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ABSTRACT 

 
 

RYAN GORMAN. Detection and Classification of Defects in Metal Parts using 

ATOS Professional 2019 (Under the direction of DR. ED MORSE) 

 
 

When inspecting a manufactured part to determine whether it falls within 

tolerance, it is often important to distinguish the difference between a defect and 

geometric variation. A part that exbibits excessive geometric variation will fail to meet 

the specifications of the design, such as a nominally flat surface that is bowed in the 

middle or a sphere that is not perfectly round. By comparison, a part that contains defects 

may meet the design tolerances, but contains imperfections that can range in severity 

from a cosmetic deformity to one that completely compromises the utility of the part. The 

role of defect detection in the manufacturing process is to make that distinction between 

the presence of a defect and geometric variation, and to classify the severity of detected 

defects so an educated decision can be made about whether the part is suitable for use.  

While custom applications can be utilized in some environments for defect 

classification and detection, they can be expensive and time consuming to create and 

maintain. Due to this issue, there are a variety of commercial applications that have been 

created in an attempt to streamline and simplify the defect workflow. The ATOS 

Professional application is one such software, and has the advantage of being directly 

integrated with the GOM family of measuring instruments.  

The goal of this project is to gain a thorough understanding of the defect detection 

and classification tools available in ATOS Professional 2019, and provide documentation 
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for use of these tools in future projects.  To assist in this study, an artifact with 

manufactured defects was created in the UNC Charlotte machine shop. A full 

investigation of this artifact is accomplished by changing the parameters of the surface 

defect map and surface defect classification tools in ATOS Professional 2019. The data is 

then analyzed to make recommendations based on the ideal parameters for this artifact, 

and these parameters are validated on other artifacts to see how well they translate.  

Through this research, no correlation was found between the four main variables 

used to create the defect map when considering the percent error, but a correlation was 

present between the variables and potential false positives detected. Orientation and 

inversion were also found to have a small, yet noticeable effect on the results of both the 

defect map and surface defect classification tools. The parameters determined for the 

defect artifact translated well to other manufactured artifacts, but were considerably less 

successful when applied to real world “organic” artifacts.  

It is recommended based on this research to utilize the ATOS Professional defect 

toolset on artifacts with relatively flat surfaces with no dominant surface structure. 

Careful attention should be paid to the quality of the mesh and orientation of the part in 

the software prior to analysis. The surface defect map tool should have the maximum 

defect size parameter set to approximately the width of the widest anticipated defect of 

interest on the part, the number of directions parameter set to 1, and the type parameter 

set to depressions only or bulges only, not both. The XYZ parameter should be set based 

on the orientation of the part.  
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  INTRODUCTION 
 
 

In manufacturing processes, metrology techniques are typically applied near the 

end of the process to ensure a manufactured part is within tolerance and provide quality 

control. Integrating these techniques directly into manufacturing processes allows for 

parts to be checked in real time as they are created, which allows for fewer product 

recalls, fixes to be applied to failing parts before they are shipped out, and an overall 

reduction in parts that have to be scrapped. One major goal of these quality control 

inspections is the detection of defects, which can present a unique set of challenges not 

present in regular part inspection. 

An important part of a defect detection inspection process is the ability to 

distinguish the difference between a defect and geometric variation. A part that exbibits 

excessive geometric variation will fail to meet the specifications of the design, such as a 

nominally flat surface that is bowed in the middle or a sphere that is not perfectly round. 

By comparison, a part that contains defects may meet the design tolerances, but contains 

imperfections that can range in severity from a cosmetic deformity to one that 

completely compromises the utility of the part. The role of defect detection in the 

manufacturing process is to make that distinction between the presence of a defect and 

geometric variation, and to classify the severity of detected defects so an educated 

decision can be made about whether the part is suitable for use. 

While some organizations still utilize a human to manually check their parts for 

defects, the proliferation of computers has allowed for defect detection to be performed 
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automatically. Open-source programming languages such as python allow for anyone 

with the time and knowledge to write their own application to detect and classify defects. 

However, the process of writing a custom application can be time consuming and costly, 

and by the time all of the edge cases, bugs and compatibility issues have been fixed, 

there may be a new set of software capabilities required to keep up with evolving 

technologies. As a solution to this problem, some manufacturers of measuring 

instruments offer a software application integrated with their instruments. This thesis 

intends to explore the defect related capabilities of one such software, ATOS 

Professional 2019.  

The main factors explored in this work are the parameter settings used by the 

defect related tools in ATOS Professional. These four parameters are XYZ direction, 

maximum defect size, number of directions, and type. The parameters are explored by 

applying the tools to a measurement taken by the ATOS Scanbox 4105 of an artifact 

machined to contain defects, and several artifacts containing defects taken from the UNC 

Charlotte machine shop scrap bin. 

Chapter 2 addresses the literature reviewed as background for this project, while 

Chapter 3 addresses the motivation for conducting this research. Chapter 4 serves as an 

overview of the experimental setup and procedure, and Chapter 5 reviews the data 

processing conducted on the raw data. This processed data is displayed as the results 

section of Chapter 6, and Chapter 7 draws conclusions from these results. Finally, 

Chapter 8 makes recommendations for future research based on the conclusions drawn in 

Chapter 7, and Chapter 9 presents ideas for future experiments to build off of these results.  
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  LITERATURE REVIEW 
 

To detect defects in a manufactured part, one must first take a measurement of 

the surface to be analyzed. The technique chosen to measure the surface of the parts for 

these experiments was structured light scanning, which is a non-contact measurement 

technique. Systems that employ this technique traditionally consist of two cameras and a 

projector, although some systems function with only one camera [1]. The projector 

projects a specific pattern of structured light onto the artifact to be measured, and the 

cameras take multiple images of it to capture the way the light pattern deforms on the 

artifact surface. These images are then stitched together into a high-density point cloud 

using a process known as triangulation [2]. While other measuring instruments output a 

point cloud at the end of this process, the ATOS Software takes the extra step of 

automatically combining the captured points into a tessellated surface, saved in an .stl 

file.  

When attempting to inspect an artifact for defects, it is important to define the 

terms used to describe the imperfections of interest. ISO Standard 3290-1:2014 defines a 

surface defect as “element, irregularity, or group of elements and irregularities of the real 

surface, unintentionally or accidentally caused during manufacture, storage, handling or 

use of the surface” [3]. For individual defects, ISO 9802:2022 defines a scratch as a 

“score mark made by a hard body” [4], while ISO 25537:2008 defines a dig as “deep, 

short scratch” [5]. This definition of a scratch was used to describe all of the defects on 

the measured artifacts that fit this criteria, while the dig type defects were nominally 

described as dents.   
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An interest in detecting defects in manufactured parts is still relatively new, with 

manufacturers in the United States following the craftsmanship model invented in 

Europe up until the early 19th century [6]. This model operated on the principle that the 

craftsman should provide his own quality control for the work he does, as selling 

defective work would risk losing customers. In the late 19th century, Frederick Taylor 

introduced the idea of Taylorism, which greatly increased productivity by assigning 

specialized roles to workers and eliminating unnecessary parts of the manufacturing 

process [7]. While productivity was increased by the implementation of this model, the 

quality of manufactured goods decreased. To remedy this, the first inspection 

departments were created by factory managers to find defective parts and stop them from 

reaching customers [6]. 

During World War II, it was important that the equipment manufactured for the 

war effort was safe for the troops to use. To attempt to ensure that equipment was not 

defective, the United States armed forces utilized huge inspection forces. This quickly 

proved to be unpopular as personnel retention was low, so the armed forces switched to 

sampling inspection methods instead of going unit by unit [6]. Sampling has now 

become an important aspect of quality control in modern manufacturing.  

With the advent of sampling inspection, manufacturers could afford to inspect 

parts more thoroughly for defects. One of the earliest defect detection instruments was 

the supersonic flaw detector, a device built to bounce supersonic waves off the bonding 

agent used in Hanford slugs to determine the quality of the bond in a non-destructive 

manner [7]. Throughout the 1960s and 1970s, ultrasonic instruments proved to be highly 
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useful in the field of defect detection [8]. While originally the process was confined to 

military and research applications, technological advances allowed for different methods 

and techniques for defect detection to be explored. New methods of utilizing 

technologies such as X-rays [9] and laser scanners [10] allowed researchers to employ 

defect detection in a wider range of situations.  

One of the biggest technological advances happening around this time was the 

rapid improvement and increasing availability of computers, which touched every aspect 

of every industry. Researchers began to explore the integration of computers into quality 

processes, from using them to aid in reducing noise and defects in imaging applications 

[11] to some early defect detection techniques utilizing early image processing tools to 

analyze light intensity [12]. As processing power and capability increased, early versions 

of techniques used today began to be experimented with, such as the use of computer 

vision algorithms in inspection techniques [13] and full-blown automated inspection 

processes [14]. These techniques have only become more prevalent and well researched 

over the last couple of decades.  

Modern defect detection techniques are often focused on the use of AI and neural 

networks to detect defects with speed and accuracy on a wide variety of specimens. Deep 

learning neural networks have been proven to outperform traditional computer vision 

algorithms in head-to-head competitions in both processing time and accuracy, and these 

networks can be applied to existing defect detection processes to greatly increase 

productivity [15]. The advent of these neural networks has also allowed for great strides 

to be made in the automation of these vision-based techniques. Implementation of AI 
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elements has allowed for greater accuracy, lower costs, and overall, less manpower spent 

on the development of these systems [16]. These tools can also be expanded in scope to 

apply classification to the detected defects as well, with some possessing classification 

capabilities right of the box with no alterations, as seen for example in the paper by 

Aydin et al in which researchers detected and classified defects on railway fasteners 

using a neural network and image processing [17]. 

Although in some cases humans may still be able to outperform machines in the 

realm of defect detection, in defect classification tasks automated systems outperform 

humans in terms of consistency, reliability and speed [18]. While these systems may 

perform better by measurable metrics, conventional defect classification systems still 

require human expertise to designate the pass/fail condition and the numerical thresholds 

to identify defects. The introduction of advanced algorithms has reduced the need for this 

human expertise to set these threshold values, and in some cases completely eliminated it 

entirely. Despite the fact that the success of these algorithms is entirely dependent on the 

training they receive beforehand, utilization of a robust dataset can allow for extremely 

accurate detection and classification completely independent of human intervention [18].   

While the main focus of this research is on the defect detection and classification 

tools built in to the ATOS Professional software, it is still important to note the 

capabilities of these external software tools, as they may serve useful in a direct 

comparison between these two options. The weaknesses of these systems may also carry 

over between tools. For example, in an experiment conducted on the neural network 

known as ResNet-101, the classification layer known as fc1000 erroneously classified ~ 
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2% of defects without the added feature layer known as pool5 [16]. A pooling layer is a 

two-dimensional filter applied to a defect map that summarizes the features of the region 

contained within the filter, and is used to reduce the overall dimensions that the neural 

network needs to consider [19]. This could prove analogous to filtering options available 

within ATOS Professional.  

Furthermore, in the review of modern defect detection models that utilize neural 

networks, researchers note that while these models can provide fantastic accuracy, larger 

datasets require models built from the ground up to support the specific inspection the 

operator wants, as well as high quality and reliable data for all parts that need to be 

inspected [15]. These issues and others could potentially arise when evaluating the 

capabilities of the ATOS suite of tools.  

  



8 
 

  EXPERIMENT MOTIVATION 

 
The primary motivation for this experiment was to gain a thorough understanding 

of the defect tools available in ATOS Professional 2019 for use in experiments in the 

metrology research labs at UNC Charlotte. After discovering these tools existed in the 

software for a research project, it was realized that there was relatively little 

documentation on how to utilize them properly. Reaching out to the software support 

team responsible for this application returned an answer that they too were not 

particularly well versed in the use of this tool. Through their parent company, a training 

program that contained some basic information and guidance was purchased, but this 

program had a relatively narrow scope and was lacking a lot of the information needed to 

employ the toolset for the actual artifacts of interest to the Charlotte group. 

Using the information gleaned from the training program, these tools were 

utilized using the generic settings and classification equation for some basic experiments, 

producing mixed results.  While defects were able to be identified and classified using 

these basic parameters, the results yielded were less than ideal. A sample of these results 

can be seen below in FIGURE 3-1. As can be seen from the example, the software has 

marked all the defects as one type, and has identified significantly more defects (over 

6000) than were expected to be seen on the surface of the part.  
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FIGURE 3-1: Basic Classification Example 

It was seen that while these basic parameters provided a framework for use of 

these tools, there were issues in the implementation details. The software would often 

overestimate the size of the defects and misrepresent their depth. Furthermore, the 

default classification equation required modification to work on artifacts outside of its 

original intended purpose, and would fail to properly classify defects by severity as 

intended even with these changes made. Therefore, this project was proposed and 

adopted to further the understanding of these tools. 

  

15 mm 
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  EXPERIMENT PROCEDURE 

 

4.1 Equipment and Software Used 

 

The hardware and software used to perform these experiments are listed here; the 

majority of components studied in detail are on the software side. To conduct the 

measurements for the experiments an ATOS Scanbox 4105 was used, with the sensor 

being an ATOS Capsule 8M.  The instrument was paired with its companion software, 

ATOS Professional, specifically the 2019 version. This application allows for interfacing 

directly with the instrument to take measurements and perform inspections on measured 

parts. While the measurements used for this experiment did come from this instrument, it 

would be most accurate to say that the experiment is being performed mainly on the 

software.  

Seven artifacts were chosen for use with this experiment, with two specifically 

manufactured to contain regularly-shaped defects and the other five “organic” artifacts, 

which were leftover scrap from machining processes that naturally contained defects. 

The first defect artifact was manufactured exclusively with scratches of increasing depth 

across the face, and was created to test the capabilities of the defect tool suite at varying 

depths. The second defect artifact was manufactured with 25 dents and 28 scratches 

evenly spaced on the top face of the same nominal depth. This artifact was created to 

serve as a baseline for detecting and classifying the two main types of defects this project 

aimed to capture, dents (also called digs or dimples) and scratches. The five additional 

artifacts were pieces of scrap metal retrieved from the machine shop scrap bin, and were 

chosen for their varying defect placements, surface finishes and geometries. The artifact 
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names and a brief description of each artifact is included below in Table 1, and images of 

each artifact are included in APPENDIX A.  Note that the five "organic" artifacts were 

down-selected from over a dozen candidates, which is the reason for the non-sequential 

sample numbering. 

Table 1: Artifact Descriptions 

Artifact Name Description 

Defect Artifact 1 Manufactured artifact with scratches varying 

in depth from approximately 25 μm – 500 μm 

numbered from 1-15 starting with the 

shallowest scratch. Dimensions of the sample 

were approximately 25 x 230 x 25 mm 

Defect Artifact 2 Manufactured artifact with 25 dents and 28 

scratches. Scratches were approximately 125 

μm deep and 250 μm wide, while dents were 

approximately 125 μm deep and 2.5 mm in 

diameter. Sample dimensions approximately 

70 x 101 x 22 mm 

Sample 2 Organic artifact with a squared step on the top 

face. Sample dimensions approximately 38 x 

49 x 38 mm 

Sample 5 Organic, square artifact with defects on the top 

face. Additional defects added by operator. 

Sample dimensions approximately 38 x 32 x 6 

mm 

Sample 10 Organic, fin shaped artifact with many 

deformations and bends in the surface. Sample 

dimensions approximately 279 x 248 x 83 mm 

Sample 11 Organic, triangular artifact with a ridged 

surface finish. Ridges were approximately 70 

μm deep. Sample dimensions approximately 

51 x 197 x 64 mm 

Sample 13 Organic, flat artifact with a bend in the metal. 

Additional defects added by operator. Sample 

dimensions approximately 79 x 117 x 2 mm 

 

In addition to the GOM equipment and software, Microsoft Excel and Google 
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Sheets were used for basic data processing and to generate many of the figures in this 

paper. 

4.2 Setup 

 

As the physical experimentation side of the project was purely for data collection 

to be evaluated in the software, the physical setup was generally the same for each 

experiment conducted. Each part was prepared by being sprayed by hand with a rattle 

can of SKD Developer spray, and GOM 0.4 mm reference point stickers were applied to 

the surface. After the samples were prepared, they were individually placed in the 

approximate center of the rotation table in the Scanbox. To scan each part, the sensor 

was placed at approximately 45 degrees of elevation, and the part was rotated 12 times in 

30-degree increments to simulate a standard quick inspection process. Additional shots 

were then added as needed to fully capture the top face of the part. Each point cloud then 

underwent polygonization, a proprietary process in the ATOS software that stitches 

together individual measurements by utilizing an algorithm that produces a tessellated 

surface with relatively uniform triangle size. The ATOS polygonization function was set 

to use the "more details" postprocessing option, and afterwards the models were trimmed 

to exclude all extraneous data such as the rotation table and other pieces of the measuring 

apparatus. An example of this experimental setup can be seen below in FIGURE 4-1.  
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FIGURE 4-1: Example Experimental Setup 

In order to focus on the software side of the experiment, many aspects of the 

inspection process were standardized across the parts to minimize variation. All meshes 

were imported into a clean ATOS file as .stl files. The parts were then aligned to the XY 

plane to simulate the position in which they are scanned by default. Each set of different 

tool parameters utilized were saved as an individual file. A software screenshot showing 

this setup is shown in FIGURE 4-2.  

Sensor Head 

Rotation Table 
Artifact to 

measure 
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FIGURE 4-2: Example Software Import Setup 

15 mm 
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4.3 General Experimental Procedure 

 

The main steps to the experiments are described here.  The first step is the 

measurement of the artifact as described above, producing a mesh to be analyzed. The 

second step is the production of a defect map, which is a map of values superimposed on 

this mesh. It is in this step that several experiments were run in which the software 

parameters are varied. One attribute of the defect map is that regions are identified that 

may be considered as defects.  A metric used in this thesis is the number of regions 

identified, which are referred to as "candidate false positives." The final step is to apply a 

classification algorithm to the defect map, identifying areas that are considered defects. 

The physical and software experimental setups were identical for all experiments as seen 

in FIGURE 4-1 and FIGURE 4-2. Each of the one hundred and forty permutations of the 

software parameters was applied and then saved as its own file. After these permutations 

were created, the surface defect classification tool was applied and the results were 

recorded.  

4.4 Procedure Variations 

 

Using the general procedure described above, the various software parameters 

were adjusted in an organized set of experiments and the results saved for subsequent 

analysis. 

 The first experiment focused on the “maximum defect size” parameter, which 

defines the length of the line that the surface defect map tool runs across the surface of a 

part to detect defects. This parameter seemed like the single most important guideline to 

present, as modifying the value changed not only the time needed to compute the map, 
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but the coverage of defects and presence of "candidate false positives" as well. For defect 

artifact 2, this parameter was set in steps of 1 mm between 1 and 4 mm. 2.5 and 6.5 mm 

were also investigated, as they were the maximum length of the dent and scratch defects 

on the face of the artifact respectively.   

The second experiment focused on the “direction” parameter. The software offers 

the ability to run the previously aforementioned maximum defect line along the surface 

of the part in a three-dimensional cartesian coordinate system. Considering defects are 

computed at least in part on a directional basis by the surface defect map tool, it seemed 

important to experiment with all available orientations for any given position. While all 

directions may have not been feasible in all part orientations, the directions that were 

available were applied for all conducted trials.  

The third experiment was the simplest conducted, focusing on the “number of 

directions” parameter. While it initially seemed unimportant, the number of directions 

parameter allows the operator to choose whether the max defect line is run a second time 

perpendicular to the original orientation, or just once across the face of the part. While 

the line is set to run twice by default, this can increase the number of candidate false 

positives detected by the map. For each trial, the parameter was set to run the line both 

once and twice.  

The fourth experiment addressed the “type” parameter.  Depending on whether 

the parameter is set to detect depressions or bulges, the maximum defect line will be run 

along either the top face, or the underside of the face in question to detect defects. 

Selecting both will cause the line to search for both kinds of defects. While the tool is set 
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to both by default, in many cases selecting both will cause not only a large number of 

candidate false positives, but also significant noise to be detected even in the defects that 

are correctly identified. For each conducted trial, the parameter was set to the either 

depressions only, bulges only, or both. 

FIGURE 4-3 below displays a sample configuration window for the surface 

defect map tool that displays the four main parameters as they are configurable in the 

software. 

 

FIGURE 4-3: Example Defect Map Configuration Window 
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The fifth experiment was unique out of the conducted experiments, as it 

contained the only changes made to the setup throughout the experimental suite. As the 

surface defect map is based on the direction and length of the line, it would stand to 

reason that changing the orientation of the part would change the way the defects were 

calculated. For all previously run parameters, another set of trials was done where the 

orientation was changed from 0-90 degrees in increments of 15 degrees by rotating the 

artifact about the Z axis in the software, effectively changing the X and Y directions of 

evaluation.  

The sixth and final experiment was procedurally identical to Experiment 1. The 

mesh for defect artifact 2 was inverted using the "invert selected normals" function in the 

ATOS software. The same trials from Experiment 1 were then conducted to investigate 

how the software handled inverted defects of equal magnitude.  

4.5 Issues to Note 

 

There are some potential issues to note during the experimental phase that may 

cause some discrepancies in results interpretation. While the defects on the manufactured 

defect artifacts were precisely manufactured and therefore could have their dimensions 

estimated with a good degree of certainty, the estimations of defect size were less precise 

for the organic artifacts. As such, the maximum defect size could not be set as accurately 

during the validation experiments. This could cause errors in the calculation of the defect 

map. For Experiment 2, parts that contained distortions in the face being measured for 

defects could not be aligned perfectly to the XY plane. Due to this discrepancy, there 

could be error introduced by the direction of the touching line differing from other 
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specimens. This error could also be present in Experiment 5, as the orientation of the part 

when rotated is directly dependent on the initial alignment in ATOS Professional 2019.  

4.6 Defect Classification and AI 

 

The project was initially conceived with an additional experiment in which the 

parts classified using the built in ATOS Professional defect classification tool would also 

be processed using a custom AI defect detection program. The results of this program 

would have then been compared to the results from the built-in tools, and the possibility 

of determining more precise filtering parameters from this dataset would have been 

explored. However, while the AI program worked well on images, adapting it to run on 

3D models in a different computing environment proved to be a massive undertaking, as 

there were numerous bugs and compatibility issues to work through. Due to the time 

constraints of the master’s thesis format, the decision was made to drop this experiment 

and pass the work completed on it as a recommendation for future work.  
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  DATA PROCESSING 

 

5.1 Mesh Processing 

 

Due to the insulated nature of the GOM software package, it would have been 

necessary to perform almost all of the data processing in the software even if the 

experiments were not designed around their use. The software does not allow for the 

export of the raw data taken from an attached instrument. To create a mesh in ATOS 

Professional, the individual measurements that make up the raw data must be stitched 

together using polygonization. When using the polygonization function, there are five 

options for the detail level of the resulting mesh. These levels are merely descriptive, and 

have no quantitative values associated with them to assist the operator. The five options 

available are No postprocessing, More details, Standard, Less details, and Smallest data 

volume. It was decided that since the experiments being conducted were primarily 

concerned with the detection of defects of various shapes and sizes on the surface of a 

part, the best option would be to use the "More details" postprocessing option, as it is 

realistically used in some industry applications and would provide the highest resolution 

view of the surface of the parts being inspected. An example of one of the polygonized 

meshes can be seen below in FIGURE 5-1. 
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FIGURE 5-1: Mesh polygonization example. The inset shows a closer view of the triangulated 

point cloud 

After polygonization, each mesh was exported from the software and then 

reimported as an .stl into a new file to remove any extraneous elements the software may 

have held over from the acquisition portion. A plane was then fit to each mesh using a 

gaussian plane fit while removing outliers beyond 3 sigma of the data. This plane serves 

as the basis to create a local coordinate system on the right corner of the mesh, with a 

line and edge point serving as the two other components of the coordinate system. For 

parts that were not flat, these elements were constructed on the flattest available section 

of the mesh. Once this coordinate system was created, an alignment by coordinate 

systems was created to align the part to the XY plane. This is the default orientation a 

5 mm 
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part would be scanned in directly from an automated instrument like the ATOS Scanbox.  

Once the mesh was aligned, a "deviation to geometry" check was built comparing 

the plane to the mesh. This check provides the Z deviation of the measured mesh when 

compared to a geometric feature, which in this case was the fitted plane. The surface 

defect map tool was then applied using the various parameters described in the 

experimental procedure of CHAPTER 4.  Each experiment was saved as its own file to 

streamline the data processing procedure. The surface defect classification tool was then 

built on top of the surface defect map, and the classification formula described further in 

CHAPTER 6 was applied. It was at this point that the dataset was split again, with 

further inspection elements being built on a partial section of the mesh. An example of a 

full mesh inspection can be seen below in FIGURE 5-2, which includes the outline of the 

partial mesh used for additional analysis. 
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FIGURE 5-2: Example full mesh surface classification. The section used for the partial mesh 

inspection is indicated in white 

Because the full mesh contained many similar defect features, the partial mesh 

was used for many analyses to speed the processing. For the partial mesh inspection, the 

bottom right corner of the defect artifact was chosen as a representative section of the 

whole mesh, as it contained a good density of defects.  

The following analysis method was used to determine the change in deviations 

related to the construction of the defect map from the actual mesh surface. The defect 

regions were selected, and a number of points were placed covering the surface area of 

the defect using the equidistant points function at a point-to-point distance of 0.5 mm. 

The points were placed in the same location across both the deviation to geometry 

15 mm 
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feature and the surface defect map. Each point was labelled, and the data was exported to 

Excel. A diagram of the defect locations and names for defect artifact 2 is included in 

APPENDIX B, and an example of this partial mesh inspection is included in FIGURE 

5-3. 

 

FIGURE 5-3: Example partial mesh inspection 

5.2 Excel Processing 

 

Once the CSV files of deviation values were exported from the partial mesh 

inspection plans, the deviation of each point was compared to the deviation from 

geometry check. The deviation value reported by the mesh was treated as the ground 

5 mm 
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truth value to further simulate an inspection conducted solely in ATOS Professional. By 

dividing the two values, the relationship between the two numbers was expressed as a 

percent error. Combining all the values that make up a defect and averaging this 

percentage gave the "total defect coverage" for that set of parameters. This term is used 

to represent the magnitude change between the mesh and the defect map produced using 

each different parameter set.   

For the full mesh inspection, the surface defect classification tool was applied 

directly to the unfiltered mech. The classification tool utilizes an equation which 

calculates the local slope to get a representative value for each of the defects detected by 

the surface defect map. This equation is given in section 6.8 and is explained in greater 

detail there. The table of values was then exported, and an analysis performed to 

determine appropriate parameter settings for rules to filter out the false positives. After 

these filtering rules were applied, the number of false positive defects and true positives 

were recorded in Excel as well. The data was averaged for each type of parameter tested, 

and conclusions were drawn on the optimal set of parameters using the results.  

Once a defect was detected, it was designated as a candidate true or false positive. 

To filter past this point and determine whether a defect is a true or false positive, several 

guidelines were utilized. Visible defects on the surface of the artifact were identified 

prior to inspection as the ground truth set of true positives. If the available area of defect 

is more than 80 percent identified, the defect was counted as a true positive. If less than 

80 percent of the defect was identified, an approximation was calculated by estimating 

the total percentage of defect identified. A false positive was defined as any defect 
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identified by the software that was not visible in a human inspection. Any positive that 

overlapped with an identifiable defect was a false positive as well.  

In the results chapter that follows, the two primary metrics that are used to 

evaluate the influence of software settings are the percentage error from filtering and the 

candidate true and false positive counts from the creation of the defect map.
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  RESULTS 

 

6.1 Experiment 1 

 

The measured percent error in the deviation reported in the Z direction between 

the mesh and the surface defect map for the partial mesh inspections can be seen below 

in FIGURE 6-1. For all scatter plots in the results section, five percent error bars were 

used as standard deviation error bars made many of the figures significantly harder to 

read. 

 

FIGURE 6-1: Unfiltered error for Experiment 1 partial mesh inspection 

The raw data for these experiment as is contained significant outliers in the 

dataset. Because these outliers persisted across all trials involving the partial mesh 

inspections, the decision was made to generate a second dataset for these experiments 

utilizing a 2-sigma filter. An example of the plot after the filter is applied can be seen 
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below in FIGURE 6-2, and FIGURE 6-3 breaks down the data even further into the 

reported error for each defect. 

 

FIGURE 6-2: Filtered error for Experiment 1 partial mesh inspection  
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FIGURE 6-3: Filtered error sorted by defect location and type for Experiment 1 

Observing these plots, it is instantly noticeable that the lowest amount of error 

occurred around the 2-3 mm range, with an upward trend in error observed on both sides 

of this range. The maximum width of any defect on the surface of the artifact in the X 

direction was 2.5 mm, and the maximum length in the Y direction was 6.5 mm. As such, 

these data points were included as well. While 2.5 mm represented the lowest calculated 

error on the raw data plot, after applying the filter the error was slightly lower at 2 mm. 

Both plots also had 6.5 mm as the length with the 2nd most error, only trailing 1 mm. 

There was no notable deviation from these trends for any individual defect, with each 

one following the same basic trend. However, the scratch defects exhibited significantly 

higher error overall than the dent defects, with the exception of the dent in the top right 

corner of the sample that registered more error than any other defect examined.  
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A similar trial was also conducted for the full mesh, with the candidate true 

positives recorded in FIGURE 6-4 and the candidate false positives recorded in FIGURE 

6-5. 

 

FIGURE 6-4: Average candidate true positives for Experiment 1 full mesh inspection 
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FIGURE 6-5: Average candidate false positives for Experiment 1 full mesh inspection 

Both figures displayed a clear upward trend that increased with the length of the 

line. The candidate true positives leveled off at 2 mm, while the candidate false positives 

continually increased as the line increased. There were no instances in which a defect 

was detected in two or more pieces, so this case was not considered when totaling the 

positives for this artifact. 

6.2 Experiment 2 

 

The partial mesh data for the XYZ direction parameter, both unfiltered and 

filtered through a 2-sigma filter, can be seen below in FIGURE 6-6 and FIGURE 6-7. 
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FIGURE 6-6: Unfiltered error by XYZ direction for Experiment 2 partial mesh inspection 

 

FIGURE 6-7: Filtered error by XYZ direction for Experiment 2 partial mesh inspection 
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Looking at this data, it appears that the Y direction contains less error than the X 

across both the filtered and unfiltered datasets. While the overall average does provide Y 

with slightly less error, breaking it down by defect in FIGURE 6-8 provides a much less 

clear picture. 

 

 

FIGURE 6-8: Filtered error sorted by defect type for Experiment 2 partial mesh inspection  

It is immediately noticeable from this chart that the majority of the difference 

between X and Y comes from the top right defect, with every other defect registering 

within 3 percentage points of each other. Removing this defect from the dataset reduces 

the difference between the two directions to approximately 0.1 percent.  

FIGURE 6-9 and FIGURE 6-10 show the candidate true/false positive data for 

the full block trial.
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FIGURE 6-9: Candidate true positive data for Experiment 2 full mesh inspection  

 

FIGURE 6-10: Candidate false positive data for Experiment 2 full mesh inspection 
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This dataset appears to provide a clearer trend than the partial block data, with X 

containing both more candidate true positives and significantly less candidate false 

positives than Y. However, deconstructing this average once again makes drawing a 

clear distinction between X and Y impossible. The Y direction contained less candidate 

true positives due to one datapoint, and while the difference was more noticeable in the 

candidate false positives dataset, the differential was very inconsistent across the trials, 

as seen in FIGURE 6-11. 

 

FIGURE 6-11: Calculated difference between Y and X values for all datapoints in the 

Experiment 2 full mesh inspection 

Considering the lack of definitive trend across all the figures presented, it appears 

there is no definitive preferred direction to use with the defect map tool with a default 

alignment.
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6.3 Experiment 3 

 

The partial mesh data for the number of directions parameter, both unfiltered and 

filtered through a 2-sigma filter, can be seen below in FIGURE 6-12 and FIGURE 6-13. 

 

FIGURE 6-12: Unfiltered error for Experiment 3 partial mesh inspection
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FIGURE 6-13: Filtered error for Experiment 3 partial mesh inspection 

While the pattern exhibited by this data set is very similar to that seen in the data 

from Experiment 2, there are a couple of key differences. Compared to Experiment 2, the 

difference between the two bars is more pronounced, with 7.63% more error compared to 

only 2.63% more in Experiment 2. This difference becomes even more visible when 

broken down by defect in FIGURE 6-14. 
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FIGURE 6-14: Filtered error for Experiment 3 partial mesh inspection by defect type 

The largest difference existed at the top right defect again, but there were several 

other defects with greater than a 5% difference, such as the top left and bottom right 

dents. While the scratches reported very similarly across both trials, there was a notable 

increase in error for all the dents. A similar pattern can be seen in the candidate true/false 

positive data in FIGURE 6-15 and FIGURE 6-16. 
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FIGURE 6-15: Average candidate true positives for Experiment 3 full mesh inspection 

 

FIGURE 6-16: Average candidate false positives for Experiment 3 full mesh inspection 
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Once again, the overall dataset is very similar to that of Experiment 2. However, 

the trends observed again seem more definitive in the Experiment 3 data. While only one 

trial recorded less than 53 candidate true positives, it was noted by the operator that 

reducing the direction parameter from 2 to 1 significantly reduced the number of defects 

detected for both candidate true and false positives. This is especially evident in 

FIGURE 6-16, as not only did 1 direction average 86.9 less candidate false positives per 

trial, but there was not a single trial in which the detected candidate defects were lower 

for 1 direction when compared to 2 directions. If the surface defect map tool is struggling 

to pick up all of the expected defects, it may make sense to increase this parameter to 2 

directions. Otherwise, 1 direction is the clear choice to both reduce both error and 

recorded candidate false positives.
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6.4 Experiment 4 

 

The partial mesh data for the type parameter, both unfiltered and filtered through 

a 2-sigma filter, can be seen below in FIGURE 6-17 and FIGURE 6-18. The DB column 

in this dataset refers to the option that checks for both depressions and bulges.  

 

FIGURE 6-17: Unfiltered error for Experiment 4 partial mesh inspection 
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FIGURE 6-18: Filtered error for Experiment 4 partial mesh inspection 

Looking at this chart, one of the biggest discrepancies between the unfiltered and 

filtered datasets emerges, with the 2-sigma filter removing 23% error from the DB 

average. Breaking the dataset down by defect in FIGURE 6-19 further exposes this trend. 
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FIGURE 6-19: Filtered error for Experiment 4 partial mesh inspection sorted by defect type 

The scratch trials are close for both options, but the parameters that are not close 

are separated by almost 20% error. Across the conducted experiments, it is noticeable 

that the defects that register the most error are the scratches and the top right dent. This 

make sense for the scratches, as their geometry provides many different edges for the 

defect map to interpret in different ways. The only observed difference between the top 

right defect and the other defects is that it is the closest defect to the origin. The 

previously observed discrepancy between the trials that changed and the ones that didn’t 

is even more visible in the full mesh data contained in FIGURE 6-20 and FIGURE 6-21. 
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FIGURE 6-20: Average candidate true positives for Experiment 4 full mesh inspection 

 

FIGURE 6-21: Average candidate false positives for Experiment 4 full mesh inspection 
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The full mesh inspection was not subject to any filters, and in this dataset both 

options registered the same number of true positives. However, when comparing the 

candidate false positives the DB option registered almost 100% more, on average 

containing 392.95 compared to only 200.3 for the depressions only option.  

6.5 Experiment 5 

 

The partial mesh data for the orientation experiment, both unfiltered and filtered 

through a 2-sigma filter, can be seen below in FIGURE 6-22 and FIGURE 6-23. Due to 

the number of permutations needed to conduct this experiment, the max defect size line 

was standardized at 2.5 mm for all trials. 

 

FIGURE 6-22: Unfiltered error by orientation for Experiment 5 partial mesh inspection 
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FIGURE 6-23: Filtered error by orientation for Experiment 5 partial mesh inspection 

The datapoint at 15 degrees contained the most outliers, with 74% error removed 

between the filtered and unfiltered dataset. This dataset averaged the results from both 

the XYZ directions and number of directions parameter, so choice of these parameters 

did not affect the results.  

The filtered data broken down by defect is visible in FIGURE 6-24. 
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FIGURE 6-24: Filtered error sorted by defect type for Experiment 5 partial mesh inspection 

The data clearly indicates that the rotation to 90 degrees produces the largest 

jump in error, with 4 of the 6 defects examined possessing at or over 60% error when 

compared to the mesh. There did seem to be some correlation between rotation and error, 

as the right scratch exhibited the most error at 30 degrees, and the left scratch exhibited 

the most error at 60 degrees. This pattern was exhibited to a lesser extent in the dents as 

well, as the bottom left dent exhibited the most error at 30 degrees and the top right dent 

displayed the most error at 60 degrees. The scratches also displayed the most error at the 

30, 60, and 90 degree locations, which is most likely due to the angled geometry of the 

scratches compared to the round dents. To check for noticeable differences by direction, 

the orientation data was isolated to just X and Y in FIGURE 6-25. 
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FIGURE 6-25: Filtered error by orientation isolated to just X and Y for Experiment 5 partial 

mesh inspection 

No trend is visible looking at this figure, with the only deviations of more than 

5% occurring at 60 and 90 degrees. This suggests any difference between the two cannot 

be attributed to the direction of the line even with the change in orientation. The 

observed trend for the number of directions parameter was also consistent, as visible in 

FIGURE 6-26.  
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FIGURE 6-26: Filtered error by orientation isolated to just number of directions for Experiment 

5 partial mesh inspection 

The one direction option performed better than the two directions option for all 

orientations besides 90 degrees. Figures for the full mesh inspections are visible in 

FIGURE 6-27 and FIGURE 6-28. 
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FIGURE 6-27: Average candidate true positives for Experiment 5 full mesh inspection 

 

FIGURE 6-28: Average candidate false positives for Experiment 5 full mesh inspection 
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There was no difference in the candidate true positives recorded at any given 

orientation. The candidate false positives were also fairly consistent, with the biggest 

difference between any orientation existing at 60 degrees. Besides the outlier at 60 

degrees, the positions at 0 and 90 degrees represented the most candidate false positives, 

which is consistent with the findings of the partial inspection. Dividing the data up by 

direction in FIGURE 6-29 reveals an interesting trend. 

 

FIGURE 6-29: Average candidate false positives for Experiment 5 by XYZ direction 

There is a clear difference in candidate false positives depending on what 

direction is used with what orientation. Performance at 45 degrees was approximately the 

same, with X registering significantly less defects between 0-30 degrees, and Y 

registering less between 60-90 degrees. While no clear difference appeared in any other 
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consideration of XYZ direction, it may be worth considering setting the parameter 

according to the orientation of the part in the software.  

As with the partial mesh inspection, the trend of the 1 direction parameter 

performing better than 2 directions held true for the full mesh as well, as can be seen in 

FIGURE 6-30 and FIGURE 6-31. 

 

FIGURE 6-30: Average candidate true positives for Experiment 5 by number of directions 
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FIGURE 6-31: Average candidate false positives for Experiment 5 by number of directions  
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6.6 Experiment 6 

 
The unfiltered and filtered data for the inverted mesh experiment compared to 

their non-inverted counterparts can be seen in FIGURE 6-32 and FIGURE 6-33. As it 

was in the orientation experiments, the max defect size line was set to 2.5 mm for these 

experiments. Note that the non-inverted data is referred to as the standard dataset in the 

figures for this section 

 

FIGURE 6-32: Unfiltered error for Experiment 6 partial mesh inspection 
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FIGURE 6-33: Filtered error for Experiment 6 partial mesh inspection 

The difference between the two datasets is enormous, with the unfiltered inverted 

data registering almost 1200% error. Even with the significant outliers filtered out, there 

was almost a 28% difference in error between the inverted and standard data. Dividing 

the dataset up by defect in FIGURE 6-34 makes the source of the difference clearer. 
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FIGURE 6-34: Filtered error for Experiment 6 partial mesh inspection by defect type 

It was originally planned to include a version of this figure with the unfiltered 

data as well, but at 6571% the reported error for the left scratch was so big that the scale 

made the rest of the data unreadable. Looking at the filtered version in the figure above, 

the left scratch still represents a clear outlier. However, the right scratch and bottom left 

dent are the only defects even within 10% of the standard data, with the bottom right 

dent representing the next clearest outlier at almost 80% difference in error between the 

datasets. Interestingly, the one defect the inverted data performed better on than that 

standard data was the top right dent, which was the defect that recorded the most error in 

most of the other conducted experiments.  

Looking at the XYZ directional parameter and number of directions parameter, 

the previously drawn conclusions are also present in this dataset despite significantly 
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more error than the standard data. These charts can be seen in FIGURE 6-35 and 

FIGURE 6-36. 

 

FIGURE 6-35: Filtered error for Experiment 6 partial mesh inspection by number of directions 
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FIGURE 6-36: Filtered error for Experiment 6 partial mesh inspection by XYZ direction 

FIGURE 6-37 shows the candidate true and false positives for the full inverted 

mesh compared to the non-inverted data.  
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FIGURE 6-37: Candidate true/false positives for inverted mesh compared to non-inverted 

dataset 

The large jump in error seen in the partial mesh inspection is not seen here, as 

both the candidate true and false positive numbers are almost identical to that of the 

standard dataset. This holds true for the number of directions and XYZ data in FIGURE 

6-38 and FIGURE 6-39 as well. Note that the candidate true positives for these trials 

were the exact same as the values in FIGURE 6-37, so the values were excluded to 

promote visual clarity.  
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FIGURE 6-38: Candidate false positives for inverted mesh compared to standard dataset for 

directions parameter 



61  

 

FIGURE 6-39: Candidate false positives for inverted mesh compared to standard dataset for 

XYZ direction  
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6.7 Correlation between Variables 

 

After the results for percent error were collected, the Pearson correlation value 

was calculated for each of the four main variables. Linear regression was then used to 

generate a t-statistic and a p-value, and these values were then displayed below in Table 

2. 

Table 2: Percent Error Regression Statistics 

Correlation type T-Statistic P-Value 

Max Length/Type 20.3 ≈ 0 

Max 

Length/Number of 

Directions 

98.4 ≈ 0 

Max Length/XYZ 

Direction 

11.5 ≈ 0 

Type/Number of 

Directions 

11.0 ≈ 0 

Type/XYZ 

Direction 

23.5 ≈ 0 

Number of 

Directions/XYZ 

Direction 

11.6 ≈ 0 

 

As observed in the table, there is no observable correlation between any of the 

variables tested for percent error. The dataset tested used only the calculated optimal 

parameters, but other tests that examined the other states of the variables similarly 

concluded that no correlation existed.  

Correlation was also tested between the type, number of directions, and XYZ 

direction for the false positives in Table 3. 
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Table 3: False Positives Regression Statistics 

Correlation type T-Statistic P-Value 

Type/Number of 

Directions 

3.09 0.091 

Type/XYZ 

Direction 

2.26 0.152 

Number of 

Directions/XYZ 

Direction 

9.21 0.011 

 

The table shows that a correlation between all of these variables does exist when 

counting false positives. The strongest correlation is between the type selected and the 

XYZ direction, while the smallest correlation is between the number of directions and 

XYZ direction parameters.    
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6.8 Classification 

 

The displayed equation below shows the formula used to classify defects using 

the surface defect tool. This formula uses the built-in functions in ATOS Professional to 

assign a value to a defect by measuring its slope.   

 

𝑥 = 𝑔𝑟𝑎𝑑(atan⁡((𝑝𝑜𝑤(𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ_ℎ𝑒𝑖𝑔ℎ𝑡_3𝑠𝑖𝑔𝑚𝑎 ∗ ⁡−100,2))/𝑤𝑖𝑑𝑡ℎ))⁡ 

 

𝑥 represents the formula result, while max_depth_height and width are measured 

parameters of the defects collected automatically by the defect classification tool. 𝑔𝑟𝑎𝑑, 

𝑎𝑡𝑎𝑛 and 𝑝𝑜𝑤 are built-in math functions. The result of this formula was placed in a 

table, along with other information about each defect such as length, width, and other 

parameters. No units are assigned to these values by the ATOS software. FIGURE 6-40 

and FIGURE 6-41 plot this length and area data as histograms. 
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FIGURE 6-40: Histogram generated from calculated defect length 

 

FIGURE 6-41: Histogram generated from calculated defect area 
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Knowing the approximate size of the defects on the artifact, filtering rules can be 

written using the data from these histograms. The length of the scratch defects was 

approximately 6.1 mm, and the area of the dent defects was approximately 4.9 mm2. 

Looking at the figures, there is a clear separation of 25 defects in bin 7 for the length chart, 

and 28 defects in bin 7 for the area chart. This is the exact number of expected defects on 

the surface of the artifact, so rules were written to filter out all defects that did not meet 

either of these two criteria. Names were then assigned to the remaining bins to display the 

defects properly by type. The result of this classification is shown in FIGURE 6-42. 

 

FIGURE 6-42: Surface defect classification of defect artifact 2 with filtering applied 

With the filtering rules applied, all defects on the surface were correctly accounted 

for and classified, with the only imperfection found on a defect in the second row that the 

15 mm 
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defect map incorrectly identified. The method of setting up the defect classification by 

defect size proved to be very effective when applied to this ideal artifact.  
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6.9 Validation 

 

The ideal parameters determined for defect artifact 2 were to set the max defect 

size to the width of the largest defect on the surface of the artifact, the number of 

directions to 1, and the type to either depressions or bulges, not both. These parameters 

were then applied to the other artifacts, starting with defect artifact 1.  

For defect artifact 1, the 2-sigma filtered mean is plotted below in FIGURE 6-43. 

Note that the first 3 defects on the artifact were not picked up by the defect map, so the 

data is plotted from scratch 4 to 15. Labelled screenshots of all the referenced defects for 

the validation trials can be seen in CHAPTER 9APPENDIX BAPPENDIX B. 

 

FIGURE 6-43: Filtered mean for defect artifact 1 plotted by defect 

The data shows a high agreement between the mesh and deviation map between 

scratch 6 and 13, with a declining trend in error up until scratch 14 when it spikes back 
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up again. This spike can most likely be attributed to error in the method of data sampling 

rather than in the data though. When overlaying the points grid to measure defect 

deviation, the software does not allow the location, orientation, or number of points to be 

chosen, instead opting to lay the grid over a selected area defined by the operator and a 

chosen distance between each point. For defects 4-13, the software chose to lay a single 

row of points along the length of the scratch, while scratches 14 and 15 added a second 

row of points.  

This inspection also encountered the first partial detection of a defect, which is 

something that showed up in all the validation trials. The decision was made to count a 

defect as fully detected if over 80% of its surface area was detected, with exceptions 

made if a key feature was missed or this detection came as part of a larger error. If less 

than 80% was detected, an estimate was made based on the sum of the parts of the defect 

that were detected, and it was noted that only a partial detection was achieved. The 

detection criteria for true positives was also updated to mean any true defect picked up 

by the instrument in the mesh, as the defect map cannot classify any defect that the 

instrument failed to pick up. Considering all of this, Table 4 contains the true and false 

positive data for defect artifact 1, and FIGURE 6-44 shows the final defect classification 

for the artifact.  

Table 4: True/False Positives for Defect Artifact 1 

Type Number detected 

True Positives 12 

False Positives 333 
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FIGURE 6-44: Surface defect classification for defect artifact 1 

The software detected 12 out of 15 possible defects on the surface, and registered 

333 false positives, which is in line with the results observed on defect artifact 2. The 

depth of the minimum detected scratch was approximately 28 microns, with none of the 

shallower scratches detected by the defect map.  The classification process was also 

relatively simple due to the homogenous nature of the defects. Overall, the defect map 

and classification applied very well to this artifact. 

For sample 2, there were issues immediately with the calculation of the defect 

map. FIGURE 6-45 displays the overall defect map before any analysis was applied to it, 

and Table 5 displays the true and false positive data for this mesh.  

20 mm 



71  

 

FIGURE 6-45: Surface defect map for Sample 2 

Table 5: True/False Positives for Sample 2 

Type Number detected 

True Positives 5.12 

False Positives 78 

 

While the map did detect 5.12 defects out of a possible 7, there were significant 

false positive defects surrounding the dents. The scratches accounted for the partial 

detections, with only 1 scratch being completely detected by the map. The 

mischaracterization of the defects on the surface of this artifact were mainly due to the 

5 mm 
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process that created the defects causing a raised burr of material on the edge of the dent 

or scratch. FIGURE 6-46 shows an example of this phenomenon, with the actual dent 

existing on the right side of the screenshot and the false positive on the left. 

 

FIGURE 6-46: Example defect from the surface defect map for Sample 2 

Calculating the defect map by examining the gradient of the defect causes the 

map to detect both sides of the burr as similarly sized dents, despite no such dent existing 

on the left side of it. Changing the type parameter to defects and bulges is supposed to 

alleviate this issue, and an example of this can be seen in FIGURE 6-47. 

500 µm 

 



73  

 

FIGURE 6-47: Example defect from the surface defect map for Sample 2 with type set to DB 

As seen in this figure, while the burr was correctly identified as a bulge by the red 

color on the heatmap, it added significant noise around the edges of the dent. It also 

calculated the burr as much larger than it actually is on the part. As such, the decision 

was made to keep the type parameter set to depressions only.  

Some of the false positives detected can be attributed to the mesh itself, as several 

of the defects had measured mesh elements that were not present on the artifact, and 

several others had components that were picked up incorrectly. Drop out, or holes in the 

mesh, was also an issue present in almost every measured defect. However, elements like 

some of the scratches were not affected by these issues and were still not picked up. This 

could have been due to the relative depth of the defect itself, because as noted in the 

previous trial the defect map struggled with shallow defects.  

The average percent error for the partial mesh investigation of Sample 2 can be 

seen below in FIGURE 6-48.  

500 µm 
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FIGURE 6-48: Average percent error from the surface defect map for Sample 2 

The left dent was the defect with the least issues present in the mesh, so it 

predictably measured the least error at 37% unfiltered error and 33% filtered error. The 

scratch and the other dent had the most consistent mesh available of the other defects on 

the part, and even though this was the case, the error registered was significant enough to 

call into question the accuracy of the defect map in these areas. As expected, this caused 

significant issues with the classification tool, as can be seen in FIGURE 6-49. 
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FIGURE 6-49: Surface defect classification for Sample 2 

Even applying significant filtering to the detected defects, there are still many 

incorrectly classified defects and noise present in the classification. As such, the use of 

the defect map tool and classification was not successful on this mesh. 

For Sample 5, the filtered and unfiltered mean are provided for the partial mesh 

inspection in FIGURE 6-50. 

5 mm 
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FIGURE 6-50: Average percent error from the surface defect map for Sample 5 

This sample was very similar to Sample 2, but the instrument was able to 

measure it with less dropout and artifacting, which are conditions where the mesh drops 

out sections of data where there should be datapoints, or adds erroneous datapoints. As 

such, there is significantly less error in the measurement of each defect, with the highest 

filtered error registered by the triangle dent at 69% error. The triangle dent was also the 

only measured defect that suffered from dropout in the mesh. While the other two dents 

are not as accurate as the measured artifacts, the error measured is significantly lower 

than Sample 2 at 31 and 25% respectively.   

The true/false positive data is displayed in Table 6, and the full surface 

classification is shown in FIGURE 6-51.  
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Table 6: True/False positives for Sample 5 

Type Number detected 

True Positives 9.72 

False Positives 151 

 

 

FIGURE 6-51: Surface defect classification for Sample 5 

Note that there was no known way to combine partial defects or edit detected 

defects, so the number in the screenshot does not match the number of true detected 

5 mm 
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positives. The number of true positives detected was 9.72 out of a possible 15, with the 

map failing to pick up the scratch and the shallowest dents on the surface. 

While it was significantly easier to sort the defects on this mesh, there were still a 

couple of issues with the classification step. The main issue that appeared in this step 

was the presence of false positives the system calculated to have a value of infinity. 

These defects did not appear in the manufactured trials, but were present for all of the 

organic trials in varying quantities. Because the formula result parameter was not a value 

that could be referenced when writing the filtering rules, these defects would 

inexplicably appear and disappear in the classification result, and exhibited strange 

behavior such as changing based on the spacing of the text in the formula code, and 

ignoring previous filtering rules altogether. The noise was eventually able to be filtered 

out of the classification, but it required significant time and effort to identify these 

defects and manually exclude them from the finished product. Although the accuracy 

level achieved was not as good as the results established for the manufactured artifacts, 

the classification tools were able to be utilized on this artifact with moderate success. 

The other 3 artifacts all had issues that rendered the results from either the defect 

map or surface classification tools either inadequate for calculations to be made or in 

some cases completely unusable. Sample 10 suffered from major dropout that affected 

all 3 of the main scratches on the face of the artifact. FIGURE 6-52 shows the defect map 

as calculated for Sample 10. 
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FIGURE 6-52: Surface defect map for Sample 10 

While the surface defect map was able to broadly identify one of the scratches on 

the surface as can be seen in the figure, when the classification tool was applied it was 

revealed that it was actually detected as hundreds of miniscule defects as part of the 2540 

defects the tool calculated on the surface of the artifact. It was not feasible to apply any 

classification to this part without isolating the inspected area to just the defects of 

interest, which defeats the purpose of attempting to classify the whole part. A partial 

inspection of the best detected scratch could not be performed either due to the lack of 

tools provided for inspection of a part without a CAD model in the GOM software. The 

deviation check used for previous samples relies on comparing the mesh to a projected 

10 mm 
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plane to calculated the deviation, so this calculation was completely incorrect due to the 

bends in the part.  

A similar issue was encountered in the inspection of Sample 13, which was the 

artifact with a single bend in it. However, the end result was slightly different. The 

true/false positive data for Sample 13 can be seen below in Table 7, and the classification 

is visible in FIGURE 6-53. 

Table 7: True/False positives for Sample 13 

Type Number detected 

True Positives 11.22 

False Positives 6472 
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FIGURE 6-53: Surface defect classification for Sample 13 

This sample was the second most successful classification of an organic artifact, 

with 11.22 defects correctly identified out of a possible 14. Compared to sample 10, the 

classification process was relatively simple as the software had correctly identified 

almost all of the defects as their proper size instead of as hundreds of parts of a whole. 

There was still a slight issue with the removal of the false positives, as can be seen by the 

2 false positives still included in the figure that were identified as noise. However, the 

classification created from this data could be useful, unlike the results from Sample 10. 

The partial inspection of Sample 13 ended in the same result as Sample 10, with 

the deviation to geometry check failing due to the bend in the part throwing off the 

10 mm 
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measured deviation. A fix for this issue was attempted where the check was only applied 

to the areas with defects situated away from the bend in the middle, but it still appeared 

to affect the results as no useful deviation check was possible.  

FIGURE 6-54 shows the surface defect map calculated for Sample 11. 

 

FIGURE 6-54: Surface defect map for Sample 11 

As previously mentioned, Sample 11 has a ridged surface, with ridges that are 

approximately 65 microns deep. While some of the scratches on the surface suffered 

from dropout, large portions of these ridges were incorrectly detected as defects before 

20 mm 
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any filtering was applied. The results of the classification tool can be seen below in 

FIGURE 6-55. 

 

FIGURE 6-55: Surface defect classification for Sample 11 

Looking at the classification without any filtering, it is clear that the software has 

detected the portions of the scratches as part of the ridges. While this may not be true for 

100% of all the detected defect pieces on the surface, the majority of them have been 

detected this way and therefore would not be possible to classify. Additionally, the 

partial inspection was not possible due to the deviation check issue that was present for 

Sample 10 and Sample 13, as well as there being no identifiable defect detected to check 

against.  

Considering these results, it is definitely not recommended to utilize the defect 

detection and classification tools on parts that have a consistently uneven surface such as 

the ridges of Sample 11. Additionally, while it may still be possible to use the tools on a 

bent surface, it is generally recommended that the surface be as flat as possible.  

 

20 mm 
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  CONCLUSIONS 
 

 

Analysis of the correlation tables in the previous chapter shows that there is no 

correlation between any of the 4 main variables that go into calculating the surface defect 

map in terms of percent error when comparing the mesh and the defect map, but there is 

a correlation between those variables when counting false positives detected. While on 

its face this correlation may not seem that important, the validation trials showed that the 

presence of false positives can interfere with correctly identified defects, as well as just 

generally wreaking havoc with the classification filtering system. Therefore, it is 

important to minimize the number of false positives detected if possible. 

However, it was also observed that reducing the parameters too much, 

specifically the max defect size line, can cause the defect map tool to not only 

underestimate the number of true defects on a mesh, but misrepresent the shape and size 

of these defects as well. Analyzing the artifact to be measured beforehand to be able to 

properly set these parameters is important to make sure that the tools function as 

accurately as possible.  

Additionally, while it may not have been particularly important when analyzing 

the ideal artifacts, mesh quality was incredibly important to the success of the defect 

tools on real world artifacts. Meshes that contained dropout or artifacting significantly 

impacted the ability of both the defect map to calculate defects and the classification tool 

to classify them.  Protrusions on the surface of the artifact also caused issues with both 

detection of false positives and misrepresentation of defects nearby. Surface structure 
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also seemed to be incredibly important to the ability to detect defects, with the ridged 

surface of Sample 11 rendering both tools unusable. Not enough different surface 

finishes were tested in these experiments to come to a definitive conclusion on which 

ones perform the best. 

Parts that contain deformations in their geometry such as bends produced mixed 

results, with Sample 13 being classified successfully and Sample 10 failing to be 

classified. It seems likely that there is a relationship between a part containing a bend 

and an increase in the number of false positives detected on the part. There also appeared 

to be a relationship between the size of the artifact and the number of false positives 

detected. However, no formal experiments were done to confirm either of these 

hypotheses, so the observed trends could potentially be attributed to other factors instead. 

Orientation had a small but noticeable effect on the performance of the defect 

tools. Rotating the part caused the placement of points overlaid by the point grid tool to 

rotate in turn with the rotation of the part about the Z axis. There was an observed 

decrease in false positives detected at all orientations from 15 to 75 degrees, while the 

percent error was at its lowest between 0 and 45 degrees. It appears that rotating the part 

about the 0 axis may decrease false positives, but potentially at the cost of defect map 

accuracy. There was also a slight observed difference in false positives based on which 

XYZ direction was chosen based on the orientation of the part.  

For the inverted experiments, there was an increase in percent error for the 

scratches and the mesh overall of the inverted sample, while the dents remained 

approximately the same. Both the regular sample and the inverted one registered the 
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same amount of true and false positives.  

Overall, the classification tool appears to be calibrated to overestimate the 

number of defects on a given part, as the software only missed clearly defined true 

positive defects when the max defect line was set to a smaller value than the defects 

themselves. This is observable in the fact that there were only 2 trials performed across 

all experiments conducted on defect artifact 2 that failed to capture the proper number of 

defects on the surface. Both defect tools performed the best on defects that were clearly 

defined, with dents consistently acquired and classified better overall than scratches and 

the clean, manufactured defects producing much more consistent results than the ones on 

the organic artifacts.  

Finally, the formula component of the classification tool simultaneously has a lot 

of unexplored depth and arbitrary restrictions that make it difficult to work with. It 

functions using a custom combination of math and programming functions, which 

provides great flexibility in possible detection and filtering equations, but a lack of 

documentation makes the capabilities of the tool unclear.  The requirement that the 

results recalculate after every change to the formula also makes it time consuming to 

make edits, and confusing as defects will change their reference number based on the 

parameters of the formula. The reference table is also unable to be exported from the tool 

itself, which makes creating any filtering rules based on the data found within it a time 

consuming and arduous process of manually copying the data to a spreadsheet by hand. 

Unexplained behavior was also observed in the case of the defects that were calculated as 

infinite, with their presence appearing and disappearing with changes to formula syntax 
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and ignoring previously defined classification rules. Further work in understanding the 

classification formula and filtering rule language will likely produce additional benefits 

in the use of the software's built-in tools. 
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  RECOMMENDATIONS 

 
 

The most important recommendation to come of these experiments is to assess 

the artifact that the defect tools will be used on before attempting to apply them. If the 

part is to be scanned on a GOM structured light scanner for data acquisition, the defects 

must be acquirable according to the capabilities of the instrument, and the resulting mesh 

should be inspected for artifacting and dropout. Part geometry is important for all 

samples that the tools may be applied to, as the surface should be as flat as possible and 

free of any raised surface structure. Size may also be considered.  

When applying the surface defect map tool to a part, aligning the part to a known 

orientation should be taken into consideration, as results do change based on part 

orientation. Changing the alignment after the fact may also break a previously 

constructed defect map based on how it was constructed, so the alignment should be 

constructed beforehand if possible. To set the defect map parameters themselves, the 

max defect size line should be set to approximately the width of the largest defect on the 

surface of the part. With a default XY alignment the XYZ direction set does not seem to 

be particularly important, although changing this orientation may cause the operator to 

choose X or Y. The number of directions parameter should be set to 1, and the type 

parameter should be set to either depressions or bulges only, not both. 

To apply the surface classification tool, the formula used to classify defects 

should be entered into the tool first to provide the operator with a list of all the detected 

defects and their parameters, as this data is not available without a classification formula. 

While the resulting table can be used to write classification rules, it is advised to know 
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the parameters that will be used to classify the defects beforehand, as the table is hard to 

use and cannot be exported. It is also recommended to make liberal use of the exclude 

areas tool, both before applying classification rules to reduce the number of false 

positives that need to be filtered and after to remove extraneous defects not caught by the 

filters. 
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  FUTURE WORK 

 
 

To build on the work done by these experiments, there are a number of additional 

experiments that could be performed to gain more knowledge on the process of defect 

acquisition and classification. The results from these experiments could further optimize 

the recommendations made for use of the defect tools.  Several of the experiments 

proposed could serve to further validate the results obtained or compare them to other 

available options for defect classification. 

The first experiment would be to take the artifacts measured for these 

experiments and apply an AI defect detection and classification tool to them to compare 

the results between the two. An experiment like this was part of the originally proposed 

experimental plan for this paper, but difficulties implementing the available tool for use 

with the measurements taken caused it to be scrapped. The existing meshes used for 

these experiments could be provided for use with the external tool with no additional 

measurements needed. The same data analysis could be run, with the percent error 

calculated between the defect map and the results of the AI tool at predefined points. 

This data could then be plotted to determine the accuracy of the ATOS defect tools. 

The second experiment would be to investigate the performance of the defect 

tools on parts measured by external sources compared to the performance of the 

integrated structured light scanner. The previously measured artifacts could be measured 

by an external source and compared, or a completely new set of artifacts could be 

acquired. the environmental relative humidity influence on the structured light system. 

Besides the artifacts the experimental setup would be the same, with the data validated 
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through both a full and partial mesh inspection that measures percent error and true/false 

positives detected. 

The third experiment would involve an investigation into the performance of the 

defect tools when provided with a CAD model to compare to. Much of the defect 

inspection workflow in ATOS Professional is designed with the operator having a CAD 

model in mind, and the surface defect comparison step of the process has the option of 

comparing the map to a CAD model before the classification tool is applied.  An 

experiment to measure this would involve measuring artifacts that have CAD models 

both with and without the model. The same inspection process could then be applied, 

with the CAD model involved in one inspection and absent from the other.   

A fourth experiment could assess the effects of surface finish and spray on the 

capabilities of the defect tools. It was observed in CHAPTER 6 that a ridged surface 

finish greatly affected the ability of the defect map tool to identify defects independent of 

the classification by gradient. Requiring all the artifacts to be sprayed before scanning 

also affected the surface finish perceived by the instrument. Experiments could be run on 

artifacts with different surface finishes at different levels of spray to determine the effect 

on the accuracy of the defect map and the number of false positives detected by the 

classification tool.  

One final proposed experiment would be to observe the results of changing the 

defect classification formula on the overall performance of the classification tool. The 

classification formula used in the experiments conducted for this investigation is based 

on an existing formula built in to the ATOS software designed to detect defects created 



92  
by the injection molding manufacturing process. Because the classification tool relies so 

heavily on the classification formula, changing this formula could result in an easier 

classification process for certain kinds of artifacts. An experiment could be designed 

where several different classification formulas are applied to different artifacts, and the 

results are compared. 
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APPENDIX A MEASURED ARTIFACTS 
 

 

FIGURE A-1: Defect Artifact 1 

 

FIGURE A-2: Defect Artifact 2 

 

20 mm 

15 mm 
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FIGURE A-3: Sample 2 

5 mm 
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FIGURE A-4: Sample 5 

5 mm 
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FIGURE A-5: Sample 10 

 

25 mm 
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FIGURE A-6: Sample 11 

20 mm 
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FIGURE A-7: Sample 13 

  

10 mm 
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APPENDIX B REFERENCED DEFECT NAMES AND LOCATIONS 
 

 

FIGURE B-1: Defect names and locations for partial mesh inspection 

 

FIGURE B-2: Numbered defects for defect artifact 1 

20 mm 

5 mm 
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FIGURE B-3: Defect names and locations for Sample 2 

10 mm 
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FIGURE B-4: Defect names and locations for Sample 5 
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