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ABSTRACT 

JACOB THOMAS DANIEL. Autonomous Navigation of an Electric All-Terrain Vehicle 
Along Waypoint-Defined Trails. (Under the direction of DR. AIDAN F. BROWNE) 

 

 Previous research attempted to autonomously control an internal combustion all-

terrain vehicle platform but was unsuccessful due to the inability to reliably control 

speed. To address this, an electric motor conversion is performed on the platform to 

enhance its stability and controllability. A robust trail detection methodology is applied to 

this electric all-terrain vehicle (eATV) prototype to autonomously traverse a 3- to 5-

meter-wide wooded trail, an environment that introduces unique challenges for 

autonomous vehicle control. The vehicle can follow a predetermined route defined by 

periodic waypoints placed by a human along a trail. A suite of real-time image processing 

algorithms is developed to respond to input from an Intel RealSense depth camera 

mounted on the platform. Various simultaneous solutions for path following are 

prioritized using a confidence scoring approach. Image processing and control techniques 

are also introduced for obstacle detection and avoidance schemes. The prototype vehicle 

has successfully navigated waypoint routes along walking trails for over 500-meters 

while detecting obstacles and pedestrians in real-time. To accommodate global 

positioning system denial that occurs occasionally in wooded environments, algorithms 

based on image processing are implemented for navigation toward the subsequent 

waypoint. An adaptive throttle-braking algorithm is also introduced to maintain a targeted 

velocity throughout the traversed environment. This research investigates and fulfills a 

budget-conscious methodology for autonomous off-road vehicle navigation along trails. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

For this research, off-road autonomy can be defined as a vehicle autonomously 

traversing any demarcated trail topography. These environments include walking, ATV, 

and nature trails with asphalt, gravel, and dirt terrains. Most current autonomous ground 

vehicles navigate well-defined and marked roadways. An accessible unmanned vehicle 

capable of traversing a variety of complex terrains as compared to commercially 

available flat-ground autonomous vehicles would provide a substantial boost for research 

in many topic areas. Several use cases for a vehicle with such capabilities would benefit 

industries such as construction, military, search and rescue, fire risk evaluation, 

exploration, supply transportation, and farming. Limitations arise when evaluating the 

cost of one commercially available vehicle that likely requires modification to achieve 

off-road autonomy. Navigation is another concern for off-road vehicles as the 

environments are often taxing on GPS connectivity due to potentially remote locations 

and dense tree foliage.  

1.2 Problem Statement 

It is necessary to advance budget-conscious methodologies for off-road 

autonomous ground vehicle navigation. Small ATVs are a well-developed solution for 

off-road trail environments but are not easily speed-controlled in autonomous 

applications. A methodology is needed to control an existing ATV platform for 

autonomously navigating trail environment topographies with intermittent GPS access. 
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1.3 Objectives 

This research aims to develop a methodology for an existing ATV to navigate 

along a waypoint-defined route autonomously. The tasks required the conversion of a 

petrol-based ATV to an EV platform for simplified, reliable control. Computer vision 

was implemented with an RGB-D camera for enhanced image processing to improve path 

detection. The vehicle should receive a waypoint-guided route of coordinates to define 

the desired path accounting for areas of GPS denial. Lastly, the vehicle must implement 

detection of and maneuvering schemes around debris, obstacles, and pedestrians.  
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CHAPTER 2: LITERATURE REVIEW 

A literature review was conducted to survey existing autonomous control of 

vehicle powertrains, trail detection, localization, and navigation.  

2.1 Powertrain 

Ground vehicle powertrains are typically limited to petrol-based ICEs and electric 

motors. The powertrain delivers a rotational force to at least one drive axle comprising 

two or more wheels or a tracked assembly. Distinguishing the attributes of the ICE and 

electric powertrains allowed a justified selection for the prototype vehicle. It is important 

to note that ICEs are inherently difficult to control in autonomous control schemes. 

2.1.1 Internal Combustion Engine 

In efforts to develop a multi-terrain capable, budget-conscious autonomous 

vehicle, limited commercially available starting platforms can traverse the challenging 

terrain and a distance over 500 m. This often drives researchers to use ICE-powered 

vehicles, specifically designed for off-road conditions, such as ATVs. ATVs are capable 

machines designed for riders to navigate trails and varying terrains, though they can be 

troublesome when integrating with an autonomous system. Prior research has been 

conducted to develop methodologies for CAN bus throttle control of an ATV platform 

[1]. The CAN-bus-controlled throttle body was actuated via a servo motor attached to a 

drive flange in place of the original cable-driven accelerator with better success. The 

variability of ICEs, however, as the engines become heat soaked or in variable loading 

scenarios, is not conducive for high-fidelity autonomous control. Additionally, 

minimizing costs to an air-cooled and carbureted platform exploits these limitations 
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further, as it is known that heat directly changes the characteristics of which a carburetor 

flows a mixture of air and fuel to the ICE [2]. Expecting any form of linear throttle 

control for a budget-conscious autonomous ICE-powered vehicle is improbable without 

the aid of a deep-learning engine.  

2.1.2 Electric Drive 

Electric powertrains are predominantly outfitted in commercially available 

autonomous vehicles commonly found in transportation, manufacturing, and cleaning 

service applications. Aside from the increased charge time compared to an ICE fuel fill-

up, there are few drawbacks to using electric motor drivetrains in autonomous vehicles. 

The linear speed control, motor and battery efficiency, and low-speed torque all aid in 

implementing a more predictable control scheme [3]. Typical DC motor curves express 

an optimal operation speed where output torque, power, and efficiency are nearest the 

maximum. A Vex Robotics DC motor example, as shown in Figure 1, models the 

expected behavior of a DC motor. To achieve the optimal operating range of any DC 

motor, a specific gear reduction is often applied to maintain high efficiency for the 

specific operational requirements [4].  



5 
 

 

Figure 1: Vex Robotics Example DC Motor Curve 

2.2 Path Detection 

To successfully navigate through walking trail topographies, a means of computer 

vision is required for autonomous vehicles. Methodologies to detect pre-existing trails 

vary from contrasting appearance of the color imaging to pattern matching and 2D and 

3D LiDAR. Color vision processing uses a captured image of an environment as visible 

to the human eye. LiDAR methods generate an array of distance values from a 

measurement device at varying angles. After comparing two disparity images, depth 

processing assigns a distance value to each pixel in an intensity graph. 

2.2.1 Color Vision Processing 

One method of interpreting a color image to define a trail includes increasing the 

image saturation and targeting a specific color range given the path material. The 2018 

research tested asphalt, saturated dirt, dirt, and tracked paths in the [5]. This research 
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steps through the implementation of color saturation segmentation, template matching, 

and scanline feature detection.  

Figure 2 features a tracked path with two different color tones indicating the path 

direction. Oversaturating the image and searching a histogram of color ranges can 

produce a binary image indicating the trail and can be further processed to determine the 

desired direction-of-travel result.  

 

Figure 2: Example Histogram Back Projection Tracks: Detected Track Start points (1), 
Left and Right Tracks (2), Connected Mask (3), Final Results (4) 

 

Figure 3 illustrates the use of pattern matching in the case of matching a frame 

including a patch of gravel with other portions of the image. A confidence score of the 
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pattern can be processed across the image and indicated at the likely path location. As a 

result, a general path direction and shape can be procured. 

 

Figure 3: Example Template Matching: Input (1), Template (2), Template Matching 
Matrix (3), Result (4) 

 

Figure 4 demonstrates a scanline function searching for determined features 

around a specified point in the image. In this case, the scanline detects a roadside and 

places a point at the vector end. Scanning around the point 180 degrees forward can be 

used to find multiple roadside detections and plotted to develop a general path shape.  
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Figure 4: Example Roadside Detector: Scanline Scheme (1), Single Scanline (2), 

Detected Roadside (3), Final Result (4) 

 

Other methods for rapid trail detection have been developed using the contrasting 

appearance approach and minimizing the computational demand by indicating two 

perspective lines along the trail direction. This method can be used where a definable 

edge detection is available. 

2.2.2 LiDAR 

2D LiDAR has been used in autonomous vehicles for obstacle detection and path 

detection where applicable. LiDAR is frequently used in mapping applications where 
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obstacles are vertically invariable (e.g., straight walls, cabinets, chairs.) [6]. When placed 

to view in the horizontal direction, a 2D LiDAR module can only detect distance at the 

same horizontal level as the sensor. For example, a robot tasked to drive through a 

hallway without touching any objects by only using LiDAR would fail if a limbo bar is 

stretched across the hallway either above or below the detection plane of the sensor. [7] 

implemented a methodology to improve 2D LiDAR in obstacle detection applications by 

lowering the angle of the device toward the ground. This increases the likelihood of 

detecting objects resting on the ground without regard for the object height; however, the 

detection range becomes limited as the device can only register the tangent distance, 

which can be visualized in Figure 5. 

 

Figure 5: Example 2D LiDAR Use Case for Lower-Level Obstacle Detection 

 

Schemes have been developed using a 2D LiDAR on an actuated third axis to 

develop a low-cost 3D LiDAR, essentially, but this method would only further limit the 

detection capabilities in the rugged trail environment [8]. In contrast, 3D LiDAR maps a 

visible frame of the surrounding area on all axes. The research [9] implemented 3D 

LiDAR for curb detection on an autonomous road vehicle. This method captured the curb 

dimensions and path proximities for avoidance and intersection mapping. The 3D LiDAR 

data was filtered into different layers of probable surfaces, including the road, curb, 
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sidewalk, and off-road areas. This environmental perception capability would be 

advantageous in off-road trail applications, though it would be considered out of the 

budget-conscious scope for this research. 

2.2.3 Depth 

Depth imaging provides another method for multidimensional vision by capturing 

two still images of differing perspectives and calculating the depth of a particle. This 

binocular disparity calculation is the same method performed by the human eye, as 

expressed in Figure 6 [10]. 

 

Figure 6: Example Demonstration of Stereo Vision Methodology 

 

Figure 6 details a depth camera emitting laser points to increase the effectiveness 

of the binocular camera configuration. This depth imaging method could be implemented 

in place of a 3D LiDAR to perform distance calculations analogous to standard RGB 

color imaging [11].  
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2.3 Localization 

For a vehicle to operate autonomously, it must locate itself locally or globally. 

GPS, GNSS, and SLAM are methods to acquire location and orientation information 

based on the vehicle's position relative to a known position of one or more defined 

objects. GPS calculates position based on the U.S. satellite-based radionavigation system. 

Using GNSS provides access to the international multi-constellation satellite system. 

SLAM implements a map-building algorithm to orient and track the position of a vehicle 

with respect to the surrounding environment. 

2.3.1 Global Positioning System 

GPS acquisition allows a user or robotic device to geolocate based on available 

orbital satellites. These devices are common, relatively inexpensive, and compatible with 

most programming languages and computing hardware. Because it uses triangulation 

methods, a GPS unit must connect with three or more satellites, each with its range of 

error due to the earth's curvature, to find where the three ranges collide. Ideally, a 

connection with four or more satellites would provide the most accurate GPS coordinate 

estimation [12]. A heading value can be determined from the compass internal to each 

GPS unit or by capturing the difference between GPS coordinates with respect to time. A 

GPS unit can more precisely measure its velocity than its actual position [13]. 

2.3.2 Global Navigation Satellite System 

Similar to GPS, GNSS uses orbital satellites to acquire global coordinates. 

However, GNSS accesses greater numbers of satellites in orbit, thus increasing the 

accuracy, speed of acquisition, and satellite availability. GNSS modules are integrated 
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with KF and EKF to take advantage of the optimized estimation algorithms [14]. The 

estimation algorithms often coincide with SLAM operations for autonomous vehicle 

operations.  

2.3.3 Simultaneous Localization and Mapping 

SLAM is a locally based positioning system optimized for known areas of interest 

[15]. SLAM methods are used in autonomous vehicle applications such as the iRobot 

Roomba to acquire the features of an environment, build a model of the environment, and 

learn an optimal route to complete its tasks given the environment [16]. SLAM has been 

implemented on various other autonomous vehicles, often configured with LiDAR to aid 

in obstacle avoidance and environment mapping [17,18]. 

2.4 Navigation 

To navigate through a defined environment, an autonomous vehicle must have a 

method for interpreting the environment and reacting accordingly. For instance, if the 

vehicle is in motion, it must steer to follow a path, increase throttle to climb a hill, and 

brake to avoid a collision. Methods for path following include waypoint navigation, 

where a human marks coordinates along a path with the intention for an unmanned 

vehicle to follow later. Adaptive throttle and obstacle avoidance are methods of vehicle 

navigation necessary for responding to the surroundings within an environment. 

2.4.1 Waypoint Navigation 

To the avid vehicle user, point-to-point driving directions are a seemingly 

necessary tool for traveling outside of the daily commute. Likewise, for an autonomous 
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vehicle, a sense of direction is necessary to traverse between two known points. 

Waypoint navigation has been implemented in many robotic systems, including UAVs, 

UGVs, and USVs. Prior research [18,19] has expanded the applicability of breadcrumb 

navigation, a user-defined trail of points to later be returned by an autonomous vehicle. 

This methodology is advantageous for applications where a region may be scouted before 

introducing an autonomous vehicle for search and rescue, surveillance, or fire risk 

evaluation. An example of a predetermined waypoint route is included in Figure 7. 

 

Figure 7: Predetermined Waypoint Route Along UNC Charlotte Fitness Trail 

2.4.2 Vehicle Navigation 

An autonomous vehicle can maneuver point to point in a flat terrain environment 

via commanded waypoint navigation [19]. Calculating the vehicle heading and 

translating the GPS coordinates from global to local orientation introduced a direction for 

the vehicle to base a steering operation, as shown in Figure 8. Quite frequently, in off-

road trail environments, GPS connectivity may be lost or denied due to the location or 
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foliage coverage. Operating in such conditions requires disregarding a denied waypoint 

and continuing through the terrain to the next available waypoint [20].  

 

Figure 8: Autonomous Waypoint Navigation in GPS-Denied Scenario 

 

Various steering schemes have been introduced in autonomous vehicles based on 

vision data. For example, pollution acquisition research [21] developed a swim-lane 

approach to traverse aquatic environments in a guided direction based on a vision model. 

As the USV operated its course, pollution was recognized and targeted for extraction. 

The methodology provided the USV to change course toward the targeted pollution and 

return to its course accordingly following the completion of the procedure.  
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2.5 Off-Road Autonomy 

With the ever-advancing technologies enabling higher-fidelity autonomy, it is 

clear that autonomous vehicle research will continue to expand into non-traditional road 

types. Non-traditional road types can be defined as unmarked walking trails, game trails, 

dry riverbeds, and other similar environments. Precise vehicle control is necessary to 

traverse such environments. Factors such as terrain grade, wheel traction, and tire 

deflection may also be accommodated in off-road autonomy control schemes. 

2.5.1 Autonomous Vehicle Control 

System integration is crucial for reliable off-road autonomy. Programming 

architecture was evaluated in part by [22] with the implementation of a multi-layer 

hierarchical control to reduce the need for human supervision seen in Figure 9. This 

research details the difficulties in traversing point to point without an intermediate step or 

provided variables such as GPS waypoints. Reactive planning and control were 

implemented in the autonomous scheme in response to a LADAR vision system. The 

team also found discrepancies with computer vision during the introduction of wooden 

environments and tuning methods based on human perspective.  
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Figure 9: Multi-Layer Hierarchical Control for Reliable Autonomous Control 

 

Steering schemes specific to trail terrain environments have been researched. ML 

models for predictive steering based on path detection were implemented to enhance the 

algorithmic trajectory calculations in Figure 10, [23]. Including input factors of current 

steering angle, vehicle speed, and trajectory, the regression model performed analyses to 

effectively learn and adapt to cases outside the initially implemented algorithm. 
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Figure 10: Machine Learning Steering Model for ATV 

2.5.2 Environmental Factors 

To traverse terrains with varying traction, it may be necessary to account for 

environmental factors such as wheel deflection, wheel slippage, tire tread penetration, 

and friction coefficients of local dirt, gravel, and asphalt textures. Studies of agricultural 

tires have found a maximum of 10% travel reduction in some instances of high soil 

deformation [24]. Hyperelasticity models have further been conducted to model the 3D 

finite analysis of tire interaction with various terrains [25]. Analytically, the factors 

presented in tire traction research are valid and impact navigation models in off-road 

autonomy applications [26]; however, the results are marginal in testing scenarios similar 

to the scope of this thesis and should therefore be negligible. 
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CHAPTER 3: DESIGN OVERVIEW 

Evaluation of the accessible and off-road capable vehicles at UNC Charlotte 

ultimately led to a previously customized senior design project tasked to build a rugged 

military prototype for the 2017 AFRL Design Challenge. This vehicle was designed for 

airlift seizures to aid troops by minimizing pack weight for special operations. The 

vehicle provided a great starting platform but would need a significant overhaul to 

perform reliable autonomous navigation. 

3.1 Base Vehicle 

The AFRL team chose the base platform to be a Scorpion HD Mini ATV. This 

vehicle featured a 120 cc 4-stroke carbureted engine with a centrifugal transmission 

including forward, neutral, and reverse gear selections. The team designed and built a 

modular chassis off the original vehicle frame to transport the mission gear and house the 

added electronic and mechanical components shown in Figure 11. 
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Figure 11: Initial State of Base Vehicle: ATLAS for 2017 AFRL Design Challenge 

 

For the initially intended use, the team also implemented a servo actuated throttle 

cable, linearly actuated hydraulic braking system, linearly actuated gear selector 

mechanism, relocated gas tank, retrofitted fuel pump, and an offset 12 VDC Vex Bag 

motor actuated steering column. Additionally, two LiDAR systems, an IR camera, and a 

tether system were added to aid the semi-autonomous guidance system. In this form, the 

vehicle was named the All-Terrain Load-bearing Autonomous System, or ATLAS for 

short. The ATLAS was controlled via an NI myRIO microcontroller with the embedded 

LabVIEW graphical programming language.  
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3.2 Vehicle Contributions 

The vehicle had not been used for the five years prior to this research. As expected, 

before beginning the baseline tests, several aspects of the ATLAS needed a refresh or 

replacement, such as the gas tank, fuel filter, air filter, and carburetor. The steering 

system was also damaged during the 2017 competition and required new gear sets in the 

Vex Versaplanetary gearbox, as shown in  

Figure 12. The resulting steering ratio was converted to a 360:1 with a 10:1, 4:1, 

and 9:1 gear set inline. 

 

Figure 12: Before (top) and After (bottom) Steering Gearbox Refresh 
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During testing, it was determined that the onboard GPS unit was not accurate 

enough at short bursts of low speed to analyze the engine acceleration and velocity. The 

update speed for the GPS unit was not quick enough to provide a precise speed 

measurement as velocity is variable; however, it was very accurate at a constant velocity. 

To provide higher-fidelity speed calculations, a US Digital quadrature rotary encoder was 

added to the rear axle to interpret the counts per revolution. A simple VI was added in 

LabVIEW to calculate the actual wheel speed to verify against the GPS output. A 

structure was assembled from a recycled Vex Robotics classroom kit and a TETRIX 

MAX gear pack to minimize fabrication time. This structure supported the encoder freely 

outside the ATLAS chassis from an existing mounting location, as shown in Figure 13. 

The ID of an 80-tooth aluminum gear was bored to the OD of the rear axle and affixed 

between the two lock nuts with sufficient torque holding the rear axle centered within the 

rear trailing arm. This gear was oriented to mesh with a second 80-tooth aluminum gear 

to drive the concentrically installed encoder.  
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Figure 13: Implemented Design of Free-Structure Encoder 

 

Another evolution of the initial base vehicle included a conversion of the braking 

system. The ATLAS originally had an Actuonix L16 linear actuator which was not 

designed to be constantly powered. The internal hardware was also not designed for a 

robust application, such as the required braking torque for the ATV. A rugged Uxcell 12 

VDC torque motor was used in place, retaining the original threaded rod and circuitry 

within the actuator, as shown in Figure 14. 
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Figure 14: Retrofit Connection for Torque Motor and Linear Actuator Mechanism 

3.3 EV Conversion 

The ICE displayed several attributes that would not be conducive to autonomous 

control. The next step was to begin the design phase of the conversion, but first, the 

electric conversion of the ATLAS required a new name, the eATV.  

3.3.1 EV Conversion Kit 

Upon researching commercially available motors, it became apparent that few 

plug-and-play options would be available in the budget-conscious price range. Especially 

in a time of an international shipping crisis, the options to procure an inexpensive electric 

motor capable of powering a 140 kg vehicle were somewhat limited. The selected Vevor 

conversion kit included a 48 VDC 2000 W motor and supporting motor controller 



24 
 

designed for sprocket-driven applications. This kit, shown in Figure 15, was initially 

designed for small scooters, go-karts, or ATVs where the user would manually control a 

twist throttle.  

 

Figure 15: Vevor 48 V 2000 W Electric Conversion Kit 

 

The EV conversion kit included additional manual switches for speed selection, 

keyed ignition, and brake lamp indicator. The keyed ignition and speed selection were 

intended to be retained, so relays were implemented to complete the circuit as 

commanded by the myRIO. The 48 V system for the motor and motor controller 

consisted of 4 SLA1116 12 V 18 Ah batteries configured in series. The resulting working 

voltage of 46-54 V was confirmed acceptable for the kit. The maximum rated current 

requirement for the motor was specified as 36 A. The theoretical maximum run time 

would be 30 minutes at maximum throttle using Equation 1. 
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 𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 ൌ
𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑢𝑟𝑟𝑒𝑛𝑡
 [1] 

3.3.2 Conversion Design 

Beginning the conversion, the ICE and other engine-critical components were 

removed from the vehicle. The ICE, transmission, gas tank, starter, ignition coil, stator, 

carburetor, throttle servo and linkage, PCV valve, fuel pump, and fuel pressure regulator 

were no longer necessary and removed.  

To enable the maximum performance of the new electric motor, the gear 

reduction needed to be reduced further than the original 12:45 ratio of the ICE 

configuration. Material was recycled from a previous course project to reduce the cost of 

the design implementation; the mechanism included two standoffs and two pillow 

bearings to support an axle. Likewise, a solid half-inch aluminum base plate was recycled 

from the project and designed to withstand the dynamic loading as mounted on an off-

road vehicle. 

Using two chain-and-sprocket assemblies, the gear reduction was reduced to 

13.02:100 final drive ratio with the intermediate axle. The intermediate axle allowed the 

motor to drive a 10:40 ratio, thus translating the rotational orientation to a 25:48 ratio. 

Figure 16 details the overall conversion mechanism, which retains the rear axle 

configuration. 
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Figure 16: EV Conversion Drivetrain Assembly 

 

After the initial design was assembled and implemented, it was found that the 

chain would not clear the vehicle's frame when under load. A simple fix required the 

drive chain and sprocket to be relocated on the opposing side of the pillow bearing and 

the rear sprocket to be spaced off the rear axle an equivalent amount, as shown in Figure 

17. A Delrin spacer was fabricated to offset the rear sprocket.  
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Figure 17: Post-Install Modification to EV Drivetrain Assembly 

 

Figure 18 displays additional views of the intermediate reduction from the electric 

motor. The base plate is attached to the original vehicle frame tubing at the base of the 

ICE mounting location. The weight savings from the conversion totaled 2.75 kg in fully 

operational condition, batteries included. The conversion design could easily be 

optimized for the specific loading provided by the motor parameters, gear reduction, and 

vehicle weight to reduce material costs and weight overall.  
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Figure 18: Rear Dimetric (left) and Front Isometric (right) Views of the Revised 
Assembly 

3.3.3 EV Power Modeling 

Following the initial power calculations, a digital twin of the eATV drivetrain was 

generated to calculate an expected acceleration and current draw. Using MATLAB, 

parameters of the vehicle, electric motor, and battery bank were incorporated.  

First, the electrical and mechanical aspects of the electric motor were entered in the 

Motor & Drive block available in MATLAB Simscape. The maximum torque, maximum 

power, and rated motor speed were derived from the Vevor manual. The torque control 

time-constant was left as default from the Motor & Drive block, while the motor 

efficiency and efficiency torque were estimated based on calculations from similarly 

capable motors with available motor curves.  
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Figure 19: MATLAB Motor & Drive Block Parameters 

 

The Motor & Drive block feeds directly into a model representing the dual chain 

system and retains the translation and gear reduction of the motor output. The output of 

the chains linked in series is directed as the input for the Longitudinal Vehicle block. This 

block was given a vehicle mass, tire radius, and frontal area of 0.5 m^2 calculated from 

the eATV. A rolling coefficient of 0.05 was interpolated from [27] while the air drag 

coefficient and constant gravity were left as default from the Longitudinal Vehicle block. 
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Figure 20: MATLAB Longitudinal Vehicle Block Parameters 

 

The model below shows the final drivetrain control system block diagram in 

MATLAB Simscape. A PID control system was integrated to increase the simulated 

throttle [28], increasing the vehicle speed to a determined input setpoint. A KP value of 

0.6 and a KI value of 0.1 were determined to most accurately represent the modeled 

vehicle by experimentation, as shown in Figure 21.  
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Figure 21: MATLAB Simscape Simulation of eATV 

 

Figure 22: Proportional and Integral Control for Vehicle Speed Simulation 

  

The output plot comparing the anticipated current draw at the 2.5 m/s targeted 

velocity is displayed in Figure 23. Since the control scheme does not include a derivative 

gain, the simulation calculates a peak current draw nearing 15 A when accelerating to the 

velocity setpoint. The significance of the current draw simulation is to ensure that the 

maximum expected current draw remains in a manageable range for the battery array and 

EV conversion motor controller. 
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Figure 23: MATLAB Simulation: Current Draw at 2.5 m/s Target Velocity 

 

 The anticipated current draw for the 6 m/s targeted velocity is displayed in Figure 

24. The peak current draw reaches the maximum current rating of the EV conversion kit 

at 42 A. The acceleration to the higher velocity setpoint draws more current from the 

battery array, however, still levels off to 20 A at a steady-state velocity. The EV 

conversion kit is rated for a continuous 34 A, so the maximum tested speed of 6 m/s (13 

MPH) will not stress the system. Additionally, the PI controller simulates a worst-case 

scenario, where an applied derivative gain would account for various factors and 

gradually accelerate the current draw. A model with a derivative gain would not illustrate 

the immediate overshoot as displayed from the discussed model. 
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Figure 24: MATLAB Simulation: Current Draw at 6 m/s Target Velocity 

3.4 System Architecture 

The control program for the eATV was developed in NI LabVIEW. The ATLAS 

vehicle was originally developed using this programming language and it was decided 

best to retain the original programs for baseline testing. Methods for computing, sensing, 

and actuation were implemented in the LabVIEW language to integrate some of the 

existing features of the ATLAS. Computing was conducted using an embedded controller 

and a combination of laptop devices. Sensing was obtained from a ground speed encoder, 

GPS unit, and camera system. Actuation was implemented for the steering, braking, and 

throttle subsystems in addition to the emergency stop devices. 

3.4.1 Computing 

The NI myRIO served as a processing unit for the eATV. This microcontroller 

can receive compiled LabVIEW programs as machine code, providing an entry-level 



34 
 

device with ample libraries and modules to compute, simulate, or control most 

mechatronic systems. The myRIO includes two 34-pin MXP connectors and one 20-pin 

MSP connector, as shown in Figure 25. 

 

Figure 25: NI myRIO Port Display and Configuration 

 

Figure 26 illustrates the main hardware components connected to the myRIO on 

port A.  
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Figure 26: Implemented myRIO Expansion Port A 

 

Figure 27 illustrates the main hardware components connected to the myRIO on 

port B 
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Figure 27: Implemented myRIO Expansion Port B 

 

A vehicle laptop was placed on the eATV to enable remote control testing. The 

laptop receives user input via Bluetooth from the Xbox One® controller and remotely 

shares variables to the myRIO via WiFi. An off-vehicle base-station laptop was also 

connected via WiFi to control and record the main programs running on the myRIO. 

Figure 28 displays the hardware configuration for the remote-control testing scenario. 

The rightmost laptop was used as the user base station, while the leftmost laptop resided 

on the vehicle and communicated with the user controller. The configuration was 

designed for convenience by allowing the main computing hardware to be off of the 

vehicle and readily accessible for troubleshooting or on-site programming as necessary.  
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Figure 28: Hardware Configuration for Remote Vehicle Control 

 

Figure 29 illustrates the revised hardware configuration following the EV 

conversion for autonomous trail navigation. The user base station was removed from the 

setup and replaced with an RGB-D camera to relay vision data to the laptop for 

autonomous control.  
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Figure 29: Hardware Configuration for Autonomous Vehicle Control 

3.4.2 Sensing 

3.4.2.1 Ground Speed Encoder 

The US Digital quadrature encoder [29] added to the rear axle of the eATV is 

powered by a 5 V supply. The encoder algorithm converts the number of pulses per time 

constant to determine the ground velocity in MPH.  

3.4.2.2 Intel RealSense 

The Intel RealSense D455 depth camera offers a 16 m range in the Z-direction 

and a 90- and 60-degree FOV in the X and Y directions, respectively. Using the 

RealSense Viewer application, the camera can be fine-tuned for an accuracy of less than 

2% at 4 m [30]. To interface with the myRIO, RealSense offers an SDK with several 

example files to access and command the RealSense API from LabVIEW. This interface 

and the IMAQ Vision and Motion module in LabVIEW opened the gateway for obtaining 
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color, monochrome, and depth imaging simultaneously for real-time simulation. NI 

Vision Assistant is a tool that includes abundant vision processing libraries that can be 

used to manipulate RGB color scales, apply ROIs and masks, and perform binary 

analyses. The existing base algorithms serve as a good foundation to begin developing 

terrain-specific image processing techniques. Throughout the eATV system code, the 

Intel RealSense vision is evaluated in Vision Assistant to perform navigation maneuvers 

accordingly.  

3.4.2.3 GPS 

 The GlobalSat BU-353s4 GPS module was implemented on the ATLAS and 

retained in the design of the eATV. The device is readable in the LabVIEW software, 

providing access to the unit's latitude, longitude, heading, and velocity. The GPS unit was 

connected via USB 2.0 to the myRIO and mounted to the topmost portion of the vehicle 

structure. 

3.4.3 Actuation 

3.4.3.1 Steering Sub-system 

ATVs are commonly steered using a human-actuated handlebar, providing a 

leverage system to rotate a steering column. The steering column turns a rack, forcing the 

front wheels either left or right simultaneously. The ATLAS vehicle implemented an 

offset steering column to be actuated by a DC motor. Using a DC motor to achieve 

precise positioning is impossible without feedback. A rotary encoder with an axis of 

rotation aligned along the offset steering column was implemented to obtain positional 
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feedback during actuation. The ATLAS steering program was implemented with a 

pulsing method to actuate the motor in the desired direction for short bursts to allow 

ample time to receive position feedback from the steering sub-system. The steering 

program was enhanced for the eATV to increase the frequency of pulses and lower the 

motor duty cycle. As the DC motor pulses to achieve an input position, the feedback loop 

has time to calculate its current position and choose to continue pulsing or pause.  

3.4.3.2 Braking Sub-system 

The stock ATV features a hydraulic braking system actuated by a rider via a hand 

lever. To remotely actuate the hydraulic cylinder, a linear actuator was implemented on 

the ATLAS to compress the hydraulic cylinder. The linear actuator implemented on the 

ATLAS was prone to failure due to the small size and loading experienced in the 

mechanism. The actuator was upgraded to feature a 100 RPM Uxcell torque motor, 

providing ample torque to actuate the hydraulic braking system. The actuator can achieve 

0.333 inches per second in the forward brake-applying direction while retaining the 

original Actuonix threaded rod mechanism.  

The myRIO was programmed to send commands to the linear actuator via a signal 

wire. A potentiometer provides a percentage of 5V from the circuit as an input to the 

myRIO. As the actuator nears the maximum extended or retracted positions, the myRIO 

is programmed to command the retrofitted torque motor to slow to a stop before over-

manipulating the mechanism.  
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3.4.3.3 EV Conversion Kit 

The procured EV conversion kit included an electric motor and motor controller 

designed with a proprietary interface. A method to interface with the added motor 

controller was developed. The EV conversion kit can be operated with minimal input to 

the motor controller besides actuating a keyed switch and providing a 0-5 V supply from 

a twist throttle. When actuated, the keyed switch interrupts the throttle signal, thus 

preventing unwanted motion. Actuating this switch remotely via the myRIO was deemed 

an intermediate E-stop for the eATV.  

However, since the kit was for a 48 V system, the keyed switch operated by 

interrupting the connection between two low-amperage 48 V wires. A relay was added to 

indirectly apply a connection between the existing wires from the Vevor motor controller, 

as the myRIO cannot supply 48 V.  
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Figure 30: Vevor Motor Controller Wiring Diagram 

3.4.3.4 Throttle Sub-system 

The stock ATV included a hand-actuated throttle which actuated a cable-drive 

carburetor. The ATLAS implemented a 3-wire servo to remotely actuate the throttle cable 

when supplied a 0-5 V signal. For applications such as the stock ATV, the EV conversion 

kit was also designed for use with a hand-actuated throttle. The drive motor controller 

receives a signal via a 0-5 V potentiometer within the throttle mechanism. To control the 

eATV, the existing wiring for the ATLAS throttle servo was rerouted to the drive motor 

controller in place of the hand-actuated twist throttle. This also allowed the original 

myRIO pinout for the throttle to be retained. The output PWM signal was changed to a 

scaled 0-5 V, calibrated from the hand throttle attachment included in the EV conversion 

kit. When a constant 5 V was applied, the hand throttle would proportionally output 0.85 
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V to 4.25 V as twisted throughout its range. From the experiment, it was confirmed that 

the mechanism used a potentiometer.  

3.4.3.5 Emergency Stop 

To stop the drivetrain in an emergency, a wireless E-stop was implemented to 

transmit a control signal to a receiver on the eATV. When actuated, the signal removes 

power from a relay to unlatch the NC circuit where the electric drive motor is enabled.  

Additionally, a manual E-stop is located at the topmost portion of the eATV chassis to 

allow for de-powering the electronics in an emergency. In the event of an operating 

malfunction, the user can wirelessly remove power from the electric motor and then 

manually press the electronics E-stop if necessary. 

3.5 Cost of Conversion 

 The total cost of the electric ATV prototype is displayed in the eATV conversion 

totals $2,430.24, accounting for the EV Conversion kit, Vex motor controllers, motor and 

gearing structure, myRIO, relays, and the Intel RealSense d455 depth camera.   
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Table 1: Categorized Cost of Prototype and eATV 

Category Expense   

Base Vehicle $1,499.99   

Steering $148.33   

Braking $109.99   

Computing $2,664.00   

EV Conversion $759.76  

eATV Platform 
$2,430.24 

Vehicle Control $1,251.48  

Vision $419.00  

Electrical Hardware $196.89   

Mechanical Hardware $2,035.00   

Total $9,084.44   
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CHAPTER 4: METHODOLOGY 

An onboard computer is programmed to drive the myRIO code in response to the 

processed RGB-D vision data. Obstacles are detected in a timely manner and avoided 

appropriately using the mobility system. In instances of GPS denial, the vehicle may 

continue traversing the environment until the next waypoint is achieved. Testing 

methodologies took place on the UNC Charlotte Fitness Trail along a 500+ m 

predetermined route. The route is predetermined to ensure the target for the vehicle is an 

achievable trajectory on the given trail. 

4.1 Vision Processor 

The SDK for LabVIEW was accessed to streamline the integration of the Intel 

RealSense D455 depth camera. The custom Vision Assistant algorithms were accessed 

via IMAQ to interpret the captured color and depth images within LabVIEW. In real-

time, the eATV vision program implemented a Vision Assistant express VI for path 

detection via converting the color image to a binary form following the provided 

contrasting appearance. The program also implemented an analysis of the pre-established 

depth image for path estimation, obstacle detection, and pedestrian detection. This image 

was obtained from a screengrab using an IMAQ Extract tool. External pop-up displays 

within LabVIEW provided the user with a visual cue for troubleshooting purposes on the 

EUD. All vision scripts were performed remotely on the laptop base station to minimize 

the computational workload on the myRIO.  
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4.1.1 Color Vision 

The example color image displayed in Figure 31 represents an asphalt portion of 

the UNC Charlotte Fitness Trail. The image was first processed using an HSL-Saturation 

color plane extraction, scanned for a threshold of 0-25 for dark objects, and lastly, an 

advanced morphology and particle analysis were conducted to fill holes and remove 

unnecessary noise. 

 

Figure 31: Binary Path Detection: Upper Left (UL): Color Image, Upper Right (UR): 
Saturation Plane. Lower Left (LL): Binary Threshold, Lower Right (LR): Advanced 

Morphology 

4.1.2 Depth Vision 

The example depth image displayed in Figure 32 represents the same previous 

instance of the UNC Charlotte Fitness trail, only using the RealSense depth SDK for 

LabVIEW. The goal of implementing depth imaging for path detection is to consider the 

surrounding environment and target the objects furthest away. A color plane extraction of 
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the green plane was conducted to allow depth data to be interpreted as an intensity plot in 

the image. Next, a threshold analysis of 0-12 was performed to highlight the far regions 

then advanced morphology was used to encapsulate the geometry. To determine the 

location of the targets, a circle detection method was implemented to generate the largest 

circle in an area and compute the X- and Y-pixel coordinates for each circle. From that, a 

steering methodology was implemented. 

 

Figure 32: UL: Depth Image, UR: Color Extraction, LL: Binary Analysis, LR: Circle 
Detection 

4.1.3 Obstacle Detection 

To evaluate potential obstacles found in the construction or maintenance of the 

trail environments, a traffic cone, warning sign, and large barrel were placed for 

processing and obstacle avoidance. This method used depth imaging to locate a specific 

color in an ROI, as seen in Figure 33. The depth image was first masked to display the 

upper half only. A color plane extraction of the green plane was performed and converted 

to binary similar to the distance target, though only for bright images. Circles are then 
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applied to the advanced morphology geometries and can be used in the mobility system 

for avoidance as located areas of interest. 

 

Figure 33: UL: Depth Image, UR: Masked Color Extraction, LL: Binary Analysis, LR: 
Circle Detection 

Pedestrians were considered unique obstacles, so they were identified using an 

enhanced obstacle detection algorithm. Steps 1 and 2 are the same across both means of 

obstacle detection; however, pedestrians are matched against a file of example 

pedestrians viewed in the depth image as displayed in Figure 34. The vision scripts were 

developed to interpret the image and display an ROI around the targeted pedestrian and 

assign a numerical quantity and the location of each with a success rate of 85.0 to 97.5%. 
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Figure 34: UL: Depth Image, UR: Color Extraction, LL: Binary Analysis, LR: Shape 
Matching 

4.2 Mobility System 

Following the computer vision analyses, remote variables were adjusted and 

shared with the myRIO to send commands for the steering, braking, and EV system 

accordingly. With the primary approach determined to use depth imaging, an image with 

at least one circle within a specified ROI is prioritized over the path detection from the 

color image. Initial testing determined that the located areas of interest are more likely to 

be the trail direction when closest to the horizon versus higher in the Y-direction.  

4.2.1 Depth Vision Mobility 

A scaled weighting was applied to the image in a simplified FOV region 

achievable by the steering maneuverability to accommodate this realization. A value of 

four was placed in the center to weight the region appropriately, and a linear decline was 

applied from the center out to +X and -X in the cartesian directions 3 to 1 and -3 to -1, 



50 
 

respectively. The negative value provides a sense of direction left or right for the steering 

program. In the Y-direction, to exponentially increase the weights from top to bottom of 

the ROI, an exponential trend of 2 to 5 to 11 to 23 was introduced. When multiplied 

through the region, this combination retained the weights under 100 numerically to define 

the weightings as percentages, as shown in Figure 35. 

The three distinct circles were applied to geometries of interest using a developed 

processing algorithm. The centroid of the largest apparent circle in the geometry was 

recorded and used in calculating the general location of the most likely trail direction. 

Figure 34 displays the lower left circle in cell -22 as the successfully selected geometry. 

 

Figure 35: Weight Assignment of Targeted Path Depth Imaging 

 

The weightings were applied to the ROI using a lookup table to minimize 

computational tasks required to perform analysis on the raw data. Figure 36 was uploaded 
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into Vision Assistant with a constant lookup table defining the weightings based on the 

color of the located X or Y pixel coordinate. The color range defined the pixel value for 

red to be 0 and blue to be 0. The green plane was increased in increments of 9 from 0 to 

243, indicating the lookup table from 0 to 27 starting from the bottom to top and left to 

right. If a geometry of interest was detected outside the green plane lookup table, the off-

white color resulted in a 0 weighting for the detected target. 

 

Figure 36: Colorized Lookup Table 

4.2.2 Color Vision Mobility 

When no geometries of interest were detected, the mobility program defaulted to 

path detection, searching for the path centroid and turning based on the area centroid. 

This implementation of path detection is not extensive but effective with the correction 

color threshold applied to the image. The program would similarly define a scaled 

steering trajectory based on the calculated location from the processed path detection. 
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Figure 37: Centroid-based Trajectory for Path Detection Methods 

4.2.3 Operational Mobility 

Non-vision-related mobility included the adaptive throttle and braking program, 

essentially cruise control. The UNC Charlotte Fitness Trail is a winding trail with 

sections of 10% grade or more. Since it was found that the Vevor electric motor did not 

have regenerative braking capabilities like other, more expensive conversion kits, the 

vehicle increased speed without throttle when directed downhill. The cruise control 

model maintained a calculated speed range for the actual encoder velocity given a 

specified throttle input to prevent any danger to the equipment or passersby. This 

approach was implemented by feathering the brakes in downhill sections as the actual 

speed exceeds the threshold and increasing throttle requirements to maintain speed uphill. 
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4.3 GPS Localization 

GPS was used to track the eATV location during testing and provide guidance for 

path selection. The eATV vision scripts do not process any trajectory circles or path 

detection scenarios at an intersection. The route is defined to only have T-intersections, 

so the vehicle stops and pings the next waypoint if neither vision processing algorithm 

produces a valid result. Calculated from the current vehicle heading, current GPS 

coordinates, and the subsequent waypoint coordinates, the eATV can determine a general 

direction of the next waypoint and turn either left or right accordingly. It was defined that 

in a use-case scenario, a user would be knowledgeable of the eATV capabilities and 

would mark the waypoints as necessary. 

 

Figure 38: Predetermined Waypoint Route 

4.4 Testing 

Testing is necessary to validate the advancements in converting the vehicle to an 

electric vehicle. Data exploiting acceleration curves to known velocities in flat, uphill, 
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and downhill scenarios proved the more reliable, consistent, and predictable method of 

propulsion. The vision testing on both color vision and depth vision methodologies was 

performed in real-time with the eATV in motion. Due to this, integration testing was 

partially complete. Further integration testing occurred when implementing obstacle 

avoidance and intersection detection and maneuvering. 

4.4.1 Comparative Testing 

Analogous testing was performed to compare the ICE versus the electric 

conversion at the UNC Charlotte Recreational Field 12 and Charlotte Research Institute 

(CRI) parking deck. Initially, with the ICE, the vehicle was tested on a large stretch of an 

open field where no risk was involved for the users and away from pedestrians. The 

vehicle was tested at varying throttle duty cycles three times each for a 200 ft distance. A 

low-throttle test (LTT) was conducted at 60% throttle duty cycle, a medium-throttle test 

(MTT) was conducted at 85% throttle duty cycle, and a high-throttle test (HTT) was 

conducted at 100% throttle duty cycle or full throttle. To illustrate, Figure 39 represents 

the three runs of low, medium, and high-speed testing methods. The data captured 

throughout each test run was recorded for comparison against the eATV. The vehicle was 

then taken to the CRI deck with a 7% grade slope to perform the same percentage tests 

three times each uphill for a 100 ft stretch and to record data as the vehicle coasted 

downhill for the 100 ft stretch. It is necessary to record the uphill and downhill data as 

there were frequent hills at the final testing location.  

Following the first test session, it was determined that the ICE engine becoming 

heat soaked throughout the test run would not provide an accurate representation of the 

nature of the vehicle at each independent throttle percentage. Likewise, the tests were 



55 
 

repeated, allowing the ICE to cool down between runs for the flat ground, uphill, and 

downhill applications. It was also determined that 200 ft was not enough run time for the 

vehicle to achieve a steady state between the GPS velocity and encoder velocity; 

therefore, the distance traveled for each test was increased to 250 ft. 

After the EV Conversion was completed, testing began in the same manner; the 

LTT, MTT, and HTT three times each. However, the eATV could be run back-to-back 

without heat-soaking issues or artificially skewing the data representation.  

 

Figure 39: Orientation for Flat Ground Velocity Tests 

4.4.2 Color Vision Testing 

Testing the color vision implementation included several thousand images of the 

UNC Charlotte Fitness Trail. Images interpreting the color image for path detection 

across both asphalt and gravel topographies were conducted to determine a confidence 

score for each. An image processing algorithm was developed to record and compare the 
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output score of each path detection script. The algorithm acquires the highest scoring 

script from each iteration and provides the data associated with the best script available 

for downstream processing. 

4.4.3 Depth Vision Testing 

Several thousand images of the Fitness Trail were analyzed to obtain a 

statistically valid success rate. The LabVIEW algorithms were run through Vision 

Assistant and analyzed for the successful detection of areas of interest. Obstacle detection 

was tested by capturing several hundred images of the selected obstacles and measuring 

the likelihood of detection in the specified ROI.  

4.4.4 Operational Testing 

Operational testing comprised the entire autonomous system test and integration 

of the developed features. Independent tests were conducted on the real-time estimated 

path trajectory, steering response, adaptive cruise control, intersection and obstacle 

detection, and waypoint tracking. Following the independent testing, an entire system test 

covered the completion of a 500+ m run and recorded the number of waypoints achieved, 

instances one or more wheels left the trail, intersections detected, obstacles detected, 

pedestrians detected, obstacles maneuvered, and average speed.  
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CHAPTER 5: RESULTS AND DISCUSSION 

Testing provided substantial sample data to validate the electric conversion, GPS 

localization, implemented vision processing techniques, and autonomous navigation. 

Comparisons of the ICE versus EV conversion were conducted on flat, inclined, and 

declined ground levels. Computer vision scripts were implemented and analyzed for 

success rate following on-site testing. GPS localization was confirmed and validated 

against a referee device along the UNC Charlotte Fitness Trail. Autonomous navigation 

and system integration were tested along the trail to successfully traverse 500+ meters 

and evaluate the eATV research. 

5.1 Comparative Testing 

A comparison between the two vehicle configurations was necessary to evaluate 

the improvements following the EV conversion from the original ICE platform. The same 

tests were performed in each configuration to effectively compare, recording the 

necessary data to capture overall acceleration and speed stability. 

5.1.1 ICE Warm Start 

The original ICE powertrain was tested before the eATV conversion. The LTT, 

MTT, and HTT sessions were conducted along a 200 ft distance. Each test session 

included three runs of each throttle duty cycle back-to-back from high speed to low 

speed. The ambient temperature at the time of testing was 83 degrees Fahrenheit. During 

the flat ground test, it was noted that the average velocity changed for each throttle duty 

cycle as the testing period progressed. 
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Figure 40 displays the first three runs of the full-throttle test series. It is noted that 

the vehicle has a nonlinear acceleration curve and does not reach a steady state. For this 

research, steady state is defined as a test series reaching and maintaining a maximum 

speed within 1 MPH. 

 

Figure 40: Flat Ground HTT: Warm Start 

 

The test series were overlaid by aligning the first significant value of the collected 

data, as shown in Figure 41. The variation of the runs is noted to have a significant 

difference at the beginning of the run. After a few seconds, the variation is minimized as 

the vehicle nears a steady state and stays around 3% for the remainder of the run. 
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Figure 41: Averaged HTT & Variation: Warm Start 

 

Following the FTT, the MTT was performed for three runs of 200 ft each. This 

test displayed a decrease in speed between the first and last two runs. Figure 42 displays 

the data again not reaching a steady state. This is apparent as the data does not reach peak 

velocity until the end of the run, allowing no consecutive data points for averaging. 
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Figure 42: Flat ground MTT: Warm Start 

 

Likewise, Figure 43 displays that the variation between the three MTTs is more 

significant than that of the previous series, about 7% after three seconds. After six 

seconds, the variation between the three test series reaches a steady state as the three runs 

maintain acceleration curves within a tight tolerance of each other. 
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Figure 43: Averaged MTT & Variation: Warm Start 

 

During the LTT, there was a visible decrease in velocity as the vehicle traversed 

the 200 ft stretch, as seen in Figure 44. The session's third and final test series was nearly 

2 MPH slower than the first LTT series attempt, a 20% decrease. At this point, the 

vehicle experienced a power loss due to the ICE's heat cycling. This was caused by the 

test sessions being conducted back-to-back. It was also noted that the second and third 

series began decelerating during the LTT session. 
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Figure 44: Flat Ground LTT: Warm Start 

 

The variation also displays the increased speed differential, totaling 17% for the 

steady-state portion after fourteen seconds in Figure 45. The variation is higher, as noted 

in the previous figure, responding to the heat cycling of the ICE. This differential also 

caused the variation to reach steady state later in the run compared to the previous tests. 
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Figure 45: Averaged LTT & Variation: Warm Start 

 

Summarizing the results from the flat ground ICE warm-start test, Figure 46 

details an overlay of the three averaged speeds for the LTT, MTT, and HTT to achieve 

200+ m. The initial acceleration to reach the maximum speeds for each throttle duty cycle 

changes between each respective throttle test. If attempted for use in an autonomous 

control scheme, compensation variation would be necessary to respond to throttle 

commands accordingly. 
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Figure 46: Summarized Throttle Response: Warm Start 

 

The uphill testing was conducted the same day following the relocation of the ICE 

vehicle from the UNC Charlotte Recreational Field 12 to the CRI deck. Figure 47 

represents the uphill test data captured in a 100 ft span. The vehicle did not reach a steady 

state but did demonstrate a distinct change in acceleration around the 2-second marker.  
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Figure 47: Uphill HTT: Warm Start 

 

Like the flat ground HTT, the variation between the uphill HTT was low, around 

4%, as displayed in Figure 48. Various factors may contribute to this, such as cooling 

aspects of higher velocity travel for an air-cooled ICE, operating conditions for the 

carburetor at full throttle, and the more rapid initial acceleration to the maximum speed 

for the HTT. 
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Figure 48: Averaged Uphill HTT & Variation: Warm Start 

 

Figure 49 details the uphill MTT. Similarly, around the 2-second marker, the 

vehicle changes pace and accelerates less until completing the test series. The MTT does 

not achieve steady state on the uphill test. This is due to the ICE vehicle accelerating on a 

more challenging, uphill grade which impacts the rolling friction with the ground and 

inertia acting on the vehicle in the downhill direction.  
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Figure 49: Uphill MTT: Warm Start 

 

Once again, the variation between the three series is low during the middle to the 

second half of the test in Figure 50. Another attribute of the uphill testing scenario was 

the concrete topography versus the grassy field of Rec Field 12. This in addition to the 

shorter testing scenario and more challenging terrain grade may have provided a more 

repeatable scenario for the ICE-powered vehicle. It is also likely that the loading on the 

vehicle during the uphill test limited the initial acceleration to respond more like the heat-

soaked ICE following the first test series.  
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Figure 50: Averaged Uphill MTT & Variation: Warm Start 

 

The LTT of the ICE warm start session concluded with the 60% series. Figure 51 

provides the three series, illustrating the same change in acceleration around the 2-second 

marker. Similar to the flat ground LTT, the vehicle experienced a decrease in acceleration 

and peak velocity following the first series of the uphill LTT. It is also noted the latter 

two test series took longer to complete the span as the overall ground speed was slower. 
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Figure 51: Uphill LTT: Warm Start 

 

The variation between the uphill LTT was on par with that of the flat ground LTT. 

As shown in Figure 52, the uphill variation averages 19%, excluding the outliers. The 

outlier shown near the end of the displayed data is due to the first series completing the 

distance faster than the other two test series. The second and third LTT were more alike, 

causing the variation to jump down the calculated variation between said series. 
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Figure 52: Averaged Uphill LTT & Variation: Warm Start 

 

Three downhill tests were conducted to determine the acceleration and maximum 

velocity of the ICE-powered vehicle for comparing the downhill aptness. The vehicle was 

placed at the top of the 100 ft span and the brake was released without providing any 

throttle. The tests were conducted following the end of each uphill throttle duty cycle 

session. In Figure 53, the first downhill series increased linearly; however, the following 

two tests accelerated more rapidly and reached a higher speed each time. This is likely 

due to the ICE becoming heat-soaked and thus reducing resistance within the vehicle 

transmission and/or torque converter. The transmission and torque converter inherently 

apply an amount of torque to engine-brake or slow as the throttle is not commanded. The 

initial engine-braking torque was greater during the first downhill test series, forcing the 

vehicle to accelerate linearly down the hill to a steady state. The following two test series 

did not respond linearly to the downhill test. 
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Figure 53: No Throttle Downhill Test: Warm Start 

 

In the case of Figure 54, the more prominent variation between 0 and 2 seconds 

was apparent, though it decreased to a 4% average during the middle of the run. The ICE-

powered vehicle reached and maintained a steady state for the first and second downhill 

test series. However, the third test series began accelerating again at the twelve second 

marker. This may be caused by the vehicle surpassing a temperature threshold which 

allowed the downhill acceleration to stop at a maximum speed. Once the ICE-powered 

vehicle was heat-soaked, the downhill acceleration would continue passed the initial data 

points from the first and second series. 
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Figure 54: No Throttle Downhill Variation: Warm Start 

5.1.2 ICE Cold Start 

After analyzing the warm start test data, it was questioned whether the back-to-

back vehicle operation played a role in the odd variation at lower speeds. To avoid 

artifacts found during the warm-start testing, the exact tests were conducted again with a 

rest period between each throttle duty cycle test. This waiting period allowed the ICE 

vehicle to cool to the same starting temperature of +/- 3 degrees Fahrenheit.  

The ambient temperature on the test day was recorded to be 82॰F. The vehicle 

was started to maneuver into position and then allowed time to cool down to a goal of 

100॰F. Table 2 captures the measured engine temperatures at the start of the test series 

and following the completion of each test run. As it was determined that 200 ft was not 

enough room to reach steady states, repeated testing was extended to the 250 ft marker to 

ensure a steady state was achievable. Note that the individual throttle duty cycle tests 

were conducted back-to-back to see the temperature and speed change as the ICE warms. 
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Table 2: HTT Conditions at 82॰F Ambient 

Condition Engine Temp. (॰F) 

Start 99 

Run 1 120 

Run 2 156 

Run 3 168 

 

Figure 55 compares the first three runs of the cold start HTT on flat ground. The 

test run experienced a more significant difference in speed at a steady state. During this 

test session, the first test series was slower than the second and third test series; directly 

opposite of that experienced during the warm start. It was hypothesized that the ICE-

powered vehicle performed more consistently within a range of engine temperature rather 

than simply lower temperature. 

 

Figure 55: Flat Ground HTT: Cold Start 
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Likewise, Figure 56 captures a more considerable variation of 6% throughout the 

test run than the original 100% throttle duty cycle test run. The vehicle does, however, 

reach a steady state with the newly extended distance in the new testing scenario. The 

additional 50 ft provided ample room for the vehicle to reach and maintain the ground 

speed within 1 MPH for each test series of the HTT. 

 

Figure 56: Averaged HTT & Variation: Cold Start 
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Table 3: MTT Conditions at 82॰F Ambient 

Condition Engine Temp. (॰F) 

Start 104 

Run 1 123 

Run 2 142 

Run 3 161 

 

Figure 57 captures 3 test runs from the ICE vehicle with a cold start during the 

MTT. An end speed difference of 1.5 MPH was common during earlier testing but 

recording three opposing acceleration curves from the same test scenario was not. The 

first and third test series have a similar initial acceleration; however, the first and second 

test series have a similar steady-state velocity.  

 

Figure 57: Flat Ground MTT: Cold Start 
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The variation of the three test series from the MTT hovered around 7%, as seen in 

Figure 58. The averaged MTT data displays a steeper acceleration curve, thus allowing 

the vehicle to reach a steady state in the final quarter of the test. As noted in the Figure 57 

discussion, the acceleration curves do not exactly align in this MTT session. Likewise, 

the variation for the averaged MTT dips during the middle of the run where the vehicle 

velocities are nearest and begins to rise with the third test series. 

 

Figure 58: Averaged MTT & Variation: Cold Start 

 

The last flat ground test session concluded with the three LTTs. Table 4 delivers 
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ICE temperature following the third test of each session does not drop linearly: HTT of 

168॰F, MTT of 161॰F, and LTT of 159॰F. This is due to the lower ground speeds 

limiting the available airflow to the ICE. The relationship between vehicle speed and 

engine temperature varies due to several variables as discussed.  
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Table 4: LTT Conditions at 82॰F Ambient 

Condition Engine Temp. (॰F) 

Start 101 

Run 1 116 

Run 2 145 

Run 3 159 

 

Figure 59 represents the three recorded LTTs. Compared to the flat ground LTT 

with a potentially heat-soaked ICE, the vehicle performed more smoothly when allowed 

to cool down prior to testing. This procedure could be used in autonomous vehicle 

operation but would require stopping the vehicle every few hundred feet and waiting ten 

minutes or more to allow a cool-down period without a form of adaptive throttle control 

or machine learning.  

 

Figure 59: Flat Ground LTT: Cold Start 
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Figure 60 displays the variation throughout the run. It is possible that the vehicle 

hit a bump or an unlevel portion during the flat ground test to generate a rapid decrease in 

velocity. Despite the anomaly, the ICE-powered vehicle reached a steady state after ten 

seconds of the LTT with a 5% variation between the three test series.  

 

Figure 60: Averaged LTT & Variation: Cold Start 
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Figure 61: Summarized Throttle Response: Cold Start 
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Figure 62 details the first series of uphill HTT. It is noted that there is a more 

considerable variation in the initial acceleration discrepancy between runs. All three were 

conducted as a full-throttle start, though the second series lagged much further behind. 

There is a greater difference between the initial acceleration curves of the three test series 

but they do reach the same maximum velocity at the end of the test session. 

 

Figure 62: Uphill HTT: Cold Start 
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Figure 63: Averaged Uphill HTT & Variation: Cold Start 

 

The ICE temperature was also recorded at the start of the test session and 

intermittently between each series. Table 6 details a higher end temperature compared to 

the HTT.  

Table 6: Uphill MTT Conditions at 83॰F Ambient 

Condition Engine Temp. (॰F) 

Start 119 
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powered vehicle is still incapable of reaching a steady state during the uphill MTT test 

session.  

 

Figure 64: Uphill MTT: Cold Start 
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Figure 65: Averaged Uphill MTT & Variation: Cold Start 

 

The uphill LTT intermittent temperatures were recorded as detailed in Table 7.  

Table 7: Uphill MTT Conditions at 83॰F Ambient 
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Figure 66: Uphill LTT: Cold Start 

 

Likewise, that caused a higher variation of the uphill LTT, again reaching 19%, 

ignoring the outliers in Figure 67. The outliers are due to the first test series reaching the 
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Figure 67: Averaged Uphill LTT & Variation 
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the newly upgraded eATV. Figure 68 displays the consistent acceleration curves of the 
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electric portions of the tests were run back-to-back, further demonstrating the 

repeatability of EV versus ICE. 
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Figure 68: Flat Ground HTT: EV 

 

Figure 69 displays the minimal variation between the 3 test runs with a 2% 

margin. This minimal variation begins at the 1.5 second mark, reducing the variation 

experienced at the beginning of the test session found in the ICE-powered vehicle testing. 

The test also displays the eATV reaching a steady state two times faster. 
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Figure 69: Averaged HTT & Variation: EV 

 

Similarly, for the MTT session, the eATV glided through the flat ground terrain 

with minimal fluctuations in speed. Figure 70 illustrates a couple of minor peaks in the 

acceleration curve, likely caused by a bump or two in the UNC Charlotte Recreational 

Field 12 environment.  

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

2

4

6

8

10

12

14

16

0
.1

0
.7

1
.3

1
.9

2
.5

3
.1

3
.7

4
.3

4
.9

5
.5

6
.1

6
.7

7
.3

7
.9

8
.5

9
.1

9
.7

1
0
.3

1
0
.9

1
1
.5

1
2
.1

1
2
.7

1
3
.3

1
3
.9

1
4
.5

1
5
.1

V
ar
ia
ti
o
n

V
el
o
ci
ty
 (
M
P
H
)

Time (s)

Averaged HTT & Variation

Averaged 100% Variation



88 
 

 

Figure 70: Flat Ground MTT: EV 

 

Figure 71 demonstrates the variation in the flat ground MTT, which displays the 

peak nearing the end of the 250 ft stretch. It was decided this anomaly was negligible in 

the scope of the testing scenario as the bump was not likely to affect the vehicle if tested 

again. 
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Figure 71: Averaged MTT & Variation: EV 

 

The LTT displays the smoothest repeatable data of the three tests. As shown in 

Figure 72, the eATV accelerates linearly until reaching the throttle duty cycle threshold 

and remains at that commanded speed throughout the 250 ft. Additionally, this was the 

final test session of the flat ground EV testing and resembled no fade due to excessive 

battery consumption or heating.  
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Figure 72: Flat Ground LTT: EV 

 

The variation from the LTT is the most consistent of the tested speeds, featuring a 

sub-5% variation for the entire steady-state portion of the run. Figure 73 displays that the 

average variation for this test series was 2%. A 2% variation along a 200 ft span after 

conducting six test prior is a prime example of the eATV capabilities. 
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Figure 73: Averaged LTT & Variation: EV 

 

To summarize the flat ground EV testing, the three average plots were overlaid, 

illustrating the linear control offered by the EV conversion versus the ICE configuration 

in Figure 74. The initial acceleration for each of the throttle tests followed the same 

slope. The eATV control scheme was able to provide a steady-state velocity at each of 

the throttle tests. Here, it was decided the eATV would allow greater consistency in speed 

control versus the ICE-powered vehicle on flat-ground terrains. 
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Figure 74: Summarized Throttle Response: EV 

 

The uphill HTT was again performed for the eATV. The test data depicted a 

repeatable acceleration curve, according to Figure 75. The HTT recorded three alike 

acceleration curves from the three test series.  
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Figure 75: Uphill HTT: EV 

 

Figure 76 displays the variation throughout the test run. The 100% testing was 

capable of a 2% variation through the midrange of the test. The variation increased 

slightly towards the end of the test session as a bump was introduced in the environment. 
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Figure 76: Averaged Uphill HTT & Variation: EV 

 

Figure 77 details the uphill MTT, capturing three near-identical test runs. The 

acceleration curves express that the eATV responded to the terrain grade consistently and 

even reached a steady state at the 5-second marker. The ICE-powered vehicle was not 

capable of reaching a steady state at any of the uphill speeds tested. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

2

4

6

8

10

12

14

16

0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

V
ar
ia
ti
o
n

V
el
o
ci
ty
 (
M
P
H
)

Time (s)

Averaged Uphill HTT & Variation

Averaged 100% Variation



95 
 

 

Figure 77: Uphill MTT: EV 

 

The variation of the run initially tapers down to a consistent 3% in Figure 78. The 

end of the collected data also shows that the uphill MTT neared 0% variation. The eATV 

was capable of sub-5% variation throughout the test session after the 2 second marker. 

This is significant in considering the autonomous control aspect of the eATV, now 

capable of repeating commanded throttle duty cycles within a minimum of 2% margin of 

variation. The bump depicted in the prior two throttle test sessions was also captured in 

the variation calculation as shown in Figure 78. 
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Figure 78: Averaged Uphill MTT & Variation: EV 

 

The uphill LTT again displays a repeatable performance. In Figure 79, the eATV 

achieved a steady state 80% of the time while traversing up a 7% grade for 100+ ft. This 

is possible due to the low-rpm torque available from the gear-reduced electric motor as 

compared to the ICE.  
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Figure 79: Uphill LTT: EV 

 

Figure 80 provides the low variation of 3% for the uphill LTT throughout the 

steady portion. The eATV provided a repeatable platform for uphill travel at the LTT 

duty cycle percentage. The data variation drops at the 2-second mark and averages 3% 

for the remainder of the test session. 
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Figure 80: Averaged Uphill LTT & Variation: EV 

 

To summarize the uphill testing of the eATV, the three average runs of each 

respective speed were overlaid to provide a glimpse of the linear acceleration output by 

the EV conversion in Figure 81. The eATV unexpectedly achieved a steady state within 3 

seconds during the LTT and nearly 6 seconds during the MTT. 
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Figure 81: Summarized Uphill Throttle Response: EV 

 

While testing the eATV, an observation was made during the downhill testing 

sessions. The EV conversion kit does not incorporate any regenerative or forced braking 

method while the eATV is in motion without throttle input. As displayed in Figure 82, 

the eATV accelerated linearly throughout the 100 ft downhill region of the CRI deck. 

Programming accommodation must be implemented to prevent the eATV from 

accelerating downhill unexpectedly or undesirably.  
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Figure 82: No Throttle Downhill Test: EV 

5.1.4 Overview 

 From the comparative testing, it was quickly noted that the ICE engine proved 

inconsistent as the speed varied widely throughout its operational temperature. The ICE 

warm start test session showed a decline in speed over time and as the temperature 

increased, while the ICE cold start test session showed an increase in speed as the 

temperature increased. This relationship is illustrated by Figure 83, detailing the change 

in output as the ICE vehicle approaches or exceeds the operational temperature range.   
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Figure 83: ICE Warm Start, ICE Cold Start, and EV Acceleration Curves 

 

 The variation in velocity was greatly reduced following the electric conversion. 

Most significantly, the determined operating speed range of less than 60% throttle duty 

cycle shows an improvement of 12 times between the warm start and electrified tests. 

 

Table 8: Variation in Velocity 

Throttle % ICE Warm Start ICE Cold Start Electrified 

60 23% 5% 2% 

85 8% 7% 2% 

100 4% 6% 2% 
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5.2 Computer Vision Testing 

The vision algorithms were tested against thousands of captured images from the 

UNC Charlotte Fitness Trail. Average success rates for each method were calculated 

from the vast dataset, such as depth images for path estimation, color images for path 

detection, and depth images for obstacle detection, including pedestrians. 

5.2.1 Tunnel Vision 

As the LabVIEW SDK for the RealSense RGB-D camera contains the functions 

required to appropriately assign Z values based on the X - and Y-pixel map, there is 

minimal user performance required to retrieve the depth image for analysis. The SDK 

runs a series of programs to display the depth image on the front panel of the source 

program and is exported to the image processing program. 

Testing the depth imaging for estimating a path direction was conducted using a 

combination of LabVIEW and Vision Assistant. The images were run through a 

developed program intended to acquire stored images on the computer and record the 

success of each image. A confidence value was calculated based on the likelihood that 

the vision script successfully defines the path location using the implemented weighting 

mask, prior circle location, and circle radius. Through the predetermined route along the 

trail, an average success rate of 93.0% was calculated for the test. The success rate based 

on location and imaging technique was recorded for the duration of the loop, indicating 

areas that were successful and other areas that required further improvement. 

Occasional complications were introduced in the scenario where low-hanging 

branches, the horizon or sky, gaps in the tree line, or leaves would interfere with the 



103 
 

vision scripts. Low-hanging branches were problematic during the warmer weather, 

where natural foliage was dense and weighed down tree limbs. In contrast, the UNC 

Charlotte Fitness Trail is primarily surrounded by deciduous trees, so as the foliage began 

to drop, the requirements for successful vision processing changed. Figure 84 displays the 

well-represented seasonal changes of the UNC Charlotte Fitness Trail environment. 

 

Figure 84: UNC Charlotte Fitness Trail: Summer (left) and Autumn (right) 

 

To accommodate this change in scenery, the tunnel-detecting vision script was 

revised to target a specific red color threshold, simulating the most distance detection 

from the depth imager. Using the same example as in the 4.1.2 Depth Vision section, 

Figure 85 displays the updated processing method for the tunnel vision approach. It was 

determined that, given the updated environment, this method would perform with a 

success rate of 93.0%. 
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Figure 85: UL: Depth Image, UR: Binary Extraction, LL: Advanced Morphology, LR: 
Circle Detection 

 

This implementation significantly reduced the noise when nearing a wiry bush. 

Figure 86 displays the binary analysis of an example image before and after the targeted 

color was revised to indicate a range of red colors instead of the dark portions of an 

image following the red color plane extraction. 
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Figure 86: UL: Base Image, UR: Depth, LL: Orig. Method, LR: Rev. Method 

5.2.2 Intersections 

When the processed RGB-D vision could not detect or estimate a path direction, 

the eATV was programmed to halt and scan for the following GPS waypoint location. 

After receiving the GPS waypoint coordinates and transforming from the global to the 

local coordinate system determined by the GPS heading, a specific left or right direction 

was supplied to the main autonomy program. The autonomy program would take the 

input direction and actuate the steering in the new direction before applying the throttle. 

The main program would remain in the loop until a specified turning angle was reached 

or a targeted circle was processed, providing the eATV with an estimated path direction 

to continue along the route. Figure 87 details the methodology for processing 

intersections. 
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Figure 87: Intersection Detection Approach 

 

Several tree lines were tested using this vision processing script; Figure 88 

displays the T-intersection type found on the UNC Charlotte Fitness Trail and illustrates 

an intersection example where no direct path or targeted circles are recognized. It was 

determined that the intersections along the predetermined route were recognized with a 

confidence of 96% and a reaction distance of 12 meters. 
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Figure 88: Intersection: Color Image (left) and Depth Image (right) 

 

Given the user-specified route, it is noted that a wider variety of intersection 

scenarios may be present in other environments; however, this model provides similar 

results in other scenarios that may include a range-limiting drop-back, as shown in Figure 

88. The reaction time could be decreased by increasing the number of sample iterations 

per second as the number of targeted circles drops.  

5.2.3 Path Detection 

For path detection of the gravel and asphalt portions of the trail environment, the 

vision scripts were revised slightly to produce a simplified shape for calculating a 

trajectory. Figure 89 displays the gravel path detection using a script with color plane 

extraction, binary conversion, particle erosion, and advanced morphology to achieve the 

simplified shape. It was confirmed that the confidence value for path detection of gravel 

and asphalt was 89.9%. Depending on the environmental factors, a third developed vision 

script may be selected for gravel sections with extensive leave coverage. This was also 

incorporated into the processing model and the success rate for all path-detection-specific 
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scripts. Generally, the autonomy program can retrieve the final prioritized path image and 

import the shape centroid to determine the required steering angle to follow the path.  

 

Figure 89: UL: Color Image, UR: Binary Extraction, LL: Binary Erosion, LR: Advanced 
Morphology 

 

The autonomy program can alternate between the terrain-specific algorithms by 

comparing the confidence of both detected paths if one or more is detected 

simultaneously. Another approach tested required a pattern-matching scheme to detect 

whether the trail topography was gravel or asphalt. This was completed with minimal 

confidence during testing. 

5.2.4 Obstacle Detection 

Obstacle detection was initially planned to implement a plug-and-play approach 

for pedestrian detection using the Intel RealSense library. It was later learned that the 
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advanced recognition methods offered by RealSense were not implemented into the SDK 

for LabVIEW and, therefore, could not simply interface with LabVIEW. An alternative 

methodology was developed to use the depth feature to recognize elevated surfaces 

within a specified range from the eATV. As the vehicle nears an obstacle, the displayed 

color from the depth image changes from red to green, following the natural visible 

spectrum. This feature was implemented to detect objects within an 8 m range, providing 

time for the eATV to maneuver around the obstacle or stop as necessary. The vision 

script for pedestrian detection was also developed simultaneously with additional shape-

matching functionality. The vision script was tested with dozens of templates of 

pedestrians captured by the depth camera until a select few templates were deemed 

appropriate for the majority of pedestrian detection scenarios. A specific pedestrian 

detection confidence score of 77.6% was obtained from several hundred pedestrian 

observation events between 2.5 and 7 meters. This value is the multiple of the recorded 

success rate and the confidence of each pedestrian detection via the Vision Assistant 

script, thus providing a lesser confidence score. 

For the common obstacle detection, a traffic cone, folding sign, and tall barrel 

were demonstrated via the obstacle detection scheme. The obstacle detection purely 

searches for any pixel count of a specific size within an ROI located around the travel 

path of the eATV. A circle detection method was implemented on the located area of 

interest to indicate an X- and Y-pixel value to maneuver based upon. This value was 

stored and recorded in the data logs for later analysis of the steering effectiveness for 

obstacle avoidance. Each obstacle was successfully detected within a range of 3 to 8 

meters with a success rate of 97.2%. The success rate was calculated from the ratio of 
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successful obstacle detection against the total number of obstacle detection tests 

conducted. 

5.3 GPS Testing 

The predetermined waypoint-guided route was determined based on the 

capabilities of the eATV. It was proposed that when a user was scouting an area and 

leaving a trail of breadcrumbs for the eATV to follow, the user would be aware of the 

vehicle characteristics and would have placed the waypoints in the appropriate setting. 

The vehicle was placed at an intersection with two opposing directions to test the GPS 

waypoint susceptibility to eATV success rate. The GPS next waypoint was acquired and 

located with respect to the eATV orientation. If the vehicle autonomously maneuvered to 

orient itself toward the waypoint in question, the test was considered a success. This test 

series was conducted several dozen times to achieve an intersection waypoint retrieval 

success rate of 95.9%. The waypoint navigation runs to record the location and trajectory 

of the eATV throughout the test runs. Successfully arriving at a waypoint was determined 

by the autonomous program based on the minimum interval between the current location 

and the waypoint location. The waypoints were additionally confirmed via user 

supervision alongside the eATV test. In the scenario where a GPS waypoint is denied, the 

eATV would continue traversing the terrain despite the lost connectivity toward the next 

available GPS waypoint. 

Overall validation of the onboard GPS module was conducted using a cellular 

device with GPS capability. The device was capable of precise measurements on the 

same order of magnitude as the GPS module. In practice, it is often necessary to validate 
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a device with an accuracy 10x that of the device being used. In this case, the eATV is 

guided through the walking trail with waypoints determined to have a bounding perimeter 

of a 2.5 m radius for each. There are no circumstances where the accuracy of the 

measuring device would cause the eATV to veer from the trail due to the physical 

limitations of the trail type (i.e., the tree line on either side). This is due to the peripheral 

surroundings acting as a boundary outside the detected path. Thus, after confirming that 

the GPS coordinates were precise with the second measuring device, a comparison was 

conducted. As shown in Figure 90, the waypoint coordinates from the measuring device 

and the actual eATV-traveled route were compared. 

 

Figure 90: Onboard GPS Module Validation 

 

Table 7 demonstrates the calculated distance between the two measured points 

indicating each waypoint. The compared values are the coordinates determined by both 

the vehicle GPS unit and a referee device. The latitude and longitude were recorded from 

each at the determined waypoint. The output latitude and longitude were compared, and a 
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delta was calculated to provide a distance between the two points. The recorded data did 

not exceed a delta of 5 m throughout the test. 

Table 7: Onboard GPS Module Validation 

Waypoint Method Latitude Longitude Delta (m) 

WP 0 
referee device 35.3078846 -80.7423355 

2.820 
GPS unit 35.30786833 -80.74231167 

WP 1 
referee device 35.3075598 -80.7425158 

4.911 
GPS unit 35.30759167 -80.74247833 

WP 2 
referee device 35.3075174 -80.7433081 

1.446 
GPS unit 35.30751 -80.743295 

WP 3 
referee device 35.3075175 -80.7439378 

2.247 
GPS unit 35.307505 -80.74391833 

WP 4 
referee device 35.3079259 -80.7441945 

0.735 
GPS unit 35.30792 -80.74419833 

WP 5 
referee device 35.308513 -80.7441064 

3.159 
GPS unit 35.30848667 -80.74409333 

WP 6 
referee device 35.3084156 -80.7435351 

1.525 
GPS unit 35.30842667 -80.743545 

WP 7 
referee device 35.3083429 -80.743001 

2.804 
GPS unit 35.308335 -80.74297167 

WP 8 
referee device 35.308078 -80.7424552 

3.814 
GPS unit 35.308075 -80.74241333 

WP 9 
referee device 35.3079836 -80.7421363 

2.715 
GPS unit 35.30798 -80.74210667 
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5.4 Autonomy Testing 

Prior to integrating all autonomous features of the eATV, it was necessary to 

individually test and confirm the programs regarding speed control, steering, image 

prioritization, and obstacle avoidance. 

5.4.1 Speed Control 

The adaptive throttle and braking program was tested at a constant 45% throttle 

duty cycle and permitted a maximum of 6MPH. The dead band between the actual speed 

at 45% throttle and the speed threshold of 6 MPH was calculated to be 1.2 MPH. In 

testing, this value provided ample response time to maintain a constant speed downhill 

+/- 1 MPH responding to the trail grade.  

Figure 91 illustrates the active cruise control for the eATV along the 

predetermined route. This test was conducted with remote control steering, allowing an 

independent test scenario of the throttle and braking functionality.  
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Figure 91: Adaptive Throttle and Braking Performance from 500+ meter Test 

 

A throttle ramp and scaling were tested to accelerate from a stop and apply 

increased throttle uphill to retain a specified speed. The throttle ramp was able to 

maintain the eATV velocity within 28.9% of the specified test speed at all times. 

5.4.2 Vehicle Steering 

 The responsive steering model was tested using values directly calculated from 

the vision model. This test method provided the direct linkage between targeted path 

estimation X- and Y-pixel values with scaled values forcing the eATV to either steer left 

or right from the center of the image. The steering model responded accurately to the 

vision model 94.3% of the time. Data were collected from several test runs and analyzed, 

as shown in Figure 92.  
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It was noted that some noise interfered with the relationship between the targeted 

path trajectory and the vehicle steering. The output path trajectory detected the 

appropriate target for the vehicle, but the vehicle would occasionally respond incorrectly 

to the received vision data. However, this did not impact the autonomous driving 

performance, as the loop iterates frequently enough to provide a new value before 

adjusting for the erroneous calculation past a point of no recovery. This accuracy value 

was recorded and used in the success rate analysis for the steering sub-system. 

 

Figure 92: Steering Performance from Autonomous 50+ meter Test 

5.4.3 Image Prioritization 

To prepare the image prioritization, a series of tests were performed to analyze 

susceptibility to select the wrong image processing case given the variety of visible 
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features. Combinations of obstacles, intersections, pedestrians, allowed path detection, 

and targeted path estimations were provided to the vision program to determine the 

confidence value of the script, prioritizing the most significant case. For example, if the 

circle detection script has a low confidence value, but the path detection is available with 

a higher confidence level, the autonomy program would temporarily switch commands to 

receive input from the path detection vision script. A success rate was applied to the 

numerous cases performed and recorded. 

5.4.4 Obstacle Maneuvering  

To verify autonomous obstacle avoidance, the first specification is that as long as 

a portion of the vehicle remains on the path at all times, the maneuver is considered 

successful. The second specification is that the eATV may not hit the obstacle. Testing 

provided a success rate of 91.6%, determined as the number of successful obstacle 

maneuvers compared to the number of obstacle maneuvers completed. The maneuvering 

success rate was lower than the obstacle detection confidence due to the more 

considerable reaction time required to navigate around the obstacle. 

5.5 Integration Testing 

A remote-control test was conducted to test the capability of the eATV along a 

route on the UNC Charlotte Fitness Trail to capture rolling distance and analyze the 

eATV mobility in the terrain before attempting to autonomously traverse the terrain. A 

35% throttle cap was applied to the controller output to allow the user to provide 

complete throttle control when applicable. This test concluded that the responsive braking 

program was necessary to apply the brakes as the eATV began accelerating 
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unintentionally down hills. This was captured as the eATV velocity increased past a 

threshold for the applied throttle percentage. The data from this first route test is 

displayed in Figure 93. In this test, the onboard laptop battery failed to retain power 

throughout the entire run, so the logger did not capture the last 30 m of the route. The 

DC-AC converter was implemented to prevent data loss for future testing. 

 

Figure 93: Initial Remote Control eATV Test on UNC Charlotte Fitness Trail 

 

Following the initial base test run and independent autonomy testing, the 

integration of all vision methods, steering, and adaptive throttle and braking programs 

was completed allowing system testing to commence. The entire 500+ m test run required 

several boxes to be checked before and during the operation. Before starting the 

operation, all LabVIEW control programs and procedures were engaged and verified 
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operational. The randomly selected waypoints were disengaged from the lookup table 

during the test run after the first confirmed waypoint achievement. In addition to each 

waypoint confirmation, the total distance was confirmed at the time of the test, and the 

time was recorded both manually and in LabVIEW. The guidance system could be 

monitored in real-time by the user via LabVIEW display modules for user awareness of 

the operating computer vision task. An external light display on top of the eATV was also 

implemented to display a specific color or combination of colors during each operation.  

From a programming standpoint, integrating the individual autonomous testing 

programs proved more difficult than anticipated. Most detection and navigation 

methodologies relied upon depth imaging, and the program using the RealSense SDK 

was further developed to include the aforementioned features. The developed system 

code ran remotely on the laptop to minimize computational intensity on the myRIO 

microcontroller. The best run of the eATV was completed with 0 missed waypoints and 

exceeded 500 m in a time of 3.53 minutes. 
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CHAPTER 6: CONCLUSIONS 

6.1 Overview 

The EV conversion kit was integrated with the existing ATLAS hardware using 

appropriate wiring, relays, additional 12V batteries, and a new control scheme. From the 

comparative analysis, it was confirmed that the EV conversion was more suitable for 

autonomous applications as compared to the ICE powertrain. The improved linear 

acceleration, steady-state stability, and performance repeatability all contribute to the 

eATV successfully traversing off-road environments autonomously.  

The control system architecture uses a myRIO-based processing unit 

supplemented with a laptop. The laptop provides a calculation-intensive platform for 

interpreting data from the developed vision algorithms; the myRIO is responsible for 

calculations involving autonomous control. The vision, navigation, and localization 

methodologies are adapted to the system via algorithms developed in Vision Assistant 

and LabVIEW. A revised autonomous steering scheme was developed, allowing for 

smoother mobility along the UNC Charlotte Fitness Trail in response to the commanded 

trajectory determined by the vision processing routines. GPS was implemented for 

waypoint-guided navigation through the terrain, and accommodations were programmed 

in the instance of GPS denial at one or more given waypoints along the predetermined 

route.  

The tunnel vision approach for estimating path trajectory is practical for budget-

conscious autonomous off-road navigation methodologies. Success rates ranging from 

89.8 to 98.5% were achieved using the variable gravel and asphalt path detection and 
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depth imaging. The combined image processing techniques provided a 98.5% success 

rate. The depth imaging presented a more consistently estimated path trajectory, but the 

vision processing algorithms needed minor edits as environmental changes occurred 

through the summer and autumn seasons. Prioritization algorithms of the implemented 

vision processing methods were developed and allowed successful path detection to be 

achieved in the environment. 

The obstacle detection and avoidance methodologies developed for the eATV 

proved successful, rating 97.2% and 91.6%, respectively. Likewise, depth imaging was 

an acceptably accurate means of obstacle detection within the 3- to 8-meter range. 

Prioritization of the imaging techniques in scenarios including obstacles and pedestrians 

allowed the eATV to maneuver appropriately through the trail and adjust vehicle speed as 

necessary. The developed intersection methodology using depth imaging provided an 

accurate algorithm for detecting T-intersections.  

The robust waypoint-guided eATV is capable of traversing walking trail 

environments with asphalt and gravel terrains. The eATV prototype provides a 

substantial, reliable, and predictable platform while retaining a budget-conscious 

approach for entry-level off-road autonomy research.  

6.2 Future Work 

With additional enhancement, the eATV could perform high-fidelity operations to 

maneuver through a targeted trail environment. Several discoveries were made along the 

way and should be considered when building a budget-conscious autonomous waypoint-

guided electric all-terrain vehicle for walking-trail-type environments. In retrospect, 
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using a state machine within LabVIEW could have drastically reduced troubleshooting 

efforts during final testing. Integration of the various autonomous features would ideally 

be programmed in fluid state transitions instead of on a case-by-case basis. 

Further development could be introduced to enhance tasked-based operation for 

the eATV in less densely wooded walking trail environments. A streamlined comparison 

of disparity images for faster depth image processing would aid in the response time to 

path trajectory changes and obstacle maneuvering. The implementation of task-based 

operations could be extended into the autonomous functionality of the eATV to perform 

evaluations of an environment, lengthened excursions across challenging terrains, or 

unguided terrain scouting for reconnaissance and search-and-rescue missions. 
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APPENDIX A: LabVIEW Code 

A.1 Computer Vision 

 

Figure 94: Vision Processing Image Script Prioritization 
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Figure 95: Applying Weighing to Geometry of Interest  
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A.2 Localization 

 

Figure 96: Waypoint Detection at Intersections 

A.3 Navigation 

 

Figure 97: Steering Algorithm for Color-Vision Imaging 

 

Figure 98: Steering Algorithm for Depth-Vision Imaging 
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Figure 99: Steering Algorithm for Obstacle Avoidance 
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Figure 100: Adaptive Throttle-Braking Algorithm 
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APPENDIX B: Computer Vision Scripts 

B.1 Gravel Detection 

 

Figure 101: Gravel Detection Script  

 

B.2 Asphalt Detection 

 

Figure 102: Asphalt Detection Script 

 

B.3 Obstacle Detection 

 

Figure 103: Obstacle Detection Script 

 

B.4 Depth Analysis 

 

Figure 104: Depth Analysis Script  
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B.5 Pedestrian Detection Script 

 

Figure 105: Pedestrian Detection Script 

  



132 
 

APPENDIX C: Supplemental Information 

C.1 Mechanical Assemblies

 

Figure 106: Offset DC Motor Steering Assembly 
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Figure 107: Installed EV Conversion Kit and Supporting Components 
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Figure 108: Encoder Structure 
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Figure 109: Installed Encoder Structure 


