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ABSTRACT 

JAMES BENJAMIN JOHNSON. On Whole Genome Classifier Performance in Relation to 16S 
Classifiers. (Under the direction of DR. ANTHONY FODOR) 

There is little consensus in the literature as to which approach for classification of Whole 

Genome Shotgun (WGS) sequences is most accurate unlike 16S classifiers that have had more 

time to mature. In this dissertation, two of the most popular classification algorithms, Kraken2 

and Metaphlan2, were examined using four publicly available datasets. Surprisingly, Kraken2 

reported not only more taxa but many more taxa that were significantly associated with 

metadata. By comparing the Spearman correlation coefficients of each taxa in the dataset against 

more abundant taxa, it was found that Kraken2, but not Metaphlan2, showed a consistent pattern 

of classifying low abundance taxa that were highly correlated with the more abundant taxa. 

Neither Metaphlan2, nor 16S sequences that were available for two of four datasets, showed this 

pattern. These results suggest that Kraken2 consistently misclassified high abundance taxa into 

the same erroneous low abundance taxa. These “phantom” taxa have a similar pattern of 

inference as the high abundance source. Because of the ever-increasing sequencing depths of 

modern WGS cohorts, these “phantom” taxa will appear statistically significant in statistical 

models even with a low classification error rate from Kraken2. These findings suggest a novel 

metric for evaluating classifier accuracy. 
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CHAPTER 1: 1.1 Background and Introduction 

 Before the advent of next-generation sequencing, the mechanistic characteristics of how 

microbes interact with their host were difficult to study in detail. The majority of 

microorganisms cannot be cultured under standard laboratory conditions (Locey & Lennon, 

2016),(Mohr, 2018). Improvements in sequencing technology have allowed researchers to 

explore the novel relationship between microbes and their environments (Payne et al., 2017), 

(Hultman et al., 2015), (Osman et al., 2020),(Regalado et al., 2020). As the cost of sequencing 

has decreased the use of non-cultured based methods in the form of 16S rRNA sequencing, and 

later Whole Genome Shotgun Sequencing (WGS sequencing), has become ubiquitous. With each 

generation of sequencing technology, the number of reads has rapidly increased requiring 

specialized metagenomic bioinformatics tools to process and analyze the ever increasing 

volumes of data. Understanding how these tools have evolved alongside improving sequencing 

technology can help guide our use of these tools and determine unmet computational needs for 

the next generation of classifiers.  

 Although the 16S rRNA gene was an early target of Sanger sequencing (Sanger et al., 

1977), the application of the 16S rRNA gene for microbial taxonomy is credited to Pace et al in 

1985 (Lane et al., 1985) who realized that the gene could be used for classification in Bacteria 

and Archaea while excluding Eukaryotes. The 16S rRNA gene is unique in that it has nine 

hypervariable regions (V1-V9) across its length of ~1500 base pairs (bp). Despite being highly 

conserved and facing strong selective pressure, these variable regions within the gene contain 

distinct nucleotide changes that can be mapped back to phylogenetic trees. The decreased cost of 

Sanger sequencing together with the use of cultured libraries allowed for sequence based 

explorations of microbial diversity beyond the 16S rRNA gene. In a landmark paper, researchers 

surveyed the ocean microbiome and revealed an astounding number of distinct taxa and new 
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gene families (Venter, 2004). The number of genes discovered in this study was 10 times what 

was previously known from the SwissProt database (at the time around 1.2 million) and after 

matching these genes to several databases the researchers argued that they had discovered 69,000 

novel genes. This technique, which would be later refined as modern Metagenomic Shotgun 

Sequencing, would be improved by abandoning Sanger Sequencing in favor of cheaper Next 

Generation Sequencing (NGS). 

 The first NGS sequencer, the 454 Life science platform, was launched in 2005 and was 

rapidly adopted by the field for studying microbial genomes (Margulies et al., 2005; Rothberg & 

Leamon, 2008). This platform produced shorter reads with more errors than Sanger Sequencing 

but allowed for higher throughput of initially 25 million reads. An initial highly cited work using 

454 for the human microbiome provided evidence that the gut microbiome can cause obesity or 

weight loss depending upon the overall ratio of Firmicutes and Bacteroidetes (Turnbaugh et al., 

2006). The rapid creation of over 200 Mb of sequence data in this study enabled researchers to 

quickly evaluate the microbial community in mouse models through fecal transplantation from 

obese and lean human subjects to test the hypothesis that the microbial community controlled 

energy metabolism in recipient mice (Turnbaugh et al., 2006). Despite the initial human 

observation being largely unable to be replicated by other researchers (Sze & Schloss, 2016), 

these findings helped to create an increased interest in the microbiome outside of microbiology, 

which in turn provided the demand for applying new sequencing platforms to metagenomics. 

Most modern NGS sequencing is performed on the Illumina platform, although other 

companies such as Ion Torrent have promoted their platforms for metagenomic use. 16S 

sequencing is still used extensively to this day and has become ever more affordable for 

individual labs to easily perform their own surveys of microbial diversity. Third generation 
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technologies such as Oxford Nanopore and PacBio differ from previous generations due to much 

longer read (currently up to a factor of 20) lengths but with fewer reads in the hundreds of 

thousands vs the millions of reads typically produced by Illumina (Roumpeka et al., 2017). 

Switching to the third generation platforms have improved the quality of both WGS and 16S 

sequencing. WGS sequencing has benefited disproportionately since 16S genes are only 1500 bp 

long while an entire bacterial genome can be up to millions of bps.  

In tandem with the growth of 16S sequencing, there have been many popular algorithms 

for the taxonomic classification of 16S sequences. The most popular in terms of past citations, 

Quantitative Insights into Microbial Ecology (QIIME) (Caporaso et al., 2010), groups sequences 

into Operational Taxonomical Units (OTUs) that must share 97% sequence similarity in order to 

be clustered. Depending upon user settings, these OTUs could be found without a database 

(called denovo sequencing) or against reference sequences from a database. This differs from the 

second most popular algorithm, the Ribosomal Database Project (RDP) (Wang et al., 2007) 

which represents naïve Bayesian classification. Query sequences and references from the RDP 

database are divided into k-long segments called k-mers. These k-mers are scored through 

bootstrapping confidence estimates, matching nearest neighbors, and some Bayesian priors to 

determine the taxonomic classification for a given read. The most recent and increasingly 

popular 16S approach to 16S analysis called Dada2 differs from previous reference-based 

clustering by building Amplicon Sequence Variant (ASVs) instead of OTUs. ASVs are different 

from OTUs in that two sequences with a single nucleotide difference will produce two distinct 

ASVs while they would be clustered into OTUs with a less than 100% identity threshold. These 

ASVs are constructed through multiple layers of removing PCR and platform specific errors 

through a Bayesian modeling approach. The ASVs can then later be classified to whatever 
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database and taxonomic classifier users want while still preserving the original nucleotide 

specific data for future researchers to compare against their own data.  

While 16S sequencing remains powerful, it has three significant limitations. First, it is 

limited to the taxonomic classification of genus and above. Second, functional information can 

only be inferred from taxonomy as it only targets the 16S rRNA gene. Third, the process of 

amplifying reads via Polymerase Chain Reaction (PCR) introduces errors. Therefore researchers 

have increasingly been incorporating WGS sequencing into microbiome analysis since it 

captures entire genomes and provides functional information about a transcript and potential 

proteins. At least in theory, WGS can identify taxa down to the strain levels and track horizontal 

gene transfer events (Parks et al., 2018). Despite its popularity, WGS sequencing remains more 

expensive compared with 16S studies in terms of money, time, and computational resources. 

Despite the reduction in the cost of the two methods, WGS samples can cost over 200 dollars per 

sample to run through a sequencer while 16S can cost as much as 80 dollars per sample (Zymo 

Research, 2019). An example of the differences between a WGS and 16S study can be shown in 

two of my publications on the same wastewater treatment plant samples (Clinton et al., 2020; 

Lambirth et al., 2018). The WGS study required terabytes of hard-disk space for storage and 

some of the functional tools ran on our computational cluster for months; this was in contrast 

with the 16S study which only require hundreds of gigabytes of storage and took less than a 

week to run.  

Unlike 16S sequencing, WGS sequencing amplifies entire genomes and it remains an 

open question of how best to taxonomically classify WGS sequences. A whole host of 

algorithms have been proposed to address the research challenges associated with the taxonomic 

classification of WGS sequences. Quantifying the performance of these metagenomics tools 
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often relies on the authors of each new toolkit comparing their method against other published 

work to demonstrate superior performance. Table 1 shows how all WGS classifiers with greater 

than 200 citations that appear to still be in active development presented the effectiveness of 

their algorithms in their initial publication. By citation count, Kraken2 (Wood et al., 2019; Wood 

& Salzberg, 2014), Metaphlan2 (Segata et al., 2012; Truong et al., 2015), and Diamond 

(Buchfink et al., 2015) are three of the most popular algorithms for classification. These three 

algorithms, however, have very different approaches to classification. Kraken2 belongs to a 

subset of Sequence similarity algorithms utilizing k-mers. Query sequences and reference 

databases are divided into k-long segments where the aligner matches the k-long query to the k-

long fragments of the database. Unique database curation, indexing, and alignment scores 

differentiate k-mer algorithms. Metaphlan2 belongs to an eclectic collection of marker-based 

classifiers that ignores most of the genome. In Metaphlan2, a curated database of informative 

makers is curated and reads that do not map to this small subset of genes are ignored. 

Metaphlan2 relies on bowtie for read alignment before classifying clade specific marker 

genes that allow for it to classify somewhat novel taxa as long as it's genetically close enough to 

documented genus member. The marker gene does suffer from relying on a curated database 

preventing custom databases tailored to the biome under study. The third group of classifiers that 

branched out from prior marker-based classification relies on translating subsets of DNA into 

taxonomic specific proteins. Diamond and Kaiju (Buchfink et al., 2015; Menzel et al., 2016) are 

the most cited of the protein classifiers and have become quite popular despite lower scores 

when compared to other classifiers as shown in Table 1.  
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Table 1: Commonly Cited WGS Classifier Tools 

Algorithm Method Algorithms 
Benchmarks 

Type of data 
evaluated 

Type of 
Evaluation 

Custom 
Databases 

Number 
of 
Citations 

Citation and Year 

Kraken2 Sequence 
Similarity: k-mer 

Metaphlan, 
Megablast, 
PhymmBl, 
NBC; 
Centrifuge, 
Clark, Kaiju 
KrakenUniq,  

Simulated 
from 
Database & 
experiment; 

Speed, 
Memory, 
Accuracy 

 Yes 2247+163 
2410 

Wood et al, 2014 
& 2019 

Clark Sequence 
Similarity: k-mer 

Configurations 
of itself 

Simulated 
from 
Database & 
experiment 

Speed, 
Memory, 
Accuracy 

 Yes  386 Ounit et al, 2015 

Bracken Sequence 
Similarity: k-mer 

Kraken  Simulated 
from 
Database & 
experiment 

Accuracy  Yes  218 Lu et al, 2017 

Centrifuge Sequence 
Similarity: k-mer 

Kraken, 
Megablast 

 Simulated & 
experiment 

Speed, 
Memory, 
Accuracy 

 Yes  471 Kim et al, 2016 

MEGAN Sequence 
Similarity: Local 
Aligner 

Blast  Experiment Accuracy, 
speed, 
memory 

 Yes 2604  Huson et al, 2007  

mOTUs2 Marker gene Metaphlan; 
Metaphlan2, 
Kraken 

Simulated 
from 
Experiment; 
Simulated 
from 
Experiment 

Accuracy, 
Statistics; 
Accuracy, 
Statistics, 

 No 246+37 
283 

Sunagawa et al 
2013, Milanese 
2019 

Metaphlan2 Marker gene PhymmBl, 
Phymm, RITA, 
NBC; Kraken 

 Simualted 
from 
experiment 

Accuracy, 
speed 

 No 1206+962 
2168 

Segata et al, 2012, 
Truong etal , 2015 

Diamond Protein RapSearch2, 
BlastX 

Simulated 
from 
Database& 
Experiment 

Accuracy, 
Speed, 
Memory 

 Yes  2184 Buchfink et al, 
2015 

Kaiju Protein  Kraken, Clark  Simulated 
from 
Database & 
experiment, 
Mock 
Communities 

Accuracy, 
Speed, 
Memory 

 Yes  355 Menzel 2016 
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In terms of how they were evaluated in the papers in which they were introduced, 

Kraken2 and Metaphlan2 each showed performance improvements over previous algorithms. 

Kraken2 itself has been a popular target for many of the newer algorithms that are seeking to 

improve upon it such as Kaiju, Clark (Ounit et al., 2015), Centrifuge (Kim et al., 2016), or 

Metaphlan2. The authors of Diamond did not attempt to compare their algorithm against other k-

mer of marker gene classifiers and limited their comparison against other protein marker-based 

classifiers such as Kaiju. Interestingly, Clark only compared performance against different 

parameters of Clark but it is still highly cited and respected in the field. 

An author trying to demonstrate the superiority of a new algorithm needs not only to 

decide which algorithms to compare against, but which datasets to use. Suitable validation 

datasets could be in the form of an in silico mock community, real mock community, or 

experimental data. In silico mock (simulated mock communities) comprise mock samples 

created from random combinations of assembled sequences from either databases or previously 

sequenced datasets. In vitro mock communities consist of known microbes with sequenced 

genomes grown in culture in the laboratory and mixed together in know proportions. Naturally 

derived communities are “real” datasets that consist of sequenced samples taken from the field 

or natural habitat of the microbiome under study with sample composition unknown prior to 

sequencing. The vast majority of classifier papers used a combination of in silco mock 

communities to refine and compare their classifier against others. The power of using in silico 

mock communities is that the “correct” answer is known with complete certainty. The 

disadvantage of this approach is that these simulated samples could have sequences that would 

not coexist in the wild or have an unrealistic equal distribution of sequences. Later benchmarking 

studies (McIntyre et al., 2017) and classifiers such as Kaiju incorporated in vitro communities 
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with known compositions into their benchmarks. These in vitro communities had some of the 

advantages of naturally derived community datasets and some of the advantages of in silico 

datasets by merging the randomness of sequencing from the laboratory environment with the 

foreknowledge of known community composition thus serving as a ground truth when 

comparing classifiers (Bokulich et al., 2020). As taxonomic classifier papers introduced new 

algorithms, authors usually asserted that their new or updated algorithm performed better than 

competitors and as such that researchers should use their latest new and improved tool.  

A limitation of the developer of an algorithm also performing the benchmarking of that 

algorithm is that through conscious or unconscious bias, the developer of the algorithm will 

likely favor their algorithm over competing algorithms. These biases have been well documented 

and led to competitions such as CASP (Critical Assessment of protein Structure Prediction) and 

CAMI (Critical Assessment of Metagenomic Interpretation) in which the “correct” answer is not 

known and therefore bias towards an algorithm based on tuning to expected results is eliminated. 

The CASP competition has developers of protein folding algorithms submit results for unknown 

protein structures to determine the best algorithm and has been the focus of substantial recent 

algorithm development which has led some to claim that the protein folding problem is 

essentially solved (AlQuraishi, 2019). Because a crystal structure is a clear and “correct” answer 

to how a protein will fold, it is obvious how to score different predictions of that structure and 

this has led to the CASP competition being such a robust and successful part of the development 

of the theory and application of computational methods and machine learning to protein folding. 

On the other hand, CAMI evaluates metagenome analysis by building broad benchmark 

datasets, setting standards for comparing performance metrics, and developing research 

questions from a wide spectrum of scientists. The metagenomics field has been slow to adopt 
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CAMI and its standards in comparison to CASP. Instead, many metagenomic analysts responded 

to the rising number of taxonomic classifier papers by independently rating the performance of 

selected classifiers through benchmarking papers (Table 2). Each of these papers compared 

commonly used tools through a large number of simulated and real mock communities from a 

diverse collection of environments and databases. Interestingly, the results of these 

benchmarking papers are not consistent and have shown conflicting results in determining the 

best performing taxonomic classifier. Lindgreen and Ye suggested k-mer algorithms (such as 

Kraken2) were better while Peabody and McIntyre suggested no method was truly superior and 

that such distinction should be based upon the type of dataset collected and database used in the 

analysis. This divide in the field is best documented in a meta-analysis of both classifiers and 

benchmarking papers by Gardner. This paper ignored traditional accuracy measurements and 

focused on the number of citations, how simulated datasets were generated, and a Pearson 

calculation of network meta-analysis (Gardner et al., 2019)). While the article's conclusions do 

not question the underlying quality of data for each of the benchmarking studies collected it does 

show that there is a bias towards k-mer based algorithms by microbiome experts and that for 

environmental datasets false negatives are more likely due to reference databases.  

A recent Nature Methods paper (Z. Sun et al., 2020) suggested Metaphlan2 is the most 

accurate and that previous analysis mixed and matched sequenced abundance with taxonomic 

abundance especially when compared against Kraken2. The authors argue that sequence 

abundances can be undercounted or overcounted based on the size of the genome referenced for 

that read count. While taxonomic abundance comes from matching sequences to genomic 

markers and less likely to be biased. This interchanging of taxonomic abundances with sequence 

abundances can distort comparisons between classifiers and mislead biologists when conducting 
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statistical analysis. This paper argues against the previous conclusions of k-mer superiority and 

argues that each method has its merit in a given context.  

Previous reporting on the differences between these classifiers has reached different 

conclusions but relied heavily on traditional testing for classifier accuracy. In this proposal, we 

are going to argue that differences in normalization do not explain the differences between 

Metaphlan2 and Kraken2 but rather that these differences are driven by differences in 

classification error rates. Through the mapping of Spearman correlations to taxonomic 

abundance and comparing the proportions of taxa abundance against each classifier, this 

dissertation will provide a simple but unique perspective not previously considered in the 

literature. By using natural derived communities, we can demonstrate issues with Kraken2 that 

have only been hinted at by prior studies and draw meaningful conclusions while avoiding some 

of the limitations of simulated communities described above. 

  



 

 

11 

Table 2: WGS Classifier Benchmarking Papers 

Benchmarking 
Paper 

Citations Algorithms 
Benchmarked 

Type of Data Performance 
Evaluation 

Conclusions 

Peabody et al, 
2015 

126 CARMA3, CLARK, 
RAP Search2, Kraken, 
MEGAN, Metabin, 
MetaCV, Metaphyler, 
TACOA, PhymmBl, 
RITA, BLAST, 
GOTTCHA 

In Silico Mock 2,  
In Vitro Mock 
Community 1 

Accuracy, 
Memory 

No method superior but 
noticed variation in false 
positive and true negative 
rates depends upon dataset 
selected 

Lindgreen et al, 
2016 

281 CLARK, EBI, 
Genometa, 
GOTTCHA, Kraken, 
LMAT, MEGAN, 
Metaphlan, 
MetaPhyler, MG-
RAST, mOTU, 
OneCodex, QIIME,  
Taxator-tk 

In Silico Mock 6 Accuracy, 
Memory, 
Speed 

Kraken, Clark, OneCodex 
were the most accurate in 
sensitivity, precision. 
OneCodex and Metaphlan 
were the quickest with 
Kraken, Clark having 
modest performance 

McIntyre et al, 
2017 

193 MEGAN, GOTTCHA, 
Diamond, Metaphlan, 
Kraken, MetaFlow, 
LMAT, PhyloSift,  
Clark, NBC, BLAST 

In Silico Mock 21,  
In Vitro Mock 
Community 17 

Accuracy, 
Memory, 
Speed 

Clark/Kraken is best for 
limiting False Negatives 
while MEGAN is Best for 
limiting False Positives. 
Metaphlan is the best for 
speed and memory 
constraints, Kraken is in 
the middle, and MEGAN 
are Clark are some of the 
slowest and most memory 
intensive. Database 
curation is most important 
for species classification 
than selection of classifier. 

Ye 2019 151 Bracken, Centrifuge, 
CLARK, Kraken, 
Kraken2, k-SLAM, 
MegaBLAST, 
metaOthello, PathSeq, 
prophyle, taxMaps, 
DIAMOND, KAIJU, 
MMseqs2, 
Metaphlan2, mOTUs 

In Silico Mock 14,  
In Vitro Mock 
Community 1 

Accuracy, 
Memory, 
Speed 

Mainly described the 
limitations of databases on 
how it influenced classifier 
performance. Metaphlan2 
and mOTU were the least 
accurate while k-mer and 
protein based methods 
with the exception of 
Centrifuge were 
comparable in terms of 
sequences and beta 
diversity.  

Sun et al, 2021 10 Bracken, Kraken2, 
Metaphlan2, mOTU, 
Kaiju, Diamond 

In Silico Mock 25 Accuracy, 
Statistical 
Analysis 

Protein Marker were the 
most inaccurate. 
Metaphlan2 was most 
accurate for taxonomic 
abundance and Kraken2 
was most accurate for 
sequence abundance. 
Demonstrated that 
sequence count values 
were influenced by size of 
the referred genome. 
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1.2 Full Citation and Description of Published Work 

I have one first-author and another co-first-author paper that has been published and that are 

briefly described in the next few pages. Below are the links to these papers. 

1. Clinton, S., Johnson, J., Lambirth, K., Sun, S., Brouwer, C., Keen, O., Redmond, M., Fodor, 

A., & Gibas, C. (2020). Sediment Microbial Diversity in Urban Piedmont North Carolina 

Watersheds Receiving Wastewater Input. Water, 12(6), 1557. 

https://doi.org/10.3390/w12061557 

2. Johnson, J., Dellon, E., McCoy, A. N., Sun, S., Jensen, E. T., Fodor, A. A., & Keku, T. 

O. (2021). Lack of association of the esophageal microbiome in adults with eosinophilic 

esophagitis compared with non-EoE controls. Journal of Gastrointestinal and Liver 

Diseases, 30(1), 17–24. https://doi.org/10.15403/jgld-3049 

An additional paper related to my collaboration with the multidisciplinary North Carolina Urban 

Environmental Genomics Project where I am the second author. 

3. Sorgen, A., Johnson, J., Lambirth, K., Clinton, S. M., Redmond, M., Fodor, A., & Gibas, 

C. (2021). Characterization of Environmental and Cultivable Antibiotic-Resistant 

Microbial Communities Associated with Wastewater Treatment. Antibiotics, 10(4), 352. 

https://doi.org/10.3390/antibiotics10040352 

In addition to the work above, I made minor contributions to the following two papers. These are 

not included in the dissertation but bring my total current publications to count during my Ph.D. 

to two first-authored and 3 collaborative papers. 

4. Lambirth, K., Tsilimigras, M., Lulla, A., Johnson, J., Al-Shaer, A., Wynblatt, O., Sypolt, S., 

Brouwer, C., Clinton, S., Keen, O., Redmond, M., Fodor, A., & Gibas, C. (2018). Microbial 
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Community Composition and Antibiotic Resistance Genes within a North Carolina Urban 

Water System. Water, 10(11), 1539. https://doi.org/10.3390/w10111539  

5. Bajorek, S., Parker, L., Li, N., Winglee, K., Weaver, M., Johnson, J., Sioda, M., Gauthier, J., 

Lemas, D. J., Jobin, C., Lorca, G., Neu, J., & Fodor, A. A. (2019). Initial microbial 

community of the neonatal stomach immediately after birth. Gut Microbes, 10(3), 289–

297. https://doi.org/10.1080/19490976.2018.1520578 
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CHAPTER 2 (published): Lack of Association of the Esophageal Microbiome in Adults 

with Eosinophilic Esophagitis Compared with Non-EoE Controls 

In this first author paper (Johnson et al., 2021), we sought to explore and document the 

esophageal microbiome for adults and to determine if any microbes were correlated to 

Eosinophilic Esophagitis (EoE) when compared to a relatively healthy control group. EoE is a 

reoccurring allergic and immune condition that is triggered by either food or some environmental 

allergy along the esophagus. The recent rise in the medical condition over the past few decades 

has led some researchers to suggest that changes to the gut microbiome and/or esophageal 

microbiome might be an environmental trigger. Under this hypothesis, the increased usage of 

various antibiotics might allow for microbes passing through the gastrolienal tract a new 

opportunity to colonize. Previous work had focused primarily on children suffering from this 

condition, but the authors of this paper wanted to document the esophageal microbiome of both 

healthy and EoE adult patients. 

 For this paper, I performed all the sequencing analyses, built most of the statistical 

models, and created all the figures. The study included a wide variety of covariates including a 

diversity of prescribed medications, dietary choices, and anatomical features in the esophagus. 

The results were mostly negative except significant association that was found with one of the 

most prescribed medications, Proton Pump Inhibitors (PPIs), which changed the overall 

esophageal microbiome. This strongly suggests that colonization of members of the 

Neisseriaceae family such as Kingella and Eikenella and other Proteobacteria along the 

esophagus could occur due to changes in the hydrogen ion concentration (pH). PPIs reduce the 

number of hydrogen ions in the stomach by inactivating hydrogen ion channels thus increasing 

pH levels to reduce acidity. Several papers (Freedberg et al., 2014; Hojo et al., 2018) have 
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documented how the gut microbiome changed as a result of this increase of pH to a less acidic 

state since some microbes are incapable of surviving in a harsh acidic environment. It would not 

be unreasonable to assume that such changes in pH would reduce the acidity of the esophagus 

walls as well as the number of events where stomach acid coats the esophagus. This altering of 

environmental conditions could allow for colonizing or predatory bacteria to remove other 

bacteria from their microbial niche while producing chemical irritants that symptomize in the 

form of allergies. Future studies will be needed to evaluate these hypotheses suggested by our 

study. 

In this paper, we ran multiple 16S classifiers including Qiime, RDP, and DADA2 with 

the Silva 128 database as a reference. In addition to standard analyses such as PCoA Beta 

Diversity plots of the overall microbial community structure and linear models for identifying 

associated taxa, I conducted a power analysis to demonstrate how many individuals it would take 

to identify potential low abundant taxa with different effect sizes. This work could potentially be 

applied to future grants to conduct a larger study that could explore multiple diseases affecting 

the esophagus while providing healthy esophageal microbiomes as a reference for future papers. 

Published results were compared with prior work to see if there were consistent 

differences across studies for adult and child EoE. This analysis did not find consistent results 

(data not shown). This was surprising as our collaborators had hypothesized that the esophageal 

microbiome would be altered by the presence of rings lining the esophagus or patients suffering 

from asthma among other documented variables. All of these studies including ours were limited 

by modest sample sizes. Future work and larger cohorts may have sufficient power to detect 

small differences in the microbiome. Taken together, my work in this field highlights issues 

when conducting microbial studies on the upper gastrointestinal tract as well as the dearth of 
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samples and studies when it comes to understanding the diverse human microbiome in medically 

important regions.  
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CHAPTER 3 (published): Sediment Microbial Diversity in Urban Piedmont North 

Carolina Watersheds Receiving Wastewater Input  

In this paper (Clinton et al., 2020) where I am the co-first author, we performed a 16S 

sequence analysis exploring how stream microecology has been impacted by continuous 

exposure to wastewater treatment plant effluent in an urban setting. Unlike previous work, 

samples were collected from the water, the sediment in the stream, and the soil. This built upon 

prior work (Lambirth et al., 2018) looking at the microbiome of various stages of treatment in the 

wastewater treatment plant (WWTP) that fed into urban streams. We were able to collect 

samples upstream of the WWTP facility to serve as a control and document the microbiome prior 

to exposure to urban wastewater for water, sediment, and soil samples. This work demonstrated 

how the microbiomes in the water and more importantly the sediment and the soil were altered 

due to the chemicals released by the WTTP, the microbes that survived treatment, and the 

various biochemicals such as Antibiotic Resistant Genes (ARGs) vesicles. 

By comparing undiscovered and poorly classified bacteria found in the WWTP facility 

we were able to show significant overlap with samples collected from the downstream 

environment. This was made possible by replacing traditional 16S classifiers that rely on 

Operational Taxonomic Units (OTUs) with the popular algorithm DADA2 that instead uses 

ASVs (Amplicon Sequence Variants). ASVs are sequences that can differ by up to a single 

nucleotide and allow researchers to infer the original biological sequence before the introduction 

of PCR amplification and other sequence errors (Callahan et al., 2016). Due to the relatively 

small number of samples collected, this study required a departure from standard analytical 

methods and instead utilized Fisher exact tests and pairwise dissimilarities distances to 

demonstrate statistical significance. These new methods combined with Beta Diversity plots and 
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DADA2 enabled the identification of several OTUs that are not classified by current taxonomic 

identification algorithms as ASVs that matched members of the Neisseriaceae and Nocardiaceae 

family.  

All these taxa were found downstream of the WWTP and not upstream thus providing 

clear evidence that despite WWTP treating concentrated levels of antibiotics and other 

prescribed medications to sublethal levels, the WWTP did impact the downstream microbial 

community. Neisseriaceae includes bacteria that can be either symbiotes or parasites dependent 

upon the class of host animal and is responsible for several gastrointestinal diseases in humans 

such as meningitis and gonorrhea. Nocardiaceae mainly consists of native soil microbes that are 

typically benign but are opportunistic and infectious when ingested by humans with weak 

immune systems. These findings were of relevance to our main sponsor, Charlotte Water, who is 

in charge of water quality for the city of Charlotte. For this paper, I performed all the sequencing 

analysis, built the majority of the statistical models, and created the majority of the figures for 

both the main paper and the appendix. 
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CHAPTER 4 (published): Characterization of Environmental and Cultivable Antibiotic-

Resistant Microbial Communities Associated with Wastewater Treatment 

 This paper (Sorgen et al., 2021), which I am a co-author, was an experimental 

continuation of studying the bacterial communities in the Charlotte Urban streams of Mallard 

creek and Sugar creek along with the Wastewater Treatment Plants (WWTPs) that deposit their 

treated water into each stream system. The primary author, Alicia Sorgen, who at the time was a 

Ph.D. student in the biology department, grew heterotrophic plates using water samples collected 

from not only multiple stages of WTTPs and upstream and downstream from those facilities but 

also from Hospitals and Residential sewage that fed into the sewer lines that are routed to the 

WWTPs. In order to best simulate antibiotic resistance in a laboratory setting, several plates were 

grown with varying combinations of two different growth media, room, and human body 

temperatures, and 4 different antibiotics with an additional control group having no antibiotics 

added to the plates. One antibiotic, Doxycycline, was effective at hampering bacterial growth on 

the plates with only a few cultures surviving on average. Every culturable bacteria taxon 

discovered in this urban stream system was resistant to at least one of the four antibiotics. 

 Additional findings included higher temperatures leading to a higher volume of bacteria 

present overall with little change in microbial diversity. Nutrient poor growth media such as 

Reasoner’s 2A agar (R2A) in relation to the other experimented growth media Lysogeny broth 

(LB), led to significantly higher levels of microbial diversity indicating that such harsh 

conditions enable a more diverse community to arise. Of interest, the WWTP significantly 

reduced the number of culturable antibiotic-resistant bacteria to levels observed upstream of the 

WWTPs after treatment in the Aeration Tanks.  
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 These findings were possible thanks to the primary author who grew the plates and 

tediously measured the number of cultures. My role in this paper was more of an active advisory 

position where I collaborated by writing custom software and selecting the initial statistical 

models to evaluate the dataset. Later work involved taking a less active role and providing 

feedback on how to interpret data. My final contribution was integrating data analysis from 

previous UEGP papers to compare with 16S sequencing from the plates for the primary author 

while critiquing the models and figure design. This paper provided valuable experience in 

collaborating with scientists and understanding the requirements of preparing microbial sequence 

data for publication.  
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CHAPTER 5 (Preprint): Systematic Classification Error Profoundly Impacts Inference in 

High-depth Whole Genome Shotgun Sequencing Datasets (Johnson et al., 2022) 

(Parts of this chapter have been deposited in the bioarchvie at 

https://www.biorxiv.org/content/10.1101/2022.04.04.487034v2.abstract ) 

5.1 Abstract  

There is little consensus in the literature as to which approach for the classification of 

Whole Genome Shotgun (WGS) sequences is best. In this paper, we examine two of the most 

popular algorithms, Kraken2 and Metaphlan2 utilizing four publicly available datasets. As 

expected from previous literature, we found that Kraken2 reports more overall taxa while 

Metaphlan2 reports fewer taxa while classifying fewer overall reads. To our surprise, however, 

Kraken2 reported not only more taxa but many more taxa that were significantly associated with 

metadata. This implies that either Kraken2 is more sensitive to taxa that are biologically relevant 

and are simply missed by Metaphlan2, or that Kraken2’s classification errors are generated in 

such a way as to impact inference. To discriminate between these two possibilities, we compared 

the Spearman correlation coefficients of each taxa against each taxa with higher abundance from 

the same dataset. We found that Kraken2, but not Metaphlan2, showed a consistent pattern of 

classifying low abundance taxa that generated high correlation coefficients with higher 

abundance taxa. Neither Metaphlan2 nor 16S sequences that were available for two of our four 

datasets showed this pattern. Simple simulations based on a variable Poisson error rate sampled 

from the uniform distribution with an average error rate of 0.0005 showed strikingly strong 

concordance with the observed correlation patterns from Kraken2. Our results suggest that 

Kraken2 consistently misclassifies high abundance taxa into the same erroneous low abundance 

taxa creating “phantom” taxa that have a similar pattern of inference as the high abundance 
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source. Because of the large sequencing depths of modern WGS cohorts, these “phantom” taxa 

will appear statistically significant in statistical models even with a low overall rate of 

classification error from Kraken2. Our simulations suggest that this can occur with average error 

rates as low as 1 in 2,000 reads. These data suggest a novel metric for evaluating classifier 

accuracy and suggest that the pattern of classification errors should be considered in addition to 

the overall classification error rate since consistent classification errors have a more profound 

impact on inference compared to classification errors that do not always result in assignment to 

the same erroneous taxa. This work highlights fundamental questions on how classifiers function 

and interact with large sequencing depths and statistical models that still need to be resolved for 

WGS, especially if correlation coefficients between taxa are to be used to build covariance 

networks. Our work also suggests that despite its limitations, 16S rRNA sequencing may still be 

useful as neither of the two most popular 16S classifiers showed these patterns of inflated 

correlation coefficients between taxa. 
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5.2 Introduction 

Improvements in sequencing technology have allowed researchers to explore the novel 

relationship between microbes and their environments (Hultman et al., 2015; Osman et al., 2020; 

Payne et al., 2017; Regalado et al., 2020). In tandem with the growth of 16S sequencing, two of 

the most popular classification algorithms in terms of past citations include Quantitative Insights 

into Microbial Ecology (QIIME) (Caporaso et al., 2010), which is often used for the creation of 

closed-reference or open-referenced OTUs, and the Ribosomal Database Project (RDP) (Wang et 

al., 2007) which represents naïve Bayesian classification. While 16S sequencing remains 

powerful, it has several limitations: it can only reliably generate taxonomy at genus and above, 

functional information can only be inferred from taxonomy, it targets only a single gene, and the 

process of amplifying reads via Polymerase Chain Reaction (PCR) can introduce chimeras and 

other errors. Therefore, researchers have increasingly been incorporating WGS sequencing into 

microbiome analysis since it provides functional information about potential proteins, and can at 

least in theory, identify taxa down to the strain levels while tracking horizontal gene transfer 

events (Parks et al., 2018). Unlike 16S sequencing, WGS sequencing amplifies entire genomes 

and it remains an open question of how best to taxonomically classify WGS sequences.  

Many algorithms have been proposed to address the research challenges associated with 

the taxonomic classification of WGS sequences (Buchfink et al., 2015; Huson et al., 2007; Kim 

et al., 2016; Lu et al., 2017; Menzel et al., 2016; Milanese et al., 2019; Ounit et al., 2015; Segata 

et al., 2012; Sunagawa et al., 2013; Truong et al., 2015; Wood et al., 2019; Wood & Salzberg, 

2014). Attempts to benchmark these algorithms have led to conflicting results (Lindgreen et al., 

2016; McIntyre et al., 2017; Peabody et al., 2015; Z. Sun et al., 2020; Ye et al., 2019). One paper 

by Peabody et al explored the precision and accuracy of WGS classifiers but argued that 
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performance varied widely between different classifiers and advocated for the use of 

standardized datasets. In 2016, Lindgreen et al examined datasets they argued were more 

complex and more realistic than previous comparisons and found a high degree of variability 

between different tools. In 2017, McIntyre et al found that Kraken2 was among the tools with the 

highest read-level precision. In 2019, Ye et al argued that explicit consideration of reference 

databases should be an important consideration in evaluating and improving classifier 

performance. More recently in 2021, Sun et al argued that explicit consideration of sequence 

abundance vs. taxonomic abundance and how to reference genome size was incorporated into 

normalization schemes is a crucial and underappreciated aspect of classifier performance.  

All of the benchmarking papers referenced make extensive utilization of in silico mock 

(simulated mock) communities which comprise of samples created from random combinations of 

assembled sequences from either databases or previously sequenced datasets. These datasets 

have the obvious advantage that the “correct” answer is known but the obvious disadvantage is 

that the mock communities might not resemble “real”, or naturally derived communities, in 

community structure and distribution. Moreover, choices made in assembling the mock 

communities can bias benchmarking results in favor of one or another class of algorithms. 

Similar concerns can be raised about in vitro mock communities which consist of known 

microbes with sequenced genomes grown in culture in the laboratory and mixed together in 

know proportions. In vitro mock communities are in some sense more “real” than in silico mock 

communities as they involve sequencing of actual microbes, but it is still unclear how choices 

made in assembling the mock community could influence benchmark results or how in vitro 

mock communities might miss important features of complex “real” communities. Ideally, 

benchmarking papers could utilize naturally derived communities, or “real” datasets, that 
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consists of sequenced samples taken from the field or natural habitat of the microbiome under 

study with sample composition unknown prior to sequencing. While “real” samples are 

appropriately complex and do not require the choices involved in constructing mock 

communities, the obvious disadvantage of using these samples is that the correct answer is not 

known making it difficult to benchmark different algorithms.  

In this manuscript, we consider Kraken2 and Metaphaln2, the two most widely used 

classification algorithms, two traits of classification performance on real datasets beyond 

“correct classification” that have not previously been extensively examined in benchmarking 

papers. The first of these is inference. For four “real” (naturally derived communities) datasets 

we examine the pattern of inference and ask how many significant taxa each classifier finds. In 

addition, we consider the structure of Spearman correlation patterns between the reported taxa 

for each classifier. We argue that even with an overall very low error rate and standard 

sequencing depth, Kraken2, but not Metaphlan2 or any 16S classifiers, reliably produces a high 

percentage of “phantom” taxa. This reflects systematic classification error, and can be 

significantly associated with metadata under study. 
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5.3 Methods 

The four datasets that have been chosen for this comparison (Table 1) include three 

human gut whole genome studies (Jones et al., 2018; Schirmer et al., 2018; S. Sun et al., 2021; 

Winglee et al., 2017) and one pig gut whole genome classifier study (Xiao et al., 2016). All four 

of the datasets are available on NCBI: Vanderbilt project is PRJNA693850 (WGS) and 

PRJNA397450 (16S), Pig Gut study is PRJEB11755 (WGS), IBD study is PRJNA389280 

(WGS), and the China study is PRJNA349463 (WGS and 16S). Samples that did not have 

corresponding metadata were not included in the analysis. 

Reverse reads were ignored and only forward reads were included. Contaminant reads 

were removed from the forward fastq files using kneaddata, package in bioBakery (McIver et al., 

2018), which automatically calls on trimmomatic (Bolger et al., 2014) for trimming and bowtie 

(Langmead & Salzberg, 2012) to align reads to contaminant genomes. Two classifiers were 

tested in this study due to popularity and ease of use which were Metaphlan2 and Kraken2. 

These classifiers constitute the two most highly cited and used forms of classification of whole 

genome shotgun data with Metaphlan2 representing marker-gene based classifiers and Kraken2 

representing k-mer based classifiers. This study used the default database for Metaphlan2. For 

Kraken2, we exclusively used the prokaryotic combination of refseq databases downloaded from 

https://benlangmead.github.io/aws-indexes/k2 that only included archaea and bacteria as 

downloaded on April 2020.  
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Table 3: Metadata and Sequencing Depth at Genus Level 
Dataset Metadata Sample 

Size 
WGS 

Average 
Sequence 
Depth 
Kraken2 

Average 
Sequence 
Depth 
Metaphlan2 

Sample 
Size 
16S 

Average 
Sequence 
Depth 
RDP 

Average 
Sequence 
Depth 
Qiime 

China Rural vs 
Urban 

40 3,668,438 3,463,600 40 69,021.02 40,830.70 

Vanderbilt Sample 
Type 
(stool vs. 
swab vs. 
tissue) 

1,203 2,746,762 2,043,168 240 134,289.20 107,769.70 

IBD Disease vs 
Control 

341 5,637,535 3,049,583 NA NA NA 

Pig Gut 3 countries 
(China, 
France, 
Denmark) 

281 1,476,263 1,017,447 NA NA NA 
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Statistical Analysis started with normalizing taxa tables from all classifiers through the 

Normalization Formula, 𝑙𝑜𝑔!" $
#$
%
∗ 10& + 1), and subdividing by phylogenetic level. RC 

represents the raw counts' value of a given taxon for a given sample, n is the total number of 

sequence counts for that sample, multiplying by a million normalized the proportions to the same 

sequence depth to allow for comparisons across different datasets, and a pseudo count of 1 was 

chosen to make zeros appear as zeros after log transformation. This formula is designed to 

minimize differences in the impact of the pseudo count and differences caused by different 

datasets with different sampling depths. Nonparametric Kruskal Wallis tests were employed to 

highlight the differences in the microbiome for the variable with the strongest effect size in each 

dataset. In the case of the Vanderbilt dataset, this was the type of method for collecting samples 

either swabbing, tissue, or using a patient’s stool. The Pig Gut dataset used the geographical 

location of the pig which consisted of three locations China, Denmark, and France. The IBD 

dataset was simply whether the patient suffered from Intestinal Bowel Disease or not. Lastly, the 

China dataset looked at whether the patient lived in a rural community or an urban community. 

All coefficients of determination and p-values reported came from these variables modeled to 

their datasets. FDR correction was via the Benjamini-Hochberg (Benjamini & Hochberg, 1995) 

method at a 5% FDR threshold. 

Additional statistical tests consisted of calculating the highest Spearman correlation Rho 

values for each taxon when compared to every other taxa with higher abundance in the dataset. 

In this calculation, we sort each taxon based on its mean relative abundance and, starting with the 

2nd most abundant taxon, report the highest Spearman correlation for each taxa with higher 

abundance. So, for the 2nd most abundant taxon, we report the Spearman correlation with the 1st 

most abundant taxon. For the 3rd most abundant taxon, we report the higher of the Spearman 
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correlation coefficients between the 3rd and the 1st taxa and the 3rd and the 2nd. And so forth until 

each taxa (except the most abundant) is assigned such a value. Spearman correlation coefficients 

were calculated on un-normalized data to avoid artifacts associated with normalization. 

Performing the results on log-normalized data, however, yielded nearly identical results (data not 

shown). Prevalence calculations counted the number of samples with non-zero values for a given 

taxon and reported them as a percentage of the total number of samples that contained that taxon 

in a given dataset. All Poisson models used the top ten most abundant taxa for a given dataset 

and converted them to proportions for the model. In the Poisson model, the lambda is selected by 

sampling from the uniform distribution in a range from zero to a maximum error range which is 

indicated in the results and figure legends for the different models. 
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5.4 Results 

Kraken2 finds both more taxa and more taxa significantly associated with metadata than 
Metaphlan2 
 

In this analysis, we compared average relative abundance across all samples for four 

previously published publicly available datasets using Metaphlan2 and Kraken2 classifiers. In 

addition, for each dataset, we performed inference with relevant metadata using non-parametric 

tests (see methods). When comparing Metaphlan2 and Kraken2 (Figures 1-2), we noticed a 

strikingly similar pattern across all 4 datasets with the following features: (i) Both classifiers 

found taxa that were not found by the other classifier, but Kraken2 reported many more of these 

than Metaphlan2 at both the phyla (Fig.1) and genus (Fig. 2) level; (ii) for high abundance taxa, 

the two classifiers agreed very strongly on the average relative log-normalized abundances for all 

datasets; (iii) for all datasets there were a number of low abundance taxa which Kraken2 

consistently reported a lower log-normalized relative abundance than Metaphlan2; and (iv) 

Kraken2 not only reports more taxa but more taxa that are significantly associated with metadata 

at both the phyla and genus level. 

Patterns of Spearman correlation between taxa suggests that many classifications from Kraken2 
are “phantom” taxa that represent systematic misclassification of high-abundance taxa 

 
The fact that Kraken2 reports not only more taxa but also more taxa significantly 

associated with metadata suggests two alternative hypotheses. The first is that Kraken2 is more 

sensitive and is reporting biologically important taxa that Metaphlan2 simply misses. An 

alternative, not necessarily mutually exclusive hypothesis, is that Kraken2 is misclassifying some 

reads in a non-random way that impacts inference. In order to discriminate between these two 

hypotheses, we asked for each taxon what was the highest Spearman correlation coefficient with 

any more abundant taxa (see methods). Surprisingly we discovered that the vast majority of the 
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taxa that Kraken2 identified appeared to be highly correlated with at least one more abundant 

taxa and therefore shared that taxa’s distribution across samples (Fig. 3-6). Metaphlan2 did not 

show a similar correlation structure (Figs. 3-6). 
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Figure 1: Kraken2 and Metaphlan2 normalized sample counts at the phylum level for our four 
publicly available datasets. Colors indicate the results of statistical tests measuring the 
association of each taxa with metadata for each dataset at a 5% FDR (see methods).  
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Figure 2: Kraken2 and Metaphlan2 normalized sample counts at the genus level for our four 
publicly available datasets. Colors indicate the results of statistical tests measuring the 
association of each taxa with metadata for each dataset at a 5% FDR  (see methods). 
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Figure 3:  For each taxa, the highest Spearman correlation coefficient (y-axis) with any other 
higher abundance taxa in the Vanderbilt dataset. The x-axis shows the normalized log-abundance 
for each taxa. Colors indicate the results of statistical tests measuring the association of each taxa 
with differences in testing sites for the Vanderbilt dataset at a 5% FDR (see methods).  
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Figure 4:  For each taxa, the highest Spearman correlation coefficient (y-axis) with any other 
higher abundance taxa in the China dataset. The x-axis shows the normalized log-abundance for 
each taxa. Colors indicate the results of statistical tests measuring the association of each taxa 
with differences in geographical urban density reduced to a binary choice of urban or rural for 
the China dataset (see methods).  
 



 

 

36 

 
Figure 5:  For each taxa, the highest Spearman correlation coefficient (y-axis) with any other 
higher abundance taxa in the IBD dataset. The x-axis shows the normalized log-abundance for 
each taxa. Colors indicate the results of statistical tests measuring the association of each taxa 
with differences in case/control for IBD (see methods).  
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Figure 6:  For each taxa, the highest Spearman correlation coefficient (y-axis) with any other 
higher abundance taxa in the Pig Gut dataset. The x-axis shows the normalized log-abundance 
for each taxa. Colors indicate the results of statistical tests measuring the association of each taxa 
with differences in the geographical location of the pig gut microbiomes observed for the Pig 
Gut dataset (see methods).  
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One possible explanation for this observation is that there exists in these samples many 

low abundance taxa that are truly correlated with the high abundance taxa that Kraken2 can 

classify but that are ignored by the more conservative Metaphlan2. To explore this possibility, 

we examined matched 16S sequences which were available for two of our four datasets. We 

classified the 16S sequences with RDP and QIIME and found that like WGS classifiers, the two 

16S classifiers showed reasonable concordance for high abundance taxa but distinct differences 

for many lower abundance taxa (Fig. 7). However, when we calculated for each taxa the 

maximum Spearman correlation coefficient with another higher abundance taxa, we did not 

observe the high degree of correlations that we found for Kraken2 (Fig. 8-9). Despite Kraken2 

and Metaphlan2 tending to agree with both 16S classifiers for the high abundance taxa (Fig. 10-

11), Kraken2 again detects more lower-abundance taxa than Metaphlan2 or either of the 16S 

classifiers. If the highly correlated low-abundance taxa detected by Kraken2 were truly present, 

it is reasonable to assert that the correlation structure would be detected by both WGS and 16S. 

The fact that we did not observe this leads us to argue that the low abundance taxa detected by 

Kraken2 are better explained as a classification error. 
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Figure 7:  Normalized sample counts at the phylum and genus level were averaged by taxa for 
both 16S classifiers RDP on the x-axis and QIIME on the y-axis. Phylum level is on the left 
column and the Genus level is on the right column. A) Vanderbilt Phylum B) Vanderbilt Genus 
C) China Phylum D) China genus. 
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Figure 8: Spearman Correlations (the highest correlation coefficient (y-axis) with any other taxa 
in each dataset) for QIIME and RDP for the Vanderbilt dataset plotted against the log average 
mean for each taxa. Figures (A-B) are for QIIME and Figures (C-D) are for RDP. Phylum level 
is on the left column (A and C) and the Genus level is on the right column (B and D). 
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Figure 9: Spearman Correlations (the highest correlation coefficient (y-axis) with any other taxa 
in each dataset) for QIIME and RDP for the China dataset plotted against the log average mean 
for each taxa. Figures (A-B) are for QIIME and Figures (C-D) are for RDP. Phylum level is on 
the left column (A and C) and the Genus level is on the right column (B and D). 
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Figure 10:  Normalized sample counts at the phylum and genus level were averaged by taxa for 
both 16S classifiers and WGS Classifiers in the Vanderbilt dataset. Figures A-D are at the 
phylum level while Figures E-H are at the genus level. Figures A-B and Figures E-F compare 
Kraken2 against QIIME (A and E) and RDP (B and F) while Figures C-D and Figures G-H 
compare Metaphlan2 to QIIME (C and G) and RDP (D and H).  
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Figure 11:  Normalized sample counts at the phylum and genus level were averaged by taxa for 
both 16S classifiers and WGS Classifiers in the China dataset. Figures A-D are at the phylum 
level while Figures E-H are at the genus level. Figures A-B and Figures E-F compare Kraken2 
against QIIME (A and E) and RDP (B and F) while Figures C-D and Figures G-H compare 
Metaphlan2 to QIIME (C and G) and RDP (D and H). 
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A very simple Poisson model of classification error with a low error rate sampled from the 
uniform distribution shows good concordance with Kraken’s correlation structure 

 
In order to test the idea that “phantom” taxa could be generated from very simple models 

of misclassification, we created a simple Poisson-based model. In this model, we assumed that 

the 10 most abundant taxa in a sample are “real”. Then for each taxa not in the top ten, we 

estimate an abundance in each sample with an assumption that the abundance was only caused 

by classification error. For this process, we choose one of the 10 most abundant taxa in a 

weighted way. For example, if the most abundant taxa represented 50% of all the reads of the 10 

most abundant taxa, we would choose those taxa 50% of the time. If the next most abundant taxa 

were present 30% of the time, we would choose those taxa 30% of the time and so forth. We 

then assume an error rate that is different for each “phantom” taxa sampled from the uniform 

distribution from 0 to 0.001 (for an average error rate of 1 in 2000 reads). For each taxa in each 

sample, we use the Poisson distribution with lambda set to the number of reads of the chosen 

“real” taxa in that sample times the error rate sampled from the uniform distribution. In this way, 

we generate a counts table in which the top 10 taxa are what was observed from the sequencer 

and all the other taxa represent classification error. As can be seen in Figures 12-13, for Kraken2 

the correlation structure of these tables in which we graph the correlation coefficient of each 

“phantom” taxa to its “real” parent (green dots in Figs. 12-13) is a very reasonable match to the 

actual correlation structure where we graph the maximum correlation coefficient of each taxa to 

all other taxa in the sample (non-green dots in Figs. 12-13). This model, however, fails to match 

the correlation patterns of either Metaphlan2 or either 16S classifiers. 



 

 

47 

 



 

 

48 

 
Figure 12:  Normalized sample counts averaged by taxa at the genus level were compared 
against a simulated binomial distribution of phantom taxa labeled in green. Kraken2 results are 
shown in the left column (A,C,E,G) while Metaphlan2 results are shown in the right column 
(B,D,F,H). The y-axis is the highest Spearman correlation against each other high abundance 
taxa.  
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Figure 13: 16S normalized sample counts averaged by taxa at the genus level were compared 
against a simulated binomial distribution of phantom taxa labeled in green. RDP results are 
shown in the left column (A,C) and QIIME results are shown in the right column (B,D). The y-
axis is the highest Spearman correlation against each other high abundance taxa.  
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Poisson Error model fits Kraken2 reporting of Non-zero count values by sample for every 
taxonomy in the dataset 
 

As another test of our simple Poisson model, we examined the prevalence (or % of 

samples that are not zero) for each taxa as a function of the abundance of each taxa (Figure 14). 

Metaphlan2 results are strongly skewed towards having many zeros in the spreadsheet, as can be 

seen from the fact that Metaphlan2 reports very low prevalence when compared to 16S 

sequences for the two datasets for which we have 16s data. By contrast, Kraken2 reports a very 

high prevalence as if each taxa were biologically present in each sample. The relationship 

between the Poisson Error Model results and Kraken2 is strong but requires some changes in the 

error rate. The error rate was set to 1/200 for both the Pig Gut and Vanderbilt while the error rate 

was set to 1/50,000 for both the China and IBD dataset. 
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Figure 14: WGS and 16S normalized sample counts averaged by taxa at the genus level were 
compared against the prevalence of non-zero counts for that taxa at the genus level on the y-axis 
(A,C). While only both WGS classifiers were compared in the right column since those datasets 
lacked companion 16S data (B,D). The Simulated Poisson error model of phantom taxa was 
plotted in green after calculating their respective prevalence of non-zero counts as a percentage 
of all samples for given phantom taxa. 
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5.5 Discussion 

Our analysis has immediate implications for biologists who wish to use taxonomic 

patterns for inference based on WGS data. For the most highly abundant taxa, the use of Kraken2 

or Metaphlan2, or for that matter analysis of 16S sequences with QIIME or RDP, will yield 

highly similar answers. If there are no high abundance taxa that are significantly associated with 

metadata variables of interest, then likewise the choice of sequencing technology or algorithm 

will likely have a limited impact on inference. However, as is often the case in biological 

datasets and appears to be the case for the four datasets that we have chosen, if there is a high 

abundance taxa that is associated with metadata, and a sufficient sequencing depth, there is a 

possibility that Kraken2, but not Metaphlan2 or 16S classifiers, will have a small but systematic 

classification error in which members of the high abundance taxa are mischaracterized as a 

different taxon. Evidence for this assertion can be seen in our observation that Kraken2, but not 

Metaphlan2 or 16S classifiers, routinely produces many taxa that have very high correlation 

coefficients with more abundant taxa. This leads to the danger that these “phantom” taxa that 

share a distribution with a “real” more abundant taxon that is correlated with metadata, will 

produce a spuriously significant result in inference. Such a result lead to the conclusion of a 

significant association with a taxon that is either not present in the samples or present but with a 

distribution that has been distorted by a mix of true reads and misclassifications from a higher 

abundance taxa. 

Our very simple Poisson-based classification error model was able to capture much of the 

pattern of the correlation structure of Kraken2, but not Metaphlan2 or the 16S classifiers. The 

model shows that even with a very low average classification error (an average error rate of 1 

read in 2,000), this type of behavior can produce many spurious correlations given adequate 
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sequencing depth. It is somewhat remarkable that our model with sampling from the uniform 

distribution with a single parameter (the average error rate of 0.001) was able to describe the 

pattern of correlation for all the datasets so well with only the Pig Gut dataset at the genus level 

suggesting our model had underestimated the error rate. These results suggest an overall fairly 

consistent pattern of error across datasets collected from host-associated microbiomes under very 

different biological circumstances. It would be of interest in future work to see if environmental 

datasets such as soil or ocean, which we did not consider in the current work, had an overall 

higher error rate when viewed through this prism of the correlation structure. Our results suggest 

that benchmarking studies should consider not only absolute error rate but patterns of how 

misclassifications occur. A classifier that randomly misclassifies a read to one of a large number 

of taxa with a higher overall error rate will not generate this pattern as much as a classifier that 

systematically misclassifies reads even with a much lower error rate. 

Ironically, this problem is made more serious by the very high sequencing depths made 

possible by technological advancements in the last few years. As sequencing depth has increased 

to the range of billions of reads per sample, even a relatively low error rate can produce 

quantifiable problems in terms of classification, as our Poisson modeling demonstrates. Consider 

a hypothetical example. Given an error rate of 1% on a taxon with a relative abundance of 10% 

in a dataset with 100,000 reads per sample, the taxon would have on average 10,000 reads per 

sample and misclassification would only produce 100 reads. This might not be enough to survive 

filters for low abundance taxa or successfully perform inference across samples. However, with 

modern technology, it is easy to achieve 100 million reads per sample. At this sequencing depth, 

the taxon would be present at 10 million reads and a 1% error rate would produce 100,000 reads 

devoted to a “phantom” taxon. This of course will be highly correlated across samples with the 
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“real” highly abundant taxa so that we would expect a common pattern of inference between the 

phantom and the real taxa. The dependence of these problems on sequencing depths means that 

the patterns that we report here may not have been observable in previous evaluation papers that 

used older sequence datasets with less sequencing depth. We note as a limitation to our analysis 

that the 16S sequencing depths in our datasets are much lower than the WGS sequencing depths 

(Table 1). This may explain why we fail to see the same pattern of correlation coefficients in the 

16S datasets that we saw for Kraken2 and would require datasets with more varied sequencing 

depth to properly test. We also note that these patterns of correlation structure would not be 

detectable in typical MDS or PCoA analysis as all of the highly correlated taxa would be well 

represented by individual principle components or coordinates. However, alpha diversity 

estimates, especially richness, have the potential to be profoundly impacted by this sort of 

systematic classification error.  

A recent benchmarking paper (Z. Sun et al., 2020), argues that due to the difference in 

taxonomic abundance vs sequence abundance researchers should proceed with extreme caution 

in comparing classifiers such as Kraken2 with algorithms such as Metaphlan2. We find that for 

high abundance taxa there is very strong agreement between Kraken2 and Metaphlan2 despite 

the differences between the normalization schemes. We argue based on the differences in 

correlation structure that differences between Metaphlan2 and Kraken2 are in part explained by 

differences in patterns of classification error in addition to the differences in normalization. Our 

results suggest that caution must be used in the construction of network diagrams that explicitly 

depend on the correlation coefficient. The fragility of these correlation coefficients in relative 

abundance data has been well studied and many algorithms attempt to correct for compositional 

artifacts (Gloor et al., 2017; Tsilimigras & Fodor, 2016). We note that correlations produced by 
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systematic classification errors of high abundance taxa are another source of potential error. We 

anticipate the development of algorithms that can potentially correct for these sources of error as 

a priority for bioinformatics especially as sequencing depths continue to improve with the 

development of new technology. 
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5.6 Conclusions 

While 16S classifiers do not report the exact same taxa especially at lower taxonomic 

levels such as genus, the results of 16S classifiers are generally similar enough to make classifier 

selection more a choice about performance or personal preference. Since the results reported by 

16S classifiers and Metaphlan2 are so similar it provides an interesting contrast to the unique 

identification of taxonomies reported by Kraken2 especially at lower taxonomic levels. We argue 

in this dissertation that there is strong evidence that Kraken2 generates “phantom” taxa from the 

misclassification of high abundance taxa. These taxa share approximately the same distribution 

of reads across samples leading to sharing correlations with the same metadata. If the 

relationship between the dominant taxa and the metadata is insignificant it will be safely ignored 

and not reported in the literature, but many studies have a least one dominant taxon correlated to 

the biological variable under study. As sequencing depth increases, the number of phantom taxa 

should increase as well leading to more falsely identified correlations between low abundance 

taxa and reported variables of the study. This will likely lead to spurious or irreproducible 

results. The fact that this error can be reproduced when constructing a simple Poisson error 

model supports a simple pattern of classification error as the cause of the phantom taxa. When 

combined with the fact that another WGS classifier completely avoids this problem points to the 

error arising from the classifier and not the data collection or sequencing processing steps. 

This work has focused on Kraken2 systematic classification error when comparing WGS 

classifiers, but this does not preclude some downsides on the Metaphlan2 curated marker 

database. The conservative nature of Metaphlan2’s classification could be ignoring some true 

low abundance taxa that share a strong relationship with metadata variables. It was surprising to 

see how few additional taxa that Metaphlan2 identified over 16S classifiers despite the deeper 
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sequencing depth. Our work suggests that further development in the area of WGS classifiers is 

warranted and that there are many unsolved problems in this area. Given this, we argue that 16S 

sequencing still has some utility, especially when paired with Whole Genome Shotgun 

Sequencing as it allows for informative comparisons with WGS classifiers. As sequencing costs 

continue to decline, future studies may be able to perform high-depth 16S sequencing as a 

control paired with high-depth WGS. Such paired studies could provide confidence that the 

observed correlation between taxa was not the result of systematic classification error. 
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