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ABSTRACT

ZHIWEI LI. Reasoning about recognizability in security protocols. (Under the
direction of DR. WEICHAO WANG)

Although verifying a message has long been recognized as an important concept,

which has been used explicitly or implicitly in security protocol analysis, there is no

consensus on its exact meaning. Such a lack of formal treatment of the concept makes

it extremely difficult to evaluate the vulnerability of security protocols.

This dissertation offers a precise answer to the question: What is meant by saying

that a message can be “verified”? The core technical innovation is a third notion

of knowledge in security protocols — recognizability. It can be considered as inter-

mediate between deduction and static equivalence, two classical knowledge notions

in security protocols. We believe that the notion of recognizability sheds important

lights on the study of security protocols. More specifically, this thesis makes four

contributions.

First, we develop a knowledge model to capture an agent’s cognitive ability to un-

derstand messages. Thanks to a clear distinction between de re/dicto interpretations

of a message, the knowledge model unifies both computational and symbolic views of

cryptography gracefully.

Second, we propose a new notion of knowledge in security protocols — recogniz-

ability — to fully capture one’s ability or inability to cope with potentially ambiguous

messages. A terminating procedure is given to decide recognizability under the stan-

dard Dolev-Yao model.
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Third, we establish a faithful view of the attacker based on recognizability. This

yields new insights into protocol compilations and protocol implementations. Specif-

ically, we identify two types of attacks that can be thawed through adjusting the

protocol implementation; and show that an ideal implementation that corresponds

to the intended protocol semantics does not always exist. Overall, the obtained at-

tacker’s view provides a path to more secure protocol designs and implementations.

Fourth, we use recognizability to provide a new perspective on type-flaw attacks.

Unlike most previous approaches that have focused on heuristic schemes to detect or

prevent type-flaw attacks, our approach exposes the enabling factors of such attacks.

Similarly, we apply the notion of recognizability to analyze off-line guessing attacks.

Without enumerating rules to determine whether a guess can be “verified”, we derive

a new definition based on recognizability to fully capture the attacker’s guessing

capabilities. This definition offers a general framework to reason about guessing

attacks in a symbolic setting, independent of specific intruder models. We show how

the framework can be used to analyze both passive and active guessing attacks.
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CHAPTER 1: INTRODUCTION

With the ever-increasing diversity of networked and distributed systems, protocols

are widely deployed to make communication between different computing systems

possible. And yet, security protocols are used to ensure these communications are not

abused by providing secure services, including authentication, confidentiality, secrecy,

and privacy. Unfortunately, security protocols are notoriously error-prone and some

attacks may take years or even decades to discover [95, 81]. This is because, on one

hand, security protocols are intricate and an expected protocol execution naturally

leads designers to ignore other possible protocol executions; and on the other hand,

the attacker is powerful to intercept, eavesdrop, and modify communication between

network entities.

Over the last 30 years, formal methods [90, 86, 88] have played an important role in

finding attacks on security protocols. In formal security protocol analysis, we noticed

that the term “verify” has been used either explicitly or implicitly under different

scenarios. For example, an off-line guessing attack is feasible only if a correct guess

can be verified. Let us consider the following simple one-way authentication protocol:

Message 1. A→ B : {NA}KAB

Message 2. B → A : {f(NA)}KAB

The protocol tells the story where principal A wants to authenticate itself to principal

B. Here NA is a fresh random number (i.e., nonce) generated by A and KAB is the
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symmetric key shared between A and B, and f is a given and known function (e.g.,

f(NA) = NA + 1). An attacker may verify a guess of KAB, say g, by decrypting both

messages with the guessed key g. Suppose that the decryption results are r1 and r2,

respectively. Then, g is the correct guess, if r2 equals f(r1).

Similarly, an attacker can launch a type-flaw attack only if some protocol princi-

pal is unable to verify incoming message(s). To further elaborate this point, let us

consider the concrete example of the Otway-Rees protocol [96]:

Message 1. A→ B : M,A,B, {NA,M,A,B}KAS

Message 2. B → S : M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

Message 3. S → B : M, {NA, KAB}KAS
, {NB, KAB}KBS

Message 4. B → A : M, {NA, KAB}KAS

In this protocol, two principals A and B are both connected to a trusted third

party S with whom they share the symmetric keys KAS and KBS, respectively. After

executing the first three messages, principal A is expecting a symmetric key KAB

shared between A and B, from the trusted third party S. As the shared key KAB is

dynamically generated by S, A does not have any prior knowledge of the bit string. In

other words, A is unable to verify a message of the form M, {NA, t}KAS
, as long as the

bit string length of t equals to that of KAB. Therefore, an attacker can easily replay

the message {NA,M,A,B}KAS
to A and thus A would use M,A,B as the shared

symmetric key between A and B, as long as the length satisfies the requirement.

However, most of the previous work use the term “verify” in an ad-hoc manner

and the term means differently in different contexts.

In efforts to find guessing attacks, “verify” is a term widely accepted to character-
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ize a correct guess and thus many approaches focus on heuristics to explore ways of

verifying a guess [35, 85, 59]. This is usually done by enumerating rules to determine

whether a guess can be “verified”. These rules are used to derive an inference system

modeling the guessing capabilities [44], by extending the standard Dolev-Yao model

[48]. Realizing the “incompleteness” of such an inference system in a sense that it

may fail to capture some “verifiable” guess, Drielsma et al. [49] develop a precise for-

malization of off-line guessing attacks, which is independent of any particular intruder

model. However, no automatic procedure is given in [49] and, more importantly, it

only allows guessing/verifying atomic values.

To defend against type-flaw attacks, Catherine Meadows [89] develops a formal

model of types to characterize one’s capability to verify messages. Without exploring

the intuitive idea behind, the procedure of verifying the locality of types could be

rather complicated. More importantly, it fails to capture a principal’s inability to

verify a message precisely. In [79, 78], Z specification language is employed to model

ambiguous messages. The approach based on Z specification language cannot be

directly applied to existing protocol analysis tools in a straight-forward way.

In security protocol compilation, messages that cannot be verified are treated as

“black-boxes” [45, 84, 7, 50]. This simplification ma fail to give precise semantics to

protocol narrations. Caleiroa et al. [21] enumerate rules to characterize a principal’s

view of a message. A message can be “verified” is viewed as “reachable”. The whole

procedure is rather complex, which involves further concepts such as analyzable posi-

tion and inner facial pattern face. The notions of transparent and opaque messages

are further proposed to characterize “verifiable” and “unverifiable” messages, as we
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do here. However, the method used to define such notions is heuristic rather than a

conceptual basis and hence the definition of these notions is sound but not complete

in a sense that a transparent message is “verifiable” but not vice versa.

Despite considerable efforts to understand how to verify a message, there is no

consensus on the definition of the term “verify” in the first place. Such a lack of

generic definition makes it extremely difficult to evaluate the vulnerability of security

protocols. In this thesis, we therefore pursue a satisfying answer to the very first

question: What is meant by saying that a message can be “verified”?

1.1 Contributions

In this work, we provide a precise answer to the question: “what is meant by

saying that a message can be verified” by developing a new knowledge notion – rec-

ognizability — in security protocol analysis. More specifically, we make the following

contributions:

• We define a new knowledge notion – recognizability – to characterize a prin-

cipal’s ability/inability to cope with ambiguous messages. Informally, we say

a principal is able to recognize a message, if he has certain expectation about

its bit string representation [57]. That is, given a bit string t, though he may

not necessarily know t, he can verify that whether or not it is the bit string

representing the expected message.

• We give a procedure to decide recognizability under the widely used Dolev-Yao

intruder model. We intend to extend such results to more general equational

theories.
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• We apply the notion of recognizability to analyze type-flaw attacks. This en-

abled us to provide a consensus view of security protocols by eliciting both

operational and denotational semantics of protocols. More importantly, we

show that the security of a protocol can be enhanced by engaging both protocol

designers and verifiers via a semi-automatic semantic refinement process.

• Based on the notion of recognizability, we propose a new definition to fully and

faithfully capture the attacker’s guessing capabilities. This provides a general

framework to reason about guessing attacks in a symbolic setting, independent

of specific intruder models. We show how the framework can be used to analyze

both passive and active guessing attacks.

1.2 Related Works

The new notion of recognizability is closely related to the classical notions of knowl-

edge in security protocols: deducibility [82] and indistinguishability [3].

Deducibility is one kind of algorithmic knowledge [63], in which “knowing what”

can be determined by an algorithm. Due to its simplicity, Halpern and Pucella have

successfully used algorithmic knowledge to model several different adversaries [64].

Then Pucella proves that the decision problem in a general case is NP-complete [98].

Our work is also inspired by their previous research on algorithmic knowledge.

The BAN [20] logic, proposed by Burrows, Abadi and Needham, is based on the

deducibility notion of knowledge. It is probably the first extensively studied logic in

protocol analysis based on knowledge. The agent’s capability to synthesize messages

is directly modeled by a set of inference rules, which are used to determine implicit
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knowledge. It is difficult to apply BAN logic to dynamically evolving knowledge to

establish a general model. There are many other logics introduced in security protocol

analysis [57, 77, 104]. We find that most approaches using Dolev-Yao style adversary

are based on the deducibility notion.

The concept of indistinguishability comes directly from the classical possible-worlds

approach to model knowledge [54], in which the actual world is considered to be

one of many possible worlds. In security protocol analysis, message {NA}KAB
and

message {NB}KAB
are indistinguishable if one does not know KAB and has not seen

those messages before. Recently, Cohen and Dam [29] provide a generalized Kripke

semantics for studying this type of knowledge in security protocol analysis. They

use static equivalence [4] to capture the indistinguishability for agents. Abadi and

Cortier [3] examine the decidability of these two notions of knowledge by studying the

underlying equational theories for deduction and static equivalence. This is especially

important since the termination of analysis of the knowledge might not be guaranteed

when decidability result is not held. Our approach circumvents this decidability

problem since “knowing what” can always be determined by an algorithm. Following

this line of research, new decidability results are obtained for monoidal equational

theories [36].

Though closely related to these two classical notions of knowledge, our notion of

recognizability is fundamentally different from deducibility and indistinguishability.

For example, we assume that Alice knows {NB}K+
B
and Bob’s public key K+

B . Then

even Alice does not know the message NB, she can still verify whether or not a given

message is in fact NB by simply encrypting it with the public key of Bob (i.e., K+
B )
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and comparing the result with {NB}K+
B
which is “deducible” from her knowledge.

For static equivalence, procedures are given to decide whether two given messages

are statically equivalent [3, 37, 27]. Regarding our notion of recognizability, we con-

cern with the problem: given a message m whether there exists another message

m′ that is indistinguishable from m (by the observer). Since the other message is

not provided beforehand, deciding recognizability and static equivalence could be sig-

nificantly different. As we have seen in the previously mentioned type-flaw attack

to the Otway-Rees protocol, the last message M, {NA, KAB}KAS
is forged by an at-

tacker with the message M, {NA,M,A,B}KAS
. Given those two messages, it can be

easily shown that they are statically equivalent in the applied pi calculus and thus

M, {NA, KAB}KAS
, or more precisely {NA, KAB}KAS

, is not “verifiable” by the pro-

tocol participant. However, without this hindsight, it is not straightforward to see

whether or not M, {NA, KAB}KAS
is “verifiable”.

1.3 Outline

In Chapter 2 and 3, we introduce a new notion of knowledge in security protocols

— recognizability. In Chapters 4 and 5, we propose a constraint based approach to

decide recognizability under the widely used Dolev-Yao intruder model. In Chapters

6 and 7, we apply the notion of recognizability to security protocol compilation and

the analysis of type-flaw attacks and off-line guessing attacks. Chapter 8 concludes

this thesis.



CHAPTER 2: A NEW KNOWLEDGE MODEL

Before diving into the question upfront, we should first formalize the exact meaning

of “knowing a message”. In the literature, there are types of formalisms corresponding

to both computational and symbolic views of cryptography. In a computational view

[9, 5] it means one possesses some piece of bit string, whereas in a symbolic view a

message is understood as a term structure [48, 93, 38].

The lack of a unified view prohibits a faithful account of knowledge in security

protocol analysis. To see this, let us consider a well-known argument of Abadi and

Cortier [3]:

Suppose that we are interested in a protocol that transmits an encrypted

Boolean value v, possibly a different one in each run. We might like to

express that this Boolean value remains secret by saying that no attacker

can learn it by eavesdropping on the protocol. On the other hand, it is

unreasonable to say that an attacker cannot deduce the well-known Boolean

values true and false.

Here, discrepancy arises due to the unclear meaning of “knowing the Boolean value

v”. Indeed, the Boolean value of v (either true or false) is known, and thus v is

known. This, however, contradicts with common sense reasoning, because one is still

unable to determine whether v is true or false.

At this point, one might be lead to believe that “knowing messagem” means “being
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able to determine the value of message m”. Unfortunately, this interpretation may

still not comply with common sense.

According to the Merriam-Webster dictionary [1], the term “determine” is defined

as “to fix the form, position, or character of beforehand”. In our context, the form

is simply a message, and “to fix the form” does not necessary mean knowing the

message. To further elaborate this point, let us consider the following simplified login

protocol, which we use everyday to authenticate ourselves to websites:

Message 1. C → S : C, hash(PC)

Message 2. S → C : result

Here, hash() is assumed to be a collision-free and one way function. Whenever

the client C wants to login to the web server S, it sends a message with both its

username C and hashed password hash(PC) to S. On the server side, S maintains

a list of usernames {C1, C2, · · · , Cn} and their corresponding credentials (i.e., hashed

passwords) {H1, H2, · · · , Hn}. What happens is that, the server S verifies whether

C = Ci and hash(PC) = Hi for some i after receiving the first message. For a

legitimate login attempt, the server S does find an i such that C = Ci and hash(PC) =

Hi. Therefore, the server is able to determine the value of C and PC in a sense that

the form is fixed. Indeed, since the server has access to Ci, it also knows C. However,

for PC , it is unreasonable to say that the server S knows PC , despite the fact that its

value is determined. Actually, determining the value (or equivalently correctness) of

PC without disclosing its value is a basic design guideline for implementing password

authentication.

The above discrepancy between intuition and formalism is an instance of a de re/
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de dicto ambiguity [105, 68, 29]. Let’s look at the following sentence:

“Alice knows the value of message m.”

Under the de re reading, it means that there exists a value x such that x is the

value of message m and Alice knows x, that is,

(∃x)(m has the value of x ∧ Alice knows x) (i)

Under the de dicto reading it means that there exists a value x such that x is the

value of message m and Alice knows the fact that x is the value of m, that is,

(∃x)(m has the value of x ∧ Alice knows the fact that m has the value of x) (ii)

In other words, Alice is able to determine (but not necessarily to know) the value of

m. Note that (ii) is different from the following trivial condition:

Alice knows (∃x)(m has the value of x)

In this chapter, we show how the de re/ de dicto dichotomy gives rise to a novel

knowledge model of agents. Note that we use “agent” to mean a legitimate protocol

participant, the attacker, or simply a principal (— we use the these terms interchange-

ably in this thesis). Unlike most existing epistemic approaches in security protocol

analysis [20, 99, 41] that aim to verify security protocols, our primarily goal is to

capture an agent’s cognitive ability to understand messages. The reason is two-fold.

First, as a security protocol is essentially a message-passing system [54] with two

primitive actions send and receive, agent’s knowledge should be fully characterized

by the messages he possessed and received. Hence, understanding those messages is

a crucial component of security protocol analysis.

Second, this primitive goal frees us from the need to model security protocols,

which is usually done by transition systems [91, 58, 41, 66] and is rather involved.
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We can thus restrict our attention to single agents and leave their interaction with

environment implicit, rather than to consider a multi-agent system in its most general

form. We remark that, although modeling intruder’s capabilities [32, 64, 38, 70] is of

interest on its own, in this thesis we will not distinguish between legitimate protocol

participants and the attacker.

The remainder of this chapter is organized as follows. We start with the de re

interpretation of a message. Then, we turn to the de dicto interpretation of a message.

Next, we build a new knowledge model on top of the de re/ dicto interpretation.

Before concluding this chapter, we show through several examples how the knowledge

model can be used in formal security protocol analysis.

2.1 The de re Interpretation

We have used the term “know” rather informally without a precise definition. As

discussed before, a precise meaning of “knowing a message” involves both the de re

and de dicto interpretations of the message. In this section, we formalize the de re

interpretation of a message, that is knowing the bit string value, and deter the de

dicto interpretation to the next section. As we will see, such knowledge of an agent

is a form of algorithmic knowledge [54], and can be modeled by deducibility relation.

2.1.1 Symbolizing Bit Strings

Although an exchanged message is simply a bit string in real protocol execution, in

protocol specification it is often represented as expression defined in some term alge-

bra. After a brief review term algebra, we show how bit strings can be manipulated

symbolically without losing accuracy. We mainly follow the notation in [46].
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2.1.1.1 Term Algebra

A signature is a finite set of function symbols F and a possibly infinite set of con-

stants A. We discriminate public and private function symbols, respectively denoted

by F+ and F−. Public functions are used to describe operations that can be freely

performed by a principal, and private functions are used to constrain the relation

between terms. Each function symbol has an associated arity.

Let X be a possibly infinite set of variables. Then, term algebra T (F ,A,X ) is

defined as the smallest set containing X and A such that f(t1, · · · , tn) ∈ T (F ,A,X )

whenever f ∈ F with arity n, and t1, · · · , tn ∈ T (F ,A,X ). Elements of the set

T (F ,A,X ) are called terms. To avoid confusion, syntactic equality of two terms t1

and t2 will be denoted by t1 =s t2.

We say that s is a subterm of t, written s ⊆ t, if either s =s t or t =s f(t1, · · · , tn)

and s is a subterm of ti for some i. We also write s ⊂ t to mean s ⊆ t and s ̸=s t. A

term s occurs in a term set T if s ⊆ u for some u ∈ T . The size of a term t is defined

as

∥t∥ ≜


1 if t ∈ X ∪ A

1 +
∑n

i=1 ∥ti∥ if t = f(t1, · · · , tn)

For term set T , we define ∥T∥ as
∑

t∈T ∥t∥. We define inductively the immediate

subterm set of a term t, denoted by sub(t), as follows:

• If t =s f(t1, t2 · · · , tn) and n > 0, then sub(t) = {t1, t2, · · · , tn};

• otherwise, sub(t) = {t}.
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For convenience, we use ff(t) to indicate the outmost function symbol of t and let

ff(t) = ϕ if ∥t∥ = 1.

We will use l, r, s, t to denote terms and x, y, z to denote variables. As usual,

fn(t) and fv(t) are defined as the set of constants and variables that occur in term

t respectively. A term is said to be ground when fv(t) = ∅. Theses notations

are extended as expected to sets of terms. We tend to use the words “term” and

“message” interchangeably in the rest of this thesis.

A context C is a term with exactly one “hole” □. Then the term C[t] is C except

□ is replaced by t. A substitution is a finite tuple [t1/x1, ..., tn/xn] mapping from

variables xi to terms ti, and will generally be represented by σ, θ, µ, or η. The

domain and range of a substitution σ are defined by Dom(σ)
def
= {x|xσ ̸=s x} and

Ran(σ)
def
=

∪
x∈Dom(σ){xσ}, respectively. We use ϵ to denote an empty substitution,

that is Dom(ϵ) = ∅. A substitution σ is ground if Ran(σ) is a ground term set. We

write σ = θ (resp. σ =E θ) if Dom(σ) = Dom(θ) and xσ =s xθ (resp. xσ =E xθ)

for all x ∈ Dom(σ). We define the composition of substitutions σ and θ as a new

substitution σ ◦ θ (or simply σθ) such that tσ ◦ θ =s (tσ)θ. We say that σ is more

general than θ, notation σ •≤ θ, if θ = ση for some substitution η. We write mgu(s, t)

for the most general unifier of s and t.

The following function symbols are widely used in formal security protocol analysis.

F+
dy = {pair, senc, penc, hash, fst, snd, sdec, pdec}

F−
dy = {pk, sk}

There are
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• four public constructive function symbols for encryption (i.e., senc and penc

for symmetric and asymmetric encryption, respectively), concatenation (i.e.,

pair), and hashing (i.e., hash);

• four public destructive function symbols for decryption (i.e., sdec and pdec

for symmetric and asymmetric encryption, respectively) and split (i.e., fst and

snd);

• two private function symbols pk and sk to denote a public key and a private

key, respectively.

To reduce notational clutter, we will often use K+
A , K

−
A , and s · t as shorthands for

pk(A), sk(A), and pair(s, t), respectively. Besides, we use t1 · t2 · t3 · · · · · tn to denotes

(((t1 · t2) · t3) · · · · · tn). Additionally, {s}t denotes penc(s, t) if t is either a public key

or a private key, and senc(s, t) otherwise.

2.1.1.2 Equational Theory

Note that a bit string may correspond to several syntactically different terms. For

example, the bit string value of a ⊕ b is the same as that of b ⊕ a, where ⊕ denotes

exclusive or. In formal security protocol analysis, we use an equational theory to

capture such “equalities”. More precisely, an equation is a pair of terms, written

s = t, and an equational theory E is presented by a finite set of equations. We write

t1 =E t2 when equation t1 = t2 is a logical consequence of E. For convenience, we let

EL = {r|l = r ∈ E}.

Let E be an equational theory and X a set of variables. We say that substitution

σ is more general modulo E on X than the substitution θ, and write σ •≤X
E θ, if there
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exists a substitution λ such that xθ =E xσλ for all x ∈ X.

As an example, we encode the standard Dolev-Yao model [48] by the following

equational theory Edy.

F+
dy pair, senc, penc, hash

fst, snd, sdec, pdec
F−

dy pk, sk

Edy fst(pair(x, y)) = x
snd(pair(x, y)) = y
sdec(senc(x, y), y) = x
pdec(penc(x, pk(y)), sk(y)) = x
pdec(penc(x, sk(y)), pk(y)) = x

Figure 1: Equational Theory Edy modeling the standard Dolev-Yao intruder.

Although we can abstract away bit string value of a term in protocol specification,

the bit string may be relevant for further protocol analysis. For example, regarding

the Abadi and Cortier’s argument, we can use {v}K+ to represent the encrypted

Boolean value v. If v is treated merely as a symbol, we will not know whether it is a

Boolean value or a 128-bit value, and thus it is unreasonable to say v known. Now,

it is not hard to see that a technical reason for the discrepancy is that v is treated

both as a bit string (of length 1) and a symbol v, whereas the knowledge reasoning

failed to capture this. Consequently, it is highly desirable to handle both symbolic

expression and bit string in a uniform way.

We thus introduce a special set of constant symbols N = {ni|i = 0, 1, 2, · · · }

such that the bit string value for each ni ∈ N is i, yielding a new term algebra

T (F ,A∪N ,X ). Then, we can use equations to assign values to terms. For example,

in order to describe the fact v is true, we can add v = n1 into the underlying equation
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theory.

2.1.1.3 Rewriting Systems

Let→ be a binary relation. As is commonplace, the transitive closure and reflexive

transitive closure of → are denoted by →+ and →∗ respectively. We say that an

element p is reducible for → if there is an element q such that p→ q and irreducible

otherwise. If p→∗ q, and q is irreducible for →, then q is called a →-normal form of

p. We write p→! q if p→∗ q and q is a →-normal form.

We say that → is terminating or well-founded if there exists no infinite derivation

q0 → q1 → q2 → · · · . → is confluent if there is an element q such that q1 →∗ q and

q2 →∗ q whenever q0 →∗ q1 and q0 →∗ q2.

A term rewriting system R consists of a set of rules, l → r, where both l and r

are terms. A term rewriting system R defines a term rewriting relation →R in a

standard way as follows: C[lσ] →R C[rσ] where C is a context, l → r ∈ R, and σ

is a substitution such that Dom(σ) ⊆ fv(l). It should be pointed out that we often

require fv(l) ∩ fv(C) = ∅ and thus C[l]σ →R C[r]σ. If fv(l) ∩ fv(C) ̸= ∅, then we

could use variable renaming to resolve this conflict. For a given term rewrite relation

→R, we also write R-normal instead of →R-normal. Given an equational theory E,

we define RE by RE = {l → r|l = r ∈ E}. When →RE
is confluent, t1 =E t2 if and

only if t1 and t2 have the same RE-normal form.

Theorem 2.1.1 (Birkhoff’s Theorem [11]). s =E t if and only if s↔∗
RE

t.
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2.1.2 Explicit and Implicit Knowledge

Before proceeding, let us re-examine the Abadi and Cortier’s argument. The ra-

tionale is as follows: v is a Boolean value and Boolean values (either true or false)

are well-known, so v is deducible. Now, we let v be a 2-bit value. Then, because v

is a 2-bit value and 2-bit values (0, 1, 2, 3) are well-known, we conclude that v is also

deducible. Likewise, a 128-bit value v should also be deducible. We reach an obvious

contradiction to our intuition.

The astute reader may argue that this is because the 128-bit values are not well-

known. The question is: What makes 1-bit values well-known and 128-bit values

not well-known, considering the fact that 128-bit values can easily be obtained by

enumeration? Or simply, what is the difference between known and well-known?

Intuitively, one must be aware of a value before it becomes well-known. Convinc-

ingly, one tends to be much less aware of 128-bit values than Boolean values. To

account for the notion of awareness [54], we use a ground term set T to represent

what one explicitly knows and is aware of. We refer to this type of knowledge as

explicit knowledge, and use implicit knowledge to mean knowledge computed from

one’s explicit knowledge.

The most straightforward way to model the attacker’s implicit knowledge is in

terms of message deducibility [48, 82]. That is, given a term set representing one’s

explicit knowledge, one can compute a term t from T . More precisely, the deduction

relations ⊢ and ⊢E are defined as follows.
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⊢(n) (R1)
t ∈ T

T ⊢(1) t

(R2)
T ⊢(n1) t1 · · ·T ⊢(nk) tk

T ⊢
(1+ max

1≤i≤k
ni)

f(t1, · · · , tk)
f ∈ F+

⊢(n)E (R3)
T ⊢(n) t
T ⊢(n)E t

(R4)
T ⊢(n) s s =E t

T ⊢(n+1)
E t

s ̸=s t

We say that t can be deduced from T , written T ⊢ t, if T ⊢(n) t for some n.

Similarly, we say that t can be deduced from T under equational theory E, written

T ⊢E t, if T ⊢(n)E t for some n. Two term sets S and T are equivalent (under E),

denoted as S ≡E T , if S ⊢E t for every t ∈ T and T ⊢E s for every s ∈ S.

In general, ⊢E can be undecidable. Moreover, Abadi and Cortier [3] showed that

even when equality is decidable ⊢E can still be undecidable. Note that the only

difference between ⊢ and ⊢E is that the latter considers an equational theory E,

whereas ⊢ does not. So, the computational cost of deciding ⊢ is considerably lower

than that of ⊢E.

Proposition 2.1.2. Both relations ⊢ and ⊢E are closed under substitution.

Due to rule (R1) one’s explicit knowledge is also part of its implicit knowledge.

Moreover, the definition of ⊢E usually permits an algorithm [38] to determine mes-

sages that one explicitly or implicitly knows. For this reason, the knowledge under

the de re interpretation can be seen as a type of algorithmic knowledge [64].

Thanks to the following lemma, computation involved in establishing ⊢E can be

characterized by some recipe.

Lemma 2.1.3 (Recipe Lemma). Let T be a term set and σ be a substitution. Then,
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Tσ ⊢E t if and only if T ⊢ u for some u, called recipe, such that uσ =E t.

Proof. The “if” part of the lemma is obvious, because ⊢E is closed under substitution

by Proposition 2.1.2. We now prove the “only if” part. By the definition of ⊢E, we

have Tσ ⊢E t if and only if Tσ ⊢ s for some s such that s =E t.

Suppose that Tσ ⊢(n) s. We proceed by induction on n. For the base case, n = 1,

by the definition of ⊢ we thus have s ∈ Tσ. Then, there is a term u ∈ T such thas

uσ =s s =E t. The claim is true. Now, we suppose that Tσ ⊢(n) s implies T ⊢ u for

some u such that uσ =s s whenever n ≤ k.

For n = k + 1, using the definition of ⊢ we observe that Tσ ⊢ sub(s) and ff(s) ∈

F+. Let s =s f(s1, · · · , sm) and Tσ ⊢(ni) si. Since ni ≤ k, by induction hypothesis, we

know that for each si ∈ sub(s) there exists a term s′i such that T ⊢ s′i and s′iσ =s si. By

letting u =s f(s
′
1, · · · , s′m), we see that T ⊢ f(s′1, · · · , s′m) and thusf(s′1, · · · , s′m)σ =s

s =E t. This completes the proof. □

Proposition 2.1.4 (Perfect Encryption). Let s and t be two terms that occur in term

set T .

(i). Suppose that the only occurrence of s in T is {s}K+ . Then, T ⊢Edy
s if and

only if T ⊢Edy
K−.

(ii). Suppose that the only occurrence of s in T is {s}K . Then, T ⊢Edy
s if and only

if T ⊢Edy
K.

The above proposition asserts that no one can learn a secret s from its encryption

without the decryption key (either symmetric key K or asymmetric key K−); this is

the so-called perfect cryptography assumption, which is widely used in formal security

protocol analysis.
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Definition 2.1.5 (Ground de re Knowledge). Let E be an equational theory and T be

a ground term set. We say a ground term t is de re known in model (T,E), written

(T,E) |= Kre(t), if and only if T ⊢E t.

We stress that under the de re reading a message is merely a bit string. Knowing

a message only means that one possesses or is able to compute its bit string repre-

sentation; the agent has no information about the meaning of the bit string, which is

the subject of the next section.

Example 1. Let T = {{NB}K+
B
, K−

B} represent Alice’s explicit (de re) knowledge.

Since both messages are treated as bit strings, she would probably not try to decrypt

the message {NB}K+
B
by using K−

B as the decryption key. Even if she does so, she

will only obtain the bit string value of NB, i.e., (T,Edy) |= Kre(NB). Note that, due

to the lack of message meaning, Alice is not aware it is the value of NB. Therefore,

if Bob asks Alice to generate the value of NB for him, she would have no idea how to

do that. In this sense, it is unreasonable to say she “knows” (to be made clear in the

next section) NB.

2.1.3 Useful Lemmas

To this end, we enlist some helpful lemmas for future use.

Lemma 2.1.6. Tµ ⊢ t if and only if T ⊢ t′ for some t′ such that t′µ =s t.

Lemma 2.1.7. Suppose that all terms in Tσ are regular. If T ⊢ s and sσ =s C[lθ],

then there exists a u ⊆ s such that T ⊢ u and uσ =s lθ.

Proof. The proof is by induction on ∥C∥. If ∥C∥ = 1, then the claim is true by letting

u =s s. Now, we suppose the claim is true for all ∥C∥ ≤ k.
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For ∥C∥ = k + 1, we notice that all terms in Tσ are regular. So, s ̸∈T , because

otherwise sσ ∈ Tσ, giving a contradiction. Using the definition of ⊢, we have T ⊢

sub(s) and ff(s) ∈ F+. Now, it is not hard to see that there is a si ∈ sub(s) such

that T ⊢ si and siσ =s Ci[lθ] for some context Ci. Note that ∥Ci∥ ≤ k. By induction

hypothesis, there exists a u ⊆ si ⊂ s such that T ⊢ u and uσ =s lθ. □

Lemma 2.1.8. Let T be a term set and t be a term.

(i). If T ⊢ t and ∥t∥ = 1, then t ∈ T ;

(ii). If T ⊢ t and T\{s} ⊢ s, then T\{s} ⊢ t;

(iii). If T ⊢ t and T\{s} ⊬ t, then s ⊆ t;

(iv). If T ⊢ t, then there exists a term set S ⊆ T such that S ⊢ t and ∥S∥ ≤ ∥t∥;

(v). If T ⊢ t and t ̸∈T , then there exists a term set S ⊆ T such that S ⊢ t and

∥S∥ < ∥t∥;

(vi). Suppose ∥s∥ ≥ ∥t∥ > 1. T ⊢ sub(t) if and only if T\{s} ⊢ sub(t);

(vii). Suppose that ∥t∥ > 1. T ⊢ sub(t) if and only if T\{t} ⊢ sub(t);

Proof. (i). follows immediately from the definition of ⊢.

(ii). The proof is by induction on the size of t. For the base case (∥t∥ = 1), t ∈ T

follows from (i). Then, T\{s} ⊬ t implies s =s t and thus T\{s} ⊬ s, a contradiction.

So, T\{s} ⊢ t for ∥t∥ = 1. Now, suppose that the claim is true whenever ∥t∥ ≤ k.

For the induction step (∥t∥ = k+ 1), if t ∈ T , as before the claim is true. Otherwise,

T ⊢ t implies T ⊢ sub(t) and ff(t) ∈ F+. For every w ∈ sub(t), we notice that

T ⊢ w. Then, by induction hypothesis, we get T\{s} ⊢ w for every w ∈ sub(t), that

is T\{s} ⊢ sub(t). Considering ff(t) ∈ F+, we have T\{s} ⊢ t, as required.

(iii). Let T ⊢(n) t. We make induction on n. For the base case, n = 1, we have
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t ∈ T . Suppose that the claim is true for 1 ≤ n ≤ k.

For n = k + 1, we let t =s f(t1, · · · , tm). By the definition of ⊢, we have

T ⊢(n1) t1 · · ·T ⊢(nm) tm
T ⊢(n) f(t1, · · · , tm)

f ∈ F+

where ni ≤ k for 1 ≤ i ≤ m. Since T\{s} ⊬ t and f ∈ F+, it is not hard to see

that there exists a ti (1 ≤ i ≤ m) such that T\{s} ⊬ ti. Consider now, T ⊢ni ti,

T\{s} ⊬ ti, and ni ≤ k. By induction hypothesis, we have s ⊆ ti ⊂ t. This completes

the proof.

(iv). Let T ⊢(n) t. We make induction on n. For the base case, n = 1, by the

definition of ⊢ we have t ∈ T . Let S = {t}. We have S ⊢ t and ∥S∥ ≤ ∥t∥. So, we

suppose the claim holds for 1 ≤ n ≤ k.

For n = k + 1, we let t =s f(t1, · · · , tm). By the definition of ⊢, we have

T ⊢(n1) t1 · · ·T ⊢(nm) tm
T ⊢(n) f(t1, · · · , tm)

f ∈ F+

where ni ≤ k for 1 ≤ i ≤ m. For each ti, there is a term set Si ⊆ T such that Si ⊢ ti

and ∥Si∥ ≤ ∥ti∥. Considering f ∈ F+, we have ∪iSi ⊢ t. Let S = ∪m
i Si. Then,

∥S∥ ≤
m∑
i

∥Si∥ ≤
m∑
i

∥ti∥ < ∥t∥

This completes the proof.

(v). Since t ̸∈T , by the definition of ⊢, t =s f(t1, · · · , tn) and

T ⊢(n1) t1 · · ·T ⊢(nn) tn
T ⊢(n) f(t1, · · · , tn)

f ∈ F+

For each ti, by (iv) there is a term set Si ⊆ T such that Si ⊢ ti and ∥Si∥ ≤ ∥ti∥.

Considering f ∈ F+, we have ∪iSi ⊢ f(t1, · · · , tn) =s t. Let S = ∪m
i Si. Then,

∥S∥ ≤
m∑
i

∥Si∥ ≤
m∑
i

∥ti∥ < ∥t∥

This completes the proof.

(vi). The ‘if’ part is trivial. We prove the ‘only if’ part now. Let t =s f(t1, · · · , tn).
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For each ti (1 ≤ i ≤ n), it follows from (iv) that there exists a term set Si ⊆ T such

that Si ⊢ ti and ∥Si∥ ≤ ∥ti∥. Clearly, ∪iSi ⊢ ti. Moreover,

∥ ∪i Si∥ ≤
∑
i

∥Si∥ ≤
∑
i

∥ti∥ < ∥t∥ ≤ ∥s∥

So, s ̸∈ ∪iSi ⊆ T and thus ∪iSi ⊆ T\{s}. Consider again ∪iSi ⊢ {t1, t2, · · · , tn} and

∪iSi ⊆ T\{s}. Finally, we obtain T\{s} ⊢ sub(t).

(vii). It follows immediately from (vi). □

Lemma 2.1.9. Let T be a term set, t be a term, and C be a context. Suppose that u

does not occur in T .

(i). If T ⊢ C[u] and T ⊢ v, then T ⊢ C[v];

(ii). If T ⊢ t and T ⊢ v, then T ⊢ t[u 7→ v];

(iii). If T ⊢ C[u] and T ⊬ C[v], then T ⊢ u and T ⊬ v;

Proof. (i). Since u does not occur in T and thus C[u] ̸∈T , we have ff(C[u]) ∈ F+ and

T ⊢ sub(C[u]) whenever ff(C[u]) ∈ F+ by the definition of ⊢. We make induction

on the size of C.

For the base case, ∥C∥ = 1 (i.e., C =s □), T ⊢ C[v] is trivial. We suppose

that the claim is true for ∥C∥ ≤ k. If ∥C∥ = k + 1, ff(C) ∈ F+. Let C[u] =s

f(t1, · · · , tn). Then T ⊢ ti for 1 ≤ i ≤ n. It is not hard to see that there exists

one tj ∈ sub(C[u]) (1 ≤ j ≤ n) such that tj =s C ′[u] for some context C ′ and

C[v] =s f(t1, · · · , tj−1, C
′[v], tj+1, · · · tn). Applying the induction hypothesis, we get

T ⊢ C ′[v]. Consider now, ff(C) ∈ F+, T ⊢ ti for 1 ≤ i ≤ n, and T ⊢ C ′[v], we obtain

T ⊢ C[v]. This completes the proof.

(ii). It follows from (i).

(iii). We make induction on the size of C. The base case, ∥C∥ = 1 (i.e., C =s □),
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is trivial. Suppose that the claim is true for ∥C∥ ≤ k.

For the base case, ∥C∥ = k + 1, let C[u] =s f(t1, · · · , tn). By the definition of

context, there exists one ti ∈ sub(C[u]) (1 ≤ j ≤ n) such that ti =s C ′[u] for some

context C ′ and C[v] =s f(t1, · · · , ti−1, C
′[v], ti+1, · · · tn). To establish T ⊢ C[u], there

are two cases to be considered.

(Case 1 ): C[u] ∈ T . Clearly, u occurs in T , a contradiction.

(Case 2 ): f ∈ F+ and T ⊢ sub(C[u]). Observe that T ⊬ C[v]. So, we have

T ⊬ C ′[v]. Consider now, T ⊢ C ′[u], T ⊬ C ′[v], and ∥C ′∥ ≤ k. By induction

hypothesis, we get T ⊢ u and T ⊬ v. □

Lemma 2.1.10. If T ⊢ t, T ⊬ s, and s ⊂ t, then there exists a term u such that s ⊆ u,

u ⊆ t, and u ∈ T .

Proof. Clearly, ∥t∥ ≥ 2. We make induction on the size of t. For ∥t∥ = 2, s ⊂ t if

and only if s ∈ sub(t). If t ∈ T , then the claim holds by letting u =s t. Otherwise,

since T ⊢ t, it follows from the definition of ⊢ that T ⊢ sub(t) = {s} and ff(t) ∈ F+.

Moreover, since ∥s∥ = 1, we have s ∈ T by Lemma 2.1.8 (i) and thus the claim holds

by letting u =s s. Now, suppose that the claim holds for ∥t∥ ≤ k.

For ∥t∥ = k + 1, since s ⊂ t, it is clear from the definition of ⊂ that s ⊆ w for

some w ∈ sub(t). If t ∈ T , then the claim holds by letting u =s s, because s ⊂ t

implies s ⊂ t. Otherwise, as before, T ⊢ t implies T ⊢ sub(t) and ff(t) ∈ F+.

Clearly, s ̸=t w, because T ⊬ s by assumption. So, s ⊂ w. Note that T ⊢ w, T ⊬ s,

s ⊂ w, and ∥w∥ ≤ k. By induction hypothesis, there exists a term u such that s ⊆ u,

u ⊆ w ⊂ t, and u ∈ T . The claim follows. □
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2.2 The de dicto Interpretation

Now, we formalize the de dicto interpretation of a message. We first explain why

de dicto amounts to ascribing meaning to a message and then we generalize the de

dicto interpretation to ambiguous messages.

2.2.1 Ascribing Meaning to a Message

As mentioned earlier in the beginning of this chapter, under de dicto reading,

knowing a message means being able to determine the value of it, without necessarily

knowing the value. We note that the bit string value of message t is determined if t is

a ground term (i.e., t ∈ T (F ,A∪N , ∅)). For example, the value of term NA is ⌊NA⌋,

where ⌊⌋ is a unary function that maps a ground term to its bit string representation.

The de dicto interpretation seems trivial for ground terms, as every ground term

is defined to stand for some determined (but not necessarily known) bit string value.

The interpretation makes more sense when the meaning of a term is not evident, that

is, a term with variable(s).

Definition 2.2.1 (Ground de dicto Knowledge). Every ground term t is de dicto known,

written |= Kdicto(t).

For ease of presentation, we continue to use (T,E) to model an agent’s knowledge,

where T is a ground term set. Under the de re/ dicto interpretation, the agent knows

both the value and the meaning of t for each t ∈ T .

Definition 2.2.2 (Ground Knowledge). Let E be an equational theory and T be

a ground term set. We say a ground term t is known in model (T,E), written

(T,E) |= Kt, if T ⊢E t.
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For instance, in Example 1, given the meaning of each term in T , Alice is able to

compute ⌊NB⌋ and she is aware of the fact that it is the value of term NB. That is,

({{NB}K+
B
, K−

B}, Edy) |= KNB.

Remark 1. It can be feasible to compute the bit string value of a term t based on its de

dicto interpretation. Conversely, given a bit string value, it is almost always infeasible

to obtain the corresponding term structure. As an example, let ({NA, K
+
B}, Edy) be

Alice’s knowledge model. Then, ({NA, K
+
B}, Edy) |= Kre({{{NA}K+

B
}K+

B
}K+

B
). That

is to say, Alice knows how to generate the bit string of term {{{NA}K+
B
}K+

B
}K+

B
, as

long as the term structure is evident. Now, suppose that ⌊{{{NA}K+
B
}K+

B
}K+

B
⌋ is

0x1A3DE405. It is infeasible for Alice to get to know that the value 0x1A3DE405

corresponds to the term {{{NA}K+
B
}K+

B
}K+

B
.

Example 2. Consider again the Abadi-Cortier argument. We use {n0, n1, {v}K+
S
} to

describe the attacker’s explicit knowledge, in which Boolean values true (n1) and false

(n0) are “well-known”. By letting

E0 = Edy ∪ {v = n0}, E1 = Edy ∪ {v = n1}

we get T ⊢E0 v and T ⊢E1 v. In both cases, we see from Definition 2.2.2 that

({n0, n1, {v}K+
S
}, E0) |= Kv and ({n0, n1, {v}K+

S
}, E1) |= Kv. Consequently, the at-

tacker knows v, giving a contradiction to our intuition.

The above contradiction occurs because the equations v = n0 and v = n1 are not

well-established. By well-established, we mean the equation reflects some well-known

fact, such as the equation sdec(senc(x, y), y) = x used for symmetric encryption, or

incorporates some initial system assumption, such as NB = NA + 1. The two new

equations in Example 2, however, are introduced to model uncertainty about v.
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2.2.2 Accounting For Uncertainty

Until now we have focused on ground knowledge, that is, the meaning of a term

is determined. Next, we show how to use free variables and substitutions to capture

uncertainty in security protocol analysis.

We use a variable to stand for an ambiguous (part of) message, and a substitution

to assign one possible interpretation of the variable. For instance, we replace constant

symbol v in Example 2 with a variable x to account for the uncertainty. Then, term

set {n0, n1, {x}K+
S
}, together with σ0 = [n0/x] and σ1 = [n1/x], characterizes the fact

the interpretation of x is not determined yet.

In security protocol executions, a received message almost always has some part(s)

being ambiguous. Let us consider again the Otway-Rees protocol [96]:

Message 1. A→ B : M,A,B, {NA,M,A,B}KAS

Message 2. B → S : M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

Message 3. S → B : M, {NA, KAB}KAS
, {NB, KAB}KBS

Message 4. B → A : M, {NA, KAB}KAS

After executing the first three messages, principal A is expecting a KAB, which is

a symmetric key shared between A and B, from the trusted third party S. As KAB

is dynamically generated, A is uncertain about the value of it. So, A would rather

use a variable x to stand for it, with substitution σ = [KAB/x] specifying its intended

interpretation. Other interpretations of x are also possible. Particularly, the protocol

is vulnerable to a type-flaw attack [28] due to the interpretation σ′ = [M · A ·B/x].

We stress that a variable may have several interpretations (specified by substitu-
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tions). Intuitively, a term t is determined or known under the de dicto reading, if the

agent has certain expectation about its bit string representation [57]; that is, given a

bit string, though the agent may not necessarily know it under the de re reading, he

or she can ensure that the meaning of the bit string is fixed.

2.3 Knowledge Model

So far, we have developed some on-the-fly models to reason about ground knowl-

edge, and informally discussed knowledge with uncertainty. In this section, we pro-

pose a more general knowledge model that treats the de re/ dicto interpretations in

a uniform way, and represents epistemic uncertainty.

2.3.1 Mapping the Kripke Structure

We start with the Kripke structures [69] which are widely used to formalize the

standard possible-worlds semantics of knowledge [54]. The intuitive idea behind the

possible-worlds semantics is that: due to the most likely partial observations of the

actual world, an agent may not be able to know the real state of the world, but rather

consider a number of other possible states that are consistent with his or her current

observations. The agent knows a fact if the fact is true at all those states that he or

she considers possible.

Formally, for a multi-agent system with n agents, a Kripke structure is defined as a

tuple (S, π,K1, · · · ,Kn), where S is a set of states or worlds, π is an truth assignment

function, and Ki is a possibility relation for agent i. The truth assignment function π

tells the true affairs in a given state. The possibility relation Ki is a binary relation

on S; it captures the fact that an agent i is unable to distinguish between s and t,
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given his information in the world s and (s, t) ∈ Ki. Moreover, Ki is often required

to be reflexive, symmetric, and transitive.

Example 3. Consider, for example, Alice is rolling two dice (say Dice A and Dice B)

and the Kripke structure describing this scenario is (S, π,KAlice). We use an ordered

pair (a, b) to denote a state, where a and b are the numbers on the top of the Dice

A and Dice B, respectively. Clearly, S is the set of all the outcomes of rolling these

dice, i.e.,

S = {(a, b)|1 ≤ a ≤ 6, 1 ≤ b ≤ 6}

Suppose that Alice does not directly know of the outcome of the two dice, but

rather only observe the sum of the two dice. So, we use proposition pi to denote the

fact “the sum of the two dice is equal to i”. Clearly, 2 ≤ i ≤ 12.

For the assignment function π, we have

π((a, b))(pi) ≜


true if a+ b = i

false if a+ b ̸= i

For the possibility relation for Alice KAlice, we have

((a, b), (a′, b′)) ∈ KAlice ⇔ a+ b = a′ + b′

Assume that the actual state is (2, 3), and yet the only observation Alice has is

“p5: the sum of the two dice is equal to 5”. Then, Alice considers all the following

states are possible or indistinguishable:

(1, 4), (2, 3), (3, 2), (4, 1)

To adopt a Kripke-style structure for our purpose, we make the following changes.

(i). As explained in the beginning of this chapter, it suffices to consider only a single

agent, and thus we will keep only one possibility relation K; (ii). There is no need
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to include the truth assignment function π, because the truth value of a statement

on a message is implicitly determined by one’s initial knowledge and reasoning ca-

pabilities. Rather, we need a term set T and an equational theory E built into the

structure so as to represent the agent’s initial knowledge and reasoning capabilities

(i.e., deducibility). (iii). In our context, a state can be fully characterized by a sub-

stitution σ. We thus use a nonempty set of substitutions or valid domain Φ to denote

a set of states that are of interest. Note that Φ is nonempty even if it only contains

an empty substitution ϵ (i.e., Φ = {ϵ}). In Section 3.2, we will see how we can get

rid of possibility relation K and the set of interested substitution Φ. For now, let us

keep the model in its most general form.

Finally, we define knowledge model or knowledge structure as a tupleM = (E, T,Φ,K),

where E is an equational theory, T is a term set, Φ is a set of substitutions satisfying

that Dom(σ) ⊆ fv(T ) for all σ ∈ Φ, and K is a possibility relation. We often refer

to the term set T in M as explicit knowledge, as it is used exactly to represent the

agent’s explicit knowledge. Similarly, the substitution set Φ in M is also called valid

domain, as it describes all substitutions that are of interest. A knowledge state is a

pair (M,σ), where M is a knowledge model with valid domain Φ and σ ∈ Φ.

A valid domain identifies a set of substitutions that are possible in a specific problem

domain. For example, if we use x to represent a user password and Φ the valid domain,

then xσ is a possible user password for every σ ∈ Φ. Here, we use the term “possible”

in a sense that the value of xσ satisfies some preconditions on passwords, such as the

length of a password should be no less than 6, a password can not be the same as

one’s username, and etc. To avoid confusion with the possibility relation K, we use
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the term “valid” instead.

It should be noted that, to simplify our discussion we have not included the term

algebra used T in M , but rather make it an assumption.

2.3.2 Modeling Knowledge

We now formalize the meaning of knowing a message under different interpretations.

Definition 2.3.1 (Knowledge Model). Given a knowledge model M = (E, T,Φ,K) and

σ ∈ Φ, we define |= as follows:

(i). (M,σ) |= Kre(s) if and only if Tσ ⊢E s,

(ii). (M,σ) |= Kdicto(t) if and only if fv(t) ⊆ fv(T ) and tσ′ =E tσ for all σ′ such

that σ′ ∈ Φ and (σ, σ′) ∈ K,

(iii). (M,σ) |= Kt if and only if (M,σ) |= Kre(tσ) and (M,σ) |= Kdicto(t),

We write M |= Kt if and only if (M,σ) |= Kt for every σ ∈ Φ.

An agent knows a term if and only if the bit string value can be computed and the

meaning of the term is determined. If T is ground (i.e., Φ = {ϵ} and K=∅), the above

definition reduces to Definition 2.1.5 and 2.2.1. This suggests that deducibility is a

notion sufficient to capture agent’s knowledge if we do not have the need to reason

about uncertainty.

At this point, we provide a precise answer to the question “what is meant by saying

the one knows some message?” That is, an agent knows a message t if and only if

(M,σ) |= Kt, where (M,σ) models the agent’s knowledge state.

In the following, we collect two examples to illustrate the use of the knowledge

model. As reasoning about ground knowledge reduces to the well studied notion of
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deducibility, here we focus on knowledge with uncertainty.

Example 4. Consider again the Abadi-Cortier argument. Let M = (Edy, T,Φ,K)

model the attacker’s knowledge, where T = {n0, n1, {x}K+
S
}, Φ = {σ0, σ1}, and σi =

[ni/x] for i = 0, 1. It is not hard to see that the attacker is unable to distinguish n0

from n1, so K = (σ0, σ1).

Since Tσ0 ⊢Edy
xσ0(=s n0), by Definition 2.3.1 (i) we have (M,σ0) |= Kre(xσ0).

Likewise, (M,σ1) |= Kre(xσ1). Moreover, xσ0 ̸=Edy
xσ1. It follows Definition 2.3.1

(ii) that (M,σ0) ̸|= Kdicto(x) and (M,σ1) ̸|= Kdicto(x).

Finally, by Definition 2.3.1 (iii), we obtain M ̸|= Kx. This corresponds to the fact

that the attacker does not know the vote x.

Example 5. To continue the previous example, we slightly change the scenario by

assuming that the attacker manages to eavesdrop the public key K+
S . Then, the

attacker’s knowledge model becomes M ′ = (Edy, T
′,Φ,K′), where T ′ = T ∪ {K+

S } =

{n0, n1, K
+
S , {x}K+

S
}.

As before, since T ′σ0 ⊢Edy
xσ0(=s n0), by Definition 2.3.1 (i) we have (M ′, σ0) |=

Kre(xσ0). Likewise, (M
′, σ1) |= Kre(xσ1).

Let u =s {n0}K+
S
and v =s {x}K+

S
. Since T ′ ⊢Edy

u and T ′ ⊢Edy
v, the attacker is

able to duduce both u and v. Moreover, notice that uσ0 =Edy
vσ0 and yet uσ1 ̸=Edy

vσ1. So, if the attacker is in state σ0, he would observe that u is equal to v; on the

other hand, if he is in state σ1, he would notice that u is not equal to v. In other

words, the attacker is able to distinguish state σ0 from state σ1. Therefore, we have

K = ∅. Then, it follows from Definition 2.3.1 (ii) that (M ′, σ0) ̸|= Kdicto(x) and

(M ′, σ1) ̸|= Kdicto(x).
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Altogether, by Definition 2.3.1 (iii), we haveM |= Kx. This means that the privacy

of x is breached.



CHAPTER 3: DEFINING RECOGNIZABILITY

The purpose of this chapter is to provide a formal treatment of verifying messages

by introducing the notion of recognizability. Most of the results presented in this

chapter are reported in our previous paper [72].

3.1 General Definition

As we have seen in the last chapter, without uncertainty, one’s knowledge can be

captured by a ground term set. In this chapter, we will see that uncertainty is at the

root of “verifying” a message. Any message to be verified should be regarded as an

ambiguous message.

Before proceeding any further with our general discussion, let us start with a simple

example. Assume that Alice’s knowledge is modeled by

M = (Edy, {{NB}K+
B
, K+

B}, {ϵ}, {(ϵ, ϵ)})

It is not hard to see that Alice knows {NB}K+
B
and K+

B , or more formally, (M, ϵ) |=

K{NB}K+
B
and (M, ϵ) |= KK+

B . Suppose that Bob sends Alice a message and tells her

that the message is the nonceNB. Since Alice does not knowNB (i.e., (M, ϵ) ̸|= KNB),

in order to achieve certainty she has to “verify” the incoming message.

We stress that, although the incoming message is potentially ambiguous, it does

affect Alice’s knowledge. More specifically, Alice’s knowledge model becomes

M ′ = (Edy, {{NB}K+
B
, K+

B , x},Φ,K)
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where x stands for the message received by Alice. Without any prior information

about x, we let the valid domain Φ = {σ|Dom(σ) ⊆ {x}}, in which the expected

state is σe = [NB/x] ∈ Φ. Since Alice knows {NB}K+
B
and K+

B , she is able to encrypt

the incoming message with K+
B and then compare the result {xσ}K+

B
with {NB}K+

B
.

More specifically, according to Alice the following condition holds

penc(xσe, K
+
B ) =Edy

{NB}K+
B

(1)

Note that the possibility relation K describes the agent’s inability to distinguish two

states. Thus, we have

penc(xσ,K+
B ) =Edy

{NB}K+
B

(2)

for all σ such that (σe, σ) ∈ K. Due to the perfect cryptography assumption, equation

(2) holds only if xσ =Edy
NB. Therefore, σ = σe and K = {(ϵ, ϵ), (σe, σe)}. At this

point, we see that Alice is able to verify NB without necessarily knowing NB (i.e.,

(M ′, σe) ̸|= KNB). Intuitively, verifying a message is weaker than knowing a message.

Let us take a closer look at the example. The only state σ satisfying that σ ∈ Φ

and (σe, σ) ∈ K is σe. So, by Definition 2.3.1 (ii), we obtain (M ′, σe) |= Kdicto(x).

In fact, one is able to verify a message if and only if the variable standing for the

message is known under the de dicto interpretation.

Definition 3.1.1 (General Recognizability). Let (M,σ) be one’s knowledge state and

suppose that the knowledge state is updated to (M ′, σ′) after receiving an ambiguous

message t (denoted by z). Then, we say that t is recognizable by (M,σ) and write

(M,σ)▷ t, if and only if (M ′, σ′) |= Kdicto(z).

Let (M,σ) be the knowledge state of an agent A. We say that a message t can be

“verified” by A, or A recognizes message t, if and only if t is recognizable by (M,σ)
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(i.e., (M,σ) ▷ t). This gives a precise answer to the question in the introduction.

Here and after, we avoid the vague term “verify”, but rather use “recognize” in its

precise meaning necessary for rigorous protocol analysis.

Proposition 3.1.2. Let (M,σ) be an agent’s knowledge state and suppose that the

knowledge state is updated to (M ′, σ′) after receiving an ambiguous message t (de-

noted by z). If (M,σ) |= Kt, then (M,σ)▷ t.

The above proposition recovers the intuition: if one knows a message (under both

the de re and de dicto readings), then he or she certainly can “verify” the message,

but not vice versa. In other words, one may be able to “verify” a message without

necessarily knowing the message. We will see several examples that confirm this point

throughout the thesis.

Definition 3.1.1 of recognizability, though general enough, is not practically useful,

as it is far from clear how to update a knowledge state to reflect the potentially am-

biguous message. The next two sections deal with knowledge update and simplifying

our general knowledge model. A revised definition of recognizability will be given in

Section 3.5.

3.2 Knowledge Update

As we have seen in Definition 3.1.1, knowledge update is at the root of the notion

of recognizability. In this section, we discuss how an agent updates the knowledge

state when he or she receives a new message.

Without loss of generality, assume the initial knowledge state of an agent is (M0, σ0),

where M0 = (E0, T0,Φ0,K0), and a new incoming message is intended to be term t.
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After receiving the new message, let us assume the new knowledge state is (M ′, σ′),

where M ′ = (E ′, T ′,Φ′,K′). Before performing any internal checks on the incoming

message, the agent is uncertain about the new message; even if the new message is

indeed in the agent’s explicit knowledge T0, without comparing it with what is explic-

itly known (i.e., T0) the agent is still unable to gain certainty about the message. So,

any incoming message should be treated as an ambiguous message in the first place.

That said, the agent’s explicit knowledge T0 is updated to T ′ = T0 ∪ {x}, where x is

a fresh free variable used to denote the incoming message.

Since equational theory E0 in the knowledge model is used to capture the underlying

algebraic properties of security primitives used in the protocol and deducibility, it is

independent of one’s explicit knowledge. Despite the updated explicit knowledge T ′,

the equational theory E ′ in the new knowledge model M ′ remains the same (i.e.,

E ′ = E0).

For the interested domain Φ′, since a new variable x is introduced to the agent’s

explicit knowledge T ′ and, by the definition of knowledge model, dom(σ) ⊆ fv(T ′) =

fv(T )∪{x} for every σ ∈ Φ′, Φ′ is usually a superset of Φ. A common way to update

the interested domain is simply to expand Φ to include all valid evaluations of x.

Given two sets of substitutions Φ1 and Φ2 such that Dom(Φ1) ∩ Dom(Φ2) = ∅, we

define Φ1 ▷◁ Φ2 by Φ1 ▷◁ Φ2 = {σ|σ = σ1σ2 where σ1 ∈ Φ1 and σ2 ∈ Φ2}. Suppose

that all valid evaluations of x is Φx (dom(σ) ⊆ {x} for all σ ∈ Φx). Then, a most

common way to update Φ0 is by letting Φ′ = Φ0 ▷◁ Φx.

Unlike the equational theory which remains the same regardless of the agent’s ex-

plicit knowledge, the possibility relation updates as the explicit knowledge evolves.
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This is because the agent’s ability to distinguish message relies crucially on the agent’s

explicit knowledge and the interested domain as well. Since both the explicit knowl-

edge and the valid domain change in knowledge update, the possibility relation should

change accordingly. While the agent’s is gaining new information, we have K′ ⊆ K0

for the new possibility relation K′. In other words, the added information gives the

agent more power to differentiate two messages. But still, it is nontrivial to derive

K′ directly from T ′ and Φ′ and that is probably the reason why K is often given in

general knowledge reasoning problems.

At this point, we see that the problem of updating knowledge boils down to the

problem of updating the valid domain Φ and the possibility relation K, which is

nontrivial in general. Moreover, keeping both Φ and K in the agent’s knowledge

model complicates the knowledge reasoning tasks. In fact, as we shall see in the next

section, it is possible to get rid of both components in the knowledge model in formal

security protocol analysis.

3.3 Operational Equivalence

Indeed, it is generally hard, if not impossible, to define the possibility relation in

terms of the explicit knowledge and the valid domain. Nonetheless, as we have limited

our scope only to security protocols, there is still hope for a more convenient way to

characterize the possibility relation.

In fact, in Example 5 we have already seen how to use the term set T and the

equational theory E in the knowledge structure to derive the possibility relation K.

The rationale is that an agent’s ability or inability can be fully characterized by his
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current information and his reasoning capabilities, which are represented by T and

E, respectively. As the discussion in Example 5 is rather ad hoc, in this section we

will see how to rigorously define the possibility relation K based on a term set T and

an equational theory E.

In possible-worlds semantics, the possibility relation captures an agent’s inability

to distinguish two different worlds/states. In view of Definition 2.3.1, what an agent

knows is all about messages. So, checking equality of messages is probably the only

way to distinguish different states (i.e., substitutions). Informally, two states are

indistinguishable, namely (σ1, σ2) ∈ K, if different computations that output the

same bit string in state σ1 also output the same bit string in state σ2, and vice versa.

This suggests the following definition.

Definition 3.3.1 (Operational Equivalence). Let E be an equational theory, T be

a term set, and σ1 and σ2 be two substitutions such that Dom(σ1) ⊆ fv(T ) and

Dom(σ2) ⊆ fv(T ). We say that σ1 and σ2 are operationally equivalent in equational

theory E with respect to term set T , written as σ1 ≈E,T σ2, if for all terms u and v

such that T ⊢ {u, v} we have uσ1 =E vσ1 ⇔ uσ2 =E vσ2.

The above definition captures the fact in security executions a protocol participant

can differentiate two messages only by equality checks. We thus define K(E,T,Φ) as

follows: (σ1, σ2) ∈ K(E,T,Φ) if and only if σ1 ≈E,T σ2 and {σ1, σ2} ⊆ Φ, where E is an

equational theory E, T a term set T , and Φ a substitution set.

It should be noticed that operational equivalence is closely related to static equiv-

alence [4, 3]. The main difference is that operational equivalence is from a cognitive

perspective, whereas static equivalence is from a process point of view. Moreover, de-
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ciding recognizability and deciding static equivalence are significantly different. For

recognizability, we concern with the problem: given a message m whether there ex-

ists another message m′ that is indistinguishable from m by the observer. In other

words, we need to consider all possible message m′ that is relevant to the operational

equivalence relation. Consequently, deciding recognizability can be much harder than

deciding static equivalence. We defer the problem of deciding recognizability to the

next chapter.

Example 6. Consider the term set T = {NA, K
−
B , x} and let

σ1 =[{NA · A}K+
B
/x]

σ2 =[{NA · {NB}K+
A
}K+

B
/x]

u =s fst(pdec(x,K
−
B ))

v =s NA

Clearly, T ⊢ {u, v}. We see that

uσ1 =s fst(pdec({NA · A}K+
B
, K−

B ))

→REdy
fst(NA · A) =s NA =s vσ1

and

uσ2 =s fst(pdec({NA · {NB}K+
A
}K+

B
, K−

B ))

→REdy
fst(NA · {NB}K+

A
) =s NA =s vσ2

So, uσ1 =Edy
vσ1 and uσ2 =Edy

vσ2. It can be shown that for any u and v such that

T ⊢ {u, v} we have uσ1 =Edy
vσ1 ⇔ uσ2 =Edy

vσ2. That is, σ1 ≈Edy ,T σ2.

This example illustrates how a message or part of the message could be type-flawed.

In fact, σ1 ≈E,T σ for any substitution σ satisfying xσ =s NA ·t where t is an arbitrary
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ground and RE-normal term. This is not surprising, because if one explicitly knows

NA (i.e., T ⊢E NA), then any message part t that represents NA (i.e., ⌊t⌋) could be

recognized by simply comparing ⌊t⌋ and ⌊NA⌋.

On the other hand, if one does not explicitly know a message, will he or she still be

able to verify the message? The answer depends on what exactly one knows and what

the unknown message is or expected to be. In the following example, the answer is

positive.

Example 7. Consider the term set T = {K+
B , {NA}K+

B
, x} and let

σ1 =[K−
B/x]

u =s penc(pdec({NA}K+
B
, x), K+

B )

v =s {NA}K+
B

Clearly, T ⊢ {u, v}. We see that

uσ1 =s penc(pdec({NA}K+
B
, K−

B ), K
+
B )

=s penc(NA, K
+
B ) =s v =s vσ1

So, uσ1 =Edy
vσ1. Assume that σ′

1 ≈Edy ,T σ1. Then, uσ
′
1 =Edy

vσ′
1. That is,

penc(pdec({NA}K+
B
, xσ′

1), K
+
B ) =Edy

vσ′
1 =s {NA}K+

B

Now, it is not hard to see that pdec({NA}K+
B
, xσ′

1) =s NA and thus xσ′
1 =s K

−
B . Note

that Dom(σ′
1) = Dom(σ1) = {x}. Finally, we get σ′

1 = [K−
B/x] = σ1.

Similarly, if we let σ2 = [NA/x], it can be shown that σ2 ≈Edy,T σ′
2 if and only if

σ′
2 = σ2.

In the above example, although neither NA nor K−
B is explicitly known (T ⊬E

{NA, K
−
B}), one can still verify them, because for any σ′

1 ≈E,T σ1 and σ′
1 ≈E,T σ1 we
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have σ′
1 = σ1 and σ′

2 = σ2.

The following lemma and theorem give some useful characterizations of operational

equivalence.

Lemma 3.3.2. Let σ1 and σ2 be two ground substitutions.

(i). σ1 ≈E,T σ2 if and only if σ2 ≈E,T σ1;

(ii). if µσ1 ≈E,T µσ2 and Dom(σ1) = fv(Tµ), then σ1 ≈E,Tµ σ2;

Proof. (i). Follows immediately from Definition 3.3.1.

(ii). Without loss of generality, let u and v be two terms such that Tµ ⊢ {u, v}.

By Lemma 2.1.6, there exists two terms u′ and v′ such that T ⊢ {u′, v′}, u′µ =s u,

and v′µ =s v. Moreover, Since µσ1 ≈E,T µσ2 and T ⊢ {u′, v′}, we have u′µσ1 =E

v′µσ1 ⇔ u′µσ2 =E v′µσ2. That is, uσ1 =E vσ1 ⇔ uσ2 =E vσ2. Moreover, Dom(σ1) =

fv(Tµ) by assumption. Using the definition of operational equivalence, we know that

σ1 ≈E,Tµ σ2. □

Theorem 3.3.3. Let σ1 and σ2 be two ground substitutions.

(i). Suppose that T ⊢E t. Then, σ1 ≈E,T σ2 if and only if σ1 ≈E,T∪{t} σ2;

(ii). Suppose that T ⊢ t and x never occurs in T . Let tσ1 →!
RE

w1 and tσ2 →!
RE

w2.

Then, σ1 ≈E,T σ2 if and only if σ′
1 ≈E,T∪{x} σ′

2, where σ′
1 = σ1 ∪ [w1/x] and

σ′
2 = σ2 ∪ [w2/x].

Proof. (i). The “if” part is trivial. We now prove the “only if” part. To prove

σ1 ≈E,T∪{t} σ2, it suffices to show that for all terms u and v such that T ∪{t} ⊢ {u, v}

we have uσ1 =E vσ1 ⇔ uσ2 =E vσ2. Due to the symmetry of σ1 and σ2, we only need

to prove one direction and proof of the reverse direction can be easily obtained by a

similar analysis.
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Since T ⊢E t, it is obvious that T ∪ {t} ≡E T . Note that T ⊢ {t} ⊢ {u, v}. By

the definition of ⊢E, there exists two terms u′ and v′ such that T ⊢ {u′, v′}, u′ =E u,

and v′ =E v. Clearly, uσ1 =E u′σ1 and vσ1 =E v′σ1. So, uσ1 =E vσ1 implies

u′σ1 =E v′σ1. Note that T ⊢ {u′, v′} and σ1 ≈E,T σ2. By the definition of operational

equivalence, we have u′σ2 =E v′σ2 and thus uσ2 =E vσ2. Likewise, it can be shown

that uσ2 =E vσ2 ⇔ uσ1 =E vσ1. Hence, σ1 ≈E,T∪{t} σ2.

(ii). (“If ” part) To prove σ1 ≈E,T σ2, it suffices to show that for all terms u and v

such that T ⊢ {u, v} we have uσ1 =E vσ1 ⇔ uσ2 =E vσ2. Clearly, T ∪ {x} ⊢ {u, v}.

Since σ′
1 ≈E,T∪{x} σ

′
2 by assumption, we have uσ′

1 =E vσ′
1 ⇔ uσ′

2 =E vσ′
2. Note that

T ⊢ {u, v} and x does not occur in T . Obviously, x ̸∈ fv(u) and x ̸∈ fv(v). So, uσ′
1 =s

uσ1, vσ
′
1 =s vσ1, uσ

′
2 =s uσ2, and vσ′

2 =s vσ2. Therefore, uσ1 =E vσ1 ⇔ uσ2 =E vσ2.

(“Only if” part) To prove σ′
1 ≈E,T∪{x} σ′

2, it suffices to show that for all terms u

and v such that T ∪ {x} ⊢ {u, v} we have uσ′
1 =E vσ′

1 ⇔ uσ′
2 =E vσ′

2.

Let u′ =s u[x 7→ t] and v′ =s v[x 7→ t]. Since x never occurs in T and T ⊢ t by

assumption, we have T ⊢ {u′, v′}. Note that σ′
1 = σ1 ∪ [w1/x] and σ′

2 = σ2 ∪ [w2/x].

It is not hard to see that u′σ1 =s uσ1[x 7→ tσ1] =E uσ1[x 7→ w1] =s uσ′
1. So,

uσ′
1 =E u′σ1. Similarly, we have vσ′

1 =E v′σ1, uσ
′
2 =E u′σ2, and vσ′

2 =E v′σ2. On

the other hand, since σ1 ≈E,T σ2 and T ⊢ {u′, v′}, by the definition of operational

equivalence we get u′σ1 =E v′σ1 ⇔ u′σ2 =E v′σ2. That is, uσ
′
1 =E vσ′

1 ⇔ uσ′
2 =E vσ′

2.

This completes the proof. □
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3.4 Knowledge Model Revised

In the last section, we have used equational theory E, explicit knowledge T , and

valid domain Φ to characterize the possibility relation K(E,T,Φ). To make knowledge

reasoning more effective in security protocol analysis, this section aims to eliminate

both valid domain Φ and possibility relation K from the knowledge model as defined

in Section 2.3.1.

In example 4, we have used free variable x to stand for a possible vote (i.e., a

Boolean value). So, xσ is a well-known value (either true or false) for every σ ∈ Φ

where Φ is the valid domain in the example. More often, however, we use substi-

tutions to represent values that are not well-known, such as a 128-bit block cipher.

Enumerating all those values are intractable and unnecessary. We thus define ΦT by

ΦT = {σ|Dom(σ) ⊆ fv(T )}.

For an ambiguous message that has a large number of valid values, it is practicable

to use ΦT as the valid domain. In the rest of this thesis, we avoid ambiguous messages

that have well-known values, but rather assume all ambiguous messages have a large

number of valid values. Moreover, we assume a uniform underlying distribution of

valid values; this is not true in reality, because for instance user tend to choose weak

passwords with low entropy [16, 17, 102, 67]. Despite the above assumptions, we

claim that these assumptions simplify the proceeding discussion, without affecting

our main results of the thesis.

When Φ is defined by ΦT , K is defined by K(E,T ), and equational theory E is given,

one’s knowledge state can be fully captured T and σ.
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Definition 3.4.1 (Succinct Knowledge State). Let E be an equational theory, T be a

term set, and σ be a substitution satisfying that Dom(σ) ⊆ fv(T ). Then, we define

a triple ⟨E, T, σ⟩ as (M,σ), where M = (E, T,ΦT ,K(E,T )); such a triple is called a

(succinct) knowledge state and is notated as T⃗ . We will write T⃗ ↓ts and T⃗ ↓subs for

the term set and substitution in T⃗ , respectively.

For simplicity, we will drop the equational theory E and simply write ⟨T, σ⟩, when

E is clear from the context. Likewise, the knowledge model as defined in Definition

2.3.1 is revised accordingly.

Definition 3.4.2 (Succinct Knowledge Model). Given an equational theory E, we

define |= as follows:

(i). ⟨E, T, σ⟩ |= Kre(s) if and only if Tσ ⊢E s,

(ii). ⟨E, T, σ⟩ |= Kdicto(t) if and only if fv(t) ⊆ fv(T ) and tσ′ =E tσ for all σ′

such that σ′ ≈E,T σ,

(iii). ⟨E, T, σ⟩ |= Kt if and only if ⟨E, T, σ⟩ |= Kre(tσ) and ⟨E, T, σ⟩ |= Kdicto(t),

In the rest of this thesis, unless stated otherwise, we only consider succinct knowl-

edge state/model, or simply, knowledge state/model.

Example 4 shows a case when (M,σ) |= Kre(tσ) but (M,σ) ̸|= Kdicto(t). The

following example shows a reverse case, that is, (M,σ) |= Kdicto(t) but (M,σ) ̸|=

Kre(tσ).

Example 8. Let ⟨Edy, T, σ0⟩ be Alice’s knowledge state, where

T = {{K+
S , {{m}K+

B
}K+

S
, {x}K+

B
}}

and σ0 = [m/x]. Then,

Tσ0 = {{K+
S , {{m}K+

B
}K+

S
, {m}K+

B
}}
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Without the decryption key K−
B , Alice is unable to deduce m (i.e., Tσ0 ⊬Edy

m). By

Definition 3.4.2 (i), we have ⟨Edy, T, σ0⟩ ̸|= Kre(xσ0).

In the following, we let σ be an arbitrary substitution satisfying that σ ≈Edy,T σ0,

u =s {{x}K+
B
}K+

S
, and v =s {{m}K+

B
}K+

S
. Since T ⊢ {u, v} and uσ0 =Edy

vσ0, it

follows from Definition 3.5.1 that uσ =Edy
vσ. That is,

{{x}K+
B
}K+

S
σ =Edy

{{m}K+
B
}K+

S

Note that σ is REdy
-normal and Edy is a convergent theory. Thus,

{{x}K+
B
}K+

S
σ =s {{m}K+

B
}K+

S

So, σ = [m/x] = σ0. Consider now, fv(x) ⊆ fv(T ), xσ =Edy
xσ0 for all σ such that

σ ≈Edy ,T σ0. By Definition 3.4.2 (ii), ⟨Edy, T, σ0⟩ |= Kdicto(x).

The last example shows how our knowledge model facilitates reasoning about off-

line guessing attack. We will discuss more on this topic in Chapter 7.1.

Example 9. We consider a simple one-way authentication protocol:

Message 1. A→ B : {NA}KAB

Message 2. B → A : {NA + 1}KAB

In order to model this protocol, we slightly enrich the equational theory Edy
2 with

a binary function “+” to handle addition operations.

The attacker eavesdrops the communications between A and B, and aims to guess

the symmetric key KAB. Then, the attacker’s knowledge state before making a guess

of KAB is T⃗0 = ⟨Edy+, T0, ϵ⟩, where T0 = {1, {NA}KAB
, {NA + 1}KAB

}. Without any

guessed value, the initial knowledge state T⃗0 does not reflect any uncertainty.

2In fact, the equational theory remains the same; only the underlying term algebra is changed to
accommodate addition operations used in the one-way authentication protocol.
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F+
dy+ pair, senc, penc, hash

fst, snd, sdec, pdec,+
F−

dy+ pk, sk

Edy+ fst(pair(x, y)) = x
snd(pair(x, y)) = y
sdec(senc(x, y), y) = x
pdec(penc(x, pk(y)), sk(y)) = x
pdec(penc(x, sk(y)), pk(y)) = x

Figure 2: Equational Theory Edy+.

After the attacker makes a random guess of the symmetric key KAB, the knowledge

state is updated to T⃗ = ⟨Edy+, T, σ⟩, where

T = T0 ∪ {x}

= {1, {NA}KAB
, {NA + 1}KAB

, x}

σ0 = [KAB/x]

Since a guessed value of KAB can be wrong, we treat it as an ambiguous message and

thus use the free variable x to stand for it.

Consider now,

T0ϵ = T0 = {1, {NA}KAB
, {NA + 1}KAB

}

Clearly, the attacker is unable to deduce KAB (i.e., T0ϵ ⊬Edy+
KAB). By Definition

3.4.2 (i), we have ⟨Edy, T, σ0⟩ ̸|= Kre(xσ0).

Similar to Example 8, we let σ be an arbitrary substitution satisfying that σ ≈Edy+,T

σ0, u =s sdec({NA}KAB
, x) + 1, and v =s sdec({NA + 1}KAB

, x). Since T ⊢ {u, v}

and uσ0 =Edy+
vσ0, it follows from Definition 3.3.1 that uσ =Edy+

vσ. That is,

sdec({NA}KAB
, xσ) + 1 =Edy+

sdec({NA + 1}KAB
, x)σ (3)

It is not hard to see that Equation (3) holds only if σ = [KAB/x] (i.e., σ = σ0).
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Consider now, fv(x) ⊆ fv(T ), xσ =Edy+
xσ0 for all σ such that σ ≈Edy+,T σ0. By

Definition 3.4.2 (ii), ⟨Edy+, T, σ0⟩ |= Kdicto(x).

Finally, we see that although the attacker does not know KAB (i.e., ⟨Edy, T, σ0⟩ ̸|=

Kre(xσ0)), he or she is still able to guess the KAB (i.e., ⟨Edy+, T, σ0⟩ |= Kdicto(x)).

We will make this point more precise in Chapter 7.1.

3.5 Recognizability Revised

By simplifying the knowledge state from ((E, T,Φ,K), σ) to a triple ⟨E, T, σ⟩, we

can handle knowledge update much easier. Suppose that an agent’s knowledge state

is T⃗ = ⟨E, T, σ⟩. Let z denote a potentially ambiguous incoming message that is

intended to be t. Then, after receiving the incoming message, following the discussion

in Section 3.2, the agent’s knowledge state is updated to

T⃗ = ⟨E, T ∪ {z}, σ[t/z]⟩

Definition 3.5.1 (Recognizability). Let T⃗ = ⟨E, T, σ⟩ be one’s knowledge state and t

be a potentially ambiguous message (denoted by z). Then, we say that t is recognizable

by T⃗ and write T⃗ ▷ t, if and only if ⟨E, T ∪ {z}, σ[t/z]⟩ |= Kdicto(z).

Example 10. Let T⃗0 = ⟨Edy, T0, ϵ⟩ be Alice’s knowledge state, where

T0 = {K+
B , {NA}K+

B
}

Since T0ϵ ⊬Edy
K−

B , T⃗0 ̸|= Kre(K−
B ) follows from Definition 3.4.2 (i).

Consider a potentially ambiguous message K−
B (denoted by z). Let σ′ be an arbi-

trary substitution satisfying that σ ≈Edy,T σ, where T = T0∪{z} = {K+
B , {NA}K+

B
, z}

and σ = [K−
B/z]. Further, we let u =s penc(pdec({NA}K+

B
, z), K+

B ) and v =s {NA}K+
B
.

Since T ⊢ {u, v} and uσ =Edy
vσ, it follows from Definition 3.5.1 that uσ′ =Edy

vσ′.
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That is,

penc(pdec({NA}K+
B
, z), K+

B )σ
′ =s penc(pdec({NA}K+

B
, zσ′), K+

B )

=Edy
{NA}K+

B
σ′

=s {NA}K+
B

(4)

It is not hard to see that Equation (4) holds if and only if σ′ = [K−
B/x] (i.e., σ

′ = σ).

Consider now, fv(z) ⊆ fv(T ), zσ′ =Edy
zσ for all σ′ such that σ′ ≈Edy,T σ. By

Definition 3.4.2 (ii), ⟨Edy, T, σ0⟩ |= Kdicto(z). Therefore, we see from Definition

3.5.1 that K−
B is recognizable by T⃗0 (i.e., T⃗0 ▷K−

B ).

Similarly, it can be shown that T⃗0 ̸|= KNA and yetNA is recognizable (i.e., T⃗0▷NA).

In the above example, although neither K−
B nor NA is known (i.e., T⃗0 ̸|= KK−

B and

T⃗0 ̸|= KNA, Alice is still able to recognize them (i.e., T⃗0 ▷ K−
B and T⃗0 ▷ NA). The

following proposition makes it easier to reason about recognizability.

Proposition 3.5.2. Let T⃗ = ⟨E, T, σ⟩ be one’s knowledge state. A potentially am-

biguous message t is recognizable by T⃗ if and only if zσ′ =E t for all σ′ satisfying

σ′ ≈E,T∪{z} (σ[t/z]) where z is a fresh variable.



CHAPTER 4: REDUCING RECOGNIZABILITY TO CONSTRAINT SOLVING

This and the next chapters address the problem of deciding recognizability under

the standard intruder model. Most of the results presented in both chapters are

reported in our previous paper [73].

As the notion of recognizability is based on the traditional notion of knowledge

(i.e., deducibility), the problem of deciding recognizability is at least as hard as the

problem of deciding deduction. Since the problem of deciding deducibility (i.e., ⊢E)

is undecidable in general, it is unlikely to establish general decidability results for

recognizability. We thus restrict our consideration to the standard Dolev-Yao model

in the hope of decidable results.

This chapter gives an overview of the main components necessary for deciding rec-

ognizability under the standard Dolev-Yao model. The next chapter explains the final

construction for obtaining a decision procedure of recognizability under the Dolev-Yao

model.

4.1 Ground-Explicit-Knowledge Assumption

To simplify the construction, we make another assumption other than the standard

Dolev-Yao intruder model. The assumption we made here is to be used in this and

the next chapters. We stress the assumption identified here is only for presentation

purpose; it should not affect results presented in this and the next chapters.
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As in the definition of recognizability, the agent’s knowledge state is represented by

a triple ⟨E, T, σ⟩. Each free variable in T represents a potentially ambiguous message

and a fresh variable (e.g., z in Definition 3.5.1) represents the incoming ambiguous

message. So, there could be other ambiguous messages for the agent, other than the

incoming message that he or she attempts to recognize.

To simplify our presentation, we assume that the incoming message is the only

ambiguous message and the expected interpretation of the incoming message is also

a ground term. That is, T is a ground term set and t is a ground term, where t is the

intended incoming message. Thus, σ = ϵ for Dom(σ) ⊆ fv(T ) = ∅. This is called

the ground-explicit-knowledge assumption.

With the ground-explicit-knowledge assumption, the original definition of recog-

nizability (Definition 3.5.1) can be greatly simplified. Given an equational theory E,

the knowledge state of an agent can be fully captured by a ground term set.

Proposition 4.1.1. Let E be an equational theory, T be a ground term set, and t be

a ground term. Then, ⟨E, T, ϵ⟩▷ t if and only if the following condition holds:

σ ≈E,T∪{x} σ0 if and only if σ =E σ0

where σ0 = [t/x].

We will often use T ▷ t as a shorthand for ⟨E, T, ϵ⟩ ▷ t when T is a ground term

set and E is clear from context. Instead of working on T⃗ ▷ t, in this and the next

chapter we aim to give a procedure to decide T ▷ t.

In the following, we explain why under the standard Dolev-Yao intruder model,

the problem of deciding recognizability (i.e., T⃗ ▷ t) reduces to a greatly simplified

problem of deciding T ▷ t. To understand the reason, let us consider a knowledge
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state ⟨E, T, σ⟩, in which the term set T that does contain variables. Then, in general

fv(T ) = X1 ∪X2

where X1 = fv(T )\Dom(σ) and X2 = fv(T ) ∩ Dom(σ). To validate the ground-

explicit-knowledge assumption, we need to somehow get rid of variables in fv(T ).

For a variable x1 in X1, it is clear that x1 ̸∈Dom(σ′) for all σ′ such that σ′ ≈E,T∪{z}

σ[t/z], where z is a fresh variable representing the potentially ambiguous message t.

Then,

x1σ
′ =s x1 =s x1σ[t/z]

for all x1 ∈ X1. In other words, x1 can be replaced by a constant symbol that never

occurs in T ; this is analogous to the role played by Skolemization [61] in logic, where

the newly generated constants are called Skolem constants [39, 97].

For a variable x2 inX2, since x2 ∈ Dom(σ), it does represent an ambiguous message

that has certain expectation (i.e., x2σ). As it may have different interpretations for

different σ′ such that σ′ ≈E,T∪{z} σ[t/z], we can not use Skolemization-like technique

to eliminate this type of variables. Note that, however, every x2 ∈ X2 represent a

new ambiguous message. If we figure out a way to use a single ambiguous message

to stand for multiple ambiguous messages, then we still harbor the hope of avoiding

this type of variables. The trick is, under the Dolev-Yao model, we indeed can expect

a single variable (i.e., the one originally used to represent the incoming message) to

account for multiple ambiguous messages. For instance, if we use z, y1, y2, · · · , yn to

represent ambiguous messages t, s1, s2, · · · , sn, respectively. Then, we may use the

a new variable, say z′, to represent a new ambiguous message t′ =s t · s1 · s2 · · · sn.

By reasoning about the new variable z′, it essentially accounts for all the original
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ambiguous messages t, s1, s2, · · · , sn.

Therefore, under the standard Dolev-Yao intruder model, we can accommodate

the ground-explicit-knowledge assumption without loss of generality. Even with the

ground-explicit-knowledge assumption, the problem of deciding T▷t is as hard as the

original problem of deciding T⃗ ▷ t. Again, we retain the ground-explicit-knowledge

assumption here only to make the following discussion more concise.

4.2 Characterization of Equational Theory Edy

Although the definition of recognizability is general enough to capture all possible

ambiguous messages, it is far from clear how to implement a decision procedure for

recognizability. A major inhibitor is the infeasibility to account for all operations

enabled by ⊢, simply because the principal can perform infinitely many operations

using public function symbols (i.e., penc, pdec, senc, sdec, fst, and snd). Nonethe-

less, we notice that not all operations are relevant for verifying a message. In our

approach, we strive to identify all such “interesting operations” that are directly or

indirectly relevant to finding potentially ambiguous messages.

To capture those “interesting operations”, a more precise characterization of Dolev-

Yao model is desired: we define F⋄ = {ff(l)|l = r ∈ E} and say f is an irregular

function symbol if f ∈ F⋄. A term t is regular (or semi-regular) if t (or each strict

subterm of t) contains no irregular function symbols. Similarly, a substitution σ is

regular if Ran(σ) contains no irregular function symbols. A term t is semi-RE-normal

if each strict subterm of t is RE-normal. Clearly, if t is a regular term, then it is also an

RE-normal term. Likewise, if σ is a regular substitution, then it is also an RE-normal
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substitution. The notion of regularity gives an easier way to determine RE-normality,

thanks to the following lemma.

Lemma 4.2.1. Given an equational theory E, we have:

(i). Every regular term is RE-normal;

(ii). If t is regular and σ is RE-normal, then tσ is RE-normal.

The following definition sets the stage for our study of recognizability under Dolev-

Yao adversaries.

Definition 4.2.2 (Regular Subterm Equational Theory). Let E be an equational the-

ory. Then, E is a regular subterm equational theory if and only if for every equation

l = r ∈ E the following conditions hold

• r ⊂ l for every equation l = r ∈ E, and

• all terms in sub(l) ∪ {r} are regular.

Claim 4.2.3. Edy is a convergent regular subterm equational theory.

4.3 Constraints and Reductions

Our strategy of deciding recognizability is essentially a constraint solving procedure:

Step 1 (operational equivalence) incorporates “constraints” imposed by the intended

message. A new substitution is obtained in Step 2 (recognizability) by solving those

“constraints”. Intuitively, “constraint” is the condition imposed on terms such that

possible substitutions would be more restricted and thus a less general substitution

is obtained. For example fst(xσ) →REdy
NA is a “constraint”, which holds only if

[NA · y/x] •≤σ.

This is reminiscent of the constraint-solving approach, first proposed by Millen
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and Shmatikov [92], used in security protocols analysis, in which verifying security

properties can be reduced to solving symbolic constraints [32, 31, 93, 43].

In further text we use “constraint” (with quotes) to informally mean a common

sense fact of being restricted, and constraint (without quotes) to mean either a type-I

constraint or a type-II constraint, as in Definition 4.3.2.

The two key ingredients of our approach are the notions of constraint and reduction,

which, as we will see, allow us to consider only a rather reduced term space. To

formalize this, we will need the following definition.

Definition 4.3.1 (Markup Term Set). A markup term set, notated as T , is a triple

⟨T, η, σ⟩, where σ is a ground substitution and Dom(η) ⊆ fv(T ). Given an equational

theory E, we call a markup term set ⟨T, η, σ⟩ well-formed if it obeys the following

conditions

• all terms in T are regular;

• Tησ is a ground term set;

• both σ and η are regular.

Intuitively, σ is the expected substitution and η represents the partially solved

variables. In well-designed protocols, messages should be natural. For example,

protocol participants would not expect a messages like penc(A, pdec(B,C)). The

well-formed markup term sets precisely capture this fact.

4.3.1 Constraints

Definition 4.3.2 (Constraint). Let T = ⟨T, η, σ⟩ be a markup term set. Suppose that

Tη ⊢ {u, v}. Then,
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• (u, v) is a type-I constraint of T , if both u and v are regular, u ∈ Tη, uσ =s vσ,

and u ̸=s v;

• (u, v) is a type-II constraint of T , if u is RE-normal and semi-regular, v is

regular, v ̸∈ X , u ̸=E v, and uσ →RE
vσ.

Claim 4.3.3. Let T = ⟨T, η, σ⟩ be a markup term set. Suppose that E is a regular

subterm equational theory.

(i). If (u, v) is a type-I constraint of T and µ = mgu(u, v), then µ is regular;

(ii). If (u, v) is a type-II constraint of T and µ is the most general substitution

satisfying uµ→RE
vµ, then ff(u) ∈ F⋄ and µ is regular.

Lemma 4.3.4. Let T = ⟨T, η, σ⟩ and T ′ = ⟨T, η, σ′⟩ be two markup term sets. Suppose

that E is a convergent regular subterm equational theory, T is well-formed, and

σ ≈E,Tη σ
′. If (u, v) is a type-I (or II) constraint of T , then (u, v) is also a type-I (or

II) constraint of T ′.

Proof. There are two cases.

(Case 1 ): (u, v) is a type-I constraint. Using the definition of type-I-constraint, we

observe that both u and v are regular, u ∈ Tη, Tη ⊢ v, mgu(u, v) ̸= ϕ, and uσ =s vσ.

Note that σ ≈E,Tη σ′, and Tη ⊢ {u, v}, and uσ =E vσ. Using the definition of

operational equivalence, we have uσ′ =E vσ′. Moreover, since σ′ is an RE-normal

substitution and both u and v are regular terms, we see that both uσ′ and vσ′ are

RE-normal by Lemma 4.2.1 (ii). Finally, uσ′ =s vσ
′ due to the convergence of →RE

and thus (u, v) is also a type-I constraint of T ′.

(Case 2 ): (u, v) is a type-II constraint. Using the definition of type-I-constraint,

we observe that Tη ⊢ {u, v}, u is RE-normal and semi-regular, v is regular, v ̸∈ X ,
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u ̸=E v, and uσ →RE
vσ. It can easily be shown that ff(u) ∈ F⋄ (see also Claim

4.3.3 (ii)).

First, we show uσ′ →!(n)
RE

vσ′. Since σ ≈E,Tη σ′, Tη ⊢ {u, v}, and uσ =E vσ, we

get uσ′ =E vσ′ by the definition of operational equivalence. Moreover, since v is

regular and σ′ is RE-normal, it follows immediately from Lemma 4.2.1 (ii) that vσ′

is RE-normal. Note that uσ′ =E vσ′ and →RE
is convergent. So, uσ′ →!(n)

RE
vσ′.

Then, we suppose that n = 0. There are two cases:

(Case 2.1 ): ∥v∥ = 1. Since v ̸∈ X , ∥uσ′∥ = ∥vσ′∥ = ∥v∥ = 1. Hence, ∥u∥ ≤

∥uσ′∥ = 1, giving a contradiction to the fact that ff(u) ∈ F⋄.

(Case 2.2 ): ∥v∥ > 1. Then, ff(v) = ff(vσ′) = ff(uσ′) = ff(u) ∈ F⋄. This

contradicts the fact that v is regular.

So, n > 0. Without loss of generality, we assume that uσ′ =s l′θ′ →RE
r′θ′

for some l′ → r′ ∈ RE and substitution θ′. Note that uσ′ is semi-RE-normal and

r′θ′ ⊂ uσ′. So, r′θ′ is an RE-normal term. Consider now, both r′θ′ and vσ′ are

RE-normal and r′θ′ =E vσ′. We get vσ′ =s r′θ′, due to the convergence of →RE
.

Therefore uσ′ →RE
vσ′ and it is now clear that (u, v) is a type-II constraint of T ′.

This completes the proof. □

A noticeable consequence of Lemma 4.3.4 is that, constraint property does not

change with respect to operational equivalent substitutions and thus a new solver

could be obtained, whenever one finds a constraint. More precisely, suppose that

(u, v) is a type-I (or type-II) constraint of ⟨T, η1, σ1⟩ and µ = mgu(u, v) (or the most

general substitution satisfying uµ →RE
vµ). Then, it can be shown that µ •≤σ′

1 for

any σ′
1 ≈E,Tη σ1. We therefore make the following definition.
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Definition 4.3.5 (Update). Let T = ⟨T, η1, σ1⟩. Suppose that µ is a substitution such

that Dom(µ) ⊆ fv(Tη1). An update of T by µ, denoted by T ↓µ, is a markup term

set ⟨T, η2, σ2⟩ such that η2 = η1µ, µσ2 = σ1, and Dom(σ2) = fv(Tη2).

4.3.2 Reductions

Definition 4.3.6 (Reduction). Let T = ⟨T, η, σ⟩ be a markup term set. Suppose that

Tη ⊢ u. Then,

• (u, v) is a type-I reduction of T , if Tη ⊢ u, Tη ⊬ v, and u =s lθ and v =s rθ for

some l → r ∈ RE and substitution θ;

• (u, v) is a type-II reduction of T , if u is RE-normal, Tη ⊢ u, Tησ ⊬ v, and

uσ =s lθ and v =s rθ for some l→ r ∈ RE and substitution θ.

The reason why we distinguish between constraint and reduction is that a constraint

imposes immediate restriction on valid substitutions, whereas a reduction does not.

Further, we show that the type-II reduction counterpart of Lemma 4.3.4 does not

generally hold and thus no immediate restriction can be obtained. To show this,

we let T = {{NA}K+
B
, x}, σ = [K−

B/x], σ
′ = [NB/x], and u =s pdec({NA}K+

B
, x).

Then, it can be shown that σ ≈Edy ,T σ′ and, further, (u,NA) is a type-II-reduction of

⟨T, ϕ, σ⟩. However, (u,NA) is not a type-II-reduction of ⟨T, ϕ, σ′⟩, because

pdec({NA}K+
B
, x)σ′ =s pdec({NA}K+

B
, NB) ̸→REdy

NA

Claim 4.3.7. Let T = ⟨T, η, σ⟩ be a markup term set. Suppose that E is a regular

subterm equational theory.

(i). If (u, v) is a type-I reduction of T , then v is regular;

(ii). If (u, v) is a type-I reduction of T and Tησ is a ground term set, then vσ is
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ground;

(iii). If (u,w) is a type-II reduction of T , then w is RE-normal;

(iv). If (u,w) is a type-II reduction of T and Tησ is a ground term set, then w is

ground.

Although reductions do not give any direct impact on possible substitutions, they

may introduce new constraints afterwards, thanks to the transformation lemma.

Lemma 4.3.8 (Transformation Lemma). Let E be an equational theory, T be a term

set, and σ1 and σ2 be two ground substitutions.

(i). Suppose that T ⊢E t. Then, σ1 ≈E,T σ2 if and only if σ1 ≈E,T∪{t} σ2;

(ii). Suppose that T ⊢ s and x never occurs in T . Let sσ1 →!
RE

w1 and sσ2 →!
RE

w2.

Then, σ1 ≈E,T σ2 if and only if σ′
1 ≈E,T∪{x} σ′

2, where σ′
1 = σ1 ∪ [w1/x] and

σ′
2 = σ2 ∪ [w2/x].

Proof. (i). The “If” part is trivial. We now prove the “only if” part. To prove

σ1 ≈E,T∪{t} σ2, it suffices to show that for all terms u and v such that T ∪{t} ⊢ {u, v}

we have uσ1 =E vσ1 ⇔ uσ2 =E vσ2. Due to the symmetry of σ1 and σ2, we only need

to prove one direction and proof of the reverse direction can be easily obtained by a

similar analysis.

Since T ⊢E t, it is obvious that T ∪ {t} ≡E T . Note that T ⊢ {t} ⊢ {u, v}. By

the definition of ⊢E, there exists two terms u′ and v′ such that T ⊢ {u′, v′}, u′ =E u,

and v′ =E v. Clearly, uσ1 =E u′σ1 and vσ1 =E v′σ1. So, uσ1 =E vσ1 implies

u′σ1 =E v′σ1. Note that T ⊢ {u′, v′} and σ1 ≈E,T σ2. By the definition of operational

equivalence, we have u′σ2 =E v′σ2 and thus uσ2 =E vσ2. Likewise, it can be shown

that uσ2 =E vσ2 ⇔ uσ1 =E vσ1. Hence, σ1 ≈E,T∪{t} σ2.
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(ii). (“If ” part) To prove σ1 ≈E,T σ2, it suffices to show that for all terms u and v

such that T ⊢ {u, v} we have uσ1 =E vσ1 ⇔ uσ2 =E vσ2. Clearly, T ∪ {x} ⊢ {u, v}.

Since σ′
1 ≈E,T∪{x} σ

′
2 by assumption, we have uσ′

1 =E vσ′
1 ⇔ uσ′

2 =E vσ′
2. Note that

T ⊢ {u, v} and x does not occur in T . Obviously, x ̸∈ fv(u) and x ̸∈ fv(v). So, uσ′
1 =s

uσ1, vσ
′
1 =s vσ1, uσ

′
2 =s uσ2, and vσ′

2 =s vσ2. Therefore, uσ1 =E vσ1 ⇔ uσ2 =E vσ2.

(“Only if” part) To prove σ′
1 ≈E,T∪{x} σ′

2, it suffices to show that for all terms u

and v such that T ∪ {x} ⊢ {u, v} we have uσ′
1 =E vσ′

1 ⇔ uσ′
2 =E vσ′

2.

Let u′ =s u[x 7→ t] and v′ =s v[x 7→ t]. Since x never occurs in T and T ⊢ t by

assumption, we have T ⊢ {u′, v′}. Note that σ′
1 = σ1 ∪ [w1/x] and σ′

2 = σ2 ∪ [w2/x].

It is not hard to see that u′σ1 =s uσ1[x 7→ tσ1] =E uσ1[x 7→ w1] =s uσ′
1. So,

uσ′
1 =E u′σ1. Similarly, we have vσ′

1 =E v′σ1, uσ
′
2 =E u′σ2, and vσ′

2 =E v′σ2. On

the other hand, since σ1 ≈E,T σ2 and T ⊢ {u′, v′}, by the definition of operational

equivalence we get u′σ1 =E v′σ1 ⇔ u′σ2 =E v′σ2. That is, uσ
′
1 =E vσ′

1 ⇔ uσ′
2 =E vσ′

2.

This completes the proof. □

As the above lemma suggests, if (u, v) is a type-I reduction of ⟨T, η, σ⟩, then

σ1 ≈E,Tη σ2 if and only if σ1 ≈E,Tη∪{v} σ2. So, we can change ⟨T, η, σ⟩ to ⟨T∪{v′}, η, σ⟩

where v′η =s v, without losing or adding any condition(s) for operational equivalence;

this is analogous to the transformation made by update in the previous section.



CHAPTER 5: DECISION PROCEDURE

This chapter explains the final construction for obtaining a decision procedure of

recognizability under the Dolev-Yao model.

5.1 Our Construction

The last missing building block is the following definition, which formalizes our

discussion in Chapter 4 about how a constraint or a reduction enables a useful trans-

formation.

Definition 5.1.1 (Markup Term Set Rewriting). Let T = ⟨T, η, σ⟩ be a markup term

set. We define a binary relation →E on markup term sets as follows:

• If (u, v) is a type-I constraint of T , then T →E T ↓µ, where µ = mgu(u, v);

• If (u, v) is a type-II constraint of T , then T →E T ↓µ, where µ is the most

general substitution satisfying uµ→RE
vµ;

• If (u, v) is a type-I reduction of T , then T →E ⟨T ∪ v′, η, σ⟩, where v′ a term

satisfying v′η =s v
3.

• If (u, v) is a type-II reduction of T , then T →E ⟨T ∪ {z}, η, σ ∪ [v/z]⟩, where z

is a fresh variable.

The first feature of markup term set rewriting we obtain is that well-formedness

property of markup term sets is invariant under transformations in both forward and

3This can be done by replacing every xη ⊆ v with x.
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backward directions.

Lemma 5.1.2 (Well-formedness Preserving). Let E be a regular subterm equational

theory. Suppose that T0 →∗(n)
E Tn. Then, T0 is well-formed if and only if Tn is

well-formed.

Another feature of this transformation is its naturality in the sense that such a

transformation will not impose or relax any restrictions on operational equivalence.

The following theorem states this formally.

Lemma 5.1.3 (Naturality). Let E be a convergent regular subterm equational theory

and T = ⟨T, ϕ, σ⟩ be a well-formed markup term set. Suppose that T →∗(n)
E Tn =

⟨Tn, ηn, σn⟩. Then, σ ≈E,T σ′ if and only if σ′ = [ηnσ
′
n]Dom(σ) for some σ′

n such that

σ′
n ≈E,Tnηn σn.

Proof. (“If” part) We make induction on n. For the base case, n = 0, η0 = ϕ, and

σ′
0 = σ′. Clearly, σ′ = [ϕσ′

0]Dom(σ) = σ′
0. Now, we suppose the claim is true for all

n ≤ k.

Induction step: n = k + 1. That is,

T = ⟨T, ϕ, σ⟩ →E T1 →E · · ·

→E Tk = ⟨Tk, ηk, σk⟩

→E Tk+1 = ⟨Tk+1, ηk+1, σk+1⟩

(5)

It follows from Lemma 5.1.2 that Tk is well-formed. Using the definition of well-

formed markup term set, we have

• all terms in Tk are regular;

• Tkηkσk is a ground term set;

• both ηk and σk are regular.
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For Tk →E Tk+1, by Definition 5.1.1, there exists a (u, v) (or (u,w)) that is either

a constraint or a reduction of Tk. Four cases are possible.

(Case 1 ): (u, v) is a type-I-constraint of Tk. Using the definition of type-I-constraint,

we observe that both u and v are regular, u ∈ Tkηk, Tkηk ⊢ v, mgu(u, v) ̸= ϕ, and

uσk =s vσk. Let µ = mgu(u, v). By Claim 4.3.3 (i) we see that µ is regular. More-

over, by Definition 5.1.1 and Definition 4.3.5, we know that Tk+1 = Tk, ηk+1 = ηkµ,

and µσk+1 = σk.

By assumption, σ′ = [ηk+1σ
′
k+1]Dom(σ) for some σ′

k+1 such that σ′
k+1 ≈E,Tk+1ηk+1

σk+1. That is, σ
′
k+1 ≈E,Tkηkµ σk+1. It follows from Lemma 3.3.2 (ii) that

µσ′
k+1 ≈E,Tkηk µσk+1 = σk (6)

Consider now, σ′ = [ηk+1σ
′
k+1]Dom(σ) = [ηkµσ

′
k+1]Dom(σ) and µσ′

k+1 ≈E,Tkηk µσk+1 =

σk. By induction hypothesis, we get σ ≈E,T σ′.

(Case 2 ): (u, v) is a type-II-constraint of Tk. Let µ be the most general substitution

satisfying uµ →RE
vµ. By Claim 4.3.3 (ii), µ is regular. Moreover, by Definition

5.1.1 and Definition 4.3.5, we know that Tk+1 = Tk, ηk+1 = ηkµ, µσk+1 = σk, and

Dom(σk+1) = fv(Tkηk+1).

By assumption, σ′ = [ηk+1σ
′
k+1]Dom(σ) for some σ′

k+1 such that σ′
k+1 ≈E,Tk+1ηk+1

σk+1. That is, σ
′
k+1 ≈E,Tkηkµ σk+1. It follows from Lemma 3.3.2 (ii) that

µσ′
k+1 ≈E,Tkηk µσk+1 = σk (7)

Consider now, σ′ = [ηk+1σ
′
k+1]Dom(σ) = [ηkµσ

′
k+1]Dom(σ) and µσ′

k+1 ≈E,Tkηk µσk+1 =

σk. By induction hypothesis, we get σ ≈E,T σ′.

(Case 3 ): (u, v) is a type-I-reduction of Tk. By Definition 5.1.1, we have Tk+1 =

Tk ∪ {v′}, σk+1 = σk, and ηk+1 = ηk, where v′ is a term satisfying v′ηk =s v. From
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the definition of type-I-reduction it is obvious that Tkηk ⊢ v.

By assumption, σ′ = [ηk+1σ
′
k+1]Dom(σ) for some σ′

k+1 such that σ′
k+1 ≈E,Tk+1ηk+1

σk+1 = σk. That is, σ
′
k+1 ≈E,Tkηk∪{v} σk. Note that Tkηk ⊢ v. It follows from Lemma

4.3.8 (i) that

σ′
k+1 ≈E,Tkηk σk (8)

Consider now, σ′ = [ηk+1σ
′
k+1]Dom(σ) = [ηkσ

′
k+1]Dom(σ) and σ′

k+1 ≈E,Tkηk σk. By

induction hypothesis, we get σ ≈E,T σ′.

(Case 4 ): (u,w) is a type-II-reduction of Tk. By Definition 5.1.1, we have Tk+1 =

Tk ∪ {x}, σk+1 = σk ∪ [w/x], and ηk+1 = ηk, where x is a new variable that never

occurs in Tk or Ran(ηk). It can easily be shown that x does not occur in Tkηk. By

assumption, σ′ = [ηk+1σ
′
k+1]Dom(σ) for some σ′

k+1 such that σ′
k+1 ≈E,Tk+1ηk+1

σk+1 = σk.

That is, σ′
k+1 ≈E,Tkηk∪{x} σk ∪ [w/x].

At first, we see, from the definition of operational equivalence, that Dom(σ′
k+1) =

Dom(σk) ∪ {x} and fv(Tkηk ∪ {x}) ⊆ Dom(σ′
k+1). So we can let σ′

k+1 = θ ∪ [w′/x]

for some substitution θ satisfying Dom(θ) = Dom(σ) and a term w′. So,

σ′ = [ηk+1σ
′
k+1]Dom(σ)

= [ηkσ
′
k+1]Dom(σ)

= [ηkθ ∪ [w′/x]]Dom(σ)

= [ηkθ]Dom(σ)

(9)

Then, we show that θ ≈Tkηk σk. Since σ′
k+1 ≈E,Tkηk∪{x} σk ∪ [w/x], for any u′, v′

such that Tkηk ∪ {x} ⊢ {u′, v′} we have u′σ′
k+1 =E v′σ′

k+1 if and only if u′σk+1 =E

v′σk+1. Further, if x does not occur in u′ or v′, then Tkηk ⊢ {u′, v′}, u′σ′
k+1 =s u′θ,
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v′σ′
k+1 =s v′θ, u′σk+1 =s u′σk, and v′σk+1 =s v′σk. In other words, for any u′, v′

such that Tkηk ⊢ {u′, v′} we have u′θ =E v′θ if and only if u′σk =E v′σk. Note that

fv(Tkηk) ⊆ Dom(θ) = Dom(σk). As a result, θ ≈Tkηk σk.

Consider now, σ′ = [ηkθ]Dom(σ) and θ ≈E,Tkηk σk. By induction hypothesis, we get

σ ≈E,T σ′.

(“Only if” part) We make induction on n. For the base case, n = 0, η0 = ϕ, and

σ′
0 = σ′. Clearly, σ′ = σ′

0 = [ϕσ′
0]Dom(σ). Now, we suppose the claim is true for all

n ≤ k.

Induction step: n = k + 1. That is,

T = ⟨T, ϕ, σ⟩ →E T1 →E · · ·

→E Tk = ⟨Tk, ηk, σk⟩

→E Tk+1 = ⟨Tk+1, ηk+1, σk+1⟩

(10)

Let σ′
k ≈E,Tkηk σk. By induction hypothesis, σ′ = [ηkσ

′
k]Dom(σ). Moreover, it follows

from Lemma 5.1.2 that Tk is well-formed. Using the definition of well-formed markup

term set, we have

• all terms in Tk are regular;

• Tkηkσk is a ground term set;

• both ηk and σk are regular.

For Tk →E Tk+1, by Definition 5.1.1, there exists a (u, v) (or (u,w)) that is either

a constraint or a reduction of Tk. Four cases are possible.

(Case 1 ): (u, v) is a type-I-constraint of Tk. Using the definition of type-I-constraint,

we observe that both u and v are regular, u ∈ Tkηk, Tkηk ⊢ v, mgu(u, v) ̸= ϕ, and
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uσk =s vσk. Let µ = mgu(u, v). By Claim 4.3.3 (i) we see that µ is regular. More-

over, by Definition 5.1.1 and Definition 4.3.5, we know that Tk+1 = Tk, ηk+1 = ηkµ,

and µσk+1 = σk.

Let T ′
k = ⟨Tk, ηk, σ

′
k⟩, where σ′

k ≈E,Tkηk σk. Using Lemma 4.3.4 we see that

(u, v) is a type-I-constraint of T ′
k as well and thus T ′

k = ⟨Tk, ηk, σ
′
k⟩ →E T ′

k+1 =

⟨Tk+1, η
′
k+1, σ

′
k+1⟩, where Tk+1 = Tk, η

′
k+1 = ηkµ = ηk+1, µσ

′
k+1 = σ′

k, andDom(σ′
k+1) =

fv(Tkηk+1). Note that σk ≈E,Tkηk σ′
k. That is, µσk+1 ≈E,Tkηk µσ′

k+1. It follows from

Lemma 3.3.2 (ii) that σk+1 ≈E,Tkηkµ σ′
k+1. Furthermore,

σ′ = [ηkσ
′
k]Dom(σ) = [ηkµσ

′
k+1]Dom(σ) = [ηk+1σ

′
k+1]Dom(σ)

(Case 2 ): (u, v) is a type-II-constraint of Tk. Let µ be the most general substitution

satisfying uµ →RE
vµ. By Claim 4.3.3 (ii), µ is regular. Moreover, by Definition

5.1.1 and Definition 4.3.5, we know that Tk+1 = Tk, ηk+1 = ηkµ, µσk+1 = σk, and

Dom(σk+1) = fv(Tkηk+1).

Let T ′
k = ⟨Tk, ηk, σ

′
k⟩, where σ′

k ≈E,Tkηk σk. Using Lemma 4.3.4 we see that

(u, v) is a type-II-constraint of T ′
k as well and thus T ′

k = ⟨Tk, ηk, σ
′
k⟩ →E T ′

k+1 =

⟨Tk+1, η
′
k+1, σ

′
k+1⟩, where Tk+1 = Tk, η

′
k+1 = ηkµ = ηk+1, µσ

′
k+1 = σ′

k, andDom(σ′
k+1) =

fv(Tkηk+1). Note that σk ≈E,Tkηk σ′
k. That is, µσk+1 ≈E,Tkηk µσ′

k+1. It follows from

Lemma 3.3.2 (ii) that σk+1 ≈E,Tkηkµ σ′
k+1. Furthermore,

σ′ = [ηkσ
′
k]Dom(σ) = [ηkµσ

′
k+1]Dom(σ) = [ηk+1σ

′
k+1]Dom(σ)

(Case 3 ): (u, v) is a type-I-reduction of Tk. By Definition 5.1.1, we have Tk+1 =

Tk ∪ {v′}, σk+1 = σk, and ηk+1 = ηk, where v′ is a term satisfying v′ηk =s v. Let

T ′
k = ⟨Tk, ηk, σ

′
k⟩, where σ′

k ≈E,Tkηk σk. Note that Tkηk ⊢E v by the definition of
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type-I-reduction and σ′
k ≈E,Tkηk σk. It follows from Lemma 4.3.8 (i) that

σ′
k ≈E,Tkηk∪{v} σk (11)

Note that (u, v) is also a type-I-reduction of T ′
k. Let T ′

k = ⟨Tk, ηk, σ
′
k⟩ →E T ′

k+1 =

⟨T ′
k+1, η

′
k+1, σ

′
k+1⟩. By Definition 5.1.1 we have σ′

k+1 = σ′
k, η

′
k+1 = ηk, and T ′

k+1 =

Tk∪{v′} = Tk+1. Consider now, Tk+1ηk+1 = (Tk∪{v′})ηk = Tkηk∪{v′ηk} = Tkηk∪{v},

σ′
k+1 = σ′

k, and σk+1 = σk. As a result, Equation (11) reduces to

σ′
k+1 ≈E,Tk+1ηk+1

σk+1

Furthermore, σ′ = [ηkσ
′
k]Dom(σ) = [ηk+1σ

′
k+1]Dom(σ).

(Case 4 ): (u,w) is a type-II-reduction of Tk. By Definition 5.1.1, we have Tk+1 =

Tk ∪ {x}, σk+1 = σk ∪ [w/x], and ηk+1 = ηk, where x is a new variable satisfying

x ̸∈ fv(Tk) ∪ Ran(ηk) ∪ Dom(σk). It can easily be shown that x does not occur

in Tkηk. Let T ′
k = ⟨Tk, ηk, σ

′
k⟩ and σ′

k+1 = σ′
k ∪ [w′/x], where σ′

k ≈E,Tkηk σk and

uσ′
k →!

RE
w′. Moreover, by the definition of type-II-reduction, we know that Tkηk ⊢ u

and u is semi-regular.

Note that E is a convergent subterm equational theory and w is RE-normal by

Claim 4.3.7 (iv). Obviously, uσk →!
RE

w. Consider now, Tkηk ⊢ u, x never occurs in

Tkηk, uσk →!
RE

w, uσ′
k →!

RE
w′, and σk ≈E,Tkηk σ′

k. It follows from Lemma 4.3.8 (ii)

that σk ∪ [w/x] ≈E,Tkηk∪{x} σ
′
k ∪ [w′/x]. That is,

σk+1 ≈E,Tk+1ηk+1
σ′
k+1

Furthermore,
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[ηk+1σ
′
k+1]Dom(σ) = [ηkσ

′
k ∪ [w′/x]]Dom(σ)

= [ηkσ
′
k]Dom(σ)

= [σ′]Dom(σ)

= σ′

(12)

This completes the proof. □

Not surprisingly, with the proven salient features, markup term set rewriting en-

ables us to find recognizable terms.

Theorem 5.1.4 (Correctness). Let T be a regular and ground term set, and σ = [t/x]

be a ground substitution. If solve(⟨T ∪ {x}, ϕ, σ⟩) = ⟨Tn, ηn, σn⟩ and xηn =s t, then

T ▷ t.

Proof. Let σ′ be an arbitrary substitution satisfying σ′ ≈Edy ,T∪{x} σ. Then, we can

apply Lemma 5.1.3 and obtain that σ′ = [ηnσ
′
n]Dom(σ) for some σ′

n such that σ′
n ≈E,Tn

σn. Then, xσ′ =s xηnσ
′
n =s tσ′

n =s t. Moreover, since σ′ ≈Edy,T∪{x} σ, we get

Dom(σ′) = Dom(σ) = {x}. Thus, σ′ = [t/x] = σ. Now, it is not hard to see that

σ′ ≈Edy ,T∪{x} [t/x] if and only if σ′ = [t/x]. By the definition of recognizability, we

have T ▷ t. □

Intuitively, the markup term set rewriting is a recognizing process; every time a

markup term set is rewritten, either a constraint or a reduction is found. By collecting

all the constraints and reductions, we get all information needed to recognize any

proven recognizable term.
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5.2 Algorithm

We now present the algorithm for markup term set rewriting, that is, given a well-

formed markup term set T as input, it returns a well-formed markup term set T ′

such that T →!
Edy

T
′
. Then, in light of the correctness theorem, one can decide the

recognizability accordingly.

Theorem 5.2.1 (Termination). Suppose that T is a ground term set and σ = [t/x] is

a ground substitution. Then, algorithm solve(⟨T ∪ {x}, ϕ, σ⟩) is terminating.

Proof. Let T0 = ⟨T ∪ {x}, ϕ, σ⟩ and T0 →!
Edy

T ′ = ⟨T ′, η′, σ′⟩. Then, T ′ = solve(T0).

We assume, without loss of generality, that

T0 →∗
Edy

Ti = ⟨Ti, ηi, σi⟩

→Edy
Ti+1 = ⟨Ti+1, ηi+1, σi+1⟩ →!

Edy
T ′

(13)

Using Definition 4.3.5 and 5.1.1, we observe that Tiηiσi ⊆ Ti+1ηi+1σi+1. Moreover,

since Edy is a regular subterm equational theory, a case-by-case analysis shows that

each t ∈ (Ti+1ηi+1σi+1)\(Tiηiσi) occurs in Tiηiσi. Thus, one can easily see that T ∪

{t} ⊆ T ′η′σ′ and each t ∈ (T ′η′σ′)\(T ∪{t}) occurs in T ∪{t}. Note that the number

of terms occurring in term set T ∪ {t} is bounded by ∥t∥ − 1 +
∑

u∈T (∥u∥ − 1).

Consequently, T ′η′σ′ is a finite term set.

To avoid any confusion, we assume the markup term set Ti as the input for Algo-

rithm 1 in the following discussion.

Let us first analyze line (1) to (14) of Algorithm 1, which cope with reductions

(either type-I or II). Each reduction (either type-I or II) would produce a new term,

that is v′ησ or w, in T ′η′σ′, because both v′ησ and w are ground terms, which are not
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Algorithm 1 solve(T )

Input: a well-formed markup term set T = ⟨T, η, σ⟩
Output: an updated markup term set

/* type-I reduction */
1: if ∃u, v. u ∈ Tη, Tη ⊬ v and fst(or snd)(u)→REdy

v then

2: v′ is obtained by replacing every xη in v with x, where x ∈ Dom(η).
3: return solve(⟨T ∪ v′, η, σ⟩)
4: if ∃u, v, s. u ∈ Tη, Tη ⊬ v, Tη ⊢ s and pdec(u, s)→REdy

v then

5: v′ is obtained by replacing every xη in v with x, where x ∈ Dom(η).
6: return solve(⟨T ∪ v′, η, σ⟩)

/* type-II reduction */
7: if ∃u,w. u ∈ X ∩ Tη, fst( or snd)(uσ)→REdy

w

and there does not exist a term v such that Tη ⊢ v and vσ =s w then
8: let z be a fresh variable
9: T ← ⟨T ∪ z, η, σ ∪ [w/z]⟩
10: return solve(T )
11: if ∃u,w, s. u ∈ Tη, Tη ⊢ s and pdec(u, s)σ →REdy

w

and there does not exist a term v such that Tη ⊢ v and vσ =s w then
12: let z be a new variable that never occurs in Tη
13: T ← ⟨T ∪ z, η, σ ∪ [w/z]⟩
14: return solve(T )

/* type-I constraint */
15: if ∃u, v. u ∈ Tη, Tη ⊢ v, v is regular, u ̸=s v, uσ =s vσ then
16: T ← T ↓µ where µ = mgu(u, v)
17: return solve(T )

/* type-II constraint */
18: if ∃u, v. u ∈ X ∩ Tη, Tη ⊢ v, v is regular, v ̸∈ X , and

fst( or snd)(uσ)→REdy
vσ then

19: T ← T ↓µ where µ is the most general substitution
satisfying fst( or snd)(uµ)→REdy

vµ

20: return solve(T )
21: if ∃u, v, s. u ∈ Tη, Tη ⊢ v, v is regular, v ̸∈ X , Tη ⊢ s, and

pdec(u, s)σ →REdy
vσ then

22: T ← T ↓µ where µ is the most general substitution satisfying
pdec(u, s)µ→REdy

vµ

23: return solve(T )
24: return T
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subject to change in markup term set rewriting. As a result, the number of reductions

explored by the algorithm is also bounded.

Now, we turn to line (15) to (23) of Algorithm 1, which cope with constraints

(either type-I or II). It’s important to note that to build a constraint, say (u, v), there

must exist a term u0 ∈ Tiηi. Then, u0σi ∈ Tiηiσi ⊆ T ′σ′η′. Since u0σi is ground and

subject to no change, there is exactly one u0σi ∈ T ′σ′η′. Though not unique, such

terms u′
0 that satisfy u′

0σ
′
i =s u0σi is finite, simply because T ′

iη
′
i is a finite term set.

The number of constraints explored by the algorithm is therefore bounded.

Finally, we conclude that solve(⟨T ∪ {x}, ϕ, σ⟩) is terminating. □

We do not address computational complexity here due to the fact that efficiency

is not a major concern in deciding recognizability. However, we claim without proof

that, the problem of deciding recognizability under standard Dolev-Yao model can

be solved in polynomial time.



CHAPTER 6: TOWARDS THE ATTACKER’S VIEW OF PROTOCOL
NARRATIONS (OR, COMPILING SECURITY PROTOCOLS)

As protocol narrations are widely used to describe security protocols, efforts have

been made to formalize or devise semantics for them. An important, but largely ne-

glected, question is whether or not the formalism faithfully accounts for the attacker’s

view. Several attempts have been made in the literature to recover the attacker’s view.

They, however, are rather restricted in scope and quite complex. This greatly impedes

the ability of protocol verification tools to detect intricate attacks.

In this chapter, we establish a faithful view of the attacker based on the notion

of recognizability, which offers rigorous, yet intuitive, interpretations of exchanged

messages. This gives us a new way to look at attacks and protocol implementations.

Specifically, we identify two types of attacks that can be thawed through adjusting the

protocol implementation; and show that such an ideal implementation does not always

exist. Overall, the obtained attacker’s view provides a path to more secure protocol

designs and implementations. Our work can be seen as part of continuing efforts in

compiling security protocols, which aims at semantics for protocol narrations.

The results presented in this chapter are mainly reported in our previous papers

[72, 75].
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6.1 Introduction

Although protocol narrations are widely used in security literature to describe

security protocols, different groups of people view the informal description rather

differently. Such a discrepancy among them makes it extremely difficult to evaluate

security properties of a protocol.

First, the designer’s view of protocol narrations is often “optimistic”, because the

expected protocol execution naturally leads designers to ignore other possible protocol

executions. As an example, let us consider the following Otway-Rees protocol [96].

1. A→ B : M,A,B, {NA,M,A,B}KAS

2. B → S : M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

3. S → B : M, {NA, KAB}KAS
, {NB, KAB}KBS

4. B → A : M, {NA, KAB}KAS

Here, A, B, and S denote different roles of the protocol, and the sequence of message

exchanges illustrates the intended execution trace of the protocol. It is expected that

at the last step A would receive a symmetric key KAB, whereas A could be cheated

to accept (M,A,B) as the symmetric key in a well-known type-flaw attack [28].

Second, the implementor’s view of protocol narrations can be “pessimistic”, because

how principals check incoming messages is often neglected in protocol narrations [2].

That is to say, implementors may unnecessarily treat some incoming messages as

“black-boxes” and thus allow protocol executions that are not in compliance with the

protocol narrations [25]. For example, Ceelen et al. [23] show that Lowe’s modified

KSL protocol [83] is subject to the selected-name attack. This attack arises because
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the implementation fails to check an agent’s name, which could have been implied by

the protocol narration.

There is little point in pretending that a protocol will only execute in accordance

with the designer’s view. If we adopt the optimistic view in our analysis, attacks that

are not in accordance with this view will never be found, such as the type-flaw attack

on the Otway-Rees protocol. On the contrary, if we adopt the pessimistic view,

spurious attacks may be detected due to the absence of some necessary condition

checks.

In this work, we address this discrepancy by establishing a faithful attacker’s view

of protocol narrations. The view is “faithful” in a sense that all, and only, protocol

executions in compliance with a given protocol narration are identified, as shown in

Figure 3. Unlike most previous work which has focused on formalization or compila-

tion [22, 21, 19, 94], we aim at a semantics that accounts for the most minute aspects

of the protocol in the same manner of an attacker. Such a view coincides with a

realistic designer’s view and a proactive implementor’s view.

6.1.1 Overview

The main challenge of recovering the attacker’s view is to determine exactly to what

extent an incoming message can be interpreted by a protocol participant. This task

relates closely to specifying a participant’s internal action(s) (i.e., condition check),

which is an essential but largely neglected part of protocol specification [2]. Although

efforts have been devoted to make such checks explicit, it is far from clear that all

necessary checks are found. Besides, most of the approaches are specialized for the
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Figure 3: Sets of possible protocol execution traces under different views

Dolev-Yao style primitives, and rely on exhaustive case-by-case analysis, without intu-

itive justifications. To identify all necessary internal actions, we provide an intuitive,

yet rigorous, justification for checks performed by a principal. Specifically, we extend

the notion of recognizability [72] to ascertain the extent to which message(s) could be

understood. Consequently, we reduce the problem of extraction of semantics from a

protocol narration to that of deciding recognizability, of which the decision procedure

under Dolev-Yao model is implemented in [73].

We then use this ideal semantics to guide protocol implementation by deriving

all necessary equality checks. Similar to [25], such implementations are said to be

prudent. Remarkably, an attack scenario may be useful to refine a protocol imple-
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mentation; we include additional inequality checks in a refined implementation to

prevent the attack. For example, the type-flaw attack on the Otway-Reese protocol

is infeasible if A checks whether or not the last incoming message is the same as

M, {NA,M,A,B}KAS
.

6.1.2 Contributions

The main contributions of this chapter are the following:

• We establish a faithful view of the attacker by rigorously examining each par-

ticipant’s ability or inability to cope with potentially ambiguous incoming mes-

sages.

• Independent of the attacker model, we present a procedure to extract from a

given protocol narration its ideal semantics. This procedure boils down to decid-

ing recognizability, for which decidability results are known under the standard

Dolev-Yao model [73].

• We propose a novel classification of protocol implementations and attacks ac-

cording to the attacker’s view. Specifically, we prove that an ideal implementa-

tion does not always exist, and thereby design a procedure to derive a prudent

implementation to approach it, which performs all necessary equality checks.

• In light of the new classification, we propose a semi-automated implementation

refinement paradigm that highlights inequality checks to thwart type-II attacks

(defined in Section 6.4.3). As the new implementation cannot be achieved ei-

ther by the protocol designers or by the protocol verifiers alone, we motivate

the interplay between protocol design and verification via the semi-automated
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refinement process.

Organization. The remainder of this chapter is organized as follows: Section 6.2 is

dedicated to the interpretations of exchanged messages in protocol narrations. Section

6.3 gives the ideal semantics of protocol narrations based on interpretations of the

exchanged messages. In light of this semantics, Section 6.4 presents our classification

of protocol implementations and attacks. Section 6.6 discusses related work. Section

6.7 concludes the chapter and outlines the future work.

6.2 Interpreting Incoming Messages

In this section we show how to interpret exchanged messages in protocol narra-

tions. The presentation proceeds in three steps. First, we introduce a new knowledge

representation knowledge state to account for uncertainty. Then, we present an opera-

tional equivalence relation to capture one’s inability to distinguish two interpretations

of a message. Finally, we use recognizability to precisely characterize one’s ability to

interpret an incoming message.

In a hostile protocol execution environment, an incoming message almost always

has some part(s) being ambiguous. For example, in the Otway-Rees protocol after

exchanging the first three messages, principal A is expecting KAB from the trusted

third party S. However, since KAB is dynamically generated, A is uncertain about

its value, and thus will accept any bit string of the same length. We will continue to

use knowledge states to account for uncertainty. We continue to use T⃗ = ⟨E, T, σ⟩ to

encapsulate one’s epistemic state with uncertainty. In Section 3.5, we have also used

operational equivalence to characterize one’s inability to discriminate two interpre-
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tations of a message. Hereafter, we make explicit mention of each principal’s initial

knowledge before a protocol run.

Example 11. To model principals’ knowledge after completion of the Otway-Rees

protocol, we use TA0, TB0, and TS0 to represent the initial explicit knowledge of A,

B, and C, respectively, where

TA0 = {M,A,B, S,NA, KAS}

TB0 = {A,B, S,NB, KBS}

TS0 = {A,B, S,KAS, KBS}

Upon completion of the protocol, the knowledge of each principal becomes

T⃗A =⟨TA0 ∪ {x4}, σA⟩

T⃗B =⟨TB0 ∪ {x1, x3}, σB⟩

T⃗S =⟨TS0 ∪ {x2}, σS⟩

where x1, · · · , x4 represents the four incoming ambiguous messages, and

σA = [{NA ·KAB}KAS
/x4]

σB = [(M · A ·B · {NA ·M · A ·B}KAS
)/x1, {NB ·KAB}KBS

)/x3]

σS = [(A ·B · {NA ·M · A ·B}KAS
, {NB ·M · A ·B}KBS

)/x2]

Example 12. Consider again the Otway-Rees protocol. As in Example 11, the ini-

tial explicit knowledge of each principal is given by TA0, TB0, and TS0, respectively.

Then, T⃗B0 = ⟨TB0, ϵ⟩ is B’s initial knowledge state. After receiving the first mes-

sage, the knowledge state of B becomes T⃗B1 = ⟨TB1, σ1⟩, where TB1 = Tb0 ∪ {x, y} =

{A,B, S,NB, Kbs, x, y} and σ1 = [M/x, {NA ·M · A ·B}KAS
/y].

It can be shown that T⃗B0 ̸ ▷{NA·M ·A·B}KAS
. In other words, B does not recognize
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the message {NA ·M ·A ·B}KAS
. However, the message {NA ·M ·A ·B}KAS

should

not be simply treated as a black box to B, because otherwise y can be interpreted

as an arbitrary message. To see why this is not acceptable, we let σ′
1 = [NA ·NA/y],

u =s fst(y), and v =s snd(y). Note that TB1 ⊢ {u, v}, uσ′
1 =Edy

vσ′
1 =Edy

NA, and

uσ1 =s fst({NA ·M · A ·B}KAS
)

vσ1 =s snd({NA ·M · A ·B}KAS
)

Clearly, uσ1 ̸=Edy
vσ1 and uσ′

1 =Edy
vσ′

1. Thus, σ1 ̸≈Edy ,Tb1
σ′
1 follows immediately

from Definition 3.5.1. In other words, if y is interpreted as the message NA ·NA, then

B would be able to distinguish it from the intended message {NA ·M · A ·B}KAS
.

Although the notion of recognizability offers a rigorous and yet intuitive way to

interpret ambiguous messages, we may not be able to apply it directly here. The orig-

inal definition of recognizability (Definition 3.5.1) intends to formalize the intuitive

understanding of verifying a message. The definition is amenable to the situation

when a message is recognizable. For a message that is not recognizable, recogniz-

ability does not characterize to what extent the message can be recognized. Indeed,

we can treat a recognizable message as a white box, but it is unreasonable to treat

an unrecognizable message simply as a black box, as we have seen in in Example

12, because we may still hold some expectation of the message. We thus extend the

original definition of recognizability to capture the fact to what extent a message can

be understood.

Definition 6.2.1 (Solver). Let T⃗ = ⟨E, T, σ0⟩ be a knowledge state and let X = fv(T ).

We say that substitution θ is a solver for T⃗ if and only if the following conditions
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hold

(i). θ ≈E,T σ0 and

(ii). if σ ≈E,T σ0 and σ •≤X
E θ, then σ =X

E θ.

We define a minimum complete set of solvers (MCS) Θ for T⃗ and write T⃗ ⇝ Θ if and

only if the following condition holds: σ is a solver of T⃗ if and only if there exists one

and only one θ ∈ Θ such that θ =X
E σ.

Intuitively, a solver for T⃗ is a “most general” substitution that satisfies the op-

erational equivalence imposed by T⃗ . Since we are using relation •≤X
E to characterize

“generality”, the “most general” one may not be unique (modulo E) up to renaming.

Definition 6.2.2 (Recognized As). Let T⃗ = ⟨E, T, σ0⟩ be a knowledge state and t be a

ground term. We say that t is recognized as t′ by T⃗ if and only if there exists a solver

θ for ⟨E, T ∪ {x}, σ0 ◦ [t/z]⟩ such that zθ =E t′, where z is a fresh variable.

Clearly, a term t is recognizable by T⃗ if and only if t is recognized as itself by T⃗ .

Lemma 6.2.3. T⃗ ▷ t if and only if t is recognized as itself by T⃗ .

At this point, we can use recognizability to define the interpretation(s) of an in-

coming message. Let T⃗ denote a principal’s knowledge state. An incoming message

t is interpreted as t′ if and only if t is recognized as t′ by T⃗ .

Example 13. Let us consider the following ASW protocol, which is proposed by

Asokan et. al. [8] for fair exchange and contract signing.
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Message 1. A→ B : {K+
A , K

+
B ,M, hash(NA)}K−

A

Message 2. B → A : {{K+
A , K

+
B ,M, hash(NA)}K−

A
, hash(NB)}K−

B

Message 3. A→ B : NA

Message 4. B → A : NB

We assume that the initial explicit knowledge of A and B as follows.

TA0 = {M,A,B,K+
A , K

+
B , K

−
A , NA}

TB0 = {A,B,K+
A , K

+
B , K

−
B , NB}

Let σA0 and σB0 be the intended interpretations of the messages received by A and

B, respectively. After the protocol run is completed, the knowledge state of each

principal becomes

T⃗A = ⟨TA0 ∪ {x2, x4}, σA0⟩

T⃗B = ⟨TB0 ∪ {x1, x3}, σB0⟩

where x1, · · · , x4 signify the four incoming messages, and

σA0 = [{{K+
A ·K

+
B ·M · hash(NA)}K−

A
· hash(NB)}K−

B
/x2, NB/x4]

σB0 = [{K+
A ·K

+
B ·M · hash(NA)}K−

A
/x1, NA/x3]

Let

u1 =s fst(pdec(x2, K
+
B ))

u2 =s {K+
A ·K

+
B ·M · hash(NA)}K−

A

u3 =s snd(pdec(x2, K
+
B ))

u4 =s hash(x4)

Then, from A’s point of view, u1σA0 =Edy
u2σA0 and u3σA0 =Edy

u4σA0. Note that

(TA0 ∪ {x2, x4}) ⊢ {u1, · · · , u4} and σA0 ≈Edy ,TA0∪{x2,x4} σA.
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Let σA and σB be possible interpretations of ambiguous messages received by A and

B, respectively. By operational equivalence, we have u1σA =Edy
u2σA and u3σA =Edy

u4σA, which hold if and only if

x2σA =Edy
{{K+

A ·K
+
B ·M · hash(NA)}K−

A
· hash(x4)σA}K−

B

Now, it is not hard to see that substitution

θA = [{{K+
A ·K

+
B ·M · hash(NA)}K−

A
· hash(x4)}K−

B
/x2]

is an solver for T⃗A. In fact, θA is the only solver for T⃗A up to variable renaming

and term rewriting. So, the two messages received by A should be interpreted as

{{K+
A ·K

+
B ·M · hash(NA)}K−

A
· hash(x4)}K−

B
and x4, respectively.

A similar analysis shows that substitution

θB = [{K+
A ·K

+
B · y · hash(x3)}K−

A
/x1]

is the only solver for T⃗A up to variable renaming and term rewriting. So, the two

messages received by B should be interpreted as {K+
A ·K

+
B · y · hash(x3)}K−

A
and x3,

respectively.

Now, we discuss how to obtain a MCS for a given knowledge state. To determine

solvers, we first construct conditions imposed by operational equivalence, such as

u1σA0 =Edy
u2σA0 and u3σA0 =Edy

u4σA0 in the previous example, and then update

substitutions by solving those equations. This is reminiscent of the constraint solving

approach proposed by Millen and Shmatikov [92]. Here, we extend the constraint

solving approach used in Chapter 4 to find a MCS.

A constraint of a knowledge state ⟨E, T, σ⟩ is an unordered pair (u, v) of terms

such that T ⊢ {u, v}, uσ =E vσ, and u ̸=E v. We say that θ is an E-unifier of a

constraint set C and write θ ⊨E C if uθ =E vθ for every (u, v) ∈ C. Substitution set Θ
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is a minimal complete set of E-unifier (MCU) of C, written as C ⇝ Θ, if the following

conditions hold:

• θ ⊨E C for each θ ∈ Θ,

• there exists a θ ∈ Θ such that θ •≤X
E σ whenever σ ⊨E C,

• two distinct elements of Θ are incomparable w.r.t. •≤X
E .

Definition 6.2.4 (Constraint Base). Let T⃗ = ⟨E, T, σ⟩ be a knowledge state. Suppose

that C is the set of all constraints of T⃗ under E and C ⇝ Θ. Then, we say that C ′

is a constraint base of T⃗ under E if C ′ is the smallest constraint set satisfying that

C ′ ⇝ Θ and C ′ is finite.

This is analogous to the definition “finite basis property” given in [25]. In Example

13, we see {(u1, u2), (u3, u4)} is a constraint base of T⃗A.

Proposition 6.2.5. Let T⃗ = ⟨T, σ⟩ be a knowledge state. Suppose that C is a constraint

base of T⃗ . Then, T⃗ ⇝ Θ if and only if C ⇝ Θ.

In view of Proposition 6.2.5, we reduce the problem of obtaining a MCS to that of

finding and solving a constraint base. This problem is undecidable in general, because

E-unification is undecidable [100, Chapter 8]. Nonetheless, restricting ourselves to

some specific equational theories is likely to yield decidable results. Notably, a pro-

cedure is given in [73] to decide recognizability under the standard Dolev-Yao model.

Due to space limit, we do not pursue these further here. Henceforth, let us assume

that constraint bases are obtained.
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6.3 The Ideal Semantics

Having discussed the interpretation(s) of a message, we now discuss how to extract

ideal semantics from protocol narrations. We avoid introducing new formalism and

base the semantics on strand space model [52], a widely-used formalism in modeling

and verifying security protocols [60, 103, 92]. In this paper, strands serve three pur-

poses: (a) describing a real protocol execution trace; (b) providing protocol semantics;

and (c) specifying a protocol implementation (in the next section).

6.3.1 Strands

In the strand space model, an event is a signed term +t or −t that indicates the

sending (+) or receiving (-) of a message. A strand s⃗ is a finite sequence of nodes

that describe the events happening at a legitimate party or an attacker; the i-th node

of the strand is denoted by s⃗[i]. Nodes within the same strand and among different

strands are linked by the relationships ⇒ and →, respectively. More specifically, ⇒

is used to indicate a protocol role’s execution sequence; and → is used to specify the

communication between different principals. A bundle is a finite subgraph of strand

spaces that can be viewed as a snapshot of a protocol execution. Figure 4 shows a

bundle that illustrates the expected execution of the ASW protocol.

Each strand in a bundle describing an expected protocol execution is associated

with a role of the protocol. For instance, the two strands in Figure 4 correspond

to the roles A and B in the ASW protocol. We have seen that messages exchanged

between principals (taking some roles) can be interpreted considerably differently; and

an unrecognizable (part of) message is often treated as a free variable. For example,
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Figure 4: ASW protocol: a bundle.

role A in the ASW protocol should be specified by

A[M,A,B,NA, x]

⟨+ {K+
A ·K

+
B ·M · hash(NA)}K−

A
,

− {{K+
A ·K

+
B ·M · hash(NA)}K−

A
, hash(x)}K−

B
,

+NA,−x⟩

where x is instantiated to NB in a normal protocol run.

We associate strand s⃗ with a ground term set s⃗[0] to describe its initial knowledge,

and use Ki(s⃗) to denote the knowledge of a principal (at step i) taking the role

specified by s⃗. That is,

Ki(s⃗) =



s⃗[0] if i = 0

Ki−1(s⃗) ∪ {t} if i > 0 and s⃗[i] = −t

Ki−1(s⃗) otherwise

To account for ambiguous messages, we inductively define K⃗i(s⃗) as follows
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K⃗i(s⃗) =



⟨s⃗[0], []⟩ if i = 0

⟨K⃗i−1(s⃗) ↓ts ∪{x}, K⃗i−1(s⃗) ↓subs ◦[t/x]⟩

where x is a fresh variable if i > 0 and s⃗[i] = −t

K⃗i−1(s⃗) otherwise

The subscript i will be omitted if i = length(s⃗).

6.3.2 Execution Traces

In this subsection, we use execution traces to describe real protocol executions and

formalize the meaning of “a protocol execution is in compliance with the protocol

narration”.

An execution trace or simply a trace tr is a strand containing no variable (i.e.,

ground strand). Clearly, every protocol execution can be described by a set of exe-

cution traces. It is natural to parse a protocol narration into a set of traces; we will

always assume that such traces are obtained, and refer to those traces as narrative

traces.

We say that two strands s⃗1 and s⃗2 are isomorphic if and only if K⃗(s⃗1) ↓ts and

K⃗(s⃗2) ↓ts are identical up to variable renaming, that is, there exists a variable re-

naming substitution η that K⃗(s⃗1) ↓ts η = K⃗(s⃗2) ↓ts. For simplicity, we assume that

K⃗(s⃗1) ↓ts= K⃗(s⃗2) ↓ts whenever they are isomorphic. We say that s⃗1 and s⃗2 are op-

erationally equivalent in equational theory E, written as s⃗1 ≈E s⃗2, if and only if

K⃗(s⃗1) ↓subs≈E,T K⃗(s⃗2) ↓subs where T = K⃗(s⃗1) ↓ts= K⃗(s⃗2) ↓ts.

Definition 6.3.1. Given an equational theory E, we say that an execution trace tr is
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in compliance with a set of strands S⃗, written as S⃗ ⇝ tr, if and only if tr ≈E s⃗ for

some s⃗ ∈ S⃗. Two sets of strands S⃗1 and S⃗2 are equivalent, written S⃗1 ≈E S⃗2, if all,

and only, execution traces in compliance with S⃗1 are in compliance with S⃗2.

6.3.3 Semantics

To obtain an ideal semantics of a protocol narration, it is essential to capture all

possible execution traces that are in compliance with the narration.

Definition 6.3.2 (Ideal Semantics). Let S⃗ be a set of strands and TR0 be a set of

narrative traces. Given an equational theory E, we say that S⃗ is an ideal semantics

of TR0 if and only if S⃗ ≈E TR0.

Unfortunately, there is often an infinite number of execution traces that are in

compliance with the set of narrative traces TR0. So, it is preferable to use “patterns”

to capture those execution traces thanks to fully fledged interpretations of incoming

messages. For example, in an arbitrary successful run of the Otway-Reese protocol

the last message should look like {NA, x}KAS
, because KAB is recognized as ϵ and is

thus replaced by a free variable x. This approach resembles the “pattern-matching”

technique widely-used in formal protocol analysis [103, 21, 40, 13].

Our definition of “recognized as” (Definition 6.2.2) fits the intuitive understand-

ing of “patterns”. Given a narrative trace tr0, we can use the MCS of K⃗(tr0) to

characterize all possible incoming messages in a successful protocol run.

Altogether, we obtain Algorithm 2 to extract an ideal semantics from a protocol

narration. The algorithm takes an input set of narrative traces TR0 and an equational

theory E, and produces an ideal semantics of TR0.
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Algorithm 2 ExtractIdealSemantics

Input: a set of narrative traces TR0, equational theory E

Output: a set of strands S⃗

1: S⃗ ← ∅
2: for each tr0 ∈ TR0

3: s⃗p ← ⟨⟩, S← ∅
/* specify initial knowledge */

4: append strand s⃗p with tr0[0]
/* obtain a knowledge state representing the principal’s knowledge

upon
protocol completion */

5: for j = 1 to length(tr0)
6: if tr0[j] = +t for some term t then
7: append strand s⃗p with node +t′

where t′ is a recipe of t
8: if tr0[j] = −t for some term t then
9: append strand s⃗p with node −x

where x is a fresh variable

10: obtain a MCS Θ of K⃗(tr0)
11: S← S ∪ {s⃗pθ} for each θ ∈ Θ

12: S⃗ ← S⃗ ∪ S
13: return S⃗

The main loop of the algorithm selects an arbitrary narrative trace tr and obtain a

set of operationally equivalent strands. It has two stages. In the first stage, from line

3 to line 9, it construct an abstract strand by replacing each incoming message with

a fresh variable and replacing each outgoing message with its corresponding recipe.

In the second stage, it first computes a MCS Θ of K⃗(tr) in line 10. We see that

each θ ∈ Θ corresponds to an interpretation of the incoming messages, because, by

Definition 6.2.1, it is operationally equivalent to K⃗(tr) and is in its most general form.

So, in line 11, we include all strands associated with those interpretations in output

ideal semantics.

Theorem 6.3.3. Let TR0 be a set of narrative traces. Then,
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ExtractIdealSemantics(TR0, E) returns an ideal semantics of TR0.

Proof. Let S⃗I = ExtractIdealSemantics(TR0, E). It suffices to show that S⃗I ≈E

TR0. That is, an arbitrary execution trace tr is in compliance with S⃗I if and only if

it is in compliance with TR0.

(“If” part) By TR0 ⇝ tr, there exists a trace tr0 ∈ TR0 such that tr ≈E tr0. That

is, K⃗(tr) ↓subs≈E,T K⃗(tr0) ↓subs where T = K⃗(tr) ↓ts= K⃗(tr0) ↓ts. By Definition 6.2.1,

there exists a θ ∈ Θ such that θ •≤X
E K⃗(tr) ↓subs and θ ≈E,T K⃗(tr0) ↓subs, where Θ is a

MCS of K⃗(tr0) and X = fv(T ). We note from Algorithm 2 that K⃗(s⃗pθ) ↓ts= T and

K⃗(s⃗pθ) ↓subs = θ. So, tr ≈E s⃗pθ ∈ S⃗, that is, S⃗I ⇝ tr.

(“Only if” part) By S⃗I ⇝ tr, we see from Algorithm 2 that there exists a strand

s⃗pθ ∈ S⃗ such that tr ≈E s⃗pθ. That is, K⃗(tr) ↓subs≈E,T K⃗(s⃗pθ) ↓subs= θ where

T = K⃗(tr) ↓ts= K⃗(s⃗pθ) ↓ts. On the other hand, we notice that there exists a trace

tr0 ∈ TR0 such that K⃗(tr0) ↓ts= K⃗(s⃗pθ) ↓ts. Besides, since θ is a solver of K⃗(tr0), we

have K⃗(tr0) ↓subs≈E,T θ. Consequently, we obtain tr ≈E tr0 for some tr0 ∈ TR0 and

thus TR0 ⇝ tr. □

We stress that a protocol could be executed in a hostile environment. A principal

may intentionally abort a protocol before completion. So, in Algorithm 2 the narrative

traces must include all partial protocol runs [34]. To highlight the effect of partial

runs on the ideal semantics, let us consider an example.

Example 14. We consider the following contrived protocol:
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Message 1. A→ B : M1

Message 2. B → A : M2

Message 3. A→ B : M3

Message 4. B → A : M4

We assume that the initial knowledge of A and B as follows.

TA0 = {M1,M3}

TB0 = {M2,M4, {M1}M3}

The narrative trace of role B is

s⃗1 = ⟨{M2,M4, {M1}M3},−M1,+M2,−M3,+M4⟩

It is not hard to see that another possible partial run is

s⃗2 = ⟨{M2,M4, {M1}M3},−M1,+M2⟩

At first, for both strands we get

K⃗4(s⃗1) = ⟨{M2,M4, {M1}M3 , x1, x3}, [M1/x1,M3/x3]⟩

K⃗2(s⃗2) = ⟨{M2,M4, {M1}M3 , x1}, [M1/x1]⟩

Let Θ1 and Θ2 be the MCS for K⃗4(s⃗1) and K⃗2(s⃗2), respectively. Note that

{x1}x3 [M1/x1,M3/x3] =Edy
{M1}M3

Then, it can be shown that

Θ1 = {[M1/x1,M3/x3]}, Θ2 = {[]}

Thus, in a normal protocol run the first and third messages are interpreted as M1 and

M3, respectively, whereas in a partial protocol run the first message is interpreted as

free variable x1. That is to say, if the protocol execution succeeds, B only accepts

M1 as the first message, otherwise any message will be accepted.
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For now, it is not hard to see the ideal semantics (of role B) contains the following

two strands:

s⃗′1 = {M2,M4, {M1}M3},−M1,+M2,−M3,+M4⟩

s⃗′2 = {M2,M4, {M1}M3},−x1,+M2⟩

6.4 From Ideal Implementation to Refined Implementation

In this section, we turn our attention to protocol implementations. First, we extend

the definition of a strand to allow for specifying internal actions. Next, we define an

ideal implementation according to the ideal semantics of a protocol. Since the ideal

implementation may not exist, we then use prudent and refined implementations to

approximate it.

Unlike the ideal semantics where messages are regarded as symbolic expressions, in

real protocol implementation every message is merely a bit string which has poten-

tially ambiguous interpretations. That’s why an ideal semantics highlights external

patterns of an incoming message, whereas an implementation emphasizes the internal

actions of protocol participants. Initially, in a protocol implementation, every incom-

ing message is ambiguous and thus should be indicated by a fresh variable. Only

after performing some condition checks on messages, the recipient would gain some

certainty. For example, in the ASW protocol (see Example 13) A ought to check

whether fst(pdec(x2, K
+
B )) equals to the first sent message, where x2 signifies the

received message.

To specify internal actions, we define a check event as check(u = v) or check(u ̸= v),

where both u and v are terms. We will use “equality check” and “inequality check” to



92

discriminate them. An implementation strand p⃗ is a strand that allows check events,

and all receive events contain only free variables that are pairwise distinct. We say

that an implementation strand p⃗ is feasible under equational theory E if and only if

the following conditions hold:

(i). Ki(p⃗) ⊢E t whenever p⃗[i] = +t, and

(ii). Ki(p⃗) ⊢E {u, v} whenever p⃗[i] is check(u = v) or check(u ̸= v).

This coincides with the definitions of executability and feasibility in [21].

Since an implementation strand makes internal checks explicit, it can be easily

mapped to a practical implementation. For this reason, we define protocol imple-

mentation P as a set of implementation strands; each corresponds to a role of the

protocol. For convenience, we use p⃗ ↓ to denote a strand obtained from p⃗ by removing

all nodes representing check events.

Definition 6.4.1 (In Compliance with). An execution trace tr is in compliance with a

protocol implementation P if and only if there exists an implementation p⃗ ∈ P and

a substitution θ such that tr = p⃗ ↓ θ and for each check(u = v) (resp. check(u ̸= v))

event in p⃗ we have uθ =E vθ (resp. uθ ̸=E vθ).

Let P1 and P2 be two protocol implementations. We say that P1 encompasses

P2, and write P1 ⊆E P2, if all execution traces in compliance with P2 are also in

compliance with P1; and P1 and P2 are equivalent, written P1 ≈E P2, if and only if

P1 ⊆E P2 and vice versa. As usual, we write P1 ⊂E P2 for P1 ⊆E P2 and P1 ̸≈E P2.

These notations are extended in the obvious way to sets of strands.
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6.4.1 Ideal Implementation

Definition 6.4.2 (Ideal Implementation). Let S⃗ be an ideal protocol semantics. An

ideal implementation of S⃗ is defined as a protocol implementation P such that P ≈E

S⃗.

Theorem 6.4.3. Let S⃗ be an ideal protocol semantics of protocol narration TR0. The

ideal implementation of S⃗ exists if and only if S⃗ does not contain any free variable.

Proof. (“If” part) As we will see in the next subsection, Algorithm 3 gives an imple-

mentation P . To prove P ≈E S⃗, by Definition 6.3.2 it suffices to show that P ≈E TR0.

That is, P ⇝ tr ⇔ S⃗ ⇝ tr.

We begin with the “⇒” direction. By P ⇝ tr, we have tr = p⃗ ↓ σ for some

implementation p⃗ and substitution σ. Let C be the set of constraints checked in p⃗

and C ⇝ Θ. We see from Definition 6.4.1 that θ •≤X
E σ for some θ ∈ Θ and X =

fv(K⃗(tr) ↓ts). Notice that there exists a narrative trace tr0 ∈ TR0 such that C is

a constraint base of K⃗(tr0). It follows from Proposition 6.2.5 that K⃗(tr0) ⇝ Θ. By

Definition 6.2.1, we get θ ≈E,T
⃗K(tr0) ↓subs. Moreover, since S⃗ does not contain

any free variable, we know Θ contains only ground substitutions and thus σ =X
E θ.

Consider now K⃗(tr) ↓ts= K⃗(tr0) ↓ts= T and K⃗(tr) ↓subs= σ =X
E θ ≈E,T K⃗(tr0) ↓subs,

we have tr ≈E tr0 and thus TR0 ⇝ tr. The reverse direction can be shown in a

similar way.

(“Only if” part) We will show that if S⃗ contains free variable(s), then the ideal

implementation does not exist. The main reason is that, when an ideal semantics

contains free variable(s), it is impossible to use even an infinite set of equality and/or
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inequality checks to establish operational equivalence.

For equality check, we note that constraints are implied by operational equivalence

σ0 ≈E,T σ. They, however, do not suffice to characterize operational equivalence.

In other words, we cannot base operational equivalence on a possibly infinite set of

equations. Here is an example to show why. Let T = {NB, x} and σ0 = [{NB}KAS
/x],

and suppose that σ0 ≈Edy ,T σ. It is clear that there is no constraint of ⟨T, σ0⟩.

However, it does not follow that σ0 ≈Edy,T σ holds for an arbitrary substitution

σ. For instance, by letting σ = [Nc · Nc/x], we get fst(x)σ =Edy
snd(x)σ and

fst(x)σ0 ̸=Edy
snd(x)σ0. So, σ0 ̸≈Edy

σ.

Incorporating inequality checks may not help either. As an example, let us we

consider a substitution σ that satisfies σ ≈Edy ,{NA,K+
A ,x} [NB/x]. To establish the

operational equivalence, we have to check xσ ̸=Edy
tσ for every term t such that

{NA, K
+
A , x} ⊢ t. This completes the proof. □

6.4.2 Coarse and Prudent Implementations

A coarse implementation of an ideal protocol semantics S⃗ is a protocol implemen-

tation P such that S⃗ ⊆E P .

Definition 6.4.4 (Prudent Implementation). Given an ideal protocol semantics S⃗, we

define a prudent implementation of S⃗ as a protocol implementation P such that

(i). S⃗ ⊆E P ;

(ii). P does not contain any inequality check event;

(iii). there does not exist an implementation P ′ that satisfies (i), (ii), and P ′ ⊂E P .

Making Checks Explicit. As we have seen, the constraint base maximizes the chance
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to check non-trivial equalities implied by a protocol narration. It can be used to

construct check events in strands. Suppose that C is a constraint base of knowledge

state T⃗ , which models a principal’s knowledge after completing a protocol. Then,

whenever possible, the principal should check each constraint (u, v) in a constraint

base and abort upon constraint violation (i.e., uσ ̸=E vσ). Note that a principal might

not be able to check those constrains all at once. Let T⃗i = ⟨Ki, σi⟩ be a principal’s

knowledge after the i-th step of a protocol. Then, he can check a constraint (u, v)

whenever Ki ⊢ {u, v}.

For example, at step 2 of the ASW protocol, Alice is able to check constraint (u1, u2)

but not (u3, u4), which becomes checkable only after she receives the last message.

So, the strand of role A becomes:

A[M,A,B,NA, x2, x4]

⟨{M,A,B,K+
A , K

+
B , K

−
A , NA},

+ {K+
A ·K

+
B ·M · hash(NA)}K−

A
, −x2,

check(fst(pdec(x2, K
+
B )) = {K

+
A ·K

+
B ·M · hash(NA)}K−

A
),

+NA, −x4, check(snd(pdec(x2, K
+
B )) = hash(x4))⟩

Interpreting Outgoing Messages. The above example of the ASW protocol is too

restrictive, because both terms in the send events are deducible from the principal’s

initial knowledge and thus avoid dealing with outgoing messages, which is not always

the case. For instance, the third message (i.e., M · {NA ·KAB}KAS
·{NB ·KAB}KBS

) in

the Otway-Reese protocol, which contains nonces generated by A and B, is obviously

not deducible from S. Consequently, we need to be clear on the interpretation of
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outgoing messages as well when specifying the implementation.

Although strands are assumed to be well-formed, how to generate the outgoing

messages is unspecified. To see this, let us consider a narrative trace s⃗. Without

loss of generality, assume that s⃗[i] = +t and K⃗i(s⃗) = ⟨Ti, σi⟩. The meaning of well-

formedness is twofold. First, we get Ki(s⃗) ⊢E t in terms of the original narrative trace

s⃗. Second, we should also achieve Ti ⊢ t′ and t′σi =E t in the new compiled strand.

This accords with Lemma 2.1.3, as Tiσi = Ki(s⃗), and t′ is a recipe of t.

The key to our interpretation is therefore to find a recipe for each outgoing message.

Unfortunately, the recipe may not be unique, posing a major hurdle in interpreting

an outgoing message.

Example 15. To make this more concrete, let us consider a very simple protocol.

Message 1. A→ B : {KAB}K+
B

Message 2. B → A : {M}KAB

Suppose that the initial knowledge of B is TB0 = {A,B,M,K+
A , K

+
B , K

−
B , KAB}.

The narrative trace of role B is s⃗ = ⟨TB0, −{KAB}K+
B
,+{M}KAB

⟩ Then, K2(s⃗) =

TB0∪{{M}KAB
} and K⃗2(s⃗) = ⟨TB0∪{x1}, [{KAB}K+

B
/x1]⟩. By letting t′1 =s {M}KAB

and t′2 =s penc(M, pdec(x1, K
−
B ), we get TB0 ∪ {x1} ⊢ {t′1, t′2} and

t′1[{KAB}K+
B
/x1] =Edy

t′2[{KAB}K+
B
/x1] =Edy

{M}KAB

Here, both t′1 and t′2 are recipes of {M}KAB
, corresponding to two different ways of

generating the message {M}KAB
. If we admit t′1 as the recipe, then the compiled

strand of role B is
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s⃗1 = ⟨TB0,−x1, check(pdec(x1, K
−
B ) = KAB),

+ {M}KAB
⟩

(14)

Otherwise (t′2 as the recipe), the compiled strand becomes

s⃗2 = ⟨TB0,−x1, check(pdec(x1, K
−
B ) = KAB),

+ penc(M, pdec(x1, K
−
B )⟩

(15)

Due to the check events, s⃗1 and s⃗2 are equivalent in a sense that no ambiguity arises

from the choice of recipe. On the contrary, if we eliminate the check events, then the

implementations defined by s⃗1 and s⃗2 differ significantly.

Thanks to the internal checks, we make the following claim, which allows us to

choose any recipe of an outgoing message without affecting the result of the imple-

mentation.

Claim 6.4.5. The prudent implementation remains invariant under different interpre-

tations of outgoing messages.

Incorporating the above considerations, we obtain the following algorithm to derive

a prudent implementation from a set of narrative traces TR0.

The algorithm creates an implementation strand for each narrative trace. The

construction starts by using the narrative trace to compute a constraint base. For a

node with receive event, from line 6 to line 9, it updates knowledge and construct

a new equality check event whenever it becomes feasible. For a node with send

event, from line 10 to line 11, the algorithm simply chooses an arbitrary recipe of the

outgoing message due to Claim 6.4.5.

Theorem 6.4.6. Let TR0 be a set of narrative traces and S⃗ be an ideal semantics of
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Algorithm 3 DerivePrudentImplementation

Input: a set of narrative traces TR0, equational theory E
Output: a protocol implementation P
1: S⃗ ← ∅
2: for each narrative trace tr0 ∈ TR0

3: obtain a constraint base C of K⃗(tr0) (under E)

/* construct an implementation strand p⃗ */
4: p⃗← ⟨tr0[0]⟩
5: for i = 1 to length(tr0)

/* find all new constraints that are enabled by the incoming
message */

6: if tr0[i] = −t for some term t then

7: append strand p⃗ with node −xi

8: for each (u, v) ∈ C such that K(p⃗) ⊢ {u, v}
and Kl−1(p⃗) ⊬ {u, v} where l = length(p⃗) do

9: append strand p⃗ with node check(u, v)

/* choose an arbitrary recipe as an interpretation of the outgoing
message */

10: if tr0[i] = +t for some term t then
11: append strand p⃗ with node +t′

where t′ is a recipe of t

12: S⃗ ← S⃗ ∪ {p⃗}
13: return S⃗

TR0. Then, Derive − Prudent − Implementation(TR0) returns an prudent imple-

mentation of S⃗.

6.4.3 Refined Implementation

To illustrate the idea of implementation refinement, let us reexamine the motivating

example given in Section 6.1. We recapitulate the well-known type-flaw attack here.

1. A→ B : M,A,B, {NA,M,A,B}KAS

4. I(B)→ A : M, {NA,M,A,B}KAS

After initiating the first message, A is expecting from B the message M · {NA ·

KAB}KAS
, which is forged by an attacker I. The attacker I impersonates B and then
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replays an intercepted message to A. It is not hard to see that the narrative trace for

role A is

trA =A[M,A,B, S,NA, KAS, KAB]

⟨{M,A,B, S,NA, KAS},

+M · A ·B · {NA ·M · A ·B}KAS
,

− {NA ·KAB}KAS
⟩

Likewise, we get narrative trace trI describing the attack scenario.

trI =A[M,A,B, S,NA, KAS]

⟨{M,A,B, S,NA, KAS},

+M · A ·B · {NA ·M · A ·B}KAS
,

− {NA ·M · A ·B}KAS
⟩

Thus, trA ̸≈E trI . Specifically, A can observe the following difference
{NA ·M · A ·B}KAS

σ0 ̸=Edy
xσ0

{NA ·M · A ·B}KAS
σ1 =Edy

xσ1

where σ0 = [{NA · KAB}KAS
/x] and σ1 = [{NA ·M · A · B}KAS

/x]. This difference

suggests that we can simply add a new check event immediately after the receive

event to prevent the attack. Thus, the new implementation strand of role A becomes

A[M,A,B, S,NA, KAS, x]

⟨{M,A,B, S,NA, KAS},

+M · A ·B · {NA ·M · A ·B}KAS
,

− x4, check({NA ·M · A ·B}KAS
̸= x)⟩
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The core innovation of our refinement is to add inequality check events to disallow

such execution traces in TRI that are not in compliance with protocol narration TR0.

Nonetheless, not all attack scenarios are useful to refine a protocol implementation,

especially if the execution traces of the attack are in compliance with the protocol

narration. For instance, the well-known man-in-the-middle attack due to Lowe [80] on

the Needham-Schroeder public-key authentication protocol [95] can not be thwarted

by adding any check event(s).

In general, a known attack can be categorized into the following three types:

• type-I attack, if all execution traces are in compliance with the ideal implemen-

tation. From a protocol implementor’s point of view, this type of attack cannot

be detected/prevented unless the design of the protocol is changed;

• type-II attack, if all execution traces are in compliance with the prudent imple-

mentation, and there exists an execution trace that is not in compliance with

the ideal implementation;

• type-III attack, if there exists an execution trace that is in compliance with the

coarse implementation, but not in compliance with the prudent implementation;

To the end of this section, we draw a picture of the classification of protocol im-

plementations and attacks, as shown in Figure 5.

6.5 Application to Type-flaw Attacks

Many security protocols are vulnerable to type-flaw attacks, in which a protocol

message may be subsequently forged from another message. Let us again consider

the Otway-Rees protocol [96]:
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Note: refined implementation = prudent implementations - type II attacks

Attacks
Type-I Type-II Type-III

Ideal implementation ✓ × ×
Prudent implementation ✓ ✓ ×
Refined implementation ✓ × ×
Coarse implementation ✓ ✓ ✓

Figure 5: Classification of protocol implementations and attacks
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A→ B : M,A,B, {NA,M,A,B}KAS

B → S : M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

S → B : M, {NA, KAB}KAS
, {NB, KAB}KBS

B → A : M, {NA, KAB}KAS

After executing the first three messages, principal A is expecting a KAB, which is a

symmetric key shared between A and B, from the trusted third party S. The shared

key KAB is dynamically generated by S and A does not have any prior knowledge

about the bit string. Therefore, any message of the form M, {NA, t}KAS
would be

accepted by A, as long as the bit string length of t equals to that of KAB. Thus, an

attacker can easily replay the message {NA,M,A,B}KAS
to A and then A would use

M,A,B as the secret if the length satisfies the requirement.

Various approaches have been proposed to defend against type-flaw attacks. Heather

et al. [65] propose a tagging scheme to prevent type-flaw attacks, in which tags are

used to label each field of a message with its intended type. However, since tag

information can potentially be confused with data [87], a tagged protocol may give

rise to more intricate attacks. More importantly, the question of whether an existing

protocol (without any change) is vulnerable to type-flaw attack is not answered.

Catherine Meadows [89] develops a formal model of types to characterize one’s

capability to verify messages. Without exploring the intuitive idea behind, the pro-

cedure of verifying the locality of types could be rather complicated. In [79, 78],

Z specification language is employed to model ambiguous messages. The approach

based on Z specification language cannot be directly applied to existing protocol
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analysis tools in a straight-forward way.

However, most of existing approaches are heuristic without giving a satisfiable

answer to the very first question:

Why can a security protocol be type-flawed?

Rather than developing one particular defense mechanism against type-flaw attacks,

we pursue to answer this question by exploring a principal’s ability/inability to cope

with ambiguous messages.

In fact, a protocol could be type-flawed if a message could not be “verified” by the

receiver. As we have seen in this chapter, the notion of recognizability enables us

to precisely capture to what extent a message can be understood through protocol

compilation.

More importantly, we notice that for most type-flaw attacks there are visible dif-

ference to the protocol participants as shown in Section 6.4.3. In other words, most

type-flaw attacks are type-II attacks and thus can be prevented through implemen-

tation refinement.

6.6 Discussion and Related Work

Starting with the early work of Carlsen [22], a lot of efforts have been made to

formalize security protocol descriptions or to devise semantics for them [21, 19, 25].

As pointed out by Abadi [2], how principals check incoming messages is an essential

part of protocols, which is often neglected in protocol narrations.

Accordingly, many approaches from this line of research have striven to make such

checks explicit. The treatments, however, are often either ad hoc and/or made in a
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case-by-case fashion, specialized for the Dolev-Yao style primitives.

Carlsen [22] defines four primitive security-relevant internal actions that can be

generated from protocol narrations in a straightforward way. Even so, the actions

checkvalue, which require accompanying type information to each word, are not always

feasible. Caleiroa et al. [21] enumerate rules to characterize a principal’s view of a

message. Checks can be done on a message that is viewed as “reachable”. The

whole procedure is rather complex, which involves further concepts such as analyzable

position and inner facial pattern face. Briais and Nestmann [19] identify three types of

checks, which can be reduced to normal equality tests. The core technical innovation

is to saturate a knowledge set first using Analysis rules and then compare it with

the knowledge set obtained by Synthesis rules. The procedure coincides with the one

given in [73] to decide recognizability under Dolev-Yao model. However, since the

Analysis and Synthesis rules are specialized for Dolev-Yao model, it is not clear how

to generalize the results to support algebraic properties in protocol narrations [94]. In

[84, 15] checks are discussed informally and thus they do not automate this process.

Besides, same as in [22] only structured data rather than bit strings are considered,

which raises implementation issues in practice.

A major drawback of these approaches has been the lack of an intuitive, yet general,

justification for such checks in a protocol narration. Thus, it is far from clear that all

necessary checks are properly found in these approaches. Even though it is claimed

in [19] that the maximum checks are derived from protocol narrations, there is no

consensus on what are the maximum checks.

The main reason for the lack of intuitive justifications is that, compared to one’s
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ability to interpret a message, a principal’s inability to interpret a message is not

well understood. In [45, 84, 7, 50], messages that cannot be interpreted with the

principal’s knowledge are treated as “black-boxes”. This simplification may fail to

give a precise semantics to a protocol, because relationship between those messages,

such as hash(NB) and NB in the ASW protocol, could be missed. In [21], the no-

tion of transparent and opaque messages resemble our notions of recognizable and

unrecognizable terms, respectively. However, the definition of these notions is sound

but not complete in a sense that a transparent message is recognizable but not vice

versa. As an example, suppose that Alice knows {{NB}KBS
} and she receive a mes-

sage that is intended to be NB · KBS. Then, NB · KBS is recognizable, that is,

⟨{{NB}KBS
, x}, [NB ·KBS/x]⟩▷NB ·KBS. This is because senc(fst(x), snd(x))σ =Edy

{NB}KBS
holds if and only if x =Edy

NB ·KBS. This is usually referred as the “perfect

encryption” assumption [6]. On the other hand, by the definition of vD(M) in [21], we

have v{{NB}KBS
}(NB ·KBS) = v{{NB}KBS

}(NB); v{{NB}KBS
}(KBS) and hence NB ·KBS

is not {{NB}KBS
}-transparent.

We build our work upon the concept of recognizability, which formalizes a prin-

cipal’s ability and inability to verify a message. Although it is initially proposed to

understand type-flaw attacks, the problem is similar to ours from a cognitive per-

spective. Nonetheless, for our purpose here, several extensions are required so as to

provide a more fine-grained characterization of ambiguous terms.

It is fair to mention that the concept of static equivalence (on frames) in the applied

pi calculus [4, 3] is similar in spirit to our operational equivalence (on knowledge states,

Definition 3.5.1). But there is one essential difference: we discriminate unambiguous
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(ground term) and ambiguous (free variable) messages, whereas in static equivalence

all messages are ambiguous. Naturally, the concept observational equivalence on

processes corresponds to that of operational equivalence on strands.

Only recently, by Chevalier and Rusinowitch [25], has static equivalence been re-

lated to giving semantics to protocol narrations. To the best of our knowledge, this

is the first result, with a convincing justification, that ensures all the possible checks

are performed. However, since it only allows equality checks, it does not support

implementation refinement, as we do here.

6.7 Conclusion and Future Work

In this work, we provide a consensus view of security protocols for each group

of people that amounts to the attacker’s view. Specifically, we give ideal semantics

to protocol narrations, by rigorously examining a principal’s ability or inability to

cope with potentially ambiguous incoming messages. The semantics are then used

to guide protocol implementations in two complimentary ways. First, we derive a

prudent implementation of a protocol, which performs all necessary equality checks

and prevents type-III attacks. Second, we use type-II attacks to further refine a

prudent implementation by performing additional new inequality checks. As such

refinements are not feasible by either the protocol designers or the protocol verifiers

alone, we motivate the interplay between protocol design and protocol verification

via a semi-automated refinement process.

There are three major limitations of this study. First, although our results are not

specialized for the Dolev-Yao intruder model, the accuracy of the semantics depends
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on how we model the principal’s deduction capabilities. Failing to model the capa-

bilities properly may result in unrealistic semantics. Second, the following questions

arising in Section 6.2 are not answered:

(i). Under what conditions does there exist a constraint base of a knowledge state?

(ii). How to determine and solve a constraint base if it exists?

Third, to simplify our discussion, we have treated fresh values (e.g., nonces and

timestamps) as invariant data in one’s initial knowledge. This is unrealistic in practice

especially when a protocol execution involves multiple sessions.

Our future work will be aimed at addressing these limitations. In particular, we

plan to investigate the problem of finding and solving constraint bases under more

general equational theories. Besides, to overcome the inability of coping with fresh

values, we will introduce a new event/node in extended strands; this would not affect

our main results significantly.



CHAPTER 7: OFFLINE GUESSING ATTACKS

Although various past efforts have been made to characterize and detect guessing

attacks, there is no consensus on the definition of guessing attacks. Such a lack of

generic definition makes it extremely difficult to evaluate the resilience of security

protocols to guessing attacks.

To overcome this hurdle, we seek a new definition in this thesis to fully characterize

the attacker’s guessing capabilities (i.e., guessability). This provides a general frame-

work to reason about guessing attacks in a symbolic setting, independent of specific

intruder models. We show how the framework can be used to analyze both passive

and active guessing attacks.

Most of the results presented in this chapter are reported in our previous paper

[74].

7.1 Introduction

Many security protocols are vulnerable to guessing attacks, which aim to obtain a

poorly chosen password or data by trying every possible value for it. Let us reconsider

the following simple one-way authentication protocol:

Message 1. A→ B : {NA}KAB

Message 2. B → A : {f(NA)}KAB
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Here NA is a fresh nonce generated by A and KAB is the symmetric key shared

between A and B, and f is a given function (e.g., f(NA) = NA + 1). An attacker

may obtain KAB by trying to decrypt both messages with a guessed key k and then

to compare the results, say r1 and r2: if r2 equals f(r1), then k is the correct guess.

Such attacks become more feasible when one chooses a low entropy secret.

Starting from the early work of Gong et al. [56, 55], a lot of efforts have been

made either to formulate guessing attacks or to detect them. Many approaches fo-

cus on heuristics to explore ways of validating a guess [35, 85, 59]. This is usually

done by enumerating rules to determine whether a guess can be “verified”, a term

widely accepted to characterize a correct guess. These rules are used to derive an

inference system modeling the guessing capabilities [44], by extending the standard

Dolev-Yao model [48]. Realizing the “incompleteness” of such an inference system

in a sense that it may fail to capture some guessing attacks, Drielsma et al. [49]

develop a precise formalization of off-line guessing attacks, which is independent of

any particular intruder model. However, no automatic procedure is given in [49] and,

more importantly, it only allows guessing atomic values. In [35], Corin et al. first use

static equivalence from the applied pi calculus [4] to characterize guessing attacks,

which is then used to derive a procedure for detecting guessing attacks [10]. More

recently, Blanchet and Abadi [14] refine the definition by imposing the observational

equivalence condition.

Up to now, there is still no clear consensus regarding the general definition of

guessing attacks, which explains why some protocol previously shown resistant to

guessing attacks turns out to be vulnerable [76, 56]. There are two main reasons for
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this lack of generality.

First, the term “verifiable” is not fully understood or formalized, while being used

implicitly as a synonym for “guessable” in all previous approaches. It is fair to mention

here that several definitions regarding verifiability do exist, although none of them

is general enough to be independent of protocol modeling and/or specific intruder

models. For instance, Lowe [85] presents a group of rules to verify a guess. Indeed,

these rules correctly identify verifiable guesses. It is unclear whether or not the rule

set can completely cover all guesses that can actually be verified somehow, even under

the Dolev-Yao intruder model. Similarly, Corin et al. [35] define a “verifiable” guess

based on two conditions of a “verifier”. However, without any intuitive appeal, this

definition can fail to capture some practically verifiable guess. Besides, the verifier

itself can be very difficult to find. Corin et al. [33] then formulate a new definition of

verifying a guess using static equivalence [4], which elegantly captures the essence of

verifying a guess. Nonetheless, this definition may require the modeling of security

protocols by the applied pi calculus. Moreover, it only considers guesses of atomic

messages.

Second, guessing attacks have been studied from two different perspectives: (1) the

process perspective [33, 10, 14], which relies on the modeling of security protocols; and

(2) the attacker’s perspective [35, 44, 85], which emphasizes the guessing capabilities

from a logical point of view. Neither provides a unified view towards guessing attacks.

This work is therefore geared towards a unified framework for the study of guessing

attacks. The primary goal is to establish an intimate understanding of guessing, which

is intuitive, yet provides a rigorous basis for guessing attacks. In other words, the
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new framework should be

• faithful (i.e., fits the common sense of guessing attacks),

• expressive (i.e., accounts for multiple guesses), and

• complete (i.e., captures all guessing attacks in a symbolic setting).

Unlike most previous work, we treat “guessing” and “attack” separately, because

guessing relates closely to the attacker’s ability to reason about its knowledge, whereas

attack further exploits the vulnerability of security protocols. It is worthwhile to

reveal the dominant factor of a guessing attack — the attacker’s guessing capabilities

or the interactions between entities.

7.1.1 Contributions

In this chapter, we propose a new definition to fully characterize the attacker’s

guessing capabilities and then show how it relates to finding guessing attacks in

security protocols. Specifically,

• To uncover relationship between “verifiable” and “guessable”, we formalize the

idea of verifying a message in terms of recognizability [72] — the ability to dis-

tinguish a message from noise. To our best knowledge, this is the first definition

of verifiability that is independent of security protocols and/or intruder models.

We show, surprisingly, that a guessable message needs NOT to be verifiable. In

other words, even though some message is not verifiable, it can still be guessed

correctly by the attacker.

• We propose a weaker notion of verifiability to recover the intuitive understand-

ing of guessing — a message can be guessed if and only if it is weakly verifiable.
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This weaker notion thus provides a faithful, expressive, and complete framework

for the study of guessing attacks.

• We introduce a novel way to evaluate the computational difficulty of guessing.

While some guessing attack turns out to be (computationally) infeasible, the

new metric provides an accurate way to discriminate between feasible and in-

feasible guessing attacks, reducing the gap between formal methods and real

implementation. To our best knowledge, this is the first explicit measurement

about guessing.

• As a case study, we apply our methodology to find passive guessing attacks

under the standard Dolev-Yao intruder model and discuss how to extend this

methodology to analyze active attacks.

7.1.2 Organization

In Section 7.2, we formalize the idea of verifying a guess and explain why (strong)

verifiability is not a necessary condition for guessing. After presenting a new knowl-

edge model that accounts for the attacker’s guessing capabilities in Section 7.3, we

introduce a weaker notion of verifiability that fully characterizes guessing capabilities

in Section 7.4. In Section 7.5, we present our metric to gauge the computational diffi-

culty of guessing. In Section 7.6, we move our attention to finding guessing attacks.

7.2 Formalizing the Idea of Verifying a Guess

As mentioned in the introduction, although the intuitive idea of verifying a guess

has been extensively used to analyze guessing attacks in security protocols, it has not

been adequately formalized. The purpose of this section is to formalize the meaning
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of “verifying a guess”.

It is crucial to note that verifiability requires one to distinguish useful information

(a correct guess) from noise — an ability that is independent of security protocols.

For instance, as seen in the example in the introduction, the attacker who knows

{NA}KAB
and {f(NA)}KAB

can easily test whether a message g is the correct guess

of KAB. And the test can be done off-line by checking

sdec({f(NA)}KAB
, g)

?
=Edy

f(sdec({NA}KAB
, g))

Some may argue, however, that for more complicated protocols (e.g., simplified

LGSN protocol [47]) the attacker do need to communicate with other parties to

verify a guess. We adopt a cognitive point of view here: verifying a guess is a process

of using its knowledge, whereas communication is a way for protocol participants to

exchange knowledge.

It is desirable to formalize verifiability independent of intruder models and security

protocols. Although our concern appears to be different from previous chapter on

detecting type-flaw attacks, the methodology is exactly the same: using one’s knowl-

edge to distinguish a message from another. We also build our work on the concept

of recognizability.

Example 16. Consider again the one-way authentication protocol presented in the

introduction. Assume a passive attacker can eavesdrop on communication links and

save all the messages. Then, we can use T0 = {{NA}KAB
, {f(NA)}KAB

} to represent

the attacker’s explicit knowledge. Here and hereafter, whenever needed, we implicitly

add the public unary function symbol f into the term algebra presented in Figure 1.

Suppose that the attacker wants to guess the value of NA and we use variable x to
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signify the guess. Let T = T0 ∪ {x}, σ1 = [NA/x], and σ2 = [NB/x]. Clearly, xσ1 is

a correct guess, but xσ2 is not. Then, it can be shown that σ1 ≈Edy,T σ2. In other

words, the attacker is unable to check whether a guess (of NA) is correct or not.

We now suppose that the attacker wants to guess the value of KAB. Again, we use

x to signify the guess, and let σ3 = [KAB/x] and σ4 = [NB/x]. We choose

u =s sdec({f(NA)}KAB
, x)

v =s f(sdec({NA}KAB
, x))

Then,

uσ3 =s sdec(f({NA)}KAB
, KAB)

vσ3 =s f(sdec({NA}KAB
, KAB))

uσ4 =s sdec({f(NA)}KAB
, NB)

vσ4 =s f(sdec({NA}KAB
, NB))

Consider now, T ⊢ {u, v}, uσ3 =Edy
vσ3 =Edy

f(NA), and uσ4 ̸=Edy
vσ4. By the

definition of operational equivalence, we have σ1 ̸≈Edy ,T σ2.

In the above example, we see that the attacker can discriminate a correct guess

of KAB from NA by investigating the operational equivalence relation between two

guesses (described by two substitutions): if the two different substitutions (resp. a

correct and an incorrect guess) do not satisfy operational equivalence, then the guess

can be verified; otherwise, the attacker cannot capture any nuance and the guess is

not verifiable.

With this hindsight, we say a guess of t is (strongly) verifiable by T under equational

theory E if T▷t (i.e., t is recognizable by ⟨E, T, ϵ⟩). This coincides with our intention
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of proposing the notion of recognizability. As in the previous example, we have

T ̸▷NA and T▷KAB, which confirm that the protocol is vulnerable to off-line guessing

attack.

Example 17. We extend the equational theory Edy to model probabilistic encryption

scheme by adding two public function symbols renc and rdec, and the following two

equations:

rdec(renc(x, y, r), kp(y)) = x

rdec(renc(x, kp(y), r), y) = x

The new obtained equational theory Edyr is as follows.

F+
dy+ pair, senc, penc, hash

fst, snd, sdec, pdec, f
F−

dy+ pk, sk

Edy+ fst(pair(x, y)) = x
snd(pair(x, y)) = y
sdec(senc(x, y), y) = x
pdec(penc(x, pk(y)), sk(y)) = x
pdec(penc(x, sk(y)), pk(y)) = x
rdec(renc(x, pk(y), r), sk(y)) = x
rdec(renc(x, sk(y), r), pk(y)) = x

Figure 6: Equational Theory Edyr.

Similar as {s}t, we use {s}rt to denote renc(s, t, r).

Let us consider the Encrypted Password Transmission (EPT) protocol [62]

Message 1. S → U : NS ·K+
S

Message 2. U → S : {NS · P}rK+
S

Here, we use P to denote the secret password memorized by the user U and shared

with the server S4. Now, suppose that a passive attacker explicitly knows NS, K
+
S ,

4In implementation, the secret password is either stored in plain text or hashed under some
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and wants to guess P . Then, the attacker’s knowledge state is ⟨Edry, T, ϵ⟩, where

T = {NS, K
+
S , {NS ·P}rK+

S

}. Let σ = [P/x] and σ′ = [P ′/x], where P ̸=Edyr
P ′. Here,

we use σ and σ′ to represent a correct and incorrect guesses of P , respectively.

Since the encryption scheme is randomized, the attacker does not know r and thus

it is not able to compute {NS ·P}rK+
S

by the guess of P , say P ′. It is not hard to see that

for all u, v such that T ∪ {x} ⊢ {u, v} we have uσ0 =Edyr
vσ0 if and only if u =Edyr

v.

Similarly, for all u, v such that T ∪ {x} ⊢ {u, v} we have u[P ′/x] =Edyr
v[P ′/x] if and

only if u =Edyr
v. Hence, uσ0 =Edyr

vσ0 if and only if u[P ′/x] =E v[P ′/x]. Because

σ0 =Edyr
[P ′/x] needs not to be true, using the definition of recognizability we get

T ̸▷P . This confirms the claim that this protocol is resistant to guessing attacks

[62, 33].

However, if the protocol uses deterministic encryption, that is the second message

is replaced by {NS · P}K+
S
, then the value of P can actually be guessed. Let T ′ =

{NS, K
+
S , {NS · P}K+

S
} . Towards a contradiction, suppose that σ ≈Edy ,T∪{x} σ0 and

σ ̸=Edy
σ0.

Let u =s {NS · x}K+
S
and v = {NS · P}K+

S
. Clearly, T ∪ {x} ⊢ {u, v} and uσ0 =E

vσ0. By the definition of operational equivalence, we get uσ =Edy
vσ. That is,

{NS · P ′}K+
S
=Edy

{NS · P}K+
S
. So, P ′ =Edy

P and thus σ =Edy
σ0, a contradiction.

Therefore, σ ≈Edy ,T∪{x} σ0 implies σ =Edy
σ0 and thus T ′ ▷ P .

Indeed, (strong) verifiability implies the ability to guess. Nonetheless, we claim

that this notion may fail to fully capture all possible guesses. Here’s an example to

show why.

one-way function.
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Example 18. Let T = {NA, {NA · P}K+
B
} denotes the attacker’s explicit knowledge.

Suppose that the attacker wants to guess the value of P , say P ′. Note that the attacker

does not know K−
B . It is not hard to see that for all u, v such that T ∪ {x} ⊢ {u, v}

we have uσ =Edy
vσ if and only if u =Edy

v. So, u[P ′/x] =Edy
v[P ′/x] if and only

if u[P/x] =Edy
v[P/x]. Since P ′ =Edy

P does not necessarily need to be true, using

the definition of recognizability we know T ̸▷P . In other words, P is not strongly

verifiable by T under Edy.

Now, we suppose that the attacker first tries to guess K−
B . Let σ0 = [K−

B/x].

Towards a contradiction, suppose that σ ≈Edy ,T∪{x} σ0 and σ ̸=Edy
σ0. Let u =s

fst(sdec({NA ·P}K+
B
, x)) and v =s NA. Clearly, T∪{x} ⊢ {u, v} and uσ0 =E vσ0. By

the definition of operational equivalence, we get uσ =E vσ. That is, fst(sdec({NA ·

P}K+
B
, x))σ =Edy

NA. So, σ =Edy
σ0, a contradiction. Therefore, σ ≈Edy,T∪{x} σ0

implies σ =Edy
σ0 and thus T ▷ EdyK

−
B . Then, with the correct guess of K−

B , the

attacker can easily get P .

We thus close this section by remarking that a complete characterization of guessing

attacks requires a more general notion than strong verifiability.

7.3 Accounting for the Attacker’s Guessing Capabilities

7.3.1 Explicit Guesses and Implicit Guesses

We have already seen in Example 18 that a guessable term is not necessarily a

term that the attacker actually guesses. To avoid confusion, we use “explicit guess”

to refer to the actual guess that the attacker makes; and “implicit guess” to refer

to new terms deducible from the attacker’s updated knowledge (i.e., knowledge plus
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explicit guess(es)). Besides, when we say a term is “guessable” or “can be guessed”,

we always refer to implicit guess. In this terminology, we say P is guessable by making

explicit guess of K−
B in Example 18. We tend to omit “implicit” or “explicit” when

it is clear from the context.

As we will see, such a distinction between explicit and implicit guesses is important

to understand the innate nature of guessing attacks. Let us consider some other

examples that highlight this distinction.

Example 19. Let T = {NA, K
+
B , {NA · P}K+

B
} denotes the attacker’s explicit knowl-

edge. Suppose that the attacker aims to obtain P . There are two possible ways:

First, the attacker can explicitly guess P by using

{NA · x}K+
B
σ =Edy

{NA · P}K+
B

Second, it can explicitly guess K−
B by using

fst(pdec({NA · P}K+
B
, y))σ =Edy

NA

These two methods differ in their explicit guesses. Clearly, the one with the shorter

binary length is easier to be guessed.

The above example shows that to launch a guessing attack, there might be several

ways for the attacker to make explicit guess. The following example illustrates the

situation involves multiple explicit guesses.

Example 20. Let T = {NA, K
+
B , {NA · KAB}K+

A
, {NA · {P}KAB

}K+
B
} denotes the at-

tacker’s knowledge. Suppose that the attacker aims to obtain P (i.e., implicitly guess

P ). One straightforward way is by explicitly guessing K−
A and P . Let x and y signify

the two guesses, respectively. At first, the attacker can use

fst(pdec({NA · P}K+
B
, x))σ =Edy

NA



119

to obtain the correct guess of K−
A . Then, it gets KAB by decrypting {NA ·KAB}K+

A
.

Finally, it can use

{NA · {y}KAB
}K+

B
σ =Edy

{NA · {P}KAB
}K+

B

to obtain the correct guess of P .

We close this subsection by remarking that an explicit guess might turn out to be

an implicit one, due to the redundancy in explicit guesses. For example, suppose the

attacker knows {NA, {NA ·P}KAS
} and it makes explicit guesses of KAS and P . Note

that

snd(sdec({NA · P}KAS
, KAS)) =Edy

P

It is not hard to see that P can be derived from the explicit guess of KAS. So, there

is no need to make explicit guess of P . We postpone to Section 7.5 some further

discussion of the redundancy in explicit guesses.

7.4 A Complete Characterization of Guessing

In this section, we introduce a weaker notion of verifiability to fully characterize

the intuitive understanding of guessing.

The possible-worlds semantics lends more sense to recognizability: a term t (indi-

cated by x) is recognizable if and only if x indicates t (i.e., xσ =E t) in all possible

states. This suggests that T ▷ t is insufficient for the case of multiple free variables

(indicating potentially ambiguous messages or unchecked guesses).

However, a closer look at the original definition of recognizability (Definition 3.5.1)

shows that there are two types of free variables. For convenience, we repeat the

definition here.
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Definition 3.5.1 (Recognizability). Let T⃗ = ⟨E, T, σ⟩ be one’s knowledge state and t be

a potentially ambiguous message (denoted by z). Then, we say that t is recognizable

by T⃗ and write T⃗ ▷ t, if and only if ⟨E, T ∪ {z}, σ[t/z]⟩ |= Kdicto(z).

Clearly, the first variable type contains only the variable z and yet the second type

of variables are those occurs in T (i.e., fv(T )).

Example 21. We continue with Example 20. The attacker’s knowledge state is repre-

sented by

T⃗ = ⟨{NA, {NA ·KAB}K+
A
, {NA · {P}KAB

}K+
B
, x, y}, [K−

B/x, P/y]⟩

in which x and y correspond to two distinct explicit guesses made by the attacker.

Then, T⃗ ▷P . However, if the attack only makes a single guess, either K−
B or P , then

T⃗ ′ ̸▷P , where T⃗ ′ is either

⟨{NA, {NA ·KAB}K+
A
, {NA · {P}KAB

}K+
B
, x}, [K−

B/x]⟩

or

⟨{NA, {NA ·KAB}K+
A
, {NA · {P}KAB

}K+
B
, y}, [P/y]⟩

At this point, one may be tempted to conjecture that this more general notion

of recognizability suffices to describe the desired new notion of verifiability. Unfor-

tunately, this is not the case, because in Definition 3.5.1 [t/z] is composed with σ,

introducing a new explicit guess of t, as shown by the following example.

Example 22. Let T⃗ = ⟨{NA, {(NA · NB) · {NA}K+
B
}KAS

, x}, [KAS/x]⟩ denotes the

attacker’s knowledge. Suppose that the attacker wants to obtain K+
B . Note that

the attacker only makes one explicit guess of KAS. It is not hard to see that the

attacker indeed can correctly guess KAS. Then, the attacker’s knowledge becomes

T⃗ ′ = ⟨{NA, NB, KAS, {NA}K+
B
}, ϵ⟩ . Now, it is not hard to see that, without any
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further guess(es), the attacker is still not able to obtain K+
B . On the other hand,

however, it can be shown that T⃗ ▷K+
B .

There is one simple fix to avoid adding the new explicit guess. As explained earlier,

an explicit guess may turn out to be an implicit one by exploiting the redundancy in

explicit guesses. The trick is that we impose condition(s) to ensure that the newly

added explicit guess becomes an implicit one.

Definition 7.4.1 (Weak Verifiability). Let T⃗ = ⟨E, T, σ0⟩ be a knowledge state and t

be a ground term. We say that t is weakly verifiable by T⃗ and write T⃗ ▶ t if T⃗ ▷ t

and Tσ0 ⊢E t.

The condition Tσ0 ⊢E t implies that T ⊢ s and sσ0 =E t for some s. In other words,

the explicit guess can be exactly described by using T , obviating the need to explicitly

guess t. The following lemma states this formally.

Lemma 7.4.2. Let T⃗ = ⟨E, T, σ0⟩ be a knowledge state and t be a ground term.

If T⃗ ▶ t, then there exists a term s such that T ⊢ s and sσ0 =E sσ =E t for all

σ ≈E,T σ0.

Proof. By Definition 7.4.1, we have T⃗ ▷ t and Tσ0▷ t. Then, it follows from Lemma

2.1.6 that there exists a term s such that T ⊢ s and sσ0 =E t. It remains to show

that sσ =E t for all σ ≈E,T σ0.

Let sσ =E t′ and x be a fresh variable. Since σ ≈E,T σ0, we get σ ◦ [t′/x] ≈E,T∪{x}

σ0 ◦ [t/x]. Moreover, since T⃗ ▷ t, we thus have xσ ◦ [t′/x] =E t by Definition 3.3.1.

Hence, t′ =E t. This completes the proof. □

Recall the example given at the end of Section 7.3.1, where the attacker knows NA

and {NA · P}KAS
. Suppose that it only makes one explicit guess of KAS and aims to
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obtain P . Then, his knowledge is represented by

T⃗ = ⟨{NA, {NA · P}KAS
, x}, [KAS/x]⟩

Moreover, it can be shown that T⃗ ▷EdyP and T [KAS/x] ⊢Edy
P . That is, P is weakly

verifiable by T⃗ . Here, the attacker needs not to explicitly guess P .

On the contrary, in Example 22, we notice that

{NA, {(NA ·NB) · {NA}K+
B
}KAS

, x}[KAS/x] ⊬Edy
K+

B

Thus, as noted before, the attacker has to make other explicit guess(es) (e.g., a guess

of K+
B ) to obtain K+

B .

7.4.1 Guessability

Finally, we coin the term guessability (i.e., the attacker’s ability to guess) in terms

of weak verifiability.

Definition 7.4.3 (Guessability). Let T⃗ be one’s knowledge state. Then, a ground term

t is guessable if and only if T⃗ ▶ t.

This provides the last step to formalize and justify the long held intuition between

“guess” and “verify”.

Noticing that the attacker’s knowledge should be updated to ⟨T∪{t}, σ⟩ if ⟨T, σ⟩ ▶E

t, one may reasonably think that we need to recursively add new guessable terms into

the attacker’s knowledge until no new guessable term can be found. It seems probable

that Definition 7.4.3 fails to account for this dynamics.

Somewhat surprisingly, we find that adding t into the attacker’s knowledge makes

no difference in terms of guessability. The following theorem states this formally and

justifies the Definition 7.4.3.
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Theorem 7.4.4. Suppose that ⟨E, T, σ0⟩ ▶ s. Then, ⟨E, T, σ0⟩ ▶ t if and only if

⟨E, T ∪ {s}, σ0⟩ ▶ t.

7.5 The Difficulty of Guessing

Until now we have mainly focused on the possibility of guessing. In this section,

we concern ourselves with the difficulty of guessing, that is, how much computational

efforts are required to obtain a guessable term t, provided T⃗ ▶ t.

It should be noted that different guessing problems incur different computational

cost. For example, (explicitly) guessing a 128-bit symmetric key is significantly harder

than guessing a poorly chosen password. In fact, there is a physical argument [71] that

implies that guessing a 128-bit symmetric key is “practically infeasible”. Moreover,

even for the same guessing problem, the efforts can vary considerably in different ways

of (explicit) guessing. For instance, in Example 19, the attacker can either explicitly

guess P or explicitly guess K−
B to obtain P . Let us assume K−

B is a 1024-bit private

key and P is a poorly chosen password. Then, guessing P could be much easier than

guessing K−
B .

Thus, despite the guessability results, we also need a new notion to characterize

the difficulty of guessing. One may think of using the binary length of all the ex-

plicit guesses. Unfortunately, this simple way may fail to faithfully characterize the

difficulty, as the following examples show.

Example 23. Let us consider two scenarios, in which the attacker’s knowledge state

is, respectively, represented by
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T⃗1 = ⟨{NA, {NA · P}KAB
, {NA ·K+

A}KAS
}, x, y},

[KAB/x,KAS/y]⟩

and

T⃗2 = ⟨{NA, {{NA · P}K+
B
}KAB

, {K−
B}KAS

, x, y},

[KAB/x,KAS/y]⟩

Suppose that the attacker wants to obtain {P}K+
A
in the first scenario and P in the

second. In both cases, these can be done by explicitly guessing KAB and KAS. It is

tempting to conclude that guessing {P}K+
A
and P is equally difficult.

However, a closer examination reveals the difference.

In the first scenario, the attacker can use

fst(sdec({NA · P}KAB
, x))σ =Edy

NA (16)

to obtain the correct guess ofKAB. Note that Equation (16) does not involve the guess

of KAS. So, the attacker can correctly guess KAB without guessing KAS. Similarly,

we see that the attacker can also correctly guess KAS without guessing KAB. After

correctly guessing KAB and KAS, the attacker can easily get P and K+
A , and thus

derive {P}K+
A
. To sum up, the maximum number of times the attacker has attempted

to obtain {P}K+
A
is 2|KAB | + 2|KAS |.

On the contrary, in the second scenario, the attacker can only use

fst(sdec(sdec({{NA · P}K+
B
}KAB

, x), pdec({K−
B}KAS

, y)))σ =Edy
NA (17)

to obtain the correct guesses of KAB and KAS, and thus derive P . This means the

attacker has to guess KAB and KAS simultaneously. Hence, the maximum number of

times it has attempted to obtain P is 2|KAB |+|KAS |.
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Therefore, guessing in the second scenario is considerably harder than in the first

scenario.

Example 24. Let

T⃗ = ⟨{NA, {NA · P}KAB
, {KAS}P , {NA ·K+

B}KAS
, x, y},

[KAB/x,KAS/y]⟩

denotes the attacker’s knowledge state. Suppose that the attacker wants to obtain

{P}K+
B
. Similar to the first scenario in the previous example both explicit guesses

(of KAB and KAS) can be made independently. But we have to be careful not to

conclude that the maximum number of times the attacker has attempted to obtain

{P}K+
B
is also 2|KAB |+|KAS |.

Let us take a closer look at T⃗ . We notice that after obtaining the correct guess of

KAB the attacker can use snd(sdec({NA · P}KAB
, KAB)) =Edy

P to derive P , which

can be further used to derive KAS as sdec({KAS}P , P ) =Edy
KAS. So, the attacker

can derive KAS only by a single explicit guess of KAB. In other words, the maximum

number of times the attacker has attempted is just 2|KAB |.

As noted in the above examples, the number of bits that the attacker has to guess

might be less than that of all explicit guesses. There are two main reasons for this:

(i) some explicit guess(es) can be readily made without dealing with other guesses,

dividing an overall hard guess problem into several easier ones; and (ii) the redundancy

inherent in all the explicit guesses makes it possible to derive useful information

between them.

We thus propose to use the search space, rather than the number of bits of the
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explicit guesses, to characterize the difficulty of guess.

Definition 7.5.1 (Computational Difficulty). We define minmax(T⃗ ▶ t) as the min-

imum maximum number of times one might attempt to obtain t. Moreover, we

say that the computational difficulty of T⃗ ▶ t is in order of n (or n-bit hard) if

n = ⌈log2minmax(T⃗ ▶ t)⌉.

Now, it is not hard to see that T⃗1▶{P}K+
A
and T⃗2▶P in Example 23 are in order

of log2 (2
|KAB | + 2|KAS |) and |KAB|+ |KAS|, respectively; T⃗ ▶{P}K+

B
in Example 24 is

in order of |KAB|.

Although Definition 7.5.1 allows us to evaluate the difficulty of guess accurately,

it does not provide much insight into how to determine minmax(T⃗ ▶ t) and thus

the difficulty of T⃗ ▶ t. Obviously, much future work remains to be done for solving

minmax(T⃗ ▶ t). There are two issues to be considered in addressing this problem:

first, to explore the redundancy in those explicit guesses, and second, to partition the

explicit guesses into groups that can be done without involving others. We do not

explore these issues further here.

7.6 Detecting Guessing Attacks

In this section, we briefly discuss how the proposed framework can be used effec-

tively in detecting guessing attacks.

7.6.1 A Cognitive Perspective

Before diving into the technical discussion, it helps to have a clear distinction

between passive and active attacks (not just guessing attacks).
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7.6.2 Passive Attacks

The passive attacker does not interact with protocol participants; whether or not

it can launch an attack solely based upon the eavesdropped data. We thus informally

view the passive attack as a computing problem: given a set of observed messages,

whether it is possible to “compute” confidential data.

In the literature, intruder deduction [32, 3, 42, 36] and static equivalence [4, 3,

14, 27] correspond to this computational view, where computing is regarded as a

knowledge reasoning process.

7.6.3 Active Attacks

Besides its ability to reason about knowledge as the passive attacker, the active

attacker can also communicate with legitimate participants. Benefit from a cognitive

perspective, this can be understood in two complementary ways:

1 (Communication view) we can think of communication with external entities

as a way of gaining new information that cannot be deduced from its current

knowledge.

2 (Computational view) we can regards the external entities as as an internal

oracle that computes new information from its current knowledge.

Example 25. Let us consider again the protocol presented in the introduction:

Message 1. A→ B : {NA}KAB

Message 2. B → A : {f(NA)}KAB

An active attacker can act in the role of A initiate communication with B. Assume

that the attacker’s explicit knowledge is represented by term set TI = {I, A,B, {NA}KAB
}.
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From a communication point of view, the attacker does not know {f(NA)}KAB

(i.e., TI ⊬Edy
{f(NA)}KAB

) at first. Only after exchanging messages with B, it obtain

message {f(NA)}KAB
and thus its explicit knowledge becomes

T ′
I = {I, A,B, {NA}KAB

, {f(NA)}KAB
}

Clearly,

TI ̸≡Edy
T ′
I (18)

From a computational point of view, the attacker is endowed with an oracle that

takes t as input and outputs

g(t) = senc(f(sdec(t,KAB)), KAB) (19)

where g is a public function symbol that never occurs in the original term algebra T .

As the oracle is internal, we thus incorporate the above equation to equation theory

Edy and get E ′
dy. Therefore,

TI ≡E′
dy

T ′
I (20)

In this light, we can categorize the security protocol models into two groups: one

is based on communication view, such as Strand Space Model [52], CSP [101], and

applied pi-calculus [4]; the other is based on computational view, such as multiset

rewriting [24], constraint solving[92], Prolog rules [12], and Horn clauses [13].

We remark that a clear distinction between passive and active attack enables us

to determine whether the attack is primarily due to the attacker’s knowledge or

its interaction with legitimate participants. Moreover, a thorough understanding of

passive attacks will shed important light on the study of active attacks and security

protocol design as well.
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7.6.4 Passive Guessing Attacks

In terms of passive guessing attack, the knowledge reasoning problem is that, given

a set of observed messages, whether it is at all possible to correctly guess any confi-

dential data.

Our framework formulates the above knowledge reasoning problem accurately. We

use term set T to describe the set of observed messages, term t to represent some

confidential data, variables set X to correspond to all the guess made by the attacker,

and substitution σ with Dom(σ) = X to indicate the correct guesses. Because passive

eavesdropping is performed over legitimate protocol sessions, observed messages must

comply with the protocol specification and thus we can assume T to be a ground term

set. Likewise, t is also ground. Then, ⟨E, T ∪ X, σ⟩ models the passive attacker’s

knowledge state. Finally, the problem of detecting passive guessing attacks is reduced

to deciding ⟨E, T ∪X, σ⟩▶ t.

At this point, detection of passive guessing attacks boils down to deciding guess-

ability. The last missing step is to give a decision procedure for ⟨E, T ∪ X, σ⟩▶ t.

Unfortunately, in general, this may be undecidable [3].

7.6.5 Deciding Guessability under standard Dolev-Yao intruder model

In part II, we propose a terminating procedure to determine recognizability under

standard Dolev-Yao intruder model [48]. Here, we adopt this procedure to decide

guessability under Dolev-Yao model.

Although the original procedure (i.e., algorithm solve) is intended for deciding

recognizability, it can be easily extended to decide guessability.
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Theorem 7.6.1. Let ⟨T, σ⟩ be a knowledge state, t be a ground term, and x be a fresh

variable. Suppose that Tσ ∪{t} does not contain function symbol fst, snd, pdec, or

sdec. If Tσ ⊢Edy
t, solve(⟨T ∪{x}, ϵ, σ ◦ [t/x]⟩) returns ⟨T ′, η′, σ′⟩, and xη′ =s t, then

T⃗ ▶ t.

Please refer to Chapter 5 for more details on the algorithm.

7.6.6 Extension to Active Guessing Attacks

To handle an active attacker, it is important to model security protocols. As

mentioned in Section 7.6.1, existing formal methods for protocol modeling fall into

two groups: communication based and computation based.

For simplicity, we adopt a computational view here: we regard the active attacker

as a special passive attacker with an oracle. More specifically, we can add equations

describing the oracle to the original equational theory. For instance in Example 25,

we just add Equation 19 to equation theory Edy (and obtain equational theory E ′
dy).

This method is similar to that of [10], which uses a set of second-order variables

to keep track of the computations. In general, a symbolic trace [53, 18, 30] that

describes the sequences of actions (receive or send) of a given protocol role brings

about n distinct equations, where n is the number of messages sent by the role.

By extending the original equational theory, we get a new equational theory, say

E ′, to model the active attacker’s capabilities5. Therefore, the problem of detecting

active guessing attack boils down to deciding guessability under the new equational

theory E ′.

5In fact, the original term algebra T is also extended to T ′, which includes several new public
function symbols modeling the oracle computation.
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It should be noted that deciding ▶ under the new equational theory E ′ may be

undecidable. After all, the our approach considers an unbounded number of sessions

of the protocol [103, 26], for which protocol insecurity is undecidable [51]. Approx-

imation techniques [40, 13] are usually employed to handle unbounded verification.

Due to space limit, we do not pursue these further here.

7.6.7 Active guessing attack is passive guessing attack?

Thanks to the clear distinction between passive and active attack, we find surpris-

ingly that in many cases the enhanced capabilities of active attacker does not impact

guessability at all; that is to say, active attacker is no more powerful than passive

attacker in term of guessability.

For example, in the protocol given at the beginning of the introduction, if an

attacker knows {{NA}KAB
, {f(NA)}KAB

} and makes explicit guess of KAB, then all

actively guessable terms are actually passively guessable, as the following proposition

shows.

Proposition 7.6.2. Let T⃗ and T⃗ ′ be two knowledge states and t be a ground term.

Suppose that

T⃗ = ⟨Edy, T, [KAB/x]⟩

T⃗ ′ = ⟨E ′
dy, T, [KAB/x]⟩

T = {{NA}KAB
, {f(NA)}KAB

, x}

and t does not contain function symbol g, sdec, fst, or snd. Then, T⃗ ▶ t if and only

if T⃗ ′▶ t.

To prove Proposition 7.6.2, we need the following lemma.
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Lemma 7.6.3. Let S = {NA, KAB}. Suppose that l → r ∈ RE′
dy
. If S ⊢ C[lθ], then

S ⊢ C[rθ].

Proof. We make induction on ∥C∥. For the base case, ∥C∥ = 1, a case by case analysis

shows that S ⊢ rθ if l → r ∈ REdy
. Now, we consider the case when l =s g(x) and

r =s senc(f(sdec(x,KAB)), KAB). Without loss of generality, let θ = [t/x]. Then,

S ⊢ g(t) and thus S ⊢ t. Since C[rθ] =s rθ =s senc(f(sdec(t,KAB)), KAB) and

S ⊢ {t,KAB}, we have S ⊢ C[rθ]. Now, we suppose the claim holds for all ∥C∥ ≤ k.

For ∥C∥ = k + 1, let C =s f(t1, t2, · · · , tn) where tj =s C
′[lθ] for some context C ′.

Clearly, S ⊢ ti for 1 ≤ i ≤ n. By induction, we get S ⊢ C ′[rθ] and thus

S ⊢ f(t1, t2, · · · , C ′[rθ], · · · , tn) =s C[rθ]

This completes the proof. □

Proof of Proposition 7.6.2. (Sketch) For simplicity, we let T = {{NA}KAB
, {f(NA)}KAB

,

x}, σ0 = [KAB/x], S = {NA, KAB}, and η = σ0 ◦ [t/y]. Clearly, Tσ0 ≡Edy(E
′
dy)

S.

(“If” part) Using the definition of guessability, we have T⃗ ▷ t and Tσ0 ⊢Edy
t. Note

that Edy ⊂ Edy
′. So, Tσ0 ⊢E′

dy
t. Thus, to prove T⃗ ▶E′

dy
t it remains to show that

T⃗ ′ ▷ t, that is, yσ =E′
dy

t for all σ satisfying σ ≈E′
dy,T∪{y} η.

Let σ be an RE′
dy
-normal substitution satisfying σ ≈E′

dy ,T∪{y} η. Then, by Definition

3.3.1, for all terms u and v such that T ∪ {y} ⊢ {u, v} we have uσ =E′
dy

vσ if and

only if uη =E′
dy

vη. We further assume that neither u or v contains function symbol

g. Note that Ran(σ) does not contain function symbol g either, because otherwise σ

is not RE′
dy
-normal. It is not hard to see that uσ =E′

dy
vσ if and only if uσ =Edy

vσ;

likewise, uη =E′
dy

vη if and only if uη =Edy
vη. Thus, for all terms terms u and v such

that
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• T ∪ {y} ⊢ {u, v}, and

• neither u or v contains function symbol g,

we have uσ =E′
dy

vσ if and only if uη =E′
dy

vη. That is, σ ≈Edy,T∪{y} η. By assumption,

T⃗ ▷ t and thus yσ =Edy
t. Clearly, yσ =E′

dy
t, as required.

(“Only if” part) Using the definition of guessability, we have T⃗ ′▷ t and Tσ0 ⊢E′
dy

t.

To prove T⃗ ▶ t, we need to show T⃗ ▷ t and Tσ0 ⊢Edy
t.

(i). We show Tσ0 ⊢Edy
t. By assumption, Tσ0 ⊢E′

dy
t and thus S ⊢E′

dy
t. Using the

definition of ⊢E′
dy
, we have S ⊢ s and s →!

RE′
dy

t for some s. It follows from Lemma

7.6.3 that S ⊢ t. Note that S ≡Edy
Tσ0 and S ⊢Edy

t. We know that Tσ0 ⊢Edy
t.

(ii). We show T⃗ ▷ t, that is, yσ =Edy
t for all σ satisfying σ ≈Edy ,T∪{y} η. Let σ

be an arbitrary substitution satisfying σ ≈Edy ,T∪{y} η. Then, by Definition 3.3.1 we

know that Dom(σ) = {x, y} and uσ =Edy
vσ if and only if uη =Edy

vη for all u, v

such that T ∪ {y} ⊢ {u, v}. Note that Ran(σ) does not contain function symbol g.

By T⃗ ▷KAB, it can be shown that xσ =s KAB. Then, without loss of generality, we

let u′ and v′ be two terms such that T ∪{y} ⊢ {u′, v′} and both may contain function

symbol g. We need to prove u′σ =E′
dy

v′σ if and only if u′η =E′
dy

v′η. Let n be the

number of times the function symbol g occurs in u′ and v′. We proceed by induction

on n.

For the base case, n = 0, by assumption, we know that u′σ =Edy
v′σ if and only if

u′η =Edy
v′η. Now, we suppose that u′σ =E′

dy
v′σ if and only if u′η =E′

dy
v′η for all

n ≤ k.

For n = k+1, without loss of generality, we can let u′ =s C[g(w)] for some context

C and term w. Since T ∪{y} ⊢ u′ and g(w) ⊆ u′, it can be shown that T ∪{y} ⊢ g(w).
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Note that g does not occur in T ∪ {y}. So, T ∪ {y} ⊢ w.

Since u′ →RE′
dy

C[senc(f(sdec(w,KAB)), KAB)], we have

u′σ →RE′
dy

C[senc(f(sdec(w,KAB)), KAB)]σ

=s C[senc(f(sdec(w, x)), x)]σ
(21)

Note that T ∪ {y} ⊢ {x,w}. It is clear that T ∪ {y} ⊢ senc(f(sdec(w, x)), x).

We also notice that T∪{y} ⊢ C[g(w)], g(w) does not occur in T∪{y}, and T∪{y} ⊢

senc(f(sdec(w, x)), x). Thus, we obtain T ∪ {y} ⊢ C[senc(f(sdec(w, x)), x)]. Let

u′′ =s C[senc(f(sdec(w, x)), x)].

Consider now, T ∪ {y} ⊢ {u′′, v′} and the number of times g occurs in u′′ and v′

is k. By induction hypothesis, we have u′′σ =E′
dy

v′σ if and only if u′′η =E′
dy

v′η.

Moreover,

u′η =s C[g(w)]η →RE′
dy

C[senc(f(sdec(w,KAB)), KAB)]η

=s C[senc(f(sdec(w, x)), x)]η =s u
′′η

(22)

Then, we know from (21) and (22)that u′σ =E′
dy

u′′σ and u′η =E′
dy

u′′η. Thus,

u′σ =E′
dy

v′σ if and only if u′η =E′
dy

v′η.

By Definition 3.3.1, we get σ ≈E′
dy ,T∪{y}η. By assumption, T⃗ ′ ▷ t, we know from

Definition 3.3.1 that yσ =E′
dy

t. Note that Ran(σ) does not contain g. Consequently,

yσ =Edy
t. Therefore, T⃗ ▷ t, as required.

This completes the proof. □

7.7 Conclusion

In this chapter, we present a general framework of guessing, which clarifies and

formalizes the intuitive understanding of “verifying a guess”. Thanks to its following
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innovative features

• independence of any specific adversary model,

• support of multiple (explicit) guesses, and

• definition to measure the computational difficulty of guessing

this framework enables us to detect passive and active guessing attacks, both of which

rely critically on the decision problem ▷.

Apart from the technical contributions of this chapter, other messages we want to

convey are that passive attacks are as important as active attacks, especially in the

study of guessing attacks; and that both communication and computational views of

active attacks may offer new insight in security protocol analysis.

There are two major limitations of this study. First, the standard Dolev-Yao model

considered in Section 7.6.4 assumes “perfect encryption”, that is, {m}k =Edy
{m′}k′

if and only if m =Edy
m′ and k =Edy

k′. Such an assumption is unrealistic for

cryptographic primitives with visible algebraic properties such as exclusive or and

homomorphic operator, see [38] for a survey. Second, our definition of computational

difficulty is too general to be practically useful and it is non-trivial to determine

minmax(T⃗ ▶ t). Moreover, our analysis in Example 23 and 24 assumes a uniform

distribution of the guessing value and thus there is no better way than brute force

guessing. However, in reality, weak secret (say, n bits) usually has low entropy, making

it easier to guess (< n-bit hard).

Our future work will be aimed at addressing these limitations. In particular, we

plan to investigate the problem of detecting guessability under more general equa-

tional theories and develop automatic tools to detect guessing attacks.



CHAPTER 8: CONCLUSIONS

In this thesis, we provide a satisfying answer to the question “What is meant by

saying that a message can be verified” by proposing a third knowledge notion —

recognizability — in security protocols. The notion of recognizability lies somewhere

between deduction and static equivalence, which are two traditional knowledge no-

tions in security protocols. A decision procedure is given to decide recognizability

under standard Dolev-Yao intruder model. More importantly, the notion of recogniz-

ability is also applied in various security protocol analysis tasks.

The notion of recognizability is extended to elicit semantics of protocol narrations

and thus a protocol compilation procedure. The new protocol compilation process

achieves a consensus view of security protocols for protocol designer, protocol imple-

menter, and even the attacker. Such a view is important in a sense that (i) it enables

the protocol designer to realistically consider other possible protocol executions rather

than the expected one, (ii) it ensures that protocol implementer to conduct all neces-

sary internal checks in protocol implementations, and (iii) it provides a path to more

secure protocol designs and implementations. Two types of attacks are identified as

those can be thawed through adjusting the protocol implementation. In particular,

type-flaw attacks often can be prevented through implementation refinement.

The notion of recognizability also facilitate a general framework to reason about
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off-line guessing attacks. The new framework is

• faithful (fits the common sense of guessing attacks),

• expressive (accounts for multiple guesses), and

• complete (captures all guessing attacks in a symbolic setting).

Moreover, this framework enables us to characterize the computational difficulty of

guessing by making a clear distinction between explicit guesses and implicit guesses.
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[21] Caleiro, C., Viganò, L., and Basin, D. On the semantics of alice&bob specifi-
cations of security protocols. Theor. Comput. Sci. 367, 1 (2006), 88–122.

[22] Carlsen, U. Generating formal cryptographic protocol specifications. In Pro-
ceedings of the 1994 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 1994), SP ’94, IEEE Computer Society, pp. 137–146.

[23] Ceelen, P., Mauw, S., and Radomirović, S. Chosen-name attacks: An overlooked
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