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ABSTRACT 

 
WENDY M LEWIS A Descriptive Study of Elementary Mathematically Promising Student’s 

Interactions with Cognitively Demanding Math Tasks. 
(Under the direction of DR. MADELYN COLONNESE & DR. ANDREW POLLY)  

 
National mathematics achievement results show that elementary students in the United States are 

not increasing in cognitive ability or critical thinking skills (NAEP, 2020). For this increase, 

mathematically promising students require more opportunities for cognitively demanding 

mathematics instruction. As a result, this descriptive study focused on the interactions and 

emergence of mathematical practices in seven third-grade students with a series of five tasks. 

The seven third-grade students were identified by their teachers as curious and mathematically 

promising. The tasks used in the two suburban classroom observations of the study were from 

the Tools 4 NC Teachers framework. Data sources collected included pre-and post-focus group 

audiotapes, classroom observations via audio and video, field notes, document analysis of 

student work, and a teacher debrief form. Blumer’s theory of social constructivism (1969) and 

Lesh and colleagues’ representational translation model (1987) guided this study. Findings from 

the students’ interactions with the tasks showed they used a variety of interpersonal interactions, 

interactions between teacher and student, and visual representations. Students used mathematical 

writing to justify their reasoning in the tasks and reflection to communicate their conceptual 

mathematical understanding. Students grew in their understanding of the mathematical practices 

of perseverance through problem-solving, productive struggle, the construction of arguments, 

and the ability to make connections. These findings indicate the importance of ongoing 

curriculum development, including differentiated teacher guidance for mathematically promising 

students. This study’s findings will also support mathematics teachers and leaders with a student-

centered approach to teaching inquiry-based mathematics. 
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      CHAPTER I: STUDENT INTERACTIONS AND EXPERIENCES WITH COGNITIVELY 

DEMANDING TASKS IN ELEMENTARY MATHEMATICS 

 Introduction 
 

Since the turn of the century, mathematics education research has taken a “social turn” 

(Lerman, 2000). For more than two decades, the National Council of Teachers of Mathematics 

has urged teachers to move away from a mathematical environment with more direct instruction 

in which the teacher acts as the knowledge bearer and students act as knowledge repositories and 

towards one in which students are part of a sense-making community (NCTM 1989, 2014; 

Skemp, 1987). Classroom communities also need to be environments grounded in conceptual 

thinking and reasoning. As a result, the National Teachers Council of Mathematics began setting 

standards in the late seventies and eighties. However, it continued charging math teachers to 

teach in an inquiry-based environment with high cognitive demand (NCTM, 1989). In fact, the 

National Council of Teachers of Mathematics (1989) suggested that students should be doing 

cognitively demanding mathematics instead of just acquiring basic operations and 

terminology.  Furthermore, cognitively demanding tasks have been defined as tasks that require 

students to think conceptually and make connections that lead to different opportunities to see 

mathematics from various perspectives and to understand mathematics content from a deep 

conceptual level (O’Connell, 2010; Smith & Stein, 1998). This study defines cognitively 

demanding tasks as a set of problems or a single complex problem that focuses on students’ 

attention to a particular mathematical idea (Smith & Stein, 1998; Stein et al., 1996). 

Furthermore, over a decade of research has consistently shown that student learning gains 

occur in classrooms where the highest level of cognitively demanding mathematical tasks is 

consistently maintained throughout instruction (Boaler & Staples, 2008; Hiebert & Wearne, 
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1993; Stein & Lane, 1996; Stigler & Hiebert, 2004). Recently, The Principles to Actions: 

Ensuring Mathematical Success for All (2014) teaching standards called for effective 

mathematics teaching through the use of cognitively demanding tasks as one way to motivate 

students to build new mathematical knowledge through problems (NCTM, 2014; Smith & Stein, 

1998). 

However, despite the strong research in mathematics for cognitively demanding 

mathematical instruction as a classroom practice, recent studies have only focused more on 

cognitive outcomes such as achievement gains or content learned (e.g., Smith & Stein, 1998; 

Stein et al., 1996; Yackel & Cobb, 1996), rather than outcomes of students' perceptions and 

experiences when interacting with cognitively demanding tasks within elementary classroom 

mathematics (Hiebert & Wearne,1993; Huinker & Bill, 2017). Besides, moving to a 

mathematical environment that encourages reasoning and inquiry-based problem-solving in all 

students entails focusing on research built on a mathematical triad of interaction with students, 

teachers, and cognitively demanding mathematical tasks (Ball & Cohen, 1993, 2000). A high-

quality inquiry-based mathematical environment, in particular, includes multiple ways for 

students to interact with cognitively demanding tasks, such as visual, physical, symbolic, verbal, 

and contextual representations (Ball, 1993; Lesh et al., 1987; Nasir & Mckinney de Royston, 

2013; Yackel & Cobb, 1996). Therefore, the elementary mathematics teaching field should focus 

on students’ representations of and interactions with mathematics because they can lead to new 

real-world problem-solving opportunities and experiences for students (Boaler & Brodie, 2004; 

Dominguez, 2016; Huinker & Bill, 2017). Moreover, student interactions with cognitively 

demanding tasks help them become doers of mathematics and open windows of opportunity that 
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can enhance their reasoning (Dominguez, 2016; Munter & Haines, 2019; NCTM, 2000, 2014; 

Schwartz, 2000). 

 Research on inquiry-based mathematics classroom environments has also focused on the 

social nature of learning activities in mathematics classrooms (Cobb et al., 1991; Yackel & 

Cobb, 1996). Some studies, in particular, have focused on implicit norms in classrooms, 

participation structures, and collaboration, showing that students learn best in collaborative 

environments full of oral and written discourse (Smith & Stein, 1998; Stein & Lane, 1996; 

Yackel & Cobb, 1996). Indeed, the National Council of Teachers of Mathematics, the 

Commission on Standards for School Mathematics (1989, 2000, 2014), and the National 

Research Council (1989) emphasize the need to teach mathematics to all children in order to help 

them make connections with their everyday world, engage them in doing mathematics, and help 

them construct meaning. The Principles to Action (2014) recently urged teachers to create 

learning environments that promote inquiry, reasoning, and problem-solving. In fact, elementary 

school mathematics programs are still transforming teaching practices and taking action to 

improve mathematics education (Huinker & Bill, 2017). For example, the National Council of 

Teachers of Mathematics (2014) recommended that teachers should motivate students through 

exploring and solving problems by selecting tasks with multiple entry points that have low floors 

and high ceilings so students can represent mathematics with various representations (Boaler & 

Brodie, 2004; Boaler, 2008; Flores, 2007; NCTM, 2014). The NCTM also recommended that 

teachers implement high-cognitive tasks regularly to support and encourage students through 

various solutions during task implementation (NCTM, 2014). These produsctive mathematical 

practices move away from teacher-based direct instruction to a more conceptual-based 

understanding, naturally allowing for multiple ways students can interact and engage in 
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mathematics and opening windows of opportunity (Ball, 1993; Dominguez, 2016; Doyle, 1988; 

Nasir, 2002). 

 There are many benefits to teaching cognitively demanding tasks to elementary students, 

including increased mathematical achievement and content proficiency, which can impact the 

students' mathematical talent or the classroom’s socio-mathematical environment (Boaler & 

Brodie, 2004; Yackel & Cobb, 1996). Mathematically promising students are talented 

individuals who think in a way that generates new ideas and deepen the meaning of existing ones 

(Deal & Wismer, 2010; Johnson et al., 2017; Sheffield, 1999). Specifically, mathematically 

promising students may transfer ideas and patterns to unusual situations, make connections 

between unrelated topics, and have a strong desire to question and go beyond what has been 

introduced (Gavin, 2011; Johnson et al., 2017). According to research, cognitively demanding 

task enactment may benefit mathematically promising students by increasing conceptual 

understanding, mathematical reasoning, making connections with mathematics, representations 

with problem posing, creativity, and problem-solving development, but most importantly, by 

shifting student interactions and experiences (Gavin, 2011; Johnson et al., 2017; Singer & Voica, 

2012; VanTassel-Baska, 2021). While some researchers have suggested that student engagement 

with cognitively demanding tasks supports mathematical achievement, making mathematics 

accessible for all students, more research on mathematically promising student interactions with 

high cognitive demanding tasks is needed (Boaler & Staples, 2004; Huinker & Bill, 2017; 

NCTM, 2014). 

Smith and Stein (1998) divided tasks into two broad categories: low cognitive demand 

tasks, which focus on memorization or procedural algorithmic mathematics, and high cognitive 

demand tasks, which focus on problem-solving. Focusing on mathematical tasks with low 
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cognitive demand and emphasizing only rules, procedures, memorization, and correct answers 

often occur in elementary mathematics programs (Ball & Cohen, 1999; Goodlad, 1984; 

Stodolsky, 1988). However, high cognitive tasks include tasks with procedures and connections, 

such as doing math, which was the focus of this study. 

Although increasing students’ overall mathematical proficiency in the United States has 

been one reason for a shift in focus to highly cognitively demanding instruction in most 

elementary classrooms, this research focuses on the benefits of cognitive demand for 

mathematically promising students. By shifting their focus to mathematical practices and 

adapting tasks to differentiate for mathematical promise, teachers should elicit students’ 

explanations of their mathematical thinking while simultaneously teaching content to all students 

with highly cognitively demanding tasks (VanTassel-Baska, 2021). In addition, such tasks 

provide numerous opportunities for all students to master rigorous content while maintaining an 

equitable growth mindset (Boaler & Staples, 2008; Flores, 2007; Munter & Haines, 2019; 

NCTM, 2014).  

Additionally, ensuring experiences with higher levels of thinking and supporting 

mathematically promising students’ mathematical understanding are practices supported by 

cognitively demanding tasks that extend and enrich more capable learners. Tasks play a 

significant role in determining the mathematics that students will see in the classroom (Doyle, 

1988). Tasks also determine the concepts that students discover and can assist students in making 

connections with prior knowledge and exploring and connecting mathematical ideas 

(Dominguez, 2016; Mutner & Haines, 2019). However, little research has been conducted on 

mathematically promising student interactions and experiences with cognitively demanding 
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tasks, especially concerning classroom socio-mathematical norms (Dominguez, 2016; Johnson et 

al., 2017; Yackel & Cobb, 1996).  

Over the last two decades, scholars in the field of mathematics education have discovered 

that different tasks provide diverse learning opportunities for student learning and thinking 

(Hiebert & Wearne, 1993; Stein et al., 2009). Furthermore, the mathematical tasks in which 

students participate can shape their learning opportunities and experiences with mathematics as a 

whole and assist them in improving their mathematical reasoning (Hiebert & Wearne, 1993; 

Stein & Lane, 1996; Watson & Mason, 2007). According to the Professional Standards for the 

Teaching of Mathematics (NCTM, 2014), classrooms should be environments where students are 

encouraged to discuss their ideas with one another, where intellectual risk-taking is nurtured 

through the value of student thinking, and where sufficient time and encouragement are provided 

for exploration of mathematical ideas. Besides, an environment with socio-mathematical norms 

is important for cognitively demanding tasks because it encourages students to interact with 

cognitively demanding tasks (Nasir, 2002; Yackel & Cobb, 1996). Indeed, students' interactions 

with cognitively demanding tasks help them think and engage in the mathematics classroom 

(Doyle, 1983). Furthermore, mathematically promising students benefit from opportunities to 

engage in cognitively demanding tasks that mirror the unfamiliar, challenging, and multifaceted 

problems in the real world for which we are preparing them (Gavin, 2011; NCTM, 2014). Task 

enactment in the classroom is also even more important because the opportunities for students to 

engage actively in reasoning, sense-making, and problem-solving provided by interacting with 

tasks may lead to a deep understanding of mathematics (Huinker & Bill, 2017; NCTM, 2014). 

Based on social constructivism, this research analyzes students’ experiences while interacting 

with cognitively demanding mathematics tasks (Blumer, 1969; Vygotsky, 1987). Also, the 
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emergence of conceptual mathematical thinking and mathematical practices is shown through 

oral discourse, mathematical writing, and representational modalities observed through 

classroom socio-mathematical norms (Casa et al., 2016; Gavin, 2016; Lesh et al., 1987; Yackel 

& Cobb, 1996). 

          Statement of the Problem   

The National Council of Teachers of Mathematics stated in The Principles to Action 

(2014) that all students require cognitively demanding mathematics instruction (NCTM, 2014; 

Stein et al., 2014). Furthermore, the literature indicates that students benefit from opportunities 

when they engage in problematic tasks; students require tasks that may take some time to 

complete and that reflect the unfamiliar, challenging problems in the real world for which we are 

preparing them (Boaler, 2008; Flores, 2007; Hiebert & Wearne, 1993; Kisa & Stein, 2015). Also, 

students must engage with tasks that present low floors and high ceilings so they can all access 

mathematics and productively struggle at different paces, depths, and times in a real-world 

context (Flores, 2007; Huinker & Bill, 2017). 

         According to Huinker and Bill’s (2017) Taking Action: Implementing Effective 

Mathematics Teaching Practices in K-Grade 5, learning about student perspective in 

mathematics classrooms is important so students can effectively problem solve, make 

connections, communicate, and justify their thinking in mathematics classrooms (Huinker & Bill, 

2017; NCTM, 2014). While the relationship between students and cognitively demanding 

mathematics is clearly articulated or agreed upon in the field, less is known about student 

perspective and how mathematically promising students engage through interactions with 

mathematical tasks (Stein & Lane, 1996). Moreover, previous studies about mathematical 

interactions with cognitively demanding tasks have studied the role or preparation of pre-service 
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and in-service teachers, as well as how tasks are implemented, and discovered that teachers tend 

to use mathematical lessons that foster conceptual understanding in their students (Kisa & Stein, 

2015; Stigler & Hiebert 2004). However, even though teachers believe these tasks are best for 

students, they often have difficulty implementing cognitively demanding tasks without lowering 

the demands of the task (Stein et al., 1989; Stein & Smith, 1998).        

Furthermore, little research has been conducted in the field of elementary mathematics on 

the role of mathematically promising students when interacting with cognitively demanding 

tasks (Ainley & Margolinas, 2015; Gavin et al., 2011, 2016; Johnson et al., 2017; Nasir, 2002). 

No research has been conducted on the organic experiences of mathematically promising 

students with cognitively demanding tasks. In fact, many studies indicate that students with 

mathematical talent are not given enough opportunities to participate in high-cognitive demand 

classroom environments (Gavin, 2011; Sheffield, 1999; VanTassel-Baska, 2021). Besides, 

scholars have argued that understanding how learners develop a sense of membership in practice 

and the extent to which youth are identified as “learners” and “doers” of mathematics is critical 

to understanding learning and engagement in mathematical activity (Ball & Cohen, 1990; Martin 

et al., 1997; Nasir, 2002). 

Purpose of Study  

Several types of mathematics tasks influence students’ interactions, and students’ 

experiences with tasks may vary (Clarke & Helme, 1998; Johnson et al., 2017). Mathematical 

tasks need to consider how individuals interact with and problematize them. According to Clarke 

and Helme (1998), students interpreted tasks differently than the situations described in the task. 

Students also interact with mathematical tasks based on their symbolic interactionism, oral 

discourse, metacognitive reflection, and mathematical writing experiences (Casa et al., 2016; 



 

 
 

9 

Pugalee, 2004). Previous research has also shown that students’ interactions with mathematical 

tasks improve their creativity, critical thinking, mathematical reasoning, and problem-solving 

skills, which improve their mathematics achievement and attitude towards mathematics (Nasir, 

2002; Hiebert & Wearne, 1993). Furthermore, research has shown that strong metacognition can 

influence students’ mathematical identities, especially those who are mathematically promising 

(Gavin, 2011; Nasir, 2002; Sheffield, 1999). According to researchers, cognitively demanding 

tasks necessitate interactions among students and assist students in using their diverse 

mathematical perspectives (Hiebert & Wearne, 1993; Smith & Stein, 1998). In addition, students 

analyze their thinking with cognitively demanding tasks such as mathematical writing, which 

may lead to more conceptual interactions and a more complex mathematical perspective (Munter 

& Haines, 2019). 

When studying student interactions, cognitively demanding tasks can make for complex 

instruction due to the instructional triangle of teachers’ intentions, students’ perspectives, and the 

task’s original intentions (Ball & Cohen, 1990). While teachers consider the students’ 

interpretation and perspectives of a task (Ainley & Margolinas, 2015; Ball & Cohen, 2000), the 

student’s interaction with the context of a mathematical task remains an individual, dynamic 

process that can take various forms (Boaler, 1993b; Boaler & Brodie, 2004). As a result, this 

study aimed to examine various interactions and the enactment of tasks within the elementary 

mathematics classroom of mathematically promising students, specifically the theory and 

methods underlying such research. The next sections examine the theoretical framework and 

discuss the specific methods used to implement this study. 

Research Questions  
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  RQ 1: How did elementary mathematically promising students interact with cognitively 

demanding mathematical tasks? 

  RQ 2: How did mathematically promising students use mathematical practices as they 

completed cognitively demanding tasks? 

 Overview of The Theoretical Framework 

When investigating cognitively demanding tasks, the theory of social constructivism 

suggests that instructional materials and their meanings serve as the foundation for internal 

representations (Blumer, 1969). According to Blumer (1969), students’ internal and 

mathematical representations can be shaped as they interact with cognitively demanding tasks in 

the context of the larger environment. Therefore, the theory seems to focus on students' social 

interaction opportunities in all instructional situations, including those involving the use of 

instructional representations (Yackel et al., 1991; Yackel & Cobb, 1996). Besides, individual 

students' constructive activities are affected by the problems and conflicts that arise during social 

interactions. Therefore, students' mathematical learning in the classroom should help develop 

and reflect their individual practices and beliefs. Students may interact verbally, but others may 

prefer a skills-based approach with direct teaching over a discovery-based approach. To level the 

playing field, instructional approaches should mirror students’ prior experiences and interactions 

(Dominguez, 2016). 

  Conclusively, this study employs theoretical traditions to investigate how elementary 

students’ mathematical identities aid in the development of their interactions with cognitively 

demanding mathematical tasks. This study specifically used social constructivist theory to 

examine the social interactions with mathematical discourse, mathematical writing, and the 

socio-mathematical classroom norms that are influenced by students’ mathematical experiences 
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when interacting with tasks (Blumer, 1969; Cobb et al., 1988; Smith et al., 2008; Stein et al., 

1996; Yackel & Cobb, 1996). Finally, this study explored students’ mathematical experiences 

and perceptions of how elementary inquiry-based mathematics classrooms contribute to the 

development of mathematically promising students as doers of mathematics (Ball, 1993). 

Overview of Context and Method 

This study utilized a qualitative thematic analysis to examine the experiences, 

perspectives, and student interactions with cognitively demanding mathematical tasks. 

Furthermore, this study collected qualitative data based on a descriptive qualitative study 

methods approach (Creswell, 2013), a model where the researcher interacted as an observer 

within the constructivist context of two third-grade classrooms in order to seek and understand 

the human context. Accurate data were collected from a four-week classroom study with third-

grade participants (n = 7) from a classroom in an urban, more metropolitan area in the 

Southeastern United States. Data were collected using qualitative interviews conducted with two 

focus groups of seven students. In addition, the researcher collected student work samples from 

the cognitively demanding tasks, conducted daily classroom observations using field notes, and 

analyzed data from the selected focus group of three to seven students within the classroom 

setting who are identified as mathematically promising learners in elementary mathematics. The 

methodology in this descriptive study was intended to provide greater context for interpreting the 

relationship between the students’ interactions and experiences with cognitively demanding 

mathematical tasks and their organic experiences within their teacher’s classroom (Creswell, 

2013). 

Specifically, this research analyzed open coding to examine various themes across the 

qualitative data of observational field notes students. The students’ used explanatory, 
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argumentative, and descriptive mathematical writing in this study to communicate their thoughts 

as they interacted with tasks (Casa et al., 2016). This study defined mathematical writing as 

forms of prose used to reason about and show their thinking about mathematics in the form of 

prose, such as symbols, letters, words, phrases, or sentences used via student work with 

document analysis. The documents were analyzed using preset codes from Principles to Action 

(NCTM, 2014) and then with the constant comparison method to see how they related to the 

students’ interactions (Kvale & Brinkmann, 2015). The theory in this study was based on the 

formation of social norms that sustain classroom socio-mathematical reasoning and interactions 

characterized by explanation, justification, and argumentation (Cobb et al., 1992; Yackel et al., 

1991). 

Significance Statement  

 For more than two decades, the National Council of Teachers of Mathematics has been 

calling for teachers to move away from didactic language (where the teacher acts as the 

knowledge bearer and students as repositories of this knowledge) towards language that positions 

students as members of a sense-making community (NCTM, 1989, 2000, 2014). Despite 

extensive research in mathematics on cognitively demanding mathematical instruction as a 

classroom practice, recent studies have focused solely on cognitive outcomes in isolation (Smith 

& Stein, 1998; Stein et al., 1996). In order to develop an understanding of students’ experiences 

and perspectives within the socio-mathematical norms of the classroom and the role teachers, 

tasks, and materials, as well as their own metacognitive interactions, may play in this process, 

research focusing on student interactions with cognitively demanding tasks is required. Students’ 

interactions may be metacognitive or reflective, involve oral or written communication with 

others, or involve manipulatives or other materials. The impact of classroom norms and how 
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these elements work together to influence the mathematical interactions of students when 

interacting with tasks with multiple representations was the focus of this study (Ball, 1993; 

Nasir, 2002; Nasir & Mckinney de Royston, 2013; Yackel & Cobb, 1996). Mathematics teachers 

are tasked with developing and transforming practices that result in novel opportunities that 

mimic real-world, sociocultural experiences in which students become doers of mathematics 

(NCTM, 2000; Munter & Haines, 2019; Schwartz, 2000). 

 Furthermore, the significance of studying student interactions with cognitively 

demanding tasks is that students change their interpretations and conceptual understanding based 

on how they perceive each other’s mathematical activity within the classroom norms 

(Bauersfeld, 1980; Cobb et al., 1989; Yackel & Cobb, 1996). This had major implications for the 

nature of classroom interactions, also known as the Instructional Triangle (Ball & Cohen, 2000; 

Cohen et al., 2003). However, classroom interactions should center on mathematical reasoning 

and evidence between teachers, students, and cognitively demanding tasks. For students to 

develop the ability to formulate problems, explore, conjecture, and reason logically to see if 

something makes sense, classroom discourse must be founded on mathematical evidence 

(NCTM, 1991, 2014). 

In inquiry-based mathematical classrooms, students with mathematical promise interact 

and engage with their peers to make sense of mathematics (NCTM, 2014; Stein & Lane, 1996). 

This study rejects the notion that mathematical meaning can only be discerned through external 

representations; instead, it argues that mathematical meanings are the product of students’ 

interpretations and perceptions in response to cognitive demands and their socio-mathematical 

environment (Cohen et al., 2003; Yackel & Cobb, 1996). 
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This study was carried out in response to several research findings, which signal the need 

for more attention to cognitively demanding instruction in elementary mathematics classrooms, 

especially for students with mathematical talent. First, recent data from the National Association 

of Educational Progress (2012) and NAEP (2020) show that students are still unprepared to solve 

cognitively demanding mathematical problems, with a national scale score of 244 and 241 for 

fourth graders, respectively. This data indicated that more work is needed to improve students’ 

achievement in how they problem-solve interactions (NAEP, 2020) (see Figure 1). However, 

making mathematics tasks more rigorous is not enough to enhance student achievement; teachers 

need to pay more attention and respond to student interactions, especially with students who are 

gifted in mathematics (Plucker et al., 2013). This study focused on how socio-mathematical 

norms and interactions of mathematically promising students may impact their cognitive 

understanding of mathematics (Yackel et al., 1991; Yackel & Cobb, 1996). 

 

Figure 1 
NAEP 2020 Math scores 



 

 
 

15 

Recent research in the field of mathematics suggests that teachers should carefully select 

mathematical tasks so students can have ample opportunities to connect to their identities and 

open doors of opportunity for students to bring in their prior knowledge and pose their own 

problems (Dominguez, 2016; Gavin, 2011). When elementary teachers encourage students to use 

their identities, it can profoundly impact how students interact with mathematics by encouraging 

them to share their ideas through problem-solving and opening doors for students to explore the 

“essence” of mathematics (Dominguez, 2016; Mann, 2006). 

 Most recent studies about students’ mathematical interaction with tasks have focused on 

pre-service teacher training rather than students, especially mathematically promising elementary 

students (Gavin, 2011; Johnson et al., 2017; Olawoyin et al., 2021). Although student 

interactions are an important practice in elementary mathematics classrooms, no studies have 

specifically investigated how mathematically promising student interactions with cognitively 

demanding mathematics at the elementary level, particularly investigating the socio-

mathematical norms of the classroom and the emergence of the mathematical practices. Some 

recent studies have investigated the use of pictorial representations used by students to 

understand cognitively demanding tasks, but no knowledge from students' interactions in 

elementary grades classrooms have been added to studies (Ainley & Margolinas, 2015; Johnson 

et al., 2017, Olawoyin et al., 2020; Smith et al., 2008; Smith & Stein, 1998). Furthermore, there 

is little to no research currently examining how mathematical writing develops in elementary 

school (Kosko & Zimmerman, 2017). Even though studies over the last 25 years indicated a lack 

of opportunities for students to engage in writing in mathematics, very few studies had examined 

the development of mathematical writing, especially among elementary mathematically 
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promising students (Kosko, 2016; Kosko et al., 2009; Pugalee, 2004). However, only recently 

has the use of mathematizing with mathematical writing been explored (Casa et al., 2022). 

This study expanded on recent contributions of cognitively demanding tasks by 

investigating the intersection of student interactions of oral discourse, writing, and socio-

mathematical norms in order to provide a comprehensive picture of the Instructional Triangle of 

interaction (Ball, 1993; Cohen et al., 2003; Yackel & Cobb, 1996). The study was also founded 

on empirical evidence about how mathematically promising students’ interactions with 

cognitively demanding tasks impact their mathematical identity and the emergence of 

mathematical practices while exploring cognitively demanding tasks. The findings revealed that 

this is the first known study to use a two-classroom study in elementary mathematics focused on 

mathematically promising students. In addition, instead of focusing on one student subgroup, the 

data focused on the interactions and experiences of students and looked across the data for 

thematic interpretations within the organic data collected. Finally, this study also drew on small 

national and international studies to help fill gaps in the existing literature in elementary 

mathematics classrooms and the impact of student interactions with cognitively demanding 

mathematical tasks. 

Summary 

This dissertation is divided into five chapters, with the current chapter serving as an 

overview of the study. It provides preliminary evidence for the importance of focusing on 

student interactions with highly cognitively demanding tasks as well as evidence of thinking 

within the socio-mathematical norms of mathematics classrooms. Chapter Two provides an 

overview of the cognitively demanding task literature from 1996, when Stein and Lane’s work 

on cognitively demanding tasks was established, to the present. It includes research evidence 
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relevant to the student’s perspective as well as socio-mathematical reasoning. Chapter Two also 

reviews the literature on mathematically promising student interactions with cognitively 

demanding tasks within the instructional triangle. Chapter Three outlines the study’s descriptive 

and qualitative methodology. Thematic analysis and open coding are used in this chapter to 

examine the experiences of the two third-grade small groups of mathematically promising 

students in this case study. Data were collected and analyzed on how students’ mathematical 

practices emerge as influential while the mathematically promising students explore cognitively 

demanding mathematical tasks within the context of the socio-mathematical norms of the 

classroom. Chapter Four provides the study results used to answer the two key research 

questions. Finally, Chapter Five positions the results of this study within the larger fields of 

mathematics and gifted education literature through a presentation of key findings, significance, 

and recommendations for policy, practice, and future study.  

Definition of Key Terms 
 

Cognitive demand: Tasks that ask students to perform a memorized procedure in a routine 
manner lead to one type of opportunity for student thinking; tasks that require students to think 
conceptually and that stimulate students to make connections lead to a distinct set of 
opportunities for student thinking (Smith & Stein, 1998). 
 
Curriculum materials: As defined by Ball and Cohen (1990), curriculum materials include 
textbooks, teachers’ guides, and other materials such as replacement units and instructional 
materials kits (p. 14). Since curricular material respects the nature of the mathematical tasks they 
contain, distinct types of tasks influence students' interactions. 
  
Conceptual Mathematical Thinking: Thinking concepts through a variety of pathways, 
mathematical thinking is integral to the mathematical content and creation of concepts (Casa et 
al., 2022).    
 
Discourse: Student mathematical discourse, defined in our study as “the act of [students] 
articulating mathematical ideas or procedures” (Weaver et al., 2005, p. 3), has been identified as 
a key element in students’ cognitive development (Lampert, 1990; Yackel et al., 1991). 
  
Mathematical discourse: This is defined in our study as “the act of [students] articulating 
mathematical ideas or procedures” (Weaver et al., 2005, p. 3) and has been identified as a key 
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element in students’ cognitive development (Forman, 1996; Lampert & Cobb, 2003; Yackel et 
al., 1991). 
 
Mathematical task: A mathematical task is a set of problems or a single complex problem that 
focuses students' attention on a particular mathematical idea (Stein et al., 1996). 
 
Mathematical representation: concrete, visual, numerical, graphical, pictorial, or symbolic 
components that allow mathematical ideas to be interpreted (Lesh et al., 1987; Tripathi, 2008). 
 
Mathematically promising students: Those with the potential to become leaders and problem 
solvers of the future with a strong reasoning ability but have not yet had the opportunity to tackle 
high-level problems (Gavin, 2011; Sheffield et al., 1999). 
 
Mathematical writing: A written form of prose used to reason and communicate mathematical 
ideas in the form of prose, such as a symbol, figure, label, word, or sentence (Casa & Cohen, 
2003; Casa et al., 2016). 
 
Productive Struggle: Significant, durable academic learning is difficult. When students expend 
effort to grapple with perplexing problems or make sense of challenging ideas, they engage in 
the process of productive struggle—effortful practice that goes beyond passive reading, listening, 
or watching—that builds useful, lasting understanding and skill (Gavin, 2011). 
 
Social constructivism: Learners actively construct their knowledge through experiences and 
interactions with others, using different strategies to rely upon their prior knowledge, situation, 
and the type of learning materials (Blumer, 1969; Vygotsky, 1987). 
 
Socio-mathematical norms: Classroom norms that are specific to mathematical aspects of 
student activity (Yackel & Cobb, 1996). 
 
Interactions:  “Interaction” refers to no form of discourse but to teachers’ and students’ 
connected work, extending through days, weeks, and months. Instruction evolves as tasks 
develop and lead to others, students’ engagement and understanding wax and wane, and the 
organization changes (Lampert, 2001). 
 

Limitations  
  

This study was guided by social constructivism as it framed student interactions within 

the mathematics classroom with cognitively demanding tasks. Students’ interactions and 

experiences were studied as they interacted with tasks through various oral, written, symbolic, 

and representational means within the classroom socio-mathematical norms or classroom norms 

specific to the students and mathematics within the classroom of study. Student interactions were 
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limited by the classroom norms and instructions of the teacher. Furthermore, during data 

collection, interactions were restricted to a single group or case. 
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     CHAPTER II: LITERATURE REVIEW 

 

This chapter provides an overview of the literature on cognitively demanding tasks, 

ranging from the work of Stein and Lane (1996) and Smith and Stein (1998) to current studies in 

the field of elementary mathematics. It also includes research evidence on socio-mathematical 

norms beginning in 1988 (Cobb et al., 1988). Chapter Two also focuses on how mathematically 

promising students’ interactions with cognitively demanding tasks relate to social constructivism 

theory. Some background on teacher movements and how teachers’ instructional practices 

impacted task interaction are provided. 

Background    

The National Council of the Teachers of Mathematics advocates for the development of 

mathematics classrooms that foster critical thinking. According to the organization, one of the 

most important reasons teachers should use strategies that elicit thinking and challenge students 

is to foster mathematical reasoning and productive mathematical environments (NCTM, 2000). 

The Principles to Action Standards encourage teachers to incorporate discourse into their 

teaching and learning practices; these standards require teachers to assist students in developing 

conceptual knowledge, encourage discourse and interaction, and pose meaningful problems 

(NCTM, 2014). 

According to current mathematics education research, effective teaching is centered on 

the use of cognitively demanding mathematical tasks (NCTM, 2014; Polly & Hannafin, 2011). 

Teachers are encouraged to provide opportunities for students to interact with and explore 

cognitively demanding tasks. Smith and Stein (1998) classified tasks into four categories based 

on their level of cognitive demand (NCTM, 2014; Smith & Stein, 1998; Stein et al., 2007). The 
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different classifications of mathematical tasks are shown in Table 1 (see Appendix E). While 

each type of task has its place in mathematics classrooms, recommendations emphasize the 

importance of student interactions with cognitively demanding tasks. This research may also 

have implications for teachers in terms of noticing and maintaining cognitive demands, as well 

as developing problem-solving and perseverance practices by exploring and solving tasks with 

high cognitive demands (NCTM, 2014). 

Purpose 

This literature review aims to compile current and relevant literature on how elementary 

mathematics students interact with cognitively demanding tasks based on their perspective and 

mathematical reasoning, with a focus on students who show mathematical promise. Cognitively 

demanding tasks have been studied for decades, ever since Smith and Stein (1998) classified 

math tasks as having low and high cognitive demands (see Table 1). Previous research has 

focused heavily on a shift in standards (NCTM, 2000), mathematical practices (NCTM, 2014), 

and teaching standards (CCSSI, 2010a). This literature review also investigated background 

studies that have shown how students interact within tasks, what representations students use to 

interact with high cognitively demanding tasks, and how the socio-mathematical norms and 

social constructivist interactions of the classroom may influence these interactions and thus 

mathematical thinking and reasoning (Huinker & Bill, 2017; Lesh et al., 1987, Yackel & Cobb, 

1996). 

Furthermore, the literature review explored the categorization of cognitively demanding 

tasks, why tasks are relevant for all students, why cognitively demanding tasks should be 

implemented, and how students interact with mathematical tasks. Also covered in this literature 

review are how cognitively demanding tasks can help develop mathematical talent and how 
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students can reason, represent, justify, and make connections through task interactions. Further 

review will show how the socio-mathematical norms of the classroom influence the development 

of shared meaning in the instructional triangle among the teacher, task, student, and materials 

(Cohen et al., 2003; Yackel & Cobb, 1996). Finally, further sections of this review explored 

several ways students interact with tasks through oral discourse, mathematical writing, problem 

posing, and other mathematical representations (Lesh et al., 1987). 

Methods 

This literature review supports a social constructivist approach to mathematics. For 

student interactions within productive mathematical communities to help students open new 

windows of thinking, mathematics communication, such as questioning and classroom norms, 

needs to be set up and rooted in Vygotskian sociocultural theory (Dominguez, 2016; Vygotsky, 

1987). We must also create a socially constructive environment where all students can enter 

tasks with prior knowledge and experience (Ball, 1993). Unfortunately, before Smith and Stein’s 

(1998) initial study on cognitively demanding tasks, only a few studies documented ways 

students interact with cognitively demanding instruction. 

Furthermore, recent research on the broad topic of cognitive demand focuses on 

narrowing cognitive demand categories into low cognitive demand and high cognitive demand. 

Specifically, this research investigated mathematically promising elementary students’ 

interactions with cognitively demanding tasks by focusing on four broad categories of how 

students interact with tasks (NCTM, 2014): 

1. How students preserve, explore, and reason through cognitively demanding tasks  
2. How students take responsibility for making sense of tasks by drawing on and  
    making connections with prior knowledge 
3. How students interact with mathematics using tools and representations as needed    
     to support their thinking (Tripathi, 2008) 
4. How students approach mathematical solutions and justify their strategies to one  
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another. 
 
These categories were examined through the lens of the Instructional Triangle of 

interaction with the student, teacher, and task within the classroom environment (Ball & Cohen, 

1990; Cohen et al., 2003; Huinker & Bill, 2017). These categories are drawn from the recent 

book Taking Action: Implementing Effective Mathematics Teaching Practices and were 

originally noted in the Principles to Action teaching standards as critical student actions when 

promoting problem-solving within the mathematics classroom (Huinker & Bill, 2017; NCTM, 

2014). 

This literature review begins by focusing on how students interact with cognitively 

demanding tasks by reviewing the following topics: categorization of tasks, benefits, and reasons 

for implementing cognitively demanding tasks. This research is heavily focused on how students 

interact with the tasks. It also shares findings on how students interact by persevering, exploring, 

reasoning, justifying their thinking, and how they represent and connect with mathematics 

(NCTM, 2014). Furthermore, how teacher moves influence student interactions with tasks aid in 

connecting the teacher’s role in the instructional triangle in task enactment. The review 

investigates why cognitively demanding tasks are relevant, as well as their benefits in elementary 

mathematics for mathematically talented students. Finally, the research shows how classroom 

norms and teacher moves, such as the five practices for oral discourse, productive struggle, and 

teacher observation, can influence student interactions with cognitively demanding tasks and 

influence students’ emergence of Mathematical Practices (Ball & Cohen, 2000; Cobb et al., 

1991; Martin et al., 2017; Smith & Stein, 2000; Yackel & Cobb, 1996). 

Finally, the framework of this literature review synthesizes commonalities among 

findings and shifts toward future implications for implementing cognitively demanding tasks 
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with all elementary students, especially to promote reasoning and complex problem-solving for 

students with mathematical promise by providing a series of tasks that have high ceilings and 

low floors, which will open doors of opportunity for all students (Dominguez, 2016; Flores, 

2007; Huinker & Bill, 2017). Cognitively demanding tasks are beneficial for all students because 

they have multiple entry points and are open-ended, but they offer added benefits to 

mathematically promising students. Johnson and Sheffield (2013) encouraged the use of 

standards for mathematical practices for mathematically promising students. The mathematical 

practices used within this study emphasize creative problem-solving and encourage students to 

engage in complex, real-world mathematical thinking. 

 
Previous research on social constructivist theory found that students interacted with 

cognitively demanding tasks through various tasks set in primary classrooms; however, middle 

school classrooms were not excluded (Blumer, 1969, Flores, 2007; Johnson et al., 2017). This 

study focuses on classroom studies involving cognitively demanding tasks in K-5 classrooms. 

Many qualitative case studies of various sizes were included. Several of the larger studies 

included in this literature review, such as Hufferd-Ackles et al. (2004), examined social 

interactions (Yackel & Cobb, 1996; Vygotsky, 1987). Learning is a social process; without 

student interactions, true mathematical thinking cannot occur (Sfard, 2001). 

According to Vygotsky (1987), we cannot understand what students are thinking without 

language. Hence, the importance of oral and written discourse, as well as other forms of 

language, in helping students internalize and conceptualize mathematics through social 

experiences. Social experiences and interactions within a mathematics class can take on various 

representations, such as visual, contextual, verbal, physical, and symbolic, as shown in Figure 2 

(Lesh et al., 1987). Specifically, students can interact with tasks in numerous ways, such as 
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through oral discourse, symbolic interaction, mathematical writing, problem-solving, or 

cognitive meaning. 

 

Figure 2 
Lesh and colleagues (1987) 

 
     “Representations and Translations among Representations in Mathematics Learning and 
Problem Solving.” In Problems of Representation in the Teaching and Learning of Mathematics, 
edited by Claude Janvier, pp. 33–40. Mahwah, NJ: Lawrence Erlbaum Associates, 1987. 
 
 

When students interact with tasks, they may memorize information, follow procedures, 

think deeply, and reason (Hufferd-Ackles et al., 2004). This study found that high achievers had 

more conceptual explanations during high cognitive tasks using Mathematics Plus (1992). In 

another study, Kisa and Stein (2015) suggested that problem-solving allowed more student 

interaction. However, Kisa and Stein (2015) also found that the cognitive demand of the task 

does not guarantee high-level thinking and interactions among students, thus indicating that task 

interaction is a social experience. As a result, teachers who facilitate cognitively demanding 

tasks can ignite the socio-mathematical reasoning of students and be catalysts for conversation 

and student interactions. The key theme of the theoretical framework of this study was that social 

interactions are required for students to have conceptual and meaningful interactions in a 

cognitively demanding environment. 

Literature Review   
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Categorization of Cognitively Demanding Tasks 

Cognitively demanding tasks are important for student learning in mathematics because 

mathematical tasks influence how students must learn mathematics in the classroom (NCTM, 

2014; Smith & Stein, 1998). There are two types of cognitively demanding mathematical tasks: 

low cognitive demand tasks and high cognitive demand tasks (Smith & Stein, 1998). Based on 

Smith and Stein’s (1998) original framework, the levels indicate the type of thinking required to 

solve the tasks (see Table 1). Tasks can be categorized into lower-level cognitive demand 

problems and can be classified as memorization. Routine exercises that involve memorizing 

formulas, algorithms, or procedures without connection to the underlying concepts or meaning 

are classified as procedures without connections. With low-cognitive-demand tasks, there is no 

connection to the concepts or meaning behind the mathematical procedures used. 

High-level cognitive demand tasks also have two classifications, procedures with 

connections and mathematics (Smith & Stein, 1998). Tasks focusing on the use of broad general 

procedures for developing a deeper understanding of concepts and ideas can usually be 

represented in multiple ways and require a degree of cognitive effort to complete successfully. 

Other higher-level cognitive demands are often referred to as doing mathematics (Smith & Stein, 

1998). High-level cognitive demand tasks require complex thinking or exploration to investigate 

the nature of mathematical concepts, processes, and relationships (Smith & Stein, 1998). 

Benefits and Reasons for Cognitively Demanding Task Implementation 

  Raising students’ overall level of mathematical proficiency in the United States can be 

seen “as both a matter of national interest and a moral imperative” because teaching in most 

elementary classrooms emphasizes rules, procedures, memorization, and correct answers (Ball & 

Cohen, 1999, 2000). Cognitively demanding tasks promote understanding. Over a decade of 
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research has consistently found that the greatest student learning gains occur in classrooms 

where the high-level cognitive demands of mathematical tasks are consistently maintained 

throughout the instructional episode (Boaler & Staples, 2008; Hiebert & Wearne, 1993; Stein & 

Lane, 1996; Stigler & Hiebert, 2004; Tarr et al., 2008). Cognitively demanding instruction can 

be seen as “doing mathematics,” which Stein et al. (2000) defined as investigating complex 

relationships involving conjectures and metacognition.   

  Furthermore, cognitively demanding tasks should broaden and strengthen mathematical 

understanding (Smith & Stein, 1998). Tasks that emphasize computation and memorization and 

have a low cognitive demand on students often require procedural skills without student 

understanding. According to research, low-level procedural tasks are not beneficial for students’ 

problem-solving, especially for those who are mathematically talented (Gavin et al., 1996). 

Instead, focusing on contextual, more cognitively demanding problems assists students in 

attending to the concepts underlying the problems (Stein & Lane, 1996). Furthermore, many 

scholars emphasize that real problem-solving involves working on unfamiliar, out-of-context, 

open-ended problems, providing students with real challenges and rich tasks and contexts 

(Anderson, 2003; Kilpatrick et al., 2001; Schoenfeld, 1992). On the other hand, open-ended tasks 

have multiple solutions, varied pathways to solve and record the solution, and are non-routine. In 

contrast, unfamiliar tasks are closed, not regularly encountered, and involve non-routine 

problems that do not advance students’ conceptual thinking forward. Recent research in middle 

school mathematics has also revealed how students develop meaningful content by solving tasks 

(Johnson et al., 2017). 

Furthermore, cognitively demanding tasks are beneficial in the classroom because tasks 

that emphasize computation and memorization result in students learning procedural skills 
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without understanding why they work. Moreover, cognitively demanding tasks emphasize the 

importance of creative problem-solving and investigation activities that present real-life fictional 

situations to mathematically promising students (Singer et al., 2011). Finally, the need for 

challenging tasks allows more opportunities to foster potential mathematical talent, as evidenced 

by research on mathematically gifted and promising students (Diezmann & Watters, 2002; 

Johnson, 2000; Sheffield, 1999). 

Benefits of Cognitively Demanding Tasks for Nurturing Mathematical Promise  

Students with mathematical promise who exhibit thinking and problem-solving abilities 

require a greater depth and breadth of topics as well as open-ended opportunities for solving 

more complex problems and opportunities (Sheffield, 1994). A substantial body of research 

supports the conclusion that students with mathematical promise require advanced materials and 

curricula in order to realize their full potential (VanTassel-Baska, 1995, 2020). Indeed, 

cognitively demanding tasks are required for students with mathematical promise in order to 

foster curiosity and develop creativity and scientific thinking skills (Manuel & Freiman, 2017; 

Singer et al., 2016). Meeting the needs of mathematically promising students entails more than 

just procedural problem-solving; it also entails cognitive rigor and problem-posing (Leikin, 

2009; Mann, 2006; Sheffield, 1999). Furthermore, cognitively demanding tasks allow students to 

learn new mathematical content while increasing their commitment to the learning tasks, even if 

they are more difficult (Manuel & Freiman, 2017). 

Ways Students Interact with Tasks 

  According to the Principles of Action, students can interact with tasks by persevering in 

exploring and reasoning through them (NCTM, 2014). Students may also take responsibility for 

making sense of tasks by drawing on and connecting prior understanding and ideas, as well as 
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using tools and representations to support their thinking and problem-solving as needed. 

Accepting and expecting that their classmates will use a variety of solution approaches, students 

will discuss and justify their strategies to one another. In some ways, their caution echoed that of 

Doyle (1988). He suggested that some students may want more procedure-based approaches that 

allow them to learn concepts directly rather than doing so on their own through discovery 

approaches. 

  Students can interact with tasks in a variety of ways, including cognitively demanding 

tasks such as persevering, exploring, and reasoning through tasks (NCTM, 2014). Students can 

also make connections through reasoning and prior knowledge. Furthermore, students can 

interact with cognitively demanding tasks using tools and representations to support their 

thinking (Tripathi, 2008). With these interactions, students connect multiple ideas using symbols 

to communicate an idea or draw a diagram or picture in oral discourse, written discourse, and 

classroom norms (Cohen & Ball, 1990; Tripathi, 2008). Finally, students can use mathematical 

thinking to justify their solutions by creating a systematic list, talking about their ideas, writing 

down their thoughts in writing, using or interpreting graphs, breaking a complex task down into 

smaller ones, using the calculator, relating a new problem to a previous one, or problem-posing 

(Johnson et al., 2017; Silver, 1994; Stein et al., 1996). 

Why Student Interactions Are Necessary 

 Cobb and colleagues (1992) believed that communication in the mathematics classroom 

is a process of mutual orientation rather than simply transmitting information. As a result, while 

interacting with cognitively demanding mathematical tasks, students should pursue their own and 

others’ mathematical activities. In doing so, a few things will happen. First, mathematical 

classroom communication and the development of discourse communities in classrooms are 
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stressed in reform documents (NCTM, 2000). Second, discourse research in other scientific 

disciplines has led to the development of theoretical perspectives and analytical constructs that 

apply to mathematics education. Third, because scholars have defined mathematics as a 

discourse, cognitively demanding interactions should naturally include this type of 

communication (Moschkovich, 2002; Sfard, 2008). 

Students Interact by Persevering, Exploring, and Reasoning with Cognitively Demanding 

Tasks  

According to research, mathematical writing is a tool that improves students’ ability to 

reflect, strategize, and communicate, and it is essential for students to engage in mathematics in 

order to focus their thinking and sharpen their problem-solving skills (Martin et al., 2017). The 

use of writing as a tool for mathematics learning is well documented in the literature (Casa et al., 

2022; Martin et al., 2017; Polly & Hannafin, 2011). Mathematical writing is one way for 

students to interact with cognitively demanding tasks by reasoning their mathematical thoughts 

using prose, such as symbols, letters, words, phrases, and sentences (Casa et al., 2016). Students 

benefit from the opportunity to write in mathematics because it allows them to improve their 

thinking and convey their ideas clearly, concisely, and conceptually (Martin et al., 2017). The 

benefits of written reflection have been noted in the research surrounding metacognition, self-

evaluation, and self-regulation strategies (Martin et al., 2017). However, few studies have 

examined how elementary students engage in reflective metacognitive interactions, such as 

writing in mathematics (Martin et al., 2017). Furthermore, procedural learning continues to 

dominate mathematics instruction, limiting opportunities for students to explore their 

mathematical thinking, conceptual learning, and process reflection (Martin et al., 2017; Polly & 

Hannafin, 2011; Pugalee, 2014; Stein et al., 1996). 
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Furthermore, Mathematical Practice 1 requires students to make sense of problems and 

persevere in solving them (NCTM, 2010). Student mathematicians must also enjoy creating their 

own new problems to solve or problem-posing (Silver, 1994). Through problem-posing and 

exploration of cognitively demanding tasks, students gain conceptual understanding, 

mathematical creativity, and perseverance in problem-solving (Lewis & Colonnese, 2021; Smith 

& Stein, 2008). Teachers should also use discussion-based and reflective pedagogy to support 

student learning and assist mathematically promising students in analyzing and solving problems 

by asking questions that connect to previous learning (Gavin, 2011; Smith, 1996). 

Students Interact with Tasks by Making Sense and Connections with Mathematics with 

Prior Knowledge 

When first learning about mathematics, teachers should consider their students’ prior 

knowledge and experiences, as well as how these impact their engagement in tasks. One-way 

students can connect prior knowledge and make connections with cognitively demanding tasks is 

through problem-posing. Another way students interact with cognitively demanding tasks is by 

creating original problems or reformulating problems (Matsko & Thomas, 2014; Silver, 1994). 

Problem-posing allows students to reason at the highest level of cognitive demand and truly 

demonstrate their understanding of a problem. Furthermore, Silver (1997) proposed that true 

problem-solving involves problem-posing and that true inquiry-based mathematics instruction 

assists students in becoming more autonomous and respecting mathematics when confronted 

with cognitively demanding activities. Literature indicates that teachers can learn more about 

their students the more they can create spaces for student success in which they can become 

aware of how students think (Cai et al., 2005; Johnson et al., 2017; Silver, 1994; Watson & 

Mason, 2007). 
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  Metacognitive thinking, which promotes student awareness and regulation of thinking 

during task enactment, is another way students make sense and connections with mathematics 

when interacting with cognitively demanding tasks. According to research, students help manage 

their own thinking during various learning situations, including mathematics and problem-

solving (Hufferd-Ackles et al., 2004; Koszko & Zimmerman, 2017). When mathematics teachers 

use writing and mathematical exploration opportunities (Martin et al., 2017), the teacher benefits 

from information provided by students in terms of their learning experiences. For example, 

students who write about their mathematical reasoning use higher-level thinking skills and 

develop metacognitive skills, so they should talk about their reasoning and listen to others’ 

explanations (Bell & Bell, 1985; Pugalee, 1997). These thinking skills can help students improve 

their mathematical reasoning and problem-solving abilities and thus deepen their understanding 

(Pugalee, 2004). 

Students Interact by Approaching Mathematical Solutions, Perceptions, and Justifying 

their Strategies with Oral Discourse 

According to the Professional Standards for the Teaching of Mathematics (NCTM, 

1999), classrooms should be environments in which students are encouraged to discuss their 

ideas with one another, where intellectual risk-taking is nurtured through respect and valuing of 

student thinking, and where adequate time and encouragement are provided for mathematical 

idea exploration. One-way students can interact with cognitively demanding tasks is through oral 

discourse. According to the National Council of Teachers of Mathematics (2000, 2014), 

mathematics communication is essential to learning. Students communicate with a discourse by 

engaging actively in reasoning, arguing their opinion, and talking with other scholars. As a 

result, the discourse on mathematical ideas allows students with a mathematical promise to 
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defend and prove their ideas to each other, leading to accurate generalizations (Blanton, 2004; 

Boaler & Brodie, 2004). 

Mathematical discourse is individual utterances made by students; however, it can also be 

viewed as a whole, connected body of responses between teachers and students (Olawoyin et al., 

2020). Facilitating meaningful mathematical discourse requires effective mathematics teaching 

among students in order to develop a shared understanding of mathematical ideas through the 

analysis and comparison of student approaches and arguments (Huinker & Bill, 2017). In 

addition, effective mathematics teaching engages students in discourse to advance the 

mathematical learning of the entire class. Mathematical discourse includes the deliberate 

exchange of ideas in the classroom, as well as other forms of verbal, visual, and written 

communication (Sfard, 2001). 

When interacting with tasks, students must do more than just follow the steps. Student 

interactions involving oral discourse have been identified as a key element in students’ cognitive 

development (Forman, 1996; Lampert & Cobb, 2003; Yackel et al., 1991). Furthermore, 

discourse is the art of presenting and explaining ideas, reasoning, and representations to one 

another in groups or pairs. When students participate in mathematical discourse, they can 

carefully listen to and critique their peers’ reasoning as well as provide counter-examples. 

Students may also experiment with other students’ strategies and ask questions to learn how their 

thinking differs (Huinker & Bill, 2017). 

Mathematically promising students were assigned tasks that determined what they 

learned and how they came to think about, develop, use, and make sense of mathematics. 

Cognitively demanding tasks engage students at a deeper level by requiring interpretation, 

flexibility, and the construction of meaning (Stein et al., 1996). Students frequently interact with 
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tasks by describing and justifying their reasoning. This can happen during the engagement of the 

task or when discussing solutions to the task (Smith & Stein, 1998). In a study with second- and 

third-grade students, Yackel and Cobb (1996) discovered that allowing students to explain and 

justify their thinking helped them offer different solutions than those already presented 

(mathematical difference and sophistication). As students develop their hypotheses and 

explanations, they may consider how their explanation compares to others (Feldman, 1987). 

One-way students with mathematical promise can formulate problems, explore, 

conjecture, and reason logically to determine whether something makes sense is through oral 

discourse (NCTM, 1991). Furthermore, oral discourse in the mathematics classroom allows 

students to share ideas and clarify understandings, build persuasive arguments about why and 

how things work, develop a language for expressing mathematical ideas, and learn to see things 

from different perspectives (NCTM 1991, 2000). A primary mechanism for developing 

conceptual understanding and meaningful mathematics learning is the discourse that focuses on 

tasks that promote reasoning and problem-solving (Michaels et al., 2008). When students interact 

with cognitively demanding tasks, the promotion of oral discourse results in an interactive nature 

of discussions. 

Since the implementation of the NCTM standards in 2000, there has been a strong 

emphasis on problem-solving and thinking elicitation. Several cases in the field have shown that 

the use of oral discourse is a way students interact with cognitively demanding materials 

(Ambrose, 2008; Mason, 2000; Turner, 2015). According to Carpenter and colleagues (2003, p. 

6), students who learn to articulate and justify their mathematical ideas through their own and 

others’ mathematical explanations, as well as provide a rationale for their answers, develop a 

deep understanding that is critical to their future success in mathematics and related fields. 
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 Students Interact with Mathematics by Using Tools and Representations to Support 

Thinking  

  The creation of a learning environment in which students use multiple representations to 

collect and communicate mathematical ideas is suggested as a major responsibility for teachers 

(Lesh et al., 1987; Van de Walle & Lovin, 2005). Mathematics education literature has 

frequently maintained that student representations should be interpreted socially and physically 

as mathematical phenomena (Ainley & Magnolias, 2015; Blanton, 2008; Johnson et al., 2017; 

Webb, 2009). During cognitively demanding tasks, teacher and student actions emphasize the 

use of connections among mathematical representations to deepen student understanding of 

concepts and procedures, support mathematical discourse among students, and serve as tools for 

solving problems (Huinker & Bill, 2017). As students used and made connections among 

contextual, physical, visual, verbal, and symbolic representations, they grew in their appreciation 

of mathematics as a unified, coherent discipline (Lesh et al., 1987; Tripathi, 2008). The teacher 

and student actions depicted in the diagram connected to this research provide a summary of 

what teachers and students do when teaching and learning mathematics using mathematical 

representations (see Figure 2). 

Students interacted with cognitively demanding tasks by describing and justifying their 

mathematical understanding and reasoning with drawings, diagrams, and other representations to 

make sense of and understand mathematics. According to previous and current research, 

choosing which mathematical representations to use to solve cognitively demanding problems is 

one way mathematically promising students may interact with tasks (Huinker & Bill, 2017; Lesh 

et al., 1987; VanTassel-Baska, 2020). Students can also use diagrams to help them understand 

problems or contextualize mathematical concepts by connecting them to real-world scenarios. 
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According to Casa and Cohen (2003), mathematical writing involves using prose, which 

could be letters, words, sentences, or figures, to demonstrate their thinking. Drawing also fosters 

these reasoning opportunities because that is how children represent mathematics. Although 

children's written and drawn representations of mathematics differ, both are considered part of 

mathematics instruction. According to NCTM (2000), the purposes of mathematical writing 

should include communicating about mathematical ideas in order to analyze and evaluate the 

thinking of others, building conceptual mathematical knowledge, using mathematical language to 

express ideas, organizing and consolidating mathematical thinking, communicating clearly by 

sequencing and elaborating on ideas, and using writing representations such as diagrams, 

numbers, and symbols to connect mathematical concepts and represent real-world relationships 

(NCTM, 2000, 2014). Furthermore, mathematically promising students may demonstrate their 

mathematical understanding in novel ways. Research has shown that mathematical writing of all 

types is meaningful to learning mathematics and represents student thinking (Pugalee, 1997; 

Gavin, 2016). 

        Furthermore, when students interact with cognitively demanding tasks, their understanding 

of mathematics deepens, and mathematical practices emerge as a result of the mathematical 

structures and task enactment (Huinker & Bill, 2017; Zimba, 2011). The general classification 

scheme for representational types shown in Figure 2 (see below) reveals significant connections 

between contextual, visual, verbal, physical, and symbolic representational types (Lesh et al., 

1987; Tripathi, 2008). These various mathematical representations enable students to examine 

concepts through a variety of lenses, with each lens providing a unique perspective that enriches 

the picture (concept) and interacts with mathematics (Van de Walle, 2005). Furthermore, 

students’ ability to move flexibly among representations is related to their success with problem-
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solving (Huinker, 2013; Stylianou & Silver, 2004). Students use mathematical representations as 

tools to solve problems and interact with cognitively demanding tasks (Lesh et al.,1987; 2008). 

Interacting with cognitively demanding tasks enables teachers to elicit and gather evidence of 

student understanding from their representations while monitoring key points during instruction 

(NCTM, 2000). The interaction of the task, teacher, and students, known as the Instructional 

Triangle (see Figure 3) (Cohen & Ball, 1999, 2000), determines the nature of the opportunity for 

students to think and reason in the classroom (Kisa & Stein, 2015). These opportunities allow 

students to emerge as thinkers and doers of mathematics as well as grow in their application of 

mathematical practices (CCSI, 2010: NCTM, 2014). 

 

Figure 3 
Cohen et al., 2003 Instructional Triangle 
 

Furthermore, when mathematically gifted students process problems, they may generalize 

and discern mathematical structures, think analogically, and visualize problems and/or 

relationships. The teachers make the decision to make structures that allow for mathematical 

practices to emerge available to students. Still, the concrete or representative view of the 

available mathematics may influence how they perceive and thus solve mathematical tasks. 

Teachers’ known goals and understanding of their students inform their practices as they plan for 

classroom instruction (Lampert, 1990). 
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How Classroom Environment Promotes a Shared Meaning and Understanding 

Developing reasoning and a deep understanding of mathematics are noted by the 

Principles to Action Standards as characteristics of inquiry-based classrooms (NCTM, 2014). 

Students can interact in cooperative learning groups and solve cognitively demanding tasks to 

make sense of mathematical ideas. Students can also benefit from opportunities to work on tasks 

that are problematic and may take some time to complete. However, not every task provides the 

same opportunities for students to think and learn (Hiebert et al., 1997; Stein et al., 2009). Such 

tasks mirror the unfamiliar, difficult, and multifaceted problems for which we prepare them in 

the real world (NCTM, 2014). Such tasks promote fluency and have a place in the curriculum; 

however, math application should be a goal of task instruction (NCTM, 2014). Student learning 

is greatest in classrooms where the tasks consistently encourage high-level student thinking and 

reasoning, and it is lowest in classrooms where the tasks are routinely procedural (Boaler & 

Staples, 2008; Hiebert & Wearne,1993; Stein & Lane, 1996). 

To create this type of classroom environment, teachers and students collaborate to assist 

students and help them use mathematics. Bauersfeld (1988) discovered that group interaction is 

essential in the classroom. When teachers facilitate and attend to student thinking during task 

interaction, they can construct questions and provide feedback, resulting in increased student 

interactions (Yackel & Cobb, 1996). 

Teachers can shape students’ mathematics perceptions and create new windows for 

growth and thinking, from the learning communities teachers and students co-create in their 

classrooms to their daily instruction (Boaler & Staples, 2008; Dominguez, 2016). Furthermore, 

when teachers, like students, actively construct representations of mathematics in their world, the 

learning situation becomes one in which students are separated from fixed mathematical 
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relationships in a pre-structured environment. Internal representations are often located in 

students’ heads during high-demanding cognitive tasks. In contrast, external representations 

located in the environment (von Glasersfeld, 1987) are constructed within a shared interpretive 

framework that constitutes the basis of communication for members of a community (Blanton & 

Kaput, 2003). The active construction model of learning implies that students build on and 

modify their current mathematical ways of knowing. Therefore, a detailed understanding of how 

students interpret situations is crucial to both mathematics instructional development and 

teaching. 

Moreover, focusing on students' interpretations and classroom socio-mathematical 

practices will not only help students interpret cognitively demanding tasks but will also help 

students self-reflect and grapple with problems where they may not even know where to begin 

problem-solving (Huinker & Bill, 2017; Yackel & Cobb, 1996). If students simply dig in and 

begin experimenting with different strategies to find connections between the problem and other 

areas of mathematics. When interacting with tasks, elementary students usually work behind 

closed doors and rarely speak to each other (Dominguez, 2016). As a result, they generate novel 

ideas to test. Students may also persevere in finding solutions to problems. When students work 

together, they need more teaching, filling the air with ideas about how to solve problems or what 

makes sense when interacting with cognitively demanding tasks (Cheng et al., 2011). When 

students are pushed to articulate their ideas, they produce better sentences that reflect their 

mathematical thinking, and productive mathematics interactions can occur (Cheng et al., 2011). 

In addition, inquiry-based mathematics instruction emphasizes the interaction between 

teachers and students, as well as how the socio-mathematical norms of the classroom influence 

the facilitation and learning from cognitively demanding tasks (Cohen et al., 2003; Tools 4 
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Teachers, 2019). Nurturing these norms entails influencing students' beliefs about their role, the 

teacher's role, and the nature of mathematical activity in general as classroom norms are guided 

and recognized (Cobb et al., 1992). For example, Yackel and Cobb (1996) discovered that 

challenging mathematics activities implemented with high expectations set by teachers 

contribute to mathematical learning. The socio-mathematical norms are founded on von Glaser 

Feld’s (1987) constructivism and Cobb et al. (1992) interaction and learning in the mathematics 

classroom. These norms emphasize the learning-teaching process, which includes the implicit 

and explicit negotiation of mathematical meanings. During these negotiations, the teacher and 

students develop the mathematical reality that is assumed to be shared and serves as the 

foundation for their ongoing communication (Cobb et al., 1992; Yackel & Cobb, 1996). 

Student Interactions with Tasks Are Impacted by Teacher Moves 

  Seventy years ago, mathematician and mathematics educator Pólya (1945) offered advice 

to math colleagues that still holds to this day: “The teacher should help, but not too much and not 

too little, so that the students shall have a reasonable share of the work” (p. 1). For students to 

have productive interactions with cognitively demanding tasks, the teacher’s orchestration of 

these tasks is key to setting up the norms within the classroom. Since the second aspect of 

teacher noticing is reasoning about or interpreting classroom interactions, teacher noticing 

influences how students interact with tasks (Kisa & Stein, 2015; Sherin et al., 2011). As students 

interact with cognitively demanding tasks, teachers must learn to pay more attention to student 

interactions and conversation than mathematics itself (Pólya, 1945). 

More recently, Sherin et al. (2004, 2011) demonstrated how teacher noticing could assist 

students in organizing and consolidating their mathematical thinking. During mathematics tasks, 

teachers should help students analyze and evaluate the mathematical thinking and strategies of 
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others, as well as use mathematical language to express mathematical ideas and justify their 

thinking (NCTM, 2000, 2014). Furthermore, when teachers observe student thinking and 

strategies, they encourage them to use a variety of approaches and strategies to make sense of 

and solve tasks. Posing high-demand tasks on a regular basis encourages mathematically 

promising students to explore tasks without taking over their thinking and is an important 

practice in promoting teacher noticing. 

  Another teacher action that may impact classroom and student interaction during task 

implementation is how teachers set up mathematics in the classroom, which does not guarantee 

that students will think and reason in more cognitively complex ways (Kisa & Stein, 2015). 

According to research, high-cognitive-demand tasks are the most difficult to implement correctly 

and are frequently transformed into less demanding tasks during instruction (Stein et al., 1996; 

Stigler & Hiebert, 2004). What is important is that a task allows students to actively engage in 

reasoning, sense-making, and problem-solving so that they can develop a deep understanding of 

mathematics (NCTM, 2014). Therefore, teachers should focus on students’ thinking and sense-

making efforts as they interact with tasks. 

Furthermore, teachers can modify tasks in a variety of ways to increase or decrease 

cognitive demand or interactions (Stein et al., 2000). Teachers should implement cognitively 

demanding tasks regularly, consistently, and without lowering their demands (Boston & Smith, 

2009). However, several studies in elementary mathematics classrooms have found that teachers 

frequently reduce cognitively demanding tasks by breaking tasks into smaller subtasks, focusing 

on correct answers and procedures, or adapting the tasks (Doyle, 1988; Romanagno, 1994; Smith 

& Stein, 1998). Besides, how teachers maintain cognitive demand impacts student interactions 

with cognitively demanding tasks. Indeed, multiple studies show that teachers frequently assign 
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tasks with low cognitive demands that focus on procedural mathematics even when tasks are 

written or intended to have high cognitive demand, therefore decreasing student interactions with 

the tasks (Henningsen & Stein, 1997; Martin et al., 2017; Stein et al., 1996). 

Moreover, the teacher’s task design does not guarantee that students will demonstrate 

complex mathematical thinking (Stein et al., 1996). However, when a teacher presses for 

explanations or elicits thought, they help to maintain a high level of cognitive demand, which 

may increase students’ deeper interactions with tasks (Boaler & Staples, 2008; Hiebert & 

Wearne, 1993; Stein & Lane 1996; Stigler & Hiebert, 2004; Tarr et al., 2008). 

Additionally, Hufferd-Ackles et al. (2004) also described a framework for transitioning to 

a discourse-centered classroom community. When students interact with cognitively demanding 

tasks, they examine how teachers and students progress through levels in shifting from a 

classroom in which teachers play the leading role in pursuing student mathematical thinking to 

one that is inquiry-based, where teachers assist students in taking on important roles in 

discussions and representing their mathematical thinking. The framework divides growth into 

five categories (Hufferd-Ackles et al., 2004). When teachers press students, especially those who 

are mathematically talented, to respond to tasks, they foster student engagement, justification, 

and connection. Smith and Stein (1998) researched five practices that facilitate oral discourse 

with math tasks and outlined them in their Practices for Orchestrating Mathematical Discussion: 

1.  Anticipating student responses to cognitively demanding mathematical tasks 

2.  Monitoring students’ responses to the tasks during the explore phase 

3.  Selecting students to present their mathematical responses during the discuss-and-

summarize phase of the task 

4. Purposefully sequencing the student responses that will be displayed 
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5. Sharing out-of-class strategies and discussing how they solved tasks  

Teachers assist students in making mathematical connections between their responses, 

the responses of other students, and key mathematical ideas. Given the amount of research in 

mathematics, it has been discovered that instruction designed to promote understanding and 

problem-solving expertise as it relates to different learning outcomes involves oral discourse 

(Hiebert & Wearne, 1993). Students’ justification of thinking also assists teachers in maintaining 

cognitive demand at a high-level during mathematics instruction (Smith & Stein, 1998). 

However, simply providing teachers with challenging mathematics activities is insufficient for 

their implementation (Leikin, 2011). According to Leiken (2011), teachers must be provided 

with multiple opportunities to advance their knowledge and develop commitment and beliefs in 

their own and their students’ abilities for high-level mathematical performance. To implement 

these effective mathematical teaching practices, Sheffield (2009) recommended that teachers 

pose problems that allow all students, including the most talented, to struggle. These 

recommendations include expecting coherent explanations and critiques of unique and creative 

solutions, giving formative and summative assessments that provide opportunities for students to 

reason, create problems, generalize patterns, solve problems in unique ways, and connect various 

aspects of mathematics; and acting as a role model who is comfortable with making mistakes and 

demonstrating the joy of solving difficult problems (Sheffield, 2009). 

Characteristics of Mathematically Promising Students  

According to Gavin and colleagues (2016), mathematically promising students benefit 

from advanced mathematical activities focusing on mathematical modeling of real-world 

problems, such as those associated with cognitively demanding tasks. When learning 

mathematics, students with mathematical promise may exhibit any or all of the following 
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characteristics: first, mathematically promising students are adaptable to problem-solving 

because they can easily switch strategies (Gavin et al., 1996; Gavin, 2011). Mathematically 

promising students tend to see the world through a mathematical lens and rapidly and broadly 

generalize mathematical relations and operations (VanTassel Baska, 2021). Furthermore, 

students with mathematical talent have limitations because they can skip steps when solving 

problems. The use of cognitively demanding tasks also assists students in entering the task where 

their brain can access whatever mathematics is required to solve it, even if a concept is 

accelerated. Furthermore, mathematically promising children are often inclined to learn things 

independently and are tempted to solve problems beyond their current abilities using novel 

methods, introducing substantial amounts of error and frustration (Freehill, 1961). 

Cognitively demanding tasks can also benefit mathematically promising students because 

one of these students’ characteristics is the ability to view the world logically. Mathematical 

tasks provide logical real-world problems, even though they may be poorly structured (Silver, 

1994). Furthermore, formalization is a characteristic of mathematically promising students 

because they can see the overall structure of a problem and generalize from examples. Asmus 

(2016) tested Käpnick’s items with second graders and found the following characteristics of 

mathematical talent in early primary school children: 

●  ability to memorize mathematical issues by drawing on identified structures 

● ability to construct and use mathematical structures 

●  ability to switch between modes of representation 

●  ability to reverse lines of thought 

● ability to capture complex structures and work with them 

● ability to construct and use mathematical analogies 
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●  mathematical sensitivity 

●  mathematical creativity 

Furthermore, the ability to rapidly apply mathematical concepts, identify patterns, think 

abstractly, use flexibility when approaching problem-solving, and transfer mathematical 

concepts to an unfamiliar situation, as well as use persistence and resilience in solving 

challenging problems, are characteristics of mathematically promising students (Stepanek, 1999). 

 Mathematically Promising Students Need Cognitively Demanding Tasks 

  Teachers should use mathematics instruction that has low entry points and high ceilings, 

so students will benefit most when they can elicit their original thinking and rely more on their 

problem-solving efficiency and interactions with others (Jacob & Andrew, 2008; Mason & 

Watson, 2007; Turner, 2015; Yackel & Cobb, 1996). In addition, teachers can deepen the 

mathematical understanding by employing a “toolbox” of strategies that benefit mathematically 

promising students, such as justifying and proving the reasons behind arithmetic operations, 

solving challenging problems in a variety of ways, and allowing students to pose and solve 

related problems (Gavin, 2011; Sheffield, 1999).  

As teachers facilitate cognitively demanding tasks, they should be careful to include 

relating the task to what students already know, investigating the problem, evaluating the 

findings, and discussing solutions, as well as facilitating opportunities for students to pose 

problems and explore. Furthermore, encouraging multiple solutions, models, methods, and 

problem-posing has been shown to be effective in developing students’ mathematical promise 

(Gavin et al., 2016; Sheffield, 1999). Teachers can also encourage increased student interaction 

with tasks by providing multiple entry points through the use of various tools and representations 

(Smith & Stein, 1998). 
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According to the National Association of Gifted Standards and other studies in the field, 

the elementary mathematics curriculum should adapt to the student’s needs rather than forcing 

students to adapt to a curriculum (NAGC, 2019; Tomlinson & Eidson, 2003; VanTassel-Baska, 

2020). Tasks should push students to the point of frustration or boredom. Gavin et al. (2016) also 

conducted a comprehensive study of mathematical creativity, concepts, and problem-solving and 

found that mathematical creativity is an indicator of mathematical promise. Furthermore, 

stretching understanding through the creation of new knowledge is especially important for 

mathematically promising students who are frequently confronted with repetitive tasks, 

memorized algorithms, or arithmetic skills they have already mastered. As described in Chapter 

Three, this study was guided by the need for this challenging curriculum and mathematical 

creativity to be the driving forces behind task interactions among students, teachers, and 

curriculum.  
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CHAPTER III: RESEARCH DESIGN AND METHODOLOGY 

Overview 

This study aimed to examine elementary mathematically promising students' experiences 

while exploring cognitively demanding mathematical tasks. The study specifically examined the 

following research questions: 

RQ 1: How did elementary mathematically promising students interact with cognitively 

demanding mathematical tasks? 

RQ 2: How did mathematically promising students use mathematical practices as they completed 

cognitively demanding tasks? 

This interpretive study used a descriptive approach developed by Creswell (2013) to 

examine and interpret experiences and student interactions with cognitively demanding tasks 

(Creswell, 2013; Miles & Huberman, 2004). This study also used qualitative interpretive 

methods, where the researcher was an observer within the constructivist context of two 3rd-grade 

mathematics classrooms to seek and understand the students’ experiences. Finally, this study 

focused on the interactions and use of mathematical practices of the mathematically promising 

students while they participated in math tasks within the classroom (Ainley & Margolinas, 2015; 

Cohen et al., 2003; Nasir, 2002; Yackel & Cobb, 1996). 

Furthermore, the data or units of inquiry helped the researcher in understanding processes 

over time and in providing detailed information about the small groups of students whose 

teachers had identified as mathematically promising or in need of a challenge and ill-structured 

mathematics instruction in their classroom setting (Kvale & Brinkman, 2015; Ravitch & Carl, 
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2019). These students were chosen because their teachers felt they demonstrated an opportunity 

for engagement in mathematics and creativity and had already mastered grade-level content.  

Moreover, this descriptive qualitative methodology provided greater context for 

understanding the relationship between the student’s interactions with cognitively demanding 

mathematical tasks, the student’s organic experiences with such tasks, and how they influenced 

the classroom (Ravitch & Carl, 2019). Within the context of a real classroom, the researcher was 

the primary instrument in the study to collect data through video and audio observation, as well 

as student-written artifacts from the tasks. Also, in-depth focus groups, classroom observations, 

and a review of documents (assessment of students’ work on tasks) were all part of the study. In 

this descriptive study, the verbal, written, and socio-mathematical norms of the participants’ 

interactions, as well as vignettes of students’ experiences, were highlighted as forms of 

discourse. Besides, these experiences were collected from anecdotal field notes and memos 

based on lesson observations and analysis of student groups, including drawings, problem-

solving, and mathematical writing samples (Creswell, 2013; Ravitch & Carl, 2019). The 

methodology used was intended to provide greater context for understanding the relationship 

between students’ interactions with cognitively demanding mathematical tasks, the organic 

experiences of the mathematically promising students with such tasks, and how they impacted 

students' mathematics learning and engagement (Ravitch & Carl, 2019).  

        In addition, the descriptive qualitative research involved in this study constituted experience 

and reflective activity situated within the socio-mathematical norms of the classroom and the 

thick description of the context of two 3rd-grade inquiry-based classrooms (Cobb et al., 1992; 

Yackel & Cobb, 1996). The use of qualitative interpretative research for this study was chosen to 

demonstrate the natural experiences of the students and the environment being studied, as well as 
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to describe the nature of the material and data generated from the study (Clandinin & Connelly, 

2000; Creswell, 2013). Another reason for choosing descriptive qualitative research for this 

study was that the findings from this study could influence the process of making sense of 

mathematics instruction and creating or implementing future pedagogy, especially for 

mathematically promising students (Barnett, 1998; Shifter, 1996). For example, Cooney (1999, 

p. 184) advocated for the development of a framework for conceptualizing teachers’ ways of 

knowing, which would contribute to our insight and wisdom in mathematics teacher education. 

However, the possible use of student interactions and perceptions as a pedagogical tool for 

enhancing mathematical learning has rarely been explored. 

Setting and Participants  

Setting 

      The study was conducted in two elementary mathematics classrooms where the teachers 

were familiar with cognitively demanding tasks and the students were already familiar with 

various classroom norms, such as using math talk with a partner to discuss and share their ideas 

and eliciting their thinking through questions. The study was conducted in a public school in 

North Carolina during a four-week period in the spring of 2022. All participants attended or 

worked at Riverview Elementary (pseudonym), a suburban community in the southern United 

States, where the school’s mission was to differentiate the social and emotional needs as well as 

the challenges of each child for them to achieve their full potential regularly. After receiving 

approval from the school’s principal, I was invited to present my study to a group of two teachers 

whom the principal had suggested as potential participants in the study.  

Teacher Participants 
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Two study participants were teachers A and B, each with over twenty years of teaching 

experience. Both teachers in the study were selected from a purposeful sample of two teachers 

with experience teaching cognitively demanding tasks. Both teachers were committed to being 

part of the study and participated fully in the entire study. Besides, both teachers had previously 

received professional development in task-based instruction; one had a teaching certificate in 

gifted education (North Carolina Academic and Intellectually Gifted Certificate [AIG]). As a 

district math coach, I collaborated with these teachers and students during the enactment of the 

math activities. Prior to the study, I had already interacted with the teachers through professional 

learning and team planning and also observed them teach math. In addition, during the study, I 

served as an observer. At the same time, the students completed the task while the classroom 

teacher facilitated it, and I kept my subjectivity and bias in check, as explained below (Creswell, 

2013; Crossman, 2020). 

Recruitment and Student Participants 

The study began with the recruitment of twelve 3rd -grade students. Their teachers 

selected them because they believed these students would benefit from more rigorous 

mathematics instruction, therefore forming a purposeful sample. Their teachers also identified 

these students as mathematically promising because they believed that they would benefit from 

advanced mathematical activities that focused on mathematical modeling of real-world 

problems, like those of cognitively demanding tasks. Teachers also indicated that some students 

had “curtailment” because they often skipped steps when problem-solving. In addition, they also 

felt these students were mathematically promising because they could learn things on their own 

and were often tempted to solve math questions using novel methods that might be beyond their 

current grade level (Freehill, 1961; Gavin, 1996). 



 

 
 

51 

Furthermore, the seven student participants in this study (see Table 5) were full-time 

students at one K-3 school in a suburb of a major city in the southeastern United States. The 

purposefully selected group of seven students is described below in Table 5. Each student was 

given a pseudonym. Factors such as student race, underrepresentation, and the final AIG 

identification made by the district where the study was conducted are included in the table to 

help the reader understand the participants. Brief narratives showing some characteristics of the 

mathematical promise of each student can also be found below. 

Table 5 

Mathematical Promising Student Participants 

______________________________________________________________________________ 

Student 
Letter 

Teacher  Student Race Student AIG qualification 
after study 
  

Underrepresented 
group  

A A Indian 
Female 

Identified as AIG Both  x 

B B Asian Male Identified as AIG Both x 
C A Black Female Not identified x 
D B White Male Identified as AIG Math  

 
 

E B Hispanic 
Male 

Identified as AIG Math x 

F A Hispanic 
Female 
 

Not identified  x 

G A White Female Identified as AIG Reading x 
______________________________________________________________________________ 

Note. Confidential Data from Participants in Classrooms A & B (April 2021) 

 

Students' Academically Gifted Identification 

Despite the fact that ability is only one factor of mathematical promise, it is often used to 

determine formal placement into Academically Gifted Local Education Associations or LEAs. 

Prior to the start of this study, the participants, and all students at Riverview Elementary 
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participated in a universal district screener, the CoGAT 7. During the study, the teachers were 

unaware of any information on the formal aptitude of these students; therefore, their instructional 

decisions were not biased. Upon the study's conclusion, five students were officially identified 

by the following LEA criteria as academically gifted, as shown in Table 5. The main pathway for 

admission into the local academically gifted program is an ability score of 85% or higher on 

either the quantitative or qualitative section of this assessment. To be identified as gifted, 

students were expected to score 40 out of 50 points on a rubric in either or both subject areas. Up 

to thirty points could be earned for aptitude and twenty points for state achievement scores. 

Additionally, students from underrepresented groups also had additional opportunities for points 

from a HOPES teacher survey or environmental considerations if they were from 

underrepresented populations.  

Procedure   

       As the researcher, I participated in the interpretation of student interactions. This aided 

me in gathering data on the experiences that influenced student-student interactions and how the 

students applied mathematical techniques in their mathematics classes (Creswell, 2013). Within 

the qualitative case study, I positioned myself as an observer, a co-learner, and a co-inquirer. I 

selected a purposeful sample of two elementary mathematics teachers with experience in 

facilitating cognitively demanding math tasks in their classrooms. This study included seven 

student participants from both classrooms; the teachers had identified these students as 

mathematically talented based on traits such as high ability, creativity, and the ability to skip 

steps and ask questions beyond what was required for grade level curriculum (Creswell, 2013; 

Robinson, 2014). 
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       In order to answer all questions related to the study, I observed the interactions of 

mathematically promising students during a series of five 30- to 45-minute activities in two 

classrooms (see Appendix F). Accurate data was collected from the four-week descriptive and 

qualitative study in two classrooms in a suburban school district in the southeastern United 

States. Furthermore, data were collected using one focus group from each classroom with all the 

student participants. Through weekly classroom observation of the cognitively demanding tasks, 

I collected student work samples, then reflected and recorded field notes and memos about the 

activities and interactions examined within the classroom setting. 

Data Collection  

Data were collected to answer research questions about how mathematically promising 

students interact with cognitively demanding tasks. The study was conducted over the course of 

four weeks in the spring of 2022. Data collection began by first recruiting and obtaining teachers, 

parents, and student consent for the research. Then, pre-focus groups were conducted via audio 

recording. Next, I observed a small group of students for one or two days each week while they 

completed a series of five cognitively demanding tasks. The timeline in Table 3 (see Appendix 

E) provides the data and time when I observed each task. The teachers chose a series of tasks, 

including the initial and final tasks from the third-grade fraction cluster (Tools 4 Teachers, 

2019). In addition, I observed the tasks selected and documented the sessions in audio and video 

(see Table 3). 

       During the weekly classroom observations, I acted as an observer with these questions in 

mind. Did they interact with other students? Did they use metacognitive strategies and think 

aloud? Did they immediately draw a symbolic representation of the mathematics they 

understood, or did they ask for help from the teacher? In the classroom, I observed the “explore 
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phase” of the task and students’ engagement as they solved problems throughout the exploration 

and/or discussion phase. I kept taking field notes and videotaped the entire small group of 

students as they interacted with the exercises and discussed their responses. As the students were 

reading, responding, and doing mathematics with the cognitively demanding tasks, I used the 

audio recording to capture their conversations and interactions (Ball & Cohen, 1993; Miles & 

Huberman, 2004). 

      Furthermore, while teachers engaged students in the problem-solving of each cognitively 

demanding task in the research, they were confused at times on how to guide students through 

the unfamiliar scenarios described in each task or how to facilitate the task without lowering the 

cognitive demand. According to research, tasks with high cognitive demands are the most 

difficult to implement and are often transformed into less demanding tasks during instruction 

(Stein et al., 1996; Stigler & Hiebert 2004). For this reason, I coached the teachers during a 20-

minute pre-task weekly meeting to talk about task selection, facilitation, and teaching strategies 

between each task. I specifically addressed the task enactment and discourse that the teacher 

offered for the student to engage in during the task. Student collaboration and ways students may 

represent or use discourse during the tasks were also discussed. In addition, the study’s teachers 

and I spoke about what they would notice and what questions they might ask during the task 

enactment. Then, after the facilitation of each task, the teachers filled out a brief Google form 

(see Appendix C) sharing their reflections on how the students used mathematical practices. In 

the form, the teachers shared any questions or modifications they needed guidance before 

facilitating the next task in the study. 

Research Question 1: Data Collection. 
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To answer Research Question One, I videotaped and audiotaped the cognitively 

demanding tasks and observed student interactions while the student communicated and worked 

on the task. Videotaping was chosen for this research based on previous findings from Cobb and 

Jackson (2011), which indicated that various aspects of a high-quality setup of a mathematical 

task arose from watching video recordings of elementary mathematics teachers’ instructions, all 

of whom were attempting to implement cognitively demanding math tasks. Also, this study’s 

data was based on video and audio recordings, so student interactions were effectively captured. 

During the observations, I specifically videotaped the smaller table group of mathematically 

promising students during all parts of the cognitively demanding tasks using school-owned 

Swivel equipment.  

Furthermore, all aspects of the cognitively demanding task were audiotaped, including 

when the teacher introduced the task to the students, throughout the task’s problem-solving 

engagement, and after the students discussed the task. I also used Otter.ai (Liang & Fu, 2016) 

audiotaping transcription software and gave each student participant a letter identifier between 

the small group pairs within the table group. This helped me listen to student interactions and 

metacognitive thinking and better understand their “windows of thinking” (Dominguez, 2016). 

To answer Research Question One, I also conducted two focus groups, a pre-and a post-

group, to analyze student responses, emphasizing how the students viewed their interactions with 

cognitively demanding tasks (see Appendix A and B). The focus groups occurred at the 

beginning and end of the study after all mathematical tasks had been taught (see Table 3). The 

students were interviewed in small groups for up to 30 minutes in a separate room within their 

school building using audio recording. During the interviews, I focused on students’ experiences 

with the cognitively demanding tasks and their reflections about their interactions during each 
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lesson to gather a view of their mathematical experiences and engagement with cognitively 

demanding tasks (see Appendix A and B).  

Research Question 2: Data Collection 

        I gathered data for Research Question Two by analyzing how mathematically gifted 

students used mathematical practices as they completed cognitively demanding tasks. During all 

class observation, I took open field notes and paid close attention as I watched student 

interactions, examining all evidence of students’ mathematical experiences and engagement with 

the cognitively demanding tasks (Miles & Huberman, 2014). After each observation, I took the 

field notes and categorized them into the same four broad categories in a table based (see Table 

2) on the preset codes of how students interacted with cognitively demanding tasks according to 

the Principles of Action as I did for Research Question One (NCTM, 2014). 

      To answer Research Question Two, I also used document analysis to collect, analyze, and 

hand-code students’ work samples from cognitively demanding tasks. Then I made a summary 

memo about each task. According to Ravitch and Carl (2019), fieldwork and data collection 

should be systematic. As such, I engaged in memo writing throughout the study and focused on 

how students used mathematical practices to solve each task. First, I began with a memo after the 

pre-focus group meeting. I also used the memos to record my general impressions after recording 

each task and reading the teacher’s comments in the Google debrief form. Then, I wrote one final 

memo after the post-focus group. In the memos, I merged vignettes from the document analyzed 

and what I observed in the classroom with students' interactions within the socio-mathematical 

norms. These memos were then used for my thematic coding and the pre-and post-focus group 

transcripts. In the Appendix, I have included some extracts from my notes and analysis so you 

can understand how they led to the findings of this research question (see Table 9). 
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Records: Instruments and Data Collection 

I used several methods of data collection to align with my research question. Table 4 in 

the Appendix shows the methods of data collection I used. Table 4 (see Appendix E) describes 

the data collected type, the data collection origin, the data analysis method, and the research 

question alignment. The study’s main data collection methods were observational field notes and 

memos, audio- and videotaped classroom observations, pre- and post-focus groups, a student 

working via document analysis, and a teacher Google debrief form. 

Furthermore, the research also used mathematical activities from the North Carolina 

Open Educational Resource Tools for NC Teachers (https://tools4teachers.com). These resource 

tasks were chosen using the cognitive demand framework as the basis for task selection in this 

study (Smith & Stein, 1998). Although these tasks were designed for the core curriculum, I 

worked with the teachers to train them on the use of mathematical practices and instructional 

strategies to distinguish them within the context of their classrooms. The lessons have been used 

by the school district selected within the study as the basis for cluster mathematical planning; as 

such, the teachers in the study were familiar with the curriculum. 

Within the curriculum, I used the tasks within Cluster (Unit) Seven, Understanding 

Fractions as Part of a Whole, which focused on four new content standards at this grade level 

(see Table 4). I also selected one to two cognitively demanding tasks per week, which each 

classroom teacher facilitated with a purposefully selected sample group of four female students 

(Classroom A) and three male students (Classroom B). The students were purposefully selected 

because their teachers suggested they possessed characteristics of mathematically promising 

students (Gavin, 2016; Sheffield, 1999). All of these students achieved proficiency or higher on 

all formative assessments in class, exceeding grade-level expectations. The teachers also noted 
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that students naturally had a lot of questions and out-of-the-box ideas to share during classroom 

discussions; as such, they felt they had mathematical potential. Finally, teachers wanted the 

students to be challenged because they wanted to see what they could do with the opportunities 

given because they seemed bored with basic procedures in math class (Creswell, 2013; 

McCormick, 2016). 

      Furthermore, all the tasks classified by standard within the study (see Table 4) were 

available to teachers to select from. Within the study, both sets of student participants were 

required to solve the first task, “Piece of Yarn,” and the final task, “Sharing Licorice,” which 

included making connections using a length model. Teachers then selected three other tasks from 

the mathematical standards (NC.3.NF1, NC.3NF.2, NC.3NF.3, & NC.3 NF.4) to best meet the 

differentiated needs of their learners (see Table 4) for a minimum of five tasks. At the beginning 

of the study, the teachers within the study and I looked at the sequence of tasks for this cluster. 

We addressed task selection and assignment before we began the study, as well as at each pre-

task meeting. We also discussed any other prior knowledge or information the teachers wanted to 

share about their students and the rigor they hoped to facilitate during the study.  

      Throughout the study, I met with the teacher participants for approximately twenty 

minutes after each task to debrief (see Table 3). I discussed the tools, student grouping, and how 

the teacher facilitated the task to differentiate each student’s needs. I also coached the teachers 

about any changes they felt were necessary prior to the next task. To mention a few, I discussed 

any questions or ideas the teacher had about adding rigor, eliciting the thinking of their students, 

or differentiating the task prior to the next task in the series. Following each teacher pre-task 

meeting, I allowed the teachers to ask questions and receive coaching support via the Google 

debrief form before I observed, audio recorded, and videotaped the next task. As noted in 
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Appendix C, the form helped teachers note the mathematical practices students used to solve the 

tasks. 

      After the initial task and teachers’ meeting, I decided to rearrange the tasks (see Table 5) 

due to teacher recommendations. Teacher B, for example, noted that drawing number lines was 

difficult for this group of students, so she asked me to select tasks where they had to draw and 

partition number lines. I also observed students’ interactions as well as teachers’ perceptions of 

the tasks. I used a Google debrief form for the teachers to reflect upon their instructional 

practices after each meeting and observation to help guide the study’s conceptual framework. 

Although students' interactions and evidence were the focus of the study, teachers’ interactions 

and practices with students and the task played a role in the interactions with the socio-

mathematical norms of the classroom (Ball & Cohen, 2003; Yackel & Cobb, 1996). 

Procedure 

First, I created an informed consent form and confirmed participation in the study 

through a secure paper document. Then, I scheduled a meeting with both teacher participants to 

recruit them for the study, give them the consent forms, and ask them to return the forms that 

week. Throughout this process, I acknowledged the participants’ rights and preserved their 

identities (Ravitch & Carl, 2019). Then, I developed a pre-and post-focus group protocol with 

questions before (see Appendix A) and after (see Appendix B) the study that focused on 

Research Questions One and Two, student interactions with cognitively demanding tasks, and 

which mathematical techniques these mathematically promising students used while they 

completed cognitively demanding mathematical tasks.  
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Before and after I observed the series of five tasks (see Appendix F), I used the focus 

group protocol to conduct a focus group with a small group of students (see Appendix A and B) 

(Kvale & Brinkmann, 2015). I held both pre- and post-focus group sessions in a separate room 

for 30 minutes with all student participants during enrichment time in the morning when other 

students were completing differentiated work or working in small groups with the teacher so as 

not to disrupt other classroom teachings. In addition, Table 3 (see Appendix E) shows the 

timeline of my study across the four-week period and when the focus groups were conducted. I 

also created memos to reflect on each focus group, particularly to connect my themes for 

Research Question Two. 

Data Analysis 

       Thematic analysis is a process of analyzing data that focuses more on situated, 

interpreted, and lived experiences than transcendental experiences (Ravitch & Carl, 2019). After 

coding the significant statements and creating a code book, I used these codes to form sub-

themes and themes in response to the two research questions. I also examined data and answered 

research questions by interpreting and analyzing the qualitative case study data on students' 

thoughts and interactions. The data analyzed included videotaping, audiotaping, focus groups, 

field notes, memos, and document analysis of the students’ mathematical tasks. The experiences 

were viewed as socially situated knowledge constructions, valuing the messiness, discourse, and 

detailed description of the student’s experiences during the tasks (Ravitch & Carl, 2019). 

Coding Process 

To begin coding, I read and reread the transcripts (Ravitch & Carl, 2019, p. 266) and 

began developing an iterative code set (see Table 1). Then, to gather all my data sources, I began 
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a secure Google spreadsheet of carefully color-coded descriptive codes and themes. According to 

Maxwell (2013), these substantive codes are often generated from inductive, open coding 

“through multiple readings for each kind of coding.” As such, I took the analyzed open codes I 

created from the observations and field notes and created axial or pattern coding for connections 

between codes (Miles et al., 2014). After that, upon triangulating the data through the constant 

comparison method and color-coding my code book to help me find the themes and sub-themes, 

I added notable quotes from each data source and participant to the code book. 

Furthermore, I compared codes and created categories that linked codes together (Glaser 

& Strauss, 1967). Next, I assigned codes to each theme and went through chunks of data to see 

what codes were related to each in order to generate findings. I also looked for repetition, strong 

emotions, and language, as well as an agreement between individuals and a disagreement 

between individuals (Ravitch & Carl, 2019). Once I developed many codes, I began defining 

them in the spreadsheet. Short sentences and phrases were also created (see Table 7). I tried to 

make the definitions clear and concise as I reflected on the codes and used them to connect them 

to my memos and research questions. 

         According to Glaser and Strauss (1967), the comparative analytical method can be 

applied to social units of any size to generate a theory. Therefore, after collecting additional data, 

I used this constant comparison method to return to analyzing and coding the data, and from that 

analysis, I developed a process to inform the next iteration of data collection. I also continued 

comparing my codes and color-coding common themes between the observations, focus groups, 

and document analysis as suggested by research until a strong theoretical understanding of 

students' interactions and experiences during the series of tasks emerged. Below, I explain the 



 

 
 

62 

process of data analysis I used to analyze each source separately and then triangulate to generate 

my themes and findings for each research question. 

Research Question 1. To analyze Research Question One, “How did mathematically 

promising students interact with cognitively demanding math tasks,” Miles and Huberman’s 

(1994) inductive coding were applied, and I used a thematic analysis approach. I first analyzed 

each source of data collection one at a time. Then, I analyzed students' physical, symbolic, 

visual, written, and oral representations from the cognitively demanding using preset codes to 

categorize the raw words from the transcripts of the video and audio-taped lessons to categorize 

various student interactions based on a provisional “start list” of codes from the mathematical 

practices in Principles to Action (see Table 5)  (Kvale & Brinkmann, 2015; Miles & Huberman, 

1994; 2014, NCTM, 2014; Ravitch & Carl, 2019). The following categories come from the 

recent work, “Taking Action: Implementing Effective Mathematics Teaching Practices and the 

Principles to Action.” These practices were originally noted as critical student actions that the 

National Council of Teachers of Mathematics (2014) suggested that all students show if they are 

truly interacting with tasks that promote reasoning and problem-solving (Huinker & Bill, 2017; 

NCTM, 2014, p. 24). Table 6 below shows the preset codes developed from the Principles to 

Action (NCTM, 2014, p. 24) that I used as the preset codes for this study. 

Table 6 

Pre-Set Mathematical Practice Codes 

___________________________________________________________________________ 

Practice 
#  

Code Practice category 
  

1 PER “Perseverance: (PER) Are students persevering in exploring and reasoning 
through tasks?” (NCTM, 2014, p. 24) 
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2 MCK “Making Sense/Connections: (MCK) Are students taking responsibility for 
making sense of tasks by drawing on and making connections with their 
prior understanding and ideas?” (NCTM, 2014, p. 24) 

3 MR “Multiple Representations & Tools: (MR) Are students using tools and 
representations as needed to support their thinking and problem-solving?” 
(NCTM, 2014).” 

4 JS “Solutions and Strategies & Justifications: (JS) Are students accepting and 
expecting that their classmates will use a variety of solution approaches and 
that they will discuss and justify their strategies to one another and will 
analyze the frequency of each type of code to determine which type of 
interaction occurs most frequently?” (NCTM, 2014, p. 24) 

___________________________________________________________________________  

Note: Adapted from NCTM, Principles to Action (2014) 

 

I began the data analysis process with the audio- and video-transcribed observations from 

Teacher A. Then I moved on to the analysis of Teacher B, followed by the pre-and post-student 

focus group transcripts. Then, I began highlighting and assigning codes to significant statements 

and generating themes and subthemes from the classroom observations and focus group 

transcripts. 

Classroom Observation Analysis 

Audio and Video Transcripts. To answer Research Question One, I analyzed Teacher 

A’s audio-taped classroom observations, followed by Teacher B’s audio recordings. I also 

carefully listened to each audio recording using Otter.ai software. Next, Otter.ai software (Liang 

& Fu, 2016) was used to analyze audio transcripts and recordings of the set of five tasks. Each 

task took an average of twenty-five to fifty minutes to complete, record, and then be transcribed 

and uploaded into a secure Google Drive.  

Next, I began the process of open-coding the audio transcripts, highlighting text sections, 

and labeling them (Ravitch & Carl, 2019). I first began color-coding common words and phrases 

that kept occurring, like “compare,” “show me,” etc., and then made a list of common raw words 

in each transcript. Next, I color-coded the transcript to find open codes (see Table 8). Once I 
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found groups of phrases related to the preset words or similar, I took the phrases of the same 

color and pasted them together in chunks in a secure Google sheet. The analysis of the classroom 

observation data was similar in that I viewed the video clips multiple times for each of the five 

cognitively demanding tasks. 

I also coded the transcripts, searched for direct statements from the audio recordings, and 

then watched and compared the videotaped interview with my field notes. As I watched student 

interactions from the videotapes, I added comments to the audiotape transcripts and wrote 

comments about each lesson to describe student interactions on the Google coding spreadsheet. 

In Chapter Four, I will present findings from my analysis in a table and give examples of these 

open codes.  

 Field Notes. I created encrypted Google documents with field notes for each classroom 

observation to analyze them after each task. I also read and studied the field notes while I played 

the videotaped observations of the classroom tasks. In addition, I specifically looked at the notes 

I made on the field notes relating to Table 6 (see above) and the preset mathematical practices 

and interactions. While I read the field notes, I replayed and stopped the video every time the 

teacher engaged the focus group and looked at the students' verbal and nonverbal cues. I used the 

same color-coding scheme to classify the field notes that I used to identify the categories (see 

Table 7). For example, I classified the use of mathematical representations in purple, math 

knowledge shared by students in yellow, mathematical writing examples in green, and questions 

the students asked each other, or examples of oral discourse in red. Finally, I used audiotaped 

observations to look deeper into the data. 

Pre- and Post-Focus Groups. According to Kvale & Brinkmann, a focus group contains 

six to ten general subjects (Kvale & Brinkmann, 2019). When analyzing the data from this study, 
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my focus group interviews were composed of seven students from both classrooms. The pre-and 

post-focus groups were audiotaped using Otter.ai software (Liang & Fu, 2016), and each took an 

average of 30 minutes. They also allowed me to learn more about the experiences and 

backgrounds of each student’s learning in mathematics when interacting with the tasks and their 

conceptual understanding when exploring and solving the cognitively demanding mathematics 

tasks (see Appendix A & B). 

Furthermore, the focus groups were methods of data collection used in this study to 

encourage a variety of viewpoints from the students and to discuss topics that would create a 

permissive atmosphere for personal growth with students, task interactions, and the emergence of 

mathematical practices through the study. I listened to the audio recordings of each focus group 

two times. First, I looked at the quotes and reactions from students that specifically aligned with 

both research questions. Then I began highlighting the transcripts from the focus group audio 

recordings (see Appendix A & B) and made a list of raw keywords generated in the transcripts. 

From the pre-focus group transcript, the following raw keywords were coded multiple times 

during the 17-minute audio-recorded transcript: solving, math, problems, question, task, 

fractions, write, challenge, student, test, draw, strategy, answer, classroom, tools, teacher, 

pictures, addition, told, and symbols. 

In my first reading of the 21-minute post-group transcript, the keywords fraction, tasks, 

math, number, talk, helped, student, symbols, write, tools, models, solve, multiplication, learn, 

line, pictures, drawing, split, paper, and partner stood out as important. I then transferred the 

highlighted raw words and open codes to my spreadsheet along with the original open codes 

from the observations. Next, I grouped the keywords into codes to generate themes. Table 7 

below shows the color-coding scheme I used to analyze and generate my axial codes. Finally, I 
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moved all the highlighted codes into my secure Google sheet, where I began organizing them by 

theme.  

Table 7  
 
Focus Group Open Coding Color Scheme  
_________________________________________________________________________ 
Color code Open code  

 

orange Fractions 
Pink  Difficulty  
blue Feelings about math  
teal Comparing 
red Directions from investigator 
purple Representations in math 
_________________________________ 
Note. From original transcript  

________________________________ 

 
Research Question Two Analysis 
 

To analyze data from Research Question Two from the focus groups regarding how the 

mathematically promising students used mathematical practices to complete the cognitively 

demanding tasks, I used Otter.ai software (Liang & Fu, 2016) to code audio transcripts from the 

audiotaped focus groups. To further dig into Research Question Two, I used the constant 

comparative method to compare the codes from the document analysis, student work samples’ 

memos, the focus group transcripts, and the Google debrief form (Glaser & Strauss, 1967). 

During the data analysis, I focused heavily on coding the students’ work from the tasks with 

document analysis to answer Research Question Two. 

With Research Question 2, the codes were inductive, and meaning naturally emerged 

from the data (Corbin & Strauss, 2015). Furthermore, I first collected the codes from Research 

Question Two in a separate table on the same Google spreadsheet as Research Question One. 

Next, I used the same broad categories from Table 6 (see above) and the Principles to Action to 
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organize the raw words from the focus group transcripts and memos. I then used interpretive 

open codes from the focus group transcripts and document analysis of the student work samples 

to see what patterns emerged from the data (Maxwell, 2013; Ravitch & Carl, 2019). Below, I 

describe each method of data analysis and how it led to the major findings for Research Question 

2. 

 Document Analysis. For the document analysis of student work from the series of five 

cognitively demanding tasks (see Appendix F), I hand-coded the work from both classrooms A 

and B and saw how the student worked on each of the tasks connected to mathematical practices 

(see Table 6) found with the classroom observations and focus group data. Sociologists typically 

use document analysis to verify their findings (Angrisano & Mays de Perez, 2000). However, 

using document analysis allowed for triangulation of the data and confidence in the 

trustworthiness (credibility) of the findings. In addition, the documents captured the students’ 

strategies for visual and written representation of mathematics, modeling mathematics, as well as 

justification of their thinking through mathematical writing (see Appendix D). 

Document Analysis and Writing. I used document analysis to analyze the student work 

samples as mathematical writing from each of the five observations. Mathematical writing is one 

way for students to deal with cognitively demanding tasks using prose, symbols, letters, words, 

phrases, and sentences to reason their mathematical thought (Casa et al., 2016). Supported by the 

concepts presented in the research about the mathematical promise, the findings of this research 

showed the connection with mathematical writing as students showed their reasoning with 

explanatory, descriptive, and argumentative writing during the tasks (Casa et al., 2016). 

 In the document analysis, descriptive mathematical writing was used as Student C 

described what she was thinking aloud as she partitioned the number line. (see Figure 7). Figure 
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8 shows an illustrative example of mathematical writing as Student E wrote, “Green equals a half 

because 4/8 equals a half.” Also, Figure 9 shows students’ mathematical writing, which is 

argumentative and descriptive. Additionally, student E clarified his knowledge by looking at the 

number line and using writing to explain his thinking. 

Document Analysis Codes. From the student work samples from each task, I created a 

separate table to list the codes from the document analysis of student work for each task (see 

Table 9). I then hand-coded all of Classroom A’s work samples with A1-A5 and Classroom B’s 

with B1-B5 in my coding sheet. These codes helped me specify how students used mathematical 

practices to complete the series of tasks in the study. 

To find out the various practices students used to complete tasks, the following 

abbreviations were used to code and tally occurrences of representations and all interactions 

students used while solving cognitively demanding tasks during the study. Table 9 (see 

Appendix D9) reveals the results of the codes collected from Document Analysis, Drawings (D), 

Comparison of Fractions (C), Labeling (L), Partitioning (P), Explaining (E), Modeling(M), 

Symbolic reasoning(S), Metacognition (MT), Struggle/Frustration (SF), and Mathematical 

Operation (MO). Some of these interactions relate directly to mathematical practice, such as M 

modeling, while others are types of interactions. Table 11 also shows the connection between 

mathematical practices and document analysis coding.  

     Google Debrief Form and Memos. Despite the fact that the study focused primarily on 

student interactions, teachers' activities, such as noticing, questioning, and establishing a socially 

constructed space where these students with similar abilities (mathematically promising peers) 

could interact, were noted in the memos. In order to truly capture the use of the mathematically 

promising students’ skills during task enactment, I used the Google debrief form (see Appendix 
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C) to help coach the teachers in the study to look deeply into the interactions and how to help 

build these practices within the conceptual framework of the study. After each task, teachers 

noted changes and observations of the mathematical practices with the mathematically promising 

students' interactions during the cognitively demanding tasks (see Appendix F). 

Generally, the results from the Google debrief form were used to educate the teachers on 

how to enhance students' mathematical thinking using the conceptual framework of the 

instructional triangle (Cohen et al., 2003). I also compared the outcomes between tasks and 

wrote a summary memo of what practices were emerging with the students. Results were 

relevant to all themes and coded within the codebook (Ball & Cohen, 2003) (see Appendix D), 

which revealed that students were challenged by the tasks in the study and were able to make 

multiple representations and interactions; however, their ability to persevere, reason, and justify 

their thinking with mathematical tasks increased (see Appendix C). 

Finally, as a mathematics coach, I used the results from the Google Debrief form to guide 

the teachers on how to adjust instruction to bring forth Mathematical practices in students. 

Appendix C shows the questions I asked teachers after each lesson. Table 11 below shows the 

four questions I asked and how they related to the practices. I also included the figures in the 

appendix to help interpret the data below. 

Table 11 

Google Debrief Form & Mathematical Practices 

Debrief Form 
Question 

Mathematical 
Practice  

Teachers’ Indication 
of Practices 

Coaching Move 

Did the students use 
multiple 
representations of 
their mathematical 
thinking during the 

MP 4-Model with 
Mathematics 
MP 7- Look for the Use 
of Structure 

(see Figure 10)  
 
-45% somewhat used 
representations 
-45% consistently 

Teachers reminded 
students of various 
representations during 
the launch of tasks 
-Teachers engaged 
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task? used representations students during the 
explore part with 
questions about their 
representations (I 
coached them to use 
more open questions 
here)  

How do you think the 
students persevere 
through the task? 

MP 1-Make Sense of 
Problems & 
Persevere through 
Reasoning 

(see Figure 11) 
- Teachers rated 

students’ 
perseverance 
from 7-10.  

- 7(27.3%) 
- 8(9.1%) 
- 9(45.5%) 
- 10(18.2%) 

 
 

-Teacher A stopped 
mentioning a time 
limit after Task 1 
-More manipulative 
choices were 
mentioned to remind 
students of multiple 
representations during 
task launch 
-Teachers used 
similar class 
experiences to help 
students make 
connections 

Do you feel students 
were able to make 
sound arguments and 
justifications? 

MP 3-Construct Viable 
Arguments and Critique 
the Reasoning of Others 

(see Figure 12) 
 

- Teachers were 
surprised 10% 

- Some were 
better than 
others (10%) 

- Many were 
confused 
(10%) 

- For the most 
part (10%) 

- Yes, 
somewhat 
(10%) 

- Yes, 
completely 
(50%) 

 

-I coached teachers to 
ask more open 
questions 
-Teacher A decided to 
stay with her group, 
and she did more 
anticipating their 
strategies before 
teaching the task. 
 
-Teacher B chose to 
give 5 minutes of 
silent inquiry time, 
knowing her students 
needed more to 
discuss in the social 
space, so their 
arguments stayed 
focused on 
mathematics 
 

How do you feel the MP 1 Make Sense of (see Figure 13) Teacher A decided to 
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students’ made 
connections to the 
task? 

Problems & 
Persevere through 
Reasoning 
 
MP 3- Construct Viable 
Arguments and Critique 
the Reasoning of Others 
 

 Teachers rated 
making connections 
between a 6-10,  
6- 9.1% 
7-45.5% 
8- 36.4% 
10- 9.1% 

use real-life objects 
such as licorice, 
ribbon, and a weather 
chart with her Launch 
once Teacher B 
shared her Launch 
strategy in the Pre-
task meeting 

 

 

Focus Groups. Focus groups allowed students to share their experiences and how they 

completed the tasks in the study using mathematical practices (see Appendix A & B), and I used 

the focus group transcripts to analyze both researched questions as described above. Also, for 

Research Question 2, I looked deeply into the mathematical strategies that students used as they 

completed tasks. Table 10 (see Appendix E) summarizes the students’ thoughts shared in focus 

groups about how they used the mathematical practices and how I coded their thoughtful 

comments about how they solved the tasks with whatever mathematical practice they used. 

Triangulation 

       For Research Question 1, I compared the triangulated data from the research questions by 

analyzing the field notes and memos, the coded video and audio recordings, and the focus group 

data to code the students’ interactions. Also, I used multiple data collection measures, which 

revealed how students interacted with cognitively demanding tasks. This helped me interpret the 

data more deeply than just using one data collection method in isolation. In addition, the 

classroom environment, instructional moves by the teacher, or how students’ mathematical 

reasoning and practices were impacted by task interaction. 

  Furthermore, to ensure a complete and thorough analysis, I triangulated the three methods 

of data collection for Research Question 2 during analysis, including the focus group transcripts, 
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document analysis of student work, and the teacher Google debrief form. I also classified all the 

data collected during the analysis of Research Question 2 as belonging to one of the four broad 

Mathematical Practices defined by NCTM (2014) as the ways students interact with 

mathematical tasks (Corbin & Strauss, 2015; Huinker & Bill, 2017; Ravitch & Carl, 2019). By 

examining the study’s data, I was able to emerge with mathematical practices (CCSI, 2010a), 

particularly in the post-focus group interview and their environment, through written and oral 

forms of communication (Yackel & Cobb, 1996). 

Trustworthiness 

      In this study, trustworthiness was established because of the criterion-based sample; 

participants were unique to this study and not transferable to another study (Ravitch & Carl, 

2019). Even though the specific sample and demographics could be similar in a future study, the 

data could not be replicated due to the rich and authentic nature of the data collection (Lincoln & 

Guba, 1985). Furthermore, the study also ensured dependability because the data was member 

checked by the researcher’s advisor. The study also ensured trustworthiness through 

confirmability because of its interpretive but reflective nature (Ravitch & Carl, 2019). Finally, 

the constant comparison of the data during data collection and analysis ensured that the data 

analysis process was complex (Corbin & Strauss, 2015). 

The researcher was also self-critical of the research, thus making it valid by writing a 

subjectivity statement prior to each visit and having a pre-task meeting with each teacher to help 

ensure reflective thoughts and personal biases were kept out of the recorded research, making it 

as objective and applicable to the field as possible and ensuring trustworthiness.  

Reliability and Credibility 
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       This interpretive study was reliable through multiple methods and triangulated data 

recording since recording devices and the transcription of digital files were triangulated with 

handwritten field notes and student work via document analysis (Ravitch & Carl, 2019). To 

operationalize these terms, long engagement in the field and the triangulation of data sources, 

methods, and investigators helped to establish credibility. In addition, credibility was also 

established due to the criteria established for the study’s participants.  

Limitations 

This study was limited because the participants were selected based on purposeful 

selection. With a purposeful selection of participants, there is always the chance that the 

participants did not reflect the opinions and views of others in a similar population or chose not 

to participate in the study. The study can also be considered limited because the participants were 

chosen from a classroom of students and may be limited by researcher bias. However, since I 

have experience working as a mathematics teacher, mathematics coach, and gifted specialist in 

elementary classrooms, my experience gives me a strong opinion about using cognitively 

demanding instruction. 

Subjectivity 

Educational researchers like myself should be immersed in and passionate about their 

theoretical frame, the position of epistemology, and values so that those reading their studies can 

determine whether the work is applicable in their educational setting. Upon initiating this 

research, I acknowledged my intellectual and creative stance as a former math teacher, gifted 

specialist, math coach, educational leader, and researcher in the field. Before collecting data and 

constructing my participants’ stories and identities, I reflected on my own story. I started with 

my roots, then my family’s culture and learning assets, in order to truly look at how my 
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background has contributed to my views of mathematics, culture, and creative learning and 

thinking.  As a researcher, I also reflected upon my personal history buried in my heart and mind 

so I could truly understand the students' backgrounds and embody a culturally sustaining 

worldview (Paris & Alim, 2017).  

Furthermore, as a white female, this background has influenced me as a researcher. I 

grew up as a mathematically promising student with mathematical creativity and a very abstract 

thinker, but I lacked opportunities in a rural school because of my culture. As such, I bring a 

passion to my work for equity and opportunity for all students. As a young girl, I moved to the 

city (according to Mamaw because they had a Walmart) at seven. When neighbors saw my 

banjo-picking, bearded father, they called me a “Redneck.” Upon entering my new school, the 

teachers knew I came from a “poor” school in the country. So, without any testing or talking to 

me, they put me in the lowest reading group when I moved to a new school based on bias. It took 

years for teachers to notice my talents. My family had to fight for me to be tested for the gifted 

and talented program, and four years later, I was finally placed in advanced classes in middle 

school. As a growing teen, I was continually exposed to a passion for math by my dad, a 

carpenter, and my grandma, an accountant.   

Moreover, my roots in labor and creative ways of life, such as cooking, planting flowers, 

and exploring the world, as well as my aesthetic, naturalistic love for the mountains and 

outdoors, came from my Mamaw. Then, in high school, college, and as an adult, my world was 

continually surrounded by creativity and scholarship. I became a North Carolina Teaching 

Fellow graduate, so my roots remained in western NC until I left college. No matter what level 

of education I have obtained, I know I have a biased lens because I am in the predominant group 

as an educator. However, as a doctoral student, candidate, and researcher throughout the urban 
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education program, I have learned to balance my hidden biases and experiences and keep this 

subjectivity in check, so my research is not biased.  

To further account for this subjectivity, the researcher included triangulation with data 

collection methods (Miles & Huberman, 2004). Furthermore, I added reliability measures to the 

study by having the teacher member check the evaluation rubrics and transcripts. In addition, 

with a researcher observing how a classroom affected the students’ behavior, the participants 

could deviate from their normal approach to tasks and become self-conscious or behave 

embarrassedly during observations or focus groups. Thus, I placed myself as the researcher in a 

slightly distant proximity within the classroom to ensure the camera was videoing students 

without interfering with their conversations. I also used audio recorders to pick up the intimate 

interactions between partner groups at the larger table group. 

 Besides, the classroom observations for the study were made over four weeks to reduce 

the observation effect. This timeline helped make the video recording devices and the researcher 

a part of the classroom environment. Since the participants were unaware of the study’s actual 

purpose during data collection, this should have reduced the possibility of behaving or 

responding in a manner that would “please” the researcher. Thus, the focus groups were not 

conducted at the initiation of the study or after the observations to allow for a true picture of the 

experiences of the study and less limitation to the data.  

In addition, the regular classroom teachers were involved in the process from the initiation 

of the study and discussions about the chosen students and the results that occurred throughout 

the data collection process. The researcher also reviewed the collected data and verified that the 

behaviors, interactions, and characteristics of the students observed were consistent with how 



 

 
 

76 

each normally behaves. The researcher and teacher further ensured that the student behaviors 

were consistent with the characteristics normally displayed in the classroom. 

Conclusively, the parameters I used were open for data analysis, as I did not categorize or 

rate student problem-solving accuracy. Instead, I looked for ways students interacted with the 

cognitively demanding tasks and emerged in their mathematical practices, such as through 

Making Sense/Connections with Mathematics (MCK), Multiple Representations (MR), 

Perseverance when Exploring and Reasoning with Mathematics (PER), and what justifications 

and solutions strategies (JS) they used during tasks. Did students accept and expect that their 

classmates used a variety of solution approaches, and did they discuss and justify their strategies 

to one another? I analyzed the frequency of each type of code to determine which type of 

interaction occurs most frequently. Lastly, I looked at the data to analyze whether students were 

using tools and representations as needed to support their thinking and problem-solving when 

interacting with cognitively demanding tasks to help code the field notes, video recording, focus 

groups, and student work samples (Huinker & Bill, 2017; Miles & Huberman, 2004; Ravitch & 

Carl, 2019). 

Delimitations 

This study was delimited to student outcomes on standardized achievement tests. 

Therefore, conclusions were not to be extended beyond cognitively demanding mathematical 

tasks, student perceptions, and student interactions within the socio-mathematical norms of the 

elementary mathematics classroom. In order to ensure the protection of this study’s participants, 

the researcher carefully followed the guidelines outlined by the Institutional Review Board 

(IRB). The first consideration involved collecting signed, informed consent statements from all 

participants. The following safeguards were also outlined in the informed consent statement: 
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● Participants’ real names may have been captured in the video or audio but were not used 

in the written report for confidentiality purposes. Instead, pseudonyms were assigned to 

all participants in all verbal and written records, especially when transcribing the audio 

and video data.  

● All materials were locked in a file cabinet to safeguard confidentiality. No videotapes, 

transcription notes, field notes, or observation notes were used for any purpose other than 

this study. All related paper materials will be kept in the researcher’s locked file cabinet. 

● Participation in this study was on a voluntary basis. No children were spoken to or 

questioned without written consent from legal guardians. Participants had the right to 

withdraw from this study at any time without penalty. 

Summary 

During the study, the co-construction of meaning occurred between the researcher and 

participants. Therefore, the data gathering and analysis process occurred organically throughout 

the series of tasks. Furthermore, collecting student interactions and perceptions may also help 

mathematicians and teachers hear content struggles, make sense of students’ prior knowledge, 

and create meanings as they tell or “show” "us" what happened to them. Therefore, it is hoped 

that the information gained from this descriptive qualitative case study research will help provide 

descriptions of student interactions, the construction and reconstruction of mathematical 

perceptions, and evidence of social mathematical environments within elementary mathematics 

classrooms, particularly for students who need rigorous mathematical thinking. However, 

although this study was based on the collection of data regarding mathematically promising 

students’ interactions with mathematical tasks, the findings may also be used to suggest that, 

using highly cognitively demanding mathematics tasks along with the above-listed safeguards, 
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permission was secured from the data collection site to do the study in the school. In addition, a 

timeline was provided, indicating the projected times for each phase of this study. Socio-

mathematical inquiry-based norms as pedagogical tools may have the potential to influence 

teaching pedagogy. 

  This study sought to explore student interactions and experiences by employing the 

qualitative tools of pre- and post-focus groups, classroom audio recording, and videotaped 

observations, including field notes. Through the voices of students who have experienced 

success or failure in mathematics, the researcher aimed to examine the perceptions exhibited 

during a series of cognitively demanding mathematical tasks. This research also presented 

challenges, as qualitative data can be an in-depth venture to collect, organize, code, and interpret. 

In addition, the researcher addressed these validity and reliability challenges by planning a 

triangulation strategy that encourages further accuracy through cross-checking during the 

interpretation of data. The results shared below provide detailed descriptions of the participants’ 

experiences working with cognitively demanding math tasks through textual descriptions, 

structural descriptions, and a synthesis of the data. 
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CHAPTER IV: FINDINGS 
 

Overview 
 

This qualitative descriptive study aimed to explore the interactions of seven 

mathematically promising students and investigate how they used mathematical practices to 

complete a series of cognitively demanding tasks. Using audio- and videotaped classroom 

observations and field notes, pre-and post-focus groups (see Appendix A & B), a Google debrief 

form (see Appendix C) for teachers, and document analysis of student work (see Appendix E). 

Chapter IV also provides the results of the pre-and post-focus group data, which were conducted 

with the seven student participants in the study. In this chapter, a synthesis of codebook samples 

and the major themes aligned with each research question from the audio- and videotaped 

classroom observations, the audiotaped focus groups, document analysis of student work 

samples, the Google Debrief form, and the field notes from both classrooms will be shared. 

Participant Summaries 
 
Participants in Classroom A 
  

Teacher A had taught for twenty-two years and had over a decade of experience teaching 

math to second and third-graders. She used tasks solely for assessment purposes while teaching 

second grade. Once she began teaching third-grade several years ago, she began using the Tools 

for Teachers task as an early finisher and a way to challenge her students, who she felt needed 

more rigor or higher-level thinking. She pushed herself to adapt her questioning while going 

through the study with her students. Of the four student participants in Classroom A, all four 

were female, of various ethnicities, and displayed a variety of characteristics of mathematical 

promise as described below. 
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      Student A. Student A was an Asian female and was identified as mathematically gifted 

after the end of the study. She showed her mathematical promise by being very verbal during the 

study. She was a very abstract thinker and often skipped steps and thought much more deeply 

about the mathematics of the task. For example, she said in Task 1, “Piece of Yarn,” “I drew this 

out and wondered if I’m supposed to use a decimal to divide this fraction.” 4/3 would be 1.33 

about her knowledge of mathematics. She was very expressive with her feelings about drawing, 

etc. For example, she said, “Oh my God, this is so hard,” expressing her feelings about the 

Sharing Licorice task and partitioning number lines. 

      Student C. Student C was a noticeably quiet African American female who read and 

tried to solve problems independently during the study. She displayed her mathematical promise 

through careful observation and personal study of the problems with her partner. She relied on 

multiple representations, such as visuals and drawings, to help make sense of the cognitively 

demanding tasks during the observations.  

      Student F. Student F was a Hispanic female. She tended to get teachers' feedback on her 

work in mathematics during the study. She showed her mathematical promise with her 

mathematical sensitivity and the careful precision of her mathematical writing as she 

meticulously shaded her area models and used mathematically descriptive writing under them. 

As noted in video observations, she spent time reading details of the problems carefully and 

silently and did not talk or interact with the rest of the group during Task 1, “Piece of Yarn.” 

      Student G. Student G was a white female student who productively struggled through 

drawing number lines in Task 5, “Sharing Licorice.” She used her mathematical creativity to turn 

her paper over and draw on the back. Although her mathematical writing seemed messy in the 

artifacts, she showed her mathematical promise by using fraction bar manipulatives to solve 
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tasks. She was confused by Task 2, “Measuring Rainfall,” because of the table. However, she 

was able to understand comparing fractions by comparing her representations with those of her 

partner. She seemed to enjoy collaborating and using tools to solve problems, and she used 

mathematical creativity to make her own “rope” on the back of Task 5, “Sharing Licorice.” 

Participants in Classroom B  

Teacher B. Teacher B has taught kindergarten through third grade in urban and suburban 

schools for the past nineteen years. She has a Master of Arts in Curriculum and Instruction as 

well as a National Board Certification. During her six years as a teacher at Riverview 

Elementary, she placed a strong emphasis on Social Emotional Learning. Recently, she has been 

more focused on Culturally Responsive Teaching and SIOP training in order to assist in meeting 

the diverse populations of multilingual learners. With this training, she has pushed herself to 

make many real-life connections. While launching the tasks, she felt this was related to her 

professional development training. 

      This year, she explored using more cognitively demanding math tasks, such as those used 

in the study, along with SIOP training. Moreover, her purpose in using task-based instruction 

was to help her students, particularly her ELL students, grasp how to think through real-world 

situations. Even though she believed that working with tasks might be difficult for some 

students, she felt it resulted in effective peer-to-peer math discussion and vocabulary use that 

scaffolded more understanding.  

Below, I describe the three mathematically promising students in Teacher B’s classroom. 

The student participants were three males of different ethnicities. At the start of the study, 

students B, D, and E were randomly assigned letters while participating in the focus groups. 
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      Student B. Student B was an Asian student who displayed his mathematical promise 

with an articulate and precise math vocabulary. He expressed his mathematical promise often by 

questioning others in the group. He also displayed a strong ability to memorize mathematical 

issues by drawing on identified structures. For example, when comparing fractional assignments, 

he reminded his peers that if “the numerators are the same that the fraction with the bigger 

denominator is actually smaller because it has more pieces.” He also showed characteristics of 

his mathematical promise as he interacted with tasks. During each classroom observation, he did 

not look up from the paper when given five minutes of silent thought time, thus demonstrating he 

was inclined to learn new things on his own and attempt novel problems without any frustration 

(Freehill, 1961; Gavin, 2011). 

      Student D. Student D was a white student who was energetic and displayed 

characteristics of being twice exceptional with ADHD. He showed his mathematical promise 

during the study through his ability to switch between modes of representation to compare 

fractions. As evident in the video observation of Tasks 3 and 4, he compared fractions using 

fraction bars. Comparing this physical representation with the other students’ representations 

helped him reason and make sense of the task. During the study, he often initiated play and 

enjoyed laughing and manipulating the fraction bars. However, although he struggled with 

mathematical writing and drawing representations, the social constructivist environment helped 

him talk about his thinking easily with the group. 

      Student E. Student E was a charismatic, well-spoken Hispanic male student. He was 

very vocal and consistent with reading and rereading the tasks for clarity. He showed his 

mathematical promise with the use of multiple representations and detailed drawings of the 

models, as well as by displaying perseverance as he worked with the group. Another strength of 
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his was asking the other group members their thoughts and pushing the group to compare their 

responses to each other. For example, he said, “They are different. The numerators are the same 

(if you cannot). If the numerators are the same. You can look at the denominators and see which 

one is larger.” He also showed one example of this when Student B created area models to 

compare 2/6 to 2/4 on the board. Then he asked other group members, “Explain to me how you 

did that.” He constantly questioned other students' information to continue digging deep into the 

mathematics of each task and interacting with his peers. He was identified as mathematically 

gifted at the end of the study. 

Results 

RQ 1: How did elementary mathematically promising students interact with cognitively 

demanding math tasks?  

 RQ 2: What mathematical practices did mathematically promising students use when completing 

cognitively demanding math tasks?  

      The results provided in this analysis highlight the responses from the five cognitively 

demanding task observations, pre-and post-focus groups, field notes and memos, a teacher 

Google debrief form and the document analysis of student work by participants. First, I will 

present the outcomes of themes produced from the data collection for each research question; 

then, I will go into each form of data gathering and analysis, as well as how I framed the 

overarching themes to align with my research questions and the preset codes. I began 

investigating my research questions, and preset themes (see Table 6) were major mathematical 

practices considered evident in the inquiring mathematics classroom. Going into the study, I 

looked for evidence of these within the classrooms (Hiebert & Wearne, 2017; NCTM, 2014). 

The codes, themes, and connections to the research questions are provided and described here to 
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frame this descriptive case study. I created categories to code the information within the code 

book (see Table 7). To that end, this study sought to understand the overarching central question 

of the authentic interactions of elementary mathematically promising students and was 

specifically guided by the following research questions: 

Research Question 1: How Do Elementary Mathematically Talented Students Interact with 

Cognitively Demanding Tasks? 

      Research Question One identified five themes about how students interact with 

cognitively demanding tasks. Furthermore, students in the study demonstrated their mathematical 

promise via reasoning, perseverance, exploration, and the use of mathematical precision. Their 

collaboration and interactions showed extraordinarily high levels of inquiry. Since students 

required little coaching from the teacher, they were able to demonstrate all types of multiple 

representations indicated in the conceptual framework of Lesh’s Multiple Representational 

Translation Model (Lesh et al., 1987; Tripathi, 2008). Below, I outline the themes that emerged 

from Research Question One and provide supporting data and examples. 

In addition, the themes for Research Question One were all connected to the study’s 

conceptual frameworks. For example, within the instructional triangle (Cohen et al., 2003), the 

major themes of this study revealed that students interacted with interpersonal collaboration with 

other students and the teacher to make sense of and persevere through the cognitively demanding 

tasks. Also, students interacted with tasks by comparing visual representations of fractions to 

solve tasks. Finally, they proved and explained their thinking and reasoning about cognitively 

demanding tasks through oral argumentation, mathematical writing, and intrapersonal 

communication to reason and solve tasks. 
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Theme 1: Interpersonal Communication: Students Used Interpersonal Interactions to 

Solve Tasks. 

Sub-theme 1: Interpersonal Interactions Help Students Inquire, Think Deeply, and Solve 

Cognitively Demanding Tasks  

Student Actions. The main takeaway from Research Question One was how students 

used interpersonal relationships and thorough investigation to address problems. Throughout the 

study, students engaged with one another, and the task was to engage in deep thought, ask 

questions, and challenge the beliefs of other students. For example, in Measuring Rainfall Task 2 

student E from Classroom B asked, “Are you sure, How many days did it start raining?” Then he 

said, “Can you see if they are 100 percent sure it is going to rain? Is the forecast, right?” This 

series of questions showed he was thinking deeply about the content of the task, and the dialog 

with his partner was crucial in illuminating mathematical reasoning. 

Students in Classroom A also naturally engaged within smaller partner groups when 

solving the tasks. In order to understand the assignment, they would turn to face each other, 

reread their questions, and enlist the assistance of their partners. For example, students A and F 

would debate where to place symbols on the number line, as was clear from the audio and video 

observation in Classroom A. The task also required Student F to construct the fractions 

represented by the shapes, after which he would turn to Student A and ask, “What do you think? 

Let us compare our work.” As they worked on Task 1, Piece of Yarn” (see Appendix F), and 

Task 3, “Comparing Fractions with Number Lines” (see Appendix F), Students C and G in 

Classroom A murmured to one another, “Did you draw the same pictures as me? Do you think 

we should work through it together?” 
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Also, in Task 4, “Comparing Fractions, “students from Classroom B also questioned 

each other. For example, student B said, ``I think pair 2 is longer. What do you think?” As the 

study progressed, students, particularly in Classroom B, began to interact and communicate 

informally. For example, when looking at 11/4, Student B asked the group, “Bro what do you 

think this means? So, this is 3 wholes?” A few examples during Task 5, “Sharing Licorice” (see 

Appendix F), that students asked each other in classroom B included Student B, who said, “That 

is supposed to be 11/4” and Student C, who asked, “They are fourths?” 

Sub-theme 2: Students Verbalize Mathematical Knowledge to Others to Solve Cognitively 

Demanding Tasks.  

       Student Actions. Inquiry-based education aims to improve students’ conceptual 

mathematical knowledge as well as their ability to express their conceptual understanding and 

mathematical knowledge. While two of the participants in Classroom A were very quiet in their 

interactions until late in the series of tasks, some students in the entire group and small group 

promptly verbalized their knowledge to each other. For example, in Task 1, Student A and 

Student F were recorded turning to each other and saying, “Oh, I get it, it is like our fraction 

wall. We need to label equivalent fractions on the number line.” By the end of the study, in 

Teacher A’s classroom, Student F was almost tricked by the number line in Task 5, Sharing 

Licorice. In fact, Student F noticed that the number line in the task had no labels. She asked her 

group if that was okay. She said, “I know 8/8 makes a whole, so we need to use that knowledge 

to help us label the number line.” 

Many verbal ideas were shared in Teacher B’s classroom, especially in Task 2, 

Measuring Rainfall. For example, Student E looked at the chart and read the fractions aloud to 

the group, stating that even though they are in a certain order on the chart, they are not from least 
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to greatest. Therefore, we must put them on a number line and look at their numerators to order 

them. When examining various fractions in the chart in Task 3, “Comparing Fractions, “Student 

E told the group, “They are different. The numerators are the same.” Student B said, “I know 

there are 8/8 in a whole. When you are comparing fractions, the smaller numerator is the smaller 

fraction. If the numerators are the same, you can look at the denominators and see which one is 

bigger.” Student D responded, “Yeah, so, I knew that Friday and Thursday were paired up.” 

These assertions of knowledge and interactions of oral discourse between the students and the 

task opened windows for other students to promptly share their thoughts and for the students to 

work together to effectively preserve and solve the task (Dominguez, 2016). 

Sub-theme 3: Students Watch and Observe the Work of Other Students to Interact With 

Tasks. 

Student Actions. During the videotaped observations and field notes, particularly at the 

beginning of the tasks during the launch, students watched the board and the teacher for 

directions. Students were often seen staring at the written task on the screen and rereading it 

silently. Students were also looking at and noticing the task representations, words, and labels, 

like the words blue, green, and red on the number line for Task 1, Piece of Yarn. Once each task 

was launched, various behaviors of student observation were observed. For example, field notes 

and videotaped observations showed that Students A and F stared at the pictures of the area 

models for over thirty seconds at the launch of Task 4, Comparing Fractions, before interacting 

with their partners. In fact, during Task 3, Comparing Fractions, Student A said to her partner, 

Student F, “I want to look at yours.” To interact with the task, students naturally wanted to watch 

and observe the work of others. During Task 5, Sharing Licorice, all students in both classrooms 

were watching the board when the teacher launched the task. Students in Teacher B’s classroom 
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were observed staring intently and silently at the number line and fraction 24/8 for over one 

minute before any active collaboration to explore and reason about the solutions to the task 

occurred. In addition, the field notes and video observation showed that Student E in Classroom 

B also interacted with the task by observing the board to see if the teacher had partitioned or 

labeled the number line to help him solve or make sense of the task. 

Sub-theme 4: Active Collaboration Was Encouraged and Explored Within the Instructional 

Triangle of the Math Classroom 

      Teacher Actions. Throughout the classroom observations within the study, both teachers 

continuously encouraged students to interact to solve the series of cognitively demanding tasks. 

Still, this theme was very apparent in Classroom A. Collaboration to make sense of the tasks was 

also noted between the students in both classrooms.   

Student Actions. Furthermore, students desired interpersonal communication to help 

them reason and preserve through the tasks to interact with and solve mathematics. This often 

presented itself in the form of students asking each other questions or observing other students’ 

work within the focus group. For example, in Task 2, Measuring Rainfall with the Chart, Student 

E discreetly asked his peers a series of questions, “How many days has it started raining?  So, 

they can see if they are 100 percent sure if it is going to rain and they got the forecast, right?” His 

questions not only encouraged collaboration, but he also sought the feedback of his peers to 

know if he was on the right track. During Task 3 in Classroom B, Student D said to Students B 

and E, “Look at my number line, I have fourths. What do you guys have?” to collaborate and get 

at the thoughts of his classmates. In Classroom A, Student G said, “I wanna look at yours?” 

Student A responded, “Sure. Let us compare our thoughts.” When both students were stuck in 

Task Five, Sharing Licorice, they continually conversed and analyzed the number line. 
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Throughout the study, students interacted with each other and with the tasks in order to solve 

problems. Student E grew in his reasoning several times during the classroom observation and 

focus groups. He would ask the group, “Guys, let us think about this again. This does not make 

sense. Do you think that is right?” The continued active collaboration through oral discourse 

helped students make sense of the mathematics in the tasks. 

Theme 2: Interpersonal Interactions Between the Student and Teacher Helped Students 

Solve Tasks 

Sub-theme 1: Teachers Encouraged Listening, Engaging, and Noticing Students in Active 

Collaboration.  

        Teacher Actions. Throughout the study, interactions were encouraged by both teachers 

within the case study. Teachers encouraged active listening and questioning in order to interact 

with students and help them think more deeply. Within the first task, Teacher B said to the 

students, “Listen, Listen!” Teacher A began the first task by saying, “Listen to the story.” Then 

she launched the problem. Teachers' questions encouraged students to interact at a deeper level. 

For example, in the Comparing Fractions task, Teacher B said, “You see the different ways to 

represent the same problem, right?” “How does that help you if you know the numerators are the 

same? That should help you be able to produce another way?” Teacher A asked. Furthermore, 

Teacher A often said, “You may work with a partner like you've been doing with these tasks” at 

the initiation of each task.” Teacher A was very specific in her feedback to the students. She 

suggested, “When they talk to each other, talk to your partner. Work together. If you have an 

idea, talk about it. See if that is the same idea that your partner has.” Then, after the first two 

tasks, Teacher A stated in the Google debrief form that she noticed students were sharing their 

thoughts and ideas more. Although Teacher B did not directly tell the students to collaborate as 
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much, the videotaped observations revealed much collaboration between students. With the 

reflection in the Google form, both teachers felt that students communicated well with each other 

about their thoughts and that similar patterns continued throughout the series of tasks. 

Sub-theme 2: Teachers Encourage Interpersonal Interactions by Asking and Answering Open 

Questions Within the Instructional Triangle  

Teacher Actions. Throughout the study, teachers facilitated the tasks by asking open 

questions and maintaining ongoing conversations within the classroom. Both teachers would 

frequently engage the small group of students as they interacted to solve each task. For example, 

Teacher A said to students, with all the tasks, “You are going to talk to each other about what 

you are thinking in your brain.” When comparing fractions on the number line, teachers engaged 

students by asking, “So when you are looking at the number line, do you think the triangle is half 

of that number? “Think about the marks you are making.” She added. 

Teacher Actions. In Classroom B, the teacher engaged all groups of students and 

encouraged thinking through a series of questions. When engaging students in Task 5, Sharing 

Licorice, Teacher B said, “What is it labeled as? What is given to you? What do you know about 

12/4? If it equals 3 wholes? Now, I want you to think about what you have done and talk to each 

other.” The teachers’ series of questions engaged students in active collaboration and encouraged 

them to interact with each other to solve the tasks. 

Theme 3: Students Interact with Tasks by Comparing Visual Representations of Fractions 

Sub-theme 1: Students Interacted with the Representations Such as Drawings, Models, and 

Number lines Provided on the Tasks to Solve the Tasks  

Student Actions. Throughout the study, students in both classrooms interacted with tasks 

that required them to solve fractions using various visual representations of fractions, such as 
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area models, number lines, and symbolic representations. In most cases, the task instructions 

encouraged the use of mathematical representations. For example, such a task in the series began 

with a picture or some kind of mathematical representation (see Appendix F). Task 1, Piece of 

Yarn, Task 3, Comparing Fractions with a Number Line, and Task 5, Sharing Licorice, all 

contained a number line length model representation of fractions for students on the task. During 

Task 4, Comparing Fractions, where only fraction comparisons were listed, students were asked 

to draw models or use symbols to solve their interactions with the tasks using multiple 

representations. Lastly, Task 2, Measuring Rainfall, included a chart with fractions listed in 

random order indicating inches of rainfall, and no other visual representations of the fractions 

were present. These models embedded within the tasks were also examples of how students were 

able to study and make connections throughout the study’s series of tasks. 

Student Actions. Findings from the audio and video transcripts, as well as field notes, 

revealed examples of students comparing their models, drawings, and representations with each 

other in order to collaborate and represent mathematical understanding to solve tasks. Student C 

said, “I like to draw what you think and then color what your shades are when they are the same 

pieces. I am thinking that if you have the same denominator, it is helpful when comparing 

fractions.” Also, student G was working with student C on this task and said, “If it is equal, you 

divide it in the middle.” In Task 4, Comparing Fractions, students compared fractions, 

expressing equality in both classrooms. Students D and B both expressed that they look at the 

numerators to compare fractions if the denominators are the same. Specifically, Student B said, 

“2/3 is, um, if you have the same denominator, 2 is also greater than one, so ⅔ is greater than 

one-third if the numerator is bigger.” 
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Sub-theme 2: Students Drew Their Own Representations Such as Area and Length Models 

and Pictures to Solve Tasks. 

Area Models. In order to solve tasks, students drew their own pictures and models. 

When analyzing student work (see Figure 3), all students drew pictures of area models to solve 

the Comparing Fractions tasks. In Task 4, students were given directions for drawing an area 

model (see Appendix F).  One explanation by Student G was, “I lined up the 2/4 and 1/8 and 

drew models. I stacked the area models on top of each other. Then I realized they were the same 

length.” Then Student B stated that when he drew the area model, the shaded part for 4/6 took up 

more area than 2/6, implying that it is greater. 

Length Models. To solve the cognitively demanding tasks, students drew various length 

models, such as number lines. Students also labeled number lines and wrote explanations to help 

them understand the representations in the tasks (see Figures 4-8). For example, Task 4, 

“Comparing Fractions” (see Appendix F), requires students to write an explanation using 

symbols such as a circle, square, or triangle. One-way students interacted with length models 

was by partitioning and labeling the given models in the task. For example, Student G circled the 

fraction on the number line to indicate her solutions. Also, in Task 3, Comparing Fractions, 

students drew partitions on a number line to help them understand the task. In the video 

observation, Students C and G pointed to the circle, star, and triangle and told each other they 

had to find fractions between these. For Task 5, “Sharing Licorice,” Student D stated, “I started 

dividing up the number line. Once I tried to partition the number line, I got frustrated. So, I 

looked at the paper again and thought, ``I'm going to draw a new number line.” 

Sub-theme 3: Students Used Physical Representations (math manipulatives) to Solve Tasks 



 

 
 

93 

During all the tasks, teachers encouraged students to use physical representations and 

math manipulatives to solve the tasks. Before starting each task, students brought out the fraction 

wall diagrams they had made in their classrooms to display the equivalent fractions. 

Furthermore, the videotaped observations revealed that students used the fraction paper wall of 

equivalence they had made in class prior to the study to help them compare fractions, as it is a 

visual representation of the fraction tiles for all tasks. In addition, to complete tasks, students 

used math manipulatives such as fraction tiles. The fraction tiles were positioned in the center of 

the floor, as seen in the video observations of Teacher B. Also, Student D, in Classroom B, used 

the fraction bars extensively to help him solve Task 3, Comparing Fractions. He also rebuilt a 

fraction wall with bars when he got stuck on how to solve the task. 

 Furthermore, in Classroom A, Student F relied on using fraction bars. Beginning with 

Task 1, video observations revealed Student F’s reliance on the fraction bars to help her set up 

the task. In order to link contextual models to the task, teachers also provided rulers, pieces of 

yarn, licorice, and pieces of ribbon. Hence, students interacted with these physical materials to 

help them interact with the problems. For example, Student A asked if she could use a ruler to 

partition the number line in Task 1, “Piece of Yarn.” While in Task 5, Sharing Licorice, student 

F asked if they could use the yarn or ribbon from Task 1 to help them measure the number line. 

Additionally, the teacher promoted the use of visual aids such as anchor charts, fraction 

tiles, and their fraction wall in both classrooms. During Task 1, “Piece of Yarn, “Teacher A told 

the students, “Take the tool you think you need to use what other tools are using right now. If 

you need to, use your fraction paper. You took out your own and there are more tiles up there 

you can borrow.” Another example is when Teacher B said, “At the beginning of the engaging 

portion of Task 2, “Measuring Rainfall,” remember, you have tools on your desk. You have tools 



 

 
 

94 

on the carpet here. Whatever you might need to help you. You have tools on the walls. Whatever 

you might need to help.” Both teachers encouraged students to use math manipulatives to solve 

the tasks. 

Sub-theme 4: Students Used Physical Gestures to Respond to Cognitively Demanding Tasks    

       During the audio and videotaped observations, students used several physical cues to 

interact with the cognitively demanding tasks, their peers, and the teacher. Even though students 

in both classrooms raised their hands to respond to teacher questions, the study’s video 

observations and field notes captured a variety of physical and silent bodily responses. For 

example, during Tasks 4 and 5, students in Teacher B’s classroom frequently pointed at the 

number lines and even the questions within the task. For example, student E said, “Guys, we 

know if 8/8 is here in the number line [as he pointed], then it is longer than one whole.” In 

addition, the students even moved their bodies towards each other when discussing the tasks, 

while student D displayed frequent movement to get materials, play, and laugh. The interactions 

characterized under this theme included watching and observing the students as the teacher 

posed the task and other students shared their results. 

Theme 4: Students Proved and Explained Thinking and Reasoning about Cognitively  

Demanding Tasks 

      A mathematical practice that was visible in the videotaped observations of the tasks was 

encouraging students to defend their ideas and solutions to each other. Furthermore, the study’s 

findings were in line with Principles to Action, which states that in the socio-mathematical 

context of the classroom, students should justify their solutions and explain how they arrived at 

them. This theme revealed that during the task’s launch, exploration, and discussion phases; 

students interacted to solve problems by sharing their thinking within the focus group of 
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mathematically talented students. Within the study, teachers asked the students to prove their 

answers. For example, in the Piece of Yarn Task 1 (see Appendix), Teacher B said, “How can 

you use a number line to prove that your answers are correct?” Students were also encouraged to 

share their thoughts with their partners. In Task 5, Sharing Licorice (see Appendix F), Teacher A 

said, “You are going to talk about what you are thinking with your partner.” Then, Student E 

said, “Let me hear someone else's explanation why,” and Student A responded, “She’s correct 

when she says 1/2.” With this final task, Student F had full-paragraph explanations on her paper. 

Theme 5: Students Interacted with Reflective Communication to Reason and Solve 

Tasks     

           Reflective communication with oneself was one-way students persevered and made sense 

of their interactions with tasks. Although there was a constant hum of voices and oral discourse 

in this social constructivist environment, video observations revealed many independent and 

quiet thinking moments. Furthermore, the findings from classroom observations and focus 

groups revealed that students often used reflection and metacognitive thought to interact with 

tasks by asking themselves questions or writing notes to themselves. Moreover, in Classroom A, 

students often lean down on the table, studying the task deeply at the start of the exploration 

phase or when productively struggling near the end of the task. In Classroom A, Student F shared 

a metacognitive strategy she used in the post-focus group: “I found helpful how like, I did not 

know what a word meant, like, um, when it was a word problem. I do not know how to say it, but 

I know what I meant by that. So, I just started to think of what it meant. Um, but I remember one 

of them like it said on record. I did not know what that meant. I was just thinking in my brain, 

‘What could record mean?’” Student A also shared a metacognitive strategy by saying, “I 

normally say, say in my head, like how am I able to solve this? Like, how am I going to do it?” 
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          An example of this type of reflective thinking is when students say things in their heads 

and use metacognitive strategies to solve problems. Besides, a few codes revealed that students 

used metacognition and Mathematical practice four to justify their thinking and persevere with 

reasoning. For example, during Tasks 3 and 4 of the Comparing Fractions tasks, Students A and 

B were observed staring off into space and deep in thought. While in the pre-focus group, 

Student A shared that she “normally says the math problem in her head” and asked herself, 

“How am I able to solve this?” When asked in the pre-focus group how they interacted with 

tasks, Student A said, “I normally say, say in my head, like how am I able to solve this? Like, 

how am I going to do it.” Student B said that when he reads a problem, he thinks about it in his 

head for a minute and holds the number in his brain. Then he will hold on to it until he needs it 

later or tells his partner (Student E).  

During Task 5, “Sharing Licorice,” Student C from Classroom A thought aloud about 

how to reflect on and interact with the task. During the video observations and the post-focus 

group, Student C shared that she asks herself questions and tries to restate the problem in her 

own words. She said, “The more I think in my head about how I am solving the problem, the 

better I can solve it.” 

Summary of Themes for Research Question 1  

      From Research Question 1, five themes emerged that described how the mathematically 

promising students in the study interacted with cognitively demanding tasks. Themes one, two, 

and five in the classroom’s instructional triangle were directly connected to interpersonal 

communication (Cohen et al., 2003). While themes Three and Four showed students interacting 

with tasks using written, verbal, symbolic, and visual representations that all correspond with the 

conceptual framework of multiple representations to model mathematics within the socially 
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constructive space of their small group (Lesh et al., 1987). Also, students could interact with 

tasks due to the space and ability to choose their materials, student groups, and how they solved 

tasks. The social nature and use of discourse during the task’s launch, exploration, and 

discussion phases also led to many interactions, connected the framework of social 

constructivism to the themes generated, and gave examples from my codebook of raw data (see 

Table 7). 

Research Question 2:  What Mathematical Practices Did Mathematically Promising 

Students Use to Complete Cognitively Demanding Mathematical Tasks? 

Theme 1: Students Solved Tasks by Making Sense of Problems and Persevering Through 

Them 

Sub-theme 1: Students Reasoned with Perseverance to Complete the Series of Tasks 

Throughout the study, students attempted to solve problems and make sense of them. 

Results from Table 10 (see Appendix) demonstrate how students discussed their use of sense-

making while using Mathematical Practice 1 in the focus groups. Students persevered through 

Task 5, “Sharing Licorice,” by using social interactions and productive failure. Through their 

social interactions, students could talk and reason about the task and figure out how to partition 3 

wholes into 24 pieces. Table 11 provides examples of direct findings and codes from the data 

that show student perseverance with tasks. 

Student Actions. Students used Mathematical Practice 1 throughout the study. 

Findings from the focus groups showed that the students felt unable to give up on the problems 

and used their tenacity to complete cognitively demanding tasks. For example, during the pre-

focus group, students said, “Geometry was hard, and the test questions on their benchmarks were 

challenging with pictures.” By the end of the post-focus group, students gave more examples of 
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their own feelings of success from their perseverance with tasks. For example, students indicated 

that partitioning the number lines and explaining math in writing with symbols, length models, 

and charts in addition to words was challenging; but it helped them understand mathematics. 

Table 9 (see Appendix) provides examples of how students used productive struggle to solve 

tasks. 

Teacher Reflections. Findings from the Google debrief form also support the idea that 

perseverance seems to increase throughout the series of tasks in the study. For example, when 

asked, “How did students persevere and reason with the task?” At the beginning of the study, 

Teachers A and B rated Task 1, “Piece of Yarn,” with a rating of 7. By completing Task 5, 

“Sharing Licorice,” both teachers rated their student's perseverance as a ten from both teachers. 

Teacher A also mentioned that they noticed the students experimenting with different strategies. 

For example, teacher A observed one strategy of perseverance and sense-making. She says, 

“When I asked a question, if the students didn’t know what to do, they often reread the problem 

or talked through their solutions together.” Teacher A also noted in the Google debrief form that 

she felt her students did not completely finish Task 1, “Piece of Yarn,” so she planned to change 

her questioning and scaffold more to help the students make more sense of the task in her launch 

(see Figure 5).  

Subtheme 2: Students Used Metacognitive Strategies with Problem Solving 

Mathematical Practice 1 focuses on students’ ability to understand and persevere through 

problems (CCSI, 2010a). It also represents students' ability to interact with themselves via 

metacognition by explaining the meaning of a problem and looking for entry points to the 

solution of a task. Data from the observations suggested that students used metacognitive 

strategies to reason and solve problems. 
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Teacher Actions. Teachers reported that students used Mathematical Practice 1 as they 

completed tasks. In addition, students used metacognitive strategies when thinking through tasks 

to understand mathematical problems and persevere through them. Also, findings show that 

teachers modify their teaching to encourage students to engage in this practice. For example, 

Teacher B, in particular, encouraged her students to use more independent reflection and 

thinking time at the launch of the task. After debriefing Task 1, Piece of Yarn, Teacher B felt her 

students were not thinking deeply enough about the task, and she expressed in the Google debrief 

form that she did not want to give them too much scaffolding. To influence students to make 

more sense of their thinking, she used five minutes of personal work and reflection time starting 

with the initiation of Task 2. 

To further build sense-making, she also used think-aloud. She practiced some questions 

for Task 2; “Like If I read this problem, I might be thinking that I know several fractions like 4/8 

that are the same as ½ inch of rain,” I also might be thinking that I can represent the fractions in 

the chart in many ways. So, I might visualize how to see the fractions before I start writing.” 

After practicing a think-aloud at the beginning of Task 2, Measuring Rainfall, Teacher B 

encouraged her students to reflect and interact deeply with the question before collaboration by 

saying, “For the first 5 minutes of the task, I want you to work quietly at your own seat, then 

they move to the group table.” 

Teacher Actions. Findings from this research question also showed that teachers used 

oral discourse and the reading of cognitively demanding tasks to assist students in understanding 

the problems. This theme was divided into several subthemes. First, the teacher and students read 

directions together to begin each task, but during the observations, teachers frequently recited 

statements made by the students about the tasks to encourage reflection. Teachers also read the 
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problem aloud and reread the problem at the beginning of the study or when students were 

having difficulty. For example, Student F and Teacher A reread problems to solve orally. 

Teacher A began each task by saying to her class, “Let's read it again to see if that helps.” This 

reading strategy assisted students in making sense of the tasks before interacting within the small 

group.  

Student Actions. As seen in the video observations, students used reflective thinking to 

complete tasks. Even Student D maintained silence while reading the problem twice. Throughout 

the tasks, every student worked more deliberately and with greater focus. Also, during Task 2, 

Student E frequently raised his hand to signal the teacher that he had read the passage, taken 

notes, and immediately written down steps to help solve the problem after reading. When the 

students began talking and interacting about the task, Student E emerged as a leader, sharing his 

thoughts. “Guys I was thinking, we need to give all the fractions a common denominator so we 

can see which is equal.” I was trying to make the designs in my head and see what ⅜ would look 

like; what did you guys think?” This reflection naturally resulted in more engaged teamwork 

during the task enactment. 

In addition, the post-focus group findings from Classroom B showed that metacognitive 

thinking occurred before partner sharing as part of the Instructional Triangle of interaction 

(Cohen et al., 2003). During the post-focus group, students B, D, and E from Classroom B said 

the teacher gave them some quiet time to solve the problem. First, they thought about all the 

ways they could solve it; then, they wrote them down on paper. Student B also added that taking 

the time to think through possible solutions for the problem enabled him to connect what he had 

learned in class and ensure he was not guessing. He, therefore, believed that he improved in 

problem-solving and teamwork. 
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Theme 2: Students Used Multiple Representations and Tools When Modeling Their 

Mathematical Thinking 

  Throughout the study, visual, symbolic, pictorial, written, and verbal forms of 

mathematics were all present in the task as multiple representations of mathematics (Lesh et al., 

1987). To conclude, the students’ mathematical practices used to model mathematics during the 

study analyzed relationships between all representations of mathematics, including numbers, 

symbols, words, and models. Furthermore, students routinely modeled mathematics with their 

interpretations by asking questions like, “Does they make sense?” “What tool should I use to 

show my thinking?” thus helping themselves improve the model if it has not served its purpose. 

In addition, the student work analysis, post-focus groups, and memos showed evidence of 

mathematical modeling in both study classrooms. 

Student Actions: Classroom Observations. Data from classroom observations showed 

that students frequently used picture comparison to solve cognitively demanding tasks, modeled 

with representations, and used Mathematical Practice 4. In focus groups and observations, it was 

clear that students used area models, length models, pictures, drawings, and physical 

manipulatives to complete tasks. For example, in Task 1, the Piece of Yarn task, students used 

only their fraction walls to relate the number line to their prior understanding. Also, during Task 

3, in Classroom A, Measuring Rainfall (see Appendix D3), students used their fraction walls to 

make sense of the table (see Figure 6). Additionally, in Task 1, “Piece of Yarn” (see Appendix 

D), Students C and G merely drew models on their papers (see Figure 7). Still, they decided to 

use fraction bars to create a few of the task’s fractions in order to arrange them in numerical 

order. Unfortunately, in Classroom B, during Comparing Fractions, Task 3, Student D could not 

express his comparisons in words, but he eagerly got up to use the fraction bars to create and 
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rebuild each set of fractions in the task. For example, Student D said, “This is what I did with my 

number line to compare.” 

Focus Groups. In the post-focus groups, students indicated that the manipulatives and 

fraction tools helped them complete tasks when they were unsure of how to represent the 

problems. Furthermore, the students in the post-focus groups gave some examples of modeling 

mathematics using tools. For example, Student F said, “I had to use the fraction bars. I can line 

up two bars, like two fourths and one half and easily compare them. Using them helped me feel 

better when comparing fractions.”  Student D also added that modeling with the fraction bars 

helped him split the number line into thirds and then just keep on doing it like (umm), especially 

on Task 5, Sharing Licorice. “It really helped me like them. “So, I just liked the fraction bars.” 

Student F also shared in the focus group that she did not understand the number line one, so she 

just drew an area model to help her see what was going on in the number line in order to 

understand it better. Besides, Student D also said he liked using fraction bars to split up the 

numbers into thirds. 

During the post-focus groups, students said that using different representations to model 

mathematics helped them enjoy the study. For example, when using the area models, Student C 

would pile hers on top of one another (see Figure 3). Also, in classroom A, Student A shared, 

“We like the pictures best.” Student F echoed this indicating, “I think like, I usually do words 

and like symbols are technically everything that you write down like that write down word, 

symbols and numbers.” Further analysis of student work via document analysis revealed that 

students' model drawings, partitioning number lines, and symbolic reasoning were all very 

frequent and related to codes revealing over 60 interactions within the series of five tasks (see 
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Table 9). Figure 7 shows many area models drawn throughout the tasks when observing the 

student’s work. 

 

Student Actions. After speaking with the teachers and reviewing the students’ work, it 

was noted in the memo for Task 3, Comparing Fractions on a Number Line, that six out of seven 

students were correctly able to label all the partitions and represent the task with at least three 

types of representations: area, length, and symbolic representations. As they continued through 

the series of tasks, the students used various mathematical modeling techniques and presented 

their representations to their peers and the class.  

Teacher Actions. Comparison of models and symbolic reasoning was also encouraged 

by the teacher. Teacher B explicitly asked, “How many of you drew an area model?” Teacher B 

also shared her observations about how students used multiple representations to help them solve 

cognitively demanding tasks. Furthermore, she had specifically observed her students using a 

fraction paper tool (a fraction wall to show equivalence) that they made to help them compare 

fractions. They did make an effort to explain why without much prodding. Teacher B encouraged 

the use of tools by saying, “So when you use a number line, a picture, that may help you 

visualize. You may use the area models like the ones on the poster over there. You must show 

me how you get your answer.”  

Teacher Reflections. When I met with teachers to do the task debrief, they both noted 

how their students used Mathematical Practice 4 frequently to solve tasks. Findings from the 

Google debrief form showed that 90% of the time, students constantly used representations in 

their interactions with visual, symbolic, and physical representations, as observed by their 

teachers (see Figure 5). For example, teacher B initially noted in the Google Debrief form that in 
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Task 1, “Piece of Yarn,” students used the fraction paper tool they made to help them compare 

fractions as it is a visual representation of the tiles and number lines. By completing task four, 

“Comparing Fractions,” her observations had become more in-depth while the students were 

modeling with mathematics. According to Teacher B, “One student thinks beyond 3rd grade 

level with the task, three of the students drew out their strategy to answer questions. I noticed 

two students did not make the connection with number lines and area models without proving 

that 2/6 and 4/6 could be compared on the same number line and started to draw two number 

lines (one for each fraction).”  

Throughout the study, Teacher A paid close attention to her students’ representations and 

modeling of mathematics. She stated in the Google debrief form that students' used their 

understanding of equivalence and modeling mathematics on the number line to complete Tasks 1 

and 3. She said, “I feel like overall many students had a pretty good understanding that the labels 

on the number line were able to help them identify the missing numbers.” However, a few 

students were unable to figure out how to label the items with the information given. 

Theme 3: Student Used Stamina and Ability to Productively Struggle When Solving 

Cognitively Demanding Math Tasks 

Student Actions: Focus Groups. According to evidence from the audio-and videotaped 

observations as well as the focus groups, students used productive struggle when solving 

cognitively demanding tasks. Their work with productive struggle was influential throughout the 

tasks and helped them to become thinkers and doers of mathematics. Furthermore, during the 

pre-focus group, students had the perception that hard math was regrouping and geometry. For 

example, student C said, “Like shapes and stuff that's kind of confusing.” Also, student B shared 

his frustration by saying, “Regrouping is just so hard.” While student A gave a specific example 
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of being confused on a recent assessment by saying, "It showed this rectangle, and it said the 

area but there’s another rectangle inside of it, but it also showed the area of that, and you have to 

add the areas of that together. I found that kind of confusing.” 

Post Focus Groups. After the post-focus groups, six out of the seven students agreed that 

Task 5, “Sharing Licorice,” was the most challenging task they had completed in math. “It 

stumped me,” Student E said. Student D also mentioned that he could not complete one of the 

tasks, and his paper was blank. Student B said, “because it was like you had to split it up into 

three parts. It was very tiring for your brain because it made you do like 24 little marks” (see 

Figure 4). Student A expressed her frustration about Sharing Licorice saying, “Partitioning the 

number line was hard,” “it was like, “splitting it up, had me thinking “Oh my God, how many 

pieces have I done already.”  Also, Student G stated that she did not really understand the 

number line task, so she drew an area model to help, while Student F felt that Measuring 

Rainfall, Task 2, was the hardest. She said that there were so many lines on the task that you 

could not see which one was which. According to Student F, she felt she was not good at 

comparing fractions, so she struggled with this task. However, she stated that after using the 

fraction bars and doing another comparing fractions problem with the number line, she felt she 

improved with comparing fractions. 

Furthermore, the productive struggle was crucial in revealing a greater lesson in the post-

focus group. After expressing how frustrating the previous task was and how they used 

productive struggle to solve it, Student F said, “You should not give up on anything. Like you 

should keep going.” She said solving these challenging tasks helped her grow stronger, and now 

she knows she can solve any math problem and not give up in life when things get hard. 
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  Document Analysis. Overall findings from the document analysis of the tasks showed 

that the students completed 33/35 tasks as they successfully struggled through each task. The 

tasks, teacher, and fellow students all assisted the students in solving problems independently. 

During the study, I noticed that while one student knew how to complete the task, she struggled 

to explain her thinking and was unable to understand certain probing questions. While students 

were able to at least start labeling, some were stuck and were getting a little frustrated. However, 

being able to discuss in small groups appeared to help them start to put together some 

understanding of mathematics. 

Sub-Theme: Students Grew as Productive Strugglers Through Emotional Reactions When 

Solving Cognitively Demanding Tasks 

Student Reflections. During the focus groups, students revealed various emotional 

interactions when solving cognitively demanding situations. When asked during the pre-focus 

group, “What was their favorite part of solving challenging math tasks?” students expressed a 

variety of emotions. Students D and F began the study by complaining that challenging problems 

took too long. Also, Student E considered challenging problems such as multiplication and 

division. Student C said, “shapes are confusing for me to remember like the names of 

“parallelograms and stuff.” In addition, Student A expressed her frustration with the state 

assessments’ confusing pictures and diagrams. During the pre-focus group, she described a 

problem with 20 bars that she thought represented 5 x 4, but it was five times 40, and she found 

the pictures confusing. After the study, students expressed a range of emotions, including 

Student E, who said, “It was very tiring for your brain,” 

Student Actions. Although students found these math tasks to be frustrating, the 

productive struggle of this study revealed that they enjoyed solving cognitively demanding tasks. 
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For example, in the post-focus group, Student D stated that finding equivalent fractions was 

enjoyable. Student A also stated that math “calms me down” while Students G and C smiled 

about their experience and echoed, "I really like finding equivalent fractions.” At the end of the 

study, Student D from Teacher B’s classroom and Student F from Teacher A’s classroom both 

agreed that they enjoyed the tasks despite how difficult and time-consuming they were. 

 Teacher Actions. In the Google debrief form, the teachers also echoed this theme of 

excitement for productive struggle. For example, teacher B noted that although her students were 

excited to try something new, they were also wary at the beginning of the study because some 

students had difficulty eliciting deeper understanding. She also observed that some of her 

students struggled to stay on task at first, but by the end of the study, they were so engrossed that 

“I had to make them stop working. Other students in the class who I often do not hear from were 

excited as well.” 

Theme 4: Students Used Their Ability to Construct Viable Arguments and Critique the 

Reasoning of Others to Solve Tasks 

Sub Theme 1: Students Emerged as Doers and Thinkers of Mathematics by Justification of 

Thinking within the Instructional Triangle of Tasks, Teacher, and Amongst Themselves.  

        Justification of Thinking and Argument were obvious codes for Research Question 2, 

indicating that students were emerging as doers and thinkers of mathematics with this 

Mathematical Practice throughout the study of students' learning with the cognitively demanding 

tasks. However, both teachers in the study agreed that students’ abilities to justify and argue their 

solutions were inconsistent (see Figure 7). 

Teacher Actions. With Task 1, Piece of Yarn, and Task 2, Measuring Rainfall, teachers 

indicated that this mathematical practice of justification was inconsistent. They were unsure how 
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to question their students and how to scaffold the task without lowering the cognitive demand. 

Teacher A said, “students were most inconsistent with their arguments.” After Task 3, 

Comparing Fractions, Teacher A mentioned in her debrief form that she noticed students 

explaining their strategy to help their partner understand. Also, the results of audio and video 

observation show a few codes for arguments, but at this point in the study, the students were not 

sharing how they solved the problems or arguing that their solutions were correct; they were just 

saying, “I think they did well share their evidence and work after the first task of the study.” 

According to Teacher A, “Some students have a tough time showing a deeper level of 

understanding and have difficulty with tasks that aren’t ‘right there.’” By completing Task 5, 

“Sharing Licorice,” teachers indicated in the form that students were able to share and 

mathematicalize their thinking in a much more articulate way. 

Sub-theme 2: Students Used Mathematical Writing to Express Their Justifications and Argue 

their Conceptual Understanding of the Tasks.   

Evidence from the document analysis, focus groups, and teacher debrief form all showed 

several sub-themes with how students used Mathematical Practice Four and mathematical 

writing to complete tasks. 

Document Analysis. According to document analysis, students used Mathematical 

Practice 4, mathematical explanatory, descriptive, and argumentative writing to justify and 

explain their thoughts about how they solved problems. Tables 9 and 11 show examples of the 

types of mathematical writing and how students used this mathematical practice to demonstrate 

an understanding of the tasks. Students used explanations in four out of five tasks, with students 

in classroom B using ⅓ more explanations than students in classroom A. 
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Mathematical writing and argumentation were also evident, as labeling was one of the 

most frequently discovered codes in document analysis (see Table 9). Since mathematical 

writing can be a symbol or form of prose, students justified their mathematical thinking and 

representations with mathematical writing by using short phrases and labels such as inequality 

symbols, words, and numbers. The appendix shows examples of how classroom A students 

labeled the tasks with words and names to help them solve the problem (see Figure 4).  

Focus Groups. The post-focus group transcript also included reflections from students 

on how they completed tasks using Mathematical Practice 4 and critiqued their reasoning 

through argumentation. During the post-focus groups, Student B explained how he used the 

numbers, writing, and words in the problem to support his answer: “Like something that kept on 

repeating was like supporting your answer by using numbers, writing, or using words.” Also, in 

the post-focus group, Student G shared some interesting thoughts about the purpose of 

mathematical writing or using prose to show symbols, words, or phrases to demonstrate evidence 

of her mathematical thinking. She said, “the tasks gave her so much room on the paper to show 

her thinking. She couldn’t complete her work without explaining how she did it or describing 

what was going on in her brain to others.” Her motivations for writing mathematically. “The 

writers of the tasks give you directions to make sure you know what you are doing. Say I only 

use numbers and they ask you to use words and you do not know what to use for words. Because 

your words and numbers must go together. Words cannot just be numbers. The words explain 

what you are thinking, and they want to make sure you know everything you are doing.”  

Theme 5: Students Used Mathematical Precision and Ability to Make Connections with 

Mathematics  

Sub-theme 1: Tasks Influenced Students to Attend to Precision with Mathematics. 
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Student Actions. The task results show that students completed tasks by using 

Mathematical Practice 6 and paying attention to precision. Table 9 shows how students 

completed tasks involving document analysis, specifically symbols and partitioning. 

Furthermore, Table 11 in the appendix shows how students used mathematical precision when 

solving cognitively demanding tasks.  

Document Analysis. Comparison. Findings from all five tasks showed that students 

drew area models and partitioned number lines. Consistent with Lesh’s Representational 

Translational Model (1987), students used comparison symbols greater than or less than, as well 

as drawing two area models side by side. as shown in Figure 4, other students showed 

comparison using written words (see Appendix D). Furthermore, Task A3 and Task B3 (see 

Appendix F) specifically asked students to use symbols to make comparisons with Task 5, 

Sharing Licorice, when they were asked to partition a number line. As students partitioned the 

number line in this task, creating the number line themselves required precision, and this was 

something they had never done before.   

Observations. Results from document analysis and memos revealed that students 

became more precise as the study progressed. In Task 1, Piece of Yarn, Students A and G were 

noted to draw some marks on the number line to label fractions. Student A was very meticulous 

and showed mathematical precision as she divided the number line. When the number line in 

Task 3, Comparing Fractions on a Number Line, did not have all of the equivalent fractions 

drawn in, Students C and G worked together to iterate units to measure where to split the number 

line into sections (see Figure 5-6). By completing Task 5, “Sharing Licorice,” the students were 

able to partition the number line into sections (see Figure 7-8). Students A and F even used a 

ruler to try and measure the number line in order to divide it into exact sections.  
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Teacher Actions. Labeling was a strategy when students got stuck. According to Teacher 

A, “Many students were able to at least start labeling, however, some were stuck and were 

getting a little frustrated. However, when they can discuss in small groups it seems to help them 

start to put together some understanding.” 

Sub-theme 2: Students Reasoned by Making Connections Between and Among Math 

Concepts to Solve Tasks 

Students Actions. Throughout the study, students were able to identify important 

quantities or fractions in each task and make connections between and among the fraction tasks 

as well as other math topics. For example, in Task 1, “Piece of Yarn” (see Appendix D1), and 

Task 5, “Sharing Licorice” (see Appendix D5), students made connections between the number 

lines that were present in the tasks, flowcharts in the classroom, and the fraction strip walls they 

had made in class. Student C said, “this reminds me of the task with yarn and ribbon except it 

has no numbers.” “Lots of these tasks have number lines and are like each other; number lines 

have lots of fourths and eights.” Student D said.  While Student B said, “Yeah, equivalent 

fractions are like division 8 divided 2 is 4.” When students made connections between math 

concepts using tools like diagrams, two-way tables, graphs, flowcharts, and formulas, they used 

Mathematical Practice 1 to persevere in problem-solving. 

  During the post-focus group, students shared some of the ways they made connections 

when solving tasks. “Student B shared that the series of tasks encouraged him to use more words 

when I am doing math like usual. I like to record that 2/4 + 4/8 is equal to one in just a number. I 

now understand how numbers are related to fractions and adding. I like how I figured out this 

thorough explanation instead of just memorizing it.” 
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Sub-theme 3: Tasks and Teachers Connected Real Life to Mathematics and to the Tasks 

Themselves  

       Teachers Actions. Throughout the study, teachers made comments and asked questions to 

help students make connections between the tasks, other mathematics they had learned, and real-

life situations. Below are a few examples of data collected from the Google debrief form and 

videotaped observations that matched this theme: Teacher A said, “Do you want to measure with 

something else that is flexible, and it just keeps losing its spot? That could happen, could not it.” 

With task 3, Comparing Fractions on a Number Line, Teacher A continued to expand students’ 

knowledge and the development of this practice. In her launch of this task, Teacher A said, 

“Remember, we did it with our rope number line. Teacher A: Okay, well, you must think about 

first you got to compare them you got to see which one is longer.” Even though Teacher A 

mentioned she did not feel as confident in her delivery of the first task, she felt she gave away 

too much or insufficient information, which may have caused some confusion among her 

students. After the first debrief memo, memos revealed some influence from Teacher A. She 

intentionally made connections among the tasks and used real-life objects like ribbons, rulers, 

and licorice so her students could see the similarity between the tasks. She also wanted to ensure 

she had the right amount of scaffolding and background knowledge for the students. At the end 

of the study, she felt her students did well because of their background knowledge of fractions 

learned over the last few weeks. She also mentioned how important she realized it was to give 

her students the right background. 

In addition, memos after Task 1 showed that Teacher B immediately launched the first 

task by saying, "A lot of times when people buy ribbon or use something, they use ribbon to 

make something like the bows for a wreath or your hair. Or whatever you might be using 



 

 
 

113 

wrapping paper." She intentionally launched each task with a real-life connection. In the 

debriefing moments, she said her work with SIOP and Culturally Responsive Literacy gave her 

some ideas about how to launch the tasks. 

Summary of Themes from Research Question 2 

      In summary, the data presented for Research Question 2 revealed five major themes 

about how mathematically promising students used mathematical practices to solve tasks. The 

data sources provided after these themes show evidence to support the conclusions I drew from 

the themes. Furthermore, Table 9 shows additional examples of the mathematical practices and 

how students used them throughout the study tasks (see Table 9). Besides, the following themes 

were noted: 

Theme 1: Students completed tasks by making sense of problems and persevering in solving 

them. 

Theme 2: Students used multiple representations and tools to complete tasks and model 

mathematics. 

Theme 3: Tasks and the socially constructed space facilitated students’ ability to productively 

struggle when solving cognitively demanding math tasks. 

Theme 4: Students used their ability to construct viable arguments and critique the reasoning of 

others to solve tasks. 

Theme 5: Students used mathematical precision and the ability to make connections with 

mathematics. 

Summary of Findings  
 

      As a result of this study, teacher educators, math coaches, gifted specialists, and 

administrators may better understand the actual interactions and application of mathematical 
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practices between students and tasks, as well as between students and teachers, when posing 

cognitively demanding tasks. This research may potentially highlight and lead to the 

development of a curriculum to help teachers teach, better engage questions, and generate 

productive failure and problem-posing during cognitively demanding task enactment. This 

research will also foster conceptual mathematical thinking and collaboration among curriculum 

coaches, specialists, and teachers who work with mathematically promising students.  
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CHAPTER V: DISCUSSION, CONCLUSION, & RECOMMENDATIONS 
  

Overview 

  

            This chapter begins with a summary of the study’s problem, purpose, research questions, 

and methodology. In this chapter, I will summarize the findings drawn from the data in Chapter 

IV. Then, based on the findings and their applicability to elementary mathematics education and 

gifted education, I will discuss the implications and make recommendations for future research. 

The remaining part of this chapter will include the following: a summary of the study, major 

findings and connections to literature, major findings and connections to theoretical frameworks, 

implications, limitations, and recommendations for future research based on the findings of this 

study. 

The Problem  

Students who are mathematically promising in the United States are well behind their 

peers in state and international assessments of mathematics achievement. While this issue can be 

broadly addressed with all students in the United States, the achievement of students identified as 

mathematically promising on the most recent National Assessment of Educational Progress 

(NAEP, 2020) exam also revealed that few students have an advanced understanding of 

mathematics. For example, on the NAEP Assessment, only 9% of 4th graders scored at the NAEP 

Advanced level (NCES, 2019).  
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Furthermore, the underrepresentation of student groups of color in gifted and talented 

programs may have a negative impact on long-term educational attainment (Triplett & Ford, 

2019). In addition to the excellence and achievement gaps shown nationwide by the NAEP 

(2020) (see Figure 1), reports like these show the persistence of inequity among our 

mathematically promising students. Besides, the problem exists not only with assessments but 

also with opportunities for advanced learning. For example, in a 2019 report, E(race)ing 

Inequity, approximately 11% of students in North Carolina Public Schools were considered 

academically or intellectually gifted (AIG) (Triplett & Ford, 2019).  According to Tripplet and 

Ford (2019), inequity in AIG high school math classes is prevalent in North Carolina because 

Asian and White students are over-represented compared to their percentage of the total state 

student population. However, in comparison to their proportion of the total state student 

population, American Indian, Black, and Hispanic students were under-represented (see Figure 

9) (Triplett & Ford, 2019). In addition, race and ethnicity are significant predictors of differential 

AIG designations, net of all other relevant factors. Therefore, it is recommended that 

mathematically promising students, especially those from underrepresented races, be included in 

similar studies (Gavin, 2011).  
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Recently, there has been more local research and curriculum development for inquiry-

based mathematics instruction, which may increase achievement at advanced levels in 

mathematics, especially in the Southeastern United States. Also, some state programs have 

developed new curriculum materials for all students using task-based instruction and trained 

teachers on how to implement cognitively demanding tasks, especially at the elementary level 

(Gavin & Casa, 2016; Tools 4 Teachers, 2019). In addition, many studies have been conducted 

over the past few decades indicating the need for cognitively demanding math instruction, 

starting with Stein and Lane (1996) and Smith and Stein (1998). However, prior studies dug deep 

into the roots of mathematical promise and students’ mathematical identity (Ainley & 

Margolinas, 2015).  

Purpose of the Study  
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The purpose of this descriptive qualitative study was to explore the interactions and use 

of mathematical practices of seven mathematically promising third-grade students as they 

completed a series of cognitively demanding math tasks within the socio-mathematical norms of 

their classrooms. Using pre- and post-focus groups, classroom audio and videotaped 

observations, a teacher Google debrief form, field notes, as well as document analysis of student 

work, this research described the experiences of mathematically promising third graders from 

two classrooms. Therefore, the findings of this study reveal joy and successful learning outcomes 

when implementing inquiry-based tasks that focus on student interactions and the use of 

mathematical practices within a social-cultural space. Specifically, the study described student 

interaction, students' oral, written, symbolic, physical, and nonverbal representations, as well as 

emotional reactions to cognitively demanding math tasks. Also, the study described how the 

students used mathematical practices such as persevering through reasoning, constructing viable 

arguments, using abstract and quantitative reasoning, as well as precision when solving tasks.  

In addition, this study aimed to address gaps in the research, which focuses on how 

students interact during cognitively demanding math tasks. This study’s contributions to 

mathematically promising students are needed to support the current field of gifted education and 

the nurturing of mathematical promise. This research would address critical issues in the field of 

elementary mathematics education as well as potential solutions for addressing the need for 

inquiry-based instruction for mathematically promising students in mixed-ability classrooms 

(Gavin, 2011; Johnson et al., 2017; Sheffield, 1999).  

Findings In Relation to Research Question One 
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Research Question One: How did Elementary Mathematically Promising Students Interact 

with Cognitively Demanding Tasks?  

The purpose of Research Question One was to examine the relationship between the 

student’s interactions with one another and with the series of tasks, as well as how the students 

interacted with the teacher to complete the tasks. Furthermore, one of the most important 

emphases in past and current NCTM standards (1989; 2014) was to make problem-solving or 

problem-posing a central focus of school mathematics. One of the primary goals of mathematics 

teaching, as echoed in this study, was for students to solve complex problems involving social 

interactions (Stanic & Kilpatrick, 1988).  

With Research Question One, the following themes emerged, which indicated that 

students worked together in a socially constructed space to interact and solve tasks. Their 

interactions involved reflection, communication, and the connection of visual representations of 

mathematics. Interaction with cognitively demanding tasks using representations.  

Theme 1: Interpersonal Communication: Students Used Interpersonal Interactions to Solve Tasks 
  
Theme 2: Interpersonal Interactions Between the Student and Teacher that Helped Students 
Solve Tasks 
  
Theme 3: Students Interact with Tasks by Comparing Visual Representations of Fractions to 
Solve Cognitively Demanding Tasks  
  
Theme 4: Students Prove and Explain their Thinking and Reasoning about Cognitively  
Demanding Tasks 
  
Theme 5: Students Interacted with Reflective Communication to Reason and Solve Tasks 



 

 
 

120 

 

Findings in Relation to Research Question 2 

Research Question 2:  How Did Mathematically Promising Students use Mathematical 

Practices as They Completed Cognitively Demanding Tasks?   

            Research Question Two delved deeper into how the students used mathematical practices 

while interacting with cognitively demanding tasks. Analysis of the focus group transcripts, work 

samples from the document analysis, and the Google debrief form determined how the students 

used mathematical practices to complete tasks (see Appendix C). According to the study’s 

findings, students used five major mathematical practices to complete tasks (see Table 10).  

Also, the findings of Research Question 2 are relevant to current research in mathematics 

education because teachers used instructional strategies to facilitate students' use of mathematical 

practices. 
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Furthermore, current research also aligns with this study’s findings regarding the types of 

questions teachers ask during task enactment. It has been suggested that teachers ask leading 

questions to enable students to develop reasoning and conceptual mathematical understanding 

(Carpenter et al., 2015; Kisa & Stein, 2015). To that end, the teachers in this study encouraged 

students to ask each other questions, which aligns with the Mathematical Practices (CCSI, 2001). 

In addition, research has shown that teacher questioning has the potential to generate students’ 

responses about their mathematical thinking, problem-solving, and strategies (Hufferd-Ackles et 

al., 2004; Martin et al., 2017). This study revealed this research to be true, as the development of 

students’ ability to persevere and reason through tasks was facilitated by the teacher's effective 

use of questions in interpersonal interactions.  

In relation to Research Question Two, Mathematical Practice 4 calls for mathematical 

practice and the use of appropriate tools strategically, which is also evident in this research. For 

example, students used tools such as rulers to help them with Task 2, Measuring Rainfall. 

Students also used rulers to be precise in partitioning their number lines in Task 5, “Sharing 

Licorice. “Furthermore, focusing on research based on a mathematical triad of interaction, 

known as the “Instructional Triangle” with students, teachers, and cognitively demanding 

mathematical tasks, is necessary to make the transition to inquiry-based teaching, which 

encourages reasoning and problem-solving from all students (Cohen et al., 2003). 

Discussion in Response to Conceptual Frameworks  
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To better understand the interactions of mathematics among students and the actions 

required of teachers to nurture students’ mathematical promise and conceptual understanding of 

tasks, I used two conceptual frameworks to guide this study: Lesh’s (2008), as shown in Figure 

2, and Cohen and colleagues’ (2003) Instructional Triangle, as shown in Figure 3, in order to 

better understand the interactions of mathematically promising students with cognitively 

demanding tasks. 

Lesh’s Model of Mathematical Translations of Representations 

According to Lesh’s (1987) Model of Multiple Representations, mathematics is the study 

of the interrelationships between concepts and ideas. In mathematics instruction, multiple 

representations should include concrete, verbal, numerical, graphical, contextual, pictorial, and 

symbolic components, as shown in Figure 2. Within the findings of this study, all modalities of 

interaction were noted when students solved tasks within the audio and videotaped tasks. Some 

tasks within the study (see Appendix F) involved more physical representations, while others 

involved more symbolic representations. Therefore, I recommend the implantation of a series of 

tasks in future studies to allow students time and space to utilize multiple representations of 

mathematics, such as drawings, manipulatives, mathematical writing, symbols, and discourse. 
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With the study’s series of tasks, students could make multiple connections with 

mathematical visual and symbolic representations. Within the study, Task 4, Comparing 

Fractions, focused on the comparison symbols of greater than and less than. While Task 1 

involves a “Piece of Yarn,” Task 3 involves Comparing Fractions with a Number Line. The 

number line representation was also emphasized in Task 5: “Sharing Licorice.”  While Task 2, 

Measuring Rainfall, used a table, the students were able to confidently solve a cognitively 

demanding task without prior exposure to scaffolded problems.  

Throughout the study, Lesh’s Model of Mathematical Representations framework, as 

shown in Figure 2 (Lesh et al., 1987), was linked to Research Question One and NCTM’s 

effective teaching practices of mathematical representations (NCTM, 2014), as well as the 

standards for mathematical practice. When students modeled mathematics to solve tasks, they 

identified important quantities in a practical situation and mapped their relationships using 

tools such as diagrams, two-way tables, graphs, flowcharts, and formulas. Finally, they 

analyzed those relationships mathematically in order to draw conclusions (CCSM, 2010a). 

 Inquiry-Based Math Instruction and the Instructional Triangle  
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Recently, the launch, explore, and discuss (LED) framework has been at the forefront of 

curriculum and instruction in elementary and secondary mathematics across the country, 

particularly in North Carolina (NC2ML, 2019). In order to demonstrate the relevance and 

importance of teaching a connected series of tasks, I chose the Tools for Teachers (2019) tasks 

for this study from an entire unit. Furthermore, teachers should differentiate and adapt 

instructional strategies for mathematically promising students using core curriculums like the 

one used in this study. Teachers should also choose tasks in a series so the prior knowledge of 

the multiple representations present could help support inquiry-based math instruction, which has 

been recently cited as an instructional practice that supports students with mathematical promise 

(Lesh et al., 1987; Van-Tassel Baska, 2021).  

Furthermore, the conceptual framework of the Instructional Triangle (Cohen et al., 2003) 

depicts interactions between teachers, tasks, and students. For example, students’ interactions 

with tasks within this study showed two major types of interaction relating to Research Question 

1. When students interacted with the tasks, Theme 1 showed that students interacted with tasks 

interpersonally. Whereas, Theme 2 showed that students interacted with tasks interpersonally. 

Also, the Instructional Triangle of Cohen and colleagues (2003) (see Figure 3) depicted a triad of 

interpersonal communication between teacher and students as well as the task. Equally, this 

study found that observational thinking, physical gestures, and symbolic thinking, such as social 

interactions with Theme 1 of Research Question 1, were all present. 

Discussion in Relation to Theoretical Framework: Inquiry Into Social Space Nurtured 

Gifts and Talents 
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The social constructivist environment and mathematically creative space in the study 

were created by Teachers A and B (Blumer, 1969). Both teachers gave the students room to 

spread out and represent their ideas using the tools of their choice, such as markers, 

manipulatives, pencils, or technology-based manipulatives, at a small group kidney table. Most 

importantly, the students could interact with one another in this environment due to a few key 

instructional practices used by their teachers (Yackel & Cobb, 1996). Furthermore, the teachers 

asked inquiry-based, open questions and encouraged the use of multiple representations within 

tasks. Due to the fact that they did not assign partners, the teachers in both classrooms allowed 

these students to work in groups as they chose with other mathematically talented peers while 

remaining in a separate area of the room with peers of similar abilities. For example, the students 

in Classroom A naturally formed two partner groups to divide the tasks. While Students A and G 

were both very vocal and shared almost every thought they had aloud with each other, two of the 

students interpreted mathematics more through explanatory writing and comparing their 

solutions.  
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Furthermore, this space within the socio-mathematical norms enabled the three boys in 

Classroom B to bring out their mathematically promising characteristics naturally. Interactions 

also occurred because Teacher B gave students this space. However, although she did not assign 

group roles to the students, she did use a different strategy, giving them five minutes of silent 

inquiry after the launch of each task. After that, she allowed the students to work together. 

Moreover, to meet the needs of her students, she adapted her instruction, as suggested by NAGC 

(2014) Standard 3, by differentiating the tasks. Besides, Teacher B did not assign group roles; 

instead, she made it clear to the students that they needed to demonstrate their thinking and 

explain their reasoning in more than one way. Due to the setup of the classroom social norms, 

Student B immediately shone as the group facilitator. He carefully read each question while the 

students naturally turned to face each other. In addition, Student D was a twice-exceptional 

student, so his ability to spread out and use the fraction bars to demonstrate his thinking and 

modeling of the task was impressive. Despite his processing issues, his written work did not 

reflect his oral understanding. He could laugh and enjoy the tasks while sharing his thoughts with 

the group. Finally, because he was the quiet student who stayed focused and wanted to keep the 

group on task, Student E naturally emerged as the questioner. The cooperative group also 

naturally enabled students to learn from each other (VanTassel-Baska, 2021). Equally, the 

students naturally encouraged each other to fail productively. They persisted in attempting to 

solve tough tasks, like Theme 5, in which students interacted with the behaviors of reflecting on 

metacognition, making notes to themselves, speaking quietly to themselves, and rereading tasks. 

All of these involved interaction between students and tasks alone, not with other students.  
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Discussion In Relation to Literature   

Connection to Mathematically Promising Students  

The findings of this study show that students displayed several characteristics of 

mathematically promising students like those in recent studies (Deal & Wisener, 2019; Gavin, 

2011; Rotigel & Fello, 2004). Furthermore, the students’ awareness and curiosity about numbers, 

their ability to solve work and think about abstract mathematical patterns and relationships, their 

ability to transfer mathematical reasoning to new and novel situations, and their ability to 

mathematical problems using flexible and creative thinking rather than sequential or standard 

forms of reasoning were a few themes that aligned with current research in gifted education and 

this study. In addition, research has shown that students with mathematical promise need 

opportunities to solve complex problems using non-algorithmic thinking, such as the problems 

under consideration in this study (Diel & Wismer, 2020; Gavin, 2011; Sheffield, 1999). 

According to the findings of Gavin’s (2011) study of mathematically promising students, 

students from underrepresented populations and schools, such as Riverview Elementary, need 

opportunities to explore mathematical tasks and socially interact with highly cognitively 

demanding tasks. This school and study setting provided opportunities for the students to fulfill 

their mathematical promise while also connecting this research to the current field of gifted 

education. More studies using a socially constructed space are recommended in the future. 

Findings Show Connection with Gifted Standards and Best Practices and Standards-Based 

Curriculum: Tools 4 Teachers Tasks 
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The findings of this study agree with Skemp’s (1987) as well as Smith and Stein’s (1998) 

original research that students require mathematical tasks other than procedures and low-level 

algorithmic thinking. This study also aligned with the NCTM Principles to Action (2014) 

because the standards require task implementation to be part of standards-based instruction. 

Furthermore, tasks with a high cognitive demand promote reasoning and students’ exploration of 

mathematical concepts and align with Standard 3 of the National Association of Gifted Standards 

(2014). According to the NAGC’s (2019) standards, educators should apply evidence-based 

models of curriculum and instruction. First, Tools 4 Teacher’s Tasks are research-based 

(NC2ML, 2019; Smith & Stein, 1998) and should be considered best practices for inquiry-based 

instruction when teachers adapt their instructional practices to best implement and enact such 

tasks with mathematically promising students. Furthermore, the study’s findings, especially 

NAGC (2019) Standard 3, Curriculum & Instruction (see Table 12 below), show how NAGC 

Standard 3: Curriculum & Instruction aligns with best instructional practices for mathematically 

promising students.  
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According to the NAGC standards (2019), teachers must respond to the needs of students 

with mathematical promise by planning, selecting, adapting, and creating a curriculum that 

employs a repertoire of instructional strategies to ensure specific student outcomes. In Table 12 

below, I show how the standards and the teachers’ instructional moves lead to favorable learning 

outcomes and a socially productive inquiry-based learning environment for mathematically 

promising students. Also, teaching mathematically promising students should be seen as a 

mosaic of different instructional strategies selected based on the instructional purpose of the 

lesson to be taught. Table 12 below shows how NAGC Standard 3 of curriculum planning and 

differentiation relates to the findings of this study. As you can see, several sub-standards, such as 

3.1.3 and adaptation of curriculum, as well as 3.2.2 and the use of connections, were 

incorporated into the work of this study. 

  Finally, in this time when public education is often underfunded, and teachers believe 

they cannot meet the needs of mathematically promising students with their curriculum, the 

findings of this study provide recommendations for how educators can successfully use the free 

state-granted work of the NC2ML (2019) with mathematically promising students by adjusting 

the socio-mathematical norms and placing students in a smaller ability group while facilitating 

tasks.   

Table 12  

NAGC Standards Evident with Mathematically Promising Students Task Based-Inquiry  

___________________________________________________________________________ 
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NAGC Standard Substandard Evident in 
this Study  

Tools 4 Teachers Tasks Are 
Beneficial for MP Students 

3.1 Curriculum Planning. 
Students with gifts and 

talents demonstrate academic 
growth commensurate with 
their abilities each school 

year. 

.3.1.3 “Educators adapt, 
modify, or replace the core 
or standard curriculum to 

meet the interest, strengths, 
and needs of students with 
gifts and talents and those 
with special needs such as 

twice  

exceptional, highly gifted, 
and English language 

learners.” 

3.1.4. “Educators design 
differentiated curriculum that 

incorporates advanced, 
conceptually challenging, in-
depth, and complex content 
for students with gifts and 

talents.” 

3.1.6- “Educators pace 
instruction based on the 
learning rates of students 
with gifts and talents and 

compact, deepen, and 
accelerate curriculum as 

appropriate.” 

  
Teachers adapted the core 

curriculum by choosing tasks 
for mathematically promising 

students.  
 

 

 

 

 

 

-Mathematical tasks from 
Tools 4 teachers in the study 
were challenging and can be 
classified as procedures with 

connections.   
-Tasks were multiple steps and 

in-depth 
  

-Tools 4 Teachers’ tasks were 
open-ended, and they were 

encouraged to use open 
questions. 

  
 -The focus group is an ability 
group for students to work at 

their own pace. Teacher A did 
offer a task extension with 

different numbers for Student 
A 
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3.3- Responsiveness to 
Diversity. 

Students with gifts and 
talents develop knowledge 
and skills for living in and 

contributing to a diverse and 
global society. 

3.3.2. “Educators encourage 
students to connect to others’ 

experiences, examine their 
own perspectives and biases, 

and develop a critical 
consciousness.” 

  
-Themes shows teachers 

connected tasks to real life, 
specifically  

-Task 1 Piece of Yarn 
-Task 2 Measuring Rainfall 

-Task 5 Sharing Licorice 
  

-Teachers connected the tasks 
to other classroom lessons and 
experiences in mathematics. 

3.4-Instructional Strategies 3.43- Educators use 
problem-solving models 

  
3.44- Educators use inquiry 
models to meet the needs of 
mathematically promising 

students  

-The Tools 4 Teachers 
Framework uses  

Launch, Explore, and Discuss  
where the exploration part of 
the task allowed for student 

inquiry. 
  

-Teachers used the LED 
Framework and differentiated 
for the MP students by asking 

them open questions and 
allowing them space to explore 

tasks in a group with other 
mathematically promising 

students. 

3.5- Culturally Relevant 
Curriculum  

3.5.1-Educators develop and 
use challenging culturally 

responsive curriculum  
  

3.5.3- Educators use 
curriculum for deep 

explorations of culture and 
language 

Tools 4 Teachers’ curriculum 
used a variety of students’ 

names and materials, such as 
yarn, licorice, stars, and rain 

from various cultures.  
-Students were able to explore 
vocabulary and language with 

fractions by working in a 
single-ability cooperative 

group during the explore phase  
-All students benefited from 

the mixed whole group launch 
and discussed phase  
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3.6 Resources 
Educators pace instruction 

based on the learning rates of 
students with gifts and 

talents and compact, deepen, 
and accelerate curriculum as 

appropriate. 

-This study allowed students to 
benefit because a high-quality 
set of tasks which were formed 
by a state fun grant of teachers 

were used 
  

-The students in the study were 
also allowed to use training 
camp online manipulatives, 

fraction bars, real-life objects, 
and their drawings 

  

  

  
Teacher Actions and Instructional Strategies Benefit Mathematically Promising Students  

  
Recent work from Van-Tassel Baska (2021) proposes teaching students with 

mathematical promise like a mosaic when placed in mixed ability groups. Besides, teachers 

should consider instructional strategies that provide mathematically promising students with a 

variety of differentiated instruction. Based on the findings of this study, teachers should provide 

opportunities for mathematically promising students to work in a socially constructed space with 

peers of similar abilities. Van-Tassel Baska (2021) stated that some materials have been 

researched and shown to be beneficial for all students. Also, the findings of this research show 

that cognitively demanding tasks are beneficial to mathematically promising students (Gavin, 

2011; Van-Tassel Baska, 2021).  
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According to the findings of this study, teachers should adapt mixed-ability classrooms to 

facilitate Tools 4 Teachers tasks using the Launch, Explore, and Discuss model (Tools, 2019; 

NC2ML, 2019). Firstly, Tools 4 Teachers’ classroom tasks focus on a non-didactic approach in 

which the reasoning does not focus on the correct answer. Secondly, Mann (2006) stated that 

tasks should provide these open-ended, inquiry-based problems using a variety of methods, 

which align with the cognitively demanding tasks of this study (Smith & Stein, 1998: Tools 4 

Teachers, 2019). 

Inquiry-Based Instruction is Relevant for Mathematically Promising Students  

This study’s findings align with the National Association of Gifted Children’s (2019) 

standards and a plethora of research in gifted education calling for high-quality inquiry-based 

instruction for students with mathematical promise in order to develop conceptual mathematical 

thinking and reasoning (Gavin, 2011, 2016; Henningsen & Stein, 1997; Lewis & Colonnese, 

2021). Also, recent scholarship connects to this study because both emphasize that real problem-

solving involves working on unfamiliar problems, out of context, and open-ended, as well as 

offering students’ real challenges by providing rich tasks and contexts (Anderson, 2003; 

Kilpatrick et al., 2001; Schoenfeld, 1992).  
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Furthermore, current research in gifted education confirms her findings, stating that 

mathematically promising students often require less teacher scaffolding to solve problems and 

frequently skip steps (Gavin, 2011; Van-Tassel-Baska, 2021). In fact, students with 

mathematical promise may be able to interpret and analyze math problems more quickly and 

accurately than their teachers and require “ill-structured problems” (Deal & Wismer, 2010; 

Gavin, 2011; Mann, 2006; Rotigel & Fello, 2004; Tomlinson, 1997).  

Findings Were Consistent with Other Elementary Studies with Mathematical Promise 

The goal of math instruction for mathematically promising students should be to 

encounter mathematical habits of the mind, including mathematical creativity, collaboration, 

skepticism, etc. (Van-Tassel et al., 2003). Findings from this study were similar to those of 

Katherine Gavin and Tutita Casa (2016) in their study of nurturing young student mathematics 

using curriculum from their M2, Mentoring Young Mathematicians, and Project M3, Mentoring 

Mathematical Minds, because both studies were grounded in mathematics and gifted education. 

In addition, both studies also foster challenging and motivating students to solve highly 

cognitively demanding math problems (Gavin & Casa, 2016) to show the correlation between 

achievement and using a curriculum that would develop the mathematical talent of students. 

Similarly, just like the students in Gavin and Casa’s (2016) study, the students in this study used 

sophisticated strategies to show their mathematical creativity.  
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Furthermore, recent research in gifted education has also emphasized that mathematically 

promising students benefit from student collaboration and affirms that students’ achievement 

drastically improves when they have opportunities to collaborate (Dorzi et al., 2021; VanTassel-

Baska, 2021). Also, cooperative learning demonstrates the positive effects of interdependence 

while highlighting the importance of personal accountability among students. For example, using 

turns, talks, and group structures to discuss mathematics, such as those used in this study, 

allowed students to interact, question, talk, and learn how students from different cultural groups 

desire to communicate as well as open doors and windows into their thinking (Ball, 1993, 

Dominguez, 2016; Johnson et al., 2017). In addition, this study revealed evidence of student 

collaboration and interpersonal interactions. Such unstructured conversations have been 

identified as a key method in research for developing mathematical identities and communities in 

students (Johnson et al., 2017; Nasir, 2002). 

Implications for Mathematics Instruction   

Elementary Teachers Should Use Tasks with Multiple Representations to Nurture 

Mathematical Promise  
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           “Children need opportunities to explore cognitively demanding math tasks to determine 

how to solve tasks, creative mathematical representation, find solutions, and reason 

mathematically about their work” (Carpenter et al., 2015). This study’s series of tasks allowed 

for productive struggle and perseverance with cognitively demanding tasks. When students 

grappled with perplexing problems or made sense of challenging ideas, they engaged in the 

process of productive struggle, which shifted students from passively watching the teacher 

control the learning to an active, productive mathematical environment full of conceptual 

understanding and meaningful application of mathematics (Martin et al., 2017; Polly, 2017).  
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For mathematics to move forward and promote inquiry-based instruction in elementary 

mathematics classrooms that will give all students access to highly cognitively demanding math 

tasks, the implications of having a classification system of representations for mathematics will 

help teachers to differentiate mathematics and encourage deeper reasoning in mathematically 

promising students. Another reason for using multiple representations when solving tasks is the 

student’s ability to transfer and connect knowledge from one idea to another. For example, in 

Task 5, “Sharing Licorice,” a student might connect this task to measuring rope for a basketball 

net or ribbon for cheerleading hair bows instead of using pretend licorice. Hence, rather than just 

posing problems of high cognitive demand, teachers can set up family surveys, talk to students, 

and use photos or pictorial imagery to launch tasks. Besides, symbolic, physical, written, and 

oral representations were all recorded in the given study; however, adding and taking more 

photos of students in their natural environments and playing with cognitively demanding tasks 

are recommended to help increase students’ authentic mathematical creativity and curiosity so 

they can pose. In addition, students and teachers can share and use outside experiences related to 

stories, encourage storytelling, and, like discussions in tasks, continue to reflect upon their 

practice and the context in which cognitively demanding tasks are enacted. Finally, children need 

opportunities to explore, solve, and create mathematical representations in order to solve tasks 

and reason mathematically about their work (Carpenter et al., 2015).  
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Furthermore, this study’s findings are consistent with recent work in gifted education, 

noting that multiple representations benefit mathematically promising students (VanTassel-

Baska, 2021). Within this study, the teacher used the fraction bars and paper model diagrams 

daily in classroom tasks so that students could draw these representations in their work or use a 

hand-drawn paper model of them to solve problems. In the future of mathematics education, 

more studies using Lesh’s representational model (1987) should be conducted to help determine 

how teachers can best facilitate the use of multiple representations as they adapt tasks to meet the 

needs of mathematically promising students. (Lewis & Colonnese, 2021; Olawayin et al., 2021). 

Implications for Coaches and Teachers to Adapt Tasks to Facilitate Use of Mathematical 

Practices  
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The Standards for Mathematical Practice in the Common Core Mathematics Standards 

(CCSSI, 2010a) recommended that teachers provide opportunities for students to make sense of 

mathematics by persevering through problem-solving, modeling mathematics, constructing 

viable arguments, critiquing others’ reasoning, attending to precision while communicating, and 

reasoning quantitatively while solving and discussing mathematical tasks, to name a few. 

Equally, the findings in Chapter Four and Table 14 show the data sources for Research Question 

2, indicating that students used mathematical practices to solve tasks. In addition, students used 

the mathematical practice of justification and argumentation since teachers provided time for 

students to have oral discourse with partners and small groups. The teachers in both classrooms 

in the study were observed to facilitate instruction and engage the students with precision by 

asking them to clarify their thinking and explain why. The teachers also promoted best practices 

for oral discourse and discussion by allowing for task sharing during the discussion.  

Findings Revealed Connection-Making Lead to Mathematical Modeling 

Modeling Mathematics. 
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  This study’s findings revealed that students were able to make connections with other 

mathematics they had learned as well as real-life objects to model mathematics (MP 4). For 

example, in Task 1, “Piece of Yarn,” students were given a chance to connect mathematical 

concepts with real-life objects, such as cutting yarn and drawing number lines, and in Task 5, 

“Sharing Licorice,” they shared a piece of licorice and portioned a number line. In fact, three of 

this study’s five tasks (see Appendix F) had a real-life context that students used as a frame of 

reference for mathematical models. For example, Teacher B used a piece of yarn when 

introducing Task 1, “Piece of Yarn,” to her class. She used a culturally relevant approach 

because she was unsure if all her students were familiar with yarn. In addition, other research 

findings have shown that contextualizing assignments gives students a chance to engage with 

tasks that serve as mirrors and windows into their thinking and lives (Dominguez, 2016; Terada, 

2022). 
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Findings from this study also revealed mathematically promising students going beyond 

their comfort zones and delving deeply into solutions to problems. Also, in order to create equity 

in mathematics and inquiry-based mathematics classrooms in elementary schools where 

mathematically promising students are interacting with the Instructional Triangle (Cohen et al., 

2003), students should learn mathematics with understanding to actively build new knowledge 

based on prior experience. Besides, this study was found to have clear connections with other 

mathematics as well as connections with real-life objects. Throughout the study, teachers 

encouraged connections with real-life objects as well as other mathematics topics students 

learned simultaneously as they interacted with the tasks. These connections enabled 

mathematically promising students to perform calculations backward, approach math in unusual 

ways, and use reasoning abilities (Gavin & Casa, 2016; Huinker & Bill, 2017).  

Teachers Noticing and Questioning Encouraged Perseverance. 
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Teachers' effective use of questions has the potential to generate students’ responses 

about their mathematical thinking, problem-solving, and strategies (Hufferd-Ackles et al., 2004). 

The findings of Research Question Two regarding teachers’ interpersonal interactions align with 

much previous and current research about the importance of teachers' use of questioning and task 

enactment to drive student reasoning (Kisa & Stein, 2015; Lewis & Colonnese, 2021; Martin et 

al., 2017). Within this study, the students asked each other questions. Teachers were also 

observed asking open-ended questions to help clarify the task. Both teachers in the study stated 

that they purposefully avoided giving away too much information with their questions during 

debriefing sessions in order to maintain the cognitive demands of the task, which has been noted 

in elementary mathematics research (Carpenter et al., 2015; Johnson et al., 2017; Kisa & Stein, 

2015). Furthermore, this study echoed previous research suggesting that when questioning 

students during tasks, teachers should use a student-centered approach to inquiry and base their 

questions on the student’s explanation and reasoning. 

Implications for Problem Posing and Mathematical Creativity (Mathematical Practice 9) 
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            The National Council of Teachers of Mathematics and the National Association of Gifted 

Children call for teachers to engage students in problem-solving and problem-posing (NCTM, 

1991, 2014; NAGC, 2019). One of the characteristics of mathematically promising students 

displayed in the study that has been noted in past research is their ability to solve given problems 

well. However, although posing their problems can be challenging for some students, it can take 

their mathematical promise to the next level. Problem posing is one strategy recommended in 

current and past research that can improve students' problem-solving skills while deepening their 

conceptual understanding of mathematics (Lewis & Colonnese, 2021; Silver, 1997). 

Furthermore, problem posing is recommended to expand mathematically promising students’ 

natural mathematical creativity, or Mathematical Practice Nine, by connecting mathematics to 

authentic experiences of students. By expanding tasks beyond those in this study to other tasks 

that are similar, student-created tasks, students will continue to emerge in mathematical 

creativity and conceptual understanding.  

However, although teachers’ observations and inquiries were at the forefront of 

influencing the mathematical interactions with their students, teacher questioning also helped 

students solve problems. Hence, future studies and teachers should deliberately encourage 

elementary-aged students to ask challenging questions of their own. Furthermore, it is also 

recommended that elementary teachers encourage student thinking and creativity by adding 

problem posing as an extension to the discussion of mathematical tasks in classrooms (English, 

1997; Mann, 2006; Lewis & Colonnese, 2021; Olawayin et al., 2021). 
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Implications for Using Tasks with Mathematically Promising Students for Productive 

Failure 

When planning math instruction, math teachers should use culturally responsive tasks 

that connect students to their lives and experiences both inside and outside of the classroom. 

First, mathematically promising students require instruction that allows them to switch between 

modes of representation and provides flexibility in solving problems, even when the problems 

are difficult, ill-structured, and not focused on procedures (Van-Tassel-Baska, 2021). For 

example, the tasks in Tools 4 Teachers exposed students to various mathematical representations, 

such as number lines, area models, charts, and symbols, to conceptualize fractions.  

Furthermore, recent field research and this study’s findings show the use of productive 

failure. Throughout the study, productive failure was created in a socially constructed space 

where the teachers used the task framework and launch portion to activate the prior knowledge 

of all students. Teachers also took the time to learn what knowledge students brought to school 

from their various cultures, as evident in the classroom observations. For example, if they felt 

that a task, such as Piece of Yarn and Task 5, Sharing Licorice, or discussing an item that 

students’ cultures were unfamiliar with required a physical representation, they brought it into 

class to allow all students to have the same assessment of the task and asked them if they knew 

what yarn and licorice looked like. Besides, the teachers knew that placing math concepts in a 

real-world context is a great way to help students connect diverse cultural experiences and 

develop mathematical identities (Johnson et al., 2017; Nasir, 2002).  
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Moreover, current research supports the study’s findings by emphasizing the importance of using 

standards-based math lessons that connect students’ language and backgrounds in order to foster 

mathematical identity development and open doors of opportunity for students with potential 

(Dominguez, 2016; Gavin, 2011; Nasir, 2002). 

In addition, mathematics teachers are called to “support productive struggle in learning 

mathematics” (National Council of Teachers of Mathematics [NCTM], 2014, p. 48). According 

to recent research in mathematics education, the emergence of productive failure is imperative 

for true problem-solving to emerge and for students to be doers and thinkers of mathematics 

(Amindon et al., 2020; Polly, 2017; Terada, 2022). Since both teachers felt their students needed 

more challenge and sought to adapt their instruction for each task to help students experience 

some small group teaching and discovery-based learning, productive failure was fostered in the 

mathematically promising students in this study. This instructional adaptation of practices helped 

students construct their knowledge and mathematical knowledge (Amindon et al., 2020; Polly, 

2017; Terada, 2022).  
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When students productively struggle while learning mathematics, research has shown 

that they outperform similar-ability students who are not given opportunities for productive 

struggle (Blanton & Kaput, 2003; Terada, 2022), thus making the argument for the productive 

failure seen in this study to be replicated in classrooms and additional studies. Productive failure 

also allows students to explore their positive and negative feelings towards mathematics in past 

studies (Goldin, 2000a; Hannula, 2015; Terada, 2022). However, recent studies in mathematics 

education suggest that fostering productive failure with cognitively demanding tasks should be 

the primary focus of mathematics instruction rather than just content (Casa et al., 2022; Terada, 

2022).  

Because emotional interactions were at the interplay of the interpersonal interactions and 

productive failure themes in this study, findings from such studies align with these 

recommendations in the field. In focus groups, all the students indicated that the tasks were 

challenging. Also, several students echoed Hannula’s (2015) findings, claiming that struggling 

through a task helped them find joy and pride in their work. Therefore, classroom implications 

from this study suggest that teachers and coaches should continue to study the connection 

between productive failure in task interactions and the associated emotions.  

Summary of Implications for Tasks 
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            Due to multiple entry points and open-endedness, tasks with high ceilings benefit all 

students but provide additional benefits to mathematically talented students (Flores, 2007). 

Furthermore, Johnson and Sheffield (2013) advocated using mathematical practices standards for 

mathematically promising students. The emphasis on the practice of mathematical creativity and 

encouraging mathematically talented students to engage in complex, real-world mathematical 

thinking are the two aspects of the mathematical practices presented in this study. According to 

this study’s findings, elementary mathematics classrooms, teachers, and instructional leaders 

should modify their instructional strategies so that mathematically talented students can rely 

more on their ability to solve problems quickly and effectively and on their interactions with 

others than on learned procedures (Gavin, 2011; Jacob & Andrew, 2008; Mason & Watson, 

2007). 

Recommendations for Future Research 
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            Based on the results of this study, several additional areas of future research relating to 

mathematically promising students and their interactions with cognitively demanding math tasks 

could be explored. Furthermore, the tasks in this study were a connected series of tasks that 

focused on standards specific to Cluster 7 in third grade (Tools 4 Teachers, 2019). Over the 

course of four weeks, the context of the study was developed in the classroom. With isolated 

tasks, the study’s findings would not be possible. Besides, findings indicate that future research 

can extend beyond to investigate the use of the Tools 4 teachers’ curriculum with mathematically 

promising students at other K-2 grade levels. Additionally, more research into how to use the 

tasks to formatively assess students’ conceptual thinking and use of mathematical practices with 

mathematically promising studies can continue to connect the often disconnected fields of 

mathematics and gifted education. Finally, teachers, tasks, and student interactions form a 

triangle, and more research into tasks using this framework will help teachers use effective 

instructional practices for mathematically gifted students. 

Recommendations for Future Studies with Tools 4 Teachers Tasks 
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Based on the findings of this study, Tools 4 Teachers’ formative assessment tasks (2019) 

align with many characteristics of mathematically promising students. Besides, all of the tasks 

were cognitively demanding and could be classified as procedures with connections. Also, 

students were asked to perform calculations, but post-test questions were open-ended and in the 

form of word problems. When students were asked to compare fractions, they were frequently 

asked to explain their reasoning and connect their understanding with more than one mode of 

thinking. Throughout this study, teachers allowed students to share their thoughts during the task 

enactment. 

Firstly, it is recommended that more similar studies be conducted to better understand the 

social interactions of other grade levels of elementary mathematically gifted students as they 

interact and solve cognitively demanding tasks. Because this study’s content was only focused 

on Tools 4 Teachers 3rd Grade Cluster 7 Tasks for Fractions, other content areas with fewer 

mathematical representations and concepts may present different interactions and mathematical 

practices. In order to understand a broader scope of application and how teachers can use such 

tasks to best meet the needs of mathematically talented students, more research is needed on 

Tools 4 Teachers tasks (NC2ML, 2019). Additional research could be conducted at all 

elementary grade levels, especially grades K-2, with a different cluster or unit to see if the results 

are similar and transferable. Also, studies should focus on nurturing the potential of 

mathematically promising students before they are identified as academically gifted. 

Additionally, various task clusters that promote inquiry and cognitive demand are available 

within the Tools 4 Teachers (2019) curriculum for all grade levels in elementary mathematics.  
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Furthermore, just as teachers provided discussion time in the LED framework of this 

study (NC2ML, 2019), teachers should present students’ correct and incomplete solutions or 

misconceptions and allow students to justify their solutions to help develop their mathematical 

talent. Table 12 in the Appendix describes the characteristics of the mathematically promising 

students in this study and how the study’s teachers adapted this curriculum to best meet their 

instructional needs. 

Recommendation for Assessments and Adjusting Instruction to Meet the Needs of Students 

Standard 3.1.5 of the National Gifted Standards (2019) recommends that educators 

regularly use pre-assessments, formative assessments, and summative assessments to identify 

students’ strengths and needs, develop differentiated content, and adjust instructional plans based 

on progress monitoring. In this study, teachers could modify their instruction based on their 

formative assessment of the tasks without scoring. They were also able to adjust their instruction 

based on student observation. Based on this study’s findings, a second recommendation for 

future research is to gather more feedback and achievement data from the population of students 

who participated in this study, such as by correlating the student assessment of the tasks with 

their summative assessment data from classroom assessments or NC Check-ins. 
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Furthermore, Lesh et al. (1987) discovered that students in grades 5-8 who were taught 

using standard-based instruction showed greater achievement on open-ended test questions and 

problem-solving items than on items assessing procedural knowledge. In this study, the students 

completed the tasks but were not graded using the provided rubric for meeting expectations. 

However, the study’s findings show that students clearly met expectations for the tasks. 

Therefore, future studies should use task rubrics to collect formative assessment data from the 

students in the study to see the impact of task enactment on student performance longitudinally 

as students continue interacting with tasks with Tools 4 Teachers (2019). 

Recommendations for Research M&P 9 (Mathematical Creativity) 

In this study, mathematical creativity and sensitivity have been mentioned as qualities of 

mathematically promising students. The study’s findings also showed that mathematically 

promising students used a variety of mathematical practices to solve tasks. In addition, this 

study’s social constructivist framework enabled students to construct arguments, persevere 

through tasks, and productively fail to reason through mathematics. When adapting tasks for 

mathematically promising students, the Tools 4 Teachers’ Tasks (2019) and many curriculums 

lend themselves to problem posing and adaptations with mathematical creativity. However, these 

were not directly stated in the tasks. 
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Furthermore, this study did not investigate mathematical creativity, but it did observe the 

use of creativity in several cases and the characteristics of some mathematically gifted students. 

Further research is also needed to investigate the application of mathematical Practice 9 and 

mathematical creativity when students interact and complete tasks. To connect the research 

behind this study to the field, teachers should also encourage students’ problem-posing and 

mathematical creativity. According to VanTassel-Baska (2021), the teaching of mathematically 

gifted students should be seen as a mosaic of different instructional strategies selected based on 

the instructional purpose of the lesson to be taught. Besides, students require a blend of 

instructional strategies that promote metacognitive reflection. 

Additionally, this study’s findings indicate that verbal, physical, written, and symbolic 

interactions are frequently interwoven into students’ representations. Future studies can also 

incorporate the extensions and problem-posing section into the discussion phase of the task, 

allowing the mathematical creativity of students to be displayed and researched further. Also, 

understanding how students use such mathematical practices will help teachers understand how 

to change their instructional practices. 

Limitations of the Study  
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  Qualitative studies are often limited due to the methodology. This study has two potential 

limitations. First, due to the small sample size (n = 7) chosen for the students in this study based 

on Creswell’s (2013) and Maxwell’s (2014) recommendations, this can embed the representation 

of diversity within the study, such as gender, age, race, or mathematical experience. However, 

the school diversity of Riverview Elementary and teacher input in the selection of students 

secured a very diverse sample of students. For example, classroom A was composed of four 

females of various ethnicities, as described in Chapter Three, while classroom B was composed 

of three males of diverse ethnicities who were mathematically promising. All these diverse 

backgrounds may have impacted the study results as characteristics and identifications of 

mathematically promising students differ (see Table 5). 

A second limitation of this study may relate to the transferability of this study to all 

mathematical content areas and grade levels. This study focused specifically on the 

mathematically promising students in this third-grade sample. The characteristics of 

mathematically promising students may differ from another sample of students. Transferability 

refers to the study data analysis and results not being able to be replicated or transferred to 

another grade or other contexts (Lincoln & Guba, 1985).  

Summary  
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In summary, this research focused on the interactions and mathematical practices used 

when seven mathematically promising third-grade students interacted with a series of five 

cognitively demanding math tasks. Specifically, this research showed how classroom norms and 

teacher moves, such as the five practices for oral discourse, productive struggle, and teacher 

observation, impacted student interactions with cognitively demanding tasks and how the 

students used mathematical practices to complete math tasks (Ball & Cohen, 1999; Cobb et al., 

1991; Martin et al., 2017; Smith & Stein, 2000; Yackel & Cobb, 1996). The findings of this 

study can be used to determine whether students' interactions with cognitively demanding tasks 

continue to be noticed and used by teachers to push and grow the mathematical creativity and 

conceptual thinking of mathematically promising students. When teachers use and adapt tasks in 

an inquiry-based social constructivist environment, students become doers of mathematics and 

open windows of opportunity that can enhance their reasoning (Dominguez, 2016; Munter & 

Haines, 2019; NCTM, 2000, 2014; Schwartz, 2000).  
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APPENDICES 
 

Appendix A: Student Pre- Focus Group Interview Protocol 
Interview Questions (Pertaining to Pre- Focus Group)  

 
 
Study Title:   A Descriptive Study of Elementary Mathematically Promising Students 
Interactions with Cognitively Demanding Tasks    
 
RQ 1: How did elementary mathematically promising students interact with cognitively 
demanding math tasks? 
 
RQ 2: What mathematical practices did mathematically promising students’ use when 
completing cognitively demanding math tasks?   
 
What is your student letter? __________ 
 

1. Do you like solving challenging math problems? What do you like best about solving 
them? 

 
2. How do you usually solve difficult math problems best?  

 
3.  What tools or strategies help you solve challenging math tasks?  

 
4. Do you talk or discuss your mathematical ideas with other students while solving 

challenging math tasks? Do you think these interactions help you solve challenging math 
tasks?  

 
5. a. Do you ask yourself questions or think about your thinking when solving challenging 

math tasks? 
 
           b. Do you draw pictures, use, or study symbols when solving challenging math tasks? 
 

6. How do you use tools/manipulatives when solving challenging math tasks?  
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Appendix B: Student Focus Group Post Interview Protocol 
Study Title:   Elementary Student Interactions with Cognitively Demanding Math Tasks  
 
 
RQ 1: How do elementary mathematically promising students interact with cognitively 
demanding mathematical tasks? 
 
RQ 2:  What mathematical practices did mathematically promising students’ use when 
completing cognitively demanding math tasks?   
 
 
 What is your student letter? __________ 
 
1. What was your favorite part of solving math tasks? 
 
2. Which math task did you find the most challenging? Why? 
 
3. What did you write down or record when doing a math task that was helpful? 
 
4. What questions did you find yourself asking when solving the math tasks? 

 
5. Did you discuss many of your thoughts about the math tasks with your partner or table group?  

 
6. How did these interactions help you solve the math tasks?   

 
7. Did you draw pictures, use, or study symbols when solving math tasks? 

 
8. How did you use tools/manipulatives when solving math tasks? 
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Appendix C: Google Debrief Form 
 

1. How do you think the students persevered through the task?  

2. Do you feel students were able to make sound arguments and justifications? 

3. How did you feel about the students' interactions today during the task? 

4. What else have you noticed about how the students interact with tasks? 

5. What is your perspective on how the task enactment went today?  

6. Is there anything else you would like to change about the study to help with the student 

interactions? 

7 How do you feel the students' made connections to the task? (1-poor to 10-total real-life 

connections)   
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Appendix D: Figures 
  
 
Figures 4-9  
 
Document Analysis Student Work Samples 
  

 
 Figure 4 
Teacher A, Student C Work Sample  
Task 1, Piece of Yarn  
 

 
 
Figure 5 
Teacher A, Student C Work Sample  
Task 3, Comparing Fractions on a Number Line  
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Figure 7, Teacher A, Student C  
Task 5, Sharing Licorice 
 
 

 
Figure 8 
Teacher B, Student E 
Note: Task 3, Comparing Fractions on a Number Line 
 
 

 
Figure 9 
 
Teacher B5, Student E, Sharing Licorice 
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Figures 10-14 
 

Google Debrief Form Results 
 

 
 
Figure 10 
 
Tasks w/ Multiple Representations Demonstration 
 
 
 

 
Figure 11 
 
Tasks w/ Perseverance Demonstration 
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Figure 12 
 
Tasks w/ Argumentation & Justification Demonstration 
 
 
 
 

 
Figure 13 
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Tasks w/ Making Connections 
 

 
Figure 14 
 
Note: Adapted from Eracing Inequities (Triplett & Ford, 2019) 
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Appendix E: Data Tables  
 
Table 1 
 
Codebook Definition Table 
______________________________________________________________________________ 
Codebook Label        Data Source 

A1-A5 Audio observations from Teacher A 
B1-B5 Audio observations from Teacher B 
PRFG Pre-Focus group interview 
POFG Post Focus group interview 
FNA 1 Field notes Teacher A 
FNB 1-5 Field notes Teacher B 
Video 1-5 Video teacher A 

Video 1-5 

Video teacher B 
 
 

SATA 1-5 Student artifacts Teacher A 
SATB Student artifacts Teacher B 

  GDF                                               Google Debrief Form 
______________________________________________________________________ 
Note: Code book abbreviations  
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Table 2 
 
Student Interactions Mathematical Practices 
____________________________________________________________________________ 

Math Practice Making Sense/ 
Connections 

Perseverance   Representation
s & Tools 

Solution 
Strategies & 
Justifications 
 

Student 
Interactions  
Observed  
With Task  
Completion  
 

Are students 
taking 
responsibility 
for making sense 
of tasks by 
drawing on and 
making 
connections with 
their prior 
understanding 
and ideas?  
 
 

Are students 
persevering in 
exploring and 
reasoning 
through tasks?  
 
 

Are students 
using tools and 
representations 
as needed to 
support their 
thinking and 
problem-
solving?  

Are students 
accepting and 
expecting that 
their classmates 
will use a 
variety of 
solution 
approaches and 
that they will 
discuss and 
justify their 
strategies to one 
another and will 
analyze the 
frequency of 
each type of 
code to 
determine which 
type of 
interaction 
occurs most 
frequently? 
(Miles & 
Huberman, 
2004; Ravitch & 
Carl, 2019) 
____________ 
Note. Adapted 
from Principles 
to Action 
(NCTM, 2014). 
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Table 3  
 
Research Data Timeline 
______________________________________________________________________________ 

Week # of Study  Data Collection Method/Procedure 
 

1 Teacher & Parent Recruitment & Consent and 
Student assent form collection 

Pre-focus group interview with students 
Task 1 Pre-task meeting w/ teacher 

Task 1 Teacher Debrief Google form 
Task 1 observation, and data collection begins 

 
2 Task 2 

Task 2 Pre-task meeting 
Task 2 observation & data 

Teacher Debrief Google form -observation, -
data collection 

 
Task 3 

Task 3 Pre-task meeting 
Task 3 observation and data 

Task 3 Teacher Debrief Google form 
Begin coding audio transcripts 

 
3 Task 4 

Task 4 Pre-task meeting, 
Task 4 Teacher Debrief Google form 

observation/data collection, coding continued 
 

4 Task 5 
Task Pre-task meeting 

Task 5 Teacher Debrief Google form 
Task 5 observation, data collection, coding 

continued 
Post Focus Group Interview Students 

 
 

5-10 Begin raw word analysis and coding of focus 
group transcripts 

Comparison and coding of focus groups 
Coding of field notes and student work 

samples 
Data analysis, Discussion, and Findings write 

up 
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____________________________________________________________________________ 
 
 
Table 4  
 
Research Data Methods Table 
_____________________________________________________________________________ 

Research 
Question 

Alignment 
 

Research 
Method 

Data Collection 
Instrument 

Data Analysis 
Method 

Timeline & 
Outcomes 

RQ 1: How did 
elementary 
mathematically 
talented students 
interact with 
cognitively 
demanding 
mathematical 
tasks? 

 
 
Student 
observations via 
video recording 

 
 
Researchers 
collected 
observational 
field notes and 
videos of 
classroom 
observations as 
the small focus 
group of 
students 
interacted with 
the 
mathematical 
tasks.   

 
 
Interpretive 
thematic coding; 
analyzing by 
creating open 
codes.  
Original field 
notes were 
recorded during 
tasks based on 
Student Actions 
from (NCTM 
2014, p. 24) 
Principles to 
Action  
1- Exploring & 
Reasoning 
2- Making Sense 
& Connections 
3- 
Representations 
& Tools 
4- Justification 
& Approaches 

Videotaped & 
audiotaped each 
task weekly 
Transcribed 
each videotaped 
task and coded 
first round the 
week following 
each task 
 
 
 
 
 
 

RQ 1: How did 
elementary 
mathematically 
talented students 
interact with 
cognitively 
demanding 

Pre- & Post-
focus group 
interview 

Researchers 
conducted semi-
structured 
interviews in 
person at the 
conclusion of 
the study 

Interpretive 
thematic coding; 
analyzing by 
creating open 
codes.  
Themes were 
created and 
categorized from 

Conducted a 
pre-focus group 
with both small 
groups of 
classroom 
students at the 
initiation of the 
study 
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mathematical 
tasks? 

 
 

interview 
protocol 
transcripts 
 
 
Open field notes 
were collected 
and coded, and 
created into 
memos 
 
 
 
 

 
 
Conducted a 
post-focus group 
interview at the 
conclusion of 
the study 
 
 
Recorded and 
transcribed each 
focus group 
interview with 
“Otter.ai” 
 
 
Use open coding 
to look for 
themes and 
compare 
sociomathematic
al norms of 
classrooms  

RQ 2: 
What 
mathematical 
practices did 
mathematically 
promising 
students use 
when 
completing 
cognitively 
demanding 
mathematical 
tasks? 

Google Debrief 
Form (teachers)  
 
 
Document 
Analysis 
(Student work 
samples)  
 
 
Pre- & Post-
focus groups 

The researcher 
collected 
samples of 
student work 
from task 
enactment and 
exploration 
 
 
The tasks were 
open-coded for 
document 
analysis  
 
The google 
debrief form 
shared teachers' 
observations of 
mathematical 
practices in 
students 

Student work 
samples were 
collected and 
analyzed 
according to 
math practices  
(NCTM, 2014). 
 
 
The audio 
transcripts of 
pre- and post-
focus groups 
were compared 
 
 
 

Constant 
comparison 
method to 
analyze 
evidence of 
learning to other 
methods of data 
collection 

 
______________________________________________________________________________ 
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Table 5 
 
Tools 4 Teachers 3rd Grade Cluster 7 Tasks In Study Table 
____________________________________________________________________________ 

Standard Formative Tasks 
 

3. NF. 2(Task 1) A Piece of Yarn 
 
3. NF. 3 (Task 2) 

 
 
Measuring Rainfall 

3. NF. 4 (Task 3 & 4) Comparing fractions 
Comparing fractions with a number line 
 
 

Culminating task (Task 5) Sharing licorice 
_____________________________________ 
 
 
Note: Adapted from NC Tools 4 Teachers 
(2019) 
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Table 8 
 
Themes from Research Questions Table 
____________________________________________________________________________ 

 
 

RQ 1- Student interaction 
with Tasks 

RQ 2 - Mathematical 
Practices Used with Tasks 
 

Intrapersonal Communication  Students work independently 
to solve cognitively 
demanding tasks. (PER) 
 
 
 

 
 

Interpersonal Communication 
leads to reasoning & sense-
making tasks  

 
 
 
Active collaboration is 
encouraged and explored 
within the instructional 
triangle of the math 
classroom. (PER) 
 
 
Interpersonal interactions 
help students inquire, think 
deeply, and solve cognitively 
demanding tasks. (PER)  
 
 
 
Reflective Communication: 
Students interacted with 
reflective communication to 
reason and solve tasks. (PER)   

Students persevere through 
tasks (PER)  

Solving Tasks with Multiple 
Representations 

  
Students compare visual 
representations of fractions to 
solve cognitively demanding 
tasks (MR).  
 
 
Students use physical 
gestures to respond to 
cognitively demanding tasks. 
(MR) 

Students use multiple 
representations & tools when 
emerging in their thinking & 
understanding to model with 
mathematics (MR) 
 
 
Students solve cognitively 
demanding tasks with 
mathematical writing & 
visual representations (MR) 
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Communication of 
Mathematical Knowledge 
Leads to the Justification of 
Tasks 

Students verbalize 
mathematical knowledge to 
solve cognitively demanding 
tasks. (PER) 
 
 
Students prove and explain 
their thinking and reasoning 
about cognitively demanding 
tasks with written statements 
(JS)  
 

Distinct types of oral 
discourse: multiple 
readings/revoicing help 
students solve cognitively 
demanding tasks 

Knowledge & Connections 
with Real Life & 
Mathematics Leads to 
Inquiry-Based Thinking & 
Mathematical Precision  

Making connections with 
prior knowledge and real-life 
objects helps students solve 
cognitively demanding tasks 
(PCK)  
 

Metacognitive thinking & 
encouragement of inquiry 
allows for conceptual 
thinking & supports students' 
emergence of precision when 
solving cognitively 
demanding tasks 
 
 
 
 

Productive struggle, 
emotional response  

 
 

Students have emotional 
reactions when solving 
cognitively demanding tasks 
Students productively 
struggle and when solving 
cognitively demanding math 
tasks (JS)  
 
 
Tasks influence student 
stamina and ability to 
productively struggle and 
when solving cognitively 
demanding math tasks (JS) 
 
 
 

Teachers Support Task 
Enactment & Growth of 
Practices 

Interpersonal interactions 
between the student and 

Teacher encourages 
mathematical sense-making 
with perseverance and 
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teacher helped students solve 
tasks 
 
 

precision of cognitively 
demanding tasks (PER) 
 

________________________________________________________________ 
 
Note: Themes adapted from findings of RQ 1 & RQ 2 based on original preset codes 
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Table 9 
 
Document Analysis Coding Table  
_____________________________________________________________________________ 
  

Code  
Quantit
y    
Class- 
room A 

# Of Tasks 
Code 
occurred 

Quantit
y 
Classro
om B 

# Of Tasks 
Code 
Occurred 

Total 
Quantity 

Math 
Practice 

  
Comparison of 
Fractions 

5,6,3, 
3, = 17  

4 7,1, 7, = 15 3 32 MP 7 

Labeling 7, 2, = 
9 

2 3, 1, 2 = 6  3 15 MP 4 

Drawing 
models 

4, 2, 5 
= 11 

3 3, 3, 2, 3, 2 
= 13 

5 24 MP 4 

Mathematical 
Operation 

5,  1 2, 2 2 9 MP 2 

Symbolic 
reasoning 

5, 5, = 
10 

2 3, 4 = 7  2 17 MP 8 

Metacognition 2 1 0 0 2 MP 3 
Explanation 5, 7, 3, 

5, = 20 
4 1, 3, 5, 2 

=10 
4 30 MP 3 

Partitioning 
Number Line 

2, 3, 3, 
= 8  

3 3, 3, 5= 11 3 19 MP 6 

Struggle 
Frustration 

2 1 0 0 2 MP 1 

 
___________________________________________________________________ 
 
Note: Hand tallied and coded from original student work samples for RQ2 
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Table 10  
 
Mathematical Interactions Used by Students 
_________________________________________________________________________ 
 

Student Mathematical 
Reasoning 

Multiple 
Representations 

Perseverance/Product
ive Struggle 
 
 

Student A “I thought the answer 
has to be a decimal, 
so it helped me to do 
it.” 
 
 
 

“So, like the first one, 
we had to cut it into 
eight, but we can't cut 
thirty-six into eights 
equally.” 

“Cause like, it was 
like, splitting it up, 
like, oh my God, how 
many pieces I have 
already done that! 
(With expression) “ 
 
 

Student B  
 

Partitioning the 
number line was 
hard. But it helped 
me see the math. 

“Because like that 
you had to split it up 
into like, three parts 
and then draw it like 
seven lines in it. And 
it was very tiring for 
your brain. And then 
it made you do extra 
work at the end. 
Partitioning the 
number line was 
hard. “ 

Student C  
 

“The thing that 
helped me most with 
drawing was drawing 
like that division 
thing. That was the 
most helpful. 
 
 

 
 

Student D “I used symbols a lot. 
Like less than and 
equal to. They helped 
me solve the 
problem.” 

“I like the way you 
can split them into 
like, what's a little 
into them?” 

 
 

Student E I learned that we had 
to multiply it to find 
the equivalent 

“I think like I usually 
do; words and 
symbols are 

“Doing fractions was 
my favorite part” I 
liked how I started 
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fraction like 2/3 is 
equivalent to 4/6. 
Like if you do two 
times two is four and 
three times or is the 
equivalent for me 
outside  

technically 
everything that you 
write down like that, 
write down words, 
symbols and 
numbers.” 
 
 

learning more about 
equivalent fractions. 
 
 

Student F “It's kind of not a tool 
but like my teacher 
really helped me 
make sense of the 
problems.” 
 
 

” I really liked 
finding out what is 
equivalent to the 
fractions. I like the 
way you can split 
them into like, what 
is a little into them?” 

“Like, we all have 
different talents, and 
I am not that good at 
fractions. So, my 
partner really helped 
me with that because, 
like, I was stuck.” 
 
 

Student G    
“At first, I did not 
really understand the 
number line one. So, 
I would just like to 
draw an area model 
to help me see what 
was going on in the 
number line to 
understand it better. 

 
“I had to use the 
Fraction Bars. They 
were not like fraction 
paper. They are the 
fraction bars. So, if I 
can do like two 
fourths on easy got 
two fourths, I could 
compare him to 
wherever needed.” 

 
 
“The Rainfall task. It 
was hard because 
there were so many 
lines. I could not see 
which one was 
which, the sixth one 
was the fifth one.” 

 
 
____________________________________________________________________________ 

 
Note: From Post Focus Group Transcript 
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Appendix F: Formative Assessment Tasks 
Task 1  
 
A Piece of Yarn 
 

NC.3.NF.2 and NC.3.NF.3  
A Piece of Yarn  

Domain Number and Operations – Fractions 
Cluster Understand fractions as numbers. 
Standard(s) NC.3.NF.2 Interpret fractions with 

denominators of 2, 3, 4, 6, and 8 using area 
and length models. 
• Using an area model, explain that the 
numerator of a fraction represents the number 
of equal parts of the unit fraction. 
• Using a number line, explain that the 
numerator of a fraction represents the number 
of lengths of the unit fraction from 0. 
 
 
NC.3.NF.3 Represent equivalent fractions 
with area and length models by: 
• Composing and decomposing fractions into 
equivalent fractions using related fractions: 
halves, fourths, and eighths; thirds and sixths. 
• Explaining that a fraction with the same 
numerator and denominator equals one 
whole. 
• Expressing whole numbers as fractions and 
recognize fractions that are equivalent to 
whole numbers. 

Materials Student activity sheet, paper, pencils, white 
boards, and dry-erase markers (optional) 

Task Part 1: Suni was using the following yard 
stick to measure pieces of yarn for her art 
project. This ruler shows how much yarn she 
cuts for each color. What fraction of a unit 
does she need of each color?  
Part 2: If the unit were divided into fourths, 
which colors of string could be measured in 
fourths? How many fourths is each of those 
colors? Explain your answer using pictures or 
words.  
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Part 3: Are any of the colors equal to ½ of 
the unit? Write a sentence explaining your 
reasoning.  

 
 

Rubric 
Level I 
Not Yet 

1. Level II 
2. Progressing 

Level III 
Meets Expectation 

● Incorrect answer and 
work 

● Finds the correct 
answer, but there may 
be inaccuracies or 
incomplete 
justification of 
solution OR 

● Uses partially correct 
work but does not 
have a correct 
solution 

● Accurately solves Part 
1: Blue: 1/8, Green: 
4/8, Red 6/8. 

● Accurately solves Part 
2: Green and Red can 
be measured in 
fourths. Green: 2/4. 
Red: 3/4. 

● Accurately solves Part 
3: Green.  

● Write clear and 
appropriate 
explanations.  

*Level IV would include other equivalent fractions. 
 
 
 

Standards for Mathematical Practice 
1. Makes sense and perseveres in solving problems. 
2. Reasons abstractly and quantitatively. 
3.  Constructs viable arguments and critiques the reasoning of others. 
4. Models with mathematics. 
5. Uses appropriate tools strategically. 
6.  Attends to precision. 
7. Looks for and makes use of structure. 
8. Looks for and expresses regularity in repeated reasoning. 

 
 
 

A Piece of Yarn 
 
 
Suni was using the following yard stick to measure pieces of yarn for her art project. This ruler 
shows how much yarn she cuts for each color.  
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What fraction of a unit does she need of each color? 
 
 
 
 
 
If the unit were divided into fourths, which colors of string could be measured in fourths?  
 
 
 
 
 
How many fourths is each of those colors? Explain your answer using pictures or words.  
 
 
 
 
 
 
Are any of the colors equal to ½ of the unit? Write a sentence explaining your reasoning. 
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Task 2  
Measuring Daily Rainfall 

NC.3.NF.3 
Measuring Daily Rainfall 

Domain Number and Operations - Fractions 
Cluster Understand fractions as numbers. 
Standard(s) NC.3.NF.3 Represent equivalent fractions 

with area and length models by: 
• Composing and decomposing fractions into 
equivalent fractions using related fractions: 
halves, fourths, and eighths; thirds and sixths. 
• Explaining that a fraction with the same 
numerator and denominator equals one 
whole. 
• Expressing whole numbers as fractions and 
recognize fractions that are equivalent to 
whole numbers. 
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Materials Measuring Daily Rainfall handouts, fraction 
manipulatives, pencils, paper 

Task ● Distribute Measuring Daily Rainfall 
handouts. 

● Read: Since the local weatherman 
predicted rain for the whole week, Ms. 
Moore’s class decided to measure the 
amount of daily rainfall. The chart 
below shows their data. Use this chart 
to answer each question. 

 
 

 
 
 

● Read each question aloud: 
o Did more rain fall on Sunday 

or Tuesday? 
o Which day had less rain: 

Monday or Wednesday? 
o Someone erased part of 

Friday’s measurement! If an 
equal amount of rain fell on 
Thursday and Friday, what is 
Friday’s measurement? Prove 
that your answer is correct 
using objects, drawings, a 
number line, or words. 
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o What is another way to record 
the amount of rain that fell on 
Saturday? Use objects, 
drawings, a number line, or 
words to explain why you can 
represent this measurement in 
more than one way.  

 
 
 
 
 
 
 
 
 
 

Rubric 
Level I 
Not Yet 

3. Level II 
4. Progressing 

Level III 
Meets Expectation 

● Student work is 
inaccurate, 
incomplete, or off 
task. 

Students do 1-3 of the 
following: 

● identifies that more 
rain fell on Sunday 

● identifies that less rain 
fell on Wednesday 

● determine that ½ inch 
of rain fell on Friday 
and justifies solution 

● identifies a fraction or 
whole number equal 
to 4/4 and explains 
that any equivalent 
fraction can be used 
to name this amount. 

Students do all the following: 
● identifies that more 

rain fell on Sunday 
● identifies that less rain 

fell on Wednesday 
● determine that ½ inch 

of rain fell on Friday 
and justifies solution 

● identifies a fraction or 
whole number equal 
to 4/4 and explains 
that any equivalent 
fraction can be used 
to name this amount. 

 
 
 

Standards for Mathematical Practice 
1. Makes sense and perseveres in solving problems. 
2. Reasons abstractly and quantitatively. 
3. Constructs viable arguments and critiques the reasoning of others. 
4. Models with mathematics. 
5. Uses appropriate tools strategically. 
6.  Attends to precision. 
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7. Looks for and makes use of structure. 
8. Looks for and expresses regularity in repeated reasoning. 

 
 
 
 
 
Since the local weatherman predicted rain for the whole week, Ms. Moore’s class decided to 
measure the amount of daily rainfall. The chart below shows their data.  
 
 
Use this chart to answer each question. 
 

 
 
 
 
 

5. What is another way to record the amount of rain that fell on Saturday? Use objects, 
drawings, a number line, or words to explain why you can represent this measurement in 
more than one way.  
 

Task 3  
 
Comparing Fractions on a Number Line 
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NC.3.NF.4  
Comparing Fractions with a Number Line 

Domain Numbers and Operations-Fractions 
Cluster Understanding Fractions as Part of a Whole 
Standard(s) NC.3.NF.4	Compare	two	fractions	with	the	

same	numerator	or	the	same	denominator	
by	reasoning	about	their	size,	using	area	
and	length	models,	and	using	the	>,	<,	and	
=	symbols.	Recognize	that	comparisons	are	
valid	only	when	the	two	fractions	refer	to	
the	same	whole	with	denominators:	halves,	
fourths,	and	eighths;	thirds	and	sixths. 

Materials Activity sheet, pencil, tools as needed  
Task Hand out the activity sheet to each student. 

Read each part of the problem to the students 
before they begin working.  
Part 1: Label the fractions represented by the 
shapes on the number line. 

 
Part 2: Lilly and Sam need to use the number 
line to solve this problem:  Is the triangle 
greater than or less than ¾? 
Lilly is saying that the triangle is half of the 
number line, so it is greater than ¾. Sam is 
arguing that the triangle is before ¾, so ¾ is 
greater. Who is correct? Show your 
understanding with pictures, numbers, and 
words.” 
 
 

 
 

Rubric (include a statement of purpose of rubric--for teacher decision making rather 
than evaluation) 

Level I Level II Level III 
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Not Yet  Progressing Meets Expectation 

● Students are unable to 
identify the correct 
fraction to the shape 
on the number line 

● Student is unable to 
use reasoning to 
compare the fractions 

● Students can identify 
the correct fraction to 
the shape on the 
number line but 
CANNOT use 
reasoning to compare 
the fractions  

● Students can compare 
the fractions but are 
unable to express 
reasoning with 
pictures, numbers, or 
words.  

● Students can identify 
the fraction to the 
shape on the number 
line 

● Students can use 
reasoning to compare 
the fractions 

● Students can show 
their understanding 
with pictures, 
numbers, or words 

 
 

Standards for Mathematical Practice 
1. Makes sense and perseveres in solving problems. 
2. Reasons abstractly and quantitatively. 
3. Constructs viable arguments and critiques the reasoning of others. 
4. Models with mathematics. 
5. Uses appropriate tools strategically. 
6.  Attends to precision. 
7. Looks for and makes use of structure. 
8. Looks for and expresses regularity in repeated reasoning. 

 
 
 
Task 3: Comparing Fractions with Number Lines 
 
Part 1: Label the fractions represented by the shapes on the number line. 
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Part 2: Lilly and Sam need to use the number line to solve this problem: 
 
 

Is the triangle greater than or less than ¾? Is it greater or less than 1 whole? 
  
Lilly is saying that the triangle is half of the number line, so it is greater than ¾. Sam is arguing 
that the triangle is before ¾, so ¾ is greater. Who is correct? Show your understanding with 
pictures, numbers, and words.  
 
 
 
 
 
 
 
 
Extension: Add another shape with a different denominator and explain your reasoning.  
 
 
 
 
Task 4 
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Comparing Fractions 
NC.3.NF.4 

Comparing Fractions 
Domain Number and Operations - Fractions 
Cluster Understand fractions as numbers. 
Standard(s) NC.3.NF.4 Compare two fractions with the 

same numerator or the same denominator by 
reasoning about their size, using area and 
length models, and using the >, <, and = 
symbols. Recognize that comparisons are 
valid only when the two fractions refer to the 
same whole with denominators: halves, 
fourths, and eighths; thirds and sixths. 

Materials Number line, fraction models, paper, pencils 
Task Part I: Below are measurements of ribbon in 

feet. For each pair of ribbons, draw a picture 
to determine which is longer.  

● Pair 1: 2/3     2/4 
● Pair 2:   2/6     4/6   

 
 
Part II: Determine which fraction in each set 
is larger. Explain your reasoning using only 
words and numbers (without using models or 
number lines). 

● Pair 3: 1/3     2/3 
● Pair 4:   3/6     3/4   

 
 

Rubric 
Level I 
Not Yet 

6. Level II 
7. Progressing 

Level III 
Meets Expectation 

● Students do not 
achieve the correct 
answer and use 
inappropriate solution 
strategy.  

● Student determines 
which fractions are 
larger but provides 
limited to no 
reasoning.  

OR 
● Student provides 

some sound reasoning 
but is unable to 
determine which 
fractions are larger in 
each set. 

● Student accurately 
determines which 
fraction in each set is 
larger:  

o Set 1: 2/3 
o Set 2: 4/6 
o Set 3: 2/3 
o Set 4: 3/4 

● Students use visual 
models or number 
lines to accurately 
explain which 
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fractions in Sets 1-2 
are larger. 

● Student uses sound 
reasoning to explain 
how the larger 
fractions in Sets 3-4 
were determined (i.e., 
When looking at the 
fractions in Set 4, the 
student recognizes 
that there are three 
pieces in each 
fraction. Since fourths 
are larger than sixths, 
three fourths would be 
larger than three 
sixths.) 

 
 
 

Standards for Mathematical Practice 
1. Makes sense and perseveres in solving problems. 
2. Reasons abstractly and quantitatively. 
3. Constructs viable arguments and critiques the reasoning of others. 
4. Models with mathematics. 
5. Uses appropriate tools strategically. 
6.  Attends to precision. 
7. Looks for and makes use of structure. 
8. Looks for and expresses regularity in repeated reasoning. 

 
 
 
 
Task 4 
 
Comparing Fractions 
 
Part I: Below are measurements of ribbon in feet. For each pair of ribbons, draw a picture to 
determine which is longer.  

● Pair 1: 2/3     2/4 
● Pair 2:   2/6     4/6   
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Part II: Determine which fraction in each set is larger. Explain your reasoning using only words 
and numbers (without using models or number lines). 

● Pair 3: 1/3     2/3 
● Pair 4:   3/6     3/4   

 
Task 5  
Sharing Licorice  

NC.3.NF.2 
Sharing Licorice 

Domain Number and Operations - Fractions 
Cluster Understand fractions as numbers. 
Standard(s) NC.3.NF.2 Interpret fractions with 

denominators of 2, 3, 4, 6, and 8 using area 
and length models. 
• Using an area model, explain that the 
numerator of a fraction represents the number 
of equal parts of the unit fraction. 
• Using a number line, explain that the 
numerator of a fraction represents the number 
of lengths of the unit fraction from 0. 

Materials Sharing Licorice handouts, paper, pencils, 
rulers 

Task Part 1:  
● Distribute Sharing Licorice handouts. 
● Draw students’ attention to the image 

of Gino’s licorice. 
 
 



 

 
 

204 

 
 
 

● Read: Gino has 8/4 feet of licorice to 
share with his friends. He decides to 
give each friend 1/4 foot of licorice. 
Draw lines on Gino’s licorice to show 
where he should cut each 1/4 foot. 

 
 
Part 2: 

● Read: Explain how you decided where 
to draw lines on Gino’s licorice. 

 
 

Rubric 
Level I 
Not Yet 

8. Level II 
9. Progressing 

Level III 
Meets Expectation 

● Students use 
inappropriate solution 
strategies and do not 
obtain the correct 
solution. 

● The student places 
some fractions in the 
correct location, and 
partially explains why 
each fraction is placed 
in its location. or 

● Student places all 
fractions in the correct 
location but does not 
have sound reasoning 

● Students accurately 
place all fractions on 
the number line. 

● Student correctly 
explains why each 
fraction is placed in 
its correct location.  
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to prove his/her 
solution strategies. 

 
 
 
 

Standards for Mathematical Practice 
1. Makes sense and perseveres in solving problems. 
2. Reasons abstractly and quantitatively. 
3. Constructs viable arguments and critiques the reasoning of others. 
4. Models with mathematics. 
5. Uses appropriate tools strategically. 
6.  Attends to precision. 
7. Looks for and makes use of structure. 
8. Looks for and expresses regularity in repeated reasoning. 

 
 
 
 

Sharing Licorice 
Gino has 8/4 feet of licorice to share with his friends. He decides to give each friend 1/4 foot of 
licorice. Draw lines on Gino’s licorice to show where he should cut each 1/4 foot. 
 
 

Gino’s Licorice 
 
 
 
 
 
 
                        0                                                                                                      
 
 
 
 
Explain how you decided where to draw lines on Gino’s licorice. 
  
  
 
 
  
 
 
2. How many friends did Gino give licorice too? How do you know? 


