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ABSTRACT

OWEN HECKMANN. Evaluating Kubernetes at the Edge for Fault Tolerant Multi
Camera Computer Vision Applications. (Under the direction of DR. ARUN

RAVINDRAN )

The rise of AI powered computer vision algorithms offers the possibility of intelligent

data processing, and decision making based on streaming data from video cameras.

Applications such as Smart Cities could potentially use these video cameras for a

variety of use cases such as pedestrian detection, public safety, and traffic monitoring.

The requirements for low latency for real-time decision making, and the privacy needs

of video data, leads to use of edge computing to process raw video frames. However,

unlike cloud computing with almost unbounded resources, the edge is characterized

by compute nodes of limited capacity and power budget. Additionally, fault tolerance

is limited due to replication costs at the edge.

In this thesis, we investigate the design of a fault tolerant edge cluster consisting

of low power ARM based Raspberry Pi 4 nodes. In the cloud, Kubernetes is used as

a system orchestrator for large clusters. An edge tailored version of Kubernetes, K3s

has recently been made available. However, prior research has not characterized the

resource consumption and latency impact of K3s on realistic edge clusters. In this

thesis we fill the gap by an extensive evaluation of K3s at the edge on our Raspberry

Pi 5 cluster. Our results indicates that while K3s does add significant resource and

latency overhead to edge applications, it still delivers on fault tolerance at the edge.
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CHAPTER 1: Introduction

1.1 Introduction

The term Smart Cities is used to describe the application of smart devices to the

efficient running of a city. Smart Cities technologies include a variety of city-wide

sensors, Internet-of-Things (IoT), and Artificial Intelligence to collect, analyze, and

apply information about a city in real time. With the application of Big Data analysis

and AI, stakeholders can make better informed decisions, leading to several positive

outcomes such as better quality of life, improved environmental outcomes, operational

efficiency and lower city operational costs [5].

Among the sensors available for data collection, visual data captured by video cam-

eras represent a rich source of information. Many cities worldwide have video cameras

already installed for tasks such as traffic monitoring. These can be repurposed for

other uses such as public safety and environmental monitoring. Traditionally, much

of this monitoring was done manually by reviewing the video recording after the event

of interest had occurred. Recent advances in deep learning based vision algorithms,

and the availability of highly scalable computational resources in cloud computing

platforms have made it possible to automatically analyze events of interest in a video

stream [19]. However, large data sizes of video streams imposes constraints on trans-

mitting via the internet to a cloud provider [23]. Additionally, the added latency may

not be appropriate for real-time processing. Furthermore, privacy constraints and

data privacy laws limit the transmission of information rich video data to a distant

cloud.

The edge computing paradigm involves performing the computation close to the

source of the data. This reduces the network bandwidth requirements, lowers latency,



2

and keeps the data in the privacy perimeter of the end user (for example, home, office,

municipal jurisdiction etc.) [20]. The availability of embedded accelerators has made

deep learning based vision algorithms practical at the edge [23]. Only the results

of the computation (for example, detected objects) rather than raw video frames

needs to be transmitted to the cloud, for further analysis. Figure 1.1 shows such an

edge-cloud platform for pedestrian monitoring.

Figure 1.1: Edge-Cloud Platform for Pedestrian Monitoring. IoT camera nodes
equipped with embedded GPUs perform deep learning based vision Processing, with
output published to edge server. Analytics application at edge server subscribes to
vision processing output, and publishes results to the cloud. From the cloud, relevant
event sent to end users via a mobile application.

Despite the promises offered by edge computing for computer vision, several tech-

nical challenges need to be tackled to make the edge computing close to providing

the same capabilities as the cloud. Some of these include fault tolerant computing,

resource scaling, and resource allocation models such as Infrastructure-As-Code, and

serverless computing [20].

In this thesis, we focus on the problem of fault tolerance at the edge. In the cloud,

fault tolerance is achieved through a cluster of servers with computing services repli-

cated across them, such that the system remains operational even if one or more

servers fail. Kubernetes, originally open-sourced by Google, is used in orchestrating
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this cluster [13]. Tasks such as scheduling jobs on nodes in the cluster, monitoring

the nodes for failures, moving computing tasks away from failed nodes, and automati-

cally managed by Kubernetes [21]. This frees the application programmers from fault

tolerance issues, as long as their applications are written to run on Kubernetes. How-

ever, Kubernetes is a complex resource intensive systems, that often requires a team

of dedicated engineers to keep operational. Recognizing that the stock Kubernetes

may not be suitable for the edge, the company Rancher (since acquired by SUSE),

has made available a stripped down edge friendly version of Kubernetes called K3s

[26]. However, a thorough investigation of K3s on a realistic edge platform in terms

of its impact on application performance, and system resource usage is missing in the

the literature.

In this thesis, we undertake an experimental evaluation of K3s on a Raspberry Pi

4 (Pi4) based edge Pico cluster. The cluster has 5 Pi 4 nodes with a total power con-

sumption of 30 W making it an attractive edge computing platform. The application

that runs on this cluster is an edge gateway that supports multiple vision applications

operating on one or more video streams, with multiple cloud backends.

The thesis makes the following contributions -

• Characterizes K3s resource consumption on Pi4 based edge cluster

• Evaluates added application latency due to K3s

• Evaluates the latency impact of recovery on node failure under multiple failure

scenarios.

The thesis is organized as follows. Chapter 2 provides a brief background on edge

computing, computer vision, and Kubernetes including K3s. Chapter 3 describes the

setup of the experimental platform including the necessary steps needed to run an

edge application on Kubernetes. Chapter 4 presents the experimental evaluation of

K3s on the Pi4 based edge cluster. Chapter 5 discusses the suitability of K3s for edge
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computing based on our experimental results. Chapter 6 concludes the thesis with a

summary of results, and directions for future work.



CHAPTER 2: Background

2.1 Background

In this chapter, we provide a brief background on edge computing, computer vision,

Kubernetes, K3s, fault tolerance at the Edge, and related work on this Topic.

2.2 Edge Computing

Edge computing emerged as a paradigm with the increasing size and complexity of

IoT networks [20]. Under the cloud computing paradigm, as the size of IoT networks

increase, the limitations increasingly become apparent [27]. First, as more data is

produced at the edge, sending data to the cloud requires more bandwidth. However,

the increase in bandwidth available to IoT networks has not grown as fast as the

amount of data produced [1] [6]. Second, the sending raw, or unprocessed data to the

cloud adds latency to the system. At a certain level of system latency, it becomes

infeasible to use the data in real time. Third, as the IoT systems proliferate, they

place an increasing strain on the bandwidth and reliability of current networks. 2.1

shows the structure of the conventional cloud computing paradigm. Data producers

- such as sensors - generate data, which is then uploaded to the cloud [4]. Any

processing of the data occurs at the cloud. Data consumers request data from the

cloud, and the cloud pushes the data to the data consumers [20].

In the edge computing paradigm, applications that are usually run on the cloud

are instead brought closer to the data sources on the edge. Here, “Edge" is defined as

as the computing and network systems which are between the data sources and the

cloud. Edge computing takes advantage of the rapid growth in computer processing

power relative to bandwidth to process data locally, and then uploading the results
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Figure 2.1: Cloud paradigm for IoT

to the cloud [4]. Doing so reduces the bandwidth needed to for the connection to the

cloud, which reduces the latency of the upload [20]. Therefore, though processing at

the edge may take longer than at the cloud due to potentially less powerful compute

processors, the system as a whole has less latency under the edge paradigm. Figure

2.2 shows the structure of the Edge computing paradigm. Data producers - such

as sensors - generate data, which is then processed at the edge. The results of the

processed data is uploaded to the cloud [27]. The data consumers request data from

the cloud, and the cloud pushes the data to the data consumers if they are not local

to the edge. In that case, they request data from the edge instead [20].

2.3 Computer Vision

Computer Vision is a field that attempts to create computer systems that can un-

derstand and interpret images [12]. Though images can provide much information,

creating computer systems that can extract this data traditionally been difficult. This

is problematic, as images taken by cameras are often the best way to find informa-

tion about an environment. Without a robust computer vision solution, extracting

data for computer systems to use has required human assistance. Unfortunately,

human assistance is expensive, and difficult to effectively scale. With the advent
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Figure 2.2: Edge computing paradigm for IoT

of deep learning algorithms, the number and effectiveness of computer vision tools

and techniques have undergone a period of growth [11]. Many of these computer

vision applications have succeeded in reliably extracting and classifying features from

images, which was previously a difficult task.

An example of current computer vision algorithms is a series of algorithms called

You Only Look Once, or YOLO. YOLO uses Convolutional Neural Networks to ex-

tract and classify objects in an image [19]. Over its development from YOLO v1

to YOLO v7, it has underwent significant improvement, both in effectiveness and

efficiency. [16]

In the smart cities context, video cameras offer the capability to monitor multiple

events in a city. Traditionally, public safety has involved monitoring humans to detect

unsafe events. However, with robust computer vision applications, this process could

be automated, with concomitant gains in safety and efficiency. Therefore, the ability

to run computer vision algorithms efficiently and reliably is an important task.

2.4 Edge gateway

Visual Edge IoT, or VEI is a multicloud edge gateway proposed by Luu et al.

[23] targeted specifically at IoT computer vision applications with high bandwidth
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requirements and low tolerances for latency. VEI enables decoupling of cameras from

vision applications running at the edge. This allows a single application to consume

video streams from multiple cameras, as well as multiple applications to consumer

video streams from a single camera. [10].

Figure 2.3: Block diagram of the VEI edge gateway

VEI edge gateway consists of four components: A server implemented in Golang, a

pub/sub system using an open-source messaging server called NATS, and camera and

subscriber client implemented in Python[10] [24]. The APIs needed to communicated

between the components are implemented as (Remote Procedure Calls) RPCs using

gRPC. Figure 2.3 shows the block diagram of VEI, as well as its external clients.

When in operation, the camera client publishes video frames via the VEI API to

the VEI server. The subscriber, in turn, receives the images and analyzes them. The

subscriber then publishes the results of this analysis to the cloud[10].

2.5 Fault Tolerance at the Edge

In real world applications, it is almost inevitable that faults will occur, in both

hardware and software. Therefore, it is desirable that implemented systems can tol-

erate these faults when they occur. Different components of the IoT edge system have
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different fault tolerances. For instance, the cloud component of the system has the

highest fault tolerance. Fault tolerance at the cloud is implemented by cloud vendors

taking via the large resoruce availability in cloud data centers. The component of the

system with the least fault tolerance is the edge device, and the applications that run

at the edge.

Both the VEI edge gateway and the subscriber client run on a single piece of

hardware. This single piece of hardware forms a single point of failure. Similarly,

the system as a whole also fails if there is a software failure such as program crash.

Human intervention is needed to restart the edge server.

A desirable solution to the problem of fault tolerance at the Edge should have

several characteristics. First, the solution should be able to run on conventional

edge hardware. Similarly, the solution should impose a reasonable cost in terms of

overhead and latency. Additionally, the system to should be able to recover upon

failures without human intervention.

A concept for a solution that has these characteristics would be to have multiple

replicas of the edge software running on multiple edge hardware nodes. One of the

edge nodes, and the software replica would be nominated as the primary. If either the

edge node or the software replica fails, then the system could recover from the fault

via the backup replicas. The video frames from the cameras would be rerouted to the

new primary. The subscriber client would be still be able to receive the information

that they had subscribed to. All of the data would still be uploaded to the cloud,

with little or now interruption of service.

2.6 Kubernetes

Kubernetes, or K8s is a container orchestration system for clusters of distributed

hardware. It aims to provide automated ways to manage distributed components

and services across varied and distributed hardware. Containers are light-weight OS

level virtual machines consisting of programs and their dependencies, running in a



10

self-contained environment [7]. Kubernetes enables automatic deployment, scaling,

and restarting containers across the distributed hardware in cloud data centers [13].

In Kubernetes, different physical or virtual machines are abstracted into nodes.

Nodes can be connected together into sets called clusters. In a cluster, some nodes are

designated as Master Nodes, which has additional software which controls behavior

across the cluster [17]. The other nodes are designated as Worker Nodes, which only

have the software which controls the behavior of the containers which are running on

it [9]. A cluster needs to have at least one Master node, but can have multiple worker

nodes. However, if all of the Master nodes fail, than the cluster will fail as a whole

[25]. Typically, the master is replicated across 3 nodes.

To operate Kubernetes, the user specifies a desired state for the cluster using YAML

configuration files. The specification defines how many replicas of which programs

should be running, along with which applications they use, which resources should

be made available for them, and other configuration details[21]. Kubernetes will

then automatically alter the state of the Cluster to match with the specification [25].

Kuberntes manages containers as pods of one or more containers. Pods represent the

basic scheduling unit for Kubernetes.

For instance, if the user specifies that three copies of a pod should be running,

Kubernetes will start 3 pods on different nodes throughout the cluster. If one of

those containers fails, Kubernetes will detect that the container has failed, and then

restart it. If the user updates the program running in the containers, Kubernetes

will restart them one at a time. That way, the system will continue to be available,

while being updated. If the user specifies that 5 copies of the should run, Kubernetes

will start two more containers. If the users specifies that only 1 copy should run,

Kubernetes will gracefully stop all containers but one. Kubernetes will also attempt

to deploy the different containers across the cluster in a way that is both efficient and

fault tolerant[21].
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Figure 2.4: Structure of Kubernetes. the services which control the cluster as a whole
run on the Master Nodes: etcd, which stores information about the desired state of the
cluster, the Scheduler, which tells Worker Nodes to deploy services, and the Controller
Manager, which gives instructions to Worker Nodes about actions. Meanwhile each
worker node contains: Kubelet, which executes instructions given to it by the Master
Node, the Kube-proxy, which mediates communications between containers and end
users, and the objects, running on the system as a whole. Communication between
the components and the developer are handled by the API-server, running on the
Master Node Source: [21]

Kubernetes also abstracts container’s communications to services[17]. All of the

containers of the same type will be connected to a service. Other programs can

connect to the service through its DNS, which automatically handles connections to

the containers[17]. If a container fails, then the service will not route connections to

it. The user may also specify the behavior of the service. For instance, the service

can be specified to balance the incoming communication between containers to avoid

overloading any container[21].

However, Kubernetes has costs associated with it as well. An application that is

running in a container uses more resources than the same application running on bare
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Figure 2.5: Structure of Kubernetes in High Availability Mode. There are multiple
master nodes, with redundant databases and control services, as well as multiple
worker nodes. Communication between them is mediated via a load balancer. Source:
[17]

metal. K8s uses additional resources still needed to run its components. Replicating

the containers also means that they use more resources too. Also, because commu-

nications in a containerized system entail using a service as an intermediate layer,

there is also inherently more latency. All of these cost impose additional difficulties

on designing and building fault tolerant systems using Kubernetes at the edge.

2.7 K3s

K3s is a version of Kubernetes created by Rancher specifically designed for the edge.

In particular, it is built for ARM architecture in addition to x86 architectures[26].

Because it is built for edge applications, it is significantly less resource hungry than

Kubernetes. K3s is installed as a binary that is only 54 Megabytes in size [26]. When

deployed on a Master Node, called a Server in k3s, it requires only 512 megabytes of

RAM. If deployed on Worker Node, called an Agent, it requires only 256 megabytes
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of RAM to run [2].

Figure 2.6: Structure of k3s Nodes. k3s Server stores data about the desired state
in the edge cluster with SQLite, schedules when and where to deploy pods with the
scheduler, and controls the state of the Agent Nodes with the Controller Manager.
The k3s agent [26]

2.8 Prometheus and Grafana

Prometheus is an open-source software application that is used for monitoring

different events that occur on a system. Prometheus measures numerical information

about a system, or metrics. To monitor metrics about some program, the program is

modified, or instrumented to provide metrics for a Prometheus application to read.

Prometheus then stores these metrics in the form of a time series. These metrics can

then be retrieved for viewing over some period of time using a query language called

PromQL. Prometheus applications can be run both as a standalone application, or

on a K3s Cluster.
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Grafana is an open-source web application for data analytics and visualization.

Grafana is often used in addition to Prometheus to display the results of multiple

PromQL queries in more user-friendly ways.

2.9 Related Work

Previous research have attempted to evaluate the usefulness of container orchestra-

tion Systems for IoT Applications. Fathoni et al. compared the difference in RAM

and CPU consumption between two different lightweight Kubernetes distributions,

specifically KubeEdge and K3s [10]. They found that there was no significant dif-

ference between the two in terms of resource consumption However, they did not

attempt to characterize the system while it was running, merely while in an idle

state. Eiermann et al also characterized the Memory and CPU consumed by pods

in a cluster. They characterized the resources consumed in a five node cluster, but

also only during an idle state [8]. Böhm and Wirtz comprehensively analyzed the

resource consumption of Kubernetes, MicroK8s, and K3s during different parts of the

cluster lifecycle [3]. They found that K3s had on average the best performance across

the different parts of the cluster lifecycle. However, they generated their benchmarks

using a cluster of virtual machines running on a single physical machine. Finally,

Leskinen analyzed the usefulness of K3s in an industrial IoT context [22]. However,

none of these offer thorough investigation of K3s on a realistic edge platform in terms

of its impact on application performance, and response to node failure.



CHAPTER 3: Experimental Design

In this section, we present the design and implementation of our edge cluster, VEI

edge gateway, subscriber clients, and monitoring software.

3.1 Design

We tested the deployment of an example edge application to K3s to characterize

its real overhead and fault tolerance. The system architecture of our system is as is

shown in 3.1. In the baseline system, a camera streams images to our edge server

on running VEI edge gateway, and an emulated vision application all running on a

single Raspberry Pi 4 (Pi4) node. The emulated vision applications subscribes to

video frames from VEI and publishes fictitious data to the cloud. The emulation

exercises the APIs without consuming significant resources such as real computer

vision application such as YOLO would have done. The fault tolerant version has all

the components running on a 5 Pi4 node cluster managed by K3s.

3.2 Hardware

For our edge cluster, we purchased a Picocluster 5H. The cluster consisted of 5 RPI

4B 8GB with 128 GB MicroSD cards for storage. We imaged each of the MicroSD

cards with 64-bit Raspberry Pi OS Lite, specifically version 11. We additionally im-

aged them with the hostnames of: Master0, Master1, Master2, Worker0, andWorker1.

After imaging the MicroSD Cards, we enabled them to connect to the internet via the

local WiFi, and to be accessed and controlled remotely using ssh. We assembled the

cluster with the combined Raspberry Pis, as well as power, cooling, and networking

systems. To confirm that the hardware had been assembled correctly, we powered the

system on to smoke test it. To confirm that the Raspberry Pis had been imaged and
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Figure 3.1: Baseline edge system

Figure 3.2: Picocluster edge testbed
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configured correctly, we remotely accessed each Raspberry Pi with using ssh. Once

we confirmed that each of them could be remotely accessed correctly, we were able

to install K3s on each of the Raspberry Pis.

3.3 Installing K3s

We installed K3s on each of the Pis, and configured the Pis into a High Avail-

ability K3s Cluster with embedded DB. First, we installed K3s on the Master0

with the command curl -sfL https://get.k3s.io | K3S_TOKEN=SECRET sh -s -

server –cluster-init . In order to connect other nodes to the to the cluster, we

retrieved the secret token of the first node from the K3s configuration file that is

generated when a K3s master node is generated in this way. This secret token

is needed to connect other nodes the the cluster. To connect each of the other

Master nodes to the cluster, we used the command: curl -sfL https://get.k3s.io

| $K3S_TOKEN= K3S_TOKEN sh -s - server –server https://master0:6443 . Af-

ter all of the Master nodes were connected, we then connected the worker nodes

with the following command: curl -sfL https://get.k3s.io |K3S_EXEC="agent"

K3S_URL=https://10.42.0.0:6443 K3S_TOKEN= $K3S_TOKEN sh - . We veri-

fied that each node was connected to the cluster and running by getting all nodes

from kubectl, as can be seen in 3.3. For further verification, we used a multiple pod

Nginx deployment to check functionality for all nodes in the cluster

Figure 3.3: Screenshot of Pi4 nodes running in K3s cluster
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3.4 NATS in K3s

The first component of VEI that we installed on the K3s cluster was NATS. We first

deployed NATS server to the K3s cluster using the NATS Helm chart with 3 replicas.

Helm is the Kubernetes package manager. According to the NATS documentation,

this is also known as High Availability mode. To make sure that NATS was work-

ing correctly, we used the NATS-Box pod to test the basic publish and subscribe

functionality.

Figure 3.4: Screenshot of NATS running on K3s in High Availability mode with 3
Replicas

3.5 Containerizing Application

To run VEI and the emulated vision application on the K3s cluster, we first needed

to build them into Docker images. There were a few changes that we made such that

applications would function when built as Docker containers. The API for VEI was

modified to look for a NATS service running in K3s. We included the AWS SDK pack-

age VEI dependencies within the container image. We passed the AWS key and secu-

rity key required to access AWS IoT Core service into the container as environment

variables, such as sudo docker run -d –name server –env AWS_ACCESS_KEY_ID=

$AWS _ACCESS _KEY _ID –env AWS_SECRET_ACCESS_KEY = $AWS _

SECRET _ ACCESS_KEY –network=nats-net -p 50051:50051 bobsmithy/vei-server

. Additionally, we changed the IP addresses that the different containers were looking

for to ones exposed by the Docker containers. As an intermediate step, we tested the

system with standalone Docker containers to confirm their functionality. When this



19

was confirmed, we could run the Docker images as pods and services in K3s.

3.6 Running Containers in K3s

Since the VEI gateway API uses gRPC, we cannot naively deploy them as K3s pods.

When we attempted to do so, the standard liveliness and health checks that K3s uses

continually concluded that the K3s pods are unhealthy, and then restarted them.

This repeats indefinitely, with the pods entering a crash loop. This is because the

standard health and liveliness checks that K3s uses by default use the default health

and liveliness probes. The default probes use http, so they cannot communicate with

the application that uses gRPC. As such, we had to create and add gRPC health

probes and grpcurl to the docker image, the code used for the probes can be found

in A.1.

Additionally, we had to create and configure additional liveliness and readiness

probes to the YAML file for any pod or deployment for the VEI server. The code

which configures the probes for a Kubernetes pod or deployment can be found in

Appendix A.2. We passed the AWS key and secret key into the Kubernetes pods as

environment variables in the pods’ YAML file so that it could authenticate to AWS.

Finally, we changed the addresses that the programs in each pod and application were

looking for as to match the DNS names exposed by the K3s services. The YAML

files for the server application running in K3s can be found in Appendix A.3 and

Appendix A.4

Figure 3.5: All VEI Componants running in K3s in High Availability mode with 3
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3.7 Monitoring overhead of system in K3s

To monitor the resources consumed by the K3s cluster, we used a combination of

Prometheus Operator, Prometheus, and Grafana running in K3s. Since storing the

data that Prometheus scraped from the pods locally on the Raspberry Pis would

consume memory, we instead stored them on removable drives - 64 GB USB drives

connected to each of the Raspberry Pis. We wiped, configured, and mounted the

drives. We then configured Prometheus and Grafana on K3s to store their data in

the USB drives instead of on the Raspberry Pis.

Rather than install the Prometheus for Kubernetes Helm Chart to deploy Prometheus,

we instead used our own custom deployments instead. This way, we could provide

the same functionality in scraping, displaying, and exporting data about the Ku-

bernetes system, but with a lower overhead. We installed Prometheus Operator for

Kubernetes, though we modified it to run in a new monitoring namespace. We used

a custom service monitor based on the example of Vladimir Strycek [28]. We used

the service monitor for kubelet to expose the CPU and memory used by the pods.

We used a persistent Prometheus deployment which scrapes the metrics exposed

by the kubelet service monitor and stores the data on a Longhorn storage volume.

The data stored is availible on a Prometheus webserver which can be accessed outside

of the cluster. The YAML deployment can be found on Appendix A.8. With this, we

were able to view the CPU and memory used by each pod in the system. However,

Prometheus is not, in itself capable of exporting data to be analysed. For that, we

used a Grafana deployment to visualize the data generated by Prometheus in the

form of a dashboard, and to export the dashboard as a CSV of time series data [28].

We used the CSV data for offline analysis.

To better characterize the effect of a node failure on a system, we also added a

boot delay of 120 seconds in config.txt file of each Pi4 board. We also wrote a brief

bash script which returned the current unix timestamp, then rebooted the Pi4.
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3.8 Measuring baseline system

We measured the overhead and latency of the baseline system, or the system when

not running in K3s. That way, we could compare the additional resource consump-

tion and latency imposed by running the system in K3s. The baseline system consists

of three components: the edge gateway running on bare metal, the emulated vision

application running on bare metal, and the NATS server running in a Docker Con-

tainer.

To measure and record the overhead of the baseline programs, we instrumented

both the emulated vision application and VEI server to to send metrics to Prometheus..

Additionally we used a service called prometheus-nats-exporter, which reads the in-

formation about the NATs server and exports it so that it can be read by Prometheus.

We created a standalone Prometheus service, which was configured to read the

information from the different components of the baseline system. To visualize and

export the metrics, we used a standalone Grafana service.



CHAPTER 4: Experimental Results

In this section, we describe the evaluation of the overhead and functionality of the

VEI edge gateway, and the emulated computer vision application orchestrated by

K3s as described in Chapter 3. We first characterize the resource usage (memory and

CPU) of the system with K3s. Next, we measure the impact of K3s on the system

latency. We then investigate the fault tolerance aspects of K3s. Our measurements

are compared against performance of the baseline edge gateway implementation.

4.1 CPU and memory utilization

We first establish the CPU and memory consumed by the containerized edge gate-

way. The VEI gateway was run on Raspberry Pi 4 Model B boards. To obtain the

resource usage, Prometheus and Grafana monitoring and visualization tools described

in Section 3 were used. The services are run background daemons. The VEI gateway

and the associated NATS messaging service are instrumented to export metrics to

Prometheus.

We first measure the quiescent system resource usage, that is, when no video frame

data is published to the gateway. VEI (including NATS) and the emulated YOLO,

and the NATS server running in a Docker container were allowed to run for 30 min-

utes. To measure the CPU usage of the system, the Prometheus promQL query

process_cpu_seconds was used. To measure the memory used by the system, the

promQL query process_memory_bytes was used. After 30 minutes had elapsed, we

downloaded the time series measurement data from Grafana consisting of all of the

metrics generated from the queries. The query generated 4 sets of metrics: for the

VEI server, the associated NATS messaging system, for the emulated computer vision
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application, and for Prometheus itself. The data from Prometheus was discarded, and

the metrics from the remaining values were summed up to measure the total memory

and CPU used at each measurement interval. The CPU usage is measured in terms

of total core usage with a maximum value of 4 (Pi4 board has a quad core processor).

The memory usage is measured in Megabytes. The CPU and memory measurements

are the repeated with the the camera client streaming video frames at a rate of 10

frames per second (fps). The average frame size is 24 KB.

Figure 4.1 shows the box plot of the system resource consumption. The median qui-

escent CPU usage is 0.06 cores. This increases to 0.289 CPU cores when video frames

are streamed by the camera client. Regarding memory, the median quiescent memory

usage is 110.8 MB. This increases to 111.3 MB when video frames are streamed by

the camera client. Note that the Pi4 board has a total of 8 GB of memory. From

the results we see that the system is adequately provisioned in terms of CPU and

memory, for running the VEI edge server, and an emulated vision application.

(a) CPU Use (b) Memory Use

Figure 4.1: Baseline System Resource Consumption



24

Next we establish the CPU and memory consumed by the Edge Gateway when

running on a K3s cluster. The K3s cluster was run on 5 Raspberry Pi 4 Model B

boards, with 3 Master Nodes and 2 Worker Nodes. The Edge Gateway in K3s consists

of the containerized VEI server, the containerized emulated vision application, and

the containerized NATS server. Each component is deployed with three copies, each

of which run on a different node on the cluster. To obtain the resource usage of the

pods within the cluster, we used the Prometheus, and Grafana K3s deployments as

described in Chapter 3.

First, we measured the resource usage of the system when it was quiescent, that

is, when no data was being streamed to it by the camera. The system in K3s was

permitted to run for 30 minutes. To measure the CPU usage of the system, the

Prometheus promQL query process_cpu_seconds by pod_name was used. To mea-

sure the memory used by the system, the promQL query process_memory_bytes by

pod_name was used. After 30 minutes had elapsed, we downloaded the time series

measurement data from Grafana consisting of the metrics generated from the queries

for each of the pods in the Edge Gateway (9 in total). For each measurement interval,

we summed the values of all the pods together to get the total CPU and memory used

at that measurement interval by the Edge Gateway as a whole. The CPU usage is

measured in terms of total core usage with a maximum value of 20 (4 cores for each Pi

4 board, with 5 boards in the cluster). The memory usage is measured in Megabytes.

The CPU and memory measurements are then repeated with the the camera client

streaming video frames at a rate of 10 frames per second (fps). The average frame

size is 24 kB.

Figure 4.2 shows the box plot of the system resource consumption. When the

system is in a quiescent state, it has a median consumption 0.128 cores of CPU.

However, when it is being streamed images, it increases to a median consumption of

7.51 cores of CPU. With respect to memory, the median quiescent usage is 125.5 MB.
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When the system is streamed images, it consumes 213.4 MB of memory. From this

we can see that the resource consumption of an active K3s cluster is signifcantly more

than than the quiescent state. We discuss this point in further detail in Chapter 5.

(a) CPU (b) Memory Use

Figure 4.2: Resource consumption of system in K3s

4.2 Latency

We next measure the impact of K3s on the overall latency of the gateway and

vision application. To measure the latency of the system, the camera application

and emulated vision application were modified to generate timestamps. The first

timestamp (the creation timestamp) was generated by the camera client immediately

before it sends the video frame to the system, and the second timestamp (the system

timestamp) was generated before the data is published to the AWS cloud. The

difference between the two timestamps represents the end-to-end system latency.

We first measure the latency of the baseline system. The system, consisting of

VEI (including NATS) and the emulated vision application, and the NATS server

running in a Docker container is streamed images by the camera client. The server
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was streamed 1000 frames at a rate of 10 frames per second. When the 1000 frames

streaming had elapsed, the timestamps were retrieved from the AWS cloud.

Figure 4.3: Cumulative Distribution Function (CDF) of latency (milliseconds) for
baseline edge system. The latency CDF was plotted over 1000 frames at a rate of 10
FPS

Figure 4.3 shows the Latency Cumulative Distribution Function (CDF) of the sys-

tem for 1000 images. The median Latency is 24.420 ms, and the 95th percentile

latency is 65.007 ms. From the results we see that the system has an adequate la-

tency for real time edge vision applications.

Next, we establish the latency of the of the system when orchestrated by K3s. The

K3s cluster was run on 5 Raspberry Pi 4 Model B boards, with 3 master Nodes and 2

worker Nodes. The Edge Gateway in K3s consists of the containerized VEI server, the

containerized emulated vision application, and the containerized NATS Server. Each

of components is deployed with three copies, each of which run on a different node on

the cluster. To compute the latency of the system, two timestamps are collected by
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the system. One is created by the camera application when it sends a frame to the

system. The second is created immediately before the application uploads the data

to the AWS cloud.

Figure 4.4: Cumulative Distribution Function (CDF) of VEI latency (milliseconds)
for edge system in K3s. The latency CDF was plotted over 1000 frames at a rate of
10 FPS

The system was streamed 1000 images by the camera client at a rate of 10 fps.

When the 1000 frames had elapsed, the data was retrieved from the cloud. As before,

the difference between the two timestamps represents the end-to-end system latency.

Figure 4.4 shows the latency Cumulative Distribution Function (CDF) of the sys-

tem in K3s for 1000 images. The median Latency is 536.050 ms, and the 95th per-

centile latency is shown to be 1081.364 ms. From the results we see that the system

has a significantly higher latency in K3s as compared to the baseline.
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4.3 Characterization of Node Failure

Finally, we establish the latency impact of recovery on node failure of the K3s

system to different single worker node failure scenarios. The K3s cluster was run

on 5 Raspberry Pi 4 Model B boards, with 3 master Nodes and 2 worker Nodes.

The edge gateway in K3s consists of the containerized VEI server, the containerized

emulated vision application, and the containerized NATS Server. Each of components

is deployed with three copies, and each copy runs on a different node on the cluster.

To compute the latency of the system, two timestamps are collected by the system.

One is created by the camera application when it sends a frame to the system. The

second is created immediately before the application uploads the data to the AWS

cloud.

All failure scenarios are studied is the same way. The system is first streamed

images from the camera application at a rate of 10 frames per second. At a marked

time, a node with of the desired containers running on it is terminated manually.

When the system had recovered, all of the data is retrieved from the Cloud.

We first fail a node that runs the NATS messaging service by rebooting it with a

delay of 2 minutes. When the system recovers, all of the data is retrieved from the

cloud.

Figure 4.5: Failure of Node with only NATS

]
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Figure 4.5 shows the response of the system from the time when the node is termi-

nated to when the system recovers to the baseline latency. K3s switches the NATS

service to a replica running on a functional node. After the failure, several spikes in

latency are observed. From this we can see that the system in K3s has acceptable

fault tolerance for this failure.

We next characterize the response of the system to the failure of a node with only

the emulated computer vision application.

Figure 4.6: Failure of node with emulated vision application

Figure 4.6 shows the response of the system to the failure of a node with only a

replica of the emulated computer vision application running on it, from when the

node is terminated to when the system recovers to a normal latency. The recovery

from the failure is characterized by higher latency. From this we can see that the

system in k3s has acceptable fault tolerance for this failure.

We next characterize the response of the system to the failure of a node with only

the VEI edge gateway running on it.

Figure 4.7 shows the response of the system to the failure of a node with only a

replica of the VEI edge gateway running on it, from when the node is terminated to

when the system recovers to a normal latency. The period of system failure is marked

in red. In this period (lasting approximately 40 seconds), the cloud received no data
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Figure 4.7: Failure of node with VEI edge gateway

from the edge gateway. From this we can see that despite K3s offering fault tolerance

and system recovery, there are still large system outages in the event of some node

failures.

Next, we characterize the tolerance of the system to a node failure with a copy of

the VEI Server and a copy of the emulated vision application running on it.

Figure 4.8: Failure of node with VEI and emulated vision application

Figure 4.8 shows the response of the system when a node with a replica of the

VEI edge gateway, and a replica of the emulated vision application running on it fail.

When the node fails there is a system failure for approximately 40 seconds (Marked

in Red). This is followed by a period of extremely high average latency which lasts
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for several minutes. From this we can conclude that there despite K3s offering some

fault tolerance, there are still system outages, and a long period of extremely high

latency.

We then characterize the system response to the failure of a node with both NATS

server and the emulated vision application running on it.

Figure 4.9: Failure of node with NATS and the emulated vision application

Figure 4.9 shows the response of the system when a node with a replica of the

NATS Server, and a replica of the emulated of the vision application running on it

fails. When the node fails there is a failure on of the system for 80 seconds (Marked

in Red). This is followed by a period of higher latency for several minutes. From

this we can conclude that though K3s offers some fault tolerance, there are still large

system outages which last for more than a minute.

Next, we characterize the system response to the failure of a node with both NATS

server and the emulated vision application running on it.

Figure 4.10 shows the response of the system when a node with a replica of VEI,

and the a copy of the emulated vision application running on it fail. When the node

fails there is an outage on of the system for 40 seconds (Marked in Red). This outage

is followed by a period of baseline latency, punctuated by several spikes in latency

before the system recovers. From this we can see that even though K3s offers fault
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Figure 4.10: Failure of node with NATS and VEI

tolerance, there are still significant system outages when a node with a replica of VEI

and a replica of the emulated vision application running on it fails.

Next, we characterize the system response to a node failure with all three deploy-

ment replicas: NATS Server, VEI Server, and the emulated vision application running

on the node.

Figure 4.11: Characterization of failure of node with NATS, VEI, and the emulated
vision application running

Figure 4.11 shows the response of the system when a node with VEI, NATS, and

the emulated vision application running on it fails. When the node fails there is a

failure of the system for 40 seconds (Marked in Red). This is followed by a period of

high latency for several minutes. When the node rejoined the cluster, and the pods
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restarted, there was a further spike of high latency, before it returned to the high

latency. After several seconds, the system then returned to normal. From this we can

see that even though K3s offers some fault tolerance, there is still a period of failure

and high latency when this node fails.



CHAPTER 5: Discussion

In this section, we place our work in the larger context of solutions to the problem of

fault tolerance at the edge. Our application of K3s to an edge gateway was motivated

by the need to provide fault tolerance for edge devices running complex applications.

Running the system in K3s increased the median latency of the system by 2095.13%,

and increases 95th percentile latency by 1563.46%. In terms of CPU cost, 72.3404%

when quiescent,increases by 185.18% when being streamed images at 10 frames per

second. In terms of memory 12.442 % when quiescent, and 62.889 % when being

streamed images at 10 frames per second. For node failures, we found that for 5

out of 7 different single node failures, there were system outages lasting at least 40

seconds.

These results show that K3s is a viable solution for fault tolerance on the edge,

as the system does recover in all situations that we tested. However, K3s on the

Raspberry Pi cluster is not necessarily suited for every application. When the system

is quiescent, it consumes a median value 0.128 cores of CPU. However, when the

system is being streamed images from the camera client, it consumes a median value

of 7.511 cores of CPU, which is a massive increase. This value is especially large when

you consider that no image processing is occurring on the edge device.

However, there are many applications to which the K3s on a Pi4 cluster is a viable

solution. These include where latency requirements are fairly relaxed, the object

detection algorithms run directly on the camera, and the application running on the

edge server act on detected/tracked objects.

We see three possible directions for future research. First, it could be possible

that the source of the high latency and resource consumption of the system in K3s
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is a result of the system design. For instance, it is possible that communications

between the pods are the primary source of increase in resource consumption. If that

is the case, it is possible that combining each of the components into a single pod

and replicated it across the cluster could be a superior solution Second, it is possible

that Raspberry Pis are too low powered for running applications on K3s with low

latency. Another system, with more CPU, or an embedded GPU, such as a Jetson

Xavier, might be able to use applications in K3s with more success [18]. A third

direction is to explore alternatives to K3s such as Nomad scheduler and orchestrator

from Hashicorp [15]. Nomad however does not provide as much functionality as

Kubernetes does. An alternate approach would also be to design an edge specific

system from scratch such as the recently published FLEDGE container orchestrator

[14].



CHAPTER 6: Conclusion

In this chapter, we summarize our work.

In this thesis, we have investigated K3s on a cluster consisting of low power ARM

based Raspberry Pi 4 nodes as a solution for fault tolerance on the edge. We noted

that existing research on the resource consumption of container orchestration has

not been characterized on low power edge platforms. We experimentally measured

consumption of CPU and memory by a system on K3s compared to baseline, charac-

terized the added application latency due to K3s, and evaluated the latency impact

of recovery on node failure under multiple failure scenarios. Our results show that

while K3s does impose a latency penalty, it is a viable solution to the problem of fault

tolerance at the edge. We also noted several future extensions of our work.
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APPENDIX A: Configuration Scripts for K3s

A.1 GRPC healthcheck Dockerfile

Listing A.1: Code for Configuring GRPC Healthchecks for the in Dockerfile

FROM golang : 1 . 1 6 AS grpc−health−probe−bu i l d e r

RUN GRPC_HEALTH_PROBE_VERSION=v0 . 3 . 6 && \

wget −qO/bin /grpc_health_probe https : // github . com/grpc−

ecosystem/grpc−health−probe/ r e l e a s e s /download/${

GRPC_HEALTH_PROBE_VERSION}/grpc_health_probe−l inux−

amd64 && \

chmod +x /bin /grpc_health_probe

FROM golang : 1 . 1 6 AS grpcur l−bu i l d e r

RUN go get github . com/ f u l l s t o r y d e v / g rpcu r l / . . .

RUN CGO_ENABLED=0 GOOS=l inux GOARCH=amd64 go i n s t a l l g ithub .

com/ f u l l s t o r y d e v / g rpcu r l /cmd/ g rpcu r l@ l a t e s t

A.2 GRPC Healthchecks in K3s

Listing A.2: Code to configure GRPC Healthchecks in the K3s Deployment

por t s :

− name : grpc

conta ine rPor t : 50051

l i v ene s sProbe :

exec :
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command :

− g rpcu r l

− −p l a i n t e x t

− l o c a l h o s t :50051

− ping . Pinger /Ping

read ines sProbe :

exec :

command :

− grpc_health_probe

− −addr=:50051

A.3 K3s YAML

Listing A.3: Deployment of VEI server in K3s

−−−

ap iVers ion : apps/v1

kind : Deployment

metadata :

name : vei−deployment

spec :

r e p l i c a s : 3

s e l e c t o r :

matchLabels :

app : s e rve r−pod

template :

metadata :

l a b e l s :

app : s e rve r−pod
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spec :

c on ta i n e r s :

− name : se rver−pod

image : bobsmithy/ vei−s e r v e r : l a t e s t

env :

− name : AWS_ACCESS_KEY_ID

value :

− name : AWS_SECRET_ACCESS_KEY

value :

por t s :

− name : grpc

conta ine rPor t : 50051

l i v ene s sProbe :

exec :

command :

− g rpcu r l

− −p l a i n t e x t

− l o c a l h o s t :50051

− ping . Pinger /Ping

read ines sProbe :

exec :

command :

− grpc_health_probe

− −addr=:50051

A.4 VEI Service YAML

Listing A.4: Service which exposes VEI server
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−−−

ap iVers ion : v1

kind : S e rv i c e

metadata :

annotat ions :

konghq . com/ pro to co l : grpcs

name : se rver−pod

l a b e l s :

app : s e rve r−pod

spec :

type : LoadBalancer

por t s :

− name : grpc

port : 50051

ta rge tPor t : 50051

s e l e c t o r :

app : s e rve r−pod

A.5 Emulated Vision Application YAML

Listing A.5: .yaml file that deploys Subscriber Client in k3s

−−

ap iVers ion : apps/v1

kind : Deployment

metadata :

name : yolo−deployment

spec :

r e p l i c a s : 3
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s e l e c t o r :

matchLabels :

app : yolo−pod

template :

metadata :

l a b e l s :

app : yolo−pod

spec :

c on ta i n e r s :

− name : yolo−pod

image : bobsmithy/ vei−yolo4 : l a t e s t

por t s :

− name : grpc

conta ine rPor t : 50051

A.6 Reboot Bash Script

Listing A.6: Bash Script that prints timestamp, then reboots

#!/bin /bash

# Def ine a timestamp func t i on

timestamp ( ) {

date +%s%N # current time

}

timestamp # pr in t timestamp

reboot −f



44

A.7 Monitoring system YAML

Listing A.7: .yaml file for kubelet monitor

−−−

ap iVers ion : monitor ing . co r eo s . com/v1

kind : Serv iceMonitor

metadata :

l a b e l s :

app . kubernetes . i o /name : kube l e t

name : kube l e t

name : kube l e t

namespace : monitor ing

spec :

endpoints :

− bearerTokenFi le : / var /run/ s e c r e t s / kubernetes . i o /

s e rv i c ea c coun t / token

honorLabels : t rue

i n t e r v a l : 15 s

port : https−metr i c s

r e l a b e l i n g s :

− sourceLabe l s :

− __metrics_path__

targe tLabe l : metrics_path

scheme : https

t l sCon f i g :

i n s e cu r eSk ipVe r i f y : t rue

− bearerTokenFi le : / var /run/ s e c r e t s / kubernetes . i o /
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s e rv i c ea c coun t / token

honorLabels : t rue

honorTimestamps : f a l s e

i n t e r v a l : 15 s

r e l a b e l i n g s :

− sourceLabe l s :

− __metrics_path__

targe tLabe l : metrics_path

scheme : https

t l sCon f i g :

i n s e cu r eSk ipVe r i f y : t rue

− bearerTokenFi le : / var /run/ s e c r e t s / kubernetes . i o /

s e rv i c ea c coun t / token

honorLabels : t rue

i n t e r v a l : 15 s

path : /met r i c s / probes

port : https−metr i c s

r e l a b e l i n g s :

− sourceLabe l s :

− __metrics_path__

targe tLabe l : metrics_path

scheme : https

t l sCon f i g :

i n s e cu r eSk ipVe r i f y : t rue

jobLabel : k8s−app

namespaceSe lector :

matchNames :
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− kube−system

s e l e c t o r :

matchLabels :

k8s−app : kube l e t

A.8 Prometheus YAML

Listing A.8: .yaml for Prometheus Persistent

ap iVers ion : monitor ing . co r eo s . com/v1

kind : Prometheus

metadata :

name : prometheus−p e r s i s t a n t

namespace : monitor ing

spec :

r e p l i c a s : 1

r e t en t i on : 14d

r e s ou r c e s :

r eque s t s :

memory : 400Mi

nodeSe l e c to r :

node−type : worker

secur i tyContext :

fsGroup : 2000

runAsNonRoot : t rue

runAsUser : 1000

serviceAccountName : prometheus

s e r v i c eMon i t o rS e l e c t o r :

matchExpress ions :
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− key : name

operator : In

va lue s :

− kube l e t

s t o rage :

volumeClaimTemplate :

spec :

accessModes :

− ReadWriteOnce

storageClassName : longhorn

r e s ou r c e s :

r eque s t s :

s t o rage : 30Gi

A.9 Instrumentation for VEI in Golang

Listing A.9: VEI Server instrumented for Prometheus

func handler ( ) {

http . Handle ("/ metr i c s " , promhttp . Handler ( ) )

http . ListenAndServe (" : 2113" , n i l )

}

func main ( ) {

go handler ( )

// Sta r t l i s t e n i n g to tcp port , i f cannot connect then

throw an e r r o r

l i s t e n , e r r := net . L i s t en (" tcp " , port )

i f e r r != n i l {
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log . Fa ta l f (" f a i l e d to l i s t e n : %v" , e r r )

}

// s t a r t the new s e r v e r with grpc

s := grpc . NewServer ( )

VEIv1_0 . RegisterVEIv1_0Server ( s , &s e r v e r {})

// Connnect to c loud s e r v i c e p ro cv id e r s

iotCore = connectToAWSIoT ( )

l og . Pr in t ln (" Connected to AWS")

//mqttCli , t op i c = connectToGCPIoT ( )

// log . Pr in t ln (" Connected to GCP")

i f e r r := s . Serve ( l i s t e n ) ; e r r != n i l {

l og . Fa ta l f (" f a i l e d to s e rve : %v" , e r r )

}

}

A.10 Instrumentation for Emulated Vision Application in Python

Listing A.10: Emulated Vision Application instrumented for Prometheus

de f main ( ) :

prom . start_http_server (2114)

frameNum = 0

#host = ’ 192 . 1 68 . 0 . 1 0 3 ’
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host = ’ l o c a l ho s t ’

server_port = 50051

#i n s t a n t i a t e a channel

channel = grpc . insecure_channe l (

’ { } : { } ’ . format ( host , server_port )

)

# bind the c l i e n t and the s e r v e r

stub = VEI_grpc . VEIv1_0Stub ( channel )

#make a new reques t to s p e c i f i c sub j e c t

im_data_req = VEI . SubImageParams ( cameraID="camera1 ")

A.11 Configuration File for Standalone Prometheus

Listing A.11: Prometheus Systemd Application .yaml

# my g l oba l c on f i g

g l oba l :

s c rape_inte rva l : 15 s

eva lua t i on_in t e rva l : 15 s

# Alertmanager c on f i gu r a t i on

a l e r t i n g :

a le r tmanagers :

− s t a t i c_con f i g s :

− t a r g e t s :

# − alertmanager :9093
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r u l e_ f i l e s :

# − " f i r s t_ r u l e s . yml"

# − " second_rules . yml"

sc rape_con f i g s :

− job_name : "prometheus"

s t a t i c_con f i g s :

− t a r g e t s : [ " l o c a l h o s t : 9 090" ]

− job_name : go_blank

sc rape_inte rva l : 1 s

s t a t i c_con f i g s :

− t a r g e t s :

− l o c a l h o s t :2112

− job_name : s e r v e r . go

s c rape_inte rva l : 1 s

s t a t i c_con f i g s :

− t a r g e t s :

− l o c a l h o s t :2113

− job_name : yo lo . py

s c rape_inte rva l : 1 s

s t a t i c_con f i g s :

− t a r g e t s :

− l o c a l h o s t :2114

− job_name : NATS

sc rape_inte rva l : 1 s

s t a t i c_con f i g s :

− t a r g e t s :

− l o c a l h o s t :7777


