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ABSTRACT

VAN ANH PHAM. Writhe-like invariants of alternating links. (Under the direction
of DR. YUANAN DIAO)

This dissertation introduces new invariants for a large class of links in knot theory,

called alternating links. It also analyzes the strength of these invariants, that we call

writhe-like invariants, in comparison with a few general link invariants, and explores

how these quantities can be used in solving other knot theory problems. A part of

the dissertation is dedicated to describing the computer program that computes a

few writhe-like invariants of alternating links of n crossings, and to reporting the

computed data of several alternating knots and links.
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PREFACE

The formal study of knots and links started with Peter Tait in an effort to help

his colleague, a physicist, Sir William Thomson, in vortex theory of atoms which

hypothesized that an atom was a vortex in the aether. Tait classified knots up to 10

crossings and formally started the branch of topology called knot theory.

A major and classic problem in topology is to distinguish objects, hence the need

for invariants. This dissertation proposes new link invariants and studies how it can

be used to solve problems.



CHAPTER 1: INTRODUCTION AND BACKGROUND

This chapter gives the background and defines terminologies for this dissertation.

Interested readers may refer to any textbooks, such as [2], [3], [1], and [4] for basic

knot theory knowledge and [5] for basic graph theory knowledge. For the dissertation

to be self-contained, we define multiple terms and concepts below.

1.1 Knot Theory Basics

Definition 1.1.1. A link of n components is a subset of R3 that consists of n disjoint

simple closed curves. A link with one component is called a knot.

In knot theory, we usually restrict ourselves to the so called "tamed links". In

a tame link, each closed curve must satisfy certain regulatory conditions. For the

purpose of this dissertation, we assume each component is a piecewise smooth curve.

The mapping f : X → Y is called an embedding if f : X → f(X) is a homeomor-

phism. That is, f is a continuous bijection and f−1 is also continuous. An embedding

is proper if f(∂X) = f(X) ∩ ∂Y and f(X) is not tangent to ∂Y , the boundary of Y .

Definition 1.1.2. Two embeddings f0 and f1 are ambient isotopic if there exists an

isotopy H : Y × [0, 1]→ Y × [0, 1] such that,

• H(y, t) = (ht(y), t). For each value of t ∈ [0, 1] , ht : Y → Y is an orientation

preserving homeomorphism;

• h0 is the identity map;

• and f1 = h1(f0).

In [4], the author describes ambient isotopy as if we fill Y with liquid and transport
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an object (ft(X)) through it so that the object is moved along with the liquid when

we manipulate Y .

Each equivalence class of links that are ambient isotopic to each other is called

a link type. A classical problem of knot theory is to classify links with regards to

equivalence.

Definition 1.1.3. A link diagram D is a projection of a link L into R2. In the

diagram, we use the over and under information at a crossing to correspondingly

refer to the overpasses and underpasses in L ∈ R3.

Definition 1.1.4. A projection p of a link L is called regular if p satisfies both of the

following:

• The number of multiple points Pi are finite, and all multiple points are double

points, meaning that p−1(Pi) contains two points of L.

• No vertex of L is mapped into a double point.

These double points mentioned in Definition 1.1.4 are called crossings of a link

diagram of L. A crossing in D is assigned a positive or negative sign accordingly to

the rule shown in Figure 1.1. The minimum number of double points (or crossings)

in a projection of a link L over all possible regular projections is an intrinsic quantity

of L that we shall discuss in Example 2.0.3.

Figure 1.1: Left to right: a double point where the under or over information is
not specified, a positive crossing, and a negative crossing. The arrows denote the
orientation of the strands, induced by the chosen orientation of the link diagram.

In this dissertation, a link projection D means a regular projection. It is an impor-

tant result that almost all projections of piecewise linear smooth lines are regular. In
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other words, every link admits a regular projection. This can be seen if we consider

the link a polygonal K on a plane P , then we can make P regular for K by arbitrarily

perturbations of either K or P [1].

Definition 1.1.5. A link is said to be positive/negative if it admits a diagram D in

which all crossings of D are positive/negative.

If we perform a crossing change (overpass to underpass or vice versa) to every

crossing of a diagram D of a link L, then we obtain a diagram D′ of the mirror image

of L. If D is a negative diagram, then D′ is positive.

Definition 1.1.6. A 2-tangle T is a proper embedding of the disjoint union of 2

piecewise smooth arcs into a 3-ball.

A 2-tangle diagram (or tangle, for short) is a regular projection of the 2-tangle into

a plane, where the boundary of the 3-ball is projected into a circle.

The tangles T1 and T2 are equivalent if there exists an isotopy from T1 to T2 that

keeps the end points of T1 point-wise fixed.

A tangle can have either parallel orientation or anti-parallel orientation, as shown

in Figure 1.2.

Figure 1.2: The 4 arcs in a tangle. Tangle orientations: parallel - the arrows are
pointing to the same direction, antiparallel - the arrows are in opposite directions.

Tangle types are illustrated in Figure 1.3, which are categorized by only how the

2 strands position themselves with respect to 4 exits (SE, SW, NE, NW) of a 2-

tangle. The two dashed strands in each tangle represent long arcs in which possible

intersections are not shown.
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Figure 1.3: Left to right: 0-tangle, ∞-tangle, and 1-tangle.

We note that tangle types differ from the concept that we will describe in Definition

4.2.4, which depends not only on the local structure of a tangle T , but also on the

global structure of the diagram that contains T .

A tangle is rational if it can be obtained from the trivial tangle (shown on the left

of Figure 1.4) by alternately rotating the eastern endpoints and rotating the southern

endpoints. For example, from the trivial tangle, we rotate SE with NE by 180 ◦ three

times, then rotate SW with SE by 180 ◦ once, and finally rotate SE with NE by 180

◦ twice, in order to obtain the rational tangle in the middle. In this context, the

∞-tangle can be viewed as the trivial tangle after a 90 ◦ rotation.

Figure 1.4: Left: the trivial tangle. Middle: rational tangle. Right: a non-rational
tangle.

Given two tangles T1 and T2, the tangle T1 + T2 is formed by connecting the NE

endpoint of T1 with the NW endpoint of T2, and the SE endpoint of T1 with the SW

endpoint of T2.

A numerator closure of a rational tangle T is the connection of the two northern

arcs, and the connection of the two southern arcs. A denominator closure of a tangle

T is the connection of western arcs and the connection of eastern arcs. A rational

link is the numerator or denominator closure of a rational tangle. As noted in [6], the
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denominator closure of a sum of two rational tangles may not be a rational link; as an

example, we can view the tangle on the right of Figure 1.4 as a sum of two rational

tangles if we rotate it by 90 ◦ once.

Rational tangles can be represented by rational numbers or by vectors with integer

entries. Let p and q be two positive integers with gcd(p, q) = 1 and 0 < p < q. Let

(a1, a2, ..., a2k+1) be the (unique) vector of odd length with positive integer entries

such that
p

q
=

1

a1 + 1
a2+

1

.... 1

a2k+ 1
a2k+1

.

It is known that rational links are invertible, that is, changing the orientations of

all components in a rational link will not change the link type [6]. For the sake of

convenience, we assume that bottom long arc in the 4-plat is oriented from right

to left, and the first string from the left of the 4-plat corresponds to a1. Thus,

we write the above as p/q = [a1, a2, ..., a2k+1]. It is known that any rational link

has a reduced alternating diagram called a 4-plat corresponding to the odd length

continued fraction decomposition vector of some positive integers with gcd(p, q) = 1

and 0 < p < q; Figure 1.5 shows the case of p/q = 278/641 = [2, 3, 3, 1, 2, 3, 2]. We

will write this rational link as L(p/q).

Figure 1.5: The reduced alternating diagram D of the rational knot corresponding to
the rational number 278/641 which has the continued fraction decomposition vector
[2, 3, 3, 1, 2, 3, 2].

Definition 1.1.7. A planar diagram (PD) code of a link diagram D is a numerical

representation of D in 4-tuples, obtained by numbering arcs with natural numbers in

an increasing order as one traverses each component. The order of the elements in the



7

4-tuples are determined by the arc labels (numbers) around each crossing, starting

from the incoming lower arc following counterclockwise direction.

Figure 1.6 shows an example of a PD codes of the tabulated diagram of the figure-

eight knot. In a link diagram, the order of traversing is arbitrary.

Figure 1.6: PD codes of the diagram D1 on the left are: X[1, 4, 2, 5], X[3, 7, 4, 6],
X[5, 8, 6, 1], X[7, 3, 8, 2], where X represents a crossing of D.

Since the choice of arc to start the numbering and the orientation of the link

diagram is arbitrary, an n crossing link diagram can have 4n different PD-code rep-

resentations. For example, the diagram D2 on the right of Figure 1.6 gives a different

set of 4-tuples, as follows X[6, 1, 7, 2], X[2, 5, 3, 6], X[8, 4, 1, 3], X[4, 8, 5, 7].

The PD codes used in this dissertation are from a Mathematica package, knottheory.

We note that in [7], the author showed an explicit algorithm to reconstruct a well-

defined link diagram on an orientable surface.

Below, we state a property of PD codes that is used in Chapter 7.

Remark 1.1.8. Definition 1.1.7 implies that each quadruple [q1, q2, q3, q4] of PD codes

of a link diagram contains a pair of even and a pair of odd numbers, such that they

form two pairs of consecutive numbers. We note that the last arc numbered 4n is

considered preceding the arc numbered 1, as one finishes traversing a component right

before the starting arc. In addition, the signs of crossings are determined as follows:

1. A crossing is negative if the consecutive pairs appear in the same order (that is,
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both i and j appear before i + 1 and j + 1). For example, [q1 = i, q2 = j, q3 =

i+ 1, q4 = j + 1].

2. A crossing is positive if the consecutive pairs appear in different order. For

example, [q1 = i+ 1, q2 = j, q3 = i, q4 = j + 1].

1.2 Graph Theory Basics

Definition 1.2.1. A graph G(V,E, r) is a triple consisting of a vertex set V (G), and

edge set E(G), and a relation r that associates with each edge two vertices (which

may or may not be distinct). The relation r is often implied in graph representations

and thus, omitted in the notation.

A graph can be represented by a set of points and arcs in R3 in the following way:

• Each vertex v ∈ V (G) is represented by a point in R3.

• Each edge e ∈ E(G) is represented by an arc in R3 such that its end points are

the vertices that e is associated with according to the relation r.

The number of vertices in G is called the order of G, and the number of edges in

G is called the size of G. Furthermore, two distinct edges do not intersect each

other except at their endpoints in the case that edges connect to the same vertex (or

vertices). If both endpoints of an edge connect to the same vertex, then the edge is

called a loop edge. Multiple edges are edges sharing the same pair of endpoints.

Let u and v be the endpoints of an edge. Then, u and v are said to be adjacent. Two

edges sharing the same vertex are said to be incident to each other. The adjective

"incident" is also used to describe a vertex v and an edge e such that v is an endpoint

of e.

Definition 1.2.2. The number of edges incident to a vertex v0 is the called the degree

of v0. If graph G contains only vertices of degree k, then G is said to have degree k.
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For example, an even-degree graph G has all vertices of only even degree(s).

A simple graph is a graph that does not contain any loop edge or and any two

distinct vertices can be connected by at most one edge.

A multigraph G′ is a graph that is not simple. In this dissertation, we will consider

graphs which are free of loop edges. A multigraph G′ can be represented by an edge

weighted simple graph, where the weight of an edge e is the number of edges between

the two endpoints of e in the multigraph.

A connected graph G is a graph such that there is a path from any point to any

other point in the graph. A vertex cut S or a k-cut is a subset of size k of V (G) such

that G− S has more than one connected component. A vertex cut of size 1 is called

a cut vertex.

An independent set in a graph G is a set of pairwise nonadjacent vertices.

Definition 1.2.3. A planar graph is a graph that admits a representation on a plane

such that edges meet only at vertices.

A graph G that is drawn in the plane without edges crossing is an embedding of G

in the plane.

Let H be a subgraph of a graph G, that is, the vertex set and edge set of H are

subsets of the vertex set and edge set of G, respectively. We say that H is an induced

subgraph of G if H has the property that if two vertices v1, v2 are in H, then all the

edges of G connecting v1 and v2 also belong to the edge set of H.

Definition 1.2.4. Let B be an induced and connected subgraph of G. We say that

B is a block of G if B contains no cut vertices and is maximal in the sense that if there

is another induced and connected subgraph B′ of G that contains no cut vertices, and

B is a subgraph of B′, then B = B′.

Definition 1.2.5. A cycle of a simple graph G is a sequence of distinct vertices

v1, v2, ..., vk and a sequence of distinct edges e1, e2, ..., ek such that vi and vi+1 are
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connected by ei, for 1 ≤ i ≤ k and vk+1 = v1.

Definition 1.2.6. A connected graph without any cycles is called a tree.

The length of a cycle is the number of edges in the cycle.

Definition 1.2.7. The circumference of a graph G is the length of the longest cycle

in G.

Definition 1.2.8. A graph G is said to be Hamiltonian if G contains a Hamiltonian

cycle, that is, a cycle that contains all vertices of G.

Definition 1.2.9. A graph G is said to be bipartite if the set of vertices of G is the

union of two disjoint independent sets U and W , which are called partite sets of G.

Definition 1.2.9 means that every edge of G must connect a vertex in U with a

vertex in V . In other words, no two vertices within U or V are adjacent. Since we are

interested in graphs that are not only Hamiltonian, but also bipartite. The following

result relates these two properties of a graph by stating a condition for a bipartite

graph to be Hamiltonian.

Proposition 1.2.10. Let a connected and simple graph G be bipartite with partite

sets U and W . If G is also Hamiltonian, then the size of U and W must be the same.

Proof. Let the size of U be u and the size of W be w. Without loss of generality, we

suppose that u > w. Since G is also Hamiltonian, let v1...vkv1 be a Hamiltonian cycle

of G, for some k, that starts at v1 ∈ W . We visit v1 the second time after traversing

2w edges and after visiting all vertices of W . But we have not visited all vertices of G

by traversing this Hamiltonian cycle v1...vkv1 of G: the number of left out vertices is

precisely u−w. This contradicts the hypothesis that v1...vkv1 is a Hamiltonian cycle

of G, hence Proposition 1.2.10 follows.
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Definition 1.2.11. In a graph G, the set C of cycles that can generate every cycle

in G by a linear combination of the elements in C is called the cycle basis of G. In

other words, C is a maximal linearly independent set of cycles of G.

Proposition 1.2.12. Let G(V,E) be a plane graph. Then the number of basis cycles

of G is given by |E| − |V |+ 1.

A well-known result characterizes bipartite graphs in terms of their cycle lengths.

Interested readers can refer to [8] for a proof of Proposition 1.2.13, which essentially

shows that a cycle with odd length cannot have vertices colored so that no two

adjacency vertices are of the same colors, by using only 2 colors.

Proposition 1.2.13. [8] G is bipartite if and only G contains no cycle of odd length.

Definition 1.2.14. The adjacency matrix M(G) of a graph G of n vertices is a square

n × n matrix that represents the graph G as follows: the row headers and column

headers are marked with vertices v1, ..., vn. Each element of M represents the number

of edges between any two vertices vi and vj in G. For a loop-free graph, all diagonal

entries are zero.

In this dissertation, we use adjacency matrices to represent Seifert graphs (de-

scribed in Definition 4.2.1) in the computation of writhe-like invariants. The signs of

each element of M represents the crossing sign in the original link diagram D.

Lemma 1.2.15. Let B be a block of a bipartite graph G, then B can only be one of

the following three types of subgraphs of G: (i) B consists of an isolated vertex of G;

(ii) B consists of two cut vertices of G and all the edges between them, and (iii) every

edge of B belongs to a cycle of length at least 4 in B.

Proof. If B contains an isolated vertex of G, the maximal condition is satisfied and

B is a block of G. Let B′ the edge weighted simple graph obtained from B.



12

If B′ is a single edge graph with vertices v1 and v2 and this edge is a bridge edge

of G then B′ must be a block. To see this we only need to show that it is maximal

since it obviously does not contain any cut vertices of its own. If it is not maximal,

then there exists a block B1 that contains it as a proper subgraph. This is impossible

since at least one of v1 and v2 would be a cut vertex of B1.

If B′ is not a single edge graph then let us consider an edge e ∈ E(B′). Let v1,

v2 be the end vertices of e. We note that B′ is a simple graph and it is free of cut

vertices. By the assumption, B′ has at least one more vertex v3. It is a well-known

fact that a simple graph with three or more vertices is free of cut vertices if and only

if every edge in it belongs to a cycle. Thus e belongs a cycle in B′ with an even length

at least 4 since B′ is also bipartite.

A plane graph can be regarded as a one dimensional topological space. It is possible

that two plane graphs are isomorphic as graphs, but are not equivalent topologically.

For example, the mirror image of a plane graph (using any straight line in the plane

as the line of reflection) may not be topologically equivalent to itself.

In [9], Whitney introduced and studied a graph operation called Whitney flip. In

this paper we will use several similar operations, which are defined below.

Let G be a graph with a k-cut {v1, v2, ..., vk}. An induced and connected subgraph

H of G is said to be {v1, v2, ..., vk}-dependent if {v1, v2, ..., vk} ⊂ V (H) and H ∩ (G \

H) = {v1, v2, ..., vk}.

Definition 1.2.16. Let {v1, v2} be a 2-cut of a plane graph G and letH be an induced

and connected subgraph of G that is {v1, v2}-dependent. Let H ′ be the mirror image

of H with v′1 and v′2 being its vertices corresponding to v1 and v2. In the case that v1

and v2 are connected by an edge e, then a Type A Whitney flip is the operation that

attaches H ′ to G \H by identifying v′1 to v2 and v′2 to v1 as shown in Figure 1.7.
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Figure 1.7: An example of Type A Whitney flip.

Definition 1.2.17. Let v1, v2 be two vertices of a plane graph G that are connected

by a single edge e. Let H be an induced and connected subgraph of G that is v1-

dependent. The operation that attaches its mirror image H ′ to G \H by identifying

v′1 (the vertex in H ′ corresponding to v1) to v2 while keeping e intact is called a Type

B Whitney flip. An example is shown in Figure 1.8.

e

v
e1

2

v v
1

v
2

Figure 1.8: An example of Type B Whitney Flip.

Definition 1.2.18. Let v0, v1, v2 be three vertices of a plane graph G such that there

is a single edge e between v0, v2 and v1 is a 1-cut of G − e. Let H be an induced

and connected subgraph of G that is v1-dependent in G− e and let H ′ be the mirror

image of H with v′0, v′1 being its vertices corresponding to v0 and v1. The operation

that attaches H ′ to G \H by identifying v′0 to v2, v′1 to v0, and moves the edge e to

be between v0 and v1 is called a Type C Whitney flip. An example is shown in Figure

1.9.

Definition 1.2.19. Let v0, v1 be 2 vertices of a plane graph G with at least an edge

e connecting them. Let H be an induced and connected subgraph of G containing v0,

v1 such that H is v1-dependent. Let H ′ be the mirror image of H with v′0 being the
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Figure 1.9: An example of Type C Whitney Flip.

mirror of v0 in H ′. Then a Type D Whitney flip is the operation that attaches H ′ to

G \H by identifying v′0 to v1 as shown in Figure 1.10.

e

v
0

v
1

e

v0

v
1

Figure 1.10: An example of Type D Whitney Flip.

Remark 1.2.20. In this dissertation, we will only consider graphs without single

bridge edges. Thus we are only interested in what the Whitney flips defined above

can do to such a graph. We observe that a Whitney flip of Type A or B can only

move a block of G attached to one cut vertex to another cut vertex without changing

the internal structure of the block. On the other hand, a Whitney flip of Type C can

only be applied to a block B that has one necklace decomposition and must use a

bead H ′ that is a single edge graph as the edge e in the definition of the flip. The flip

exchanges the position of e and a chain of beads (one or more consecutive beads, that

is). Some blocks attached to cut vertices that belong to either this chain of beads

or H ′ may be moved to another terminal without internal structure change as the

by-product of this flip without any internal structural change.

Definition 1.2.21. Let H be a block of G. We say that H admits a necklace decom-

position if there exist a set of vertices {v1, v2, ..., vk} ⊂ V (H) (k ≥ 2) and induced

subgraphs H1, ..., Hk of H such that the following are satisfied:

(i) E(Hi) ∩ E(Hj) = ∅ if i 6= j, 1 ≤ i, j ≤ k;
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(ii) E(H) = ∪1≤j≤kE(Hj);

(iii) V (Hi) ∩ V (Hi+1) = {vi+1} for 1 ≤ i ≤ k − 1, V (Hk) ∩ V (H1) = {v1}, and

V (Hi) ∩ V (Hj) = ∅ for all other Hi, Hj pairs;

(iv) The set {v1, v2, ..., vk} is maximal in the sense that if there exist another set

of vertices {v′1, v′2, ..., v′k′} ⊂ V (H) and induced subgraphs H ′1, ..., H ′k′ of H satisfying

conditions (i) to (iii), and

(v) {v1, v2, ..., vk} ⊂ {v′1, v′2, ..., v′k′}. Then we must have {v1, v2, ..., vk} = {v′1, v′2, ..., v′k′}

(and consequently k′ = k, Hj = H ′j for all j).

Each Hj in Definition 1.2.21 is called a bead, and the two vertices vj, vj+1 are called

the terminals of the bead Hj.

Figure 1.11: The graph G admits a necklace decomposition.



CHAPTER 2: LINK INVARIANTS

Definition 2.0.1. A link invariant I is a quantity I(L) assigned to a link L, such

that if L1 is equivalent to L2, then I(L1) = I(L2).

If I(L1) 6= I(L2), then L1 and L2 must be of different link types. Whether the link

types of L1 and L2 are the same or not is indecisive if I(L1) = I(L2).

To reduce the topological problem of whether two links are ambient isotopic to a

diagrammatic problem, we use Reidemeister moves, as described below.

Definition 2.0.2. A Reidemeister move (R-move) is an operation on a diagram of

a link that does not alter the type of the corresponding link. There are 3 types of

R-moves:

Figure 2.1: Left to right: Reidemeister moves I, II and III (abbreviated as R-I, R-II,
and R-III).

It is well known that two link diagrams are isotopic if and only if one can be trans-

formed to the other by a finite sequence of R-moves [10].

There are generally two types of link invariants:

• one that is defined over all possible projections of the link as in Example 2.0.3,

2.0.5, and Definition 2.0.7.
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• one that is defined based on any given diagram of a link, as in Examples 2.0.12

and 2.0.8.

Example 2.0.3. The crossing number of a link L1 is the minimum number of cross-

ings over all possible configurations of L1. Figure 2.2 shows 2 configurations of the

trefoil, only one of which has 3 crossings.

It is trivial to see that the number of crossings obtained from a single diagram of a

link is not a link invariant, since the Reidemeister moves of Type I and Type II dot not

preserve the number of crossings in the diagram. The (minimum) crossing number,

as defined in this Example 2.0.3, is used for categorizing knots and links. However,

by its definition, it is difficult to compute when given an arbitrary link diagram, since

we have no general methods to determine whether the number of crossings in the

diagram can be reduced or not.

Figure 2.2: A diagram of the knot 31 with minimal number of crossings 3, and a
non-minimal diagram of the same knot.

A surface F is called orientable if every point in F can be associated consistently

with a direction of either clockwise or counterclockwise. Figure 2.3 illustrates a dia-

gram of an orientable surface in comparison with one of a non-orientable surface. We

are not concerned about nonorientability in this dissertation.

Definition 2.0.4. A Seifert surface F of a link L is an orientable surface whose

boundary is the link L.
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Figure 2.3: Left: the surface of a torus is orientable. Right: the surface of a Mobius
band is non-orientable.

The fact that every link bounds an orientable surface is guaranteed by a well-

known algorithm introduced and proved by Herbert Seifert [11]. We will describe this

algorithm in Chapter 4.

A Seifert surface for a link L is an orientable surface such that the boundary

component(s) of the surface is (are) the link L.

Example 2.0.5. The genus of a link L, g(L), is the minimal genus of all orientable

surfaces whose boundary is the link L.

For example, the unknot bounds a disc and g(unknot) = 0, illustrated in Figure

4.2.

In [3], a cylindrical n-tangle is defined as a ball D2 × [0, 1] with a line of n inputs

in the top D2 × 1 and a line of an outputs directly below them at the bottom.

Definition 2.0.6. An n-string braid is a cylindrical n-tangle such that all n strings

descend monotonically everywhere.

We often use a 2-dimensional projection of this n-tangle, as illustrated in Figure

2.4 on the left, with an open 3-braid, where all strings hang from the top bar, crossing

under or over other strings while (only) dropping to the bottom bar. It is also common

to see an open braid that is a 90◦ rotation of the braid on the left of Figure 2.4. When

corresponding ends of the n strings are connected in pairs, we have a closed braid.



19

The fact that every link can be represented by a closed braid [12] gives rise to the

invariant in Definition 2.0.7.

Definition 2.0.7. A braid index br(L) of a link L is the least number of strings

needed to make a closed braid presentation of a link.

We note that the value of br(L) is the minimizer of a geometric property over all

possible diagrams of the link L; thus, it is independent of projections of L and is

hard to determine. A classical result [13] stated in Chapter 4 relates the braid index

of a link L with the number of discs in the Seifert surface of a projection D of L.

Recently, there has been progress in the determination of braid index for reduced

alternating links in general [14], for special families of links like the Montesinos links

[15] in particular.

Figure 2.4: Left: an open 3-braid. Right: another presentation of the same open
3-braid.

Example 2.0.8. Let c1, c2, ..., cn be the n crossings of a link L. The linking number

lk of a 2-component link L (with K1, K2 being the two components) is defined as

lk(K1, K2) = 1
2
(sign(c1) + sign(c2) + ... + sign(cn)), where the ci’s are all crossings

between K1 and K2.

The linking number describes how components intertwine around each other in a

2-component link. So this invariant is specific to a link diagram, up to its orientation.
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We can easily see that lk is an invariant by consider the effects of Reidemeister moves

on lk. Moreover, the value of lk is always an integer. This can be seen by observing

that a curve must enter and exit another curve in order to make a link. In other

words, the Jordan curve theorem guarantees that the sum of signs of all crossings

between 2 components of a link is even, hence half of this sum is an integer.

Figure 2.5 shows an example of a splittable link L1 with lk(L1)=0, and a Hopf link

L2 with the linking number of 1 and the other with linking number −1.

Figure 2.5: Left: lk(L1) = 1
2
(1 − 1) = 0. Middle: lk(L2 = 1

2
(1 + 1) = 1. Right:

lk(L2 = 1
2
(−1− 1) = −1.

We consider how linking number is changed when an R-move of any type is per-

formed.

R-I move involves only one component of a link diagram, so the value ±1 does not

contribute to lk(D).

Figure 2.6 shows the case of R-II. By symmetry, we have only 2 combinations for

the orientation of the two strands; either their orientations are both pointing towards

the crossings, or only one is pointing towards the crossings. In both cases as shown

in Figure 2.6, the crossings always have opposite signs. Thus, the total net change in

signs is −1 + 1 = 0 and 1− 1 = 0.

In the case of R-III, as illustrated in Figure 2.7, the circled crossing O is not affected

by the move, no matter how D is oriented; meanwhile the two crossings created or

destroyed by sliding one strand over O the yield the same signs before sliding as after

sliding. The argument holds for different orientations of the three strands in Figure

2.7.
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Figure 2.6: Net change in signs of R-II.

Figure 2.7: The effect of R-III on signs.

An example of an invariant that can be powerful, yet not as hard to compute as

minimum quantities among all possible link configurations, is a knot polynomial. A

well-known knot polynomial was discovered by Jones Vaughan in 1985 [16]. Subse-

quently, another notable mathematician, introduced the bracket polynomial (Defini-

tion 2.0.9) which was a model to interpret Jones polynomial [17]. Below, we will use

the bracket polynomial approach to define Jones polynomial.

Definition 2.0.9. The bracket polynomial 〈D〉, of any unoriented link diagram D is

a polynomial in one variable A defined by the recursive rules:

〈 〉 = A〈 〉+ A−1〈 〉,

〈 〉 = A〈 〉+ A−1〈 〉,

〈©L〉 = −(A2 + A−2)〈L〉,

〈©〉 = 1.

Conventionally, by link invariant, we mean that it is a general invariant, under

ambient isotopy. To discretize the equivalence, we use R-moves. However, there
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Figure 2.8: The writhe values of the two diagrams are different.

exists restricted invariants that apply only to special families of links, or under R-II

and R-III moves only. The bracket polynomial in Definition 2.0.9 is an example of a

link invariant under R-III and R-IIII moves, or regular isotopy. Another example of

an invariant under regular isotopy is illustrated in Example 2.0.10.

Example 2.0.10. The writhe ω(D) of a link diagram D is a quantity defined by the

difference of the total number of positive crossings minus the total number of negative

crossings.

Figure 2.8 shows that R-I can change the writhe of a diagram by ±1.

Proposition 2.0.11. [17] The one variable bracket polynomial in Definition 2.0.9 is

invariant under R-II and R-III moves.

We will show one case of Proposition 2.0.11 by showing that the bracket of both

R-II configurations are equal: 〈 〉 = 〈 〉.

〈 〉 = A〈 〉+ A−1〈 〉

= A(A〈 〉+ A−1〈 〉) + A−1(A〈 〉+ A−1〈 〉)

= A(A〈 〉+ A−1((−A2 − A−2)〈 〉)) + A−1(A〈 〉+ A−1〈 〉)

= A2〈 〉 − A2〈 〉 − A−2〈 〉+ 〈 〉+ A−2〈 〉

= 〈 〉 = 〈 〉.
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Figure 2.9: The bracket polynomial of the Holf link diagram above is given by:
−A4 − A−4.

Similarly, it can be shown that 〈 〉 = 〈 〉 and 〈 〉 = 〈 〉.

However, 〈 〉 = −A3〈 〉, and 〈 〉 = −A−3〈 〉. That is to say the bracket

polynomial is not invariant under R-I move. In [17], the author shows a general link

invariant (Definition 2.0.12) can be formed by normalizing the bracket polynomial.

Definition 2.0.12. Let ω(D) be the writhe of a link diagram D, and 〈D〉 is the

bracket polynomial of D, then the Kauffman polynomial X in variable A is given

below:

f(D) = (−A)−3ω(D)〈D〉.

From Definition 2.0.12, by substituting the variable A in f(L) with t−1/4, one gets

the Jones Polynomial:

V (L) = (−t)
3
4
ω(L)〈L〉.

Figure 2.9 gives an example of the bracket polynomial of a Holf-link diagram, from

which the Jones polynomial can be given as,

V (L) = −
√
t− t5/2.

Even though computing polynomial invariants is easier than minimizing quantities
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over all possible configurations, the task is still challenging in terms of computation

complexity. In Section 2.1, we will lay a foundation to understanding how hard it is

to calculate a Kauffman polynomial and Jones polynomial.

2.1 Computational Complexity Theory Basics

This section gives an elementary introduction to the studies of how much of a

resource, time, a problem can take up. We assume some background in proposi-

tional logic. Interested readers may learn more about complexity theory in [18] and

algorithm analysis in [19].

Let the function to be estimated be f(n) where n is the number of crossings in a

reduced alternating link diagram. Then, by f(n)=O(g(n)), we mean f(n) ≤ c.g(n)

for any constant c and large enough n, i.e. n ≥ N , for some constant N . We also say

that the function f(n) has worst case complexity of O(g(n)).

Definition 2.1.1. A polynomial-time algorithm is an algorithm that has worst case

complexity of O(nk) for some constant k.

We call a problem tractable if and only if there exists a polynomial-time algorithm

that solves the problem entirely. A problem P1 is said to reduce to problem P2 if

solving P2 in polynomial-time implies solving P1 in polynomial-time as well.

A decision problem is a problem to which the solution is binary, that is, it takes

true or false as the answer.

The set Non-deterministic polynomial-time (NP) is defined as the set of all deci-

sion problems of which any suggested solution to an instance of the problem can be

validated with polynomial-time. We say that a problem is in P if it is in NP and is

tractable.

Definition 2.1.2. A problem is NP-complete if it is in NP, and every problem in

NP reduces to it in polynomial time. A problem is in NP-hard if an NP-complete

problem reduces to it.
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Example 2.1.3 below defines a few more terms in order to state a problem and its

complexity class.

Example 2.1.3. A Boolean literal b, or literal b for short, is an object that must

take the value of true or false. The negation of b is often denoted b̄, and is considered

distinct from b. A clause is a finite set of distinct literals joined by only the logical

operator "or". A conjunctive normal form (CNF) formula is a finite set of clauses

which are joined by the logical operator "and". These concepts allow us to define a

2-Satisfiability (2-SAT) problem, that is the problem to find an assignment of truth

values that leads to the evaluation of a given CNF formula to be true, when every

clause has at most 2 literals. 2-SAT is a special case of SAT problems in which clauses

can have finite number of literals. The problem SAT is in NP-complete [18].

The problem of deciding whether a given graph is Hamiltonian is another example

of an NP-complete problem [18].

When an expected answer for a problem is neither "Yes" or "No", the complexity

classes above do not suffice to characterize its complexity. A class of problems that

relates to our interest is the class of counting problems. For example, instead of

asking whether a Boolean formula has a satisfiable assignment, we can ask to find the

number of distinct satisfiable assignments.

Definition 2.1.4. A problem is said to be in #P if it is a counting problem and

is in NP. A problem is #P-hard if every other problem in P has a polynomial time

counting reduction to it.

A problem that is #P-hard is at least as hard as an NP-hard problem. Now we

are ready to state the well-known results about computation complexity of Jones

and Kauffman polynomials: the computational complexity of Jones polynomial is

#P-hard [20] and of Kauffman polynomials is NP-hard [21].



CHAPTER 3: THE FLYPE CONJECTURE

Definition 3.0.1. An alternating link L is a link that possesses a regular projection

into R2 with alternating overpasses and underpasses.

A link diagram is reduced if it contains no nugatory crossing.

Figure 3.1: A nugatory crossing can be undone by untwisting the crossing. The gray
circles suggest that any structure of a link can be on both sides of the nugatory
crossing.

Definition 3.0.2. A flype is a local move on a link diagram that rotates a tangle T

180 degrees, such that a single crossing is flipped from one side of the tangle to the

other side, as shown in Figure 3.2.

T

T

Figure 3.2: A flype on the tangle T .

Theorem 3.0.3 [22] settled the 100-year-old Tait Flyping Conjecture at the time,

which allowed the authors to complete the classification of alternating links [23].

Theorem 3.0.3. Given two reduced alternating diagrams, they are of the same type

if and only if they are related by a sequence of flypes.

Since a flype does not change the writhe, Theorem 3.0.3 implies that writhe is a

link invariant if we restrict ourselves to reduced alternating link diagrams. In general
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the writhe of a link diagram is not an invariant in the equivalence class induced by

all Reidemeister moves, because a type I Reidemeister move changes the writhe by

+1 or −1. It is still not an invariant even if we restrict ourselves to minimal link

diagrams. A well known example is the Perko pair consisting of knots 10161 and 10162

enumerated in Rolfsen’s knot table [1].



CHAPTER 4: SEIFERT DECOMPOSITION AND SEIFERT GRAPHS

4.1 Seifert Decomposition

A combinatorial representation of an oriented link diagram D can be obtained by

smoothing all the crossings in the diagram as shown in Figure 4.1. Then, all resulting

partial arcs are connected, which forms closed curves that we call Seifert circles (or

s-circles). The result is a Seifert diagram that includes Seifert circles and the crossings

that have been smoothed. We call this process the Seifert circle decomposition S(D)

of the oriented link diagram D.

Figure 4.1: Smooth a (positive/negative) crossing. The smoothed crossing is in the
middle.

We note that S(D) gives the construction of the Seifert surface of D mentioned in

Definition 2.0.4, by replacing s-circles with discs in different heights and connecting

these discs with twisted bands where the crossings of D are.

Proposition 4.1.1 relates the number of s-circles to a few other quantities in a Seifert

surface whose boundary admits the diagram D.

Proposition 4.1.1. The genus of a Seifert surface F constructed from a connected

µ-component link diagram D satisfies:

2g(F ) = 2 + c(D)− s(D)− µ,

where s(D) is the number of s-circles in S(D) and D is the boundary of F , c(D) is
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the crossing number of D.

We note that if link L is homogeneous, then the surface F above yields the minimal

genus g(L) of the link L. That is, g(F ) = g(L) [24].

For example, the unknot bounds a disc. The surface F whose boundary is the

unknot in Figure 4.2 gives the unknot diagram D with c(D) = 1 and µ = 1, and

S(D) gives s(D) = 2. Thus, g(F ) = 0 and the genus of the unknot is 0.

Figure 4.2: Left: a diagram D of the unknot. Middle: Seifert decomposition of D.
Right: The surface F that the unknot bounds. If we cap F with a disc, we obtain a
sphere (not shown), which has genus 0. We have g(unknot) = g(F ) = 1

2
(2+1−2−1) =

0.

4.2 Properties of Seifert Graphs

Definition 4.2.1. Let D be an oriented link diagram and S(D) be its Seifert circle

decomposition. We construct a graph GS(D) from S(D) by identifying each Seifert

circle to a vertex of GS(D). If there exist k ≥ 1 crossings between two Seifert circles

C1 and C2 in s(D), then the two corresponding vertices v1 and v2 are connected by

k edges. Otherwise, there does not exist an edge between the two vertices. GS(D) is

called the Seifert graph of D.

Using the same notation in Definition 4.2.1, GS(T ), where T is a tangle in a diagram

D, means the portion of the Seifert graph of D that we focus on is the local graph

structure that corresponds to the tangle T in D.

The following is a well-known result by Yamada [13] that relates the number of

s-circles to a link invariant.

Theorem 4.2.2. [13] The minimum number of s-circles among all possible projections

of a link L equals the braid index of L.
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Remark 4.2.3. Seifert graphs are planar. We will show this by construction. Start-

ing with a link diagram D (which is a regular projection of a link on a plane P ),

smooth all crossings. The resulting s-circles left on P , categorized into only two

types: those that are nested (a) and those that are not nested (b). We note that type

(b) includes those that contain other s-circles inside. Since D is entirely on the plane

P , all type (b) s-circles and the original crossings of the regular diagram D are also

on P , it is evident that identifying all type (b) s-circles with vertices and crossings of

D with edges results in a plane subgraph of GS(D). For type (a) s-circles, we start

at the outermost circle c1 that is contained by a type (b) circle c0, and move c1 to

the same level with c0 on the plane. When identifying c1 with a vertex, and crossings

between c0 and c1 with edges, we simply place these edges on P avoiding to cross

other edges that are already on P . We repeat this step until there is no more type (a)

s-circles. In Definition 4.2.5, we describe the nesting structure of s-circles in a precise

language of levels.

Definition 4.2.4. Let T be a tangle in a link diagram D. We consider all possible

scenarios of T after the Seifert decomposition of D, shown in Figure 4.3. We say the

Seifert decomposition of T has parity hp if T is decomposed into cases (i) or (iv),

parity ha if cases (ii) or (iii), parity vp if cases (v) or (viii), and parity va if cases (vi)

or (vii) respectively.

Tangle parities and the global structure of a link diagram affect how a tangle may

look like after a Seifert decomposition. For example, a tangle of parity 1 can have

any of the Seifert decomposition parities hp, ha, vp, or va.

Definition 4.2.5. Let D be a connected diagram of an oriented link and consider

the Seifert decomposition of D. If an s-circle C is not bounded within any other

s-circle, then we say that C has level number 0 and we write this as l(C) = 0. If a

Seifert circle C is bounded within a level 0 s-circle, but not bounded inside any other
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Figure 4.3: Seifert decomposition parities. We note that possible complete Seifert
circles inside T are not drawn in Figure 4.3.

s-circles, then we say that it has level number −1 and we write this as l(C) = −1.

Repeating this process, the level number of any s-circle can be defined, recursively:

assume that all s-circles of level ≥ −k have been defined, then an s-circle C that is

bounded within a level −k s-circle is assigned a level number, i.e. l(C) = −k − 1.

Consider the case when a level −k+ 1 s-circle bounds one or more level-k s-circles.

Since the original diagram D (before S(D)) is connected, its Seifert diagram, and

hence Seifert graph is also connected. We call the collection of these s-circles an

s-block and k is the level number of the s-block, except for level 0: The collection

of level 0 circles forms the level-0 s-block. If there is only one level-0 s-circle, then

the 0-block contains only one s-circle. We will the same name for the counterpart of

s-block in GS(D)
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Remark 4.2.6. It is easy to see that for any diagram D, its Seifert decomposition

has at least one level 0 s-circle. In other words, GS(D) has at least one vertex. When

the level −k+ 1 s-circle bounds one or more level −k s-circles, the collection of these

s-circles gives an s-block with level number −k.

Remark 4.2.7. Seifert graphs are bipartite. If G̃ is a tree, it is evident to see that G̃

is bipartite by showing that G̃ is two-colorable; that is, vertices of G̃ can be colored

alternately with exactly two colors. Pick a vertex v0 of G̃ to be a root, and any

other vertex vi among the rest of the set of vertices of G̃. Color v0 as black. Let l

be the length of the path from v0 to vi; the existence and uniqueness of this path

is guaranteed by the fact that G is a tree. If l is even, then color vi the same color

with the node (black); otherwise, color vi white. The sets of black and white vertices

bipartition of G̃.

In the case that G̃ contains a cycle γ, due to the orientations (clockwise and coun-

terclockwise) of adjacent s-circles in the cycle, γ must contain an even number of

vertices hence γ must have an even length. Then G̃ is bipartite by Theorem 1.2.9.

The term ‘homogeneous links’ was introduced by Cromwell in [24]. Alternating

links and positive links are two special subclasses of homogeneous links, in which

blocks of Seifert graphs of the former alternate between positive and negative signs

while all blocks of Seifert graphs of the later have the same sign.

Definition 4.2.8. An oriented link is homogeneous if it admits a homogeneous di-

agram D whose Seifert graph GS(D) is homogeneous; that is, within each block of

GS(D), edges have the same sign.

Remark 4.2.9. Since D is a reduced alternating link diagram, all crossings belonging

to the same s-block of GS(D) have the same sign, and s-blocks whose level numbers

differ by an odd integer contain crossings of different signs.
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Since we sometimes refer to the simple Seifert graph resulting from S(D), we use

G̃S(D) to mean the simple graph obtained from the multigraph GS(D) whose edges

are assigned signed weights in the following way: the absolute value of the weight of

an edge e connecting two vertices v0 and v1 in G̃S(D) is the total number of crossings

between the s-circles of D that correspond to v0 and v1, and the sign of the weight

of e is the sign of these crossings. By Remark 4.2.9, all edges belonging to the same

block in G̃S(D) must have weights of the same sign. Since D is reduced (that is, it is

free of nugatory crossings), GS(D) is free of bridge edges, which implies that G̃S(D)

is free of bridge edges whose absolute weights equal to one. In addition, it worth

noticing that if GS(D) is not a tree, then D must be a nontrivial diagram of a link,

since a tree must be a simple graph. In [24], diagrams whose graphs GS(D) are trees

were characterized throughout the homogeneous class of links as diagrams of trivial

links.



CHAPTER 5: WRITHE-LIKE INVARIANTS OF REDUCED ALTERNATING

LINKS

5.1 Whitney Flip Moves

We examine how flypes on reduced alternating link diagrams can affect their Seifert

graphs. We first consider the case when two reduced alternating link diagramsD1 and

D2 are related by a single flype move. Then, we generalize it for a finite sequence

of flype moves. Let T be the tangle where the flype takes place. Without loss of

generality, let us assume that we start with a diagram in which the crossing used

for this flype move is on the right side of T as shown in Figure 3.2. There are eight

possible combinations to consider depending on the orientations of the four strands

that enter/exit T . All Seifert decomposition parities are given in Definition 4.2.4:

which includes four pairs: hp, ha, vp, and va. By symmetry, we will need to consider

only one of each pair listed in Definition 4.2.4 and Figure 4.3, which results in the

four distinct scenarios shown in Figure 5.1. We note that in Figure 5.1, we focus only

on the 4 strands that enter/exit T , and not what is inside T .

Now we consider the Seifert decomposition of the flype-related structure, S(T ),

and illustrate each of the four cases by filling in T its Seifert diagram after crossings

are smoothed. To simplify the language, we will relabel the cases hp, ha, va, vp as

A, B, C, and D correspondingly, as illustrated in Figure 5.2.

In cases A, B, and C, because of their orientations, the two Seifert circles C1 and C2

(defined by the two parallel arcs entering/exiting T after all crossings are smoothed)

must be distinct from each other and remain in both S(D1) and S(D2).

Case A: A flype moves the crossing O to the left side of the tangle and the other

structure in T ∩ S(D2) is obtained from T ∩ S(D1) by an 180 degree rotation around
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Figure 5.1: The 4 possible cases based on Seifert decomposition parities.

DA B C

Figure 5.2: The possible scenarios after smoothing all crossings in the tangle T in
each case.

the horizontal centerline of T . At the Seifert graph level, the subgraph G1 of GS(D1)

corresponding to the Seifert circles contained in T is connected to the rest of graph

through the vertices v1, v2 corresponding to C1 and C2. In other words, v1 and v2

form a two- cut for G1, and the subgraph G2 of GS(D2) corresponding to the Seifert

circles contained in T is obtained from G1 by a Type A Whitney flip using v1, v2 as

the two-cut and the edge corresponding to the crossing O.

Case B: A flype moves the crossing O between both C1 and C2 before and after

the flype. At the Seifert graph level, the sub- graph G1 of GS(D1) corresponding to

the Seifert circles contained in T is a union of blocks with v1 being their defining cut

vertex. GS(D2) is obtained from GS(D1) by performing a Type B Whitney flip on

G1 around e.
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Figure 5.3: Top: the effect of a flype move on a tangle T and crossing O in the case
of Seifert decomposition parity hp, which is relabelled to Type A. Bottom: the corre-
sponding actions on GS(T ), which corresponds to Whitney flip Type A in Definition
1.2.16.

Figure 5.4: Top: the effect of a flype move on a tangle T and crossing O in the case
of Seifert decomposition parity ha, which is relabelled to Type B. Bottom: the corre-
sponding actions on GS(T ), which corresponds to Whitney flip Type B in Definition
1.2.17.

Case C: The crossing O is a single crossing between the Seifert circle C0 and C2 in

the diagram D1, and becomes a single crossing between C0 and C1 in the diagram D2.

At the Seifert graph level, the subgraph G1 of GS(D1) corresponding to the Seifert

circles contained in T is v1-dependent in GS(D1) e where e is the unique edge between

v0 and v2 corresponding to O.
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Figure 5.5: Top: the effect of a flype move on a tangle T and crossing O in the case
of Seifert decomposition parity va, which is relabelled to Type C. Bottom: the corre-
sponding actions on GS(T ), which corresponds to Whitney flip Type C in Definition
1.2.18.

Case D: There are two sub-cases for Case D.

Sub-case D1: Figure 5.6 illustrates how S(D1), S(D2) are related by the flype at T

and O, where the s-circles C1 and C2 are distinct from each other, and the crossing

O is a single crossing between the Seifert circle C0 and C2 as shown in Fig. 13 in

D1, and becomes a single crossing between C0 and C1 in D2. At the Seifert graph

level, the subgraph G1 of GS(D1) corresponding to the Seifert circles contained in T is

v1-dependent in GS(D1) e where e is the single edge between v0 and v2 corresponding

to O. This is in fact, a Whitney flip Type C as defined in Definition 1.2.18.

Sub-case D2: We have C1 = C2, as illustrated in Figure 5.7. In this case, the

subgraph G2 of GS(D1) corresponding to the Seifert circles (and the crossings among

them) contained in T as well as the crossing O is v1-dependent andGS(D2) is obtained

from GS(D1) by performing a Type D Whitney flip as in Definition 1.2.19, which is a

special case of Type A Whitney flip as defined in Definition 1.2.16. Notice that this

is special since v0 is not connected to v1 by any path not going through G2, while this

is allowed in the definition of a Type A Whitney flip.

We note that in the above analysis, Whitney flip moves change only the local

structure involved in S(D1). Within each block, the edge set and edge weights remain
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Figure 5.6: Top: the effect of a flype move on a tangle T and crossing O in the case of
Seifert decomposition parity vp, which is relabelled to Type D, where the s-circles C1

and C2 are distinct from each other. Bottom: the corresponding actions on GS(T ),
which corresponds to Whitney flip Type C in Definition 1.2.18.

v
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Figure 5.7: Top: the effect of a flype move on a tangle T and crossing O in the case
of Seifert decomposition parity vp, which is relabelled to Type D, where C1 = C2.
Bottom: the corresponding actions on GS(T ), which corresponds to Whitney flip
Type A in Definition 1.2.16.

unchanged by a Whitney flip. In section 5.5, we will illustrate how these Whitney

flip moves position themselves in the global structures of the Seifert graph of a link

diagram.

5.2 Flip Equivalence Classes

Since we have established a relationship between flypes in a reduced alternating

link diagram D with Whitney flip moves in the Seifert graph GS(D), we have set
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up the ground to identifies quantities in GS(D) that are preserved under Whitney

flip moves. The four cases in Section 5.1 prove Theorem 5.2.1, which characterizes

the correspondence between alternating links under flypes and their graphs under

Whitney flip moves.

Theorem 5.2.1. If two link diagrams D1 and D2 are related by a sequence of flype

moves, then their Seifert graphs GS(D1) and GS(D2) are related by a sequence of

Whitney flips of types A, B, or C. We denote this as GS(D1)
f
≡ GS(D2).

5.3 Definition of Writhe-like Invariants

Definition 5.3.1. We say that an invariant is a writhe-like invariant if, like the

writhe, it is an invariant when restricted to the class of reduced alternating link

diagrams.

In this section, we introduce several quantities as writhe-like invariants, most of

which were published in [25].

If D is a reduced alternating link diagram, it is well known that D is homogeneous.

That is, the crossings on one side of any Seifert circle are of the same sign, while the

crossings on the other side of the Seifert circle are of the opposite sign. It follows that

all crossings belonging to the same s-block have the same sign, and s-blocks whose

level numbers differ by an odd integer contain crossings of different signs.

Definition 5.3.2. Let D be a reduced alternating link diagram that is un-splittable

(i.e. both GS(D) and G̃S(D) are connected). Let {B1, B2, ..., Bk} be the set of all

blocks in G̃S(D).

(i) w+(D) and w−(D): the sum of all positive edge weights and the sum of all negative

edge weights in G̃S(D) respectively;

(ii) ξ+(D) and ξ−(D): the number of positive blocks and the number of negative

blocks in G̃S(D) respectively, where a block is said to be positive (negative) if the
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weights in it are of positive (negative) sign;

(iii) W (D): the set of all edge weights in G̃S(D);

(iv) ε(D): the number of (simple) edges of G̃S(D), or the size of the simple graph

G̃S(D).

(v) ρ(D): the order of G̃S(D) or GS(D);

(vi) wB(D) = {w(B1), w(B2), ..., w(Bk)} where w(Bj) is the sum of weights of edges

of Bj;

(vii)WB(D) = {W (B1),W (B2), ...,W (Bk)} whereW (Bj) is the set of all edge weights

in Bj;

(viii) β(D): The Betti number β(D) of G̃S(D), which is defined as β(D) = ε(D) −

v(D) + 1, where v(D) is the number of vertices in G̃S(D);

(viiii) β̂(D): which is defined as the set {β(B1), β(B2), ..., β(Bk)};

(x) Γ(D): which is defined as the set {γ(B1), γ(B2), ..., γ(Bk)} where γ(Bj) is the

length of a longest cycle in a block Bj (γ(Bj) = 0 if Bj contains no cycles).

(xi) κ(D): the circumference of G̃S(D). If G̃S(D) is a tree, then κ(D) = 0.

Theorem 5.3.3. Each quantity above is a writhe-like invariant, that is, it is a link

invariant within the space of all reduced alternating link diagrams.
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Proof. As shown in Section 5.1, Whitney flips do not change a block, but possibly

the position of a weight ±1 edge within a block. That is, if a block has negative or

positive edge weights, these weights remain so under Whitney flip moves. It follows

that the pairs w+(D) and w−(D) in (i), ξ+(D) and ξ−(D) in (ii), and W (D) are

invariant under Whitney flips.

ε(D) is invariant as a consequence of (i) being invariant. In addition, we observe

that Whitney flips do not alter the number of vertices. Thus, ρ(D) is also invariant.

wB(D), andWB(D) are writhe-like invariants as a consequenceW (D) being invari-

ant.

β(D), β̂(D) and Γ(D) are writhe-like invariants since a Whitney flip cannot change

a cycle, except the position of an edge with weight ±1 in a cycle.

Since β(D) is invariant, the set of cycle basis remains unchanged, hence the length

of the longest cycle of the graph G̃, or its circumference κ(D) is also invariant.

We say that an invariant is stronger than another one if it can distinguish all link

types the other invariant can, but not vice versa. For example, w+(D) and w−(D)

together is stronger than w(D); W (D) is stronger than w+(D) and w−(D) combined;

wB(D) is stronger than ξ+(D) and ξ−(D) combined; WB(D) is stronger than wB(D)

and also stronger than W (D). Moreover, some of the listed invariants cannot be

compared with each other. For example, there are distinct reduced alternating link

diagrams that β(D) can distinguish, but not wB(D), and vice versa. In Chapter 6, we

will quantify the strength of an invariant in the context of tabulated knot diagrams.

5.4 Coupled Edges

This section describes to what extent WF moves can change the structure of a graph

at a cut vertex, as well as what remains invariant, which depends on the diagrammatic

features of D. We consider a local structure L(D) that includes two vertices v1 and v2
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of a Seifert graph GS(D) of the alternating link diagram D, both attached to a vertex

v by edges of different signs. Then v must be a cut vertex of GS(D). To show the

quantities that remain unchanged under flypes, we examine the corresponding Seifert

circle decomposition S(D). Let C, C1, and C2 be the s-circles corresponding to v,

v1, and v2. Let c(C1) and c(C2) be the sets of crossings between C and C1, C and

C2 respectively. If we travel along C once, we will encounter each crossing in c(C1)

and c(C2) exactly once. A set of crossings from c(C1) (c(C2)) is said to form a cluster

if it is a maximal set with the property that we can use one of them as a starting

point to travel along C to reach the last crossing in the set without encountering any

crossing in c(C2) (c(C1)). We say that the two simple edges (v, v1) and (v1, v2) are

coupled if the total number of clusters (of v1 with v and v2) is 4 or more. At the

Seifert diagram level, the multiple crossings c(C1) and c(C2) interlock each other in

clusters of different signs. In GS(D), we break down the total edge weights (v, v1)

and (v1, v2) to describe how the edges are coupled. The left side of Figure 5.8 shows

(a portion of) a link diagram containing coupled edges with 4 clusters and the right

side is an example containing no coupled edges. Let us consider what happens to

Figure 5.8: Left: a (part of a) Seifert diagram that contains coupled edges with 4
clusters. Right: a (part of a) Seifert diagram that contains no coupled edges.

coupled edges when a WF move is applied. We wish to show that a WF move cannot

break the couple nor change the number of clusters. We consider how a cluster may

be affected by a flype, by considering the configurations of local structure of a flype.

Figure 5.9 outlines two sub-cases where the two strands of the tangle T are oriented

in the same way, and Figure 5.10 - in opposite ways. The crossing O corresponds to
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the edge e among multiple edges between v and v1 in a couple. Consider a minimal

couple (one with only 4 clusters). If the rest of edges (v, v1) \ e belong to the flyping

structure, without the loss of generality, let the couple structure be [i4, i1, i2, i3] where

e is counted in i4. Then after the flype, this structure becomes [i1, i2, i3, i4]. We

observe that the cyclic order of a couple is preserved. At the Seifert graph level, these

two cases would correspond to WF Type A and Type D. In the case of Type A, all

crossings between the two Seifert circles are either all within or outside the tangle

except that one of them may be used as the crossing for the flype. If (v, v1) \ e does

not belong to the flyped structure, i.e they are outside of the tangle T , then they

are not affected by the flype, hence i4 and the couple structure [i4, i1, i2, i3] are not

affected by the flype. In the case of Type D, we have two sub-cases, one is similar to

Type C, which will be considered shortly; the other sub-case is that the couple with

v1 must be within the flype structure and the flype is only a reflection hence we have

either [i4, i1, i2, i3] or [i1, i2, i3, i4]. That is to say, the couple structure is unchanged

by a flype.

Figure 5.9: The cases when a flype involves parallel tangles.

In the cases that the flyped structures involve antiparallel tangles, as illustrated

in Figure 5.10, the corresponding WF moves are of Type B and Type C. In the case

of Type B, then all crossings between the two Seifert circles are either all within or

outside the tangle except that one of them may be used as the crossing for the flype.
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If (v, v1) \ e are all outside of the flype structure, which is unaffected by the flyping

process, the relative position of e to the tangle T does not change i4, thus the couple

structure [i4, i1, i2, i3] remains invariant in a flype. If (v, v1) \ e are all inside T , the

clusters i4, i1, i2, i3 are not affected by the flype; only the cyclic order of i4 is.

In the case of Type C, then the crossing used for the flype cannot be a crossing in

the lock since then the number of clusters can only be 2 between C1 and C2 if one of

them has a single crossing with C0. In other words, it is not possible for (v, v1) \ e

to be a part of the flype structure (i.e. inside the tangle T ). So whether i1, i2, i3 are

completely within T or not, the flype only moves e from one side of i1, i2, i3 to the

other. So the order of the clusters remains after a Type C move.

Figure 5.10: The cases when a flype involves antiparallel tangles.

In all cases, we have observed that the number of crossings in each cluster and the

cyclic order of these clusters along the Seifert circle C0 are all preserved.

5.5 Consequences of Whitney Flips on Seifert Graphs of Alternating Link

Diagrams

L(D) can belong to one of the following 4 cases:

1. Free edges in a tree.

Suppose the edge (v, v1) is not coupled with (v1, v2) in L(D) and the Seifert

graph of the whole diagram D, GS(D) is a tree. (v, v1) must not be a single



45

edge, otherwise the diagram D is nugatory at this crossing. The multigraph

GS(D) admits a type of WF moves if there exists a single edge e among those

of (v, v1) to perform a flype in the Seifert decomposition of D. This scenario

can happen only with Type A. Figure 5.11 illustrates the single edge e as one

of the many edges between (v, v1). On the other hand, if the edges apart from

e in (v, v1) can be moved freely, there must be a band between v and v1, which

means there exists a connected sum between these two vertices. This scenario

does not happen in a prime link.

Figure 5.11: Flype one of the multi-edges.

2. Coupled edges in a tree.

This scenario can happen only with Type A. Since the flype involves all cross-

ings between two separate Seifert circles, the orientation of the tangle must be

parallel and the tangle must be of type 0.

Figure 5.12: Coupled edges cannot be broken in a tree.

Figure 5.13 shows an example in which the Seifert graph GS(D1) is a tree that

has 2 pairs of interlocked edges (2 couples), and GS(D2) is a tree with a block
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that can be moved freely along any other vertices by a Whitney flip move. So

in GS(D1), there exists none of the Whitney flip moves can break the structure

Φ = {[1,−2, 6,−3], [2,−2, 5,−3]}.

Figure 5.13: Seifert decompositions of D1 (top) and of D2 (bottom)

3. Free beads in a cycle. In this case, the free bead need not form a connected

sum with the cycle. Figure 5.14 shows an example, where the free bead is the

block with 2 multi-edges. The coupled edges are between v4 and one of the

three vertices v1, v2, v3. As a result, in this example the free bead seems to

move "freely" among the vertices of the cycle that it is coupled with.

4. Coupled edges in a cycle.

Whether in the global structure, the diagram contains a cycle or not, we have

shown that Whitney flip moves involve a change only on a local (visible) part

of the diagram, as shown in Section 5.1. The cyclic order of the crossings in a

couple is not affected by Whitney flip moves of any type.

Based on the observations above, we have the following theorem.
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Figure 5.14: A free bead that can move along a cycle by WF moves.

Figure 5.15: Left: A Seifert diagram with a cycle that contains coupled edges. Right:
the edges −6 and 4 forms a couple Φ = [−2, 1,−1, 2,−3, 1].

Theorem 5.5.1. Let Φ(D) = {~φ1, ~φ2, ..., ~φm}, where m is the total number of

coupled edges and ~φj is a vector consisting of the number of clusters in the j-th

couple according to their cyclic order along the orientation of the Seifert circle

of the cut vertex v, then Φ(D) is a writhe-like invariant.

The 4 cases above also discuss what cannot be changed (1) and what can be changed

(2) by Whitney flip moves in a Seifert graph of an alternating diagram D, when a

couple structure is involved, whether D contains a connected sum or not. Φ(D) is an

example for case (1).



CHAPTER 6: APPLICATIONS

6.1 The Strength of Writhe-like Invariants

In the study of link invariants, we are in a search for invariants that can distinguish

as many links from one another as possible. We are yet to find the ideal invariant

that yields a distinct value for each link type. Even though writhe-like invariants are

invariant only when we restrict ourselves to the class of reduced alternating links, it

is relevant to discuss how powerful they are at distinguishing knots, links within the

restriction. This section discusses the strength of an invariant of tabulated minimal

diagrams, that we call the t-strength in Definition 6.1.1. We will also compare writhe-

like invariants with classical link invariants such as genus, braid index, Kauffman

polynomial X, and Jones polynomial.

Definition 6.1.1. Let I be an invariant of alternating link diagrams. For each given

crossing number cr, we can partition the set of all alternating link diagrams with

crossing number cr into subsets c1, c2, ..., ck such that two links belong to the same cj,

for 1 ≤ j ≤ k, if and only if they share the same I value. Then we define τ(cr, I) be

the t-strength of the invariant I as follows:

τ(cr, I) =
k∑k

j=1 |cj|
,

where
∑k

j=1 |cj| is the total number of alternating link diagrams with crossing cr.

We calculated the quantities W (D) and β(D) as described in Definition 5.3.2 for

all alternating knot diagrams in the knot tables in the KnotTheory package [26] up

to 16 crossings and for alternating links up to 11 crossings. Tables 6.1 and 6.3 show
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a few examples for alternating knot diagrams of 12 crossings.

Table 6.1: A few values of W (D) for alternating knots of 12 crossings and the corre-
sponding number of diagrams sharing the same value of W (D).

W (D) Number of diagrams sharing the same w(D)

{4, -5, 1, 1, 1} 1

{3, 2, -3, 4} 2

{3, -2, 5, -2} 3

{6, -6} 19

We can interpret Table 6.1 as follows: There is only one tabulated 12-crossing

alternating knot diagram D with the value W (D) = {4,−5, 1, 1, 1}. There are 2

diagrams D1, D2 with the value W (D1) = W (D2) = {3, 2,−3, 4}, 3 diagrams that

yield the edge weight set of {3,−2, 5,−2}, and 19 diagrams that yield the edge weight

set of {6,−6}.

Table 6.2 shows the number of appearances of all values of cj of all minimal alter-

nating 12-crossing knot diagrams. We use Table 6.2 to calculate τ(12,W (D)).
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Table 6.2: Number of alternating knot diagrams of 12 crossings sharing cj values of
W (D).

cj Number of diagrams sharing cj values of

W (D)

1 343

2 120

3 47

4 19

5 13

6 14

7 6

8 7

9 8

10 4

11 1

12 3

19 1

20 1

21 1

22 1
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Table 6.3: Number of alternating knot diagrams of 12 crossings sharing the same
values of β(D).

β(D) Number of diagrams sharing the same β(D)

0 421

1 462

2 296

3 92

4 17

Similarly, Table 6.3 implies that there are 421 alternating 12-crossing knot diagrams

D whose β(D) = 0, while only 17 diagrams D′ with β(D′) = 4.

To compare the t-strength of edge weight set W (D) and Betti number β(D) with

a classical invariant, we counted the number of tabulated 12-crossing knot diagrams

which share the exact same genus g(D). The first row of Table 6.4 can be interpreted

as there are 3 knot diagrams whose genus is 1 among the 12-crossing knot diagrams.

Table 6.4: Number of alternating knot diagrams of 12 crossings sharing the same
genus.

g(K) Number of diagrams sharing the same g(K)

1 3

2 71

3 78

4 495

5 641

We now have the following t-strength values for each aforementioned quantities, in
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order to state that W (D) is relatively stronger than g(D) and β(D).

τ(12,W (D)) =
343 + 120 + 47 + 19 + 13 + 14 + 6 + 7 + 8 + 4 + 1 + 3 + 1 + 1 + 1 + 1

1288

= 0.457298;

τ(12, g(K)) =
1 + 1 + 1 + 1 + 1

1288
= 0.00388199;

τ(12, β(D)) =
1 + 1 + 1 + 1 + 1

1288
= 0.00388199

=⇒ τ(12, β(D)) = τ(12, g(K)) < τ(12,W (D)).

The t-strength of W (D) for 11-crossing alternating links is computed based on

Table 6.5 as follows:

τlink(11,W (D)) =
211 + 59 + 14 + 10 + 5 + 4 + 4 + 3 + 1 + 1 + 1

548
= 0.571168.
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Table 6.5: Number of alternating link diagrams of 11 crossings sharing the same
W (D).

cj Number of diagrams sharing the same W (D)

1 211

2 59

3 14

4 10

5 5

6 4

7 4

8 3

9 1

12 1

15 1

Table 6.6 gives an idea of where τ(12, β(D)) and τ(12,W (D)) are in comparing

with the t-strength of genus g(K), braid index br(K), Kauffman polynomial X f(L))

and Jones polynomial VK(t).

Table 6.6: The t-strength of β(D) is about the same as one of invariants defined over
all possible configurations. The t-strength ofW (D) is in the middle of the comparison
spectrum.

Crossing

number

τ(cr, g(K)) τ(cr, br(K)) τ(cr,W (D)) τ(cr, f(D)) τ(cr, VK(t))

9 0.097561 0.097561 0.878049 1 1

10 0.0325203 0.0325203 0.747967 0.95935 0.934959

11 0.00388199 0.00388199 0.553134 0.893733 0.893733

12 0.00388199 0.00388199 0.457298 0.810559 0.832298
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6.2 Some Relationships of Writhe-like Invariants to General Invariants

The following observations illustrate that some invariants from Definition 5.3.2 can

be informative by relating to other (general) invariants.

Remark 6.2.1. For a reduced alternating link diagram D of a knot K, if G̃S(D) is

not a tree, then g(K) ≥ c(D)−ε(D)+1
2

, where c(D) is the number of crossings of D and

ε(D) is the number of simple edges in G̃S(D).

G̃S(D) is not a tree implies that β(D) = ε(D) − s(D) + 1 ≥ 1. Then, we have

s(D) ≤ ε(D). We apply Proposition 4.1.1 to get the desired inequality.

Corollary 6.2.2. For a reduced alternating diagram D of a knot K with at least 5

crossings, if β(D) = 0, then g(K) ≥ 2.

We have ε(D) = s(D) for β(D) = 0. So ε(D) ≥ 2. From g(K) ≥ c(D)−ε(D)+1
2

, we

have g(K) ≥ 5−2+1
2

= 2.

Remark 6.2.3. Let D be a homogeneous link diagram, if G̃S(D) is Hamiltonian,

then D is positive.

If G̃S(D) is Hamiltonian, then G̃ must not contain any cut vertex. Suppose the

contrary, i.e. G̃ contains a cut vertex w, let v be the start of a Hamiltonian cycle

in G̃S(D) such that v 6= w. Then one traversing this Hamiltonian cycle must have

passed both w and v twice, contradicting the definition of a Hamiltonian cycle in

Definition 1.2.8. On the other hand, D is homogeneous, which implies that G̃S(D) is

homogenous. So G̃ is one block where the sign of the edges are all the same, hence

the result follows.

It is important to note that Hamiltonian property of G̃S(D) leaves out many pos-

itive links. Since an s-graph is bipartite, the number of vertices of G̃S(D) must be

even by Proposition 1.2.13, and by Remark 6.2.4, if D is a knot diagram, then we

are referring to only positive diagrams with odd number of crossings in Remark 6.2.3.

Figure 6.1 shows a non-Hamiltonian s-graph of a positive knot with 11 crossings.
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Figure 6.1: The knot 11a362 and its s-graph.

Remark 6.2.4. Let D be a µ-component link diagram of c(D) crossings. Then we

have, c(D)− ρ(D) ≡ µ( mod 2).

Proof. Let us recall that the quantity ρ(D) of GS(D) is indeed the number of s-circles

s(D) in the Seifert circle decomposition of D. We first consider the case when the

diagram D has no crossings, i.e. all s-circles of D are the components of D. So the

statement c(D)− s(D) ≡ µ( mod 2) holds.

When c(D) = 1, we have the situation as shown on the left of Figure 6.2, where

the dash lines represent short arcs. After smoothing this crossing, µ is changed by

+1 which gives s(D) = 2. So the statement also holds in the case the diagram D is

reducible.

We suppose that the statement also holds for c(D) = cr, and s(D) of a µ-component

link diagram D. We consider the quantity cr + 1 − s(D′) in the µ-component link

diagram D′. Smoothing this additional crossing in D′ must increase (as shown on the

left of Figure 6.2) or decrease (as shown on the right of Figure 6.2) the number of

components of D′ by 1, thus changes s(D′) by ±1. We now consider the difference

of c(D′) and s(D′) and apply the induction hypothesis to get the result in two cases

below.

1. In the case shown in Figure 6.2 on the left, we have cr + 1− s(D′) = cr + 1−

(s(D′) + 1) ≡ µ( mod 2).

2. In the case shown in Figure 6.2 on the right, we have cr+ 1− s(D′) = cr+ 1−
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(s(D′)− 1) = cr − s(D′) + 2 ≡ µ( mod 2).

Figure 6.2: Smoothing a crossing increases or decreases the number of components by
1. The dash parts represent long arcs, whose self intersections are not drawn. Top:
the crossings before smoothing. Bottom: the resulting closed curves after smoothing
and joining the corresponding arcs.

6.3 Combined Usage with Strong Classic Invariants

Writhe-like invariants can be used in combination with other invariants to distin-

guish links. Though τ(12,W (D)) < τ(12, f(D) < τ(12, VK(t)), there are multiple

12-crossings knots that have the same Kauffman X or Jones polynomial, and differ-

ent writhe-like invariants. The computation of τ(12, VL(t)) is based on the data in

Table 6.7.
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Table 6.7: The number of alternating knot diagrams of 12 crossings sharing j Jones
polynomials.

The value j Number of diagrams sharing j values of

W (D)

1 907

2 128

3 26

4 8

5 3

Example 6.3.1. However, there exist knots which share the same genus, Kauffman

X and Jones polynomials, but different writhe-like invariants. Figure 6.3 gives an

example of this case.

f(12a598)(A) = f(12a954)(A)

= A36 − 4A32 + 9A28 − 17A24 + 25A20 − 31A16 + 34A12 +
1

A12
− 31A8

− 4

A8
+ 26A4 +

10

A4
− 18;

V12a598(t) = V12a954(t)

= t−3 − 4t−2 + 10t−1 − 18 + 26t− 31t2 + 34t3 − 31t4 + 25t5 − 17t6 + 9t7

− 4t8 + t9.

Example 6.3.2. In this example, we illustrate that coupled edges can distinguish

alternating links with arbitrarily large number of crossings. This is when calculating

knot polynomials becomes expensive. Figure 6.4 shows the Seifert circle decomposi-

tions S(D1) and S(D2) of two 21-crossing alternating knot diagrams D1 and D2. The
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Figure 6.3: Left: a minimal diagram D1 of the knot 12a598 with W (D) =
{1, 2, 2, 3,−4}.
Right: a minimal diagram D2 of the knot 12a954 withW (D2) = {2,−4, 4, 1, 1}. These
knots 12a598 and 12a954 have the same Kauffman X and Jones polynomial.

Seifert graphs G̃S(D1) and G̃S(D2) are both simple paths consisting of 3 consecutive

edges of weights {6,−6, 9}. However, the coupled edges have different structures:

Φ(D1) = {[2,−1, 3,−2, 1,−3], [2,−1, 3,−2, 4,−3]},

Φ(D2) = {[2,−2, 3,−1, 1,−3], [1,−2, 5,−1, 3,−3]}.

So we cannot break the couple structure to perform a cyclic order permutation of Φ.

Thus D1 and D2 are of different knots.

6.4 Completion of Classification of Strongly Invertible Links

Our next example is the proof of a theorem that contains a new result concerning

oriented rational links.

It is known that rational links are invertible. However, in the case that an oriented

rational link L has two components (this happens if and only if q is even, when L is

represented by a 4-plat corresponding to p/q = [a1, a2, ..., a2k+1]), changing the orien-

tation of only one component of L may result in a rational link that is topologically

different from L (as oriented links). L is said to be strongly invertible if changing
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Figure 6.4: The Seifert decomposition of the knot diagram D1 (Top), and the Seifert
decomposition of the knot diagram D2 (Bottom).

the orientation of one of its component does not change its link type. [6, Theorem

8.1] states that if a two-component rational link L(p/q) is strongly invertible, then

p/q = [a1, a2, ..., ak, α, ak, ..., a2, a1] for some integers a1 > 0, ..., ak > 0, α > 0. The

following theorem strengthens this result.

Theorem 6.4.1. Let L(p/q) be a two-component oriented rational link (so that

gcd(p, q) = 1, 0 < p < q and q is even). Then L(p/q) is strongly invertible if and

only if p/q = [a1, a2, ..., an, α, an, ..., a2, a1] where a1, a2, ..., an are positive integers and

α > 0 is odd.

Proof. Without loss of generality, the bottom long arc of L(p/q) in its 4-plat form

as shown in the top of Figure 1.5. Let L1(p/q) and L2(p/q) denote the two rational

links by assigning the second component different orientation so that the first crossing

from the left is positive in L1(p/q) and negative in L2(p/q).

Let us first examine the case when L(p/q) (with q even) is strongly invertible,

that is, L1(p/q) ∼ L2(p/q) and L(p/q) is either L1(p/q) or L2(p/q). By [6, Theorem
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8.1], p/q = [a1, a2, ..., ak, α, ak, ..., a2, a1] for some integers a1 > 0, ..., ak > 0, α > 0.

We claim that in this case the right most crossing is negative (positive) in L1(p/q)

(L2(p/q)). If this is not true, say that the right most crossing in L1(p/q) is also

positive, then as we travel along the s-circle containing the long arc starting from the

left most crossing, the first and last blocks of L1(p/q) we encounter are both positive,

which implies that ξ+(L1(p/q)) = ξ−(L1(p/q))+1. On the other hand, for L2(p/q) the

first block we encounter is negative, which implies that ξ−(L2(p/q)) ≥ ξ+(L1(p/q)),

which is a contradiction. This implies that the strands at the left and right ends of

the 4-plat L1(p/q) are as shown in Figure 6.5, in which the middle points marked by

1, 2, 3 and 1′, 2′, 3′ are the points to be connected to create the middle section of

L1(p/q) corresponding to the α crossings. If we start at the point marked by 3 from

the left and travel according to the orientation of the strand, we will end at one of

the points marked by 1, 2 or 3 in the middle. Let us say we stop at 3 (the other

cases can be similarly discussed and are left to the reader). Then since the continued

fraction decomposition vector of p/q is a palindrome, if we start at the point marked

by 3′ from the right and travel according to the orientation of the strand, we will also

end at the point marked by 3′ in the middle. If we continue, we will now have to go

through the crossings in the middle, since otherwise we will have to connect 3 to 3′ by

a straight line segment but that will violate the orientations. For the same reason, α

has to be odd since otherwise we will still have to connect 3 to 3′ by a strand. Hence

the only possibility is that α is odd and the point 3 is connected to the point 2′ by

going through these crossings.

Now, let us consider the case when p/q = [a1, a2, ..., an, α, an, ..., a2, a1] where

a1, a2, ..., an are positive integers and α > 0 is odd, and q is even (so L(p/q) has

two components). Similar to the discussion above, let us consider the partial 4-plat

of L1(p/q) as shown in Figure 6.6. Notice in this case we do not know the orientation

of the strand at the right end of the 4-plat that does not belong to the bottom long
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strand.

If we start at the point marked by 3 from the left and travel according to the

orientation of the strand, then again we will end at one of the points marked by 1,

2 or 3 in the middle. Let us say we stop at 3. 3 cannot be connected to 3′ by going

through the crossings in the middle since α is odd. So if 3 is connected to 3′ then

it is by a straight line segment and the middle crossings will be between points 1, 2

and 1′, 2′ in the middle. Since the link has two components, it is necessary that 2 be

connected to 2′ and 1 be connected to 1′. This is impossible since α is odd. Thus 3

can only be connected to 2′ by going through the α crossings in the middle, and we

shall travel to 1′ to the right side in order for the link to have two components. This

then determines the orientation of the strand at the right side (that does not belong

to the bottom long strand), which is the same as that of Figure 6.5. If we now take

a 180◦ rotation of the 4-plat around the y-axis, then we obtain L2(p/q) (it uses the

same vector [a1, a2, ..., an, α, an, ..., a2, a1] and starts with a negative crossing on the

left).

Figure 6.5: The orientations of the strands at the ends of a strongly invertible rational
link in the 4-plat form.

There are two cases left. If we start at 3 and end at 1 in the middle, then the

discussion is identical to the above. If we start at 3 and end at 2 in the middle, then

we have to go through the middle crossings to reach either 1′ or 3′ as shown in the

bottom of Figure 6.6 for one of the two cases. The remaining argument is similar to

the above.
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Figure 6.6: Two strands connect with symmetry in the 4-plat form of a rational link.



CHAPTER 7: COMPUTATION OF WRITHE-LIKE INVARIANTS

7.1 Computation of Seifert Graphs of a Link Diagram

This section describes the algorithm used to draw the Seifert graph of a link diagram

from its Planar diagram codes (Definition 1.1.7). We use the following codes to

illustrate our algorithm: [4, 2, 5, 1], [6, 3, 7, 4], [8, 6, 1, 5], [2, 7, 3, 8], which is a

PD code of the knot 41.

• DetectSCircles : browse each tuple to find repeating numbered arcs which form

a cycle. From Remark 1.1.8, we search in n−1 tuples apart from the first tuple

to record the arcs that join together to form an s-circle. As an example, we

find 4 which pairs with 6 in the second tuple, and 2 which pairs with 8 in the

last tuple. So the first s-circle is formed by the following arcs: {4, 2, 8, 6}.

The output of this step is a 2-dimensional list which contains the collection of

s-circles formed by numbered arcs. In this example, the list is {{4, 2, 8, 6}, {5,

1}, {3, 7}}.

• SeifertAdjacencyMatrix : We consider each s-circle found in function DetectSCir-

cles a vertex, and record a square n×n matrix. If there are repeating numbered

arcs between any two tuples in the previous function, then there exists an edge

between the vertices that contains these two tuples. Increment the edge count

between these two distinct vertices. Since Seifert graphs do not contain loop

edges, then entries on the diagonal of the matrix are zeros. In this example,

there are 2 edges between {4, 2, 8, 6} and each of the other vertices {5, 1}, and

{3, 7}. The output of this step is an n × n matrix where n is the number of

crossings of the link diagram.
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• GetCrossingSign: while recording the edge weight, check the sign of the crossing,

based on Remark 1.1.8. Since we are dealing with alternating links, if crossings

exist between any 2 s-circles, their signs must be the same. We increment the

count of positive edges between corresponding vertices if the edge at hand is

positive, and increment the negative edge count between corresponding vertices

otherwise. From the 4 tuple in the input example, we see that the crossings [6,

3, 7, 4], [2, 7, 3, 8] are negative, and the other two crossings are positive. The

output of this step is the crossing sign of the crossing in question.

• SignedSeifertGraph: mark down the distinct vertices, then for each non-zero

value in the adjacency matrix above, draw a single edge. The signed values

from the matrix are used to label edges. Choose "PlanarEmbedding" as a graph

layout in Mathematica, to output the result as a plane graph.

The result below analyzes the worst-case complexity of the computation of writhe-

like invariants.

Remark 7.1.1. The computation of writhe-like invariants, for n-crossing alternating

link diagrams, f(n), is at most of cubic order of n.

Proof. Each tuple (crossing) is accessed to find elements (numbered arcs) that con-

stitute to any s-circle. Then for each s-circle, crossings with other s-circles and their

signs are traced by looking for repeating numbered arcs in each tuple. So, we have

made n× s(D)× n steps. Moreover, from the Seifert decomposition of D, it is easy

to see that s(D) ≤ n−1. Thus this yields f(n) = O(n3) for an n−tuple input. Other

assignments in the algorithm are of lower or the same order and can be ignored in

analyzing the worst-case complexity.
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7.2 The Edge Weight Sets and Betti Number of Simple Seifert Graphs

Edge weight set: W (D) is simply the weights of all edges of G̃S(D), in which the

signs of each weight is the sign of crossings in the oriented link diagram D. The edge

weight setsW (D) is the nonzero values between two distinct vertices in the adjacency

matrix from SeifertAdjacencyMatrix.

Betti number: The function that calculates β(D) relies on Proposition 1.2.12. For a

simple weighted s-graph, we find the cycle basis of G̃S(D). This is done via a built-in

function of Mathematica, FindFundamentalCycles that searches for all basis cycles of

a given graph. Then β(D) is the length of the list of basis cycles of G̃S(D).

7.3 Knot Data Storage and Processing

Data of the following invariants were obtained from knotinfo [27] for alternating

knots up to 12 crossings:

• Braid index br(L).

• Jones polynomials VL(t).

Data of genus g(L) were computed for alternating knots up to 16 crossings, from the

function ThreeGenus of package knottheory [26]. Data of Kauffman polynomial X

was recomputed based on function Kauffman[][a,z] of knottheory package. All data

(including W (D) and β(D)) are stored in an open source SQL database management

system (MySQL) and processed using structured query language. For example, all

12-crossing alternating knots are described in the structure in Figure 7.1, and a query

to get how many diagrams are sharing the same value of β(D) is shown in Figure 7.2.

There are certainly rooms for improvement in the codes. For example, the step

to assign signs to edge weights is currently separated from tracing edges between

s-circles. This can be combined with tracing edges to avoid repeating the browsing

of every s-circle. The computation of edge weight set can be improved by grouping
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Figure 7.1: The structure of data for 12-crossing alternating knots.

Figure 7.2: A query to output how many distinct diagrams share the same value of
β(D), which is called betti in the data storage.

entries by graph blocks.



CHAPTER 8: OPEN QUESTIONS AND CONCLUSION

8.1 Seifert Graphs under Reidemeister Moves

The restriction to stay within the class of alternating links allows us to pin down

what remains intact when flypes are done on the link diagrams, since the Tait Flyping

Theorem [22] provides the tool to define equivalence in this family of links. In other

words, outside of the class of alternating links, the quantities in Definition 5.3.2 are

no longer link invariants.

To develop this invariant to a general link invariant, one needs to consider what R-

moves do to Seifert graphs of any link diagram. We can say much about the changes

in GS(D) when R-moves are performed on the link diagram D in all but one case. As

explored in Section 8.1.2, the current graph structure does not suffice to keep track

of corresponding changes by a special case of R-III moves.

First we examine the translation of R-I and R-II moves on a link diagram D to the

multigraph GS(D) (by an abuse of terms, we say R-move on a graph to mean the

effect of an R-move on a link diagram D to the Seifert graph of D).

Figure 8.1: An example of an edge weight of 0 in G̃S(D) where D is the minimal
diagram of the knot 11n34.

We consider the case when D is non-homogeneous. In the simple edge weighted
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Seifert graph of a link diagram, an edge weight should be understood as the total

in signs of edges. Figure 8.1 shows an example of an edge weight of 0, which means

that the number of positive crossings equals the number of negative crossings between

these two respective s-circles in the Seifert decomposition of D.

R-I moves: The consequence of this kind of move on the Seifert graph of a link

diagram D is to add or remove a leaf vertex v and a single crossing with v as its end

point. On the right of Figure 8.2, a (portion of) vertex u is shown.

Figure 8.2: Changes in a Seifert graph after Reidemeister move I in a link diagram.

R-II moves: This case has several sub-cases (shown in sub-section 8.1.1), depending

on the orientation of the two strands, whether they belong to the same link compo-

nent, and how they intersect each other. The dashed arcs represent long arcs, which

means that intersections with itself or with other components not involved in this

Reidemeister move II are not shown.

8.1.1 Sub-cases of Seifert graphs under R-II moves

We use the dash arcs to represent long arcs, where the intersection with itself or

with other components not involved in the Reidemeister moves are not shown.

The scenario we consider in sub-case 1 is when the two strands involved in the R-II

move belong to two distinct components, as shown on the top of Figure 8.4. The

effect of R-II move is recognizable by the appearance of an edge of +1 and an edge
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Figure 8.3: The cases given by the orientation of the two strands in Reidemeister
move II. Top: Case 1. Bottom: Case 2.

of −1.

Figure 8.4: The effects on Seifert graphs when an R-II move is performed on a link
diagram: sub-cases 1 and 2.

In the sub-case 2, the two strands in R-II move belong to the same s-circle. In the

corresponding Seifert graph, we observe 2 loops with opposite signs. Since we do not

consider Seifert graphs with loop edges, this case is eliminated.

Figure 8.5 illustrates sub-case 3. In this case, the two apparently-separated s-circles

may have crossings with s-circles in other components, not involved in this R-move,

so we do not have a disconnected graph. The bottom of Figure 8.5 shows that the

R-move is recognizable by a pair of edges of opposite signs.
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Figure 8.5: The effects on Seifert graphs when an R-II move is performed on a link
diagram: sub-case 3. We note there can be crossings between these two s-circles and
other components not shown in this figure.

Next, we consider how R-III moves affect the Seifert diagram of a link diagram. We

observe that the number of crossings and the signs of crossings are preserved under

an R-III move. Since each strand can have either direction and there are 3 strands,

the total number of combinations in terms of orientation of the strands is 6. These 6

scenarios make up only 2 distinct cases, shown in Figure 8.6, based on the connection

of strands form partial (or full) s-circles after smoothing all 3 crossings.

Figure 8.6: The possible orientations of the three strands in an R-III move yield
2 distinct cases (top: case 1, and bottom: case 2). In both cases, the number of
crossings and the signs of crossings are preserved under an R-III move.

However, these partial s-circles may connect with each other and the rest of the

link diagram in different scenarios, which we will consider in sub-section 8.1.2.
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8.1.2 Sub-cases Seifert graphs under R-III moves

Since the orientations are arbitrary in considering these sub-cases, we do not mark

them on the figures.

Sub-case 1A: In the case shown in Figure 8.7, the three arcs must belong to three

distinct s-circles, regardless of the orientations of the three arcs. The signs of edges

shown in its corresponding Seifert graphs depend the orientations of the strands.

Considering all the possible strand orientation combination, the crossing signs can

appear in the following groups: {+,+,−}, {−,−,+}, {−,−,−}, and {+,+,+}.

Since before and after an R-III move, the crossings and their signs are preserved, we

will display one group of crossing signs in Figure 8.7.

Figure 8.7: Sub-case 1A: The three arcs belong to 3 distinct s-circles, before and after
an R-III move. We note that v is necessarily a cut vertex.

In sub-case 1B, the only difference to 1A is the sign of crossings: {−,−,+}. In

sub-case 1C, the crossing signs are {−,−,−}, and 1D, {+,+,+}. These cases are

not shown on figures.

It turns out that we can trace the change in the Seifert graph when the R-III moves

on the diagram D are of cases 1A, 1B, 1C, and 1D.

Next, we consider connection among the three pieces of arc in case 2, shown at the

bottom of Figure 8.6. Sub-cases 2A and 2B are concerned with how these three arcs

are connected to each other or to the rest of D.
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Sub-case 2A: In Figure 8.8, two out of three arcs join the same s-circle, while the

third arc joins a separate s-circle. The Seifert graph of this portion is shown at the

bottom of the figure, where we observe that we have the same situation of 3 signed

single edges. However, on the right of Figure 8.8, u is necessarily a cut vertex.

Figure 8.8: Sub-case 2A: An R-III move that keeps the number of vertices and edges
unchanged in the visible portion of GS(D).

Figure 8.9: Sub-case 2B: An R-III move can change the number of vertices in the
visible portion of GS(D).

Sub-case 2B: The global structure affects the corresponding change in GS(D) when

an R-III move is done on D. In Figure 8.9, we observe that the number of crossings

and their signs remain; however, the three arcs which belong to separate s-circles on

the left now join (on the right) to make up a new s-circle. So in GS(D), as shown on

the right of Figure 8.9, vertices w1 and w2 are identified with w and the edges (vw1),
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(vw2) are now between v and w. In addition, w is necessarily a cut vertex.

8.2 Discussion of Properties that Are Changed or Unchanged under R-moves

From Section 8.1, we observe the following about the number of s-circles s(D) and

the number of crossings c(D) in all cases of R-moves: (a) both s(D) and c(D) do not

change, or (b) only s(D) changes by ±2, or (c) only c(D) changes by ±2, or (d) both

s(D) and c(D) change by ±1. We conjecture that the property in Remark 6.2.4 holds

for a general link diagram under any finite sequence of R-moves.

Section 8.1 also shows that the following quantities are not well defined for general

link diagrams: ξ−(D) and ξ+(D), and at least the following quantities are changed

under R-moves: ε(D), ρ(D).

However, if we consider a homogeneous diagram of a non-alternating link, then

ξ−(D) and ξ+(D) are well defined. For example, the knot 11n43 is non-alternating,

non-positive/negative, but is homogeneous, with ξ−(D) = 1, ξ+(D) = 2. We observe

that the following is a necessary condition for minimal homogeneous link diagrams:

Σw∈W (D)|w| = c(D). Several links similar to 11n43 in this regard can be identified

using this condition.

8.3 Conclusion

Writhe-like invariants add up to the toolbox used to distinguish alternating links.

Given the polynomial computation time, and the t-strength ranging from 40 to 50%

for minimal knot diagrams up to 12 crossings, they can be useful in distinguishing

alternating links that index invariants may fall short. They can also be used in

addition to a strong invariant like the Jones polynomial, as we have examined that

there are links with the same Jones polynomials and different signed edge weight sets.

Some properties of alternating links hold in a more generalized class of links. For

example, Theorem 4.1.1 by Cromwell holds for homogeneous links. It is reasonable

to expect a quantity in Definition 5.3.2 remain invariant for homogeneous links. In
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addition, a natural question would be to generalize the invariants to ambient isotopy.

That is, one needs to consider the effects of R-moves on Seifert graphs of a link

diagram. However, it is not straight forward which quantities remain unchanged

after any finite sequence of Reidemeister moves. This may open up a new direction

for future studies.
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APPENDIX A: PRIME KNOT DIAGRAMS WHOSE SEIFERT GRAPHS ARE

HAMILTONIAN

Below are the positions of alternating knots up to 14 crossings whose graphs G̃S(D)

are Hamiltonian. For example, 5a2 is the first knot whose simple s-graph is Hamilto-

nian.

• 5-crossings: {2}.

• 7-crossings: {2, 3, 4, 5}.

• 9-crossings: {2, 3, 4, 5, 6, 7, 9, 10, 13, 16, 18, 23, 38}.

• 11-crossings: {94, 95, 123, 124, 186, 191, 192, 227, 234, 235, 236, 238, 240, 241,

242, 243, 244, 245, 246, 247, 263, 291, 292, 298, 299, 318, 319, 320, 329, 334,

335, 336, 337, 338, 339, 340, 341, 342, 343, 353, 354, 355, 356, 357, 358, 359,

360, 363, 364, 365}.

• 13-crossings:

{809, 865, 866, 867, 868, 869, 1061, 1062, 1063, 1064, 1073, 1074, 1120, 1306,

1353, 1354, 1355, 1356, 1798, 1799, 1892, 1893, 1911, 1940, 1941, 1942, 1943,

2076, 2077, 2128, 2129, 2135, 2136, 2137, 2148, 2149, 2216, 2256, 2333, 2334,

2342, 2536, 2538, 2539, 2705, 2724, 2725, 2758, 2759, 2760, 2773, 2777, 2851,

2856, 2857, 2858, 2859, 2867, 2871, 2954, 2955, 2957, 2970, 2977, 2983, 3023,

3040, 3059, 3092, 3093, 3094, 3096, 3097, 3099, 3101, 3102, 3103, 3104, 3110,

3111, 3112, 3113, 3114, 3115, 3116, 3117, 3123, 3124, 3125, 3126, 3127, 3128,

3129, 3130, 3132, 3133, 3134, 3135, 3136, 3137, 3138, 3139, 3140, 3141, 3142,

3143, 3338, 3377, 3378, 3379, 3380, 3381, 3594, 3595, 3685, 3686, 3687, 3691,

3712, 3713, 3714, 3715, 3716, 3962, 3971, 4054, 4068, 4069, 4083, 4084, 4085,

4086, 4087, 4095, 4099, 4105, 4106, 4190, 4195, 4196, 4212, 4213, 4214, 4215,

4216, 4217, 4233, 4302, 4303, 4304, 4331, 4332, 4366, 4368, 4369, 4379, 4380,
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4381, 4382, 4383, 4386, 4387, 4388, 4390, 4395, 4396, 4453, 4454, 4459, 4464,

4492, 4493, 4547, 4548, 4549, 4550, 4551, 4552, 4555, 4556, 4558, 4559, 4560,

4561, 4562, 4563, 4564, 4565, 4566, 4567, 4568, 4569, 4570, 4571, 4572, 4573,

4739, 4740, 4757, 4763, 4764, 4770, 4771, 4772, 4773, 4774, 4780, 4781, 4787,

4788, 4789, 4790, 4799, 4800, 4801, 4802, 4805, 4812, 4821, 4822, 4823, 4824,

4825, 4826, 4827, 4828, 4829, 4830, 4831, 4832, 4833, 4834, 4835, 4836, 4849,

4850, 4851, 4852, 4853, 4854, 4855, 4856, 4858, 4859, 4860, 4861, 4862, 4863,

4864, 4866, 4867, 4868, 4872, 4874, 4875}.
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APPENDIX B: SIGNED SEIFERT GRAPHS OF PRIME KNOTS UP TO 10

CROSSINGS
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Figure B.1: Signed Seifert graphs of knot diagrams up to 8 crossings [1].
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Figure B.2: Signed Seifert graphs of alternating knot diagrams of 9 crossings [1].
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Figure B.3: (Part 2) Signed Seifert graphs of alternating knot diagrams of 9 crossings
[1].
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Figure B.4: Signed Seifert graphs of the first 32 alternating knot diagrams of 10
crossings [1].
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Figure B.5: (Part 2) Signed Seifert graphs of alternating knot diagrams of 10 crossings
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Figure B.6: (Part 3) Signed Seifert graphs of alternating knot diagrams of 10 crossings
[1].
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Figure B.7: (Part 4) Signed Seifert graphs of alternating knot diagrams of 10 crossings
[1].
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Figure B.8: (Last) Signed Seifert graphs of alternating knot diagrams of 10 crossings
[1].
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APPENDIX C: A SAMPLE OF THE SOURCE CODE

Figure C.1: A sample of the source code.


