. The main advantage of EXTRACTOR compared to similar work is

that it focuses on extracting the attack behavior and captures system-level causality
4Indicator of Compromise

89

in the form of provenance graphs and utilizes the public CTI reports to convert raw

text into actionable knowledge. Furthermore, the different rounds of transformations

enable the EXTRACTOR to deliver clean, concise, and fine-grain threat actions that

can be used directly to represent functionalities.

Normalization is responsible for an initial round of sentence simplification and

transformation to a canonical form by breaking long and complex sentences into

shorter sentences, which is easier to process. Normalization is comprised of tokeniza-

tion, homogenization, and conversion. These steps perform the detection of sentence

boundaries, word homogenization in which multiple textual representations of the

same concept are replaced by the same textual representation (e.g., C2, C&C, and

Command and Control are different representations of the same entity, while verbs

like stores, saves may represent an action that corresponds to a write system call),

and passive-to-active verb conversion.

Resolution resolves ambiguities in the sentences reconciling implicit references that

refer to the same entity into the actual referent. This phase comprises three com-

ponents as Ellipsis Subject Resolution (ESR), Pronoun Resolution (PR), and Entity

Resolution (ER).

Ellipsis subject is a linguistic structure where a sentence’s subject is not present that

confuse the state-of-the-art NLP toolkits, thus resulting in the loss of the narrative

sequence and the story relationships. ESR module utilizes POS and DP to detect

target sentences, builds a list of candidate subjects among the entities appearing

in the sentences preceding the current sentence, and then picks the most probable

candidates from the list based on the distance of that candidate from the sentence

with the missing subject.

PR is the process by which pronouns are mapped and substituted to the antecedent

entities that they refer to. Processing documents (building a provenance graph)

without PR can result in the appearance of several nodes (i.e., pronouns) for a single

90

entity. To resolve pronouns, EXTRACTOR adapts a popular coreference resolution

model, NeuralCoref5.

ER is the process by which noun or verb phrases that refer to another entity inside

the same sentence are substituted by that entity or are eliminated as redundant

focusing on actionable entities and actions that are likely to appear in audit logs, using

POS tagging and DP with domain knowledge contained in CTI nouns dictionary or

in a corpus of common phrases. For examples, phrases like "tries to open and "makes

the modification" will be converted to "open" and "modify", respectively, using this

component. Summarization removes the portion of text that is not strictly related

to the attack behavior, and that cannot be observed in the logs. Ideally, only the

sentences that describe actions that may be observed in the audit logs should be

preserved. For summarization, EXTRACTOR takes advantage of two-step approach

to deal with sentence verbosity and word verbosity using BERT classifier and BiLSTM

network. For sentence verbosity, they labeled 8, 000 threat sentences under two classes

of productive and nonproductive, and trained BERT on this set. Word verbosity

removes unnecessary words from the productive sentences that it receives as input

from BERT using BiLSTM model and a word remover component. After a sentence

is processed by a BiLSTM network, its components are tagged as Agent, Patient, and

Action, and other types of arguments. For this component, EXTRACTOR utilizes

System Entity Extractor (SEE) in which, a sentence component that is tagged for

removal will be removed if it does not contain any entities that can be generated by

the rules of the SEE component.

Finally, Graph Generation is responsible for resolving the temporal and causal

order among the events in the text and for building the final provenance graph (this

component addresses the Relationships Extraction challenge)

Some of the EXTRACTOR components may be assisted by a set of dictionaries
5https://github.com/huggingface/neuralcoref

91

that contain terms related to CTI language (relying on domain-specific dictionaries

of concepts is a common approach in many knowledge-based NLP systems.

In particular, EXTRACTOR uses two dictionaries. First, a system call synonym

dictionary, which contains verbs representing system calls (e.g., write, fork) and their

corresponding synonyms. These synonyms represent the possible verbs that can be

used in CTI reports and very likely refer to a system call. Second, the CTI nouns

dictionary contains noun phrases commonly used in CTI reports, as well as different

textual representations of the same concept. The former contains 87 verbs represent-

ing system calls, while the latter holds over 1112 common noun phrases in the CTI

report.

5.5.3 SVO Extraction Framework

Functionalities can be divided into two categories. The first group describes "ac-

tions" that correspond to the specific exploitation. For example, read file, create an

account, and install app specify the exact action the attacker will take after exploiting

the vulnerability. The second functionality group, on the other hand, refers to the

exploit’s "impact" rather than its "action" in terms of the attack’s final outcome. For

example, this category includes functionalities that describe memory errors such as

buffer errors.

For the purpose of extracting statements describing action functionalities, we rep-

resent each functionality with a set of <Subject> <Verb> <Object> or SVOs. The

< Subject > represents any type of adversary (e.g., attacker, hacker, unauthorized

user, etc.), the < V erb > refers to a verb (e.g., read, write, modify, etc.), and

< Object > is any type of cyber object that follows the verb (e.g., file, account,

information, etc.). To be more precise, based on arguments in SRL, we define the

<Subject> <Verb> <Object> sequence as SVO = <ARG0> <V> <ARG1>.

Let’s define an argument dictionary consisting of subjects (ARG0) Dsubj, verbs (V)

Dverb, and objects (ARG1) Dobj that have been manually extracted and annotated

92

from CVE reports. The full corpus of verbs and objects assigned to each functionality

is depicted in Table C.1 in Appendix A. If Dsubj ={attacker, adversary, hacker, unau-

thorized user, unauthenticated user} is a constant dictionary of particular malicious

actors, let fz denote the functionality with index z, and Vz ∈ Dverb and Oz ∈ Dobj

be the set of verbs (V) and objects (ARG1) associated with functionality fz. Both of

these sets are extracted based on the relevancy to each functionality and the common-

ality of words in CVE reports based on expert knowledge. Therefore, given the list

of annotated verbs and objects, for each functionality fz, we utilize EXTRACTOR

to extract every possible statement in terms of SVOs from CVE reports that contain

verbs ∈ Vz and Objects ∈ Oz to generate the initially labeled dataset. Thus, we

represent each functionality fz as the union of extracted SVOs as follows:

S(fz) =
⋃

Sz
i V

z
j O

z
k where Sz

i ∈ Dsubj, V
z
j ∈ Dverb, O

z
k ∈ Dobj (5.5)

In Eq. 5.5,z ∈ {1, .., 16} is denoted as the functionality index. Additionally, Sz
i ,

V z
j , and Oz

k correspond to subject, verb, and object associated with functionality fz,

respectively. Sz
i V

z
j O

z
k also represent a SVO extracted by EXTRACTOR. Table 5.6

Table 5.5: Example of extracted SVOs for four functionalities

fz SVOs
Create Account - remote attackers create new accounts

- unauthenticated users create accounts with arbi-
trary roles

Read Files - remote attacker read arbitrary files
- attackers view arbitrary files on the system

Change Owner-
ship

- remote attackers modify permission field
- unauthenticated user changes the ownership of the
files

Install App - unauthenticated, remote attacker install addi-
tional jee applications
- attacker place a malicious dll file

shows a few examples of SVOs extracted for four functionalities. Such statements

93

provide a plain and simple representation of functionalities with respect to particu-

lar actions and objects. For example, SVOs such as remote attacker read arbitrary

files which represent functionality "Read File" involving annotated verbs and objects

frequently appear in CVE reports that clearly describe any form of file (arbitrary,

dll, txt, etc.) reading (read, open, access, etc.) in CVE reports that directly reflect

the attacker’s main action. However, this form of simple SVO extraction may not

adequately describe impact functionalities or may not be quite typical for all func-

tionalities. For example, both "attackers read memory" and "attackers read memory

that cause buffer over-read condition" phrases providing actions addressing similar

behavior. The former conforms to the simple format of SVOs we discussed above,

whereas the latter is a bit different and provides more granular information regarding

the impact of "buffer over-read" contrition. This form of threat representations are

quite prevalent in CVE report format that presents a primary action or a fault in the

system followed by an impact as <ACTION/FAULT> CAUSES <IMPACT>. We

refer to this as a causal link in which, an action causes or leads to an impact, which

is important for describing impact functionalities. In addition, defining such link can

help to differentiate one class from another one. For example, reading memory by

attacker refers to to the f6 = Read From Memory , but when this action causes buffer

issues, it infers the f9 known as Memory Read (Memory Buffer Errors).

We establish new sets of verbs and objects to extract SVOs related to impact

functionalities, similar to the earlier approach for extracting SVOs associated with

action functionalities. Let D′
verb = {cause, lead, result} and D′

Obj, which depicted

in Table C.2 in Appendix A, represent another set of annotated verbs and objects

corresponding to causal link, respectively.

If fz represents the functionality with index z, we define a new set of objects

O′
z ∈ D′

obj associated with fz. Likewise, for those classes that have this causal link,

we extract the SVOs utilizing EXTRACTOR. Table C.2 in Appendix A shows the

94

extracted objects to represent the causal links in three functionalities. Similar to Eq.

5.5, we represent each functionality fz as the union of extracted SVOs as follows:

S ′(fz) =
⋃

S ′z
i V

′z
j O′z

k where S ′z
i ∈ Dsubj, V

′z
j ∈ D′

verb, O
′z
k ∈ D′

obj (5.6)

Therefore, every functionality fz is represented by the union of two sets of SVOs

as S(fz) ∪ S ′(fz).

It may appear ad hoc and biased to provide a specialized corpus and strict rules

for extracting SVOs to represent functionalities. However, in the absence of sufficient

ground truth data, we seek to make such representations as accurate as possible for

training purposes. Notably, our objective is not to collect all possible representations.

We collect as much data as possible and then strategically train the model to learn the

connection between extracted data and an unseen text. This mechanism (see Section

5.6), especially in the absence of a standard training dataset, assists in highlighting

the core content of the target functionality and defining the surrounding context to

capture the semantic relationship between content and context, which can help to

recognize more complicated actions and implicit patterns that the content by itself

does not describe.

5.6 Methodology

We retrieved a list of SVOs for each functionality in the previous section, with

each SVO associated with a CVE report. Our goal is to predict the functionality of

a certain action (for example, read arbitrary file) based on the surrounding context.

We use SecureBERT’s capacity to obtain the relationship between two phrases and

leverage it to improve the text classification with document-level contextual informa-

tion. Therefore, we develop a model that takes two inputs, "content" and "context,"

and returns the content’s corresponding functionality. In essence, the term "content"

refers to a typically short text that describes a particular action (in this case, func-

95

tionality) with no or minimal noise. Meanwhile, "context" implies a longer text which

includes the content as well as additional discussions about related or similar notions.

As model input, we concatenate the content X and context D into a text sequence

[<[CLS]> X <SEP> D <SEP>]. Then, in a mini-batch, pad each text sequence to

M tokens, where M is the batch’s maximum length. After that, the vector [CLS] is

fed into a single-layer neural network with N output neurons, where N denotes the

total number of functionalities. We begin with a pre-trained SecureBERT model and

fine-tune it using cross-entropy loss.

To develop such a model, we would first establish a dataset in which each sample is

a text pair, and then design the classification layer utilizing SecureBERT to classify

the text pair into a functionality.

Dataset Creation

In Section 5.5.3 we introduced a framework to extract SVOs to represent the func-

tionalities. To train the model, these SVOs must be structured in a specified format

and paired with another relevant text. As previously noted, the objective is to build

a model that can predict the functionality corresponding to a content (SVO) within a

context. In other words, the same action may address multiple functionalities; thus,

we aim to train a model that can identify the correlation between a particular action

(content) and the longer text (context) which includes more information about the

action to deliver the correct functionality to which the action refers. Hence, it is cru-

cial to strategically pair the SVOs with a relevant text, in order to maximize training

performance.

To capture different types of information, we link each SVO with three types of

contexts in different stages for creating the training dataset. It worth noting that, for

each functionality in all three stages, we generate a maximum τx number of pairs to

avoid oversampling and the imbalanced data problem.

96

First, for each fz, we generate τ1 number of samples by randomly pairing the SVOs

belong to fz. This helps the model to learn the main concept of a functionality by

observing different SVO representations associated with a functionality.

NOTE : Causal SVOs (Table C.2 in the Appendix) can be used as is in the content part

(e.g., attacker cause buffer overread condition). However, for f12 (Memory Read) and

f16 (Memory Modification), the CVE description of the non-causal SVO must contain

the causal objects to avoid class conflicts. For example, "attackers read memory" can

be associated with both f12 (Read From Memory) and f13 (Memory Read). This SVO

would get f9 label if the CVE description associated with f13 contains an object in

o′j. In other words, we look for predefined objects defined for "Memory Read" within

the CVE description and if found, the SVO "attackers read memory" will be assigned

to f9, otherwise, it will be labeled as f12.

Second, for each fz, we generate τ2 number of samples by randomly pairing the SVOs

(content) belonging to fz and a positive sentence (context) in the manually created

dataset. Positive refers to the sentence we labeled as fz in the manual dataset. This

helps the model to learn the relevancy of the content within the context with an

extended vocabulary.

Third, for each fz, we generate τ3 number of samples by pairing the SVOs (content)

with the corresponding full CVE description (context). This helps the model to learn

the content of functionality within a noisy context.

Model Design –

We use the pretrained SecureBERT as a baseline model and a add a single layer

neural network on top of it as classification layer. This model takes both content and

context separated by special token [SEP] as input and trains the model to minimize

the target class prediction error.

Unlike the standard way of text classification which models typically take only one

97

Figure 5.5: The model architecture for classifying CVEs to functionalities

input, our model is designed to take two inputs due to the specific characteristics

of this classification problem. First, there is no labeled dataset from which to train

such a model, and the extracted SVOs to represent functionalities are confined to the

established guidelines. The context, which is a longer and more complicated text,

may provide unseen yet relevant information about the extracted content (SVO) that

the defined rules cannot capture. This creates a semantic link between the content

and the unseen information, which greatly improves the model’s learning and helps

in better generalization. In addition, functionalities are sometimes interdependent,

and SVOs require associated context in order to be identified correctly. In other

words, two functionalities may share the same SVO, and the correct functionality for

that SVO cannot be recognized unless it is assessed inside the context. For exam-

ple, Table 5.6 represents two SVOs as contents extracted from the given context. The

statements "attackers read arbitrary kernel memory" and "attackers read kernel mem-

98

Table 5.6: An example of contents and context as two inputs to the classification
model.

Contents
- attackers read arbitrary kernel memory
- attackers read kernel memory

Context
Linux kernel does not perform certain required access_ok checks, which allows
attackers to read arbitrary kernel memory on 64-bit systems and cause
a denial of service and possibly read kernel memory on 32-bit systems.

ory" represent both "Read From Memory" and "Memory Read (Memory Errors)" if

used individually. However, when such content appears with the statement "cause a

denial of service" within the context, it clearly refers to the "Memory Read (Mem-

ory Errors)" as the corresponding functionality for the SVO. In the meantime, the

context describes the underlying weakness, which is improper access check by stating

"does not perform certain required access_ok checks", which leads to the functional-

ity "Memory Read (Memory Errors)". Therefore, the model can establish a semantic

link between the provided weakness and the functionality during the training, that

can be used as the potential indicator for predicting unseen samples in the future.

The question that may arise is why not pass only the context to the model in a

standard way and ignore the content input. The justification is that contexts often

include several threat-related statements, and we extract functionality-related SVOs

from any report using the strategy we used to construct the dataset, thus we have no

notion about other potential functionality representations in that report. As a result,

the label(s) cannot be properly assigned to the report.

5.7 Evaluation

The CVE to functionality model has been trained based on content-context rela-

tionship. In other words, since there is no labeled dataset available, we had to collect

and annotate data throughout pre-defined rules and an off-the-shelf tool. Therefore,

the augmented dataset is imbalanced and the annotated data consists of CVE descrip-

99

tions and a small portion of external text. As the main objective of this model is to

map specific actions to functionalities, and not classifying any random text, our model

is expected to get two inputs, the content and the context, and expected to return

a classification score of each content-context pair corresponding to functionalities. It

worth noting that, each content in our training dataset addresses only one function-

ality while the context may included more, and our objective is to emphasize on the

given content within the context to predict the correct functionality. Fig. 5.6 shows

Figure 5.6: Data distribution in CVE to functionality classification dataset

the label distribution in our generated dataset that contains 223,597 content-context

pair of sixteen different functionalities. As mentioned earlier, we have conducted sta-

tistical text analysis on CVE descriptions to extract commonly used terminologies in

terms of subject, verbs, and objects to define rules for SVO extraction. We manually

go through all the common terms and assign them to the related functionalities. In

order to expand the corpus beyond the CVE descriptions, we also run the EXTRAC-

TOR on external resources other than CVE descriptions, such as security advisories

100

Table 5.7: The performance of the CVE to functionality classification model using all
testing dataset.

Dataset
Metric TS1 TS2
Accuracy 0.981 0.983
Precision (Micro) 0.981 0.983
Recall (Micro) 0.981 0.982
F1-Score (Micro) 0.981 0.983
Precision (Macro) 0.947 0.979
Recall (Macro) 0.965 0.976
F1-Score (Macro) 0.954 0.975

and security reports from NIST, NVD, MITRE, and other vendors such as Microsoft,

RedHat, Apple, etc., to extract 10,000 content-context pairs. In addition, we have

also annotated 1,098 SVOs manually relying on expert knowledge. We took the 75%

of data for training and the remaining 25% for testing, called TS1. In addition to

the 25% testing dataset, we have also manually labeled 494 CVEs by extracting their

content-context pairs as another testing dataset, called TS2. In this dataset, contents

are one or more SVOs extracted from CVE descriptions and the context is the entire

CVE description.

For this multiclass classification task, we use Binary Cross Entropy (BCE) as the

loss function. We use 2 epochs with the Adam optimizer and an initial learning rate

of 1e−5. The model returns 16 classification scores for each input pair corresponding

to each functionality, with the highest score considered the model’s final prediction.

Table 5.7 shows the performance evaluation of the model on both testing datasets.

According to the results, our proposed model shows high performance in predicting the

correct functionalities corresponding to each input content within the given context,

in both TS1 and TS2 testing datasets.

5.8 Discussions on Model Performance

Based on the confusion matrices depicted in Table 5.8 and 5.9, the model shows a

high performance in predicting the correct functionality despite the existing imbal-

101

Table 5.8: The confusion matrix of CVE to functionality classification model using
all testing dataset (TS1 dataset).

Predicted Values
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

f1 337 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f2 0 7221 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f3 0 0 1013 0 0 0 0 0 0 0 0 0 0 0 0 0
f4 0 0 0 1572 0 0 0 0 28 0 0 0 0 0 0 0
f5 0 0 0 0 725 0 0 0 0 0 0 0 0 0 0 0
f6 0 0 0 0 0 115 0 0 0 0 0 0 0 1 0 0
f7 0 0 0 0 0 0 663 0 1 0 2 0 0 0 0 0
f8 0 0 0 0 0 0 0 159 0 0 0 0 0 0 0 1
f9 0 0 0 0 0 0 64 0 867 0 2 0 0 0 0 0
f10 0 0 0 0 0 0 0 0 0 9341 181 0 1 1 0 0
f11 0 0 0 0 0 0 0 0 0 24 3681 0 0 0 0 1
f12 0 0 0 0 0 0 0 0 0 0 0 278 0 75 0 0
f13 0 0 0 0 0 0 0 0 0 0 34 109 9297 0 0 0
f14 0 0 0 0 0 0 0 0 0 0 0 171 0 905 0 0
f15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2422 0

C
o
rr

ec
t

V
al

u
es

f16 0 0 0 0 0 0 64 0 0 0 1 0 0 0 0 1988

Table 5.9: The confusion matrix of CVE to functionality classification model using
494 pairs of content and CVE descriptions as context (TS2 dataset).

Predicted Values
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

f1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f2 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f3 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0
f4 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
f5 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0
f6 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0
f7 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0
f8 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
f9 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0
f10 0 0 0 0 0 0 0 0 0 151 3 0 0 1 0 0
f11 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0
f12 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0
f13 0 0 0 0 0 0 0 0 0 0 0 0 107 0 0 0
f14 0 0 0 0 0 0 0 0 0 0 0 2 0 25 0 0
f15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0

C
o
rr

ec
t

V
al

u
e

f16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

102

ance data problem in our dataset. However, there are some confusions, particularly

in a few classes which share some sorts of dependencies as weak/strong commonality

or inheritance. functionality Read From Memory (f12), Read Files (f13), and Memory

Read (Memory Errors) (f14) which share inheritance dependencies, return the highest

confusion in the prediction. This confusion mostly happens in dataset TS1 in which,

input pairs may share ambiguous meanings with multiple intentions. For example,

the combination of some texts such as "local user read arbitrary kernel memory lo-

cation.", "local users, including low integrity processes, read and write to arbitrary

memory locations.", "local user read arbitrary memory" to generate content-context

pairs can refer to any "Read" action from the memory. Such texts as a context if

provided with a context potentially about the impact or further intuitions can lead

to better prediction. Similarly, Obtain Sensitive Information - Other Data (f10)

and Obtain Sensitive Information - Credentials (f13) can also share similar proper-

ties in some inputs leading to confusion. For example, sensitive data or "sensitive

information" in "remote attacker obtain sensitive data" or "local attacker obtain sen-

sitive information" may refer to "credentials" or other types of information such as

"directory/file names" or "browser history", etc., so they must be followed by an

informative context such as "XXX could allow a local attacker to obtain sensitive in-

formation, caused by plain text user account passwords potentially being stored in

the browser’s application command history. By accessing browser history, an attacker

could exploit this vulnerability to obtain other user accounts’ passwords." for bet-

ter prediction. The evaluation on dataset TS2 which indeed contains precise context

(entire CVE descriptions) that is depicted in Fig. 5.9 shows higher performance in

functionalities whose characteristics have some types of dependencies.

In real-world applications, the "content" may not always be available. In practice,

cybersecurity researchers or software vendors often only have access to a security

report (e.g., a CVE description) and intend to classify it to functionalities. Without

103

requiring the second input, our proposed model can take such security reports and

return the corresponding scores to each of the sixteen functionalities. In fact, the

trained model has been processed in order to capture the contextual representation

of the input document in accordance with any of the functionalities. It is worth

noting that, delivering all functionalities associated with a document, that can include

more than one functionality, implies a multi-label multiclass classification approach.

However, in the absence of a standard multi-label dataset, it is not feasible to train

the model in such a way. Thus, as a proof-of-concept, we evaluated the model on

66 CVEs descriptions that are mapped to one or more functionalities by MITRE in

the guideline. Table C.3 in the Appendix shows the model’s top K predictions where

K equals the total number of predictions until all the correct classes are predicted

for each individual CVE description. In other words, if a CVE is associated with

m functionalities, we show at least m top predictions. If all returned predictions

exactly match the ground truth, we do not provide any further prediction, and hence,

K = m. However, if all the correct classes are not covered in the top m predictions,

we show another m’ predictions until all correct classes are covered, and therefore

K = m +m′. Based on the results, in 58 out of 66 data samples, the top K model

predictions are equal to the number of correct classes (K = m and m′ = 0) implying

an 87.88% overall hit rate. In 6 data samples, the model returns one extra prediction

to cover all correct classes ((K = m+m′ and m′ = 1) which represents a cumulative

96.97% hit rate with one false positive. Overall, the model shows a 100% hit rate in

the top 5 (K = 5) predictions for all test data.

The promising performance confirms that the CVE language is effectively assessed

in the dataset creation and that the model appropriately captured the textual features

and semantic relationship between the text and the functionalities during training.

Limitations and Future Works

Although the model predicts correct functionalities based on both content-context

104

and context-only inputs, it is nevertheless constrained in some ways.

This model is mainly trained on text retrieved from the CVE language. Despite

the level of threat action understanding gained from CVE language, it is unclear how

this would perform on other corpora such as CTI and security reports due to a lack

of testing data for evaluation. Similarly, more data is required to evaluate the model

on context-only input. In addition, still there are some uncertainties in predicting

functionalities with dependencies which is as result of data limitation.

In the future, we wish to improve the data extraction so that we can annotate more

data, including multi-label instances, to improve the model’s capacity to do multi-

label classification with a single input. In addition, we intend to update and improve

the functionality classes defined in the guideline in order to eliminate dependencies

and, as a result, offer a more robust classification model.

5.9 Conclusions and Future Works

In this work, we introduced a system to automatically classify CVEs to functional-

ities that an attacker gains access to after an exploit. This is a unique problem that

the MITRE guideline has recently addressed 6, therefore there is no similar research

working on it and, as a result, no standard dataset to develop a classification model.

To address this issue, we conducted a statistical analysis of CVE descriptions and

established a semi-automated framework for extracting labeled data and creating a

dataset. Next, on top of the SecureBERT, we built a novel model architecture that

receives two inputs, called content and context, and returns the associated function-

ality. This novel design helps in capturing the semantic relationships between the

inputs and, therefore, identifying implicit text features that are not present in the

generated dataset. As a result, it supports bypassing the limitations in the extracted

data caused by specific restrictive rules we created manually.

This work offers substantial contributions to the fields of cyber threat intelligence,
6October 2021

105

threat hunting, and vulnerability assessment, as well as helping in linking the CVEs

to MITRE techniques and accordingly critical security controls, which is an essential

connection toward automating the course of action retrieval. In this study, we made

the following contributions:

1. Create a framework to automatically extract and annotate cybersecurity textual

data.

2. Propose a new dataset generation strategy that can handle data shortage for

training domain-specific classification tasks

3. Propose a novel model design in order to automatically detect attack behaviors

within a particular context, and classify such behaviors to functionalities.

4. Provide a comprehensive evaluation of the proposed method and show its effec-

tiveness compared with different other models.

5. Discuss the advantages and limitations of the work and propose future plans to

better generalize the model and improve the performance.

106

CHAPTER 6: Neural Information Retrieval (IR) Model for Retrieving Course of

Defense Actions for CVEs

System security is jeopardized as a result of software vulnerabilities. Patching can

usually resolve vulnerabilities, however, patches are not always available, or they may

not always recommended owing to high overhead and potential service outages. The

existing security strategies, vulnerability detection, and mitigation approaches are not

intelligent, automated, self-managed, and not competent to combat vulnerabilities

and security threats and provide a secured self-managed software environment to the

organizations. Hence, there is a strong need to devise an intelligent and automated

approach to optimize security and prevent the occurrence of vulnerabilities or mitigate

the vulnerabilities.

To automatically mitigate vulnerabilities, a thorough assessment of underlying

weakness(es), impacts, techniques, and tactics is required to understand the threats

introduced by CVEs. Meanwhile, there is no labeled dataset for mapping CVEs to

defense measures. In previous chapters, we developed SecureBERT as a cybersecu-

rity language model and used it to enhance and enrich CVEs. We classified CVEs to

CWEs, vulnerability types, and functionalities using multiple models built on top of

SecureBERT. These classification models not only help in CVE awareness, but also

establish links between CVEs, cybersecurity standards such as CWEs and MITRE

ATT&CK, and accordingly their mitigation strategies.

In this chapter, we use the mitigations provided by the aforementioned cybersecu-

rity standards to build a labeled dataset and design an information retrieval frame-

work on top of SecureBERT to automatically infer the appropriate course of defense

actions for CVEs.

107

6.1 Introduction

Nowadays, software systems are the lifeblood and most visible component of practi-

cally all contemporary and complicated systems. As a result, several firms rely heavily

on interdependent and networked software systems to make business choices. These

software applications are used to manage and regulate the operations and performance

of enterprises. Almost all industries have risen their business horizons, improved their

performance, and earned substantial returns through the use of the software. How-

ever, many organizations have suffered major financial and reputational losses as a

result of security breaches, weak security standards, cybersecurity attacks, and in-

duced software vulnerabilities in old and contemporary systems. The exploitation of

security vulnerabilities is a severe threat to the stability of software systems and the

safety of the data handled by them, as proven by new data breaches, ransomware

attacks, and large disruptions of critical systems. Despite the software engineering

community’s ongoing efforts to improve software quality and security through secure

coding guidelines, software testing, and various forms of code review, CVE records

show an increase in the number of vulnerabilities discovered and disclosed each day.

Although the patching would fully solve the security glitch, it is not always the choice

since patches may not be available immediately exposing the system to threats for

a long period, or it may not be recommended owing to high overhead and poten-

tial service outages the patch application may cause. Therefore, in response to the

ever-increasing threat of cyber-attacks on critical cyber infrastructure, such firms are

focusing on expanding their cybersecurity knowledge base to mitigate the growing

threats. Vulnerability mitigation is defined as an attempt to minimize the impact

and risk of a vulnerability without completely eliminating it. As a result, mitigating

a vulnerability is a temporary yet effective solution for system protection.

Detail information about mitigation techniques might be difficult to locate and is

usually only reported on the vendor or third-party websites, if available. However,

108

when vulnerabilities are described as higher abstraction cybersecurity standards such

as weaknesses (CWEs) and techniques (MITRE ATT&CK), it is possible to identify

threats across several perspectives, connect them to security measures, and mitigate

them. Many current practices perform this manually, relying on expert knowledge,

which is highly inefficient, costly, and prone to error. As a result, an automated system

capable of precisely analyzing CVEs, identifying threat behaviors and impacts, and

quickly delivering mitigation strategies is in high demand.

Information retrieval is the study of looking for information within a document or

searching for the documents themselves (IR). The term "document" in this context

refers to any sort of data, including text, image, video, or audio. The Google search

engine and Microsoft Bing are two well-known examples of IR systems, with billions of

users using such search engines to find the information they seek. In many situations,

they strike gold and immediately find what they’re looking for; in others, it takes

more time and effort; and sometimes, they never get a satisfying answer. Therefore,

enhancing the IR system’s performance is critical.

The recent state-of-the-art IR models have been applied in numerous cybersecu-

rity automation. In some circumstances, the objective is to extract some form of

information from random corpora, such as cybersecurity-related data (e.g., retrieving

documents relevant to InfoStealer), there is data available on the web, or gathering

data is not expensive. However, for more specialized and content-sensitive tasks, such

as the course of defense action retrieval, one of the most major barriers is the collec-

tion of labeled data. In addition, the model should be specially designed to fill the

semantic gap that exists between the input and the output.

In this work, we aim to build an IR model utilizing pretrained SecureBERT that is

able to automatically retrieve course of defense actions (CoA) in form of mitigation

strategies and security controls associated with an input CVE description. CoAs are

not low-level advisory to fix the issues, instead, they are high-level actions targeting

109

the root causes of threats, such as weakness and techniques, which are extremely

helpful for cyber threat intelligence and targeted threat mitigation. Here, we train

a proof-of-concept model to return the known course of defense actions provided by

cybersecurity standards.

6.2 Related Works

Bhandari et al. [52] proposed a platform that can automatically identify and collect

vulnerabilities. The dataset comprises low-level code and vulnerability information,

such as vulnerability type and CWEs, severity level, function, and file, which makes

it easier for developers to obtain data. This data has been collected from GitHub,

GitLab, and Bitbucket in which, code snippets have been classified to CVE type.

In this dataset, code changes are extracted at the file and method levels and then

classified as code fixes, covering 5365 CVE records for 1754 open-source projects that

were addressed in a total of 5495 vulnerability patching commits. In another work

focusing on linking threat reports to MITRE technique and tactics, Liao et al. [53]

leveraged NLP techniques to automatically extract compromised signatures such as

botnet IPs and malware names from unstructured text to a more standardized format.

Our work differs from this work because we consider classifying CVEs and threat

reports into tactics and techniques an attacker employed to complete an attack. Our

work focuses on the overall attacker behavior rather than just extracting tools used

by the attacker. Burger et al. [11] classified various threat-sharing technologies on

how they inter-operate. By considering the different use cases of the various threat-

sharing technologies, they propose a way to unify these techniques for wider usage

and adoption by security professionals.

6.3 Problem Definition

For each CVE description input, we aim to solve the problem of retrieving defensive

strategies from a set of predetermined mitigation techniques supplied by cybersecurity

110

standards, such as CWEs, MITRE ATT&CK, and security controls.

This is a many-to-many classification task in which one CoA corresponds to multi-

ple CVEs and one CVE is connected with one or more CoA. In other words, given a

pool of CoAs, we seek to return all relevant ones for each CVE input. As CoAs can

be updated by adding or modifying them, there is no fixed number of CoAs that can

apply to a single CVE. Therefore, traditional classification schemes with a constant

output size would be ineffective. Nevertheless, an adaptive and expandable IR model

appears to be an effective choice.

Traditional IR models, such as those used in eCommerce product search, often rank

documents using legacy relevance functions such as TF-IDF or BM25 [54]. These

relevance functions are based on exact or "hard" token matches rather than seman-

tic "soft" matches, are insensitive to word order and have static values rather than

learning weights. Despite its simplicity, the legacy relevance function is insufficient

for the fine-grained ranking of search results in practice. In contrast to the traditional

methods, the recently introduced approach neural IR (NIR) [55] learns vector-space

representations of both queries and documents, allowing neural models to address

the problem of relevance ranking end-to-end. The NIR model learns the properties

of both objects semantically, not solely based on statistical features, and adjusts the

weights in such a manner that the semantic links between them are captured, leading

to fine-grained retrieval results.

Given a CVE text description, we aim to design a proof-of-concept NIR model

on top of the pretrained SecureBERT that returns three sets of CoAs correspond-

ing to weaknesses, techniques, and security controls. To this end, we train a model

to understand the semantic relationship between attack language (CVE description)

and defense language (CoAs), with the model taking a CVE description and deliv-

ering a list of corresponding CoAs. In this model, we demonstrate the capability of

retrieving relevant CoAs for CVEs using available unstructured data utilizing pre-

111

trained SecureBERT, allowing the proposed approach to be expanded and improved

by training against any arbitrary data.

6.4 Challenges

Mapping CVEs and threat actions to defense actions has long been a difficult topic

in cybersecurity. In this section, we define and explain the most significant challenges

we faced while working on this work.

Semantic gap between attack and defense language

There is a terminological and semantic difference between the text addressing an at-

tack and the text corresponding to a cybersecurity defense. The semantic gap is the

difference between two descriptions of a similar or correlated topics that use different

linguistic domains. In cybersecurity, a text describes either an attack or a defense,

making it difficult for a machine to determine which is which. For example, the

sentence "attacker sends many requests to cause denial of services", and the phrase

"block the IP address" are two types of text having a relationship which the latter one

mitigates the former text. Understanding such a relationship is a challenging task

when it comes to predictive models. When such semantic representation is required,

traditional text mining methods that utilize statistical techniques such as TF-IDF

and word matching, may not effectively perform.Hence, it is important to employ a

semantic-based approach capable of digesting and identifying such implicit relation-

ships.

Lack of ground truth data

Detailed information about mitigation strategies might be available on vendor or

third-party websites, if any. Thus, there is no centralized dataset for training a model

for retrieving CoAs automatically. Instead, cybersecurity standards define high-level

defense measures that, when linked to CVEs, can be employed to protect the system

from the threat.

112

6.5 Methodology

In the absence of a labeled dataset, we leverage the link between CVEs and the

cybersecurity standards to create different datasets. Then, we design a multi-model

framework to return the corresponding CoA for any CVE input.

6.5.1 Data Augmentation

In the previous chapters, we classified CVEs to different cybersecurity standards,

including CWEs, vulnerability types, and functionalities. Vulnerability types and

functionalities are connected to common MITRE ATT&CK techniques, which are

also linked to security controls via MITRE guidelines. In this regard, we establish

three datasets comprising CoAs from CWEs, MITRE ATT&CK, and critical security

controls (CIS CSC), corresponding to all CVEs that are directly or indirectly tied

to any of these standards (through vulnerability types, functionality, and MITRE

techniques). Fig. 6.1 shows the CVE connections with cybersecurity standards and

those who share CoA.

Figure 6.1: CVEs’ connections and the source of course of actions.

113

6.5.2 Model Design

In order to retrieve the list of CoAs for a given CVE, we design a neural informa-

tion retrieval (NIR) model leveraging SecureBERT. The NIR models typically take a

query-document key and return the relevance score. Similarly in our proposed model,

the query (e.g., a CVE description) and document (e.g., a CoA) tokens are concate-

nated and then separated into two segments by the special token [SEP], with the

[CLS] at the beginning of the first segment. In the output, the embedding of the first

token is used as a representation for the entire query-document pair and it is fed into

a multi-layer perceptron (MLP) to predict the possibility of relevance. Therefore, the

output size of the classification layer equals to "one", returning the relevance score.

Fig. 6.2 shows the initial neural information retrieval model. The model takes two

inputs in the form of query Q and document D, separated by a special token [SEP].

The query Q is the input addressing the attack and document D refers to defense in-

put. The SecureBERT tokenizer returns a vector of token IDs and passes it through

the transformers stack. The output of the [CLS] token (output C) is then used to

represent the entire input text, which is passed into another MLP layer on top of the

transformers stack to predict the relevance score of two inputs.

Figure 6.2: The initial neural information retrieval model.

114

The mission of this project is to train separate but interconnected models for de-

termining the best set of defense actions to take in response to a CVE employing

mitigation strategies provided by CWEs, MITRE ATT&CK, and security controls.

Each standard’s recommended CoAs may differ in structure and offer a "unique" ap-

proach to mitigating the threat. In other words, risk can be reduced by addressing

the weakness or safeguarding the techniques that lead to an exploit. This uniqueness

justifies the use of a separate model for each standard, so that each model offers a

different set of defense actions, allowing defenders to to choose the one that works

best for them.

Meanwhile, as all CoAs include defensive language which is different than CVE

text as well as sharing some mutual information, the semantic and contextual repre-

sentation of each model, corresponding to each standard, can help in faster and more

efficient learning in other models. In other words, following the concept of "transfer

learning", a model which is fine-tuned against one CoA can be used to improve the

model performance of other models. Table 6.1 shows the CoAs suggested by different

cybersecurity standards for particular defense strategies such as Encryption, Access

Limit, and Sandboxing. In this context, CoAs may refer to similar defense actions,

regardless of the original sources. For example, when a model is already trained

on CoAs suggested by CWEs related to sandboxing, it would better converge when

trained against similar CoAs suggested by MITRE ATT&CK or CSC. Therefore, we

propose a multi-model training approach in which the model is trained in a series of

interdependent sequential stages, each one building upon the preceding one. To be

more concise, we begin with training the NIR model to predict CWE-level CoAs using

an initial model called SecureBERTCWE−Defense. This model accepts as inputs CVE

or CWE descriptions (attacks) and CWE mitigations (defense input). This model

is capable of associating CVEs with their relevant CWE-level CoAs. The following

phase involves further fine-tuning the initial model using CVE, CWE, and MITRE

115

Table 6.1: CoAs offered by different cybersecurity standards for different defensive
methods.

Strategy CoAs
CWE: Encrypt the data with a reliable encryption scheme before
transmitting.

Encryption
MITRE ATT&CK: Ensure that all wired and/or wireless traffic
is encrypted appropriately. Use best practices for authentication
protocols, such as Kerberos, and ensure web traffic that may con-
tain credentials is protected by SSL/TLS.
CSC: Encrypt sensitive data in transit. Example implementations
can include: Transport Layer Security (TLS) and Open Secure
Shell (OpenSSH).
CWE: Limit Content Provider permissions (read/write) as appro-
priate.

Access Limit
MITRE ATT&CK: Use least privilege for service accounts will
limit what permissions the exploited process gets on the rest of the
system.
CSC: Configure data access control lists based on a user\’s need
to know. Apply data access control lists, also known as access
permissions, to local and remote file systems, databases, and ap-
plications.’
CWE: Run the code in a "jail" or similar sandbox environment
that enforces strict boundaries between the process and the oper-
ating system.

Sandboxing
MITRE ATT&CK: Make it difficult for adversaries to advance
their operation through exploitation of undiscovered or unpatched
vulnerabilities by using sandboxing.
CSC: Deploy and maintain email server anti-malware protections,
such as attachment scanning and/or sandboxing.

ATT&CK technique descriptions as attack inputs and MITRE ATT&CK mitigation

as defensive inputs. This model is called SecureBERTATT&CK−Defense. In contrast to

the previous phase, this stage fine-tunes the SecureBERTCWE−Defense rather than the

SecureBERT. By applying this strategy, we ensure that SecureBERTATT&CK−Defense

has a working knowledge of the defense language (CWE-based CoA), which favors

faster and more effective convergence. Similarly in the last phase, we take the

SecureBERTATT&CK−Defense as the initial model and feed it with CVE, CWE, or

MITRE ATT&CK technique descriptions as attack inputs and security controls as

defensive inputs and train a model called SecureBERTControl−Defense. Fig. 6.3 shows

116

the overall architecture of our proposed model.

Figure 6.3: Show the model design for retrieving CoAs.

One question that may arise is why not aggregate all CoAs and train a single

model that takes all CVEs and all CoAs at the same time and train it accordingly.

Our method is justified for two reasons: simplicity and specificity. Dividing the

problem into smaller sub-problems simplifies training and results in a more robust

model. There are several CoAs to respond to a CVE, and returning all at once

could be burdensome for the user in terms of analyzing, selecting, and applying

multiple options. Furthermore, it may induce confusion during training since similar

(in terms of language) but different (in terms of defense action) CoAs may lead to

the formation of an inefficient model. Regardless of simplicity, multiple models imply

multiple strategies to respond to a threat. As security controls, each model provides

CoAs against a specific property of a CVE exploit, such as a weakness, technique,

or defined set of standard security controls. This allows defenders to decide how to

mitigate the threat based on their capabilities, assets, and needs that enables the

defenders to choose and customize their desired defense approach.

117

6.6 Evaluation

In this section, we undertake a comparative evaluation of our proposed model’s

performance in retrieving CoAs for CVEs. We train three separate neural information

retrieval models on top of each other, corresponding to three cybersecurity standards

including CWEs, MITRE ATT&CK, and Critical Security Controls so that each

returns the corresponding mitigation strategies.

To train each model, we first collect CVEs and a list of corresponding CoAs. As

there is no direct link between CVEs and CoAs, we utilize the connection between

CVEs and the cybersecurity standards to collect and annotate the CoAs. Thereafter,

we create CVE-CoA pairs, as query-document inputs, by utilizing positive and neg-

ative sampling. Training an IR model generally entails receiving both positive (CVE

and CoA are relevant) and negative (CVE and CoA are irrelevant) examples, learning

the representations of the query (Q) and the document (D) based on the loss function,

and then completing model training. The use of negative sampling in information re-

trieval and recommendation systems has a significant impact on the training of an

effective model. Therefore, for each CVE, we conduct positive sampling by pairing

it with all relevant CoAs and assign 1 as relevance score. Meanwhile, we employ a

heuristic method, Popularity-biased Negative Sampling (PNS) [56] to produce the

negative examples with the relevance score of 0. In this context, we pair each CVE

with N irrelevant CoAs which we practically used the value of 15 for N .

Each cybersecurity standard provides a unique number of CoAs. As depicted in

Table 6.2, for the labeled CVEs in our datasets, CWEs, MITRE ATT&CK, and CIS

CSC suggest 202, 95, and 20 mitigation strategies, respectively. To train each model,

there is a specific dataset, each comprises a unique number of CVEs connected the

associated cybersecurity standards. Table 6.3 shows the number of CVEs exist in

each training dataset as well as the total number of generated CVE-CoA pairs which

is used to train the models.

118

Table 6.2: Shows the number of mitigations each cybersecurity standard provides for
the CVEs.

Standard No. CoAs
CWEs 202
MITRE Techniques 95
CIS CSC 20

Table 6.3: This table represents to number of CVEs associated with each cybersecu-
rity standard, and shows the total number of CVE-CoA pairs generated tp train each
model.

Standard No. CVEs No. CVE-CoA Pairs
CWEs (Vuln. Types) 55,205 1,663,517
MITRE ATT&CK 38,936 798,793
CIS CSC 32,180 535,655

We employ Binary Cross-Entropy with logits (BCEwithLogits) 1 as the loss func-

tion for this multiclass classification problem. BCEwithLogits loss combines a Sigmoid

layer and the Binary Cross-Entropy (BCELoss) in one single class. It is more numer-

ically stable than using a plain Sigmoid followed by a BCELoss as, by combining the

operations into one layer, it takes advantage of the log-sum-exp trick for numerical sta-

bility. We practically employ two epochs with the Adam optimizer and a 1e−5 initial

learning rate. For every input pairs, each model generates one relevance score between

0 and 1. We utilize the training dataset (Table 6.3 for training the model. During the

testing, the model takes a CVE description rather than a CVE-CoA pair and returns

a ranked list of CoAs with the relevant scores. we tested SecureBERTCWE−Defense,

SecureBERTATT&CK−Defense, and SecureBERTControl−Defense with 11,041, 7,787,

and 6,436 unseen CVE descriptions. To evaluate the model performance, we used

two standard IR evaluation metrics including Mean Reciprocal Rank at K (MRR@K)

and Mean Average Precision (MAP@K), where K ∈ {5, 10, 15}. MRR is a metric that

examines, "Where is the first relevant item?" It is directly related to the binary rele-

vance metric family. For a single query, the reciprocal rank is 1
rank

where rank refers

1https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

119

to the position of the highest-ranked answer. If no correct answer returned at top K,

the reciprocal rank is 0. The reciprocal rank of a set of recommendations served to a

single query i (RRi@K = 1
ranki,1

) is defined as the rank of the first relevant document

among the top K. For multiple M queries, MRR@K is defined as the average of M

reciprocal ranks as MRR@K = 1
M

∑M
i=1

1
ranki

. This approach places a strong empha-

sis on the first relevant element in the list. It works best for targeted searches, such

as when looking for the "best" CoA. The MRR metric does not evaluate the rest of

the list of retrieved documents and it focuses on a single correct CoA from the list. In

our problem, it is calculated by taking any of the correct CoAs as the target answer

if located in the top K, regardless of other correct answers. The MRR@K shows how

well the model can distinguish between the relevant and non-relevant documents.

To measure if "all the predicted items are relevant" and if "the most relevant items

ranked at the top", we compute the MAP@K. By calculating the average precision at

K (AP@K) over all instances in the dataset, MAP@K determines whether all relevant

items tend to be ranked highly. The average relevance scores of the top K documents

returned in response to a query are used to calculate AP@K. It compares the set of

top K results for each query to the set of correct (relevant) documents, i.e. a ground

truth set of relevant documents for the query. Therefore,

AP@K =
1

N(k)

K∑
i=1

TPseen(i)

i

where TP stands for True Positives and N(k) and TPseen can be calculated as follows:

N(k) = minimum(k, TPtotal)

and 
0 ith is NOT relevant

TPseen till i ith is relevant

120

Table 6.4: The evaluation of three proposed models for retrieving course of actions
for CVEs.

Model MRR@5 MAP@5 MRR@10 MAP@10 MRR@15 MAP@15
SecureBERTCWE 92.13 92.76 93.56 93.88 94.19 96.13
SecureBERTATT&CK 94.10 94.29 94.28 94.97 94.39 96.41
SecureBERTControl 95.61 96.01 95.98 98.76 96.02 99.29

Table 6.4 shows the performance evaluation of all three models. According to the

results, our proposed model shows a high performance in retrieving correct CoAs for

CVE entries.

NIR models are often planned to retrieve relevant documents from a large number

of documents and thus require a lot of training samples to perform effectively. In

this problem, there are two key correlations between the CVEs and CoAs need to be

recognized during the training. First, the connection between the attack and defense

language and second, the connection between CVE and the cybersecurity standards

which CoAs are extracted from. Detecting such correlations during the training leads

to a high retrieval performance in all the models. In the meanwhile, unlike typical NIR

applications, the document pool size is relatively small (202, 95 and 20 as depicted

in Table 6.2) which results in less complex model and accordingly smoother training

process.

Limitations

Despite the high performance of all three models, there are some potential limitations

in this work.

First, the lack of labeled data leads to not cover all possible CoAs to be considered

when training the models. The CVE-CoA connections for establishing the labeled

dataset has been derived from the most commonly seen methods in the cybersecurity

standards. However, these connections are limited to what the guideline has provided

and therefore, several CWEs, MITRE ATT&CK techniques, and security controls

have not been considered. Therefore, this method have potential limitations in case

of facing infrequent threats. This problem can be solved by expanding the guideline

121

and providing CVEs with more connections to the higher abstractions.

In addition, the CoAs derived from cybersecurity standards are not CVE-specific,

implying high-level mitigation plans. As noted previously, CVE-specific mitigation

methods can be found on vendor or third-party websites; hence, approaches such

as code-base solutions or detailed step-by-step recommendations are not offered in

cybersecurity standards CoAs. The CoAs proposed by the models in this work provide

high-level guidelines for reducing risk and minimizing the impact of the exploit. For

the same reason, all of the returning CoAs may not apply to the given CVE. Our

models provide a short list of potential mitigation measures, and the user must decide

how, what, and where to respond in order to counter the exploit.

6.7 Conclusions

In this section, we introduced a multi-model framework to process the CVEs’ de-

scription and retrieve the corresponding course of defense actions provided by differ-

ent cybersecurity standards including CWE, MITRE ATT&CK, and Critical Security

Controls (CIS CSC). In general, we make the following contributions as followsn:

• Creating a proof-of-concept neural information retrieval (NIR) model to retrieve

appropriate set of course of defense actions for a CVE with respect to the CVE’s

associated weaknesses, techniques, and security controls.

• Addressing the existing semantic gap between attack and defense language by

designing a multi-model framework.

• A thorough evaluation of the proposed model.

122

Conclusion

By employing AI-based technologies such as machine/deep learning and natural

language processing, security systems can be trained to automatically assess, ana-

lyze, and mitigate cyberthreats. In contrast to simply sounding an alarm to alert

a human security technician to take action, an automated cybersecurity system can

swiftly assess, analyze, characterize, and mitigate a vulnerability. Automating secu-

rity systems not only improves efficiency by reducing human error, but also boosts

overall efficiency by accelerating response time and minimizing costs.

This dissertation aimed to develop a framework to automatically parse and ana-

lyze human-readable description of the CVEs in order to characterize and mitigate

cybersecurity vulnerabilities. Therefore, it introduced SecureBERT, a domain-specific

language model to understand the cybersecurity language, and leveraged it to (1) de-

ploy multiple NLP models to classify CVEs to the most common higher abstraction

security standards including CWEs and MITRE ATT&CK techniques to enrich CVE

descriptions, (2) predict the corresponding CVSS metrics for the purpose of prioriti-

zation, and (3) retrieve the associated course of defense actions (CoA). Each section

of this work presents several innovative techniques for data generation and model de-

sign, reports a full evaluation procedure to illustrate the performance, and discusses

the limitations of each framework.

123

REFERENCES

[1] M. Corporate, “Common weakness enumaration,” 2018.

[2] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Advances in
pre-training distributed word representations,” arXiv preprint arXiv:1712.09405,
2017.

[3] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pp. 1532–1543, 2014.

[4] P. Ranade, S. Mittal, A. Joshi, and K. Joshi, “Using deep neural networks to
translate multi-lingual threat intelligence,” in 2018 IEEE International Confer-
ence on Intelligence and Security Informatics (ISI), pp. 238–243, IEEE, 2018.

[5] S. Mittal, A. Joshi, and T. Finin, “Cyber-all-intel: An ai for security related
threat intelligence,” arXiv preprint arXiv:1905.02895, 2019.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[7] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” arXiv preprint
arXiv:1802.05365, 2018.

[8] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[9] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model for
scientific text,” arXiv preprint arXiv:1903.10676, 2019.

[10] A. Dalton, E. Aghaei, E. Al-Shaer, A. Bhatia, E. Castillo, Z. Cheng, S. Dhadu-
vai, Q. Duan, B. Hebenstreit, M. M. Islam, et al., “Active defense against social
engineering: The case for human language technology,” in Proceedings for the
First International Workshop on Social Threats in Online Conversations: Un-
derstanding and Management, pp. 1–8, 2020.

[11] M. S. I. Sajid, J. Wei, M. R. Alam, E. Aghaei, and E. Al-Shaer, “Dodgetron: To-
wards autonomous cyber deception using dynamic hybrid analysis of malware,”
in 2020 IEEE Conference on Communications and Network Security (CNS),
pp. 1–9, IEEE, 2020.

[12] E. Aghaei and G. Serpen, “Host-based anomaly detection using eigentraces fea-
ture extraction and one-class classification on system call trace data,” Journal of
Information Assurance and Security (JIAS), vol. 14, no. 4, pp. 106–117, 2019.

124

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, pp. 5998–6008, 2017.

[14] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A
multi-task benchmark and analysis platform for natural language understand-
ing,” arXiv preprint arXiv:1804.07461, 2018.

[15] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions
for machine comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

[16] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[17] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and
S. Arikawa, “Byte pair encoding: A text compression scheme that accelerates
pattern matching,” 1999.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9,
2019.

[19] C. Wang, K. Cho, and J. Gu, “Neural machine translation with byte-level sub-
words,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 9154–9160, 2020.

[20] R. M. Zur, Y. Jiang, L. L. Pesce, and K. Drukker, “Noise injection for training
artificial neural networks: A comparison with weight decay and early stopping,”
Medical physics, vol. 36, no. 10, pp. 4810–4818, 2009.

[21] Z. You, J. Ye, K. Li, Z. Xu, and P. Wang, “Adversarial noise layer: Regularize
neural network by adding noise,” in 2019 IEEE International Conference on
Image Processing (ICIP), pp. 909–913, IEEE, 2019.

[22] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural networks
via random self-ensemble,” in Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 369–385, 2018.

[23] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regularization,”
Neural Computation, vol. 7, pp. 108–116, 01 1995.

[24] X. Li, Z. Yang, P. Guo, and J. Cheng, “An intelligent transient stability assess-
ment framework with continual learning ability,” IEEE Transactions on Indus-
trial Informatics, vol. 17, no. 12, pp. 8131–8141, 2021.

[25] H. Ahn, S. Cha, D. Lee, and T. Moon, “Uncertainty-based continual learning with
adaptive regularization,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

125

[26] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pp. 249–256, JMLR Workshop and Con-
ference Proceedings, 2010.

[27] E. Aghaei and E. Al-Shaer, “Threatzoom: neural network for automated vulner-
ability mitigation,” in Proceedings of the 6th Annual Symposium on Hot Topics
in the Science of Security, pp. 1–3, 2019.

[28] E. Aghaei, W. Shadid, and E. Al-Shaer, “Threatzoom: Hierarchical neural net-
work for cves to cwes classification,” in International Conference on Security and
Privacy in Communication Systems, pp. 23–41, Springer, 2020.

[29] S. K. Lim, A. O. Muis, W. Lu, and C. H. Ong, “MalwareTextDB: A database for
annotated malware articles,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), (Vancou-
ver, Canada), pp. 1557–1567, Association for Computational Linguistics, July
2017.

[30] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “Biobert: a pre-
trained biomedical language representation model for biomedical text mining,”
Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.

[31] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and
M. McDermott, “Publicly available clinical bert embeddings,” arXiv preprint
arXiv:1904.03323, 2019.

[32] K. Ameri, M. Hempel, H. Sharif, J. Lopez Jr, and K. Perumalla, “Cybert: Cy-
bersecurity claim classification by fine-tuning the bert language model,” Journal
of Cybersecurity and Privacy, vol. 1, no. 4, pp. 615–637, 2021.

[33] S. S. Das, E. Serra, M. Halappanavar, A. Pothen, and E. Al-Shaer, “V2w-bert:
A framework for effective hierarchical multiclass classification of software vul-
nerabilities,” in 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), pp. 1–12, IEEE, 2021.

[34] Y. Chen, J. Ding, D. Li, and Z. Chen, “Joint bert model based cybersecurity
named entity recognition,” in 2021 The 4th International Conference on Software
Engineering and Information Management, pp. 236–242, 2021.

[35] S. Zhou, J. Liu, X. Zhong, and W. Zhao, “Named entity recognition using bert
with whole world masking in cybersecurity domain,” in 2021 IEEE 6th Interna-
tional Conference on Big Data Analytics (ICBDA), pp. 316–320, IEEE, 2021.

[36] C. Gao, X. Zhang, and H. Liu, “Data and knowledge-driven named entity recog-
nition for cyber security,” Cybersecurity, vol. 4, no. 1, pp. 1–13, 2021.

126

[37] J. Yin, M. Tang, J. Cao, and H. Wang, “Apply transfer learning to cybersecurity:
Predicting exploitability of vulnerabilities by description,” Knowledge-Based Sys-
tems, vol. 210, p. 106529, 2020.

[38] A. Khazaei, M. Ghasemzadeh, and V. Derhami, “An automatic method for cvss
score prediction using vulnerabilities description,” Journal of Intelligent & Fuzzy
Systems, vol. 30, no. 1, pp. 89–96, 2016.

[39] C. Elbaz, L. Rilling, and C. Morin, “Fighting n-day vulnerabilities with auto-
mated cvss vector prediction at disclosure,” in Proceedings of the 15th Interna-
tional Conference on Availability, Reliability and Security, pp. 1–10, 2020.

[40] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,”
in Proceedings of the first instructional conference on machine learning, vol. 242,
pp. 29–48, Citeseer, 2003.

[41] “National vulnerability database,” 2018.

[42] S. Neuhaus and T. Zimmermann, “Security trend analysis with cve topic mod-
els,” in Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering, ISSRE ’10, (Washington, DC, USA), pp. 111–120, IEEE
Computer Society, 2010.

[43] S. Na, T. Kim, and H. Kim, “A study on the classification of common vulnera-
bilities and exposures using naïve bayes,” in Advances on Broad-Band Wireless
Computing, Communication and Applications (L. Barolli, F. Xhafa, and K. Yim,
eds.), (Cham), pp. 657–662, Springer International Publishing, 2017.

[44] S. Rehman and K. Mustafa, “Software design level vulnerability classification
model,” International Journal of Computer Science and Security (IJCSS), vol. 6,
no. 4, pp. 235–255, 2012.

[45] M. Palmer, D. Gildea, and N. Xue, “Semantic role labeling,” Synthesis Lectures
on Human Language Technologies, vol. 3, no. 1, pp. 1–103, 2010.

[46] P. R. Kingsbury and M. Palmer, “From treebank to propbank.,” in LREC,
pp. 1989–1993, Citeseer, 2002.

[47] C.-M. Chen, J.-Y. Kan, Y.-H. Ou, Z.-X. Cai, A. Guan, et al., “Threat action ex-
traction using information retrieval,” in CS & IT Conference Proceedings, vol. 11,
CS & IT Conference Proceedings, 2021.

[48] H. Zhang, G. Shen, C. Guo, Y. Cui, and C. Jiang, “Ex-action: Automatically ex-
tracting threat actions from cyber threat intelligence report based on multimodal
learning,” Security and Communication Networks, vol. 2021, 2021.

[49] G. Ayoade, S. Chandra, L. Khan, K. Hamlen, and B. Thuraisingham, “Auto-
mated threat report classification over multi-source data,” in 2018 IEEE 4th In-
ternational Conference on Collaboration and Internet Computing (CIC), pp. 236–
245, IEEE, 2018.

127

[50] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Extractor: extracting attack
behavior from threat reports,” in 2021 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 598–615, IEEE, 2021.

[51] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An annotated
corpus of semantic roles,” Computational linguistics, vol. 31, no. 1, pp. 71–106,
2005.

[52] G. Bhandari, A. Naseer, and L. Moonen, “Cvefixes: automated collection of vul-
nerabilities and their fixes from open-source software,” in Proceedings of the 17th
International Conference on Predictive Models and Data Analytics in Software
Engineering, pp. 30–39, 2021.

[53] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the ioc game:
Toward automatic discovery and analysis of open-source cyber threat intelli-
gence,” CCS ’16, (New York, NY, USA), p. 755â766, Association for Computing
Machinery, 2016.

[54] R. Baeza-Yates, B. Ribeiro-Neto, et al., Modern information retrieval, vol. 463.
ACM press New York, 1999.

[55] B. Mitra, N. Craswell, et al., An introduction to neural information retrieval.
Now Foundations and Trends Boston, MA, 2018.

[56] T. Chen, Y. Sun, Y. Shi, and L. Hong, “On sampling strategies for neural
network-based collaborative filtering,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 767–
776, 2017.

128

APPENDIX A: Vulnerability Types Definitions

Vulnerability Type Connected MITRE ATT&CK Techniques

1 General Improper Access

Control

See the Functionality Section

2 Authentication Bypass by

Capture-replay

T1190 (Exploit Public-Facing Application)

/ T1040 (Network Sniffing)

3 Improper Restriction of Ex-

cessive Authentication At-

tempts

T1078 (Valid Accounts) / T1110.001

(Brute Force: Password Guessing)

4 Overly Restrictive Account

Lockout Mechanism

T1446 (Device Lockout) / T1531 (Ac-

count Access Removal) / T1110 (Brute

Force)

5 Use of Password Hash In-

stead of Password for Au-

thentication

T1550.002 (Use Alternate Authentication

Material: Pass the Hash)

6 General Credential Man-

agement Errors

T1552 (Unsecured Credentials) / T1078

(Valid Accounts)

7 Cleartext Transmission of

Sensitive Information

T1552 (Unsecured Credentials) / T1078

(Valid Accounts) / T1040 (Network Sniff-

ing)

8 Hard-coded Credentials T1078.001 (Default Accounts)

9 Weak Password/Hashing T1078 (Valid Accounts) / T1110 (Brute

Force)

10 General Cryptographic Is-

sues

T1078 (Valid Accounts) / T1110

(Brute Force) / T1557 (Man-in-the-

Middle) / T1040 (Network Sniffing)

129

11 XML External Entity

(XXE)

T1059 (Command and Scripting Inter-

preter) / T1005 (Data from Local Sys-

tem) / T1046 (Network Service Scanning)

12 XML Entity Expansion

(XEE)

T1499.004 (Endpoint Denial of Service:

Application or System Exploitation)

14 URL Redirection to Un-

trusted Site (’Open Redi-

rect’)

T1036 (Masquerading) / T1566.002

(Phishing: Spearphishing Link)

15 Cross-site Scripting (XSS) T1059.007 (Command and Scripting Inter-

preter: JavaScript/JScript) / T1557 (Man-

in-the-Browser) / -Stored: T1189 (Drive-

by Compromise) -Others T1204.001 (User

Execution: Malicious Link)

16 OS Command Injection T1059 (Command and Scripting Inter-

preter) / T1133 (External Remote Service)

17 SQL Injection T1059 (Command and Scripting Inter-

preter) / T1005 (Data from Local Sys-

tem), T1505.003 (Server Software Compo-

nent: Web Shell), T1136 (Create Account)

/ T1190 (Exploit Public-Facing Applica-

tion) / T1565.001 (Data Manipulation)

18 Code Injection T1059 (Command and Scripting Inter-

preter)

130

19 Directory Traversal (Rela-

tive and Absolute)

See the Functionality Section (File Process-

ing) / See the Functionality Section (File

Processing) / T1202 (Indirect Command

Execution)

20 Symlink Attacks See the Functionality Section (File Process-

ing / See the Functionality Section (File

Processing / T1202 (Indirect Command

Execution)

21 Untrusted/ Uncontrolled/

Unquoted Search Path

T1574 (Hijack Execution Flow)

22 Unrestricted File Upload T1505.003 (Server Software Component:

Web Shell) / T1059 (Command and Script-

ing Interpreter)

23 Deserialization of Untrusted

Data

T1059 (Command and Scripting Inter-

preter)

24 Infinite Loop T1499.004 (Endpoint Denial of Service:

Application or System Exploitation)

25 Cross-site Request Forgery

(CSRF)

T1068 (Exploitation for Privilege Escala-

tion) / T1204.001 (User Execution: Mali-

cious Link)

26 Session Fixation T1563 (Remote Service Session Hijacking)

27 Uncontrolled Resource Con-

sumption

T1499 (Endpoint Denial of Service)

28 Server-Side Request

Forgery (SSRF)

T1090 (Proxy) / T1135 (Network Discov-

ery) / T1005 (Data from Local System)

/ T1133 (External Remote Service)

131

Table A.1: Vulnerability types mappings to MITRE ATT&CK techniques by MITRE
guideline.

132

APPENDIX B: Functionality to MITRE ATT&CK Technique Mappings

Functionality Connected MITRE ATTACK Techniques

1 Modify Configuration T1478 (Install Insecure or Malicious Config-

uration)

2 Create Account T1136 (Create Account) / T1078 (Valid

Accounts)

3 Disable protections T1562 (Impair Defenses)

4 Restart/Reboot T1529 (System Shutdown/Reboot)

5 Install App T1476 (Deliver Malicious App via Other

Means)

6 Read from Memory T1005 (Data from Local System)

7 Obtain sensitive informa-

tion: Credentials

T1552 (Unsecured Credentials)

8 Obtain sensitive informa-

tion: Other data

T1005 (Data from Local System)

9 Password Reset T1098 (Account Manipulation)

10 Read files T1005 (Data from Local System) /

T1003.008 (OS Credential Dump-

ing: /etc/passwd and /etc/shadow)

/ T1552.001 (Unsecured Credentials:

Credentials in Files)

11 Delete files T1485 (Data Destruction) /

T1499.004 (Endpoint Denial of Service:

Application or System Exploitation)

133

12 Create/Upload file T1505.003 (Server Software Component:

Web Shell) / T1059 (Command and Script-

ing Interpreter)

13 Write to existing file T1565.001 (Data Manipulation) /

T1059 (Command and Scripting Inter-

preter) / T1574 (Hijack Execution Flow)

/ T1554 (Compromise Client Software

Binary)

14 Change ownership or per-

missions

T1222 (File and Directory Permissions

Modification)

15 Memory Modification

(Memory Buffer Errors,

Pointer Issues, Type Er-

rors, etc.)

T1574 (Hijack Execution

Flow), T1499.004 (Endpoint Denial of

Service: Application or System Exploita-

tion)

16 Memory Read (Memory

Buffer Errors, Pointer

Issues, Type Errors, etc.)

T1005 (Data from Local System)

/ T1499.004 (Endpoint Denial of Ser-

vice: Application or System Exploitation) /

T1211 (Exploitation for Defense Evasion) /

T1212 (Exploitation for Credential Access)

Table B.1: Functionalities’ mapping to MITRE ATT&CK techniques by MITRE
guideline.

134

APPENDIX C: Examples of Automated CVEs to Functionalities Classification

z Functionality (fz) Actions (Vz) Object (Oz)

1 Create Account add, build, create, es-

tablish, generate

account, user account, new

user, another user, arbitrary

user, ftp user, administra-

tive user, admin user, stan-

dard user, root user, admin

user, new username, admin-

istrator user, administrative

user, client

2 Create Or Upload File add, build, create,

dump, upload, gen-

erate, transfer, share,

transmit

arbitrary posts, content,

data, database, directory,

drive, existing files, folder,

information in the back-end

database, insert, log data,

log file content, crafted im-

age, crafted photo, data,

database, file

3 Delete File delete, destruc-

tion,eliminate, erase,

expunge, flush, purge,

remove, uninstall,

vanish, wipe

arbitrary posts, content,

data, database, directo-

ries, directory, drive, exist-

ing files, files, folder, in-

formation in the back-end

database, log data, log file

135

4 Disable Protections abort, alter, block,

corrupt, deactivate.

destroy, disable, dis-

connect, disrupt,

downgrade, evade,

hinder, impair, in-

terrupt, kill, modify,

prevent, reduce, re-

voke, stop, shut down,

terminate, turn off

anti spam, antivirus, an-

tivirus, authentication, au-

thorization, cryptographic

protection mechanism,

defense, dynamic malware

analysis, firewall, guard,

intrusion detection, ipsec,

protection, secure file copy,

security control, security

update, shield, signature-

based threat detection, ssh,

ssl, code signing check, tls,

tracking, VPN tunnel

5 Install App deploy, deliver, install,

setup

adware, app, application,

crafted request, crafted web

request, extension, mali-

cious package, malicious

web request, malware, pack-

age, phishing, phishing link,

place, plugin, program, ran-

somware, software, spy-

ware, surveillanceware, tro-

jan, virus, widget

136

6 Modify Configuration alter, change, com-

promise, configure,

decrypt, edit, elevate,

disable, forge, infect,

manipulate, modify,

poison, rename, re-

place, restrict, update

management system,

administrative setting,

configuration, configurator,

preference, settings, sys-

tem management, system

property

7 Read From Memory copy, load, read memory, buffer, kernel,

stack, pointer

8 Read Files copy, load, observe,

open, view, visit

data, database, file, mes-

sage

9 Memory Read (Mem-

ory Buffer Errors,

Pointer Issues, Type

Errors, etc.)

copy, load, overread,

underread, read

active memory, arbitrary

kernel memory, arbitrary

memory, buffer content,

kernel, memory content,

memory location, physical

memory, process memory,

restricted memory, sensitive

memory, sensitive memory

content, stack memory

137

10 Memory Modification

(Memory Buffer Er-

rors, Pointer Issues,

Type Errors, etc.)

change, compromise,

configure, forge, in-

fect, manipulate,

modify, overwrite,

poison, replace, un-

derwrite, update,

write

active memory, arbitrary

kernel memory, arbitrary

memory, buffer content,

kernel, memory content,

memory location, physical

memory, process memory,

restricted memory, sensitive

memory, sensitive memory

content, stack memory

11 Obtain Sensitive In-

formation - Creden-

tials

access, acquire, cap-

ture, collect, crack,

decrypt, disclose,

discover, download,

enumerate, expose,

extract, find, gain,

gather, get, guess, hi-

jack, identify, locate,

obtain, reach, re-

trieve, reveal, scrape,

steal, traverse

/shadow, credential, key,

/passwd, admin cookie,

administrative login access,

credentials, cryptographic,

passcode, passcodes, pass-

word, passwords, plaintext

credential, plaintext pass-

word, private key, sensitive

credential information,

session key, user accounts,

usernames, user_login,

user_pass, username

138

12 Obtain Sensitive

Information - Other

Data

access, acquire, cap-

ture, collect, disclose,

discover, download,

enumerate, expose,

extract, find, gain,

gather, get, guess, hi-

jack, identify, locate,

obtain, reach, re-

trieve, reveal, scrape,

steal, traverse

configuration, cookie,

database, information,

sensitive, session id, string

length, token value

13 Password Reset change, compromise,

configure, forge, in-

fect, manipulate,

modify, overwrite,

poison, replace,

update, write

etcpasswd, account, ac-

count information, admin,

credential, e-mail, email,

password, session_key,

session key, user_name,

user_pass, username

14 Change Ownership or

Permissions

change, compromise,

configure, decrypt,

forge, infect, manipu-

late, modify, poison,

replace, restrict,

update

access control list, access

to files, delete access,

modify access, ownership,

read-write permission, read

access, read permission,

read-write permission,

read/write permission, user

access, write access, write

permission

139

15 Restart Or Reboot crash, reboot, restart,

shutdown

appliance, camera, com-

puter, crash, device, lap-

top, modem, phone, pro-

cess, router, server, service,

system

16 Write To Existing File modify, add, alter,

append, change, com-

promise, edit, forge,

insert, manipulate,

override, overwrite,

poison, re-write, re-

place, rewrite, save,

store, underwrite,

update, write

arbitrary code, arbitrary

files, content, database, ex-

isting files, source code

Table C.1: List of verbs and objects extracted to represent functionality classes

140

Table C.2: List of objects extracted to represent causal links in functionality classes

z Functionality (fz) Object (O′
z)

9 Memory Read (Mem-
ory Buffer Errors,
Pointer Issues, Type
Errors, etc.)

buffer over-read, buffer overread condition, denial of
service (heap-based buffer over-read), denial of service
(out-of-bounds array access), denial of service (out-of-
bounds read and memory corruption), denial of ser-
vice (out-of-bounds read), out-of-bound read, out-of-
bounds access, read past the allocated buffer, reads
outside of bounds of heap allocated data

10 Memory Modification
(Memory Buffer Er-
rors, Pointer Issues,
Type Errors, etc.)

denial of service (out-of-bounds write), out-of-bounds
write, overwrite buffers

15 Restart Or Reboot denial of service (application crash or hang), denial of
service (browser crash), denial of service (deadlock),
denial of service (device outage), denial of service (de-
vice reboot), denial of service (device reload), denial of
service (host os crash), denial of service (panic), denial
of service (reboot), denial of service (reset), to restart
unexpectedly, to reboot

CVE Description

Functionality Predicted

1 CVE-2020-5250: In PrestaShop before version 1.7.6.4, when a customer edits their address,

they can freely change the id_address in the form, and thus steal someone else’s address.

It is the same with CustomerForm, you are able to change the id_customer and change all

information of all accounts. The problem is patched in version 1.7.6.4.

Password Reset

Modify Configuration

Password Reset: 7.1

Modify Configuration: 1.21

2 CVE-2020-15170: apollo-adminservice before version 1.7.1 does not implement access con-

trols. If users expose apollo-adminservice to internet(which is not recommended), there are

potential security issues since apollo-adminservice is designed to work in intranet and it

doesn’t have access control built-in. Malicious hackers may access apollo-adminservice apis

directly to access/edit the application’s configurations. To fix the potential issue without

upgrading, simply follow the advice that do not expose apollo-adminservice to internet.

Modify Configuration
Disable Protections: 8.32

Modify Configuration: 5.18

141

3 CVE-2020-5253: NetHack before version 3.6.0 allowed malicious use of escaping of characters

in the configuration file (usually .nethackrc) which could be exploited. This bug is patched

in NetHack 3.6.0.

Modify Configuration Modify Configuration: 11.27

4 CVE-2020-5231: In Opencast before 7.6 and 8.1, users with the role

ROLE_COURSE_ADMIN can use the user-utils endpoint to create new users not

including the role ROLE_ADMIN. ROLE_COURSE_ADMIN is a non-standard role in

Opencast which is referenced neither in the documentation nor in any code (except for

tests) but only in the security configuration. From the name â implying an admin for a

specific course â users would never expect that this role allows user creation. This issue is

fixed in 7.6 and 8.1 which both ship a new default security configuration.

Create Account Create Account: 12.3

5 CVE-2013-6129: The install/upgrade.php scripts in vBulletin 4.1 and 5 allow remote at-

tackers to create administrative accounts via the customerid, htmldata[password], html-

data[confirmpassword], and htmldata[email] parameters, as exploited in the wild in October

2013.

Create Account Create Account: 13.84

6 CVE-2015-4051: Beckhoff IPC Diagnostics before 1.8 does not properly restrict access to

functions in /config, which allows remote attackers to cause a denial of service (reboot or

shutdown), create arbitrary users, or possibly have unspecified other impact via a crafted

request, as demonstrated by a beckhoff.com:service:cxconfig:1#Write SOAP action to /up-

npisapi.

Restart Or Reboot

Create Account

Restart Or Reboot: 11.53

Create Account: 5.49

7 CVE-2019-3758: RSA Archer, versions prior to 6.6 P2 (6.6.0.2), contain an improper au-

thentication vulnerability. The vulnerability allows sysadmins to create user accounts with

insufficient credentials. Unauthenticated attackers could gain unauthorized access to the

system using those accounts.

Create Account Create Account: 10.56

8 CVE-2019-3798: Cloud Foundry Cloud Controller API Release, versions prior to 1.79.0,

contains improper authentication when validating user permissions. A remote authenticated

malicious user with the ability to create UAA clients and knowledge of the email of a victim

in the foundation may escalate their privileges to that of the victim by creating a client with

a name equal to the guid of their victim.

142

Create Account Create Account: 11.43

9 CVE-2019-18581: Dell EMC Data Protection Advisor versions 6.3, 6.4, 6.5, 18.2 versions

prior to patch 83, and 19.1 versions prior to patch 71 contain a server missing authorization

vulnerability in the REST API. A remote authenticated malicious user with administrative

privileges may potentially exploit this vulnerability to alter the applicationâs allowable list

of OS commands. This may lead to arbitrary OS command execution as the regular user

runs the DPA service on the affected system.

Disable protections Disable Protections: 7.47

10 CVE-2018-17908: WebAccess Versions 8.3.2 and prior. During installation, the applica-

tion installer disables user access control and does not re-enable it after the installation is

complete. This could allow an attacker to run elevated arbitrary code.

Disable protections
Install App: 10.31

Disable Protections: 2.81

11 CVE-2018-17892: NUUO CMS all versions 3.1 and prior, The application implements a

method of user account control that causes standard account security features to not be

utilized as intended, which could allow user account compromise and may allow for remote

code execution.

Disable protections
Obtain Sensitive Information: Credentials: 8.02

Disable Protections: 1.82

12 CVE-2018-15397: A vulnerability in the implementation of Traffic Flow Confidentiality

(TFC) over IPsec functionality in Cisco Adaptive Security Appliance (ASA) Software and

Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote

attacker to cause an affected device to restart unexpectedly, resulting in a denial of service

(DoS) condition. The vulnerability is due to an error that may occur if the affected software

renegotiates the encryption key for an IPsec tunnel when certain TFC traffic is in flight.

An attacker could exploit this vulnerability by sending a malicious stream of TFC traffic

through an established IPsec tunnel on an affected device. A successful exploit could allow

the attacker to cause a daemon process on the affected device to crash, which could cause

the device to crash and result in a DoS condition.

Restart/Reboot Restart Or Reboot: 14.91

143

13 CVE-2018-15397: A vulnerability in the implementation of Traffic Flow Confidentiality

(TFC) over IPsec functionality in Cisco Adaptive Security Appliance (ASA) Software and

Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote

attacker to cause an affected device to restart unexpectedly, resulting in a denial of service

(DoS) condition. The vulnerability is due to an error that may occur if the affected software

renegotiates the encryption key for an IPsec tunnel when certain TFC traffic is in flight.

An attacker could exploit this vulnerability by sending a malicious stream of TFC traffic

through an established IPsec tunnel on an affected device. A successful exploit could allow

the attacker to cause a daemon process on the affected device to crash, which could cause

the device to crash and result in a DoS condition.

Restart/Reboot Restart Or Reboot: 15.05

14 CVE-2019-1817: A vulnerability in the web proxy functionality of Cisco AsyncOS Software

for Cisco Web Security Appliance could allow an unauthenticated, remote attacker to cause a

denial of service (DoS) condition on an affected device. The vulnerability is due to improper

validation of HTTP and HTTPS requests. An attacker could exploit this vulnerability by

sending a malformed HTTP or HTTPS request to an affected device. An exploit could

allow the attacker to cause a restart of the web proxy process, resulting in a temporary DoS

condition.

Restart/Reboot Restart Or Reboot: 14.06

15 CVE-2020-3312: A vulnerability in the application policy configuration of Cisco Firepower

Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to gain

unauthorized read access to sensitive data on an affected device. The vulnerability is due to

insufficient application identification. An attacker could exploit this vulnerability by sending

crafted traffic to an affected device. A successful exploit could allow the attacker to gain

unauthorized read access to sensitive data.

Obtain Sensitive Information:

Other Data

Obtain Sensitive Information: Other Data:

8.7588

16 CVE-2020-3477: A vulnerability in the CLI parser of Cisco IOS Software and Cisco IOS XE

Software could allow an authenticated, local attacker to access files from the flash: filesystem.

The vulnerability is due to insufficient application of restrictions during the execution of a

specific command. An attacker could exploit this vulnerability by using a specific command

at the command line. A successful exploit could allow the attacker to obtain read-only

access to files that are located on the flash: filesystem that otherwise might not have been

accessible.

144

Read Files, Obtain Sensitive Infor-

mation: Other Data

Read Files: 9.47

Obtain Sensitive Information: Other Data: 5.19

17 CVE-2019-15963: A vulnerability in the web-based management interface of Cisco Unified

Communications Manager could allow an authenticated, remote attacker to view sensitive

information in the web-based management interface of the affected software. The vulnera-

bility is due to insufficient protection of user-supplied input by the web-based management

interface of the affected service. An attacker could exploit this vulnerability by accessing the

interface and viewing restricted portions of the software configuration. A successful exploit

could allow the attacker to gain access to sensitive information or conduct further attacks.

Obtain Sensitive Information:

Other Data

Obtain Sensitive Information: Other Data: 11.4

18 CVE-2020-11045: In FreeRDP after 1.0 and before 2.0.0, there is an out-of-bound read in in

update_read_bitmap_data that allows client memory to be read to an image buffer. The

result displayed on screen as colour

Read From Memory Read From Memory: 7.54

19 CVE-2018-7526: In TotalAlert Web Application in BeaconMedaes Scroll Medical Air Sys-

tems prior to v4107600010.23, by accessing a specific uniform resource locator (URL) on the

webserver, a malicious user may be able to access information in the application without

authenticating.

Obtain Sensitive Information:

Other Data

Obtain Sensitive Information: Other Data: 9.89

20 CVE-2018-5445: A Path Traversal issue was discovered in Advantech WebAccess/SCADA

versions prior to V8.2_20170817. An attacker has read access to files within the directory

structure of the target device.

Read Files Read Files: 13.55

21 CVE-2018-18990: LCDS Laquis SCADA prior to version 4.1.0.4150 allows a user-supplied

path in file operations prior to proper validation. An attacker can leverage this vulnerability

to disclose sensitive information under the context of the web server process.

Obtain Sensitive Information:

Other Data

Obtain Sensitive Information: Other Data: 10.04

22 CVE-2020-16211: Advantech WebAccess HMI Designer, Versions 2.1.9.31 and prior. An

out-of-bounds read vulnerability may be exploited by processing specially crafted project

files, which may allow an attacker to read information.

145

Read Files

Read From Memory

Read Files: 7.61

Read From Memory: 5.15

23 CVE-2020-11652: An issue was discovered in SaltStack Salt before 2019.2.4 and 3000 be-

fore 3000.2. The salt-master process ClearFuncs class allows access to some methods that

improperly sanitize paths. These methods allow arbitrary directory access to authenticated

users.

Obtain Sensitive Information:

Other Data

Obtain Sensitive Information: Credentials: 6.79

Obtain Sensitive Information: Other Data: 4.93

24 CVE-2017-16651: Roundcube Webmail before 1.1.10, 1.2.x before 1.2.7, and 1.3.x be-

fore 1.3.3 allows unauthorized access to arbitrary files on the host’s filesystem, includ-

ing configuration files, as exploited in the wild in November 2017. The attacker must

be able to authenticate at the target system with a valid username/password as the at-

tack requires an active session. The issue is related to file-based attachment plugins and

_task=settings_action=upload-display_from=timezone requests.

Read Files Read Files: 12.42

25 CVE-2019-5910: Directory traversal vulnerability in HOUSE GATE App for iOS 1.7.8 and

earlier allows remote attackers to read arbitrary files via unspecified vectors.

Read Files Read Files: 14.77

26 CVE-2019-3787: Cloud Foundry UAA, versions prior to 73.0.0, falls back to appending

âunknown.orgâ to a user’s email address when one is not provided and the user name does

not contain an @ character. This domain is held by a private company, which leads to attack

vectors including password recovery emails sent to a potentially fraudulent address. This

would allow the attacker to gain complete control of the user’s account.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 7.69

27 CVE-2019-3763: The RSA Identity Governance and Lifecycle software and RSA Via Lifecycle

and Governance products prior to 7.1.0 P08 contain an information exposure vulnerability.

The Office 365 user password may get logged in a plain text format in the Office 365 connector

debug log file. An authenticated malicious local user with access to the debug logs may obtain

the exposed password to use in further attacks.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 11.86

146

28 CVE-2018-17900: Yokogawa STARDOM Controllers FCJ, FCN-100, FCN-RTU, FCN-500,

All versions R4.10 and prior, The web application improperly protects credentials which

could allow an attacker to obtain credentials for remote access to controllers.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 12.61

29 CVE-2019-6549: An attacker could retrieve plain-text credentials stored in a XML file on

PR100088 Modbus gateway versions prior to Release R02 (or Software Version 1.1.13166)

through FTP.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 13.08

30 CVE-2020-4408: The IBM QRadar Advisor 1.1 through 2.5.2 with Watson App for IBM

QRadar SIEM does not adequately mask all passwords during input, which could be obtained

by a physical attacker nearby. IBM X-Force ID: 179536.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 8.46

31 CVE-2019-13922: A vulnerability has been identified in SINEMA Remote Connect Server

(All versions V2.0 SP1). An attacker with administrative privileges can obtain the hash of

a connected device’s password. The security vulnerability could be exploited by an attacker

with network access to the SINEMA Remote Connect Server and administrative privileges.

At the time of advisory publication no public exploitation of this security vulnerability was

known.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 12.54

32 CVE-2018-7259: The FSX / P3Dv4 installer 2.0.1.231 for Flight Sim Labs A320-X sends a

user’s Google account credentials to http://installLog.flightsimlabs.com/LogHandler3.ashx if

a pirated serial number has been entered, which allows remote attackers to obtain sensitive

information, e.g., by sniffing the network for cleartext HTTP traffic. This behavior was

removed in 2.0.1.232.

Obtain sensitive information: Cre-

dentials

Obtain Sensitive Information: Credentials: 7.17

147

33 CVE-2019-15956: A vulnerability in the web management interface of Cisco AsyncOS Soft-

ware for Cisco Web Security Appliance (WSA) could allow an authenticated, remote attacker

to perform an unauthorized system reset on an affected device. The vulnerability is due to

improper authorization controls for a specific URL in the web management interface. An

attacker could exploit this vulnerability by sending a crafted HTTP request to an affected

device. A successful exploit could have a twofold impact: the attacker could either change

the administrator password, gaining privileged access, or reset the network configuration

details, causing a denial of service (DoS) condition. In both scenarios, manual intervention

is required to restore normal operations.

Restart Or Reboot

Password Reset

Restart Or Reboot: 11.48

Modify Configuration: 3.96

Delete Files: 2.32

Install App: 1.66

Password Reset: 1.05

34 CVE-2019-1915: A vulnerability in the web-based interface of Cisco Unified Communications

Manager, Cisco Unified Communications Manager Session Management Edition (SME),

Cisco Unified Communications Manager IM and Presence (Unified CM IMamp;P) Service,

and Cisco Unity Connection could allow an unauthenticated, remote attacker to conduct a

cross-site request forgery (CSRF) attack on an affected system. The vulnerability is due to

insufficient CSRF protections by the affected software. An attacker could exploit this vul-

nerability by persuading a targeted user to click a malicious link. A successful exploit could

allow the attacker to send arbitrary requests that could change the password of a targeted

user. An attacker could then take unauthorized actions on behalf of the targeted user.

Password Reset Password Reset: 9.06

35 CVE-2019-3775: Cloud Foundry UAA, versions prior to v70.0, allows a user to update their

own email address. A remote authenticated user can impersonate a different user by changing

their email address to that of a different user.

Password Reset Password Reset: 12.08

36 CVE-2019-3782: Cloud Foundry CredHub CLI, versions prior to 2.2.1, inadvertently writes

authentication credentials provided via environment variables to its persistent config file. A

local authenticated malicious user with access to the CredHub CLI config file can use these

credentials to retrieve and modify credentials stored in CredHub that are authorized to the

targeted user.

Password Reset Password Reset: 8.88

148

37 CVE-2019-3723: Dell EMC OpenManage Server Administrator (OMSA) versions prior to

9.1.0.3 and prior to 9.2.0.4 contain a web parameter tampering vulnerability. A remote

unauthenticated attacker could potentially manipulate parameters of web requests to OMSA

to create arbitrary files with empty content or delete the contents of any existing file, due to

improper input parameter validation

Create Or Upload File

Write To Existing File

Delete Files

Create Or Upload File: 9.58

Write To Existing File: 5.9

Delete Files: 5.49

38 CVE-2019-3750: Dell Command Update versions prior to 3.1 contain an Arbitrary File

Deletion Vulnerability. A local authenticated malicious user with low privileges poten-

tially could exploit this vulnerability to delete arbitrary files by creating a symlink from

the "Temp\IC\ICDebugLog.txt" to any targeted file. This issue occurs because of insecure

handling of Temp directory permissions that were set incorrectly.

Delete files Delete Files: 13.84

38 CVE-2020-1163: An elevation of privilege vulnerability exists in Windows Defender that

leads arbitrary file deletion on the system.To exploit the vulnerability, an attacker would

first have to log on to the system, aka ’Microsoft Windows Defender Elevation of Privilege

Vulnerability’. This CVE ID is unique from CVE-2020-1170.

Delete files Delete Files: 12.92

40 CVE-2020-15189: SOY CMS 3.0.2 and earlier is affected by Remote Code Execution (RCE)

using Unrestricted File Upload. Cross-Site Scripting(XSS) vulnerability that was used in

CVE-2020-15183 can be used to increase impact by redirecting the administrator to access

a specially crafted page. This vulnerability is caused by insecure configuration in elFinder.

This is fixed in version 3.0.2.328.

Create/Upload file Create Or Upload File: 13.11

41 CVE-2020-5297: In OctoberCMS (october/october composer package) versions from 1.0.319

and before 1.0.466, an attacker can exploit this vulnerability to upload jpg, jpeg, bmp, png,

webp, gif, ico, css, js, woff, woff2, svg, ttf, eot, json, md, less, sass, scss, xml files to any di-

rectory of an October CMS server. The vulnerability is only exploitable by an authenticated

backend user with the `cms.manage_assets` permission. Issue has been patched in Build

466 (v1.0.466).

Create/Upload file Create Or Upload File: 15.2911

149

42 CVE-2012-6081: Multiple unrestricted file upload vulnerabilities in the (1) twikidraw (ac-

tion/twikidraw.py) and (2) anywikidraw (action/anywikidraw.py) actions in MoinMoin be-

fore 1.9.6 allow remote authenticated users with write permissions to execute arbitrary code

by uploading a file with an executable extension, then accessing it via a direct request to the

file in an unspecified directory, as exploited in the wild in July 2012.

Create/Upload file Create Or Upload File: 14.87

43 CVE-2011-4106: TimThumb (timthumb.php) before 2.0 does not validate the entire source

with the domain white list, which allows remote attackers to upload and execute arbitrary

code via a URL containing a white-listed domain in the src parameter, then accessing it via

a direct request to the file in the cache directory, as exploited in the wild in August 2011.

Create/Upload file Create Or Upload File: 12.71

44 CVE-2016-3088: The Fileserver web application in Apache ActiveMQ 5.x before 5.14.0 allows

remote attackers to upload and execute arbitrary files via an HTTP PUT followed by an

HTTP MOVE request.

Create/Upload file Create Or Upload File: 14.73

45 CVE-2020-3476: A vulnerability in the CLI implementation of a specific command of Cisco

IOS XE Software could allow an authenticated, local attacker to overwrite arbitrary files

in the underlying host file system. The vulnerability is due to insufficient validation of

the parameters of a specific CLI command. An attacker could exploit this vulnerability by

issuing that command with specific parameters. A successful exploit could allow the attacker

to overwrite the content of any arbitrary file that resides on the underlying host file system.

Write to existing file Write To Existing File: 12.2

46 CVE-2020-3440: A vulnerability in Cisco Webex Meetings Desktop App for Windows could

allow an unauthenticated, remote attacker to overwrite arbitrary files on an end-user system.

The vulnerability is due to improper validation of URL parameters that are sent from a

website to the affected application. An attacker could exploit this vulnerability by persuading

a user to follow a URL to a website that is designed to submit crafted input to the affected

application. A successful exploit could allow the attacker to overwrite arbitrary files on the

affected system, possibly corrupting or deleting critical system files.

Write to existing file Write To Existing File: 12.54

150

47 CVE-2019-1836: A vulnerability in the system shell for Cisco Nexus 9000 Series Fabric

Switches in Application Centric Infrastructure (ACI) mode could allow an authenticated,

local attacker to use symbolic links to overwrite system files. These system files may be

sensitive and should not be overwritable by non-root users. The attacker would need valid

device credentials. The vulnerability is due to incorrect symbolic link verification of directory

paths when they are used in the system shell. An attacker could exploit this vulnerability by

authenticating to the device and providing crafted user input to specific symbolic link CLI

commands. Successful exploitation could allow the attacker to overwrite system files that

should be restricted. This vulnerability has been fixed in software version 14.1(1i).

Write to existing file Write To Existing File: 12.6

48 CVE-2020-3237: A vulnerability in the Cisco Application Framework component of the

Cisco IOx application environment could allow an authenticated, local attacker to overwrite

arbitrary files in the virtual instance that is running on the affected device. The vulnerability

is due to insufficient path restriction enforcement. An attacker could exploit this vulnerability

by including a crafted file in an application package. An exploit could allow the attacker to

overwrite files.

Write to existing file Write To Existing File: 12.79

49 CVE-2008-4996: init in initramfs-tools 0.92f allows local users to overwrite arbitrary files

via a symlink attack on the /tmp/initramfs.debug temporary file.

Write to existing file Write To Existing File: 11.4726

50 CVE-2018-15392: A vulnerability in the DHCP service of Cisco Industrial Network Director

could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condi-

tion. The vulnerability is due to improper handling of DHCP lease requests. An attacker

could exploit this vulnerability by sending malicious DHCP lease requests to an affected

application. A successful exploit could allow the attacker to cause the DHCP service to

terminate, resulting in a DoS condition.

Restart Or Reboot, Memory Read

(Memory Errors)

Restart Or Reboot: 13.34

Memory Read (Memory Errors): 2.77

51 CVE-2018-15392: A vulnerability in the DHCP service of Cisco Industrial Network Director

could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condi-

tion. The vulnerability is due to improper handling of DHCP lease requests. An attacker

could exploit this vulnerability by sending malicious DHCP lease requests to an affected

application. A successful exploit could allow the attacker to cause the DHCP service to

terminate, resulting in a DoS condition.

151

Restart Or Reboot Restart Or Reboot: 13.34

52 CVE-2020-5210: In NetHack before 3.6.5, an invalid argument to the -w command line option

can cause a buffer overflow resulting in a crash or remote code execution/privilege escalation.

This vulnerability affects systems that have NetHack installed suid/sgid and shared systems

that allow users to influence command line options. Users should upgrade to NetHack 3.6.5.

Memory Read (Memory Errors) Memory Read (Memory Errors): 6.43

53 CVE-2020-11019: In FreeRDP less than or equal to 2.0.0, when running with logger set to

"WLOG_TRACE", a possible crash of application could occur due to a read of an invalid

array index. Data could be printed as string to local terminal. This has been fixed in 2.1.0.

Memory Read (Memory Errors)
Restart Or Reboot: 11.86

Memory Read (Memory Errors): 2.35

54 CVE-2020-15137: All versions of HoRNDIS are affected by an integer overflow in the RNDIS

packet parsing routines. A malicious USB device can trigger disclosure of unrelated kernel

memory to userspace applications on the host, or can cause the kernel to crash. Kernel mem-

ory disclosure is especially likely on 32-bit kernels; 64-bit kernels are more likely to crash on

attempted exploitation. It is not believed that kernel memory corruption is possible, or that

unattended kernel memory disclosure without the collaboration of a userspace program run-

ning on the host is possible. The vulnerability is in `HoRNDIS::receivePacket`. `msg_len`,

`data_ofs`, and `data_len` can be controlled by an attached USB device, and a negative

value of `data_ofs` can bypass the check for `(data_ofs + data_len + 8) msg_len`, and

subsequently can cause a wild pointer copy in the `mbuf_copyback` call. The software is

not maintained and no patches are planned. Users of multi-tenant systems with HoRNDIS

installed should only connect trusted USB devices to their system.

Memory Read (Memory Errors) Memory Read (Memory Errors): 7.3

55 CVE-2020-4068: In APNSwift 1.0.0, calling APNSwiftSigner.sign(digest:) is likely to result

in a heap buffer overflow. This has been fixed in 1.0.1.

Memory Read (Memory Errors) Memory Read (Memory Errors): 9.26

56 CVE-2020-15199: In Tensorflow before version 2.3.1, the `RaggedCountSparseOutput` does

not validate that the input arguments form a valid ragged tensor. In particular, there is no

validation that the `splits` tensor has the minimum required number of elements. Code uses

this quantity to initialize a different data structure. Since `BatchedMap` is equivalent to a

vector, it needs to have at least one element to not be `nullptr`. If user passes a `splits`

tensor that is empty or has exactly one element, we get a `SIGABRT` signal raised by the

operating system.

152

Memory Read (Memory Errors)
Restart Or Reboot: 4.26

Memory Read (Memory Errors): 3.88

57 CVE-2020-11068: In LoRaMac-node before 4.4.4, a reception buffer overflow can happen

due to the received buffer size not being checked. This has been fixed in 4.4.4

Memory Read (Memory Errors) Memory Read (Memory Errors): 9.9

58 CVE-2020-8649: There is a use-after-free vulnerability in the Linux kernel through 5.5.2 in

the vgacon_invert_region function in drivers/video/console/vgacon.c.

Memory Read (Memory Errors) Memory Read (Memory Errors): 9.44

59 CVE-2020-12652: The __mptctl_ioctl function in drivers/message/fusion/mptctl.c in the

Linux kernel before 5.4.14 allows local users to hold an incorrect lock during the ioctl opera-

tion and trigger a race condition, i.e., a "double fetch" vulnerability, aka CID-28d76df18f0a.

NOTE: the vendor states "The security impact of this bug is not as bad as it could have

been because these operations are all privileged and root already has enormous destructive

power."

Memory Read (Memory Errors) Memory Read (Memory Errors): 8.22

60 CVE-2019-12660: A vulnerability in the CLI of Cisco IOS XE Software could allow an

authenticated, local attacker to write values to the underlying memory of an affected device.

The vulnerability is due to improper input validation and authorization of specific commands

that a user can execute within the CLI. An attacker could exploit this vulnerability by

authenticating to an affected device and issuing a specific set of commands. A successful

exploit could allow the attacker to modify the configuration of the device to cause it to be

non-secure and abnormally functioning.

Memory Modification (Memory Er-

rors)

Memory Modification (Memory Errors): 10.97

61 CVE-2019-13522: An attacker could use a specially crafted project file to corrupt the memory

and execute code under the privileges of the EZ PLC Editor Versions 1.8.41 and prior.

Memory Modification (Memory Er-

rors)

Memory Modification (Memory Errors): 11.15

62 CVE-2018-10620: AVEVA InduSoft Web Studio v8.1 and v8.1SP1, and InTouch Machine

Edition v2017 8.1 and v2017 8.1 SP1 a remote user could send a carefully crafted packet to

exploit a stack-based buffer overflow vulnerability during tag, alarm, or event related actions

such as read and write, with potential for code to be executed.

153

Memory Read (Memory Errors),

Memory Modification (Memory Er-

rors)

Memory Read (Memory Errors): 4.84

Memory Modification (Memory Errors): 1.84

63 CVE-2019-12660: A vulnerability in the CLI of Cisco IOS XE Software could allow an

authenticated, local attacker to write values to the underlying memory of an affected device.

The vulnerability is due to improper input validation and authorization of specific commands

that a user can execute within the CLI. An attacker could exploit this vulnerability by

authenticating to an affected device and issuing a specific set of commands. A successful

exploit could allow the attacker to modify the configuration of the device to cause it to be

non-secure and abnormally functioning.

Memory Modification (Memory Er-

rors), Disable Protections

Memory Modification (Memory Errors): 10.97

Disable Protections: 2.81

64 CVE-2018-15376: A vulnerability in the embedded test subsystem of Cisco IOS Software

for Cisco 800 Series Industrial Integrated Services Routers could allow an authenticated,

local attacker to write arbitrary values to arbitrary locations in the memory space of an

affected device. The vulnerability is due to the presence of certain test commands that were

intended to be available only in internal development builds of the affected software. An

attacker could exploit this vulnerability by using these commands on an affected device. A

successful exploit could allow the attacker to write arbitrary values to arbitrary locations in

the memory space of the affected device.

Memory Modification (Memory Er-

rors)

Memory Modification (Memory Errors): 11.77

65 CVE-2019-1052: A remote code execution vulnerability exists in the way that the Chakra

scripting engine handles objects in memory in Microsoft Edge, aka ’Chakra Scripting Engine

Memory Corruption Vulnerability’.

Memory Read (Memory Errors) Memory Read (Memory Errors): 10.11

66 CVE-2020-3309: A vulnerability in Cisco Firepower Device Manager (FDM) On-Box soft-

ware could allow an authenticated, remote attacker to overwrite arbitrary files on the un-

derlying operating system of an affected device. The vulnerability is due to improper input

validation. An attacker could exploit this vulnerability by uploading a malicious file to an

affected device. A successful exploit could allow the attacker to overwrite arbitrary files on

as well as modify the underlying operating system of an affected device.

Write To Existing File Write To Existing File: 10.73

154

Table C.3: The evaluation of classifying 66 CVE into one or more functionalities
based on only the description without considering the second input. The table shows
the top K prediction for each CVE description where K equals to the total number
of predictions until all the correct classes are predicted. The correct predictions are
depicted by bold font.

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	A Domain Specific Language Model for Cybersecurity
	Automated CVSS Prediction
	Automated Classification of CVEs to CWEs and to Vulnerability Types
	Automated Context-based Classification of CVEs to Functionalities
	Neural Information Retrieval (IR) Model for Retrieving Course of Defense Actions for CVEs
	REFERENCES
	Vulnerability Types Definitions
	Functionality to MITRE ATT&CK Technique Mappings
	Examples of Automated CVEs to Functionalities Classification

