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ABSTRACT

MICHAEL BRANCATO. Autonomous sensing of a (Gaussian spatial process with
multiple heterogeneous agents. (Under the direction of DR. ARTUR WOLEK)

The performance of a mobile sensor network is measured by its ability to survey
regions of interest efficiently and accurately with limited resources. Approaches for
sampling trajectory optimization allow for adaptive algorithms that offer significant
improvements in mapping error when compared with non-adaptive approaches.

This thesis proposes an algorithm for generating adaptive sampling trajectories
for a collaborative multi-agent team with heterogeneous mobility and sensing ca-
pabilities. Each agent, modeled as a differential thrust vehicle, contributes to the
team’s estimate of an unknown attribute in a region of interest by traversing the
space while in communication with a centralized planner. The spatial distribution
of the attribute is modeled as a stationary, isotropic Gaussian random field. Noisy
local measurements of the attribute are synthesized into a global estimate of the
underlying field using a Gaussian process regression technique known as kriging. A
modified kriging method is proposed to accommodate the potential heterogeneity of
measurement errors while improving computation time. A Voronoi-based algorithm
is proposed which periodically partitions the sampling space to identify high-value
sampling locations. Each agent’s path is constructed using waypoints which compose
an analogous mechanical system where virtual springs and masses connect sequen-
tial waypoints and mass centroids of Voronoi cells. By modeling each waypoint as
a point mass within this spring-mass-damper system, an equilibrium position can

be identified using an iterative process by which the system constraints are satisfied
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through the simulation of a virtual agent through the proposed waypoint set.
Numerical simulations compare the proposed strategy with non-adaptive traversal
of a Gaussian random field to validate the effectiveness of the proposed solution.
The simulation results show a marked improvement when compared with the non-
adaptive sampling methods in scalar fields with sufficient variability in space. The
approach is also demonstrated through field experiments conducted on Lake Norman,
NC using two custom designed autonomous surface vessel (ASV) mobile sensing
platforms to observe bathymetric data. The mechanical, electrical and software

design of the ASVs developed for this work is discussed.
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CHAPTER 1: INTRODUCTION

Mobile sensor networks provide an automated, cost-effective, and scalable means
for spatial data collection in applications such as precision agriculture [1,2] and
environmental monitoring |3]. Path planning algorithms maximize efficiency and
information gain during data collection tasks by optimizing sampling paths while
considering the dynamics and sensing capabilities of the mobile robots and a model
of the spatial process of interest. In coverage path planning [4-8| the aim is for a
multi-robot system to efficiently cover an area of interest with uniform sampling (e.g.,
using lawnmower-type paths). Alternatively, adaptive sampling (AS) algorithms [9]
(also referred to as informative path planning [10]) enable an online estimate of
a spatio-temporal process to guide the collection of subsequent measurements to
maximize information gain. In the adaptive sampling framework, robots adjust their
sampling paths during deployment to allocate more sampling effort to regions of
greater variability and/or uncertainty.

Adaptive sampling algorithms often use Gaussian processes (GPs) to model contin-
uous spatio-temporal attributes of interest. A GP is a random process characterized
by a mean and a covariance function that describes the smoothness of the underlying
attributes. GP regression (known as kriging in the geosciences [11]) enables optimal
estimation of spatio-temporal attributes in unsampled locations as a weighted linear

combination of existing measurements. However, the time-complexity of standard
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GP regression is O(N?) [12, ch.8] where N is the number of samples; thus, it is
only practical to perform a regression with a relatively small number of samples for
robotic systems with limited onboard computation.

In its basic form, observation of a spatial field using a sensor network is achieved
through the dispersal of sensors throughout the region of interest. For static sensor
networks, this dispersal is a significant field of study. The sensor placement problem
has been addressed through Mixed-Integer Linear Programming (MILP) problems
over discrete point sets [13],[14] and minimization of sensor coverage overlap [15].
This problem has been extended to the case where sensors have limited movement,
allowing them to reach a terminal resting location unique from their starting point.
The Minimax method is an algorithm developed for the filling of coverage gaps using
these mobile sensors [16]. Alternative methods rely on virtual forces and potential
fields to draw or repel sensors to optimal sensing locations [17]. However, these
methods are offline and rely on geometric interactions between sensor locations rather
than information relating to the sensed field.

Mobile sensor networks are of particular interest given their ability to adaptively
configure themselves to an evolving understanding of the environment which they
are observing [18],[19] and their coverage is advantageous to that of static or mostly-
static sensor networks [20]. These networks consist of individual agents capable of
short-range communication and limited computational power. Each agent can move
independently towards a collective goal which is typically related to the improvement
of the estimation of a scalar field. Recent work has focused on the path planning

problems associated with the motivation of agents through an unknown space [21-
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25]. In [21], an RRT* algorithm, termed MDMI-RRT*, is used to coordinate a
decentralized mobile network of Autonomous Surface Vessels (ASVs) towards the
estimation of a scalar field. However, the MDMI-RRT* algorithm does not consider
agent dynamics or mission constraints. Singh et. al. [23] develop an informative
path planning algorithm which utilizes mutual information as a metric for coverage
of the field. Time optimality and sub-approximation guarantees are derived for the
proposed algorithm, but sampling locations must be known a priori and additional
field discretization is required. In [22] and [25], Gaussian process regression was used
to estimate the scalar field and paths are generated to minimize the estimate variance
over the field.

Coverage path planning (CPP) [4] is the task of observing all points within an
area or volume of interest. In the past, CPP problems were treated much like the
static sensor placement problem. The alteration being that a single mobile sensor
would treat those static sensor locations as waypoints rather than actual sensors
residing there. As its name suggests, this research typically assumes that sufficient
time and energy are available to the agent in order to achieve coverage of a given
field. However, recent work has considered energy constraints for CPP problems
using heuristics to allow for limited battery life of the agent [5],[6]. However, both
of these works assume that an easily accessible “charging station” is available to
allow the agent to complete the coverage in horizons. The energy constrained CPP
problem is augmented using the virtual potential field approach to sensor placement
in [7]. A single agent traverses a set of waypoints which themselves take the place of

static sensors in the potential field while using a distance constraint to restrict the
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overall spacing between consecutive waypoints. However, this work only considers
a single agent and constructs the potential field using geometric constraints rather
than information about a scalar field, meaning it is inherently an offline algorithm.

This thesis seeks to address the current shortcomings in the consideration of hetero-
geneous agent dynamics and sensing in the study of adaptive sampling using mobile
sensing networks. By assuming the scalar field is modeled by a Gaussian process, an
informed estimate of the field based upon progressive noise-corrupted measurements
is combined with the potential field method of coverage path planning to produce a
multi-agent adaptive sampling algorithm. This thesis will consider the individual dy-
namics of each agent as well as differences in sensing quality to generate informative
paths over unknown scalar fields.

The contributions of this thesis are (1) an efficient Gaussian process regression
framework to fuse measurements from multiple agents with heterogeneous measure-
ment noise using an adaptive truncation with common data neighborhoods, (2) an
adaptive sampling approach that considers heterogeneous vehicle dynamics and sens-
ing to allocate sampling trajectories, and (3) demonstration and comparison of the
approach through Monte Carlo simulation and field experiments involving two au-

tonomous surface vessels (ASVs) mapping the bathymetry of a freshwater lake.



CHAPTER 2: PRELIMINARIES

The following chapter describes mathematical preliminaries which form the foun-
dation upon which the research is constructed. A brief introduction regarding the
statistical tools and geometric constructs guides the reader to a position in which the
content of the work can be readily understood. Additional resources are provided
as needed. Throughout this thesis, a lower case, bold variable, e.g., &, represents a

vector while an upper case, bold variable, e.g., X, represents a matrix.
2.1 Gaussian Processes

Gaussian processes have been regularly used for the simulation and modeling of
environmental phenomena in the sciences [26-28|. With few assumptions about
the actual characteristic being modeled, this statistical tool provides an estimate
and associated uncertainties that are valuable in the exploration of unknown fields.
These benefits and a proven record in field estimation within the geosciences field
have made this tool attractive for robotic application given its ability to predict
spatial characteristics in real time [29].

A random process is an infinite collection of joint random variables [30]. If the vari-
ables associated with the process have a joint Gaussian distribution, this is referred

to as a Gaussian process (GP). A Gaussian process can be denoted as

f(@) ~GP (pu(x), k(w,a), (2.1)
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where the collection of random variables comprising f (x) for , ' € R™ have a mean

function p () and covariance function k (z, ') where

(2.2)

where E [-] is the expected value of a random variable.
A useful subset of Gaussian processes are those which are second-order stationary
with zero mean [12|. This classification restricts the mean of the process to be zero for

all points, p () = 0, and the covariance function to be invariant under translation,

k(x,x+h)=E[f(x) f (x + h)], (2.3)

where h is an offset from the location vector, known as lag. Given the invariance

under translation, the covariance function becomes a function of h only

k(h) ZE[f () f(z+h)]. (2.4)

2.1.1  Covariance Functions

Covariance functions define a sense of smoothness upon the GP. The amount of
variation as well as the frequency of variation are defined by relating points in the
sample space with one another. The covariance function, or kernel, used within this

thesis is the isotropic Gaussian covariance function



k(h) = o2e—3(Ile™)") (2.5)

where of is the variance of each composite random variable and w is the length-scale
of the GP. Note that the factor of three in the exponent ensures that the value of
the covariance function is 0.05 when ||h|| = w, a standard feature in kriging for

geosciences [31].
2.1.2  Conditioning of Gaussian Processes

A sampling of a GP is a deterministic function of space or time. The likelihood
of selecting a particular sample function from the GP is determined by the mean
and covariance functions. As the number of observations within the training set
increases, the process can be conditioned to reduce the subset of possible sample
functions. Figure 2.1 visualizes the progressive addition of information and its effect
on the confidence bounds and allowable sample functions.

Additionally, uncertainty in observation quality can be incorporated into the condi-
tioning of the GP. This allows for consideration of sensor measurement noise variance

and its effect as shown in Fig. 2.2.
2.1.3  Simulation of Gaussian Processes

Gaussian processes can be simulated via two main methods: the linear combina-
tion of the square-root of the covariance matrix and a random vector or circulant
embedding [32, ch.12.2|. The following is a short introduction into the technical de-
tails of the former as it relates to the simulation of two-dimensional GPs used within

this thesis.
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Figure 2.1: Gaussian process conditioning with addition of noise-free observations. A set
of three sample functions are generated at random from the one-dimensional zero-mean
Gaussian process with 02 = 0.5,w = 0.3. The inner red band represents +o with the outer
representing +20. Panel (a) is an unconditioned GP. Panels (b)-(f) shown progressive
addition of observations (block dots) and the corresponding effect on sample functions and
GP variance.



Figure 2.2: Progressive Gaussian process conditioning with addition of noisy observations.

Let P = {pi1,...,pn}, where p € Q C R? be the set of user-defined spatial

points at which the GP is evaluated. A mean vector, = (u (p1),..., 1 (py))", and
covariance matrix with elements 3, ; = k (p;, p;) ,4,j = 1,2,..., N [32, ch.12.2] are
defined for the selected evaluation points. Using Choleksy decomposition, the matrix
square root of the covariance matrix is found, ¥ = AAT. Let v be the random vector

with v; ~ N (0,02) for i = {1,2,..., N}. Finally, the simulated GP is found by

X =p+Av. (2.6)

While Choleksy decomposition is the main method used for simulation of GPs
within this thesis, it is not the only available method. The matrix square root, A

can be derived through spectral decomposition such that A = R (V\/ D), where
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D is the diagonalized matrix of eigenvalues, v/C is the element-wise square root of
matrix C, V is the matrix of eigenvectors, and R (P) is the real component of each
element of matrix P.

The method of circulant embedding is an efficient method of simulating stationary
Gaussian processes by embedding the covariance matrix into a block circulant matrix,
with each block being circulant [32, ch. 12.2.2]. The matrix square root, A, is then
calculated using the fast Fourier transform and simulation of the field happens in
accordance with (2.6).

Figure 2.3 shows the comparison between various simulation methods where the
histogram displays the occurrence over 100 trials. The method of circulant embed-
ding is show to be significantly faster than the method using Cholesky decomposition.
However, it is apparent that Cholesky decomposition method is more capable of re-

liably reproducing the desired mean and standard deviation for the simulation field.
2.2  Kriging

Gaussian processes can be used in conjunction with training data sets in order
to make predictions about points of interest in the sample space in which the GP
is defined. A type of GP prediction developed for use in geostatistics is known
as kriging [12]. Kriging estimation comes in numerous variations; however, this
discussion will be limits to ordinary kriging as it is the sole method used in this thesis.
Ordinary kriging assumes a constant, unknown mean and models the residuals of the
observation from the mean as a GP, rather than the observations themselves [33].
Ordinary kriging is known as a Best, Linear Unbiased Estimator (BLUE) because

its formulation seeks to minimize mean square error using a weighted combination
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Figure 2.3: Comparison of Gaussian process simulation methods. All simulated GPs are
zero-mean, two-dimensional, and use the Gaussian covariance function (2.5) with o = 1,
w = 0.1. Subplots (2.3a)-(2.3c) are histograms of means, variance and run times re-
spectively using Cholesky decomposition for simulation. Subplots (2.3d)—(2.3f) mirror the
above for circulant embedding simulation. All statistics were gathered over 100 trails using
a b1x51 grid of evaluation points with a fit Gaussian distribution depicted as a red line.
While circulant embedding is shown to be much faster, Choleksy decomposition is shown
to produce more reliable target ensemble statistics.
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of observations to represent estimated points.

Let Z = [z1,...,2n]" be partial realizations of the random function at spatial
locations X = {x;|i=1,2,...,N}. A detailed version of the derivation of the
ordinary kriging estimator through the minimization of expected estimation error
via Lagrangian multipliers is detailed explicitly in [31, ch.4]; therefore, only the
results will be presented.

The matrix equation for determination of optimal weights for ordinary kriging,
Aok and Lagrange multiplier, pox [34], for a desired point of estimation, x(, using

ordinary kriging is

— , (2.7)
Hox 17 0 0

where the elements of the covariance vector are v; = k (@;, o), 1 is the N element

column vector of all ones, and the modified covariance matrix is

k(x1,x1) k(xo,x) ... k(xy,z1) 1
k(xy,xs) k(xo,22) ... k(xn,x2) 1
Yok = : : : o (2.8)
k(x1,zy) k(xo,xy) ... k(zy,zNy) 1
i 1 1 1 0]

By solving (2.7) for the optimal weights associated with each observation related

to the point of estimation, the estimate and estimate error variance are
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Figure 2.4: Two-dimensional field estimation using ordinary kriging. The surface represent-
ing Z (x) is characterized by semivariogram (2.11) with 8 = [¢, w, 03]" =[0,0.3,1]" and
= 5. A total of 20 observations, represented by projections from the surface to the -
plane, comprise the training set. The coloring on the x-plane indicates estimation variance;

the darker the color, the lower the relative variance. At 1

taken, the variance equals zero.

Zox (®0) = Z™ Aok

oo (o) =k(0) —v (X, z

ocations where measurements were

(2.9)

0)T Aok (2.10)

Repeating this point estimation for various spatial locations creates a field estimate

of underlying GP with user defined resolution. Figure 2.4 shows the result of kriging

over a set of uniformly spaced sampling points.
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2.2.0.1 Kriging with Heterogeneous Measurement Error Variance with an

Unknown Covariance Function

When sampling real-world scalar fields, the exact covariance function can only be
estimated. For this reason, users of kriging tend to substitute the covariance function
with the semivariogram, -, a measure of dissimilarity of measurements given spatial
distance [33, ch.2.6]. For GPs which are second-order stationary, the covariance
and semivariogram are related by v (h) = k(0) — k(h) [31]. The semivariogram
can be easily estimated through a process of fitting a curve to a scatter-plot of the
average variation in measurements over a given distance [31]. The resulting fit curve
is termed the experimental semivariogram, 4. The semivariogram model used in this

thesis follows from (2.5),

A (Ih]l; 8) = ¢ (1 = yny) + a5 (1 - 6*3("""“‘1)2> : (2.11)

where 6jp = 1 when ||h|| = 0, and éjn = 0 otherwise, and the vector of hyper-
parameters is 6 = [, w, 0]" comprising the “nugget”, ¢, which accounts for micro-
scale variation and sensor measurement error, the length-scale [35], w, and the large-

scale variance of the field, 2.
2.2.1  Heterogeneous Measurement-Error Filtered Kriging

Heterogeneous measurement-error filtered kriging (H FK) extends ordinary krig-

ing to the case of site-specific measurement error with known variance [34|. Let

Y (x;)) =7 (x;) +e(x;), (2.12)
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represent the noise-corrupted measurement of the attribute Z at location x; where
€ (x;) is the realization of a Gaussian random variable zero-mean and site-specific
measurement noise variance associated with the observation, 0% (x;). The vector of
noise-corrupted observations shall be ¥ (X). This site-specificity will be leveraged to
account for heterogeneity among agents by associating measurement locations with
the agent which performed the observation. The measurement noise variance from
each agent is then applied to their corresponding measurement locations which can
then be handled abstractly as site-specific noise. Christensen |34| proposed to account
for noisy measurements (2.12) using the HFK estimator Zypx (€0) = AL px Y (X)
with variance 6%, (o) = 7 (X, xo)" Axyrx where the optimal kriging weights,

Anrk, and mean, uprg, are found from

-1

ik _ ['(X) 1 (X, x0) | (213

HHFK 17 0 1

In (2.13), I'(X) and 4(X, () are augmented semivariogram matrices and vectors,
respectively. The matrix T'(X) is defined by augmenting I';; with the average of the
site specific variance along off-diagonal elements [34]

. op (x;) + o} (zcj)

Additionally, (X, x) is defined by augmenting the ith element of the semivariogram
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vector with half the site specific variance of the observation [34]
0727 (z:)

Y (@i, o) = 4z (hio) + (2.15)

In (2.14) and (2.15), the estimated semivariogram 9z is obtained from the noise-
corrupted estimated semivariogram 4y by subtracting the average of the measurement-
error variance across all M sampling locations from the nugget estimated using the

noisy measurements, (y:
LM
Yz (ﬂ% xj;Cz,w, Ug) =Y (i% xj;Cy — M Z 072, (1) , w, 03) - (2.16)
=1

With the addition of site-specific measurement error, the noisy Gaussian process Y
is no longer second-order stationary since the noise term’s dependence on location

violates the assumption that the kernel is invariant under translation (2.4).
2.3 Centroidal Voronoi Tessellation

This work uses centroidal Voronoi tessellations (CVTs) to identify high-value sam-
pling locations. Recall that a standard Voronoi tessellation (VT) partitions a planar
region, Q, into a set containing k non-intersecting polygonal cells, {V;}f:l, whose
union equals Q. Given a set of generating points {gi}f:1 € QF, the Voronoi cell V;

is the set of points within Q that are closer to the cell’s generating point, g;, than

any other generating point 36, ch.5]|:

Vi={x e Qf |z —gil <z —g;ll} (2.17)
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for all j = {1,2,...,k} with j # i. When a density function is defined over the

domain p: Q — R, each cell has a mass

MVZ.:/ o () da, (2.18)
xeV;

and centroid

1
cy = — x p(x)dx . 2.19
o=y [ we@) (2.19)

CVTs [37] are variants of VTs in which the generating points of the VT are co-located
with the associated cell’s centroid. In this work, the CVT algorithm will be used to
adaptively identify high-priority waypoints to sample. The equations (2.18)—(2.19)
will be discretized and the integrals are replaced with summations over a uniform

grid. The CVT is computed using a variant of Lloyd’s method [38].



CHAPTER 3: EFFICIENT GAUSSIAN PROCESS REGRESSION WITH
HETEROGENEOUS MEASUREMENT NOISE

In this chapter, a modified kriging approach is proposed to account for agents with

heterogeneous measurement noise variance and to improve computational efficiency.
3.1  Filtered Kriging with Heterogeneous Sensors

Consider a mobile sensor network of N agents that measure a spatial attribute
7/ with heterogeneous measurement variance 0727,1' for « = 1,...,N. This approach
models a team of mobile robots with agents that have different sensing modalities
or types/quality of sensors. In this thesis, an approach is proposed to specialize het-
erogeneous measurement-error filtered kriging (HFK, see Sec. 2.2.1) to this case by
replacing the site-specific measurement variance with an agent-specific one. Suppose
that each agent collects measurements at the same sampling rate and begins to sam-
ple at the same time. The total number of measurements from each agent is equal and
all measurements taken from all agents are used to populate the set Z. An indicator
function, 3 (x), is defined that returns the measurement variance 0727 associated with
the agent that took the observation at @, assuming no two samples are co-located.
Thus, (2.14) becomes T (z;, ;) = 4z (hij) + 0.5 (1 — djn,,) [B (z:) + B (z;)]. Simi-

) =

larly, (2.15) is modified as 7 (x;, o) = ¥z (hio) + 0.5 (8 (x;)), while (2.16) becomes
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N

R . 1

Yz (i, x5) =y <:ci,a:j;§f/ - 2‘772,,1'7“’70(2)) . (3.1)
i=1

3.2 Adaptive Spatial Truncation

The time complexity of kriging is dominated by the inversion of the semivariogram
matrix in (2.7). To improve efficiency, spatial truncation can be used to reduce the
size of this matrix by considering only nearby measurements with strong correlations
to an estimation point and rejecting measurements that have little influence [31],[39].
Typical truncation methods rely on geometric selector regions (squares, circles, etc.)
centered about an estimation point to capture relevant measurements. This strategy
is effective when there is a sufficient number of measurements around the estimation
point [39]; however, it performs poorly in sparsely sampled regions (e.g., at the start
of a mission or near the boundary of the field).

To address these challenges, an adaptive method of observation truncation is pro-
posed wherein a standard rectangular geometric selector is used if it contains a
threshold M,,;, number of measurements, and otherwise a nearest-neighbor selector
is used guarantee a minimum number of measurements (i.e., by considering measure-
ments outside the geometric selector, if needed). The geometric selector is denoted
Gg(z, X;wg,hg) = {x; € X |x; € R(x;wg, hg)} for all © = 1,2,... M, where
R (x;w,h) C R? denotes a rectangular area centered on = (s;, s;) € R? with width
w and height h. The nearest-neighbor selector is denoted Gyn (2, X; M) € X

and it selects the subset of at most M,;, measurement locations that are nearest-
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neighbors to @ [40]. The adaptive selector is then

GR (JJ,X;’UJ(;,}L(;) if ’GR (lL‘>| > Moin
G(x,X;wg,hg,Mmin) = (32)

Gan (2, X Mpin) i |Gr (2)] < Muin

where |Gg ()| is the number of measurements in the geometric selector.
3.3  Common Data Neighborhood Discretization

Spatial truncation reduces the size of matrices required for inversion during the
estimation process. However, it still requires inverting unique semivariogram ma-
trices for every point to be estimated (since the geometric selector moves with the
estimation point). Given many points of interest, the computation time of inverting
many truncated matrices may exceed inverting the original (full measurement set)
semivariogram. To reduce the number of required matrix inversions for kriging we
adopt the common data neighborhood (CDN) approach proposed in [41]. A group
of estimation points are assigned a common semivariogram matrix based on nearby
measurements (i.e., a fixed adaptive selector is used for multiple nearby estimation
points). This approach is implemented as follows.

Define a uniform grid of points with m columns and n rows P = {p1, P2, - - -, Pmn
where p; € Q for all i = {1,2,...,m-n}. The set of common data neighborhoods,
D = {D;,...,Dy,}, is defined as a collection of Np disjoint rectangular regions
whose union covers the entire space, Q. Each data neighborhood D; = R (s;; wp, hp)
is centered at a point s; € R? and is defined by a width wp and height hp, and
D;ND; = () for all i # j with 4,5 = 1,2,..., Np. Let G; = G (s, X; wa, ha, Muin)
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Figure 3.1: Example of the proposed adaptive truncation strategy with My, = 5. Black
circles are grid points, and blue ‘x’s are measurement locations. Two CDNs D; and D;,
centered on grid points p; and p;, respectively, are highlighted in purple. When estimating
a point A in D; the corresponding rectangular selector contains more than Mp,;, measure-
ments and these measurements are used to define I" in (2.13). When estimating a point B in
D; the nearest-neighbor selector is used to define I instead since insufficient measurements
are located within the corresponding rectangular selector.

be the adaptive selector (3.2) for data neighborhood D;, with wg > wp and hg > hp.
3.4  Heterogeneous, Common-Data-Neighborhood Kriging

Our estimation approach combines HF K specialized to heterogeneous agents,
adaptive selectors, and CDNs. Suppose that an estimation point lies with the ith
CDN, xy € D;. For all such estimation points, the HF K estimator (2.13) is used
with a subset of observations X given by the adaptive selector (3.2). Importantly,
this same truncated data set is used for all estimation points in D; and hence the

inversion in (2.13) need only occur once for all such points.
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This work proposes to modify [41] to utilize the adaptive spatial truncation (§3.2)
and to incorporate heterogeneous measurement-error filtered kriging (§2.2.1). The

kriging weights and mean for the point @y € D; are

-1

= ; (3.3)
HHC 1m0 1
and the estimate and variance are denoted with a subscript HC,
Zne (x0) = Ao Y (X) (3.4)
and
oFe (2o) =7 (X, 20)" Anc. (3.5)

The proposed approach is amenable to parallelization and permits a trade-off be-
tween computational efficiency and accuracy by adjusting the minimum number of
considered observations, M,;,, as well as the dimensions of the common data neigh-
borhoods, wp, hp and the dimensions of the search neighborhoods, wg, hg. These
parameters are typically chosen as integer multiples of the respective directional
length-scale. Given that the fields used for this work are isotropic, the length-scale
is independent of direction meaning wp = hp and hg = wg.

The proposed heterogeneous, common-data-neighborhood kriging (HC') estimator
was compared through numerical simulations to a standard HF K estimation [34]

(without adaptive selectors or CDNs) and to standard ordinary kriging. The sim-
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ulations consisted of generating a GP within a normalized domain Q = [0, 1]* and
using hyper-parameters @ = [(, w, o2]" = [0,0.3,1]". Measurement locations were

randomly selected and the observations were polluted with noise according to (2.12).

For half of the measurements, o2

21 = 0.1, for the other half, 67, = 0.5 to represent

data collection by heterogeneous agents with different quality sensors. The noisy ob-
servations were processed by the HC estimator with hp = wp = 0.5w, hg = wg = w
and M, = 20. The same measurements were also used to estimate the field with
the HFK estimator and the ordinary kriging estimate with what can be considered a
naive approach for nugget in this scenario, ¢ = (0.1 4 0.5) /2. Results were evaluated
by comparing the average deviation of estimate from the true field on a point-to-point
basis which is referred to as mapping error (ME),
P
ME =3 |Z (@)~ Z ()| /P . (3.
i=1
The estimate was computed over one hundred unique realizations of the GP. For
each realization, each method (HFK, HC, ordinary kriging) was used with 500, 1000,
and 2000 measurements and the mean ME (3.6) and computation time were recorded.
The results from this numerical study are shown in Fig. 3.2. A computation time
savings of approximately 10x is achieved when comparing HC to HFK and ordinary

kriging.
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Figure 3.2: A comparison between mapping error and computation time for the proposed
kriging methods when presented with noisy measurements over 300 trials. The error bands
indicate plus or minus one standard deviation.

It is also shown that implementation of HFK in the event of heterogeneous measure-
ment noise variance is superior to the naive approach of adjusting the nugget when
using ordinary kriging. Finally, the accuracy reduction experienced when using HC
compared to HFK is minimal and the computational efficiency gained is deemed to
outweigh this slight loss in accuracy. It should be noted that the expectation of im-
proved accuracy given increased number of measurements did not hold for standard
ordinary kriging due to numerical instabilities in inverting large matrices, an effect

which is pronounced in situations where measurment variation is not considered.



CHAPTER 4: MULTI-AGENT ADAPTIVE SAMPLING

Building upon the previously described estimation methodology, this chapter uti-
lizes the predictive power of kriging to make informed decisions about future sampling
sites. The method by which multiple agents are routed within a sampling space is
rooted upon the Voronoi tessellation strategy as well as fundemental principles of me-
chanical systems. Simulation results are provided for the validation of the proposed

strategy.
4.1 Sampling Strategy

The method by which growing knowledge of the underlying scalar field is lever-
aged for path planning is founded upon a modification to the calculation of the field’s
centroidal Voronoi tessellation in which waypoints act as generating points. While
there are numerous ways to calculate the unique centroidal Voronoi tessellation for
a given set of generating points and boundary conditions, a simple method involves
imposing a virtual force field which acts upon the set of points [42]. Typically, this
virtual force connects a generating point only to the centroid of the corresponding
Voronoi cell. A method relatable to the construction of a mechanical spring-mass-
damper system in which sequential points are connected by springs and dampers to
form a while connecting each waypoint via a spring and damper to to the geomet-
ric centroid of its corresponding Voronoi cell was demonstrated to be effective by

Jensen-Nau [7]. Jensen-Nau utilized this method to constrain total mission distance
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for a single agent. This thesis expands the aforementioned work by implementing
kriging for the definition of a cost field to allow the definition of mass centroids
on Voronoi cells, multi-agent support, consideration of agent dynamics and sensing

characteristics, and enforcing a mission constraint of time rather than distance.
4.1.1  Heterogeneous Agent Dynamics

Consider a set of N agents with heterogeneous dynamics. To illustrate the pro-
posed approach we consider differential thrust unmanned boats, but the approach

can be generalized to other vehicle models. The unmanned boats have the dynamics:

1 = —— {[ur + ] cos (6) — bid}

7

" 1 : -
Y = — {{u7 -+ ul] Sin (Ql) — bzyz} (41)
61' = o, (ur - ul)

where (z,y) € R? is the planar position relative to a fixed inertial reference frame
with origin O and ortho-normal basic vectors {;Zl, '22, '23}, 0; € [0,27) is the heading
(see Fig. 4.1), m; is mass, I; is the rotational inertia about %3, L; is the distance
between thrusters, and b; is a damping coefficient of the ith agent. The left and right
thruster forces, u; and w,., respectively, are bounded: w;, u, € [0, Upax] Where wupax
is a maximum thrust. The ith agent follows a reference path consisting of a set of
waypoints W; = {w; 1, w;, ..., w; n, } where w;; € Qforall j = {1,2,...,N,} and
N, is the number of waypoints in the path. For a given waypoint, w; ; = (24, Yu) €

W, the homing guidance law 0; = atan2 (y,, — v;, T, — x;) determines the desired
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Figure 4.1: State and input diagram for waypoint tracking. The ith agent moves with
heading 6 from %; under control inputs, u; and u,. Tracking waypoint w; ; commands the
agent to point in the direction 64 until the agent’s position (x;,y;) enters the capture radius
of the waypoint.

heading angle, and the thrusters are commanded according to

u; = sat (511 - 50, O, umax) ( )
4.2

Uy = sat (51; + 50, O; umax) )

where 9, and dg are the outputs of PID controllers tracking a desired speed vy and
a desired heading 6, respectively, and sat (k; a;, ay) is the saturation function that
bounds an argument s between a lower bound a; and upper bound a; such that
a; < k < ap. Once the position of the ith agent is sufficiently close to the current
waypoint, ||[z;, y;]" —w; ;|| < R, where R. € R is a capture radius, the next waypoint
in the sequence becomes active. The closed-loop dynamics of the ith agent can be

summarized as

8; = fi (Si> u; (31) ) VVz) ) (4-3)
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T = . .
where s; = |x;, y;, 05, i, Ui, Qi] € R°x [0, 27) is the state of the system (4.1) rewritten

in first-order form and w; (s;) is the guidance and control law (4.2).
4.1.2  Heterogeneous Agent Sensing

The collection of N agents may also vary in their sensing quality. The objective
quality of an agent’s sensing capability is inversely related to the measurement noise
variance associated with its observation equipment. The measurement noise variance

for agent 4, 02, characterizes the expected difference between the true and measured

i
values of the observed scalar field.

During simulation, individual agents are assigned a measurement noise variance
and all points observed by agent ¢ are associated with O’in for the purposes of per-
forming the kriging estimate with site-specific noise (3.3). For consistency with ex-
perimental trials, it was assumed that bathymetric information comprises the scalar
field during simulations. However, the methods proposed within this thesis are appli-
cable to any scalar field which satisfies the definition of second-order stationarity, is
described by a directionally independent semivariogram, and does not vary in time.

Additionally, while the sampling region was assumed to be square, non-convex shapes

may be considered in future works.
4.1.3  Problem Statement

The goal of the adaptive sampling algorithm is to design waypoint paths for
each agent that minimize the mapping error (3.6) while exploiting the heteroge-
neous dynamics and sensing capabilities of the team. Given a waypoint list W; for

agent 1, initial conditions s;(to), a sensing time interval T}, the closed-loop dynam-
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ics (4.3), and a maximum mission time, T,,, the map ¢; (W;; s;(to), to, Trn, Ts) =
[Gi1, Gios - - qin) € R¥M returns the ith agent’s sampling locations arranged as
columns of a matrix in chronological order where q;; € Q for all j = 1,2,..., M.
Let the matrix X € R?"*M denote the set of sampling locations across all agents at

the end of the mission

X = [p1 (W)T, 00 (W2)T,...,6n (WN)T]T, (4.4)

where ¢; (W;) is the function which converts the ith agent’s trajectory given a way-
point set into a set of sampling locations equally-spaced in time.

The corresponding observations made at each location in X are denoted Y €
R2VXM  Since the realization of the field Z (x) is not known to the agents, the
mapping error (3.6) cannot be computed by the agents, instead the following cost
function is used for path planning

J (X,Y;p, a) = (a+0o}c (X;p)) - (4.5)

where p € R? is a point at which to evaluate the cost function. The first term in the
product (4.5) is a quantization of the uncertainty remaining at potential sampling
locations, 0% (X;p), added to a modifier, o, whereas Zuc is the estimate of the
zero-mean field which increases cost in areas that diverge greatly from the field
mean (i.e., peaks or valleys). The modifying term, «, prevents the points cost from
reaching zero in regions that have already been sampled. This incentivizes returning

to previously visited locations if time permits. In regions that have already been
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sampled, the term (o + 0% (X; p)) will approach a minimum value, dependent upon
«, thereby reducing the cost contribution of that point compared with unsampled
locations. As « is increased, the incentive to return to previously sensed areas also
increases.

The optimization is then:

arg min Z J(X,Y:p,a) (4.6a)

X (W) peEP

subject to  &; = fi (s, u; (8;); W;), (4.6b)
Y (z;) = Z (x;) + ¢ (x;) for all x; € X (W), (4.6¢)
Umin < Ui(8i) < Upay, (4.6d)
T (w;n,) <Tpforalli=1,..., N, (4.6¢)

where T(w; ;) £ ¥ (w;j; W, s (to) ,to) is a function that returns the elapsed time
for agent ¢ to reach its jth waypoint given its list of waypoints and the initial state
of the agent at time t;. The evolution of system states for agent ¢ through time
is constrained by the closed-loop dynamics in (4.6b) while the allowable control
vector is restricted in (4.6d). Heterogeneity in dynamics is encapsulated through
the equations and motion and constraints of inputs. The variation between agents’
sensing capability is detailed in (4.6¢). The constraint on mission time detailed
in (4.6e) ensures that the estimated capture time of the final mission waypoint is less

than or equal to the desired total mission time.
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4.1.4  Algorithm

Direct minimization of the cost (4.6) for real-time, adaptive sampling is com-
putationally intensive. Therefore, a sub-optimal algorithm is proposed which ex-
tends the CVT path planning approach in |7] to consider agents with heterogeneous
sensing, heterogeneous dynamics, and mission time constraints. The process by
which the cost function and associated constraints detailed in (4.6) are achieved
comprises of repeated calls to the modified centroidal Voronoi path generation algo-
rithm, mCVPG [A.1], from an algorithm [A.2] for adjustment of mCVPG parameters to
achieve target mission time, 7,,. This optimization process in [A.2] is online with
replanning occurring at fixed intervals throughout the mission.

Algorithm 2 begins with the initialization of N - NV, unique points within the
sample space Q [A2.2], where N, is the total number of waypoints assigned to each
agent. Note that this is typically done using a waypoint pattern to give initial
structure to the path; however, any pattern or random initialization strategy should
be suitable but untested in this work. This waypoint set is then discretized into N,
planning cycles comprising C' = [N,,/N.| waypoints [A2.3] with [-] denoting the
ceiling operator. The entire mission comprises the iteration over each of these cycles
as information is progressively collected, with ¢ being the current cycle index. At
the beginning of each planning cycle, the set of measurement coordinates, X, and
noisy observations, f/, is utilized to calculate the cost field at points in P [A2.5].

The cost field constructed using point cost (4.5) is arranged as a matrix
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j<X7i};p1,l>a> j(Xa?;pl,27a> j(Xa?;pl,er()
~ j(Xa?;pZ,hOd) j<X>?;p2,27a> j<X>?;p2,n7@)
j(va;pm,h&) \7<X7i};pm,27a> \7<X7}7;pm,n7a>

where p;; is the grid point associated with the ith row and the jth column. For
the first iteration, when no observations have been performed, the cost at all grid
points is initialized to a non-zero constant for convenience of calculating the initial cell
centroids. The cost field is then passed along to the mCVPG algorithm for the selection
of waypoints which seek to minimize the cost function (4.6) without consideration of
constraints.

Using the N - N, within the sample space as generating points, mCVPG begins
by calculating the Voronoi tessellation [A1.3]. The cost field, J defines a density
function over the Voronoi cells that is used to calculate the mass centroids of each
cell using (2.19) [A1.4]. A potential field is then created by modeling each agents’
waypoints as an independent spring-mass-damper system to pull waypoints in di-
rections that will minimize the cost. Waypoints are masses that are connected by
springs to their corresponding Voronoi cell mass centroid and to adjacent waypoints
in the path. Dampers are placed alongside each spring to model energy dissipation
as the system comes to a rest at an equilibrium position. The values of the spring
constants, dampers, and relaxed spring length corresponding to an agent constitute

the set v; = {kp;, kci, bi,d;} for i = 1,..., N. The set of configuration parameters
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is initialized at the beginning of each planning cycle with user defined initialization

variables in initSDs [A2.6].

Algorithm 1 Multi-agent centroidal Voronoi path generation (mCVPG)

Require: {W;} // generating points
Require: N // number of agents

Require: {’yL}Z]\Ll // spring, damp. constants
Require: g // current cycle

Require: C // number of waypoints per cycle
Require: J, // cost surface

Require: n // stopping criteria

Require: I // maximum iterations

1: b<-0// iteration counter

2: while b< I do

V < voronoiTessellation ({m}fil)

cy < voronoiMassCentroid (V, Ji)
for a=1,2,...,N do
fa < calcForce (W,,va, cy)
<Wa, Wa> + movePts (W, fa,9,C)
end for
if |w; || <nforalli=1,...,Nand j=1,...,N, then
10: break // waypoints converged
11: end if
12: b+—b+1
13: end while
14: return {VVZ}Z]\L1 // updated generating points

Figure 4.2 visualizes this spring-mass-damper system for a series of three way-
points. Each waypoint, w; ;, excluding the first and last elements, has three linear
spring and damper connections: one to its previous neighbor w; ;_;, one to its next
neighbor (w; 1), and one to its corresponding mass centroid (cy, ;). The spring

force exerted upon the jth waypoint by its adjacent waypoints is:
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£ = ki [(Irijor ]| — di) #igor + (Iriga |l — di) Fign] s (4.8)

where r; ;41 = w;; — w; +1 is the vector distance between waypoint j and the
next waypoint, (j 4+ 1), or the previous waypoint, (j — 1). The normalized distance
vector is #;, = 7;,/||7i,ll, di is the spring’s unstretched length, and k,; is a spring
constant. The relaxed spring length is updated prior to each planning cycle to be d; =
0.50; (T, — T (Wi yc)) / (N — gC'), where vy, is the ith agent’s target speed. This
relaxed spring length heuristic divides the expected distance agent ¢ will travel given
the remaining time, 7, — T (w; 4¢), and equally spacing the remaining waypoints,
N, — gC. The force exerted upon the jth waypoint by its mass centroid is fi(;-) =
ke, (cv,; — w;;) where k., is a nominal constant for the centroidal attracting spring
force. Additionally, the linear damping force is fi(’lj’») = —b,w;; where w;; is the

velocity of the waypoint. The total force [A1.6] acting upon point w; ; is
c b
fii=F2 + £+ 417 (4.9)

The equation of motion for waypoint w;; with mass m is then w;; = f; ;/m and
all waypoints are assumed to have equal mass m. The function movePts performs
Euler integration to determine the new position of each waypoint given the associ-
ated total force (4.9). The evolution of this online algorithm means that waypoints
associated with previous planning cycles have been attained and no longer need up-
dating. That being said, the nature of Voronoi tessellation and its integration within

the mCVPG algorithm demands that the previously attained waypoints remain consid-
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Figure 4.2: A constrained CVT of three waypoints visualized as gray circles with mass
m and associated capture radius. Voronoi cells are defined by (2.17). Mass centroids are
depicted as blue circles and are closely co-located with their Voronoi cell’s region of high
density corresponding to warmer colors in the contour plot. Pairs of adjacent waypoints
are connected by a spring, k, and damper, b, system. Waypoints are connected to their
associated mass centroid with unique spring constant, k., and damping, b. A dynamics-
compliant trajectory waypoints set is shown in blue.

ered. Therefore, if the waypoint is associated with a future cycle, i.e., the waypoint
index is greater than gC', the position is updated and the velocity is recorded. Oth-
erwise, the waypoint is frozen and the associated velocity is zero [A1.7]. The system
is numerically integrated until the speed of each waypoint is below a desired thresh-
old, n [A1.9]. In lieu of explicit guarantees of system convergence in given time, a
maximum number of iterations is imposed [A1.2].

Upon return from the mCVPG algorithm, each agent is assigned a set of N,, way-

points, having already visited gC of them. FEach agent is simulated through its
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remaining waypoints from its current state [A2.11] and the estimated time to tra-
verse all remaining waypoints is reported. This simulation time, ¢;, is compared with
the remaining mission time [A2.13]. If the difference exceeds the user defined mission
time tolerance, Tx, the spring-mass-damper system parameters are updated. The
stiffness of springs connecting waypoints to the Voronoi cell mass centroids when the
simulated time is less than the desired time and decreasing their stiffness when the
simulated time is greater than the desired time. In practice, a buffer, E, contains
the mission time error from previous iterations for each agent [A2.12]. Let max(E;)
be the maximum mission time error for the ith agent. The spring stiffness is updated

for the next optimization iteration as follows:

(

)

bei (matmy +1) M ti+Ta < T

-1
bei = Y ke (g +1) i ti=Ta > T (4.10)

ke if |t; — Th| < Tha.

)

\

The chosen method of parameter update is a modified version of optimization
shown to result in convergence of this particular type of spring-mass-damper system
in [7]. The damping coefficients for the ith agent are b; = 0.5\/max (k,;, k.;) [A2.14],
similar to Jensen-Nau et. al. [7]. The optimization loop [A2.8 — 21| runs until the
simulated mission time for agent ¢ = 1,2,..., N, is less than TA away from the desired
mission time, calculating a new constrained CV'T solution with updated parameters
during each optimization step. A maximum number of iterations is enforced [A2.§]

to the optimization loop for each cycle to ensure a result is returned in finite time.
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The previously described portion of the optimization algorithm handles the simu-
lation of agents’ motion for the selection of waypoints to satisfy mission constraints
and optimize for information observation of the unknown field. Once the agents are
deployed, the proposed waypoints are allocated to each agent and the process of mea-
surement collection begins [A2.22]. Agents traverse the waypoint defined paths and
append measurement information into the X and Y matrices. Due to discrepancies
between simulated and actual mission time during experiments, the time elapsed
since the previous planning cycle is reported, and the remaining mission time is up-
dated [A2.23]. The mission control algorithm continues until all planning cycles are

complete.
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Algorithm 2 Satisfying mission time constraint using mCVPG with multiple agents

Require: T,, > 0 // mission time

Require: Tho >0 // mission time tolerance
Require: N // number of agents

Require: N,, // total num. waypoints in mission
Require: N, // number of planning cycles
Require: =~y // init. spring, damp. constants
Require: Q C RZ // operating domain

Require: P // evaluation grid points set
Require: I // maximum iterations

Require: [; // maximum iterations for mCVPG
Require: {@-}f\;l // agents’ target speed

1: X <, Y« // initialize measurement information to null
2: W < initializeWaypoints (N, Ny, Q)
3: C < [Ny/N¢| // num. wpts per cycle
4: for g ={1,2,...,N.} do
5: J ¢ evaluateCost (X,}},P) // calculate cost field
6: {7}, < initSDs(yo)
7 b+ 0// iteration counter
8: while b < I do
9. W meveG (Wi N, {4} 1,9, C.3,1074 I, {di} X )
10: for a ={1,2,...,N} do
11: to < simulateAgent (Woy; so (T (wayc)),9,C,0a)
12: €a < Ty —ty // sim. time error
13: if |eq| > Ta then
14: Yo < updateSDs (o, Tim, Ya)
15: end if
16: end for
17: if |e| <Taforali=1,...,N then
18: break
19: end if
20: b+—b+1
21: end while
22: (X,?,tm> < collectData (W,N,g,C,X,f’) // actual mission
23: Ty < T, —ty, // remaining mission time

: end for

()
g




39
4.2  Simulation Results

In this section, the proposed approach is applied to numerically simulated GPs
generated via Cholesky’s decomposition of the covariance matrix (2.6). Each GP
realization is constructed using 8 = [(, w, 02]" = [0,w;, 1]T as the hyper-parameters
where w; is a selected entry from Table 4.1. The HC' parameters are wp = hp = 0.5w,
wg = hg = 1.bw and M,;,, = 10. In each simulated experiment, two pairs of agents
observe the same GP; one pair attempts to adaptively minimize the proposed cost
function (4.6) while the other pair travels along a predefined lawnmower path. The

effectiveness of the proposed algorithm is determined by comparing the total mapping

error to that of the naive, lawnmower survey given identical initial conditions.
4.2.1  Monte Carlo Simulation Setup

Each simulation scenario is constructed based upon one of the control agents.
Designated the “leader”, this agent is assigned a target speed and number of swaths
around which to construct a lawnmower path to survey the field. The total mission
time is dependent on the leader’s target speed and number of swaths. The other
agent, or “follower,” is assigned a consistent three swaths within the field while its
speed is dependent on the leader. Figure 4.3 depicts a leader with four assigned
swaths, spreading the survey region throughout Q. The waypoints are defined in
terms of swath width, ¢,. The swath width, C,, is the width of the space, Q,,,
divided by the total number of swaths, N;: ¢, = Q,/(N;+1). The points are
inset from the border of the space by ¢,/2 and the order of the waypoints is such

that the left-most agent travels to the right and the right-most agent travels to the
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left, both initially moving upward. The leader is simulated through its assigned

2 \\ // \\ // \\ // N
I \ / \ d \ / v
| 1 | |
\ / \ ’ \ ’ \ /

Follower

Figure 4.3: Example simulation scenario featuring a “leader” and “follower” agent. The
leader is assigned four swaths, the follower is assigned three. Paths are positioned within
the field so that the sensor coverage area is evenly distributed. The colored shaded regions
depict the portion of the field surveyed by each agent, while the gray is to be surveyed

in the future. The follower agent trails the leader as its target speed is lesser to ensure
common completion times.

waypoints, the follower agent’s target speed is then adjusted to ensure that each
agent achieves all assigned waypoints in common time. These parameters are then
transferred directly to the adaptive agents to ensure that each simulation contains
identical initial conditions and agent dynamics. Covering all of the desired variations
depicted in Table 4.1 with 30 iterations with varying GP simulations resulted in 3600
simulations.

The simulations conducted with the leader/follower arrangement in a lawnmower

pattern constitute a “control” group that is then compared with the proposed adap-
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Table 4.1: Parameters used in Monte Carlo simulation. Simulations were conducted on
all permutations of the listed variables used a square scalar field with normalized lengths.
Spatial variables are therefore unit-less and speed variables represent the percentage of the
major dimension the agent can travel per second. Gaussian process length-scales are also
interpreted as percentages of the field dimension.

Parameter Symbol Value
Number of agents N 2
Agent speed v (0.01,0.02,0.04) s *
Measurement noise or {0.0,0.05,0.15} m?
GP length-scale w {0.1,0.2,0.3,0.5}
Number of swaths for leader agent N, {6,7,8,9,10}
Number of planning horizons N, 10
Agent mass m 1 kg
Agent moment of inertia 1 0.1 kg-m?
Maximum thrust Umax 10 kg-f

tive sampling algorithm. The simulations with the adaptive sampling approach use
identical agent dynamics and initial configurations to the control group. The adap-
tive group is initialized with N, along the same lawnmower pattern given to the

control ground agents.
4.2.2  Monte Carlo Simulation Results

Results from the simulations are shown in Figure 4.4. Subfigure 4.4a compares
agents matching speed over varying GPs with noisy and noise-free measurements.
In the case of noise-free measurements, the proposed adaptive algorithm exceeds the
performance of the lawnmower pattern in fields where the length-scale is small rela-
tive to the field. As the length-scale approaches 50% of the field, adaptive algorithm
and lawnmower patterns converge to similar mapping errors given that there is very
little variation to observe within the field. When comparing the noisy measurements,

the same trend exists, but is much less pronounced. The smoothing effect of mea-
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surement error filtered kriging adds difficulty to the estimation process which makes
proper path selection less reliable. Subfigure 4.4b compares the effect of heteroge-
neous dynamics on the performance of the adaptive sampling algorithm over a GP
with a length-scale of 0.2. The abscissa shows the total number of swaths across
both agents. Given that the follower agent always travels three swaths, the leader
therefore varies from three to seven swaths. Additionally, the leader varies its speed
between 0.01s7%, 0.02s7!, and 0.04s~! while the follower alters its speed to ensure
common mission times. This plot shows the insensitivity of the algorithm to vari-
ations in speed given the close trend of the adaptive results with a similarly close
trend among the control as a sanity check. Additionally, the convergence of the adap-
tive and control curves show the diminishing returns from the adaptive algorithm as
mission time increases.

Table 4.2: Comparison of simulation results given all permutations of dynamics and sensing
quality. The result being the fraction of final field cost of the adaptive sampling mission
to the cost of the control sampling mission. The red line being parity, a ratio of 1:1.
Simulations performed over a scalar field with 0(2) =1 and w = 0.1. Ninety simulations split
evenly among the discrete mission classifications.

Dynamics Sensin
Cases Equal | Hetero. | Equal Hegtero. Results
1 X X
2 X X 141
3 X X
4 X X

4.2.3  Illustrative Example

An example of resulting trajectories in multi-agent sampling is depicted in Fig-

ure 4.5. Subfigures 4.5a and 4.5b are the planned trajectories and cost field after
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Figure 4.4: Monte Carlo simulation results given parameters specified in Table 4.1. Panel
(a) compares final mean mapping error over all simulated length-scales when both agents’
speeds are 0.01s™! and given no measurement noise variance (“Noise-free measurements”)
and O'%’n = 0.15, J%’n = 0.05 for measurement error case (“Noisy measurements”). Panel (b)
compares the effects of agent speed on ME in a field with a length-scale of 0.2. The follower
agent consistently travels three swaths while the leader varies from three to seven swaths
while traveling at varying speeds.

the second planning cycle and the final planning cycle respectively when each agent
makes noise-free measurements, henceforth referred to as “mission 1”. Subfigures 4.5d
and 4.5¢ are the planned trajectories and cost field at the same time-steps as the

aforementioned, henceforth “mission 2”; however, the agent associated with the red

2

line has a measurement error variance oy,

= 0.15 while the white line agent has an
error variance of a%jn = 0.05. The scalar field over which both scenarios are operating
is shown in Figure 4.5f and the lawnmower sampling pattern used as a control for

comparison is shown in Figure 4.5c. Mission 1 clearly shows how agents with common
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Figure 4.5: Examples of adaptive patterns given v = 0.01s™', N; = 3, and w = 0.2. From
left to right, top to bottom: panel (a) shows the cost field at the end of the second planning
horizon given no measurement noise for either agent. Panel (b) shows the final paths taken
by the same agents from (a) and the resulting cost field while (c) is the path and cost
field of the control agents. Panel (d) is the same snap shot as (a) given measurement noise
0'%’,,7 = 0.15 for the red agent and 0'%’,,7 = (.05 for the white agent. (e) is the final path and
cost field related to (d). (f) is the actual field over which all of these mission occurred.

measurement noise variance will cover roughly common field area while attempting
to follow stretches of peaks and valleys as they occur within the field. Mission 2

shows how the white agent, having better sensing capabilities, seeks to support the

red agent which suffers from excessive measurement noise variance.



CHAPTER 5: DESIGN OF AUTONOMOUS SURFACE VESSELS

The following chapter details the design process associated with the construction
of a pair of Autonomous Surface Vessels (ASV) used for testing and experimental val-
idation. The selection of components, software design, and validation of performance

criteria in order to evaluate system capability for required testing, is described.
5.1  Background

There exist numerous commercially available autonomous surface vessels for the
purposes of environmental monitoring. These products are robust robots capable
of carrying modular sensor packages that allow users to perform short, automated
missions for the collection of data. Figure 5.1a shows several examples of such ASVs:
OceanX’s ME120 [43], 5.1b is Evologics’ Sonobot [44], and 5.1c is Maritime Robotics’
Otter [45]. All these robots are outfitted natively with sonar capabilities for bathy-

metric mapping as well as the ability to extend their sensing suite as needed.
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(a)

Figure 5.1: Examples of commercially available Autonomous Surface Vessels for environ-
mental monitoring.

The platforms shown in 5.1 come with proprietary software packages to configure
their mission parameters. This closed ecosystem, along with their prohibitive cost,
make commercially available ASVs unattractive to research labs whose needs differ
from the needs of government or industry. The Autonomous Robotics and Systems
Laboratory at UNCC decided to develop a platform which was low-cost and open
source. These features allow for a fleet of ASVs to be developed for the cost of a
single commercial product while providing a simple framework for autonomy and
controls research.

The goals for the system are as follows: (1) a per vehicle cost of < $5000 with
a minimum of two vehicles, (2) an open-source control framework written mostly
in Matlab, (3) low weight for ease of deployment, and (4) a modular sensor suite.
The following sections will describe how each of these goals were satisfied during the
design of the UNCC ASV. Section 5.2.3 describes the design process and component

selection for the chassis of the platform. Section 5.2.2 details the layout of electri-



47
cal components and describes expected performance. Section 5.2.1 highlights the
selection of sensors necessary for autonomous operation as well as the modularity
of environmental sensor packages available to the system. Section 5.2.4 overviews
the open source control framework developed using Matlab. The concluding section

presents experimental results and derived performance metrics.
5.2 ASV Design Overview

The design process began with a review of the existing systems on the market
to determine reasonable performance goals and understand design principles which
are employed in professional systems. Key characteristics of the systems shown in
Figure 5.1 are broken out in Table 5.1. A review of the performance capabilities of
these systems led to the definition of metrics deemed to be reasonable for a low-cost

system.

Table 5.1: A comparison between commercially available ASVs and the planned UNCC
ASV.

Length Width Max Speed Battery Life Comm. Range Weight
(m)  (m) (m/s) (h) (km) (kg)

ME120 2.5 1.4 d 6 d 150
Otter 2 1.08 1.54 9 - 65
Sonobot 5 1.3 0.92 2 9 1.5 27
UNCC 0.9 0.7 1-2 1-2 1 <18

Additionally, significant computational power was desired for the UNCC ASV to

allow for onboard adaptive path planning. For this reason, significant diminution of
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Figure 5.2: Rendering of the UNCC ASV platform.

mission time and top speed were deemed allowable to compensate for the priority of

compute power. Figure 5.2 is a rendering of the proposed design for the platform.
5.2.1  Sensor Suite

The sensor suite consists of devices for measuring the configuration variables of
the autonomous system, such as heading, relative location, speed, etc., as well as
sensors for environmental monitoring. Sensors were selected prior to design and
construction of the platform to ensure that the system was designed to optimize the
available sensors and to avoid a more difficult sensor integration with an existing

systemn.
5.2.1.1  Attitude and Heading Reference System (AHRS)

For effective autonomous control, the robot should understand its orientation with

respect to a global reference frame. For this, an Attitude and Heading Reference Sys-
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tem (AHRS) combines multiple sensor inputs to construct an estimate of the sensors
three-dimensional orientation. AHRSs are typically constructed using a gyroscope
for the sensing of angular rotation rate, an accelerometer for the sensing of linear
acceleration, and a magnetometer for sensing of local magnetic fields to act as a
compass to align with the Earth’s magnetic field. A typical AHRS will employ a
sensor fusion algorithm onboard that is designed to utilize all the sensors to generate
an estimate which is more accurate than a measurement derived from a single sensor
alone.

For the ASVs in this project, the LORD Microstrain 3DM-GX5 series of AHRS was
selected. This line of sensors provides advanced sensor fusion algorithms which utilize
extended Kalman filtering to provide an accurate and stable estimate of orientation.
The system has been designed to operate with two different sensors from the 3DM-
GX5 series: the 3DM-GX5-25 and the 3DM-GX5-45. The -45 includes a Global
Navigation Satellite System (GNSS) receiver while the -25 does not. Section 5.2.1.2
discusses the configuration implications of the different sensors.

Communication between the ASV main computer and the AHRS unit uses the
LORD Data Communications Protocol, a proprietary packetized interface with al-
lows for a command and response format. LORD provides an Application Program-
ming Interface (API) for easy integration of the AHRS targeting C++, Python and
NET [46]. Since the supplied API could not be utilized directly with Matlab on
Linux systems a custom implementation of the LORD Data Communications Proto-
col was developed in C+-+ to convert the communications from a packetized hexadec-

imal format known as MicroStrain Inertial Packet, or MIP, to a NMEA-like string
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Table 5.2: Communication packet information for 3DM-GX5 systems.

Descriptor MIP ID Provided Information

SEULER_EF  (0x82,0x05) Roll, Pitch, Yaw
$EULER_RATE (0x82,0x0e) Roll Rate, Pitch Rate, Yaw Rate
$EF _STATUS (0x82,0x10) Filter State

format for easy debugging. Table 5.2 shows the most utilized commands for reading
orientation, angular rate, and the status of the EKF which provides information on

the expected reliability of the output of the filter.
5.2.1.2  Global Positioning System (GPS)

The ASV is nominally configured with the 3DM-GX-25 AHRS and utilizes a BU-
35354 GPS receiver for positional information. This receiver provides positional
information at a rate of 1 Hz in degrees latitude and longitude. The BU-35354 utilizes
the NMEA-0183 communication protocol for broadcasting location information over
USB [47|. Table 5.3 shows a subset of NMEA codes sent by the GPS receiver which

are used for by the ASV system for location information.

Packet Type | UTCY Time Latitude TLongitude Status Satellite Info SOGH

$GPGGA X X X X
$GPGSA X X
$GPRMC X X X X X

I Universal Time Coordinated

2 Speed over Ground

Table 5.3: Communication packet information for BU-35354 using NMEA-0183 string format.
The $GPGGA and $GPGSA packets supply information on the satellite status
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which can be used to determine if a sufficient number of satellites are communicating
with the GPS receiver to achieve accurate positional information. The $GPRMC
consists of the minimum recommended GPS data provided by the receiver. This
packet type provides information on location and estimated speed. Figure 5.3 shows
the format of a $§GPRMC NMEA-0183 packet. The simple comma-delimited format

of the protocol makes it human-readable and simple for debugging purposes.

$GPRMC, hhmmess.ss, llI111,a,11L11,a,x.x,%.x,xxxx,x.x,a*hh

—L Speed over Ground, knots
—— Longitude, E/W

Latitude, N/S

> Time (UTCQC)

Figure 5.3: Communication packet layout for recommended minimum specific GNSS data.

Alternatively, the ASV can be configured to use the 3DM-GX5-45 inertial nav-
igation system (INS). This INS unit integrates GPS and therefore the BU-353-S4
becomes redundant. The 3DM-GX5-45 can provide positional information at a rate
of 4 Hz. As mentioned previously, the communication method used by the 3DM-
GX5-45 is more opaque than the NMEA string format. The software designed to
parse the sensor communications transcribes the output into a NMEA-like string for
GNSS information much like the format used for orientation information. Table 5.4
shows the packet information returned by the 3DM-GX5-45 for parsing by the main

program in Matlab.
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Table 5.4: Communication packet information for GNSS output of 3DM-GX5-45.

Descriptor MIP ID Provided Information

Latitude, Longitude,
$GPS (0x81,0x03)

Horizontal Accuracy, Vertical Accuracy
$GNSS_ STATUS (0x82,0x0e) Fix Type, Number of Satellites

$NED (0x82,0x05) Velocity (North, East, Down)

Both GPS receivers provide location information in degrees latitude and longitude.
However, due to the curvature of the Earth, the distance between two GPS coordi-
nates requires consideration of absolute location, making these calculations unwieldy
if performed numerous times. To simplify the calculation of distance between coor-
dinates, latitude and longitude are converted to the Universal Transverse Mercator
(UTM) coordinate system. The UTM system divides the Earth into 60 north-south
zones. Within each zone, coordinates are defined by meters north and east from the
equator [48]. This makes distances calculations as simple as finding the Euclidean
distance between two UTM coordinate pairs. The system assumes that the ASV will

be operating solely in UTM zone 17N.
5.2.1.3  Depth Sensor

The main sensor package for the ASV is the BlueRobotics Ping Sonar. This single-
beam echosounder emits a 30 degree beam capable of measuring distances up to 164
feet underwater. The Ping Sonar uses a piezoelectric transducer to produce a 115

kHz frequency pulse which travels from the device, to the floor of the water body and
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returns; this action is depicted in Figure 5.4. As the signal returns to the transducer,
the diaphragm is disturbed, producing an electrical signal. Computing onboard the
Ping Sonar deduces the distance which the wave traveled given the time from send
to receive and the speed of sound in the medium. The manufacturer recommended

speed of sound for freshwater is 1500 m/s, which is used for this project.
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Figure 5.4: Single beam echosounder operation.

BlueRobotics provides APIs for various languages to integrate with the Ping Sonar.
However, no packages were provided for Matlab integration, so a custom driver was
developed for use with this project.

5.2.2  Electrical

Housed within a water-tight Pelican case are all the sensitive electrical components

required for operation of the ASV. The electrical system consists of three sub-systems:



o4
(1) batteries and power, (2) computation and sensors, and (3) actuator controllers.
The system is powered by two 14.8 V 6000 mAh 50C LiPo batteries. The first
battery is converted to a stable 12 V through a DC-DC converter for use with the
computation and sensors sub-systems. The second LiPo battery directly powers the
motor controllers to avoid current overdraw causing brown-out conditions in the
vehicle’s computer.

Figure 5.5 is a high-level connectivity diagram between discrete components of
electrical sub-systems (2) and (3). The power sub-system was excluded for simplicity;
a more detailed version can be found in Appendix B.3. The autonomy computer is
an Intel NUC10i7TFNH PC with 10th generation i7 processor and 32 GB of DDR4
RAM. This computer acts as the central hub for all sensors and directly commands a
separate control computer responsible for lower level hardware interfacing. Wireless
communication between agents and the ground station occurs via onboard Wi-Fi as
well as an RFD900x radio modem. The RFD900x is a 900 MHz transceiver capable of
broadcasting with 1 W of power and receiving transmissions from multiple kilometers
away. An additional receiver is included for manual wireless control. The Spektrum
ARSO010T receiver communicates with a Spektrum DX8e remote control in a one-to-

one network operating at 2.4 GHz for a more modest range.
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Autonomy Computer

Intel NUC
RIC Receiver Control Computer GPS IMU
Spektrum AR8010T Arduino Uno R3 BU-353-S4 3DM-GX5-45
Multiplexer Battery 900 MHz Radio Sonar 1-D Wi-Fi
Pololu 4-Channel Mux. HRB Li-Po 6000mAh RFD900x BlueRobotics PingSonar; 802.11ac
Electronic Speed Controller Electronic Speed Controller
BlueRobotics ESC BlueRobotics ESC Legend
l l — USB ADC
Thruster Thruster > Internal PWM
BlueRobotics T200 Thruster BlueRobotics T200 Thruster — Three-phase

Figure 5.5: High-level connectivity diagram for the ASV. Arrows indicate ownership
through direction and method of communication using color.

The control computer is an Arduino Uno R3 microcontroller running at 16 MHz
clock frequency. The Arduino is responsible for executing the instructions received
from the autonomy computer and interfacing with the vehicle’s thrusters and radio
receiver. The vehicle is equipped with two BlueRobotics T200 thrusters. The con-
trol computer interfaces with a pair of BlueRobotics basic electronic speed controllers
(ESCs) that connect to each of the three coil packs in the three-phase brushless motor
driving each thruster. By varying the duty cycle of the PWM signal, each thruster
can be independently controlled from full reverse thrust to full forward thruster and
any thrust in between. BlueRobotics provides experimental data regarding expected
thrust given battery voltage and PWM duty cycle [49]. To allow for manual control
interrupt, a Pololu 4-Channel RC server multiplexer is placed between the Arduino
and the ESCs. The Spektrum AR8010T wireless receiver allows for remote manual

control up to 1 km in distance. A switch on the Spektrum DX8e transmitter selects
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the signal passed through the multiplexer to the ESCs for remote or autonomous
control. In the event of disconnection from the transmitter, the AR8010T is pro-
grammed to command zero thruster while it awaits re-connection.

Battery voltage sensing is also handled through the control computer. Information
about the battery voltage levels can be requested by the autonomy computer for
further processing. Given that the LiPo battery voltage ranges from approximately
13.5 V to 16.5 V, the Arduino is not capable of directly measuring the battery using
its internal analog-to-digital converter. An intermediary circuit is used to divide the
voltage so that it is in a readable range for the Arduino. The circuit shown in Fig. 5.6
consists of an op-amp configured as a voltage follower with a voltage divider with
gain of 1/3. A diode ensures protection to the Arduino and drops the voltage by
approximately 1.5 V. An exact linear equation for the operation of the circuit was

determined through bench-top testing.

GND IN
GND

5V | | ouT

= GND

Figure 5.6: Voltage divider for battery sensing.
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The electrical components are secured to a rectangular 80/20 extruded aluminum
frame with the Pelican case. The communication equipment is secured to the lid
of the case using adhesives. Two external 900 MHz half-wave dipole whip antennae
connect to the RFD900x to allow for improved connectivity for the radio. Figure 5.7

shows the internal wiring of the Pelican case including locations for LiPo batteries.

R/C Receiver )
(AR8010T)

(" 900 MHz Radio )
(RFD900X)

IMU
(3DM-GX5-45)
. J

(Control Computer\
éArduino UNO R3)J

( )

6000mAnh LiPo
\ J

6000mAnh LiPo

( B
Power Supply
\(DCDC-USB-ZOO)J

(Autonomy Computer
L (Intel NUCIi7FNH)

Figure 5.7: Complete Pelican case with labeled components.

5.2.3  Hardware, Final Build and Total System Cost

To reduce costs, the chassis of the platform was constructed using off-the-shelf com-
ponents with minimal modification required. This approach allows multiple ASVs to
be constructed quickly and conveniently as needed. The system was also designed
to be modular, allowing a user to disassemble the entire system into multiple sub-

assemblies for ease of transportation and storage. The system also provides easy



28

connection points for additional sensors.

Figure 5.8: Deconstructed ASV for transport and storage.

The foundation of the platform is the dual pontoon catamaran design. The set of
pontoons are canoe stabilizers purchased from Spring Creek Manufacturing and pro-
vide approximately 55 1bs. of buoyancy when fully submerged. The canoe stabilizer
kit came with an adjustable crossbeam which was cut to length to achieve the de-
sired width. Cam locks are used to secure each pontoon in position and orientation.
However, this system did not provide sufficient restraint of the pontoons, allowing
them to be rotated if sufficient force was applied. To avoid this, holes were drilled
through the crossbeam and the pontoon post through which a quick release pin was
placed to ensure minimal rotation of the pontoon during operation.

Atop the crossbeam is seated the Pelican case housing all the sensitive electronics.
On either side of the case, 90-degree brackets are secured using 1/4 in bolts and
insulated rivet nuts to ensure the housing remains watertight. These brackets are

then secured to the pontoon crossbeam using 5/16 in nuts and bolts which can be
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Figure 5.9: ASV propulsion system and framing.

easily removed to separate the Pelican case from the chassis of the ASV. A frame
constructed of 20 mm anodized aluminum 80/20 rails rests on top of the pontoons
and is secured directly to the pontoon crossbeam. This frame allows for simple
connection of various sensors as well as mounting of the propulsion system.

The propulsion system for the ASVs comprises two BlueRobotics T200 thrusters
shown in Figure 5.9. These thrusters are mounted on a separate 80/20 frame which
is connected to the main chassis framing. This allows the thrusters to be raised
and lowered as necessary to ensure that the thruster is submerged during operation.
Cobalt series bulkhead connectors from Blue Trail Engineering penetrate the rear of
the Pelican case to provide quick connect and disconnect for each thruster.

Figure 5.8 shows the ASV deconstructed into its basic components. The Pelican
case is readily removed and can be carried by the handle with all components firmly
affixed within. The pontoons are separable from the frame by removing the quick

release pin from each and loosening the cam locks. The propulsion system is secured
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to the main frame by four 6 mm screws while each thruster can be removed from
the propulsion system framing by loosening two Phillips head screws. The frame
can be removed from the crossbeam by extracting two screws and folded in half for
storage. The final build of the ASV platform is shown in Figure 5.10 and a high-level

breakdown of unit cost is found in Table 5.5.

Figure 5.10: Final ASV build excluding sensor package.

This cost breakdown assumes the 3DM-GX5-25 and BU-35354 sensors are utilized.
Given the ability to replace both sensors with the 3DM-GX5-45, the electronics and

sensors category becomes $4374.65 with a total unit cost of $6157.07.

5.2.4  Software

The ASVs are capable of autonomous waypoint following based upon missions
created in a Matlab interface. The focus of the software design was simplicity, ease

of debugging, and extendibility. The core tenets of the software design as follows:
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Table 5.5: High-level Bill of Materials for ASV platform.

Component Cost
Chassis $873.11
Propulsion $504.00

Batteries and Power Supply $405.31
Electronics and Sensors* $2974.65

$4757.07

* Configuration with BU-353S4 and 3DM-GX5-25

e Open-source software architecture that can be easily modified.

e Simple and detailed enough for future students to be able to quickly understand
the core functionality and conduct autonomy and controls research experiments

with minimal changes to the core code.

e Minimal dependencies outside of Matlab virtual environment, allowing porta-
bility between platforms. Portability should depend only upon the sensor pack-

age available to a particular device.

e Sufficiently transparent operations for on-site debugging of core processes and

communication.

The ASV’s internal computer runs Ubuntu 20.04 with Matlab 2021b installed. To
provide the Matlab program easy access to all USB devices, a system was configured
to allow hot-plugging (i.e., the ability to add or remove a device from a program
without interruption). This prevents any interruptions in the USB device communi-
cation from disrupting the operation of the entire program. This is important when

working with Matlab programs as they only expose a single thread to the user, mean-
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ing all errors are in line with the main programming. By utilizing the package socat,
a series of pseudo-terminals allow a valid serial stream to be exposed to Matlab at
all times, independent of availability of the USB device. These pseudo-terminals are
bidirectional communication channels officiated by the kernel which allow processes
to speak directly [50, ch. 17.9]. With simple error handling, the programs can detect
whether the device is functioning and decide whether or not to interact. In this
way, fatal disconnection errors are avoided. A detailed visualization of how the socat
pseudo-terminals connect the device to the Matlab program is shown in Figure B.1.

Within the Matlab virtual environment, a handler object is created which reacts
to incoming information in an asynchronous manner. When data arrives through the
pseudo terminal, an interrupt is triggered, and the message is logged into a First-
In-First-Out (FIFO) data structure which the real time program can access to see
if any messages from that device are available. Each handler object is responsible
for the initialization, parsing of incoming messages, structuring of outgoing messages
and clean-up for each external device which is expected to be connected and utilized.
In this way, the addition (or exemption) of sensors can be made with minimal al-
teration of the main control loop. Also, the containerized objects can be allowed to
fail gracefully with the strategic placement of try... catch statements to let Matlab
handle the clean-up of a malfunctioning module.

When Matlab processes information, it stores all variables in memory. Specific
calls must be made to ensure that the data stored in memory is packaged and saved
onto the hard disk. Storing as much information as possible is critical for research

systems and care should be taken to avoid errors which cause logging issues. There-
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fore, an SQLite database was configured to quickly receive information to be stored
throughout the operation of the program. Databases are robust and efficient ways to
hold large stores of information on the hard disk. With rapid read /write rates, the
database is also used to recall information from the current run, rather than storing
large, potentially expanding arrays of data in memory. The database SQLite was
chosen due to its single-file design and the fact that it does not rely on a continuously
running instance for I/0.

Given that the autonomy computer lacks any General Purpose Input/Output
(GPIO), the control computer allows access to the external digital and analog world.
A rapid data communication protocol was developed to allow the Autonomy Com-
puter to make requests of the Control Computer when data was required. The
Control Computer then responses with an acknowledgment along with indications
that the proper message was received and information relating to the result of the
request.

The protocol designed for this function is similar to the protocols used by the 3DM
AHRS and the BlueRobotics Ping Sonar. All information is sent in hexadecimal
format with identifiers which distinguish each individual packet. The anatomy of
the packets are displayed in Figure 5.11. Every packet begins with two bytes: R
(hexadecimal 0x52) and L (hexadecimal 0x4c). By searching for these two starting
bytes, the receiver can clearly see when a new packet has started making packet error
detection much easier. Next, a payload length is supplied. For the time being, this
value is always four because this provides sufficient information for the operations

currently required by the ASV. However, the system is designed to be easily updated
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Payload Length Payload
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I
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Figure 5.11: Data communication packet description between autonomy and control com-
puters. (a) command packet, (b) response packet

when necessary.

After the payload length byte, a payload descriptor is placed. For packets acknowl-
edging and replying to request, this value is 0x01. Command packets can consist of
numerous descriptors, some of which are outlined in Table 5.6. Command packets
have a space of four bytes to provide information about the requested operation. For
example, to write an analog value to a given pin, the requester must provide the pin
number (1 byte) and the analog value to set (2 bytes, similar to analogWrite in the
Arduino environment). When responding to a request, the packet must include the

command descriptor to ensure that the proper command is receiving a reply.
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Table 5.6: List of packet descriptors for communication with control computer.

Offset  Length

Descriptor Description Inputs Outputs
(Bytes) (Bytes)
Request 0 1
0x2 Read Analog Pin Pin # Pin # 1 1
Value 2 2
Request 0 1
Pin #,
0x4 Write Analog Value Pin # 1 1
Value
Value 2 2

Get Status of
0x6 Status 0 1

Spektrum Receiver

Request 0 1
Motor ID,
0x7 Set Motor RPM Motor 1D 1 1
PWM (Duty)
Value 2 2

The presented data communication protocol allows for the control computer to
become an extension of the autonomy computer. There are no major computing
functions present on the Arduino, all actions require command over the serial port
prior to execution. This has the limitation that, in the event of failure of the au-
tonomy computer, the control computer cannot autonomously steer the ASV. This
feature would make the system more robust to individual component failure. This

would, however, require significant configuration of how the sensors post their in-
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formation as the autonomy computer is the sole authority receiving the information

required for autonomous control.
5.3  Mobile Sensor Network Configuration

Each ASV is considered a mobile sensor when it is equipped with an environmental
monitoring device (e.g., a Ping Sonar). The pairing of this ASV with a ground station
which sends commands and receives sensor data remotely is denoted a network. As
additional ASVs are deployed, this network grows, and the burden of routing and

error checking grows proportionally.
5.3.1  Centralized Control

A single ground station is required within a given sensor network. This ground
station handles the delegation of mission parameters and provides the user a view
into the operational status of each ASV within the network as well as the network
itself. The ground station consists of a Dell Vostro-7500 laptop, a Wi-Fi router and
a RFD900x configured in multi-point mode. Similar to the ASV control software,
the ground station ports USB devices through pseudo terminals prior to reaching
the Matlab environment as shown in Figure B.2.

Missions are defined in an XML format which is loaded by the ground station. The
commands within the XML format are translated into a NMEA-like communication
protocol developed for messages between any agent in the network. To allow for
robust communication between an undefined number of agents within the network,

the following is necessary:

o Packet identifier
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Target descriptor

Source descriptor

e Common command table

Unique termination character

The protocol developed to meet these requirements is termed ASV_Lang. Much like
the previously discussed NMEA-like protocols, it is a plain-text, comma-delimited
string beginning with a command prefixed by a dollar sign. The command is followed
by the command number, an integer which signifies the number of communications
between source and target. Next, the name of the target followed by the name of the
source. If necessary, a series of arguments can follow. The entire string is terminated
by the carriage return character (hexadecimal 0x0d). The following is an example of

an ASVLang command which adds a waypoint to the target’s waypoint list:

$AWAYPOINT, 18, ALPHA, ONSHORE, 5, 508103.00000, 3921432.00000, 2.000\n

Specifically, this command is the 18th communication packet between the ASV “AL-
PHA” and the ground station (“ONSHORE”). It places a waypoint at 508103 meters
east, 3921432 meters north in UTM zone 17S with capture radius of 2 meters as the
5th element in the agent’s waypoint list. The ASV is then responsible for moving
through its waypoint list in ascending order. The ASVLang supports commands for

the following:
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e Acknowledge communication e Report vehicle state

e Start mission e Report single point depth informa-

. tion
e Pause mission

e Stop mission e Signal waypoint attainment

e Set heading PID gains e Report error
¢ Add waypoint e List waypoint in queue
e Remove waypoint e Mission state (Running, Paused)

The protocol is simple to extend to include additional commands as necessary
and the number of arguments is not limited by the protocol, although bandwidth
limitations may be restrictive given that it is a plain-text communication protocol.

The ground station implements an event system which gives the user extensive
configurability for mission design. Received messages are checked for event triggers.
When an event is triggered, the ground station can perform a pre-defined action such
as broadcasting the next set of waypoints for an agent or run a specific function. This
event system forms the foundation of the sensor network, allowing the user to limit
the number of waypoints transmitted at a given time to reduce network traffic or to

begin the computations required for the next adaptive sampling horizon.
5.3.2  Communication Topology

Remote communication is achieved through Wi-Fi as well as 900 MHz radio. Mes-

sages are broadcast over both protocols as a redundancy. The ASVLang protocol
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is designed to handle packet repetition and ignore duplicate packets. Figure 5.12
depicts the broadcasting nature of the messaging system; all messages are received
by all nodes within the network. Each node is then able to determine if they are
the target of a specific message. The current network configuration consists of three
nodes: Alpha, Bravo, and Onshore. Each node knows their name and the name of

other nodes within the network to allow for message targeting.

4

Alpha \ Bravo

Router

Legend
~—> 900MHz
—> Wi-Fi Onshore

Figure 5.12: Example network topology for two agent network.

For messages over Wi-Fi, the User Datagram Protocol (UDP) was selected. UDP
is a connection-less protocol, in contrast to the more standard Transmission Con-
trol Protocol (TCP) which makes a connection between a server and client. TCP
provides error checking and packet re-transmission which is not available through
UDP. However, UDP allows for all agents on the same subnet to receive a broadcast

message. The additional benefits afforded by TCP are then implemented in a more
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basic form through the ASVLang protocol.

The stock RFD900x is configured for point-to-point mode, meaning a pair of
transceivers can only communicate with one another. A multi-point firmware sup-
plied by RFDesign must be loaded onto each RFD900x within the network. By
loading this firmware on all RFD900x’s within the network, messages sent from any
one modem are received on all models in the network. The only requirement is that a
single master node be initialized to control the structure of the network. In the case
of the UNCC ASV fleet, that master node is the RFD900x connect to the ground

station.
5.3.3  Ground Station User Interface

A user interface was designed to display communication between all the agents
and the ground station. The GUI was designed and built within Matlab’s App
Designer interface to comply with the goal of minimization dependencies outside of
the Matlab environment. Figure 5.13 displays the main screen of the aforementioned

user interface.
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Figure 5.13: Ground station user interface for monitoring sensor network.

The GUI is split into five panels: (1) left status panel, (2) Alpha status panel, (3)
Bravo status panel, (4) Adaptive status panel, and (5) ground station specific data
panel. The left status panel is always visible and provides basic information about
the deployed agents such as its communication status, battery level, and whether it
is in manual or automatic mode. The status panels specific to the agents, Alpha and
Bravo, are identically designed and provide information specific to the corresponding
agent. As shown in Figure 5.13, the current location and waypoints can be viewed
in real time as well as the readings from the sonar sensor or the heading of the agent
over time. Also, in the table at the bottom of the panel, all communication between
the agent and the ground station is displayed to assist with debugging any issues
that may arise during operation. Controls are provided to start, stop and cancel the
mission for a given agent. Finally, current battery level, instantaneous speed, and

heading are displayed with numeric values in the upper right.
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The panel for monitoring adaptive sampling calculation progress is designed to
provide a generic interface to view the status of an external computation server.
This server, running a separate instance of Matlab, computes the specific adaptive
sampling mission as required. Data is passed between the GUI and the processing
serving via a combination of UDP commands, SQL database tables, and Matlab’s
proprietary save file format. This allows for a flexible system which can be easily
extended to any type of adaptive mission. The ground station panel provides simple
information related the operation of the GUI itself including internal error messages
and the status of connected services such as the RFD900x and the external adaptive
sampling processing server.

The ASV OnShoreGUI provides a simple interface for monitoring all the complex
interactions required for monitoring and controlling a network of remote agents. All
information gathered by the ground station is logged into a local SQL database
to allow for real time querying of messages for debugging purposes or post-mission

evaluation of critical systems.
5.4  ASV Practical Control Design

As described in §4, each ASV is modeled with the closed loop dynamics (4.1). The
aforementioned sensors provide the requisite state information for control. Heading
information is gathered at a rate of 10 Hz from the IMU. A simple calibration is
performed prior to operation in which the agent is pointed in the eastward direc-
tion, as determined by a cell phone compass application, and the appropriate taring
command is executed. This process ensures that east represents 0° with positive

rotation being counter-clockwise, identical to the assumptions within the simula-
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tion environment. Additional calibration methods are supplied by the supplier such
as hard- and soft-iron calibrations. These account for disturbances to the magne-
tometer due to magnetic objects and nearby metals respectively. These calibration
procedures were found to be insufficient given the dynamic magnetic field generated
by the nearby high-speed switching electronics (i.e. power supply, ESC, etc.) which
produce varying magnetic effects over time.

Speed information is ascertained through the discrete differentiation of distance
over time. Time is supplied by the operating system in POSIX time, the number
of seconds elapsed since 12:00:00 UTC on January 1, 1970. Distance is determined
by taking the Euclidean norm of the difference in UTM coordinates at the current
and previous observations. Given noise associated with GPS, a simple boxcar filter
is applied to the estimated velocity value to smooth the estimate over time.

While the waypoint tracking methodology is exactly transplanted onto the on-
board controller from the simulation agent, alterations were made to the command
equations (4.2) for practical concerns. A feed-forward term, 07, was added to main-
tain agent motion to aid with speed calculations using differential spatial location
over time. Additionally, an additional saturation is included to ensure that, in the
event that the controller requires saturation to maintain speed, the turning radius is
not affected. This situation may occur when disturbances cause the ASV to require
greater than expected thrust to maintain speed. The resultant modified command

equations are
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u; = sat {Sat (5]” + 61}7 Umin ﬂmax) - 697 07 umax}
(5.1)

u, = sat {sat (67 + Oy, Umin, Umax) + 00, 0, Umax } ,

where Upin < Umax < Umax. lesting was typically conducted with ., = 1.2 kg-f,
Umin = 0.2 kgf, Upax = 0.9 kgf, and 67 = 0.6 kg-f. These force limitations were
primarily chosen to obtain desired battery life while attaining reasonable speed;
however, in the event of strong winds or other disturbances, these values would need

to be updated.
5.5  Experimentation

This section describes the experiments performed to ensure capability of the design
ASV system. The testing provides baseline performance characteristics and ensures

the system’s ability to meet research needs.
5.5.1  Wireless Communication Range Testing

Prior to experimentation with the ASV platform, tests were made to identify the
functional range of the wireless communication systems to ensure safety of operation
in large-scale testing. With the support of undergraduate researchers, John Driver
and Connor Davidson, signal strength testing was conducted for Wi-Fi, RFD900x and
the Spektrum R/C transceiver system (Spektrum DX8e transmitter and Spektrum
AT8010T receiver). Tests were performed on UNCC’s main campus during July
2021. Figure 5.14 shows the paths taken during each individual range test. An

operator was placed at the origin point of all paths with an RFD900x transceiver,
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a Spektrum DX8e transmitter and a Linksys Velop Wi-Fi router. Another operator
carried a RFD900x transceiver, an AR8010T receiver and a Dell Vostro-7500 laptop
connected to a BU-35354 GPS for location tracking. As the mobile operator moved
away from the origin point, Wi-Fi signal strength was logged automatically while the
operator stationed at the origin manually logged the signal strength of the Spektrum
system and the RFD900x. All devices were positioned at roughly ground level during

testing.
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Figure 5.14: Wireless communication range testing paths.

The results of the wireless range testing are shown in Figure 5.15. From the
resulting data, it can be concluded that manual control is reliable within 200 m
when both transmitter and receiver are at ground level. Serial communication to the
onboard autonomy computer can be assumed reliable up to 500 m, with redundancy
through Wi-Fi connectivity up to 190 m.

As mentioned previously, these results represent the work case scenario for multiple
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Figure 5.15: Signal strength over distance for (a) Wi-Fi, (b) R/C transmitter, and (c)
RFD900x radio
reason: (1) transmitter and receiver are both held at roughly ground level, (2) close
proximity to large buildings causes interference in wireless communication, and (3)
communication between RFD900x’s can be extended using multiple nodes and built-

in multi-hop network configuration.
5.5.2  ASV Control Testing

Preliminary testing of the ASV platform began at Hechenbleikner Lake on the
UNCC campus near Atkins Library. These tests were used to validate buoyancy,
stability, remote control, maximum speed, heading controller functionality, and sim-
ple waypoint following. Finally, testing was conducted to ensure simultaneous multi-

agent communication and controllability from a single ground station. Figure 5.16
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shows the pair of ASVs deployed on Hechenbleikner Lake during testing to ensure

controllability with multiple simultaneous agents.

Figure 5.16: Multi-agent testing on Hechenbleikner Lake.

Full speed testing results, shown in Figure 5.17, indicate that the current maximum
attainable speed for the ASV platform is approximately 1.15 m/s. Although the

upper goal of 2 m/s was not achieved, the system can meet the lower goal of 1 m/s.
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Figure 5.17: Maximum speed testing with remote control.

Results of the process for tuning of the gains for the PID controller used for heading
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tracking are shown in Figure 5.18.
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Figure 5.18: PID controller testing results (a) with minimal external disturbance and (b)
with perpendicular 5-10 mph wind.

Once tuning of the heading controller was acceptable to continue, waypoint testing

was performed on the same lake.
5.6 Design Review

A pair of Autonomous Surface Vessels were developed for use with current and
ongoing research efforts in the Autonomous Robots and Systems Laboratory. These
ASVs were developed to be low-cost, easy to deploy, and simple for research devel-
opment. Experimentation was performed to validate performance and the results of
which presented. Table 5.7 displays the desired characteristics of the surface vessels
as well as the measured performance of the ASVs.

Although many of the desired criteria were achieved, there is clearly room for im-

provement. Future work should target improvements in top speed as well as sustained
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Figure 5.19: Waypoint control testing on Hechenbleikner Lake

Table 5.7: Actual performance characteristics comparison with desired.

Length Width Max Speed Battery Life Comm. Range Weight
(m)  (m) (mn/s) (h) (km) (kg)
Target 0.9 0.7 1-2 1-2 1 <18
Actual 0.9 0.7 1.15 1.5 0.5 16

cruising speed. The initial calibration of the heading reference system can also be im-
proved to ensure accurate tracking during missions. Also, additional testing should
be performed to determine exact range of the RFD900x radios and modifications
should be made for improvement as necessary. Finally, additional sensor packages
should be integrated within the platform to allow for more advanced algorithmic

research and experimentation.



CHAPTER 6: EXPERIMENTAL RESULTS

Experiments were conducted to demonstrate the feasibility of the adaptive sam-
pling algorithm developed in §4 to run onboard the ASVs described in §5. This
chapter describes the process by which the experimentation was conducted, and the
parameters used to achieve the provided results followed by an interpretation of the

experimental outcomes.
6.1  Experimental Environment

Given the expected large length-scale for the variation of bathymetry, a large area
was required to demonstrate the adaptive multi-agent survey. Additionally, this area
had to be free from static impediments as the ASVs are not outfitted with object
detection and avoidance. Finally, large bodies of water are typically public spaces,
meaning that recreational boat traffic would need to be avoided as best as possible
during testing.

Considering all of these challenges, an area near the Lake Norman Community
Sailing Center on Lake Norman, NC was identified as a suitable testing location.
Thanks to the altruism of the sailing center, testing was conducted directly from the

pier for convenient loading and unloading of the vessels.
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6.2  Ground Truth Survey

Prior to adaptive sampling testing, an exhaustive survey was conducted to generate
a map of the bathymetry in the selected area with as high confidence as possible.
A lawnmower pattern comprising of eight swaths spanning an area of 139 m wide
by 189 m long was constructed and a single ASV agent performed the planned
survey. Figure 6.1 displays the path taken by the ASV while tracking the waypoints
constructing the lawnmower pattern. The experiment was conducted on March 28th,
2022 when there were winds of 5 mph perpendicular to the swaths with gusts up to
12 mph causing the vehicle’s path to bend between the sparsely placed waypoints.
Throughout these experiments, it was determined that a safe mission time could

extend up to 1.5 hr at a cruising speed of approximately 0.5 m/s.
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Figure 6.1: Waypoint control testing and bathymetric mapping near the Lake Norman
Community Sailing Center.
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Throughout the survey, the ASV was equipped with the BlueRobotics Ping Sonar
for bathymetric mapping. Using the approximately 5000 data points collected during
the survey, a semivariogram was fit assuming isotropy. Figure 6.2 shows the exper-
imental semivariogram data points, the curve fit to this data, and the estimated
range and sill. Using the estimated semivariogram function, a kriging estimate was
performed over a uniform grid covering the entire survey region. The resulting field
estimate is displayed in Figure 6.3. The estimate compares favorably to the publicly

available bathymetric maps of the corresponding region [51].
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Figure 6.2: Experimental semivariogram fit to data collected during ground truth mission
in the region near the Lake Norman Community Sailing Center.

Using the assumption of an isotropic second-order stationary field, Figure 6.2
shows the hyper-parameters determined by fitting an experimental semivariogram

to the complete data set. The hyper-parameters identified by fitting the Gaussian
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semivariogram experimental data are 8 = [(, w, o2]" = [0,153m, 7.27m?]".
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Figure 6.3: Estimate of bathymetry given echosounder measurements using kriging. The
origin corresponds to the southwest corner of the white box in Fig. 6.1.

6.3  Experimental Methodology and Evaluation Criteria

For simplicity, a square subsection of the surveyed region was taken as the sample
space. The white square in Figure 6.1 shows the 140 m x 140 m region chosen for
this purpose. However, during experimentation, the adaptive sampling algorithm
assumed a normalized space, @ = [0,1] € R% This enabled the implementation
used during simulation to be directly used for experiments.

Experimentation was conducted using both of the UNCC ASVs, Alpha and Bravo.
Both agents were assumed to be traveling at the same speed with the homogeneous
dynamics and therefore assigned the same number of swaths to cover within the
sample space. Table 6.1 describes relevant parameters used to construct each mis-

sion that are common to both agents. Due to practical limitations, experiments
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were limited to the assumption of homogeneous dynamics and sensing. Nonetheless,
deploying in a realistic setting restricted to these assumptions proves the effective-
ness of the proposed centralized, online adaptive path planning based in real-world
environments.

Table 6.1: Common mission parameters among missions.

Parameter Symbol Value
Number of cycles N, 4
Number of waypoints Ny 32
Number of waypoints per cycle C' 8
Preemptive re-planning offset  p, 2

Sensing interval T, 10 s
Measurement noise variance 03, Variable[!
Mission time tolerance T +10 s

I Site specific measurement noise variance is 0.5% of mea-
sured depth [49].

Given the complexities of real time planning of multi-agent systems, the re-planning
phase between cycles beginning at an offset of p, waypoints prior to the next cycle.
The first agent which reached this target triggered the computation on the ground
station. This decision was made to help smooth the mission planning process in
preparation for potentially long computation times. If planning time was sufficiently
long, agents would drift from expected positions due to external disturbances, causing
inaccuracies in estimation of mission time for proposed waypoint sets. Simulations
were conducted under the assumption that p, = 0 given that planning time was
effectively null as all agent simulation was paused during mission planning.

To compensate for a non-zero p,, the waypoints remaining in the current cycle

are left unmodified along with all previously reached waypoints in the movePts func-
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tion [A2.7]. In the event that the two agents become out of sync, this process of
freezing future waypoints ensures that all cycles re-plan a consistent number of way-
points for each agent through each mission. This consistency seeks to maintain as
much similarity between the simulation and experimentation as possible.

Given limitations in the bandwidth during communication with multiple agents,
the sensing interval, T was set at 10 seconds. Due to short mission times, the low
number of expected measurements given infrequent communication, and the length-
scale which is larger than any simulation scenario, H F'KK estimation was used rather
than HC' estimation. The measurement noise used for both agents with HF K was
o7 (x) = 0.005d (z) where d (x) is the depth measured at spatial location @ based
upon the manufacturer’s specifications [49].

The expected time for the ¢th agent to pass through all of their respective waypoint
assignments is denoted 7T, m;- Lhe effectiveness of the adaptive sampling algorithm in
an experimental settings was judged based on three criteria: (1) mission time error in
excess of allowable tolerance, T; , = max (‘Tm — fmi‘ — T, 0), (2) final total mission
cost (4.6a), and (3) final mapping error (3.6) in comparison to a synthetically gen-
erated lawnmower survey with similar mission time constraints shown in Figure 6.3.
Note that mapping error will not normally be available in field experimentation and
the comparison is possible here due to the data obtained from the previous ground
truth survey.

Comparison with an idealized control agent performing a variation of the original

mission plan is used to compare effectiveness. Given that disturbances and deviation

from the straight line path cause slower than expected average speed over the entire
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Table 6.2: Mission parameters for experimental trials.

Trial 1 Trial 2 Trial 3

Mission length (sec) 600 430 430
Target agent speed (m/s) 0.5 0.7 0.7
Number swaths per agent 3 2 2

mission, the set speed of the control agent is modified for equal comparison. The

distance between waypoints j and j + 1 for the ith agent, 7; ; is summed to obtain

Ny—1

the total ideal travel distance, dr, = Y ||r;.;||. The average mission velocity is then
j=1

Uy = do, [ Tin, - (6.1)

The lawnmower path initially prescribed for the mission was modified to ensure
that the control agent achieves all assigned waypoints within tolerance of mission tar-
get time by incrementally shrinking or expanding the search space and regenerating

the waypoint pattern.
6.4  Mission Description

On the 6th of May, 2022, multi-agent testing was conducted using the proposed
adaptive algorithm on Lake Norman. A total of three successful missions were con-
ducted during that time, the specific parameters of each mission are presented in
Table 6.2. Agent speed and measurement noise variance are equal among the two
agents for each mission.

Each agent was controlled from a position on the dock which was a maximum of
200 m from the furthest position of the ASVs. Each agent was driven close to the

initial waypoint and the mission was started using the ground station GUI shown in
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Figure B.1.
6.4.1  Experimental Trials

The first successful experimental mission began at 10:09:55 am. Given enough
time to complete three swaths each when traveling 0.5 m/s, the paths taken by each
agent are shown in Figure 6.4a, where each separate color shows the discrete planning
cycles throughout the mission. The colored path in Figure 6.4b shows the sonar data
sent to the ground station from each agent; close attention should be paid to the
color scale on the right and the maximum and minimum values measured. In this

case, the right-most agent, henceforth “Bravo”, measured a depth of up to 10.1 ft.
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Figure 6.4: Experimental results from the first trial where 7, = 600 s, v = 0.5 m/s, and
the number of pre-defined swaths was three per agent. Agent paths taken during each
computation cycle is shown in 6.4a. Subplot 6.4b shows each agent’s mission path colored
according to the bathymetric data gathered at that location. The final estimated scalar
field given the observations gathered during the mission is shown in 6.4c.

Alpha, the left-most agent, has a relatively less interesting area over which it is
surveying, i.e., it consists of no peaks or valleys within the total field. Bravo has

the task of exploring the main valley in the upper right hand corner, best seen in
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Figure 6.4c. Both agents can be seen avoiding thoroughly searching the area closest
to the dock (south) given that the expectation is that very little variability occurs
within this area. This allows each agent more time to explore the northern portion
of the search space.

The second mission began at 10:30:37 am with T,, = 430 s, v = 0.7 m/s, and a
target of two swaths each. Figure 6.5a and 6.5b both depict detailed information
about the second trial. Immediate distinctions can be drawn from the previous
Figure 6.4a with update parameters. Once again, the agents attempt to spend as
little time in the southern portion of the search space. Alpha can be seen bending
its path further towards the east to support Bravo in the search of the expectedly
interesting space. Unfortunately, due to time constraints, Bravo was not able to

return all the way to the northeast corner where the highest interest resides.
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Figure 6.5: Experimental results from the second trial where T,,, = 430 s,uv = 0.7 m/s, and
the number of pre-defined swaths was two per agent. The interpretation of subplot is the
same as Figure 6.4.

The final mission began at 10:57:23 am with the same parameters as the previous

trial. Notice that the paths and estimate are nearly identical. This is promising
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for the reliability and repeatability of the real-world deployment of the developed

algorithm.
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Figure 6.6: Experimental results from the third trial where parameters were identical to
the second trial. Interpretations of the subplots are the same as Figure 6.4

6.4.2  Discussion of Experimental Results

Using the ground truth scalar field, control agents were simulated in lawnmower
patterns using the average mission velocity (6.1), total mission time, and initial
swaths per agent to create the control path. Figure 6.7 depicts the comparison
between the adaptive and control paths for each of the three trials wherein the
adaptive value is normalized by the control value for each metric. Average mission
time is the mean of the two agent’s end time minus its start time. The final cost of the
estimated field is calculated using (4.5) over a uniform grid of points and summed.
The final mapping error is calculated using (3.6) comparing the mapping estimate
and the map generated using the ground truth survey. The red line represents parity
at a ratio of 1:1. When the bar exceeds the red line, the adaptive value is greater

than the control and vice versa. The paths taken by each simulated control agent is
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Figure 6.7: Comparison of experimental results when compared with mission objectives
and control simulations. The solid red line indicates a ratio of 1:1, or parity, between the
adaptive and control sampling missions. When the bar chart exceeds the line, the adaptive
control is larger than control and vice versa. The dashed red lines represent the mission
time tolerance, Th.

shown in Figure A.1.

As shown, in trial 1, each agent achieved the target mission time with high accuracy
as well as achieving improved cost and mapping error performance when compared
to the control simulation. This can be attributed to Bravo’s return to the point of
greatest depth towards the end of its mission, shown in Figure 6.4b. The successes
of the first trial are not mirrored in the next two trials. The control outperforms
the adaptive in final cost in trials 2 and 3 while achieving long mapping error in
trial 2. It should be noted that the higher final cost but lower mapping error for the
adaptive agent in trial 3 is coincidental as the algorithm seeks to minimize cost, which
serves as a substitute for actual mapping error, and therefore makes no guarantees
for improved mapping error.

The significance of trials 2 and 3 is the similarity between distinct missions. When
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comparing Figures 6.5b and 6.6b, it is apparent that the paths taken are incredibly
similar. This is a promising sign of the repeatability of the adaptive algorithm.
The variability in the final resulting cost and mapping error can be explained by
the slight variability in external disturbances causing variable average mission speed
which changes the reachable space among missions. Given the low variability in
the scalar field being measured, drastic changes in final mapping error and cost can
be achieve simply by moving closer to the largest measured depth in the northeast
corner.

Given the restrictions for the selection of a real-world sampling region, the nu-
merical results of the experimentation remain somewhat inconclusive. Future exper-
imentation should address logistical constraints inherent in conducting large-scale
experimentation in public spaces. An expanded survey region of approximately nine
times the area of the conducted experiment should yield more conclusive results
given that the space would then have a length-scale which represents roughly 33%
of the spaces width and height. However, this expansion may require extension of
the current program which runs the algorithm to handle potentially convex shapes
to accommodate the coast lines. Additionally, a larger team will be required for the
coordination of manned boats to patrol the survey area and ensure there are no prob-
lems with recreational users of the space as well as the police, who had confronted
the ASVs on previous outings. Finally, alterations to the battery and its manage-
ment system would be required to ensure that missions of the required scale could
be conducted more than once on a single charge. The designed system is currently

incapable of continuing an interrupted mission which means that in the event of a
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failure, the mission would need to restart from the beginning. The current design
would only be capable of a maximum of two attempts per charge in a sample space

of the recommended size.



CHAPTER 7: CONCLUSION AND FUTURE WORK

A novel approach for the efficient computation of online kriging estimates of a
stationary, isotropic scalar process with multiple heterogeneous sensing sources was
described in §3. This work combined the methods of common data neighborhoods [41|
and heterogeneous-measurement-error filtered kriging [34| to allow for rapid estima-
tion of fields with sets of training data. Presented analysis concludes that HC' yields
lower computation times with minimal impact on accuracy when the length-scale of
the sample field is smaller than the field’s major dimensions. The estimation process
was then utilized in an algorithm developed for the time-constrained exploration of a
square sampling region using multiple agents, described in §4. Founded on the prin-
ciples of tessellation into centroidal Voronoi cells, this efficient planning algorithm
was shown to outperform an offline lawnmower approach given varying field hyper-
parameters, agents dynamics, and agent sensing characteristics. Simulations of the
proposed adaptive sampling algorithm show that gains are made given heteroge-
neous measurement noise variance and dynamics when compared with a lawnmower
pattern.

An autonomous surface vessel platform was developed for UNC Charlotte’s Au-
tonomous Robots and Systems Laboratory for research in inland bodies of water. A
pair of these low-cost and modular vessels was constructed for the real-time imple-

mentation of the developed adaptive sampling algorithm. The process of design and
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construction was outlined in detail in §5. An implementation of the adaptive algo-
rithm was developed for use with the vessels in conjunction with a ground station
and experimentation proceeded near the Lake Norman Community Sailing Center. A
number of trails were conducted which sought to provide insight into the viability of
the proposed algorithm and testing platform in real-world missions. Success of these
missions was judged by key performance characteristics. Additionally, robustness of
the designed system was determined through the repeated successful completion of
multi-agent missions.

Ongoing work should focus on the extension of ASV battery life and improved
controllability over 900 MHz radio without reliance on secure shell over Wi-Fi. Es-
timation should be improved through the parallelization of the HC' algorithm as
well as calculation of only neighborhoods which updates are expected given most
recently measurements. Additionally, techniques utilizing recursive LU decompo-
sition [52] and kriging with sparse matrices [53| should be explored for improved
computation time on a per neighborhood basis. The algorithm should also be tested
for robustness in situations where the number of agents exceeds two. Finally, the
convergence methodology for updating of spring-mass-damper system parameters

should be improved and convergence guarantees should be explored.
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APPENDIX A: Experimental Results Supplemental Information

Supplemental information pertaining to the experimental results gathered on Lake

Norman, NC.
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Figure A.1: Paths taken by control agents when comparing to experimental trials. (A.la)
Trial 1, (A.1b) Trial 2, (A.1c) Trial 3

Fishermap.org is a freely available mapping service which has topographical in-
formation for lakes within Belarus, Kazakhstan, Ukraine, United Kingdom, and the

United States. Figure A.2 is a snapshot of the region used for experimentation.

Figure A.2: Topographical map of Lake Norman [51].
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APPENDIX B: System Design Diagrams
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Figure B.1: Data flow diagram for ASV onboard software.
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APPENDIX C: Bill of Materials

The complete Bill of Materials (BOM) for each individual ASV is displayed in C.1.
The components required for the ground station, only one required per network, is
found in C.2. The BOM is divided into levels, with level 1 being the entire system.
Level 2 is framing, propulsion, and electrical system. Level 3 is the sub-assemblies
within those three categories with level 4 adding additional component definition
where required. An asterisk following the BOM level indicates that it is an alternative
component and not included in cost roll-up.

The components are broken down into four categories: assembly, sub-assembly,
purchased component, and purchased component requiring major modification. In
the BOM, these are identified as ASSY, SUB-ASSY, PUR, and MOD-PUR respec-
tively. This helps identify how most components are used directly in the system
without requiring major modification which is defined as any physical modification

(e.g., cutting, grinding, soldering).
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Detailed ASV Bill of Materials.

Table C.1
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Detailed Ground Station Bill of Materials.

Table C.2:
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