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SHAOJIE LIU.  The impact of connected and autonomous vehicles on the superstreets   

(Under the direction of DR. WEI FAN) 

 

Connected and autonomous vehicles (CAVs) are a type of emerging technology 

that has promising potentials in improving many aspects of the existing transportation 

infrastructure, including operations, safety, and the environment. With the capability of 

traveling on the roads with shorter headways and more stable speeds, CAVs can yield a 

larger road capacity compared to human-driven vehicles (HDVs). Additionally, since the 

CAVs run on the roads with the guidance of computers or algorithms, accidents caused 

by errors from human drivers may be prevented, which can greatly reduce significant 

economic and societal losses. Less speed fluctuations are also beneficial to decrease the 

emissions and contribute to the environment.  

Thanks to the rapid development of computer science and communication 

technology, CAVs have evolved from theoretical experiments in academic labs to reliable 

products by commercial companies. Since both academic and industrial professionals 

have high expectations for CAVs, many studies have been conducted to explore and 

identify the impacts of CAV technologies on the transportation performances in many 

scenarios. These scenarios included conventional intersections, highway segments, on/off 

ramps, and roundabouts. Through extensive investigations on CAVs in different 

scenarios, it can be concluded that CAVs can perform better overall than HDVs. 

Nevertheless, it has also been found that the performances of CAVs are affected by many 

factors such as communication range, acceleration capabilities, and market penetration 

rates. Improvement in operational performances has been confirmed by existing studies 

when the market penetration of CAVs reaches a certain rate.  
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Superstreet is one of the innovative intersection designs and was proposed to 

alleviate the road congestions especially where unbalanced traffic volumes from main 

street and minor street exist. Superstreets have been successfully implemented in 

numerous states.  Nevertheless, how CAVs would affect the performances of superstreets 

has not been explored, even to a minimum extent. This research is designed to investigate 

how CAVs with different technologies perform in the environment of superstreets. To be 

specific, the following questions will be answered: (1) at what market penetration rate 

CAVs would bring benefits towards operational performances; (2) at what extent CAVs 

would bring benefits towards operational performances of superstreets; (3) how the 

impact of CAVs on the operational performance would vary across different traffic scales 

and market penetration rates.   

To achieve the research goals, models for CAV platooning, trajectory planning, 

and signal optimization have been developed, respectively. The effects of these models 

are tested respectively in a simulation environment where relevant traffic measures are 

extracted to evaluate the performances. The finding of this research may also be applied 

to other innovative intersection designs which have similar geometric characteristics and 

traffic patterns.   
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement and Motivations 

Road congestion has been a critical issue for transportation professionals as it 

increases travel time, energy use and pollutant emissions. Due to recent technology 

development of wireless communication and artificial intelligence, connected and 

autonomous vehicles (CAVs) become a practical approach to increase road capacity and 

reduce fuel consumption. As many studies have been done to explore the potential of CAVs 

in various scenarios of transportation environment, such as freeway segments (Liu and Fan 

2020, Yu and Fan, 2018), signalized intersections (Han et al., 2020; Feng et al., 2018; Yu 

et al., 2018), unsignalized intersections (Sharon and Stone, 2017), roundabouts 

(Anagnostopoulos and Kehagia, 2020) and on/off ramps (Rios-Torres and Malikopoulos, 

2016), the operational performance of CAVs on the innovative intersections had received 

relatively less attention. Innovative intersection designs are often quite different from 

conventional intersection designs. Most innovative intersection designs create minor 

intersections and limit the number of movements in each minor intersection. Different 

impacts of CAVs are expected in the environment of superstreets.   

The research gaps exist between CAVs and innovative intersections. This research 

aims to mitigate the gaps by conducting simulation-based research to explore the impact 

of CAVs on the operational performances in the environment of superstreets. A popular 

approach to evaluating the impact of CAVs is to employ a simulation environment and 

model CAVs and HDVs respectively. The behaviors of CAVs and HDVs are captured by 

different models or logic so that they can represent real-world situations as accurately as 

possible. This research follows this approach by identifying and developing proper 
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behavior models for CAVs and HDVs respectively according to their distinguishing 

characteristics. Particularly, the modeling components of CAVs include car following, 

platooning, trajectory planning, and signal optimization. Selected and developed models 

can also be used in other studies on topics of CAVs. Sensitivity analysis is also conducted 

in some specific scenarios, including market penetration rates and different arm lengths. 

To fulfill the research purpose, a real-world typical superstreet situated in North Carolina 

(NC) has been selected and replicated in a professional microscopic traffic simulation 

software platform known as Simulation of Urban Mobility (SUMO). To make a fair 

comparison, simulated CAVs traveling through an equivalent conventional intersection 

with similar geometric features are implemented and investigated in SUMO.  

 

1.2 Study Objectives 

The proposed work in this research intends to achieve the following purposes: 

1. To select and develop proper behavior models for CAVs and HDVs based on 

existing studies with a focus on car following, platooning, trajectory planning, and 

signal optimization. 

2. To calibrate an HDV car following model in the simulation environment.  

3. To compare the performances of CAVs in the superstreet and at conventional 

intersections.  

4. To evaluate the performances of CAVs with different techniques, including 

platooning, trajectory planning, and signal optimization. 

5. To obtain the performance improvement magnitudes of CAVs at different traffic 

scales. 
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6. To understand the traffic performances in a mixed traffic environment where 

CAVs and HDVs coexist.  

1.3 Expected Contributions 

 This research not only utilizes or develops reliable models for CAV and HDV 

behaviors but also conducts extensive experiments for various aspects of CAVs and 

superstreets. By investigating performances of CAVs in superstreets, this research can 

provide important insights for CAVs in other innovative intersection designs which share 

similar configurations. This information can be an important reference for policy makers 

to understand the impacts of CAVs in innovative intersections. In the process of this 

investigation, the researchers can deliver the following contributions: 

1. Ability to select proper scenarios to evaluate the performances of different 

intersection designs concerning CAVs. 

2. Ability to test the CAV performances with different techniques in other 

innovative intersection designs.  

3. Ability to estimate the performances of CAVs on different traffic scales and with 

different market penetration rates.  

4. Ability to understand the CAV performance with different arm lengths in the 

superstreet environment for adaptive signal controls. 

 

1.4 Dissertation Overview 

Chapter 1 presents essential background information about CAVs and superstreets 

in the problem statement section. This chapter also discusses the research objectives and 
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expected contributions from this research. Towards the end of the section, Chapter 1 

describes the overall research structure for this study.   

Chapter 2 presents a comprehensive review of the existing literature on the behavior 

models for CAVs and HDVs as well as superstreets. The behavior models for simulated 

vehicles can be grouped into four categories, which are intersection management, car 

following, lane changing, and CAV platooning. For the superstreets, this chapter presents 

the concept and application of the superstreet design, existing studies on the operational 

performance of superstreet, and research on the CAVs and superstreets.  

Chapter 3 illustrates the methodologies and the overall experiment framework. First, 

this chapter introduces the behavior models employed in this research, including the 

Wiedemann 99 (W99) and Intelligent Driver Model (IDM), platooning control, trajectory 

planning, adaptive signal control, and trajectory planning under adaptive signal controls, 

followed by the description of the simulation platform. Two sets of platooning control and 

trajectory planning controls are developed and tested respectively. This research develops 

and applies different car following models for HDVs and CAVs to distinguish their 

characteristics. Sensitivity analyses of traffic scales, market penetration, and arm lengths 

from superstreets are conducted. Chapter 3 also provides information about the selected 

real-world superstreet and the designed simulation experiments.  

Chapter 4 presents the simulation results for the operation performances of CAVs 

in the environment of the superstreet and the equivalent conventional intersection in terms 

of traffic delay and fuel consumption. According to the designed scenarios in Chapter 3, 

the effects of each CAV technique are examined by the corresponding simulation results. 

This chapter also provides relevant rationales for the different performances with CAV 
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techniques and environments. Traffic delays and fuel consumption are selected as the 

performance indicators since they can represent transportation efficiency and 

environmental impacts respectively.  

Chapter 5 concludes this research with the presentation of main findings. These 

findings may provide important references for policymakers or transportation designers. 

The control strategies devised to obtain these findings can also be utilized for other CAV 

studies.  In addition, this chapter also gives future research directions that are highly related 

to the current research topic.  

 

FIGURE 1.1: Dissertation Structure  
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter introduces the existing work on CAVs and the superstreets, 

respectively.  First, background information on CAVs is provided in section 2.2, which 

covers the definition of CAVs and the impacts of CAVs regarding road capacity, safety, 

and environment in a generalized sense. Then this dissertation discusses the existing 

literature on the CAV behavior models in Sections 2.3-2.6. The literature for CAVs can be 

classified into four categories, including intersection control, car-following models, lane-

changing models, and platooning. Although in some literature, the lane-changing model is 

integrated with the definitions of the car-following model, this research separates the lane-

changing model from the car-following model to offer a comprehensive understanding of 

the mechanism of CAVs’ lane changing. Section 2.7 describes the literature on the 

superstreets. As for the superstreets, many studies have been done on the operational 

performances compared to the conventional intersections and/or other innovative 

intersection designs.  

 

2.2 Background of CAVs  

2.2.1 Definition of CAVs 

The connected and autonomous vehicles, as the name implies, represent the 

vehicles that are both connected and autonomous. Connected vehicles refer to the vehicles 

that can exchange information with other vehicles on the roads such as their speed, 

acceleration rates, and position. In addition, connected vehicles are also expected to be 

capable of communicating with transportation infrastructure to obtain information on 
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traffic volumes and traffic signal status. Autonomous vehicles refer to the vehicles that can 

complete the driving tasks without human intervention completely or partially. It is 

commonly accepted that autonomous vehicles would experience several stages before fully 

autonomous vehicles can run on the roads. Defined by the National Highway Traffic Safety 

Administration (Thorn, 2018), autonomous vehicles conceptually have six levels of 

automation as shown in Table 2.1.  

 

TABLE 2.1: Automation Levels and Corresponding Descriptions 

Level of automation Descriptions 

0 The human driver does all the driving 

1 

An advanced driver assistance system (ADAS) on the vehicle 

can sometimes assist the human driver with either steering or 

braking/accelerating, but not both simultaneously. 

2 

An advanced driver assistance system (ADAS) on the vehicle can itself 

control both steering and braking/accelerating simultaneously under 

some circumstances. The human driver must continue to pay full 

attention (“monitor the driving environment”) at all times and perform 

the rest of the driving task. 

3 

An automated driving system (ADS) on the vehicle can itself perform 

all aspects of the driving task under some circumstances. In those 

circumstances, the human driver must be ready to take back control at 

any time when the ADS requests the human driver to do so. In all other 

circumstances, the human driver performs the driving task. 

4 

An automated driving system (ADS) on the vehicle can itself perform 

all driving tasks and monitor the driving environment – essentially, do 

all the driving – in certain circumstances. The human does not need to 

pay attention in those circumstances. 

5 

An automated driving system (ADS) on the vehicle can do all the 

driving in all circumstances. The human occupants are just passengers 

and need never be involved in driving. 
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2.2.2 Impacts of CAVs on capacity, safety, traffic delay, and environment 

2.2.2.1 Road capacity  

 

Due to short headways, prompt reaction, and accuracy of maneuvering, CAVs can 

increase the road capacity theoretically. Existing studies have employed two approaches in 

evaluating the impacts of CAVs on-road capacity, which include theoretical framework 

and simulation of CAVs. Chen et al. (2017) developed a theoretical framework for 

estimating the capacity of a single lane considering the market penetration rate, headway, 

and platoon size. Conclusions were made that the segregation of automated vehicles and 

HDVs can reduce road capacity and mixed-use of CAVs and HDVs would result in a higher 

capacity.  

In addition to the theoretical approach, many simulation-based studies had been 

conducted to evaluate the impact of CAVs at different market penetration rates. In the 

simulation-based studies, it had been found that the improvement of road capacity is highly 

correlated to the market penetration rate of CAVs (Levin and Boyles 2016; Yoon et al., 

2016; Shladover et al., 2012; Liu and Fan, 2020).  A summarized finding is presented in 

Table 2.2. 

TABLE 2.2: Potential Improvement of Road Capacity Identified by Existing Studies 

 

Authors, year Findings Environments 

Liu et al., 2017 54% improvement in road 

capacity when the market 

penetration rate increases 

from 0 to 100 percent.  

Freeway 

Talebpour et al., 2017 With dedicated lane for 

automated vehicles, the 

Freeway 
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penetration rate should be at 

least 50% for two-lane 

freeway and 30% for a four-

lane freeway 

Mena-Oreja et al., 2018 39% improvement when 

market penetrate rate is 100% 

Freeway 

Olia et al., 2018  Capacity improvement was 

found very little for automated 

vehicles while CAVs were 

found to improve the capacity 

as much as around threefold.  

Freeway 

 

2.2.2.2 Safety  

 

According to the estimation of the Insurance Institute for Highway Safety (IIHS, 

2010), if all vehicles had installed forward collision and lane departure warning, side view 

assists, and adaptive headlights, both the crash and fatality rate could be reduced by around 

a third. These functions are generally supported in AVs with Automation Level 0 and Level 

1. Nevertheless, though some functions are fulfilled in automation Level 0 and Level 1, 

drivers’ errors are not eliminated. When the automation level advances to Level 3, the 

vehicle can stay in one lane with a safe distance to the leading vehicle automatically, 

partially reducing the crashes caused by drivers’ errors.  In Level 5, the crashes caused by 

drivers’ errors can be fully eliminated when the vehicles can handle all circumstances. 

Research had also found that CAVs and autonomous vehicles can improve the string 

stability of traffic flow.  

Li and Wagner (2019) conducted a simulation-based study on the impact of the 

automated vehicle on mobility, safety, emissions, and fuel consumption on the simulation 
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platform of Simulation of Urban MObility (SUMO). A freeway segment of Auckland 

Motorway SH16 in New Zealand was selected for the case study. Scenarios were 

developed under different market penetration rates and traffic volumes. Time to collision 

(TTC) was used to measure the safety performance of automated vehicles. The number of 

TTC<5s was obtained from the simulation and the result showed that automated vehicles 

could reduce the TTC from 42 to 1 when the market penetration rate increased from 0% to 

100%.  

Li et al. (2017) evaluated the safety impacts of different market penetration rates of 

ACC vehicles on the roadway segments. The safety performances were measured through 

Time Exposed Time-to-collision (TET) and Time Integrated Time-to-collision (TIT). TET 

is a summation of all moments when the TTC value is below a certain threshold. TIT 

measures the entity of vehicles whose TTC is lower than the threshold. ACC vehicles were 

modeled using IDM and it was found that the safety performance of the ACC system was 

largely influenced by the parameter selection. The results showed that if the ACC system 

was properly designed, it would exert a positive effect on the safety conditions in congested 

traffic flow conditions. Also, equipped with a variable speed limit (VSL) control, the ACC 

system could bring a more significant improvement in safety performance.  

Rahman et al. (2018) investigated the highway safety benefits of different 

approaches of connected vehicles in reduced visibility conditions. In this research, the 

human driver behaviors in foggy conditions were modeled with the default car following 

model from PTV VISSIM while the CAVs were modeled with IDM. It was also found that 

the market penetration rate of connected vehicles had to reach up to 30% for the benefit to 

appear. Rahman and Abdel-Aty (2018) further tested safety benefits for CAVs in the 
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managed-lane scenarios and found that managed-lane CV platoons outperformed all-lanes 

CV platoons with same market penetration rate.  

 

2.2.2.3 Traffic delay 

 

On freeways, CAVs follow preceding vehicles with shorter headways and thus can 

reduce traffic delays compared to HDVs. While in intersections, CAVs communicate with 

other vehicles or signal controllers to obtain the information for calculating the optimal 

trajectories. The optimal trajectory can be easily defined as the minimal traffic delay 

trajectory. There are many studies that have tested the impact of CAVs on the traffic delay 

in different environments, such as conventional intersections (Feng et al., 2018; Yu et al., 

2018; Wu et al., 2012), freeway ways (Guo and Ma 2020), roundabouts (Mohebifard and 

Hajbabaie, 2020; Mohebifard and Hajbabaie, 2021). 

 Feng et al. (2018) developed a trajectory planning and signal optimization model 

for CAVs in the conventional intersection environment with the goals of minimizing traffic 

delay and fuel consumption. The numerical experiments showed that the traffic delay can 

be reduced by about 13% in high traffic volume scenarios. Mohebifard and Haibabaie 

(2021) designed the optimal trajectory for CAVs entering the roundabout. The designed 

optimal trajectory scheme can successfully reduce the average traffic delay at different 

market penetration rates of CAVs. The highest traffic delay improvement can be more than 

90% in all defined traffic volume scenarios.   

 Guo and Ma (2020) evaluated the performance of CAVs in the environment of 

freeways through simulation experiments. The CAVs were enabled with speed 

harmonization, CACC, and cooperative merging. It was found that CAVs can reduce the 
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traffic delay and increase the throughput on freeways. Moreover, CACC was identified as 

the most effective CAV feature that improves operational performance. 

 

2.2.2.4 Environment  

 

Because CAVs can travel on the roads with shorter headways and less travel time, 

CAVs often consume less fuel and thus fewer emissions. Morrow et al. (2014) pinpointed 

a list of factors in automated vehicles (AVs)’ implementation that could have impacts on 

the environment, and they included vehicle weight, performance, and size. The authors 

estimated that AVs were expected to have a positive influence on the emission. This is 

because AV was supposed to reduce the accidents and hence, the vehicles could remove 

unnecessary equipment to decrease the vehicle weights.  Regarding vehicle performance, 

Taiebat et al. (2018) concluded that four factors regarding vehicle’s performances 

influence the emission and fuel consumption, including vehicle operation, electrification, 

vehicle design, and platooning. For vehicle operation, eco-driving is important and an 

encouraged driving pattern could reduce fuel consumption by 2-45%. Detailed information 

is summarized in Table 2.3. Autonomous vehicles had advantages in following the eco-

driving pattern when the control strategy was coded into the system.  

 

TABLE 2.3: Eco-Driving Impact on the Reduction of Fuel Consumption 

 

Researchers Reduction of fuel consumption Environments 

Barth and 

Boriboonsomsin, 2008 
10-20% 

Freeway 

Boriboonsomsin et al., 

2012 
13% 

Network 

Gonder et al., 2012 15-20% Network 
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Brown et al., 2013 20% Network 

National Research 

Council, 2013 
4 -10% 

Network 

Chen et al., 2017 30-45% Freeway 

Lu et al., 2019 2% Freeway 

 

 

2.3 Intersection Control in the Environment of CAVs 

 The control strategies for CAVs traversing the intersections are one of the most 

heightened interests to transportation professionals. The intersection can be simply 

classified into two types of intersection, i.e., unsignalized intersection and signalized 

intersection. CAVs require different control strategies when they travel through the 

signalized intersection and unsignalized intersections. This section reviews the existing 

literature on the CAV control strategies respectively.  

 

2.3.1 Unsignalized intersection 

The control strategies can be generally classified into two categories, one is 

reservation-based and the other is trajectory planning-based. Reservation-based strategies 

divide the intersection as space-time slots for upcoming vehicles to occupy, which is often 

a centralized approach.  

 

2.3.1.1 Reservation based strategies for CAVs traversing the intersection 

Dresner and Stone (2004) proposed a time and space reservation-based system that 

uses square patches as parts of the road space to reserve. This method was also known as 

autonomous intersection management (AIM). In this reservation-based system, before 
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entering the intersection, CAVs would send a message to the supervising agent installed at 

the intersection to request a time-space reservation for passing the intersection. If the 

trajectory is not intersected with other existing time-space reservations from previous 

vehicles, then the supervising agent would send back the message of approval. Otherwise, 

the reservation request would be rejected, and the vehicle would have to decelerate. They 

demonstrated the reservation-based framework could be extended to incorporate existing 

intersection control strategies, i.e., stop signs and traffic lights. Besides, it was also found 

that though there was no necessity of preserving the turning lane in the reservation-based 

scenario, the result showed relaxing the restriction of the turning lane worsened the 

performance of the intersection. In addition, the smaller the square patches were, the more 

vehicles could pass the crossroads in a given period. This is because, with smaller patches, 

it is possible to reserve and free the needed space in the intersection more precisely, thus 

letting unneeded space be available to other vehicles. However, this approach was quite 

demanding for the computation capability of the supervising agent at the intersection as the 

patch decreases its size. 

Later, Dresner and Stone (2008) improved the time and space reservation-based 

system by incorporating the reservation-based approach with traffic signals, stop signs, and 

emergency vehicles, which made the system more robust. With a traffic signal or a stop 

sign in place combined with reservation-based for autonomous vehicles, the traffic mixed 

with both human-driven vehicles and autonomous vehicles became possible. When a traffic 

light is in place, the autonomous vehicles would receive the message from the intersection 

controller that informs the autonomous vehicles of the next green time. Autonomous 

vehicles could adjust their trajectories to achieve the best performance based on traffic light 
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information. In the study, consideration for the stop sign was also included, though might 

not be practical in the real world due to the fact that a stop sign is usually used in very light 

traffic conditions. For a reservation-based system combined with a stop sign, the 

intersection controller would only accept the messages from the vehicles which have 

stopped at the intersection. Vehicles that are approaching the intersection would receive a 

rejection for passing the intersection. Besides, by adding priority to a certain type of vehicle, 

the intersection controller can allow emergency vehicles to pass through the intersection.  

An experimental result was presented which shows that the proposed framework could 

produce better performance compared to traditional human-driven vehicles.  

Sharon and Stone (2017) further developed a time and space reservation-based 

method by proposing a protocol named Hybrid Autonomous Intersection Management 

(Hybrid-AIM), which was designed for mixed autonomous vehicles and human-driven 

vehicles allowing different turning movements in the intersection. The model was 

established and developed by combining the reservation-based algorithm with traffic 

signals as proposed by Dresner and Stone (2008). This study introduced new intersection 

management by considering the traffic pattern that comprised most human-driven vehicles. 

The Hybrid-AIM differs from AIM in denying the requested trajectories that conflict with 

the active green trajectories while AIM denies the request trajectories that conflict with all 

green trajectories.  In addition, this study also discussed in greater detail the safety and 

efficiency associated with different turning policies compared with previous studies. The 

simulation results suggested that at the early stage of autonomous vehicle adoption, the 

turning policy should be set as restrictive. Hybrid-AIM was not superior to AIM until more 

than a 10% CAV technology penetration level was reached.  
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Mehani and Fortelle (2007) also developed a time and space reservation-based 

method, proving the efficiency of the reservation algorithm in X-junction. The reservation 

algorithm was validated through their ad hoc simulator written in Python. The reservation 

algorithm framework did not take full account of every patch in the intersection but only 

the critical point where the vehicle trajectories intersected. Three scenarios were developed: 

1) The first named None, in which vehicles traveled through the intersection at their full 

speed without concern of collision; the second named Poll, in which vehicles treated the 

intersection as the single atomic resource and travel through the intersection one by one; 3) 

and the last one being the proposed reserved scenario. The None scenario had full attention 

to the throughput capacity of the intersection and the results similar to the one from the 

None scenario can be considered as a good one and is preferred. The Poll scenario had full 

attention to safety while compromising significantly to the throughput capacity of the 

intersection. The results showed that the proposed reserved scenario generates a greater 

throughput capacity with zero collision. The Poll scenario, though also had zero collision, 

had compromised over half of the through capacity. The research had its limitations on 

many assumptions, for example, constant speed, and only a one-time request from a vehicle.  

 

2.3.1.2 Trajectory planning based for CAVs traversing the intersection  

 

The time and space reservation-based method schedules the time and space 

resources for the upcoming vehicles. Because these spaces are usually connected, another 

method, which focuses on planning the trajectories for the CAVs, also received 

considerable attention. 
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Kamal et al. (2013) developed a coordination scheme for automated vehicles at an 

unsignalized intersection. The model consisted of three parts, discrete-time state equations, 

risk function, and predictive control model. Discrete-time state equations described how 

the position of the vehicle in the intersection varies based on three variables, time, 

acceleration, and the initial speed. The risk function was defined to quantitatively indicate 

whether the vehicle pair poses a potential risk of collision at a cross collision point at a 

given time. Then the predictive model was formulated as an objective function which 

minimizes velocity deviation from the desired speed, acceleration, and the risk of collision. 

The simulation results showed that the proposed scheme could reduce acceleration and 

almost eliminate stop delay. This model could also be used for turning traffic but with the 

compromise of intersection capacity.  

The game theory-based approach considers the global optimal operation for the 

intersection, in which the intersection agent would assign a choice to each vehicle to 

achieve the minimum conflicts, traffic delay, or travel time. Elhenawy et al. (2015) 

developed a game theory-based model for automated vehicles traveling through the 

intersection. In this model, each vehicle would have three choices when they are traveling 

through the intersection, i.e., acceleration, remaining constant speed, and deceleration. For 

each decision made by vehicles, a global occupancy time on the conflict zone could be 

calculated and the objective of the developed model was to obtain the minimum global 

occupancy time and traffic delay. The developed model was demonstrated through the 

Monte Carlo simulation of 1000 times. The results were compared to the base scenario, a 

four-way intersection that was stop sign controlled. The simulation results showed the 

proposed scheme produces a significantly lower delay of 35 seconds.  
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Yan et al. (2009) studied the trajectory planning problem for CAVs in the context 

of a four-way intersection. The vehicles entering the intersection were first partitioned 

into different classes according to their arrival time and passing time. One class of 

vehicles consisted of those that could travel through other vehicles without collision. 

Then the optimal sequences of going through the intersection were decided by the 

technique of dynamic programming. The procedures of transferring the minimum unit 

from car to group could significantly reduce the recursions in dynamic programming 

algorithms.  

However, the methods mentioned above still have a drawback, which is that the 

computation demand would rise significantly when the number of lanes increases. To solve 

this problem, Wu et al. (2012) proposed an ant colony system to solve the control problem 

for a large number of vehicles and lanes. The ant colony system is a heuristic algorithm 

that could provide an acceptable result since an optimal result through an exhaustive search 

is often not feasible because of the large number of vehicles and lanes. Finding the optimal 

sequence problem is found to be the analogy to Travelling Salesman Problem (TSP), when 

each vehicle is considered as a city to be visited once and only once, the headway of each 

pair of vehicles would be the distance between two adjacent cities, and the shortest path 

would be the optimal sequence of vehicles with the minimal exit time.  This proposed 

system was proved to outperform the intersection controlled by an adaptive controller. 

Table 2.4 provides a review of existing studies on the two methods mentioned above. 
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TABLE 2.4: Existing Studies on CAVs in the Environment of Intersections 

 
Authors Year Models  Model features 

Dresner and 

Stone 
2004 

Space and time reservation-

based  

Assuming 100% CAVs in the 

intersection 

Dresner and 

Stone 
2006 

Space and time reservation-

based 

Improving previous AIM by 

accommodating traditional human-

operated vehicles. Priority vehicles 

can also be served such as 

ambulances, police cars, and fire 

trucks 

Schepperle et 

al. 
2007 

Space and time reservation-

based 

Introducing a third exchange agent 

at the intersection, in case people 

might want to pay for the right of 

traveling through the intersection 

Mehani and 

Fortelle 
2007 

Space and time reservation-

based 

Improving the reservation-based 

algorithm by defining the active 

conflict point only  

Yan et al. 2009 Trajectory planning-based 

A dynamic programming algorithm 

was developed for solving the 

trajectory planning problem 

Azimi et al. 2012 
Space and time reservation-

based 

Vehicles require a token for a 

certain tile in the intersection. The 

token could be prioritized.  

Bento et al. 2012 
Space and time reservation-

based 

Developing a simulator to test 

reservation-based CAVs in the 

intersection 

Wu et al.  2012 Trajectory planning-based 

Propose an ant colony system to 

solve the scenario where a large 

number of lanes are observed 

Ghaffarian et al. 2012 Trajectory planning-based 
Integer linear programming 

optimizes the traffic trajectories 

Lee and Park  2012 Trajectory planning-based 

Non-linear constrained optimization 

was derived to minimize the 

overlapping of time and space of 

two conflicting vehicles 
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Colombo et al. 2012 Trajectory planning-based 

Proving that for a general model of 

vehicle dynamics at an intersection, 

the problem of checking 

membership in the maximal 

controlled invariant set is NP-hard 

and introduce a solution that can 

approximately solve it 

Kamal et al.  2013 
Space and time reservation-

based  

The positions of vehicles are 

determined by DTS, Risk function 

return the collision results and 

predictive control model attempt to 

obtain the desired speeds for the 

vehicles   

Choi et al.  2013 
Space and time reservation-

based  

An optimization problem of finding 

the best sequence of vehicle’s 

entrances is formulated 

Gregoire et al.  2014 Trajectory planning-based 

Derive an efficient and trajectory 

and incorporate priority motion 

planning to account for unexpected 

event  

Qian et al. 2014 Trajectory planning-based 

A priority-based coordination 

system with provable collision-free 

and deadlock-free features has been 

presented.  

Elhenawy, et al. 2015 
Space and time reservation-

based 

Each vehicle has three choices 

during traveling the intersection: 

acceleration, remaining constant 

speed, and deceleration. A global 

occupancy time on the conflict zone 

is minimized 

Zhu et al. 2015 Trajectory planning-based 

Developing a novel non-linear 

programming formulation for 

autonomous intersection control 

accounting for traffic dynamics  

Sharon and 

Stone 
2017 

Space and time reservation-

based 

Considering traffic mixed with both 

HDVs and CAVs 
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Li et al. 2019 Trajectory planning-baed 

Developing a Discrete Forward-

Rolling Optimization Control 

algorithm, which is proved to 

perform better than the First Come 

First Serve (FCFS) Policy 
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Though many studies have been performed on formulating autonomous 

intersection management strategies for CAVs, HDVs and CAVs are expected to coexist 

for a considerable period of time. As such, traffic control devices are still indispensable to 

regulate HDV traffic to avoid collisions. Nevertheless, CAVs are advantageous compared 

to HDVs in that CAVs can receive the signal phasing and timing information and react 

promptly to achieve certain objectives such as minimal travel time or fuel consumption. 

 

2.3.2 Signal controlled intersections with CAVs 

When vehicles are equipped with CAV technologies, it is convenient to assume the 

communication between CAV and signalized intersections. While signalized intersections 

optimize its phase duration and sequence, CAV can adjust trajectories based on its updated 

signal timing to improve the performance indicators. Currently, there are different 

methodology trends in terms of optimizing the signal timing. According to Qadri et al. 

(2020), these methods can be grouped into five categories, including artificial intelligence 

models, metaheuristics-based approaches, multi-objective-based approaches, 

dynamic/mixed-integer programming (MIP) based approaches, and miscellaneous 

approaches. Each of these approaches can further grow its branches. For example, artificial 

intelligence approaches could have neural network models and deep learning models. This 

dissertation intends to employ an MIP-based approach to develop a signal optimization 

model, and hence a review of existing studies for MIP-based signal optimization is 

summarized in Table 2.5. According to Table 2.5, it can be observed that the cell 

transmission model, Space-Phase-Time Hypernetwork based model, and green 
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start/duration mixed-integer programming models are three popular approaches when 

modeling signal optimization problems.  

TABLE 2.5: Recent Studies on Signal Optimization Approaches 

Title Important assumption Authors Year 

An enhanced 0–1 mixed-integer LP formulation for 

traffic signal control 
Cell Transmission Model Lin et al. 2004 

Distributed optimization and coordination algorithms 

for dynamic speed optimization of connected and 

autonomous vehicles in urban street networks 

Cell Transmission Model Tajalli, and Hajbabaie 2018 

A novel traffic signal control formulation Cell Transmission Model Hong K. Lo 1999 

A cell-based traffic control formulation: strategies and 

benefits of dynamic timing plans 
Cell Transmission Model Hong K. Lo 2001 

Recasting and optimizing intersection automation as a 

connected-and-automated-vehicle (CAV) scheduling 

problem: A sequential branch-and-bound search 

approach in phase-time-traffic hypernetwork 

Space-Phase-Time 

Hypernetwork 
Li and Zhou 2017 

Solving simultaneous route guidance and traffic signal 

optimization problem using space-phase-time 

hypernetwork 

Space-Phase-Time 

Hypernetwork 
Li et al. 2015 

A mixed integer programming formulation and 

scalable solution algorithms for traffic control 

coordination across multiple intersections based on 

vehicle space-time trajectories 

Space-Phase-Time 

Hypernetwork 
Wang et al. 2020 

Collaborative control of traffic signal and variable 

guiding lane for isolated intersection under connected 

and automated vehicle environment 

Green start and duration MIP Ding et al 2021 

A platoon-based adaptive signal control method with 

connected vehicle technology 
Green start and duration MIP LI, et al. 2020 
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2.3.2.1 Cell transmission model 

The cell transmission model was derived from Lighthill, Whitham, and Richards 

(LWR) model, which describes the dynamic relationship among traffic flow, density with 

respect to space, and time variables. Later, Daganzo (1994, 1995) proposed a simplified 

solution by assuming the traffic flow equals the minimum of three norms, i.e., the product 

of free speed and current density, inflow capacity, and the product of backward shock 

wave speed, and the difference between jam density and current density.  Based on this 

formulation, the traffic delay is represented by the differences in the number of vehicles 

that have been left in the current cell between two successive time steps. The flow at the 

next time step can be equal to the saturated flow rate when the signal is green, and zero 

when the signal is red.  

Through the equations introduced above, researchers can easily construct a 

mixed-integer linear programming problem for the signal optimization problem (Lo, 

1999; Lo, 2001; Lin and Wang, 2004). However, this approach becomes unsuitable when 

it comes to the microscopic operation level, as it often involves a relatively larger 

simulation resolution (i.e., simulation step of 10s). 

 

2.3.2.2 Space-Phase-Time hypernetwork model 

Li et al. (2015) established a new approach in optimizing the traffic signals on 

network levels. In this signal optimization, each link in the network was expanded from 

one dimension to two dimensions considering both position and time step for each 

vehicle in the planning horizon. Each link was associated with a calculated cost which is 

largely determined by the travel time with free speed at the current time step within the 
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horizon. Similar assumptions were also made for signal phases. All possible signal phases 

were expanded in the given planning horizon and represented by nodes. These graphical 

representations for the links and phases enable researchers to establish the signal 

optimization model that is convenient for Lagrange relaxation. The derived formulations 

from Lagrange relaxation can be solved by either branch and bound algorithm or 

dynamic programming (Li and Zhou, 2017; Li et al., 2015).  

 

2.3.2.3 Green start and green duration-based MIP 

  

Another popular approach for signal optimization is to optimize signal timing by 

taking the green start and green duration as the decision variable for each phase in an 

MLP model. In a connected environment, signal controllers are assumed to receive the 

arrival information, and hence the traffic delay can be easily estimated by calculating the 

difference between the green start time and vehicle arrival time. 

Li et al (2020) constructed a signal optimization for the NEMA phase with a dual-

ring structure. The phase boundaries and sequences were modeled as constraints in the 

MILP model and the objective was to minimize the traffic delay. One of the highlights in 

this research is that the researchers considered the arrival times of platoons instead of 

individual vehicles. However, the signal optimization model still yielded a signal timing 

plan with a fixed number of phases and phase sequence, which may limit the signal 

timing performance.  

Similarly, Ding et al. (2021) also developed a signal timing optimization model in 

the connected environment with green start time and green duration being the decision 

variables. Particularly, this research selected the wasted green time as the objective to be 
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minimized. The wasted green time was defined as the time difference between vehicle 

arrival time and green start, as described below. One of the merits of the model 

developed by Ding et al. (2021) is that the phase sequence is flexible because of the 

introduction of the auxiliary binary variable indicating which phase is first between 

conflicting phases.   

 

2.3.2.4 Trajectory planning under signalized intersection 

 

To further enhance the potentiality of CAVs, researchers have developed models 

that control both signal timing and trajectory planning simultaneously, such as Yu et al. 

(2018), Guo et al. (2019), Soleimaniamiri et al. (2020), and Li et al. (2014). Signalized 

intersection provides CAVs proper setting for trajectory optimization application. Other 

studies developed trajectory planning strategies in other environments with various goals. 

For example, Mu et al. (2021) proposed an event-triggered rolling horizon-based trajectory 

planning method to smooth trajectories and reduce emissions in a freeway environment. 

Popular trajectory planning methods include shooting methods (Ma et al., 2017), 

mathematical program methods (Han et al., 2020), dynamic programming (Yao et al., 

2020), and the Pontryagin Minimum Principle approach (Wang et al., 2012; Wang et al., 

2014; Feng et al., 2018; Yu et al., 2018).  

 

Shooting approach 

Ma et al. (2017) proposed a parsimonious shooting heuristic method for the 

trajectory planning problem of CAVs approaching the signalized intersections. This 

shooting heuristic algorithm can construct a feasible trajectory considering realistic 
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constraints including vehicle kinematic limits, traffic arrival patterns, safety, and signal 

control logic. The target goals of the trajectory were to improve mobility, environment, 

and safety. An innovative solution approach was proposed to solve the problem and the 

numerical study demonstrated the proposed model could outperform all human drivers at 

all measures.  

 

Mathematical program approach 

Pourmehrab et al. (2019) employed a stage-wise trajectory control of the CAVs 

approaching the signalized intersection in which vehicles cruise at a constant speed at the 

middle segment and constant acceleration/deceleration rate at the first and the third 

segment. A mathematical program formulation was constructed to solve the transition 

points between stages considering the road speed limit and vehicle acceleration capacity. 

The proposed control strategies applied different controls for the lead vehicle, follower 

vehicle, and traffic signals assuming two-way communication technologies between 

vehicles and infrastructure. The speed trajectories and signal phase were optimized 

simultaneously to achieve the minimum travel delay. Compared with a fully actuated signal 

control, the proposed algorithm is found to reduce the average travel time by 38%-52%.  

Zhao et al. (2021) developed a bi-level programming method where the arrival 

speed was maximized at the lower level and the travel time was optimized in the upper 

level. Both levels of formulation had forms of linear mathematical programs. The bi-level 

optimization problem introduced by Zhao et al. (2020) was difficult to solve and thus a 

heuristic algorithm was proposed to obtain a viable solution. This proposed control strategy 
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was tested with different demands, intersection lengths, communication ranges, and traffic 

compositions.  

 

Pontryagin Minimum Principle approach 

Feng et al. (2018) utilized the Potryagin Minimum Principle to prove the efficiency 

of the three-segment trajectory. This method can reduce traffic delay while preventing an 

increase in fuel consumption. This work also applied dynamic programming to solve the 

signal optimization problem, in which signal phasing and duration were optimized for 

every rolling horizon length. By applying this combined optimization strategy, fuel 

consumption and traffic delay were both reduced significantly. Later Yu et al. (2018) and 

Ding et al. (2021) utilized the three-segment trajectory concept and then developed a mixed 

integer programming method to optimize the signal timing of CAVs.   

Jiang et al. (2017) developed speed planning strategies for CAVs approaching the 

signalized intersection to optimize mobility and fuel efficiency. The optimal control 

problem was solved through Pontryagin’s Minimum Principle. Undersaturated scenarios 

and oversaturated scenarios were both developed for comparison. The benefits were found 

to be greater in the oversaturated scenarios. The simulation results showed that fuel 

consumption can be reduced by as much as 58.01% under oversaturated conditions. The 

emission benefits were as much as 33.26%. The proposed control strategy outperformed 

the state-of-the-art eco-drive system, GlidePath, which was developed by the Federal 

Highway Administration (FHWA). 
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2.3.3 CAVs in other transportation environments 

Except for the studies on the performances of CAVs in conventional intersections, 

freeways and roundabouts are also two popular transportation scenarios for researchers. 

Investigations on CAVs on freeways were focused on the car following, platooning, 

cooperative merging, and diverging behaviors (Milanés et al., 2010; Milanés and 

Shladover, 2014). For CAVs traveling through roundabouts, researchers mainly focused 

on the trajectory designs and merging sequences. Table 2.6 provides a brief review of 

recent studies in these two environments.  

TABLE 2.6: Recent Studies on CAVs in the Environments of Freeways and Roundabouts 

Transportation 

Environments 
Authors Year CAV Features 

Freeway 

Adebisi et al. 2020 CACC models 

Liu and Fan 2020 CAVs with revised intelligent Driver Model 

Chityala et al. 2020 CAVs with shorter headways 

Hu and Sun 2019 
Cooperative Lane Changing Control, Cooperative Merging 

Control 

Roundabout 

Mohebifard and 

Hajbabaie 
2020 CAVs with optimized trajectory  

Mohebifard and 

Hajbabaie 
2021 

Trajectory control in a roundabout with a mixed fleet of 

automated and human-driven vehicles 

Martin-Gasulla 

and Elefteriadou 
2021 

Roundabout management algorithm for trajectory planning of 

CAVs 

Chalaki et al. 2020 Trajectory planning control framework for roundabout 

 

 

2.4 Longitudinal Behavior Models of CAVs  

2.4.1 Overview of car-following models  

Car following model are a cornerstone for microscopic traffic simulation, which 

helps traffic engineers to evaluate the operational performance of the proposed traffic 

regulating strategies. The history of car-following models can be dated back to the 1960s-

1980s (Aghabayk et al., 2015). The attributes of the subject vehicles can be described by 

the state vector (𝑥𝑛, 𝑣𝑛 , 𝑎𝑛, 𝑡𝑛), where 𝑥𝑛 denotes the position of the subject vehicle on the 
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road, 𝑣𝑛 represents the subject vehicle’s speed, 𝑎𝑛  denotes the acceleration rate of the 

vehicle and 𝑡𝑛 means the current time step. In the development of the car-following model, 

two different kinds of car-following models were identified, classic methods and artificial 

intelligence methods. The classic methods formulate analytical equations to describe the 

relationships among the four variables often with assumptions that the state of the subject 

vehicle is related to the behaviors of the leading vehicle. Based on the assumption of these 

models, the classic car following models include stimulus-response, safe-distance, desired 

headway, and psychophysical models. Though classic methods may suffer insufficiency in 

failing to consider unobserved factors that may also have an impact on the following 

behavior of the vehicle, they are usually easier to understand and analyze compared with 

artificial intelligence models. Many simulation platforms have utilized this type of car-

following model such VISSIM, AIMSUN, CORISM and PARAMICS. The classic 

methods can be further split into four categories, which are the stimulus-response model, 

safety distance model, desired headway models, and psychophysical models. The artificial 

intelligence model is rule-based and relies on computer programming for prediction, 

including fuzzy logic and neural networks.  

 

2.4.2 Classic car following models 

2.4.2.1 Stimulus-response model  

 

The stimulus-response models capture the driver’s behaviors according to the 

leading vehicle’s ‘stimulus’, which could be relative speed or the spacing between two 

vehicles. The response is the acceleration or deceleration of the subject vehicles, which is 

delayed by an overall reaction time, 𝑇.  
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Gazis-Herman Rothery (GHR) model 

 

The GHR model was first introduced by Chandler et al. (1958) at General Motors 

research laboratories and Kometani and Sasaki (1958) in Japan. The model yields the 

desired acceleration rate based on current speed, relative speed difference to the preceding 

vehicle, the distance to the preceding vehicle, current headway, and desired headway. Two 

calibration parameters were added to the norm of current speed and position difference. 

The parameters in the GHR model have been continuously calibrated by many researchers. 

Chandler et al., (1958) suggested that two calibration parameters be zero according to speed 

profiles from 8 vehicles in the real world. Herman and Potts (1959) obtained a better fit 

when 𝑙 was set as 1. Later, many more following investigations on the parameter’s 

calibration were conducted using different datasets (Aron, 1988; Hoefs, 1972; Ceder and 

May, 1976; Heyes and Ashworth, 1972). The stimulus-response model has no limitation 

on acceleration and deceleration rates, which is inconsistent with the mechanic features of 

vehicles in the real world. Thus, unrealistic acceleration and deceleration behaviors might 

be observed during the simulation.  

 

Linear (Helly) model 

 

Helly (1959) developed the Linear (Helly) model by adding the consideration of 

the leading vehicle braking and preferred distance based on the GHR model. Two 

calibration parameters were added to relative speed difference and distance difference. The 

preferred distance was a function of current speed, acceleration, the difference between 

desired headway and current headway with three calibration parameters.  
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Later this model was calibrated on the urban freeway under congested and 

uncongested traffic conditions (Hanken and Rockwell, 1967; Rockwell et al., 1968). Bekey 

et al. (1977) demonstrated the efficiency in replicating the trajectories of 125 vehicles in a 

period of 4 minutes. However, it was also pointed out that the linear (Helly) model could 

produce unrealistically large headways when the variation of acceleration increases 

(Aghabayk et al., 2015).  

 

Optimal velocity model (OVM)  

 

The optimal velocity model holds the assumption that the acceleration rate of the 

subject vehicle is largely dependent on the difference between the current velocity and the 

optimal velocity, which is a function of headway between two successive vehicles. 

However, this model may generate large acceleration rates according to Nagel et al. (2003).  

As such, the applicability was limited and had not been broadly used.  

 

IDM 

 

IDM was originally developed for human-driven vehicles in the single lane without 

consideration of lane changing (Treiber et al, 2000). IDM can be classified as one of OVM. 

The acceleration assumed in the IDM is a continuous function of the velocity, the gap, and 

the velocity difference to the preceding vehicle. This model has several advantages: 1) it is 

collision-free due to the dependence on the relative velocity; 2) its model parameters are 

intuitively measurable and easy to interpret; 3) The model allows for a fast-numerical 

simulation. Kesting and Treiber (2008) later calibrated their IDM model through genetic 

algorithm optimization to obtain a set of calibrated parameters. In many studies that 

investigated the impact of CAVs on the existing transportation system, the IDM model has 
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been popularly employed to simulate the car following characteristics of autonomous 

vehicles (Kesting et al., 2008, Kesting et al., 2010, Zhou et al., 2016; Liu and Fan, 2020).  

 

Full velocity difference model 

 

Another notable popular car following model is the full velocity difference model 

(FVDM). The FVDM was firstly proposed by Jiang et al. (2001), which was developed by 

combining OVM and generalized forced model (GFM). The original OVM is biased in the 

respect of too high acceleration rate and unrealistic deceleration compared with 

observations on the field. Based on OVM, GFM was proposed, and the results showed that 

GFM’s output was more consistent with field data. However, GFM failed to consider the 

case when the velocity difference between the preceding vehicle and the following vehicle 

is positive, which means preceding cars are much faster than the following vehicle. This 

insufficiency results in the poor delay time of car motion and kinematic wave speed at jam 

density. To include this consideration in the car-following model, FVDM was proposed 

and both negative and positive velocity differences were considered. Later, this model was 

further developed by Zhao and Gao (2005) with modifications to account for the urgent 

brake condition of the following vehicles. Table 2.7 provides a brief review of the literature 

on the OVM, FVDM, and IDM.  

 

 

TABLE 2.7: Summary for the literature reviewed on OVM, IDM, and FVDM 

 
Authors Year Model  Model features 

Bando et al. 1995 OVM 

Assuming the vehicle has an 

optimal velocity which 

depends on the distance to 

the preceding vehicle 
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Treiber et al. 2000 IDM 

Developed from optimal 

velocity model. Measurable 

parameter and collision-free 

Jiang et al. 2001 FVDM 

Combining optimal velocity 

model and general forced 

model 

Zhao and Gao 2005 FVDM 

Improving full velocity 

difference model by 

accounting for the urgent 

brake condition of following 

vehicles 

Kesting et al. 2008 IDM 

Applying the genetic 

algorithm to optimize the 

parameters in IDM using 

trajectory data 

Derbel et al. 2013 IDM 

Improving intelligent Driver 

Model by guaranteeing 

traffic safety and reducing 

the overly high deceleration 

Malinauskas 2014 IDM 

Examining the intelligent 

Driver Model in the vector-

valued time-autonomous 

ODE system 

Treiber et al.  2017 IDM 

Adding external noise and 

action points to the 

Intelligent Driver Model 

Xin et al. 2018 IDM 

Improving Intelligent Driver 

Model by accounting for eco-

driving while the vehicles are 

approaching a signalized 

intersection 

Xiong et al. 2019 IDM 

Improving the intelligent 

driver model by reducing the 

overly high deceleration 
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2.4.2.2 Safe-distance model 

The safe-distance model identifies a sufficient gap size which would allow the 

following vehicle to avoid unexpected collisions when the leading vehicle behaves 

unpredictably. Gipps model was selected as a representative of such type of model for 

illustration (Gipps, 1981). The Gipps model was developed based on the work of Kometani 

and Sasaki (1959).  The model introduced a safety margin by considering an additional 

delay before reacting to the vehicle ahead. The delay was assumed to be equal to half of 

the drivers’ reaction time for all drivers.  

 

2.4.2.3 Desired headway models and psychophysical models 

 

Desired headway models have the assumption that the following vehicle has a fixed 

desired headway to its leading vehicle. Bullen (1982) proposed a car-following model 

which could be put into this category. However, in addition to the common drawbacks 

shared by the other stimulus-response model, this model cannot be calibrated and failed to 

capture realistic drivers’ reactions to the small changes of the headway.  

Michaels (1963) proposed a car-following model based on the assumption that 

drivers can estimate the speed of the leading vehicle based on the visual angle of the leading 

vehicle. This model is one of the psychophysical models. This type of model could 

potentially capture the difference between passenger vehicles and heavy vehicles as they 

usually have distinguished characteristics in terms of vehicle width.  

This model inspired many researchers to develop perception-based studies (Evans 

and Rothery, 1973; Burnham and Bekey, 1976; Lee, 1976; Wiedemann, 1974; Wiedemann 

and Reiter, 1992). Among these studies, the Wiedemann model is one of the most popular 
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models that have been applied in the microscopic simulation platform, such as Widemann 

1974 in PTV VISSIM (Lownes and Machemehl, 2006).  

 

2.4.3 Artificial intelligence car following models 

Differing from the classic methods which formulate an equation for the vehicle 

states, artificial intelligence car-following models predict the behaviors of the following 

vehicle by learning the underlying patterns from large training datasets. Existing popular 

approaches are fuzzy logic-based models and artificial neural network (ANN) learning-

based models. A brief review of the literature on the artificial intelligence model with ANN 

is presented in Table 2.8.  

 

TABLE 2.8: A Brief Review of the Artificial Intelligence Car-following Model 

Authors Model Data Required Input Results 

Hongfei et 

al.,2003 

ANN Trajectory data 

from two test 

vehicle driven by 

human 

Relative distance, 

relative speed, 

desired speed, 

speed of the 

following vehicle, 

ANN model can 

feasibly replicate the 

speed profile of the 

test vehicles. 

Panwai and 

Dia,2007 

ANN Stop and go traffic 

during afternoon 

peak hour 

Relative speed and 

distance, speed of 

the leading and 

following vehicle 

The proposed ANN 

techniques in the 

car-following model 

outperform the 

Gipps model in 

terms of error metric 

on distance (EM) 

and root-mean-

square 

Zhou et al., 2009 ANN and RNN Trajectory data 

retrieved from 

NGSIM, FHWA 

(2008) 

Velocity and 

acceleration 

RNN model was 

proved to have a 

stronger 

performance in 

predicting the 
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trajectories 

compared with 

ANN 

Khodayari, et al. 

2012 

ANN Trajectory data 

retrieved from 

NGSIM, FHWA 

(2008) 

Relative distance, 

speed of the 

following vehicle, 

reaction delay, 

acceleration of the 

following vehicle 

The discrepancy 

between the 

observed and 

simulated trajectory 

was reduced to a 

satisfactory level. 

Chong et al., 

2013 

Agent-based 

Back-propagation 

ANN 

Trajectory data 

from a real-world 

driver 

Speed, longitudinal 

and lateral 

accelerations, yaw 

angle, heading, and 

turn signal 

indications.  

The proposed neural 

agent model was 

proved to 

outperform the GHR 

model in predicting 

the drivers’ behavior 

  

Fuzzy logic models 

 

In the architecture of the fuzzy logit system, the acceleration or deceleration of the 

subject vehicle is coded into numerous categorical values, as well as important inputs such 

as relative speed and/or spacing between two vehicles. A simple fuzzy logic example is 

that if the following vehicle is “close” and “closing” to the leading vehicle, then 

“decelerate”. Here, “close”, “closing” is the fuzzy inputs, and “decelerate” is the fuzzy 

output. The fuzzy logic models are valid in that the perception of drivers is not accurate 

and they often make decisions based on their experience and logic. Therefore, this type of 

model is more consistent with drivers’ behaviors. One notable difficulty in implementing 

a fuzzy logic model is defining a proper set of fuzzy rules which can correctly replicate the 

drivers’ behaviors. Kikuchi and Charkroborty (1992) applied the fuzzy logit model to the 

car following model and since then, many efforts were made in developing the car-

following model with the same model structure (Das et al., 1999; Gao et al., 2008; 

Gonzalez-Rojo et al., 2002; Zheng and McDonald, 2005). 
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Neural network models 

 

The neural network is one of the typical machine learning methods which rely on 

computation capability and large datasets. Neural networks mimic the way that the human 

brain processes information. In the initial layer, the observed values of variables were put 

in the neurons where a coefficient would be assigned to each variable. Then the obtained 

results from the first layer were passed to the neurons in the second layer where the same 

operation is conducted for the neurons. A greater number of layers usually can produce a 

better fit. Khodayari et al. (2012) applied a modified neural network model to the field 

trajectory data and proved that the proposed model outperforms other types of car-

following models in terms of various evaluation criteria.  

 

2.4.4 Car following models for CAVs 

IDM is one of the popular car-following models assumed for CAVs. In addition to 

the IDM, ACC, CACC, Newell car following models have also been widely utilized in 

describing the possible behaviors of CAVs. 

ACC is a terminology that describes the longitudinal control strategy for 

autonomous vehicles that have radar, Lidar, and camera installed. Many of these 

longitudinal control strategies were distance regulation oriented (Shladover, 1995; Xiao et 

al., 2011). According to He et al. (2019), the ACC models can be classified as proportional-

integral-derivative (PID) feedback/feedforward control, model predictive control (MPC), 

and fuzzy logic control (FLC). PID control is a commonly accepted and tested strategy for 

ACC and a representative is a model proposed by Shladover et al (2012), in which the 

acceleration rate of the following vehicle was expressed as a function of the distance error 
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and the relative speed. Geiger et al. (2012) developed a CACC system (which covers the 

functions of ACC) based on the MDC. By assuming the preceding vehicle drive at constant 

yaw rate and acceleration in the defined time horizon, the optimal acceleration rate was 

obtained by minimizing the cost function which contains the terms of distance error, 

relative speed difference, and the current acceleration rate. FLC resolves the ACC problem 

by calculating the safe distance depending on whether a preceding vehicle is present or not. 

As in Tsai et al. (2010), when the preceding vehicle is detected, predefined rules were 

applied where the inputs of a predefined matrix which contains distance error and relative 

speed were connected with the output of a corresponding desired speed.  

CACC improves ACC by adding communication between vehicles. For ACC 

vehicles, the information on the preceding vehicle is retrieved by on-board sensors like 

radar or Lidar. CACC vehicles can share the speed, position, and acceleration rate with 

shorter communication latencies. CACC and ACC share a similar model structure in Xiao 

et al. (2017), but CACC has a shorter reaction time and spacing margins. 

Newell’s car-following model is appealing in modeling CAVs for its simplicity and 

consistency with the triangular fundamental diagram, by giving the exact numerical 

solution for the kinematic wave model (Chen et al., 2012).  Numerous researchers have 

applied Newell’s car following model in their trajectory optimization or platooning models 

(Gong and Du et al., 2018; Wei et al., 2017) 

 

2.5 Lane Changing Models  
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2.5.1 Classification on lane-changing model  

Based on different approaches used in modeling lane-changing behavior, existing 

lane-changing models could be classified into four categories including rule-based models, 

discrete choice-based models, artificial intelligence models, and incentive-based models 

(Rahman et al., 2013). The rule-based models include the Gipps model (Gipps 1986), 

CORSIM model (Halati et al.. 1997), ARTEMiS model (Hidas 2005), Cellular Automata 

model (Rickert et al. 1996), and game theory model (Kita et al., 1999). Discrete-choice-

based models include Ahmed’s model (Ahmed et al. 1996) and Toledo et al.’s (2007) 

model. Artificial intelligence models include fuzzy-logic-based models (Ma, 2004) and 

ANN models (Yang et al., 1992). Incentive-based models include MOBIL (Kesting et al., 

2007) and Lane-changing Model with Relaxation and Synchronization (LMRS, Schakel et 

al., 2012). The following sections present existing studies utilizing these models. 

 

2.5.2 Discrete choice model  

 

Toledo et al. (2003) developed a lane-changing model that consists of two parts. 

The first part was to determine whether the vehicle is willing to change lanes or not. This 

step was modeled using a utility function, which would output three alternative results, 

maintaining the current lane, lane changing to left, and lane changing to the right. This step 

assumed that the vehicle would make the lane change decision which results in the 

maximum utilization that considers the individual driver characteristics and other 

explanatory variables (including the immediate neighborhood in each lane, leader speed in 

each lane, presence of heavy vehicles, and tailgating), path plan considerations (e.g., the 

distance to a point where the driver must be in a specific lane and the number of lane 
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changes needed to be in that lane), and knowledge of the system (e.g., avoiding the left 

lane before permissive left turns or avoiding on-ramp merging lanes). The second part was 

to evaluate whether the gap in the target is sufficient for the lane changing for the driver. 

The model resulting from the second part assumed that the critical gaps follow a lognormal 

distribution. The parameters in the model were obtained through the maximum likelihood 

method by collecting travel trajectory data of drivers. 

 

2.5.3 Incentive-based models  

Kesting et al. (2007) proposed lane-changing rules that were dependent on the 

acceleration of the vehicle. By doing so, the car following models contains the parameters 

required by the lane changing model. The model essentially evaluated the differences of 

new acceleration rates after a prospective lane change and current acceleration rates. A 

greater acceleration rate means a higher speed that the vehicle can travel. In addition, 

acceleration rate differences of two immediate neighbors were also considered to evaluate 

the impact of lane change on the current lane. When this model result was greater than a 

specified threshold, the driver was determined to execute a lane change. The safety criteria, 

which evaluate whether the lane changing is safe or not, were also modeled as a function 

of acceleration. If the vehicle had to make significant deceleration for a lane change, then 

it may not be safe for the vehicle to change lanes. Thus, the expected acceleration rate was 

smaller than a certain threshold, and the vehicle was not able to make the lane change either.  

 

2.5.4 Rule-based models 

Yang et al. (2019) established a lane-changing behavior model in both traditional 

and connected environments based on game theory. In this model, researchers mainly 
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considered two players, the merging vehicle, and the following vehicle in the target lane. 

The payoff was set as the acceleration for different choices. The merging vehicle has two 

choices, merging and waiting, which would require two different acceleration rates. For 

the following vehicle in the target lane, it has four choices including forced merging, 

courtesy yielding, doing nothing, and changing lane, which would also generate four 

acceleration rates. Bi-level programming optimization was utilized to estimate the 

parameters for the prediction model. The upper-level objective function was to minimize 

the discrepancy between observed lane changing decision and predicted lane changing 

decision, while the lower-level objective function was to obtain the Nash Equilibrium. 

Compared to other existing game theory-based lane-changing models, the proposed model 

considered more choices that might fall into consideration of following vehicles. The 

proposed model was also found to have a high accuracy in predicting lane-changing action. 

Table 2.9 provides a brief review of the literature mentioned above.  

 

TABLE 2.9: Summary for Literature on Lane-Changing Model 

Authors Year Required Input Model Characteristics 

Salvucci et al. 2007 

steering wheel angle; 

accelerator depression, 

lateral position, etc. 

Mapping observation actions to 

intention; model is like intelligent 

tutoring systems 

Toledo et al. 2003 

individual 

characteristics and 

environmental 

characteristics 

Lane changing decision-based on 

utility; evaluation of the sufficiency 

of the gap based assumed lognormal 

critical gap distribution 

Kesting et al 2007 
speed, gap, acceleration 

rate 

Incorporated into intelligent driver 

model, which describes the 

longitudinal movement of vehicles 

Letter and 

Elefteriadou 
2017 

vehicle’s position, 

speed, and acceleration 

Maximization of the average travel 

speed in the communication zone  
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Wei et al. 2019 
position, initial speed, 

and acceleration rate 

Lane changing path is planned first in 

2d cartesian coordinates. A nonlinear 

mathematical programming model is 

used to generate the velocity profiles 

Ma et al. 2019 surrounding vehicles’ 

spacing 

Based on energy field theory, the 

lane-changing model is developed for 

the B-type weaving section 

Yang et al.  2019 Lane changing 

trajectory 

Game theory-based lane-changing 

model, considering more choices for 

the following vehicle in the target 

lane 

  

 

2.5.5 Artificial intelligence models 

Salvucci et al. (2007) developed a model-tracing methodology to map a person’s 

observable actions to his/her intention. The observable actions included steering wheel 

angle, accelerator depression, lateral position, longitudinal distance and time headway to a 

lead vehicle, longitudinal distance, front and back, to vehicles in adjacent lanes; and the 

presence or absence of a lane to the left and right of the current travel lane. A validation 

model was also proposed to evaluate the model performance. This framework was most 

similar to intelligent tutoring systems, which had utilized predictive cognitive models to 

infer student’s intentions. To validate the proposed lane changing predictive model, lane 

changing data were collected by recruiting drivers driving in the designated simulator. The 

prediction results achieved an accuracy of 95%. 
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2.6 CAV Platooning  

2.6.1 Virtual platoon 

Some studies conveniently defined the platoon as a group of vehicles that travel 

through the intersections together or share a close headway.  

Feng et al. (2018) and Yu et al. (2018) developed a signal optimization scheme and 

trajectory planning scheme for CAVs in the conventional intersections. They defined the 

vehicle platoons as a group of vehicles that can travel through the intersections. In this way, 

the vehicles that can pass the intersections entered the trajectory planning module together.  

Ye et al. (2019) identified the vehicle platoons by their inter-distance and speeds. 

When the vehicles are close to each other and share a similar speed, they are then grouped 

into a platoon for trajectory optimization whose aim was to minimize fuel consumption. 

With such a module, the computation burden was reduced since a group of vehicles can be 

regarded as a single unity for the trajectory optimization process.  

 

2.6.2 Optimization-based platooning 

Platooning is a unique behavior feature of connected vehicles that can communicate 

with surrounding vehicles. Different from the automated vehicles that detect the gap and 

velocity of preceding vehicles, connected vehicles proactively share the velocity and 

acceleration rate with the surrounding vehicles. With such communication capability, 

CAVs can have shorter reaction times and headways which can further reduce fuel 

consumption (Xiao et al., 2018). 

Wang et al. (2020) established an MPC approach to model the platooning behaviors 

of CAVs. In this research, two solutions were proposed to obtain the optimal trajectories 

for vehicles inside platoons and the solutions were applicable in real-world tests. Such a 
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method can significantly reduce the computation time and improve the control efficiency 

according to the simulation results. In the case study, the CAV platoon whose leading 

vehicle’s trajectory was obtained from field data. The results demonstrated that the 

proposed model framework can dampen traffic oscillations efficiently and smooth the 

deceleration and acceleration behaviors for all following vehicles inside the platoon.  

Xiao et al (2018) proposed a real-time traffic signal optimization algorithm in the 

CAV environments. The proposed algorithm identified naturally occurring platoons that 

may include both connected vehicles and non-connected vehicles. Then the proposed 

signal timing algorithm optimized the sequence at which these platoons are allowed to 

enter the intersection to obtain the minimal total vehicle delay. The proposed signal timing 

plan incorporating the platooning control can save the computation time by more than 85%.  

Utilizing the distributed algorithm for multi-users proposed by Koshal et al. (2011), 

Gong et al. (2016) analyzed and obtained the solution to the optimization problem of CAV 

platooning control. The distributed algorithm could be applied in real world to obtain the 

solution to the control problem. Then the usefulness of this control strategy was 

demonstrated through extensive numerical simulations. It was shown via stability analysis 

that the linear closed-loop system is asymptotically stable.   

Later, Gong and Du (2018) proposed a cooperative platoon control strategy for the 

mixed traffic flow where CAV and HDV coexist. The movement of CAVs was controlled 

by One- or P- step model predictive control (MPC) models while the HDVs were modeled 

by the well-accepted Newell car-following models (Newell, 1993; Newell, 2002). Gong 

and Du (2018) also developed an online curve matching algorithm to anticipate the 

aggregate response delay of the HDVs. The MPC problem was solved by a distributed 
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algorithm proposed by the authors. The numerical studies proved that the proposed 

algorithm can solve the One-step and P-step MPCs problem quickly. Finally, the authors 

demonstrated that this cooperative platoon control strategy is superior to the non-

cooperative control strategy and latest CACC strategy.  

 

2.6.3 Model-based platooning 

Another category of platooning models can be classified as rule-based models, 

which define different car following modes according to the distances between the subject 

vehicles, preceding vehicles, and the lead vehicle in the platoon.  

Xiao et al. (2017) developed the CACC model to describe the car following 

behaviors of CAVs that can communicate with each other. The CACC model was 

developed from the ACC model that could maintain a desired distance towards the leading 

vehicle. However, the CACC model forms only loosen platoons. Differing from this 

approach, several researchers developed car following models for vehicles inside platoons 

specifically.  

Bang and Ahn (2017) developed platooning schemes based on the spring-mass-

damper system. The acceleration rate was a function of the velocity of the preceding 

vehicle and the leading vehicle, and the positions in the platoons. The differences were 

weighted by the spring constant and damping coefficient respectively. The valid domains 

of control parameters were derived based on vehicles’ physical properties. This research 

also tested the different relationships between the control parameters and traffic flow, 

including maximum, quadratic, and cubic spring constants. The results showed that the 

maximum spring constant and flow with critical damping has the most efficient platooning. 
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A cubic spring constant was desirable in light traffic conditions to allow proper lane 

changing.   

Rajamani et al. (2012) proposed a vehicle platooning controller that has been well 

accepted (Bian et al., 2019; Darbha et al., 2017; Darbha et al., 2018; Paden et al., 2016). 

With the same platooning control structure, Darbha et al. (2017, 2018) verified the 

minimum headway requirements at different connection levels (how much predecessor 

information can be received and whether the acceleration information is available). Bian 

et al. (2019) further proved that a platoon can be asymptotically and string stable when the 

time headway is lower bounded, and this boundary can be reduced when more predecessors’ 

information is available. Overall, the popular safety assumption was that the minimum 

headway should be two times the communication delay and CAV platooning can yield 

benefits when the minimum headway is less than 1s (Darbha et al., 2018).  

Platooning also plays a critical role in trajectory planning. When the trajectory 

planning system is implemented on the platoons, only the trajectory of the platoon leader 

is controlled and optimized and the rest of the vehicles in the platoon can follow the platoon 

leaders’ trajectory. The operation can reduce the computation burden of trajectory planning, 

especially when large-scale microscopic simulation is involved. 

 

 

2.7 Existing Studies on Superstreets 

2.7.1 Concepts, benefit, and application of superstreet 

Superstreet, also known as restricted crossing U-turn intersection, J-turn, reduced 

conflict intersection, or synchronized street intersection, is one of the innovative 
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intersection designs which relieve traffic congestion, especially when unbalanced traffic is 

present in the intersection. By sending through and left-turn movement from cross street to 

a one-way median opening (crossover intersection) in hundreds of feet away from the two-

way median opening (main intersection), both through movement and left-turn movement 

from the cross street would have to make a right turn and U-turn first. Then no more 

movement is required for left-turn movement while through movement needs to make a 

right turn again at the two-way median opening. Superstreet is also a variation of median 

U-turn intersection which prohibits left-turn vehicles from both the main and minor streets. 

However, median U-turn intersection allows through movement from minor intersection 

to travel through the main intersection directly without making the detour to the median 

opening. Figure 2.1 presents the traffic flow from the main street in median U-turn and 

superstreet respectively.  

 

FIGURE 2.1: Traffic flow from the main street in median U-turn (left) and superstreet 

(right) 

According to different control strategies, there are three types of superstreets 

essentially, including signalized, stop-controlled, and merge- or yield-controlled 

superstreets. Figure 2.2 presents a typical design of a superstreet according to FHWA 

(Hummer et al., 2014).  
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FIGURE 2.2: Example of signalized intersection (source Hummer et al., 2014) 

 

Coming along with the substantial benefits from superstreet, the construction cost 

for a superstreet is inevitably expensive because of its larger footprint. In addition, there 

are additional signal controllers that may need to be installed. Table 2.10 shows some 

construction costs in Hummer et al. (2014).  

 

TABLE 2.10: Construction Cost for Some Superstreets (Hummer et al., 2014) 

Road Year Cost State Mileages 

US 15/501 (adding 2 

lanes, relocated 

frontage road) 

2006 5 million North Carolina 0.4 mile 

US 17 (3 signalized 

Superstreet)  

2006 2 million North Carolina 0.6 mile 

US 301  2005 0.618 

million 

Maryland 1400 feet between 

crossover 

intersection and 

main intersection 

 

 

2.7.2 Signal timing and geometric design of superstreet 

Xu et al. developed a two-stage control model for optimizing traffic signal control 

plans of signalized superstreets (2019). The first stage was to select the optimal cycle length 
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for all sub-intersections in the superstreet while the second stage was to determine the 

offsets to achieve the signal progression and to minimize the waiting time of drivers from 

the minor road. The goal of the first stage was to maximize the throughput of the superstreet 

and the second stage was to maximize the signal progression. During the second stage, the 

proposed model can maximize the weighted bandwidth with consideration of minimal 

waiting time on the minor road. This was achieved by optimization of waiting time for over 

long cycle length of signal timing, and bandwidth for traffic flow progressions. The 

contribution of this study was combining the core notions of the existing bandwidth 

optimization method, MAXBAND, with traffic delay optimization. Through the 

demonstration of a numerical example, the proposed model was proved to be capable of 

producing shorter cycle lengths and queues in the superstreets.  

Xu et al. (2017) developed a model to determine the minimal U-turn offset of a 

superstreet with consideration of three-segment, namely acceleration and merging, lane 

changing, and deceleration, and initial queue. The acceleration and lane changing was 

determined by both the acceleration capacity of vehicles and the probability of vehicle 

finding an acceptable gap in the traffic flow on the main road. Then the length of the lane-

changing segment was overlapped with acceleration and merging segments. The last 

segment, deceleration, and initial queue length could be determined by queueing theory 

with headway distribution being assumed to follow a shifted negative exponential 

distribution. To demonstrate the model, the Surrogate safety assessment model (SSAM) 

was utilized to evaluate the designed scenarios.  The numerical results of crash difference 

brought by different lengths of offset proved the efficiency of the model.  
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Holzem et al. (2015) studied pedestrian and bicyclist accommodation strategies in 

the context of superstreet. For pedestrians, the options included the diagonal cross, median 

cross, two-state Barnes Dance, and midblock cross. For bicyclists, the options included the 

bicycle U-turn, bicycle use of the vehicle U-turn, bicycle direct cross, and midblock cross. 

These strategies were evaluated through simulation based on average stopped delay, the 

average number of stops, and average travel time per route. The Level of Service (LOS) 

calculated based on 2010 HCM was presented for these strategies as well as travel time 

generated from PTV VISSIM simulation. The results demonstrated that the two-stage 

Barnes Dance is the optimal pedestrian crossing configuration as it can produce the lowest 

simulated average stopped delay per route, lowest average total stops per route, and lowest 

average travel time per route. As for bicyclists, the bicycle direct cross had the lowest 

average number of stops per route and the lowest travel time based on the HCM analysis. 

The study also showed that shorter cycle length could also benefit the accommodation of 

bicyclists.  

 

2.7.3 Superstreet performances  

The performances of superstreet have been tested by many researchers in different 

aspects, including safety and efficiency. Table 2.11 provides a summary of existing studies 

on the performance of superstreet. Most of these studies employed a simulation-based 

approach.  

TABLE 2.11: Summary of Existing Studies on the Operational Performance of 

Superstreet 

Authors Year 
Alternative 

Intersections 
Methods Results 
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Hummer et al. 2010 

conventional 

intersection, Signalized 

superstreet, unsignalized 

superstreet 

VISSIM, 

Empirical Bayes 

Superstreet can 

have more 

capacity and 

lower travel time, 

Naghawi et al. 2018 
signalized convention 

intersection 
VISSIM 

Improvement of 

LOS from F to C 

Naghawi & 

Idewu 
2014 

conventional 

intersection 
CORSIM 

Higher delay and 

queue were found 

in the 

conventional 

intersection 

Reid and 

Hummer 
2001 

quadrant roadway 

intersection, median-U-

turn superstreet median, 

bowtie, jughandle, split 

intersection, continuous 

flow intersection 

CORSIM 

Superstreet is used 

to replace at the 

intersection with 

two-lane cross 

streets 

Haley et al. 2011 
Conventional 

intersection 
VISSIM 

Decrease the 

travel time on the 

major road and 

increase and travel 

time on the minor 

road 

Ott et al. 2015 none Survey  

Superstreet has 

both positive and 

negative impacts 

on the local 

business. 

Superstreet is 

safer to travel 

through 

Ott et al 2012 
Conventional 

intersection 

Accident report 

review 

Reduction of the 

accident has been 

observed in total, 

angle, right-turn, 
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and left-turn 

collision 

Click et al. 2010 

diamond with reversing 

lanes, roundabout, 

diverging interchange, 

median U-Turn, 

superstreet 

SILS, VISSIM 

and Econolite 

Superstreet has a 

reasonable 

performance 

during the mid-

term traffic 

volumes forecast 

 

2.7.3.1 Operational performance analysis for superstreet 

Naghawi and Idewu (2014) evaluated the operational performances of superstreet 

considering different approaching volumes and turning percentages on the major/minor 

road, resulting in a total number of 72 scenarios including conventional intersection as the 

base scenario. The signal timing for each scenario employed the optimal cycle length that 

was calculated using the methods provided from HCM 2000. Based on the simulation 

results of CORSIM, superstreet consistently outperformed the equivalent conventional 

intersection in terms of average traffic delay and queue length.  

Similarly, Haley et al. (2011) analyzed the operational performances of three 

signalized superstreets in North Carolina using PTV VISSIM. Calibration of the simulation 

was conducted to minimize the difference between observed and simulated travel time. The 

observed travel time data was collected by the researchers who drove through the targeted 

superstreets for as long as the time that the video camera lasted. Two sets of data were 

collected, one for calibration and the other for validation. The results showed that 

superstreets increase the travel time for the vehicles on minor streets while decreasing that 

of vehicles on major streets. However, overall speaking, the superstreet outperformed the 

conventional design due to the large traffic volume present on the major streets. Besides, 
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this research also found that the superstreets could reduce the travel time variations caused 

by off-peak and peak hours.  

Ott et al. (2015) evaluated residents, commuters, and business owners’ opinions on 

the superstreets across North Carolina. The researchers selected ten sites from a 

comprehensive list of superstreets. Ten sites were selected according to two criteria, the 

first one of which was that the superstreets must be constructed within five years. This is 

because drivers might not remember what the driving situation is if the superstreets have 

been there for more than five years. The second criterion was that there must exist road 

construction before the superstreet was present. This is important because drivers surveyed 

must have something to compare. The researchers identified four key questions in the 

survey, which represent navigation, safety, travel time, and the number of stopped vehicles, 

respectively. About the navigation, the responses indicated a mixed attitude towards 

superstreet because the same amounts of people found navigating through superstreet 

easier and more difficult compared with the conventional intersection. However, more than 

half of the respondents reported that they found superstreets are safer to travel through. For 

people who lived in a neighborhood of superstreet, they thought the superstreets had 

increased their travel time. This might be due to that superstreet improves the traffic flow 

on a major road with a compromise of traffic flow in the minor road. People, who live in 

the neighborhood, were likely to experience longer travel time while they used the minor 

road. As for the commuters, superstreets were difficult to navigate for half of them 

according to the response received. The percentage of people who found superstreets safer 

was greater than the percentage of people who found the otherwise by 8 percent. 12% of 

commuters believed that superstreets take more travel time and approximately 50% of 
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commuters perceived no change in safety or travel time. This study also investigated the 

impact of superstreet on the business. Business owners or managers close to the superstreet 

were interviewed or questioned through mails. According to the results of the survey, the 

superstreet had a neutral or negative impact on the local business because of additional 

restrictions resulting from the superstreets.   

Reid and Hummer (2001) evaluated travel times in seven different unconventional 

arterial intersection designs, including the quadrant roadway intersection, median U-turn, 

superstreet median, bowtie, jug-handle, split intersection, and continuous flow intersection 

designs. Seven sites in the real world were identified and modeled in CORSIM along with 

their equivalent unconventional intersection designs. Five of them were put in CORSIM 

with seven intersections designed at three volume levels. Note that these five intersections 

had four through lanes on each of the cross streets. Two of them were put in CORSIM with 

six intersection designs at three volume levels. These two intersections had a through lane 

on the cross streets. The conclusions were made that conventional design never produced 

the lowest average total time but often produced the lowest percent stops. The superstreet 

median and bowtie designs were competitive with the conventional design at intersections 

with two-lane cross streets.  

Hummer et al. (2010) evaluated the operational, safety, and perceived effects of 

superstreets through VISSIM simulation. The simulation results were compared to those 

of the equivalent conventional intersection. It showed that travel time per vehicle had been 

reduced. This means the superstreets could provide more capacity and lower travel time. 

Though signalized superstreet did not provide significant crash reduction, the unsignalized 

superstreet can bring a significant reduction in crash accidents. In addition, the researchers 
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also implemented a survey investigating the reactions towards superstreets from road users. 

The results did not indicate a clear preference in superstreets over a conventional one, but 

an agreement was reached in that superstreets provide a safer trajectory through the 

intersection. However, business managers felt that the superstreet harms the business 

growth and operation due to access and confusion incurred in the superstreet.  

 

2.7.3.2 Replacement of conventional intersections 

 

Numerous studies had been done to evaluate the feasibility and improvement of 

replacing existing conventional intersections with superstreets. Since constructing a 

superstreet in the real world is a massive undertaking, the popular approach is to replicate 

the superstreet in the simulation platform. Most of the results identified from the existing 

literature were positive.  

Naghawi et al. (2014) assessed the possibility of implementing the superstreet in 

Amman, Jordan. The signal timing of the existing intersection was optimized before 

obtaining the results of the operational performance of the intersection. Then an equivalent 

superstreet was designed in VISSIM to obtain simulated operational performance. The 

results showed that the superstreet outperforms the existing intersection design by 

improving the level of service from F to C. Furthermore, with a forecast of the increased 

traffic demand in five years, the operational performance of superstreet was not 

significantly superior compared with a signalized intersection.   

Moon et al. (2011) evaluated the feasibility of replacing the existing conventional 

intersection situated in National Highway 38, Gyeonggi-do, South Korea, which consisted 

of three signalized intersections. PTV VISSIM was employed to replicate the geometric 
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designs of both conventional intersections and superstreets. The operational performances 

in terms of total travel time, the number of arrived vehicles, the average delay time per 

vehicle, average speed, and average stopped delay per vehicle were discussed. Also, 

vehicle trajectories were all output to Surrogate Safety Assessment Model (SSAM) for 

safety evaluation. The results showed that the superstreet had the fewest stops and lowest 

delays due to the effective traffic progression. Collisions were also reduced according to 

the SSAM analysis.  

 

2.7.3.3 Safety performance of superstreet  

 

The number of conflict points is a commonly accepted measure for evaluating the 

safety performance of transportation infrastructure. Figure 2.3 and Figure 2.4 show the 

pedestrian-vehicle conflict points in the conventional intersection and superstreet, 

respectively. Based on these two figures, it can be observed that the pedestrian-vehicle 

conflict points are reduced substantially in the superstreet compared to the conventional 

intersection. As superstreet often provides a designed channel for pedestrians and 

pedestrians to be guided to conduct “Z” crossing, the number of conflict points is reduced 

from 24 to 8 compared to the conventional intersection.  However, pedestrians who attempt 

to come across the main street may need to travel a longer distance.  
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FIGURE 2.3: Pedestrian-vehicle conflict points in a conventional intersection (Hummer 

et al., 2014) 

 
FIGURE 2.4: Pedestrian-vehicle conflict points in superstreet (Hummer et al., 2014) 

As for the vehicle-to-vehicle conflict points, superstreet still outperforms the 

convention intersections. For three-leg intersection, the conventional intersection has 9 

conflict points while the superstreet (RCUT referred to in the table) has 7. For a four-leg 

intersection, the conventional intersection has 32 conflicts while the superstreet has 14 

conflict points, as shown in Table 2.12.   
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TABLE 2.12: Vehicle Conflict Points Comparison in Conventional Intersections and 

Superstreets (Hummer et al., 2014) 

 

 Conflict Points 

Number of Intersection 

Legs 

Conventional Intersection Superstreet 

3 9 7 

4 32 14 

 

 

2.7.4 The impact of CAVs on the innovative intersection  

 

Few research efforts have been made in exploring the impacts of CAVs in the 

environment of superstreet. Zhong et al. (2019) investigated the operational performance 

of CAVs in the environments of diverging diamond intersections and restricted crossing 

U-turn intersections (i.e., superstreets). In this research, a standard and hypothetical 

superstreet network was established with assumed traffic volumes based on the PTV 

VISSIM simulation platform. HDV traffic and CAV traffic were modeled by the 

Wiedemann model and enhanced IDM, respectively. The results showed that the 

throughput of superstreet overall increases as the market penetration increases. However, 

the hypothetical network with assumed traffic volumes may not reflect accurately the 

impact of CAVs at the superstreet, which leaves a research gap to be fulfilled. 
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CHAPTER 3 METHODOLOGY  

3.1 Introduction 

Based on the literature review, it can be seen that the behaviors of CAVs require 

specific models to describe. This dissertation attempts to model the car following, 

platooning, trajectory planning, and adaptive signal control. The following subsections 

provide more details about these models.  

 

3.2 Car-following Models 

3.2.1 IDM  

IDM was developed by Treiber et al. (2000). It is a collision-free model with 

intuitively measurable parameters. Due to these advantages, the IDM has been popularly 

used in modeling CAVs (Do et al., 2019; Liu and Fan, 2020; Yi et al., 2020). The 

acceleration rate in IDM is a function of the velocity of the subject vehicle, the gap to the 

preceding vehicle, and the velocity difference to the preceding vehicle, as indicated in 

Equation 3.2.1.1 and Equation 3.2.1.2 shown below:  

𝑎(𝑠, 𝑣, ∆𝑣) = 𝑎𝑚 (1 − (
𝑣

𝑣𝑑
)
∝

− (
𝑠∗(𝑣, ∆𝑣)

𝑠
)

2

)  (3.2.1.1) 

 

𝑠∗(𝑣, ∆𝑣) = 𝑠0 + 𝑣𝑇 +
𝑣 × ∆𝑣

2√𝑎𝑚𝑏
 (3.2.1.2) 

where 𝑎 indicates the acceleration rate; 𝑎𝑚 is the maximum acceleration rate; 𝑣 denotes 

the current speed; 𝑣𝑑 indicates the desired speed (assumed equal to the speed limit in this 

research);  ∆𝑣 represents the speed difference between the subject vehicle and its preceding 

vehicle; ∝ means the acceleration exponent, which is set as 4 in this research; 𝑠 is the 

current headway between the subject vehicle and its preceding vehicle;  𝑠∗(𝑣, ∆𝑣) 
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represents the minimum desired headway;  𝑠0  denotes the standing distance (2.5m); 𝑇 

represents the desired headway (1s); and 𝑏 is the desired deceleration rate. 

 

3.2.2 W99 model 

W99 is a psychophysical model that has ten parameters available for calibration in 

micro-simulations. These ten parameters are intuitively consistent with human driver 

behaviors with certain randomness (Durrani et al., 2016). To ensure that the W99 can 

represent the local traffic accurately, the ten parameters were calibrated to ensure that the 

average speeds on each approach in the simulation are matched with the ones that were 

collected from the field survey according to Hummer (2010).  

Considering the data availability, this research selects the minimal difference 

between simulated average speeds and observed average speed for each approach as the 

objective function used in the calibration process. An overall difference within 15% is 

regarded as acceptable performance.   

 

(∑
|𝑣𝑜,𝑖 ∗ −𝑣𝑠,𝑖|

𝑣𝑜,𝑖
𝑁
𝑖 )

𝑁
(3.2.2.1)

 

 

where 𝑣𝑜,𝑖  and 𝑣𝑠,𝑖  are the observed and simulated average speed for approach 𝑖 

respectively, and 𝑁 indicates the total number of approaches.  

A genetic algorithm is utilized to minimize the difference between the observed 

average speeds and simulated average speeds for each approach. GA is a popular and 

efficient approach in calibrating the car-following model parameters. For brevity, this 

research skips the introduction of GA, and readers may refer to existing studies of GA 
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calibration for more details (Ma and Abdulhai, 2002). The population size and the 

maximum number of generations are set as 10 and 20, respectively. This research 

implements simulation experiments and the final difference became stable at 11%. This is 

recognized as an acceptable difference (Manjunatha et al., 2013). The obtained parameter 

values from GA are presented in Table 3.1.  The lane changing movement is controlled by 

the default car-following model in SUMO, i.e., LC2013 (Erdmann, 2015).  

TABLE 3.1: GA Calibrated W99 Parameter Values 

Parameters Interpretation Default Values Calibrated Values Value Range 

CC0 
average standstill 

distance (meter) 
1.4 1.287251 [0.1, 10.0] 

CC1 headway (seconds) 1.2 1.569918 [0.1, 5.0] 

CC2 
longitudinal oscillation 

(meters) 
8 1.28187 [0.1, 15.0] 

CC3 
start of deceleration 

process (seconds) 
-12 -12.3849 [-27.0, -5.0] 

CC4 
negative following 

threshold Δv (m/s) 
-1.5 -2.398 [-5.0, 0.0] 

CC5 
positive following 

threshold Δv (m/s) 
2.1 0.324976 [0.0, 5.0] 

CC6 
speed dependency of 

oscillation (10−4 rad/s) 
6 4.047425 [0.1, 11.0] 

CC7 
oscillation acceleration - 

m/s2 
0.25 0.29111 [0.0, 7.0] 

CC8 
acceleration rate when 

starting (m/s2) 
2 4.582238 [0.1, 7.0] 

CC9 

acceleration behavior at 

80 km/h / 49.7 mph 

(m/s2) 

1.5 4.261776 [0.1, 8.0] 

 

3.3 Platooning Control 

Vehicle platooning is one of the advanced features of CAVs. It can only be achieved 

with CAVs that have communication capabilities with other vehicles. Two assumptions 

are often made with CAVs platooning. One is shorter headways for vehicles inside a 

defined platoon, and the other is homogenous speeds. With shorter headways and 

homogenous speeds, the vehicles inside the same platoon can be regarded as a single unity 

to travel on the roads, which can increase the capacity of the roads and also reduce the 



63 

 

 

 

 

computational complexity when trajectory planning is involved.  This research has also 

adopted these concepts to fully release the potentials of CAVs. Two sets of platooning 

controls are defined in this research, namely platooning control I and platooning control II. 

The essential difference between platooning control I and platooning control II lies in that 

Platooning control II allows CAVs to dynamically adjust their distances to the preceding 

vehicles. 

 

3.3.1 Platoon formulation and splitting 

The platoon control system in this research iterates all active vehicles in the 

simulation environment and checks whether the neighboring vehicles meet the 

requirements for the platoon formulation. The requirements are that the vehicles: 

1) are in the same lane; 

2) stay within the range of a certain distance; and 

3) share the same path. 

If the requirements above are met, then the system can define such a group of 

vehicles as a platoon and thus share the same speed with the leading vehicle. However, if 

any of the vehicles inside the platoon fails to meet these requirements, then the platoon 

splits up and switches back to the default car-following model. 

There is one more condition guaranteeing platoon splitting. When the platoon is 

approaching an intersection, the remaining green time 𝑔𝑝  may not be sufficient for all 

vehicles in a platoon to pass the intersection together, especially when the platoon size is 

large. Thus, to make the platoon system practical, the vehicles with platooning are assumed 

to have the knowledge of remaining green time. With the information on the remaining 
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green time 𝑔𝑝, the platooning system checks whether all vehicles inside a platoon can pass 

the intersection or not through Equation (3.2.1.1),    

𝑔𝑝
𝑤 ≥

𝐷𝑡
𝑖

𝑣𝑡
𝑖
, 𝑖 ∈ 𝑷 (3.3.1.1) 

where 𝑔𝑝
𝑤denotes the remaining green time for the platoon 𝑷 , 𝐷𝑡

𝑖  and 𝑣𝑡
𝑖  indicate the 

remaining distance towards the intersection and speed of the 𝑖𝑡ℎ vehicle inside the platoon 

𝑷 at the time step 𝑡. In the platoon 𝑷, when the 𝑖𝑡ℎ the vehicle cannot pass the intersection 

and the vehicle directly ahead of the 𝑖𝑡ℎ vehicle, i.e., 𝑖 − 1𝑡ℎ,  can pass the intersection, 

then the platoon 𝑷  disbands from the 𝑖 − 1𝑡ℎ  vehicle. The vehicles after the  𝑖 − 1𝑡ℎ 

vehicle in the platoon 𝑷 would reform a new platoon to decelerate together. When the 

platoons are approaching the intersection, the platooning system checks Equation (3.3.1.1) 

for each vehicle in the platoons at every time step. In this manner, the platoon system can 

avoid the situations where the platoon runs a red light because of its large platoon size.  

 

3.3.2 Platooning control I 

The vehicles inside a platoon share the same speed and keep a constant close 

distance in between. The platoon speed is naturally determined by the leading vehicle’s 

speed. The platoon attempts to set the following vehicles’ speeds the same as that of the 

leading vehicle within acceleration capacity in every time step. If the speed difference 

between the leading vehicle and the following vehicle exceeds the 

acceleration/deceleration capacity, the speeds of the following vehicles will execute the 

boundary speeds to match the leading vehicle speed as close as possible, as shown in 

Equation 3.3.2.1.  
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𝑣𝑡
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

= {
max(𝑣𝑡−1

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
− 𝑎𝐿 , 𝑣𝑡−1

𝑙𝑒𝑎𝑑𝑖𝑛𝑔
) , 𝑖𝑓 𝑣𝑙𝑒𝑎𝑑𝑖𝑛𝑔 ≤ 𝑣𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  

min(𝑣𝑡−1
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

+ 𝑎𝑈, 𝑣𝑡−1
𝑙𝑒𝑎𝑑𝑖𝑛𝑔

) , 𝑖𝑓 𝑣𝑙𝑒𝑎𝑑𝑖𝑛𝑔 > 𝑣𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
(3.3.2.1) 

where 𝑣𝑡
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

 and 𝑣𝑡−1
𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

 indicate the speed of the following vehicle at the time step 

𝑡 and time step 𝑡 − 1 respectively, and 𝑣𝑡−1
𝑙𝑒𝑎𝑑𝑖𝑛𝑔

 denotes the speed of the leading vehicle at 

the time step 𝑡 − 1 .  

Indeed, in this system, the distance that guarantees a platoon formulation may have 

an important influence on the performance of the platooning system. Hence, this research 

also conducts a sensitivity analysis of this parameter. The selection of distance boundaries 

ranges from 5𝑚  to 31𝑚  with an increment of 4𝑚 . Each distance boundary has 5 

simulation runs and each simulation lasts for 900𝑠 (15 minutes).  This research obtains the 

traffic delay and fuel consumption to determine the optimal searching distance. Figure 3.1 

provides the average traffic delay and fuel consumption results for each distance boundary. 

According to Figure 3.1, it can be observed that both traffic delay and fuel consumption 

reach the minimum at the distance of 21𝑚, and thus this research selects 21𝑚 as the 

distance boundary for further analyses.   
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FIGURE 3.1: Performances of platooning with different values of distance boundaries 

 

3.3.3 Platooning control II  

Beside the platooning control introduced in Section 3.3.2, the model developed by 

Rajamani (2011) has been further incorporated in this research. Based on the literature 

review, the platooning model developed by Rajamani (2011) is one of the most 

acknowledged platooning models because of tunable parameters and stable performance 

(Darbha et al., 2017; Darbha et al., 2018; Bian et al., 2019;). Therefore, this research 

employed such an approach to evaluating the impact of CAV platooning technology in the 

environment of superstreets. The full form of vehicle platooning model is presented below:  

�̈�𝑑 = 𝑤1 ∗ �̈�𝑖−1 + 𝑤2 ∗ �̈�0 + 𝑤3 ∗ 𝜀̇ + 𝑤4 ∗ (�̇�𝑖 − �̇�0) + 𝑤5 ∗ 𝜀𝑖 (3.3.3.1)  

𝜀𝑖 = 𝑥𝑖 − 𝑥𝑖−1 + 𝐿𝑖−1 + 𝑔𝑑  (3.3.3.2) 

𝜀�̇� = �̇�𝑖 − �̇�𝑖−1 (3.3.3.3) 
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where �̈�𝑑 represents the control input for the subject vehicle in terms of acceleration rates. 

�̈�𝑖−1 and �̈�0 denote the acceleration rate for the preceding vehicle and the lead vehicle of 

the platoon, respectively. 𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , and 𝑤5  are the control gains for their 

corresponding terms, such as acceleration of the preceding vehicle �̈�𝑖−1. 𝐿𝑖−1 indicates the 

vehicle length for the preceding vehicle (all vehicle lengths are assumed to be 5m in later 

experiments). Figure 3.2 presents the string of vehicles in a platoon. 

 
FIGURE 3.2: Sting of vehicles in a platoon 

The calculations for five control gains are shown below. 

𝑤1 = 1 − 𝐶1 (3.3.3.4) 

𝑤2 = 𝐶1 (3.3.3.5) 

𝑤3 = −(2 ∗ 𝜉 − 𝐶1 ∗ (𝜉 + √𝜉2 − 1)) ∗ 𝑤𝑛 (3.3.3.6) 

𝑤4 = −𝐶1 ∗ (𝜉 + √𝜉2 − 1) ∗ 𝑤𝑛 (3.3.3.7) 

𝑤5 = −𝑤𝑛
2 (3.3.3.8) 

where 𝐶1 is the weighting factor for the acceleration rates of the leader and the preceding 

vehicle respectively. 𝜉 is the damping ratio and 𝑤𝑛 is the control bandwidth. Among these 

parameters, 𝐶1 , 𝜉  and 𝑤𝑛  are tuning parameters that can be adjusted based on research 

needs. Table 3.2 shows the default parameter values that are used in this research. Platoons 
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are only detectable within a certain distance, and thus platooning control can only apply to 

the vehicles that are within a distance boundary 𝐷𝑏. According to (Segata et al., 2014), 20 

m is a proper boundary for platooning control. Table 3.2 shows a summary of the values 

utilized in this research for the platooning control.    

TABLE 3.2: Default Values for Platooning Control Parameters 

Parameters Default values 

Damping ratio 𝝃 1 

Bandwidth 𝒘𝒏 0.2 Hz 

Acceleration weighting factor 𝑪𝟏 0.5 

Desired gap 𝒈𝒅 5 m 

Distance boundary for platooning 𝑫𝒃 20 m 

 

A small numerical simulation is conducted to test the effectiveness of platooning 

model given the default values. Assume a preceding vehicle and a leader vehicle with a 

speed of 20 𝑚/𝑠 (44.7 𝑚𝑝ℎ) and acceleration of 0 𝑚/𝑠2 . A third following vehicle is 

created with a speed of 15 𝑚/𝑠 (33.6 𝑚𝑝ℎ) and a gap to the preceding vehicle 20 𝑚 . 

Figure 3.3 shows how the vehicle catches up with the platoon of two vehicles using this 

platooning control system.  From Figure 3.3, one can see that the platooning control can 

reduce gap error 𝜀 from 15m to 0m in about 30s. Moreover, platooning control system 

could maintain the desired gap size throughout the whole trip.  This result validates the 

developed platooning control system.  



69 

 

 

 

 

  
FIGURE 3.3: Numerical test for platooning model performance 

Some other practical considerations needed to be added in a large-scale microscopic 

simulation as presented in this research. First, the vehicles can enter a platoon only when 

they share the same next route, which means that if the platoon is going to turn left in the 

upcoming intersection, then only the vehicles that also turn left are allowed to join the 

platoon and keep a close following distance. Second, the vehicles can enter a platoon only 

when they share the same lane. If the vehicle inside the platoon violates these two rules at 

a certain time step, then the platoon will disband, and the rest of the vehicles may 

reformulate a new platoon if they meet the above requirements. 

CAVs should also be controlled by the default car following model when CAVs 

are approaching the signalized intersection. CAVs controlled by platooning mode 

illustrated by Eq (3.3.3.1-3.3.3.8) result in a slow approaching rate to stopped preceding 

vehicles, which are often seen in closely spaced signalized intersections such as 

superstreets. Figure 3.4 illustrates the motivation for this consideration assuming two 

CAVs with two different controls are approaching a stopped vehicle with a distance of 

100m at the intersection. CAVs controlled by IDM reached the converged distance (IDM 

default desired gap 2.5m) in 20𝑠 while it takes 30𝑠 for the platooning control to reach the 
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desired distance (platoon default desired gap 5m). If a CAV with platooning control 

approaches the waiting vehicles in front of intersections in a medium/high traffic volume 

scenario, this CAV will inevitably block other vehicles in the middle of the road. This 

prevents us from applying the same platooning control logic throughout the simulation.  

 
FIGURE 3.4: Gap plot for CAVs approaching a stopped vehicle with platooning control 

and IDM control 

Based on the above discussions, the CAVs approaching the signalized intersection 

in the same lane, are bunched together (when their inter distance is less than 1s headway 

plus minimum gap, i.e., 2.5m) by sharing the same speed as their platoon leaders to pass 

the intersection. This design can achieve a similar effect as curve matching algorithms 

proposed in Gong and Du (2018) and trajectory copy in Han et al. (2020). After the CAVs 

exit the intersection, platoon control starts to take effect to adjust their headways properly. 

This research also implements the platoon split as introduced in Han et al. (2020) when the 

green duration is not sufficient for the whole platoon to travel through.   
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3.4 Trajectory Planning I with Fixed Signal Timing 

3.4.1 Optimal trajectory based on accumulated absolute acceleration rates 

CAVs can plan their trajectories based on the signal information obtained to 

achieve a certain objective, such as minimizing fuel consumption or traffic delay. The 

popular approach is to formulate trajectory planning as an optimal control problem whose 

objective can be a certain traffic performance measure. When the goal is to minimize fuel 

consumption or emissions, the objective function often takes a non-linear form and requires 

non-linear programming to obtain an optimal solution. Significant computational resources 

may be required in the real world. An alternative approach to achieving the optimal fuel 

consumption or emissions benefit is to minimize accumulated absolute acceleration rates 

along the trajectories according to Feng et al. (2018). First, a generalized trajectory 

planning problem of CAVs can be formulated with the objective of minimizing cost 𝑪.  

min𝑪 (𝑎, 𝑣) (3.4.1.1) 

{
�̇�(𝑡) = 𝑣(𝑡)

�̇�(𝑡) = 𝑎(𝑡)
 (3.4.1.2) 

{
𝑥(𝑡0) = 0

𝑣(𝑡0) = 𝑣0
(3.4.1.3) 

{
𝑥(𝑡𝑓) = 𝐷

𝑣(𝑡𝑓) = 𝑣(𝑡𝑓)
(3.4.1.4) 

−𝑎𝐿 ≤ 𝑎(𝑡) ≤  𝑎𝑈, (3.4.1.5) 

0 < 𝑣(𝑡) < 𝑣𝑚𝑎𝑥  (3.4.1.6) 

𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 𝑎𝑛𝑑 𝑡𝑓 fixed (3.4.1.7) 

where  𝑪(𝑎, 𝑣)  represents the cost function, 𝑥(𝑡)  and 𝑣(𝑡)  are control variables that 

indicate the traveled distance and instant speed value at the time step 𝑡, respectively.  𝑎(𝑡) 
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is the control variable that represents the acceleration rate at time step 𝑡. 𝑡0 and 𝑡𝑓 are the 

time steps when the CAVs start and finish the trajectory, respectively. 𝐷  is the target 

distance that the subject vehicle needs to travel, which often is the distance between the 

vehicle and the intersection. The fuel consumption or emission is known to be significantly 

related to the acceleration rates. Feng et al. (2018) developed a trajectory planning strategy 

to minimize fuel consumption based on the Pontryagin’s Minimum Principle (PMP). 

Through analysis of PMP, a generalized solution can be achieved with the objective of 

minimizing the accumulated absolute acceleration rates along the trajectory, which is  

min𝑪 =  ∫ |𝑎(𝑡)|𝑑𝑡
𝑡𝑓

𝑡0

(3.4.1.8) 

The solution to the optimal trajectory generally results in a three-segment trajectory, in 

which vehicles remain at a constant speed in the second segment. The first and the third 

segment have a constant either maximum acceleration or deceleration rate according to 

the relationship between the initial speed or final speed, as Figure 3.5a shows.  Figure 

3.5b provides an example comparison of when CAVs are enabled with and without such 

trajectory planning feature.  

 

Speed
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a. Theoretical three-segment trajectory in the deceleration case (revised from Feng 

et al. (2018) 

 
b. Three-segment trajectory in simulation 

 

FIGURE 3.5: A general optimal trajectory in the deceleration scenario 

The transition time steps 𝑡1 and 𝑡2 can be determined given the following equations 

in the deceleration case (𝑣0 > 𝑣𝑓) and acceleration case (𝑣0 < 𝑣𝑓) respectively.   

 

𝑣0 + 𝑣𝑐
2

∗ 𝑡1 + 𝑣𝑐 ∗ (𝑡2 − 𝑡1) + 
𝑣𝑓 + 𝑣𝑐

2
∗ (𝑡𝑓 − 𝑡2) = 𝐷 (3.4.1.9) 

𝑣𝑐 = {
𝑣0 − 𝑎𝐿 ∗ 𝑡1 = 𝑣𝑓 + 𝑎𝐿 (𝑡𝑓 − 𝑡2), 𝑣0 > 𝑣𝑓

𝑣0 + 𝑎𝑈 ∗ 𝑡1 = 𝑣𝑓 − 𝑎𝑈 (𝑡𝑓 − 𝑡2), 𝑣0 < 𝑣𝑓
(3.4.1.10) 

Additionally, one can obtain the lower and upper travel time boundary to guarantee that a 

feasible solution exists as shown below: 
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𝑣0 > 𝑣𝑓

{
 
 

 
 𝑡𝐿 =

𝐷

𝑣0
+
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣0 ∗  𝑎𝐿

𝑡𝑈 = 
𝐷

𝑣𝑓
−
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣𝑓 ∗  𝑎𝐿

(3.4.1.11) 

 

𝑣0 < 𝑣𝑓

{
 
 

 
 𝑡𝐿 =

𝐷

𝑣𝑓
+
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣𝑓 ∗  𝑎𝑈

𝑡𝑈 = 
𝐷

𝑣0
−
(𝑣0 − 𝑣𝑓)

2

2 ∗ 𝑣0 ∗  𝑎𝑈

(3.4.1.12) 

Notably, a feasible three-segment trajectory solution only exists when the vehicle 

arrival time 𝑡𝑓 is strictly within the boundary of 𝑡𝐿 and 𝑡𝑈, i.e.,   

𝑡𝐿 < 𝑡𝑓 < 𝑡𝑈 (3.4.1.13) 

When 𝑡𝑓 = 𝑡𝐿 or 𝑡𝑓 = 𝑡𝑈, the three-segment trajectory solution collapses into the 

two-segment trajectory. The lower/upper-time boundaries indicate two-segment 

trajectories in acceleration and deceleration respectively as shown in Figure 3.6. In a 

deceleration scenario, the lower boundary indicates that the vehicle keeps its current speed 

in the first segment and then decelerates to its final speed in the second segment. The upper 

boundary indicates that the vehicle first decelerates to the target final speed, and then keeps 

the target final speed until it arrives at the intersection. On the other hand, in an acceleration 

scenario, the lower boundary indicates that the vehicle first accelerates the final speed 𝑣𝑓 

and then cruises at the target speed until arriving at the intersection. When the final speed 

𝑣𝑓  is equal to the maximum speed 𝑣𝑚𝑎𝑥, such trajectory type can yield the minimum travel 

time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 and thus is referred to as the minimum travel time trajectory. The upper 

boundary in an acceleration scenario means that the vehicle first keeps its initial speed and 

then accelerates to its target speed. Intuitively, when the travel time is strictly within the 

lower- and upper-time boundaries, an optimal three-segment trajectory exists. When the 
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travel time is equal to one of the two boundary values, a two-segment trajectory introduced 

above can be applied. Nevertheless, when travel time exceeds the boundary, no feasible 

solution exists with the given distance, acceleration rate, and initial speeds. This reflects 

the real-world scenarios. For example, a vehicle may not be able to decelerate to a speed 

of zero if the remaining distance to the intersection is too short or the initial speed is too 

high.   

  

a. 𝑡𝑓 = 𝑡𝑈 𝑎𝑛𝑑 𝑣0 > 𝑣𝑓 b. 𝑡𝑓 = 𝑡𝐿𝑎𝑛𝑑 𝑣0 > 𝑣𝑓 

  

c. 𝑡𝑓 = 𝑡𝐿 𝑎𝑛𝑑 𝑣0 < 𝑣𝑓 d. 𝑡𝑓 = 𝑡𝑈 𝑎𝑛𝑑 𝑣0 < 𝑣𝑓 

FIGURE 3.6: Two-segment trajectory when 𝑡𝑓 equals to boundary values (𝑡𝐿 𝑎𝑛𝑑 𝑡𝑈) 

Feng et al. (2018) demonstrated that this trajectory planning strategy could 

successfully reduce traffic delay and fuel consumption in a standard isolated conventional 

intersection with a joint adaptive signal optimization algorithm. With the adaptive signal 
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control, Equation 3.4.1.13 holds in most cases and the vehicle can avoid stops under 

certain traffic conditions. Nevertheless, this strategy cannot be directly transferred to a 

fixed signal-controlled intersection. In a fixed signal-controlled intersection, the final travel 

time 𝑡𝑓 is largely dependent on the initiation time or remaining time of the target green 

phase in a fixed signal timing plan, where vehicles cannot avoid stopping entirely. To apply 

this trajectory planning scheme in a fixed signal-controlled intersection, this research also 

considers a constant deceleration trajectory when Equation 3.4.1.13 cannot be sufficed. 

For a constant deceleration trajectory, the vehicle will keep a constant deceleration rate 

until it arrives at the intersection with a speed of 0, as shown in Figure 3.7. The deceleration 

rate 𝑎𝑑𝑒𝑐 can be easily obtained through the basic kinetic law, which is described by 

Equation 3.4.1.14.   

𝑎𝑑𝑒𝑐 =
𝑣0
2 ∗ 𝐷
𝑣0

 (3.4.1.14)
 

Based on the signal status and the next signal switch time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ, the vehicle can choose 

different speed trajectories as introduced above.  
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FIGURE 3.7: Constant deceleration trajectory 

3.4.2 Trajectory planning at the red signal 

When the upcoming signal status for the subject vehicle is red, the signal switch 

time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ  indicates the initiation of green time. The lower time boundary obtained 

through Equation 3.4.1.12 is equal to the minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚  when the given 

final speed 𝑣𝑓 = 𝑣𝑚𝑎𝑥. If the switch time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ is less than or equal to the 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚, then 

the vehicle can meet a green signal with a two-segment trajectory as shown in Figure 3.8 

to achieve minimal traffic delay.   
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FIGURE 3.8: Speed trajectory with minimum travel time  

If the switch time is greater than the minimum travel time, i.e., 𝑡𝑠𝑤𝑖𝑡𝑐ℎ ≥ 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚,  

then the vehicle with a minimum travel time trajectory will meet a red signal. In this 

situation, it is assumed that 𝑡𝑓 = 𝑡𝑠𝑤𝑖𝑡𝑐ℎ. From Equation 3.4.1.11 and Equation 3.4.1.12, 

one may obtain 𝑡𝐿and 𝑡𝑈 given a final speed 𝑣𝑓 . Hence, researchers may simply enumerate 

all possible final speeds [0, 𝑣𝑚𝑎𝑥) to obtain feasible speed candidates 𝑽𝒇 so that Equation 

3.4.2.1 stands. 

𝑡𝐿 < 𝑡𝑠𝑤𝑖𝑡𝑐ℎ < 𝑡𝑈 (3.4.2.1) 

This research selects the max (𝑽𝒇) so that the subject vehicle can travel through 

the intersection with maximum final speed to minimize the traffic delay, where the max () 

function returns the maximum value among the feasible final speed list 𝑽𝒇 .  

 

3.4.3 Trajectory planning at the green signal 

If the ahead signal status is green, then  𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ  indicates the remaining green 

time for the subject vehicle. This research mainly considers two cases based on the 

time

speed
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relationship between signal switch time 𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ and minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

of the subject vehicle. 

Case 1: when the subject vehicle can traverse through the intersection with 

minimum travel time 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚  (i.e.,  𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ ≥ 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚), then the vehicle may 

accelerate its maximum speed to pass the intersection to achieve the minimal traffic delay. 

However, this strategy may potentially increase the average fuel consumption since the 

fuel consumption is closely related to the acceleration rate. In some circumstances, if the 

𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ ≥ 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 , where 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑  is the travel time to the intersection 

when the vehicle keeps its current speed, then the decision-makers who assign a higher 

priority to fuel consumption may let the vehicle keep its current speed to avoid increasing 

fuel consumption with acceptable compromise on the traffic delay.  

Case 2: 𝑡𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑤𝑖𝑡𝑐ℎ ≤ 𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚 means that the subject vehicle cannot arrive at 

the intersection with the given remaining green time even if the vehicle accelerates to 

maximum speed. In such situation, a constant deceleration trajectory introduced above may 

be executed. The subject vehicle may need to check whether the vehicle can meet the 

second green with a given final speed within [0 𝑣𝑚𝑎𝑥) when the distance 𝐷 is large.  

 

3.4.4 Encountering preceding vehicles during trajectory planning 

In the real world, the vehicles may have close preceding vehicles on the roads, and 

following the predetermined trajectories may lead to collisions with the preceding vehicles. 

Therefore, to avoid these collisions in this research, when a vehicle has preceding vehicles 

that are within a 3𝑠 headway, the vehicle will stop executing the planned trajectory and 

switch to the predefined car-following model, which is the IDM in this research. Note that 
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the system constantly checks each vehicle’s distance to the preceding vehicles at each time 

step. When the distance to the preceding vehicle is greater than 3𝑠 and there is an upcoming 

signalized intersection, then the system will plan the vehicle trajectory again for the subject 

vehicle to follow. With this function, the vehicles following the planned trajectory can 

successfully avoid collision with not only the close preceding vehicles but also the 

queueing vehicles in front of the intersection because of the red signal.  

 

3.5 Adaptive Signal Control 

3.5.1 Signal optimization with MILP 

Adaptive signal control leverages the communication between CAVs and 

signalized intersection. The adaptive signal control in this research can update its phasing 

duration and phase sequence according to the arrival information on CAVs.   

The adaptive signal control model is developed based on the work of Ding et al. 

(2021). In Ding et al (2021), mixed-integer quadratic programming (MIQP) was developed 

for CAV platoons based on the arrival times of platoon leaders and platoon length, i.e., the 

number of vehicles. The formulation of the MIQP model allows for a flexible phasing 

sequence with the introduction of Big M and auxiliary binary variables. This research 

utilizes the flexible phase sequence concept in the following mixed-integer linear 

programming (MILP) formulation. Table 3.3 illustrates the symbols that are used in the 

following sections.  

TABLE 3.3: Descriptions of Symbols Employed in Signal Optimization Modeling 

Descriptions Symbols 

Green start 𝑆𝑇 
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Green duration 𝐺 

Vehicle arrival time list 𝐴 

Traffic delay 𝐷 

Function returning the length of the arrival 

time list, i.e., the number of vehicles 𝑁() 

Total number of phases 𝑃 

Cycle length 𝐶 

Number of lanes 𝐿𝑛 

Average headway ℎ 

Green duration set required by movements 𝐺𝑀 

Minimum clearance interval 𝑐 

The delay for vehicle 𝑖 with a target phase 𝑝 is defined as the time differences between the 

green start time 𝑆𝑇𝑝 and vehicle arrival time 𝐴𝑖,𝑝, where 𝑝 ∈ 𝑃 and 𝑖 ∈ 𝐴𝑝. 

𝐷𝑖,𝑝 = {
𝑆𝑇𝑝 − 𝐴𝑖,𝑝 ;    𝑖𝑓 𝑆𝑇𝑝 − 𝐴𝑖,𝑝 ≥ 0,

0; 𝑖𝑓 𝑆𝑇𝑝 − 𝐴𝑖,𝑝 < 0
(3.5.1.1) 

The arrival time of vehicle 𝑖 can be estimated by the remaining distance 𝑙𝑖 divided by the 

current speed 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖. 

𝐴𝑖,𝑝 =
𝑙𝑖

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖
 (3.5.1.2) 

Naturally, the objective function can be identified as the total accumulated delay from all 

the vehicles and all phases in the intersection at the current time step, i.e.,  

min   ∑ ∑ 𝐷𝑖,𝑝
𝑖∈𝐴𝑝𝑝∈𝑃

 (3.5.1.3) 

where 𝑃 is the total number of phases for the target intersection. Two crucial parameters in 

signal control logics are phase sequences and phase duration. Phase duration 𝐺𝑝 can be 

easily determined based on traffic demand from all the movements belonging to phase 𝑝. 
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Assuming that traffic movement 𝑚 is governed by phase 𝑝, the green duration required by 

movement 𝑚 can be calculated as:  

𝐺𝑚 =
𝑁(𝐴𝑚)

𝐿𝑛𝑚
∗ ℎ, 𝑚 ∈ 𝑝  (3.5.1.4) 

where 𝐺𝑚 denotes the green duration required by the movement 𝑚 and 𝐴𝑚 contains the 

vehicle arrival times for movement 𝑚 that has the target phase 𝑝. 𝑁 denotes the function 

that returns the length of the arrival time list, i.e. number of the vehicles. 𝐿𝑛𝑚 represents 

the number of lanes available for movement 𝑚. Let 𝐺𝑀,𝑝 contain the green duration set 

required by each movement from phase 𝑝, then the green duration for phase 𝑝 should 

suffice the critical traffic movement volume for phase 𝑝, i.e.,  

𝐺𝑝 ≥ max(𝐺𝑀,𝑝) (3.5.1.5) 

Different phase sequences may cause significant performance changes in the traffic 

operations. Hence, this research utilizes the binary earlier indicator Ω . For a pair of 

conflicting phases, 𝑝 and ¬𝑝, constraint is presented below,  

Ω𝑝,¬𝑝 + Ω¬𝑝,𝑝 = 1 (3.5.1.6) 

Specifically, Ω𝑝,¬𝑝 equals to 1 when phase 𝑝 turn green in advance of phase ¬𝑝, which is 

the conflicting phase for phase 𝑝. In contrast, Ω𝑝,¬𝑝 equals to zero when phase 𝑝 turns 

green after its conflicting phase ¬𝑝 turn green.   

This research employed the formulation proposed by Ding et al. (2021) to enforce 

the constraint that conflicting phases do not start simultaneously. In addition, the time 

difference between conflicting phases should also take into account the minimum clearance 

time. Therefore, such constraints are presented as follows, 
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𝑆𝑇𝑝 +𝑀 ∗ Ω𝑝,¬𝑝 ≥ 𝑆𝑇¬𝑝 + 𝐺¬𝑝 + 𝑐 (3.5.1.7) 

𝑆𝑇¬𝑝 +𝑀 ∗ Ω¬𝑝,𝑝 ≥ 𝑆𝑇𝑝 + 𝐺𝑝 + 𝑐 (3.5.1.8) 

In this research, it is assumed that the minimum clearance time is 2s. To ensure that the 

planned signal timing can suffice the vehicle arrivals at the current time step, the sum of 

the green start and green duration should be greater than the latest arrival time, i.e.,  

𝑆𝑇𝑝 + 𝐺𝑝 ≥ max(𝐴𝑝) + ℎ (3.5.1.9) 

However, this constraint may cause the green start and green duration to become 

unexpectedly large, hence, penalties are added towards to green duration and green start in 

the objective function, which results in the final objective function as shown below. 

min   𝑤𝑑∑∑ 𝐷𝑖,𝑝
𝑖∈𝐴𝑝𝑝∈𝑃

+ 𝑤𝐺 ∗∑𝐺𝑝
𝑝∈𝑃

+ 𝑤𝑆𝑇 ∗∑𝑆𝑇𝑝
𝑝∈𝑃

 (3.5.1.10) 

The 𝑤𝐺 and 𝑤𝑆𝑇 are the penalty weights for the green start and green duration, respectively. 

These two weights need to be less than 1 since the priority objective is to minimize the 

traffic delay. Hence, this research selected 0.1 for these two weight values, which leaves 

0.8 for the weight of the traffic delay,  𝑤𝑑. To sum up, the full form of the MILP model for 

signal optimization is presented below:  

    

min  𝑤𝑑  ∑ ∑ 𝐷𝑖,𝑝
𝑖∈𝐴𝑝𝑝∈𝑃

+ 𝑤𝐺 ∗∑𝐺𝑝
𝑝∈𝑃

+ 𝑤𝑆𝑇 ∗∑𝑆𝑇𝑝
𝑝∈𝑃

 (3.5.1.11) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝐷𝑖,𝑝 = max(𝑆𝑇𝑝 − 𝐴𝑖,𝑝, 0) 

𝐴𝑖,𝑝 =
𝑙𝑖

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖
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𝐺𝑝 ≥ max(𝐺𝑀) 

𝑆𝑇𝑝 +  𝐺𝑝 ≥ max(𝐴𝑝) + ℎ 

Ω𝑝,¬𝑝 + Ω¬𝑝,𝑝 = 1 

𝑆𝑇𝑝 +𝑀 ∗ Ω𝑝,¬𝑝 ≥ 𝑆𝑇¬𝑝 + 𝐺¬𝑝 + 𝑐 

𝑆𝑇¬𝑝 +𝑀 ∗ Ω¬𝑝,𝑝 ≥ 𝑆𝑇𝑝 + 𝐺𝑝 + 𝑐 

The above optimization model has a MILP form that is convenient for popular 

commercial solvers to solve, such as CPLEX or Gurobi. This research uses Gurobi to 

obtain the solution in real-time.  

 

3.5.2 Additional practical considerations for adaptive signal control 

Rolling Horizon Scheme 

Since vehicle arrivals vary at different time periods on the microscopic level, it is 

often necessary to utilize a rolling horizon scheme to update the vehicle arrival information 

and signal timings. In this research, the vehicle arrival information and signal timing are 

updated as soon as all vehicles in the previous cycle finish travelling through the 

intersection. This rolling horizon scheme is also illustrated in Figure 3.9, where 𝐶𝑛 denotes 

the cycle length for the 𝑛𝑡ℎ cycle. The initial time for each cycle is reset as zero. 

 

FIGURE 3.9: Rolling horizon scheme illustration 

Filling up Cycle in low traffic volume scenarios 
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Although the proposed signal optimization model can continuously yield the 

optimal signal timings for vehicle arrivals in time step 𝑡, there are some extreme traffic 

scenarios that deserve attention. In low traffic volume scenarios, there may be no traffic 

for a considerable time period for a particular approach. However, the designed signal 

optimization scheme may produce frequent unnecessary signal switches between 

conflicting phases. Though these unnecessary signal switches do not compromise the 

traffic delay, they may cause confusion to other road users and cause extra wear on the 

signal displaying equipment in a real-world deployment. Therefore, when all detected 

vehicles belong to one phase in an intersection at time step 𝑡, the targe phase fills up all 

planned cycle length. Figure 3.10 illustrates this filling up cycle process.       

 

FIGURE 3.10: Filling up cycle procedure 

Emergency Release in high traffic volume scenarios 

In extremely high traffic volume scenarios, the minimal-traffic-delay oriented 

signal timing plan cause vehicles from minor approach to wait excess long periods. When 
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vehicles have waited for two standard cycle lengths (120𝑠 × 2 for this research) in front 

of the intersection, the signal should turn green for a sufficient duration (3𝑠) so that the 

vehicle can pass the intersection. This operation also reflects the equity principle in traffic 

operations. Figure 3.11 presents the overall workflow for this adaptive signal control.  
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FIGURE 3.11: Overall flow chart for optimized signal timing procedures 
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3.5.3 Trajectory planning with adaptive signal control 

For the trajectory planning under adaptive signal control, this research employs the 

Ding et al. (2021) model to explore the impact of CAVs. Ding et al. (2021) developed the 

trajectory planning based on the work of Feng et al. (2018), in which three-segment 

trajectory planning was proven to be an efficient approach to reduce traffic delay while 

preventing the fuel consumption from increasing. To avoid unstable traffic flow, Ding et 

al. (2021) further simplified this approach by only considering three-segment acceleration 

trajectories (note that two segment trajectory is a special case of three-segment trajectory 

when the green start time is equal to the boundary value - refer to Feng et al.(2018) and 

Ding et al.(2021) for more details).  The discussion on trajectory planning varies based on 

the relationship between the earliest arrival time of vehicle 𝑖 and the optimized green start 

𝑆𝑇𝑝 . The earliest travel time 𝑖𝑝
𝑒  is when the vehicle accelerates with the maximum 

acceleration rate until it reaches the speed limits, and then it travels through the intersection 

with the speed limit. Equation (3.5.3.1) shows the calculation of 𝑖𝑝
𝑒. 

𝑖𝑝
𝑒 =

{
 
 

 
 √(𝑣𝑐𝑢𝑟𝑒𝑛𝑡,𝑖,𝑝)

2
+ 2𝑎𝑈𝑙𝑖,𝑝 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

𝑎𝑈
, 𝑙𝑖,𝑝 <

𝑣𝑓
2 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

2

2𝑎𝑈

(𝑙𝑖,𝑝 −
𝑣𝑓
2 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 

2

2𝑎𝑈
)/𝑣𝑓 +

𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

𝑎𝑈
, 𝑙𝑖,𝑝 ≥

𝑣𝑓
2 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

2

2𝑎𝑈

 (3.5.3.1) 

 

Case 1：𝑆𝑇𝑝 ≤ 𝑖𝑝
𝑒 

When the green start time for phase 𝑝 is less than the earliest arrival time of vehicle 

𝑖, 𝑖𝑝
𝑒, the vehicle can meet a green signal with its fastest speeds, 𝑣𝑓. In such case, the vehicle 

may accelerate from its current speed 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 with its maximum acceleration capability 
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𝑎𝑈 to the speed limits instantly, and then cruise at its maximum speed to travel through the 

intersection. The time required to accelerate to 𝑣𝑓 can be obtained as follows,  

𝑡1 =
(𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝)

𝑎𝑈 
(3.5.3.2) 

Case 2: 𝑖𝑝
𝑒 ≤ 𝑆𝑇𝑝 < 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝  

𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 is a boundary value for vehicles that first travel with current speed, then 

accelerate with 𝑎𝑈 to the speed limit, and keep driving with the speed limit to travel through 

the intersection. In this case, the acceleration rate of the subject vehicle experiences three 

stages, {0, 𝑎𝑈 , 0}. 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 can be obtained as follows: 

𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 =
𝑙𝑖,𝑝

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 
−
(𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝)

2

2 ∗ 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 ∗ 𝑎𝑈 
 (3.5.3.3) 

  

where 𝑙𝑖,𝑝 denotes the remaining distance to the stop line. The two transition point time 

points 𝑡1, 𝑡2 for this three-segment trajectory can be calculated as follows: 

𝑡1 =
𝑣𝑓 ∗ 𝑆𝑇𝑝 − 𝑙𝑖,𝑝

𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 
−
(𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 )

2 ∗ 𝑎𝑈 
 (3.5.3.4) 

𝑡2 =
𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝

𝑎𝑈 
 (3.5.3.5)   

Case 3: 𝑆𝑇𝑝 = 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 

When the boundary value 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 equals to the green initiation time 𝑆𝑇𝑝 for the 

subject vehicle 𝑖, the three-segment trajectory collapse into two segments, in which the 

subject vehicle first keeps its current speed and then accelerate to its maximum allowed 

speed with 𝑎𝑈 . Then the acceleration segments would be {0, 𝑎𝑈}. The subject vehicle 

reaches its maximum speed and the stop line simultaneously in this case. The split time 𝑡1 

for the two-segment acceleration trajectory can be easily calculated as follows: 
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𝑡1 = 𝑆𝑇𝑃 −
𝑣𝑓 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖𝑝

𝑎𝑈 
 (3.5.3.6) 

Case 4: 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 < 𝑆𝑇𝑝 < 𝑡𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝑖,𝑝 

𝑡𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝  is the time for the subject vehicle 𝑖 to arrive at the intersection with 

current speed. When the green start time 𝑆𝑇𝑝 falls between 𝑡𝑡ℎ𝑟𝑒𝑒,𝑖,𝑝 and 𝑡𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝, the 

subject vehicle 𝑖  can only reach the free speed if there is a deceleration segment. 

Nevertheless, a deceleration three-segment may cause unstable traffic flow and larger fuel 

consumption may be incurred. Therefore, to make the trajectory planning efficient and 

robust, a two-segment control scenario is employed, that is, {0, 𝑎𝑈}. The subject vehicle 

needs to keep the current speed long enough so that it can reach a target speed 𝑣𝑓′ (𝑣𝑓
′ < 𝑣𝑓) 

with maximum acceleration capacity. Similar to the discussions above, the calculation of 

𝑡1 is given in Equation (3.5.3.7). 

𝑡1 =  𝑆𝑇𝑝 −√2 ∗
𝑙𝑖,𝑝 − 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑖,𝑝 ∗ 𝑆𝑇𝑝

𝑎𝑈
(3.5.3.7) 

This finishes the illustration of the trajectory planning model. Nevertheless, another 

issue arises when implementing trajectory planning in simulation environments. By 

following the predetermined trajectories, CAVs may collide with each other when the 

preceding vehicles slow down, and the following vehicle speeds up to catch the upcoming 

green signal. Due to this issue, CAVs must stop following the predetermined trajectories 

when their inter gap is close to a threshold. Through a trial-and-error experiment, this 

research selected a 1.5s headway gap as such threshold considering both safety and 

efficiency. This means that CAVs would switch back to default IDM car following mode 

when their distance is smaller or equal to 1.5s headway. Also, if 𝑖𝑝
𝑒 of vehicle 𝑖 is greater 
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than the sum of the green start and green duration of its target phase, then this vehicle 

cannot meet a green signal in the currently planned cycle. In this case, the subject vehicle 

will keep moving based on IDM and will not enter the trajectory planning module until the 

next planned cycle initiates.    

 

3.6 Information on the Selected Location for Case Study 

A superstreet situated in Leeland, NC is identified for the case study. This 

superstreet is selected for its typical geometric design and traffic flow characteristics. The 

traffic characteristic information on the selected superstreet is available in Hummer et al. 

(2010). Figure 3.12 shows the selected superstreet and signal locations in Google Maps 

and Table 3.4 provides the traffic characteristics information. The maximum speed limits 

are set as 29 m/s (i.e., 65𝑚𝑝ℎ) for the main road and 15.6 m/s (i.e., 35𝑚𝑝ℎ) for the minor 

road. The four minor intersections in the superstreet system are all signal controlled with a 

cycle length of 120𝑠.  
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FIGURE 3.12: Selected superstreet for the case study and signal locations (adapted from 

the screenshot of Google Maps) 

TABLE 3.4: Traffic Characteristic Information on the Superstreet at Leeland, NC 

Approach 
Average speed 

(m/s)/(mph) 
Peak hour demand Average stops 

Travel time 

(Minutes) 

EBL 5.99/13.40 18 3 2.45 

EBR 6.93/15.50 20 2 1.38 

EBT 5.68/12.71 9 2 2.25 

NBL 8.00/17.90 20 1 1.17 

NBR 14.08/31.50 71 0 0.64 

NBT 14.75/33.00 2029 0 0.81 

SBL 5.72/12.80 321 1 1.26 

SBR 14.26/31.90 38 0 0.4 

SBT 19.58/43.80 1637 0 0.58 

WBL 8.09/18.10 66 2 2 

WBR 7.69/17.20 345 1 0.89 

WBT 5.05/11.30 11 2 2.09 
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3.7 Simulation Scenarios and Relevant Settings 

An equivalent conventional intersection with the same road segment length, lane 

configuration, and maximum speed is designed in the simulation platform. The cycle length 

is also set the same as the superstreet in the real world, i.e., 120s, to make a fair comparison. 

The green splits for each approach are determined by their volume ratios. To account for 

different traffic conditions, this research tests four different traffic scales including 25%, 

50%, 75%, and 100% of peak hour traffic volumes from Table 3.2. Furthermore, a market 

penetration analysis is conducted on the 100% peak hour traffic volumes. 25%, 50%, and 

75% of CAV market penetration rates are considered in the simulation. Every scenario is 

run five times with different random seeds to account for the randomness. To make the 

system more robust and increase calculation accuracy, the simulation resolution is set as 

10HZ, which means that the simulation runs 10 time steps every second. Once the vehicle 

enters the roadway network, the vehicle is assumed to enter the Vehicle-to-Infrastructure 

(V2I) communication range, which is reasonable since the selected superstreet has a rather 

short road segment length in all approaches before the traffic signals (less than 300m). 

Average traffic delay (delay per vehicle) and fuel consumption (fuel consumption per 

vehicle) are the performance indicators that are used for this research. Traffic delay is 

measured by the ideal travel time (free-flow speed without any stop) minus actual travel 

time. Fuel consumption is measured by the default emission model from SUMO, i.e., 

HBEFT.3 (Krajzewicz et al., 2015). In the following chapter, the traffic delay and fuel 

consumption are denoted as TD and FC respectively.  The maximum acceleration rates and 

deceleration rates for IDM are set as 2.5 m/s2. Considering drivers’ comfort, the maximum 

acceleration rate and deceleration rate in CAV trajectory planning are 2 m/s2. The 
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simulation experiment for Section 4.2 and the adaptive signal control in Section 4.3 last for 

3600s. The remaining experiments from Section 4.3 last for 1800s to facilitate this research.   
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CHAPTER 4 RESULTS AND DISCUSSIONS 

4.1 Introduction 

 This chapter discusses the simulation results in different scenarios as defined in 

Chapter 3. The results and discussions are divided into two parts. The first part focuses on 

the results of platooning control I and trajectory planning I at fixed signal timing, while the 

second part circulates the platooning control II and adaptive signal control signal timing. 

The results and discussions cover different traffic scales, different environments, and 

different performance indicators.  

 

4.2 Platooning Control I and Trajectory Planning Control I with Fixed Signal Timing 

Strategy  

4.2.1 The performance of CAVs in conventional intersections  

4.2.1.1 Traffic delay 

 

To provide an initial understanding of the performance of CAVs, this research first 

obtains the simulation results of CAVs for the equivalent conventional intersection. The 

traffic delays results are presented in Figure 4.1. From Figure 4.1, it can be observed that 

the developed platooning, trajectory planning, and platooning-based trajectory planning 

can reduce the traffic delay in most scenarios. The exception is CAVs with platooning at 

the 25% demand level. When CAVs are enabled with platooning, the speed of the 

following vehicles is influenced by the leading vehicle in the same platoon and may not be 

able to achieve their maximum speeds even in light traffic volume scenario. This may 

potentially explain that no benefit is gained for platooning in the traffic demand of 25% 
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and 50% peak hour traffic volume scenarios. The traffic delay improvements for CAV with 

platooning increase as the traffic demand increases. 
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FIGURE 4.1: Average traffic delay (s) of CAVs in the equivalent conventional 

intersection 

 Trajectory planning can reduce traffic delay to a larger extent in light traffic volume 

scenarios, and the improvement magnitudes shrink as the traffic volumes increase. These 

results can be explained by the trajectory planning modeling framework. As mentioned in 

the methodology section, to avoid collisions with preceding vehicles and queueing vehicles 

in front of the intersection, CAVs with trajectory planning may switch to the default car 

following model frequently in high traffic demand scenarios. For CAV with platooning-

based trajectory planning, the traffic delays share a similar trend as the ones from CAV 

with platooning. Notably, platooning-based trajectory planning also successfully reduces 

the traffic delay in low traffic demand scenarios.  

 

4.2.1.2 Fuel consumption 

From Figure 4.2, it can be observed that platooning could provide larger benefits in 

terms of fuel consumption in high traffic volume scenarios. The improvement magnitudes 

are also consistent with existing studies on platooning (Alam et al., 2015). The proposed 
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trajectory planning framework reduces the average fuel consumption to a certain extent in 

low traffic volume scenarios. However, the fuel consumption benefits from trajectory 

planning are less significant compared to platooning. In addition, the trajectory planning 

framework may produce adverse effects towards fuel consumption in high traffic volume 

scenarios, as observed in 100% peak hour traffic volume scenarios. In high traffic volume 

scenarios, CAVs with trajectory planning capability change to the car following model 

frequently because of the presence of preceding vehicles, which may produce speed 

fluctuations and higher fuel consumption. CAV with platooning-based trajectory planning 

produces the optimal fuel consumption results on most traffic demand levels.  
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FIGURE 4.2: Average fuel consumption (ml) of CAVs in the equivalent conventional 

intersection 

4.2.1.3 Comparison between CAVs and HDVs with calibrated W99  

This research examines the performance of the calibrated W99 model, IDM model, 

IDM with platooning, IDM with trajectory planning, and IDM with platooning-based 

trajectory under 100% peak hour traffic volume, respectively. 

Although it is expected that CAVs outperform HDVs, it may not be necessarily 

always true in the real world. For instance, when the vehicle travels through a congested 

intersection, HDVs are likely to have shorter headways and practice emergency 

deceleration or acceleration to achieve the minimal travel time or avoid collisions, while 

CAVs cannot exceed the predetermined boundary of safe headway and acceleration rates. 

According to Figure 4.3, the results from calibrated W99 and IDM prove this assumption 

since they have similar average delays and fuel consumptions.  
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FIGURE 4.3: Traffic performances in different scenarios 

However, when CAVs are enabled with platooning and trajectory planning, the 

CAVs may be superior to HDVs. For the proposed platooning model, compared to the IDM 

model, the traffic delay decreases from 23.42 to 20.49 (around 13% reduction), while the 

fuel consumption decreases from 95.79 to 85.87 (around 10% reduction). Since HDVs with 

calibrated W99 have similar traffic delay and fuel consumption, similar improvements can 

be found when comparing CAV with platooning against HDVs with calibrated W99.   

The outstanding performance of platooning performances may be related to the 

large traffic volume in this scenario. On the other hand, IDM with trajectory planning has 

few benefits in terms of both traffic delay and fuel consumption compared to IDM only. 

As described in the previous section, CAVs will change into the car following model when 

they detect vehicles that are within a 3s headway. In a congested traffic condition such as 

100% peak hour traffic volume, the advantages of trajectory planning are significantly 
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compromised. As for CAVs with platooning-based trajectory planning, the traffic delay 

decreases and reaches the lowest traffic delay (19.80s) among all scenarios, while the fuel 

consumption is lower compared to CAVs with trajectory planning and higher compared to 

CAVs with platooning. CAVs with platooning and trajectory planning, when vehicles are 

close to each other, form a platoon so that trajectory planning can be executed, which 

explains the greater traffic delay reduction in CAVs with platooning-based trajectory 

planning. The fuel consumption of platooning-based trajectory planning is higher than ones 

of platooning but lower than the ones of trajectory planning.   

  

4.2.2 The performances of CAVs in superstreets  

4.2.2.1 Traffic delay 

Figure 4.4 presents the average traffic delay when CAVs are enabled with 

platooning, trajectory planning, and platooning-based trajectory planning. CAVs with 

platooning have similar performances as they do in the equivalent conventional intersection. 

When the traffic scale is at 25% of the peak hour traffic volume, the CAVs with platooning 

fails to reduce the average traffic delay. Nevertheless, when the traffic demand is greater 

or equal to 50% of the peak hour traffic volume, the CAVs starts to reduce the traffic delay 

in the superstreet.  
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FIGURE 4.4: Average traffic delay (s) of CAVs in the superstreet 
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As for trajectory planning, the reductions of traffic delay in different demands are 

relatively constant compared to the ones in the conventional intersection. In superstreet, 

the road capacity often is larger than the equivalent conventional intersection. Therefore, 

CAVs might not have to switch to the car-following model frequently as they do in the 

equivalent conventional intersection in a 100% peak hour traffic volume demand, which 

explains the relevant constant traffic delay reduction.  

CAVs with platooning-based trajectory planning still produces minimal traffic 

delays at nearly all demand levels (except in the 25% peak hour traffic demand scenario).  

The general trend of traffic delays is similar to that in platooning scenarios as in the 

equivalent conventional intersection.   

 

4.2.2.2 Fuel consumption 

Figure 4.5 presents the fuel consumption of CAVs in the superstreet. Platooning 

yields similar fuel consumption trends as it does in the traffic delay results. Nevertheless, 

CAVs with trajectory planning produce higher average fuel consumption, especially in the 

lower traffic demand scenarios. The increased average fuel consumption is potentially 

attributed to two reasons: 1) the acceleration behavior of CAVs with trajectory planning to 

catch the remaining green or initiation green time; 2) CAVs with trajectory planning may 

stop at the second consecutive intersection after passing the first intersection with 

acceleration in the superstreet system. In high traffic volume scenario, the adverse effects 

of fuel consumption are alleviated since CAVs with trajectory planning do not have much 

freedom of accelerating before the intersection. This result demonstrates the necessity of 

incorporating information on two consecutive signals in designing a trajectory planning 
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framework when two signals are closely spaced. The adverse effects on fuel consumption 

are alleviated when CAVs are enabled with platooning-based trajectory planning.  
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FIGURE 4.5: Average fuel consumption (ml) of CAVs in the superstreet 
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4.2.2.3 CAVs with different market penetration rates  

The dominance of CAVs on the roads is a gradual process in which technology, 

political and legal challenges continuously remain. The policymakers may be interested in 

the performances of CAVs at different levels of market penetration rates. Therefore, this 

research also conducts a sensitivity analysis of the market penetration where HDVs 

controlled by calibrated W99 and CAVs controlled by IDM with platooning-based 

trajectory planning coexist. 25%, 50%, and 75% CAV market penetration rates are tested 

under the 100% peak hour traffic volume scenario. When CAVs are following HDVs, 

CAVs are often assumed to have a larger headway (Yu and Fan, 2018). Therefore, when 

CAVs are following HDVs, the CAV headway is set the same as HDVs, i.e., 1.6s. Figure 

4.6 provides the results of the market penetration analysis. Based on Figure 4.6, it can be 

observed that traffic delay starts to fall at the market penetration of 75% CAVs where the 

fuel consumption is similar to that of 0% CAV. The fuel consumption and traffic delay are 

highest when the market penetration rate of CAVs is at the 50% level. Overall, the more 

mixed the vehicle types are (i.e., equal market penetration rate of CAVs and HDVs), the 

worse the traffic performance is.  
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FIGURE 4.6: Analysis for different CAV market penetration rates 
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conventional intersection regarding average traffic delay. However, it could also be 

observed that the average traffic delay differences between the conventional intersection 
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FIGURE 4.7: Average traffic delay(s) comparison of CAVs between the conventional 

intersection and superstreet 

As for fuel consumption, Figure 4.8 shows that the average fuel consumptions of 

CAVs with trajectory planning are higher when they are in the superstreet under 25% and 

50% peak hour traffic volume scenarios. When CAVs are enabled with platooning-based 

trajectory planning, they have higher average fuel consumption on all demand levels in the 

superstreet. As explained in the previous section, this may potentially result from the lack 

of consideration on two closely spaced signalized intersections when developing the 

trajectory planning control framework.  
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a. IDM b. IDM with platooning 

  

c. IDM with trajectory planning d. IDM with platooning-based trajectory planning 

FIGURE 4.8: Average fuel consumption (ml) comparison of CAVs between the 

conventional intersection and superstreet 
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CAVs are equipped with platooning control, average traffic delay is reduced for both 

superstreet and conventional intersections. They also show a similar increasing trend of 

improvement magnitudes as the traffic volume increases. This is expected since when there 

are more vehicles, there are more chances that platooning control can take effect. The fuel 

consumption benefits are relatively less significant for these two environments but still 

show a similar trend. A notable result is that, with light traffic volumes, platooning can still 

yield fuel consumption reduction (1%) in superstreet but not in the conventional 

intersection (-1%). The reason for this slight difference is most likely to be the multiple 

signalized intersections for vehicles to travel through in the superstreet environment. When 

multiple intersections are present, CAVs have less chance to burn gasoline to accelerate 

even in platooning control systems. When the traffic volume is 100% of the peak hour 

volume, the equivalent conventional intersection is far more congested than the superstreet, 

and therefore, platooning can deliver more improvement in traffic delay and fuel 

consumption.  

TABLE 4.1: CAVs With and Without Platooning in the Superstreet 

Traffic Scale 25% 50% 75% 100% 

Control 
With 

Platooning 

No 

Platooning 

With 

Platooning  

No 

Platooning 

With 

Platooning  

No 

Platooning 

With 

Platooning 

No 

Platooning 

TD (s) 16.10 16.77 16.09 18.22 16.60 20.78 18.32 24.42 

Improvement 4% 12% 20% 25% 

FC (ml) 73.46 74.37 77.83 79.15 88.49 92.67 98.71 104.17 

Improvement 1% 2% 5% 5% 

 

TABLE 4.2: CAVs With and Without Platooning in the Equivalent Conventional 

Intersection 

Traffic Scale 25% 50% 75% 100% 

Control 
With 

Platooning 

No 

Platooning 

With 

Platooning 

No 

Platooning 

With 

Platooning 

No 

Platooning 

With 

Platooning 

No 

Platooning 

TD (s) 16.81 17.50 18.42 20.85 19.75 24.87 21.14 32.92 

Improvement 4% 12% 21% 36% 

FC (ml) 79.56 78.94 83.67 83.40 92.39 95.43 100.37 110.41 

Improvement -1% 0% 3% 9% 
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4.3.2 Adaptive signal control 

Figure 4.9 presents the traffic delay and fuel consumption reductions when the 

adaptive signal control in Section 3.5.1 and Section 3.5.2 is implemented. The proposed 

signal timing strategy can yield significant benefits in terms of both traffic delay and fuel 

consumption. The highest traffic delay reaches up to 75% when light traffic volume is 

present. As for the fuel consumption, the reduction ranges from 9% to 17% at different 

traffic scales. A general trend is that the improvement magnitudes decrease as the traffic 

volume increases in superstreet.  

Figure 4.10 shows the effects of proposed signal timing with CAVs in the 

environment of conventional intersection. It can be easily seen that the optimized signal 

timing with CAVs also has a good performance, and the performance also deteriorates as 

the traffic volumes increase in the conventional intersection. The better performance 

observed in the superstreet may be attributed to the fact that superstreet have fewer 

conflicting movements in the intersections, which gives more flexibility in signal 

optimization.  

 
FIGURE 4.9: Comparison between fixed signal (FS) timing and optimized signal (OS) 

timing with CAVs in terms of traffic delay and fuel consumption in the superstreet 
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FIGURE 4.10: Comparison between fixed signal (FS) timing and optimized signal (OS) 

timing with CAVs in terms of traffic delay and fuel consumption in the equivalent 

conventional intersection 

Adaptive signal control in superstreet with different arm length 

Superstreet presents various forms in the real world to suit local needs. Therefore, 

it is necessary to test whether the signal timing optimization can have consistently good 

performance with different configurations. With the same lane configuration and traffic 

volume information provided in Table 3.4, this research tests different arm lengths for the 

minor intersections in superstreet (original length is about 150𝑚 for the minor street and 

250𝑚 for the main street).  According to Table 4.3, the proposed signal control can have 

stable performances with different arm lengths for superstreet. 

TABLE 4.3: Adaptive Signal Control with Different Arm Lengths in Superstreet 

    FS OS Improvement 

200m 
TD 24.26 14.87 38% 

FC 93.64 86.44 8% 

300m 
TD 25.37 15.33 40% 

FC 115.59 106.61 8% 

400m 
TD 26.79 15.93 41% 

FC 141.06 130.94 7% 
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4.3.3 Trajectory planning II under adaptive signal control 

Table 4.4 presents the average traffic delay and fuel consumption results with and 

without trajectory planning (denoted as TP in Table 4.4 and Table 4.5) under signal 

optimization in superstreet. The improvement magnitudes decrease when the traffic scale 

becomes larger. This is understandable since the trajectory planning module needs to be 

switched back to the default car following model frequently when CAVs encounter 

preceding vehicles in medium/high traffic volumes scenarios. The improvement 

magnitudes drop from 7% to 0% when traffic volumes increase from 25% to 100%. The 

fuel consumption is relatively insignificant, which is likely to be attributed to the unstable 

traffic flow caused by multiple sub intersections in superstreet. According to Table 4.4, the 

equivalent conventional intersection has relatively more advantages as the traffic flow is 

more stable due to fewer intersections. The reduction in traffic delay shows a similar trend 

as that in superstreet. The highest improvement for conventional intersection reaches 10% 

in terms of traffic delay in low traffic volume scenarios. The fuel consumption reduction 

brought by trajectory planning is around 2% in different traffic scales, which is still better 

than it does in superstreet.    

 

TABLE 4.4: Traffic Delay and Fuel Consumption for CAVs With and Without TP under 

Signal Optimization in Superstreet 

Traffic Scale 25% 50% 75% 100% 

Control With TP No TP With TP No TP With TP No TP With TP No TP 

TD (s) 3.85 4.13 5.32 5.59 9.00 9.06 13.75 13.81 

Improvement 7% 5% 0% 0% 

FC (ml) 61.63 61.37 66.00 66.24 80.47 80.49 95.36 94.69 

Improvement 0% 0% 0% 0% 
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TABLE 4.5: Traffic Delay and Fuel Consumption for CAVs With and Without TP under 

Signal Optimization in Conventional Intersection 

Traffic Scale 25% 50% 75% 100% 

Control With TP No TP With TP No TP With TP No TP With TP No TP 

TD (s) 5.5 6.12 8.54 9.26 16.07 17.42 26.91 27.86 

Improvement 10% 8% 8% 3% 

FC (ml) 70.44 71.37 73.48 75.07 85.63 89.41 105.44 107.13 

Improvement 1% 2% 3% 2% 

 

4.4  Platooning and Trajectory Planning Approach Comparison 

 This section compares two sets of platooning controls and trajectory planning 

controls. Since two sets of platooning controls and trajectory planning controls have 

different assumptions and model structures, this section only discusses the improvement 

magnitudes. Figure 4.11 and Figure 4.12 show the improvement magnitudes of traffic 

delays and fuel consumption between two platooning controls in the conventional 

intersection and superstreet. Platooning control II clearly has better performances in terms 

of traffic delay but not fuel consumption. This may be attributed to more acceleration 

behaviors to maintain close headway when vehicles leave the intersections in platooning 

control II. Figure 4.13 and Figure 4.14 show the comparison between trajectory planning I 

and trajectory planning II in terms of traffic delay and fuel consumption respectively. For 

trajectory planning controls, trajectory planning control I shows superiority in terms of 

traffic delay but not fuel consumption, which is understandable as the trajectory planning 

control II does not consider the deceleration cases to avoid unstable traffic flows. Unstable 

traffic flows are likely to cause fuel consumption to increase in trajectory planning control 

I.   
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FIGURE 4.11: Traffic delay improvement magnitudes between two platooning controls 

 

FIGURE 4.12: Fuel consumption improvement magnitudes between two platooning 

controls 

 

FIGURE 4.13: Traffic delay improvement magnitudes between two trajectory planning 

controls 

 

FIGURE 4.14: Fuel consumption improvement magnitudes between two trajectory 

planning controls 

  

Platooning I Platooning II Platooning I Platooning II
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23% 36% 12% 25%
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Platooning I Platooning II Platooning I Platooning II

-1% -1% -1% 1%

3% 0% 4% 2%
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15% 9% 12% 5%
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Trajectory Planning I Trajectory Planning II Trajectory Planning I Trajectory Planning II 

21% 10% 9% 7%

15% 8% 10% 5%
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CHAPTER 5 CONCLUSIONS 

5.1 Summary of Research Findings 

This research investigated the performances of CAVs and HDVs in the 

environments of the superstreet and conventional intersection. CAVs were modeled with 

the IDM car-following model while HDVs were modeled with the W99 car-following 

model. A real-world superstreet situated in Leeland, NC, was replicated in the simulation 

platform to test the performances of CAVs and HDVs under different traffic conditions. In 

addition, to fully examine the potentiality of CAVs, platooning control, adaptive signal 

control, and trajectory planning strategy were developed for CAVs respectively.  In this 

research, the W99 model was calibrated with GA so that the W99 model can better 

represent the local drivers’ behaviors.  

 

5.1.1 Platooning control I and trajectory planning I at fixed signal timing  

The simulation results indicated that, without platooning and trajectory planning, 

CAV modeled by IDM did not have significant improvement compared to HDVs modeled 

by W99. The developed platooning strategy can successfully reduce the traffic delay and 

fuel consumption in relatively high traffic demand scenarios (50%, 75%, and 100% peak 

hour volume) in both the superstreet and the conventional intersection. Trajectory planning 

could reduce the traffic delay in both superstreet and conventional intersection 

environments but with different impacts on fuel consumption. CAVs with trajectory 

planning produced higher fuel consumption in the superstreet in the lower traffic demand 

scenarios, especially in traffic demands being 25% and 50% of peak hour traffic volumes. 

A potential reason is that CAVs which accelerate to pass the first intersection may fail to 
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pass the consecutive second intersection in the environment of superstreet. In the market 

penetration rate analysis of CAVs, it was found that the mixed traffic environment can 

compromise the benefit when the CAVs market penetration rates were at 25% and 50% 

peak hour traffic volume. CAVs have better performances when the market penetration 

rate was about 75% and above.  

This research also compared the traffic performances of CAVs in the conventional 

intersection and superstreet. A notable finding was that the proposed trajectory planning 

control strategy can successfully reduce the average traffic delay without increasing the 

average fuel consumption in the conventional intersection. This was different from 

superstreet where CAVs enabled with trajectory planning increase the fuel consumption at 

certain scenarios. This demonstrated the efficiency of the proposed trajectory planning 

strategy in an isolated intersection. However, this result also indicated that the trajectory 

planning without considering special features of two closely spaced signalized 

intersections may suffer adverse effects of fuel consumption. Overall, the improvement 

magnitude of platooning and trajectory planning was larger than that in the conventional 

intersection.  

 

5.1.2 Platooning control II and adaptive signal control 

The research findings suggested that adaptive signal control with CAVs can yield 

the largest improvement compared to trajectory planning and platooning in terms of both 

traffic delay and fuel consumption, and the improvement rates showed an increasing trend 

as the traffic scales rise. Platooning control can also yield traffic delay and fuel 

consumption benefits, and the highest improvement was more than 30% in terms of traffic 
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delay in the 100% peak hour traffic volume scenario. In contrast to platooning and adaptive 

signal control, the effects of trajectory planning were attenuated when traffic volume 

increases, which was understandable since CAV must stop following predetermined 

trajectories when encountering close preceding vehicles. The unstable traffic flow caused 

by multiple intersections made the improvement for fuel consumption even less significant 

in the environment of superstreet. For most cases, performances of CAVs with different 

features showed a similar trend in the equivalent conventional intersection as they were in 

superstreet. CAV with trajectory planning performed better in conventional intersection 

design while CAVs with adaptive signal control performed better in superstreet. Table 5.1 

provides a summary for performance comparison with different CAV techniques.  

TABLE 5.1: A Summary on the Environment of Greater Improvement for Different CAV 

Techniques 

  

  

TD  FC  

Light Traffic  Heavy Traffic  Light Traffic  Heavy Traffic  

Platooning control I Similar 
Conventional 

Intersection 
Superstreet 

Conventional 

Intersection 

Adaptive Signal Control Superstreet Superstreet Superstreet Superstreet 

Trajectory Planning II 

Under Adaptive Signal 

Control 

Conventional 

Intersection 

Conventional 

Intersection 

Conventional 

Intersection 

Conventional 

Intersection 

 

5.2 Future Research Direction Discussions 

In the research findings, it was observed that trajectory planning control may have 

little or even adverse effects on the fuel consumption in the multiple close spaced 

intersection environment. Therefore, a more sophisticated trajectory planning algorithm 

that takes into account two consecutive signalized intersections can be developed. In the 

recent CAV studies, machine learning models such as reinforcement learning have become 

a reliable approach in obtaining the optimal control strategies without defining a specific 
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model for both trajectory planning and signal optimization. The research may consider 

implementing the artificial intelligence approach to obtain the trajectory planning strategies 

in multiple intersection environments.  
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