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ABSTRACT 

 

 

YUE PENG.  Metrological evaluation of size specifications in ISO 14405-1.  (Under the 

direction of DR. EDWARD P. MORSE) 

 

 

The international standard ISO 14405-1 was released in 2010 as part of the 

geometrical product specifications (GPS) of the ISO system. This document provides 

standardized definitions of linear sizes. Most notably, it has expanded the linear size 

specifications from the ISO default specification operator — the two-point size — to 14 

types of sizes. This richer scope of size specifications is intended to assist the geometric 

dimensioning and tolerancing (GD&T) of products. 

To clarify the semantics of the size specifications and to understand their 

application in conformance assessment, this thesis evaluated 8 of the sizes, offering 

computational algorithms, experimental data processing, numerical results and 

interpretations of results.  Two types of features, a cylinder and a constant width shaped 

part are covered as physical examples for the evaluations of the sizes. The latter feature 

provides insights into the conformance of some traditional measurement methods of two-

point size to the standard, for example measurements with vernier calipers. Geometric 

evaluations of these features were carried out on data sets collected with coordinate 

measuring machines (CMMs). The sources of uncertainty in the calculations of some 

sizes were analyzed, including uncertainty introduced by individual measured points and 

influence of sampling density.  
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CHAPTER 1:  INTRODUCTION 

 

 

Size is one of the qualities of a mechanical product specified by the designer 

according to its physical functions. It ensures the specific description of a product 

together with form, location and orientation [1] [2]. Especially required in assemblies and 

for the interchangeability of the products, dimensions and tolerances are assigned to each 

component to be controlled, so that it will fit as designed. Standards have been set up to 

offer guidance of how to specify these size specifications with defined symbols and 

operators [3] [4].  

Traditionally, size definitions and the geometric dimensioning and tolerancing 

(GD&T) are in accordance with conformance gages and two-point measurement devices. 

Therefore, the default size specifications have been the global fitting size and two-point 

size. With the demand for tighter tolerances and more various functional requirements of 

the products, and with the development of more flexible and efficient measurement 

methods such as coordinate metrology, more sophisticated and specific size descriptions 

are needed.  

ISO published 14405-1 [5] in 2010 to offer definitions of linear size specifications. 

14 types of sizes are defined. Before their applications in metrology practices, the 

semantics of these specifications has to be fully understood, as well as how to assess the 

conformance of actual features to the nominal based on these specifications. Especially 

with coordinate information collected from coordinate measuring machines (CMMs), 
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how to associate or calculate the actual size needs to be looked into. Investigations are 

also needed to identify the sensitiveness of these calculated actual values, to the 

deviations of the part, to the measurement errors in the coordinates of sampled points, 

and to the mathematical calculation procedure. With proper interpretation of the standard, 

another important question is whether these specifications are actually useful and 

effective in GD&T practices. These questions raised by the new standard form the 

motivations and objectives of this project and this thesis. 

As for the scope of this thesis, 8 of the sizes are evaluated, including two-point 

size, least-squares size, and 6 rank-order sizes. Of the modifiers, two-point size and least-

squares size have been commonly applied in metrology practices. The rank order sizes 

are statistical characteristics based on a set of local sizes. The evaluations are carried out 

for the sizes of two features: a cylinder and a constant width shaped part. 

The constant width shaped part offers insights into how the shape of the part 

impacts its conformance evaluation with the specifications. The constant width shape 

consists of 6 arcs, which are centered about three different centers and each has either a 

radius of a larger size R or a smaller size r (FIGURE 1.1). The three centers form an 

equilateral triangle whose side length is 𝑎. By constant width, it means the width of the 

shape, or the distance between two parallel planes containing the shape, measures 

constantly regardless of the direction of the tangents. 
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FIGURE 1.1: Schematics of a constant width shape 

A literature review is offered in Chapter 2 including the discussions about size as 

a notion, popular methods for applying least-squares criterion and issues related to two-

point size. Chapter 3 offers the experimental preparations, including the features 

measured, the simulated and measured data.  

Least-squares criterion is a widely understood association method. The algorithms 

of least-squares association are offered for the two features in Chapter 4. Coordinate 

metrology offers high efficiency sampling of the two measured parts. Sampling density 

affects how much information is extracted from the measured feature; therefore its 

influence on the association result is to be investigated. Measuring errors exist in each 

measured point. How the uncertainties in individual points contribute to the uncertainty 

of the size association is under discussion.  

Two-point size is physically analogous to the measurements of hand gages and 

two-point measurement devices, for example the micrometers and calipers in traditional 

metrology. This criterion requires the conformance of the actual feature at different 
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sampling locations. The sampling strategy will impact the conformance assessment since 

the extreme points might not be sampled. Coordinate metrology offer more flexible 

sampling strategies with larger sample density, but would involve mathematical 

calculation from coordinates to distance between two points. The algorithms are 

discussed in Chapter 5, as well as their impacts on the final result. 

The rank-order sizes are statistically based on the ordering of the local sizes, two-

point sizes specifically for this thesis. They are influenced by the result of two-point sizes. 

Rank-order sizes for the two features are calculated and presented in Chapter 6.  

Chapter 7 offered comments on the study and suggestions for further study.  



 

 

 

 

 

 

CHAPTER 2:  LITERATURE REVIEW 

 

 

2.1. Size 

The meaning of ‘size’ as a notion has been revisited by metrologists since the 

1990s.  H. B. Voelcker explored the meaning of ‘size’ in a series of publications [6, 7, 8], 

offering discussions into the conceptions of size and possible solutions of conformance 

assessments. E. P. Morse [1] followed the development of size tolerancing strategies, 

conformance assessment and evolutions in standards in 2013. It has been a continuous 

effort to review the understanding of size, and renovate the specifications to meet the 

design demands.  

With GD&T specified, the conformance of the actual size of a feature to the 

nominal size is examined and assessed. The conventional size tolerances consist of an 

upper limit and a lower limit [1]. Traditionally, the actual feature is examined with 

conformance gauges and two-point measurements devices. For example, to assess the 

outer diameter of a cylinder, conformance gauges examine the upper size limit and the 

calipers examine the lower limit. Based on the conventional measurement practices, the 

default size specifications have been the global fitting size and two-point size. 

While the traditional gauges are still withholding their significance in metrology, 

the development of coordinate metrology benefits geometric measurements with better 

sampling capability and efficiency. Coordinate metrology enables the possibilities of 

more flexible conformance assessments, thus possibilities of more various size 



6 

specifications of features. This raise questions in size specifications, that how to assess 

the conformance now with the coordinates of sampled points, whether the default 

specifications are able to fulfill and exactly describe the various design intentions, and 

how to develop the size specifications to take the advantages of coordinate metrology. 

ISO made an approach to offer more size specifications, hoping to assist the product 

design and GD&T.  

2.2. ISO 14405-1 

ISO 14405- 1 [5], published in 2010, is the first part of the geometrical product 

specifications (GPS) of dimensional tolerance by ISO, which offers definitions of 

specification operators for linear sizes. Sizes are defined through features of size in the 

ISO system. ISO 5459:2011 [9]  defines 5 features of size: cylinder, sphere, parallel 

planes, cone and wedge. The former 3 are the bases for defining linear sizes, the latter for 

angular sizes. ISO 14405-2:2011 [10] offers specifications for sizes other than linear 

sizes. 

The specification operators in 14405-1 are referred to as modifiers. The modifiers 

are applied to dimensions on an engineering drawing, constraining and clarifying the 

dimensions to be controlled. TABLE 2.1 shows a list of the linear sizes defined in ISO 

14405-1, the symbols, descriptions and classifications are displayed.  

TABLE 2.1: Specification modifiers for linear size 

Modifier Description Type of 

specification 

 Two-point size Local size 

 Local size defined by a sphere Local size 

 Least-squares association criterion Global size 

 Maximum inscribed association criterion Global size 

 Minimum circumscribed association criterion Global size 
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TABLE 2.1: Continued 

 Circumference diameter Calculated size 

 Area diameter Calculated size 

 Volume diameter Calculated size 

 Maximum size Rank-order size 

 Minimum size Rank-order size 

 Average size Rank-order size 

 Median size Rank-order size 

 Mid-range size Rank-order size 

 Range of sizes Rank-order size 

 

There are three groups of sizes: local size, global size, and calculated size. Local 

size is defined at a single local point or one pair of points, “having by definition a non-

unique result of evaluation along and/or around the feature of size” [5]. Whereas, the 

global size is implemented on the entire feature, a section of the feature, or a population 

of local sizes, which is “having by definition a unique result of evaluation along and 

around the tolerance feature of size” [5]. The global size includes the rank-order sizes. 

The calculated size is “obtained by using a mathematical formula that relates the intrinsic 

characteristic of a feature to one or several other dimensions of the same feature” [5].  

2.3. Least-squares Criterion 

The least-squares criterion is a widely implemented association criterion. V. 

Srinvasan et al [11] investigated the reasons for the wide implementation and enduring 

appeal of least-squares fitting.  

To establish the associated feature or size from actual measured points according 

to least-squares criterion, the fitted feature is determined by minimizing the sum of 

squares of the deviations between the data points and the fitted feature. If the deviations 

in the data points with regard to the fitted feature are denoted by 

𝑒𝑖, i = 1,2, … , n for n points, the best fit of the data points are obtained when 
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∑(𝑒𝑖)
2

𝑛

𝑖=1

→ min                    (2.1) 

𝑒𝑖 could be defined according to the shape of feature. 

Different algorithms for solving the least-squares problem have long been 

developed, for example Gauss-Newton method, and Levenberg-Marquardt method are 

two of the most well-known ones for non-linear least-squares problem [12]. Nelder–

Mead method is also a popular method in non-linear optimization [13]. National 

organizations publish documents on least-squares algorithms as references. For example 

National Institute of Standards and Technology (NIST) of USA published their 

algorithms and an algorithm testing system [14], and National Physical Laboratory (NPL) 

of UK also published their algorithms for finding the least-squares best-fit geometric 

elements to data [15] 

2.4. Two-point Size 

The conventional two-point measurement devices find the two-point size by 

containing the part in two opposing parallel faces as tangent planes, which should contact 

the feature at theoretically two points. These two contacting points would certainly be the 

two outmost points at the measured line, or in other words, the measured distance is the 

largest distance the two parallel measuring faces could touch. For rotation-invariant 

features such as a circle, a cylinder, a sphere and for two opposing parallel planes, these 

contacting points form a pair of opposite points. Therefore the measured distance is the 

two-point size, as defined in ISO 14405-1, being the distance between two ‘opposite’ 

points.  

However, for certain features, the two points seen by the measuring surfaces of a 

caliper or micrometer are not necessarily a pair of opposite points(180 degrees apart, 
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relative to the center of the shape). The constant width shape under discussion in this 

thesis is an example that this assumption is not valid (FIGURE 2.1). The measuring 

surfaces see the “measured distance” in the figure, but the two-point distance is through 

the center of the feature, which is not accessible with these devices. With the sampled 

points from coordinate metrology, however, the two-point distance could be obtained by 

mathematical searching for opposite points and then interpolation. 

 

FIGURE 2.1: Measured distance and two-point distance for constant width part 

 

 

 



 

 

 

 

 

CHAPTER 3:  EXPERIMENTAL PREPARATIONS 

 

 

Two physical features were measured as instances in this thesis: a cylinder and a 

constant width shaped part. Cylinder is one of the features of size in ISO [9], and all 

specifications are evaluated as diameter specifications, which are the least-squares 

diameter, two-point diameter and rank-order diameters. The least-squares result of the 

constant width shaped part is a set of parameters that constructs the shape. The two-point 

size and rank-order sizes of the constant width shaped part has some specific 

characteristics to be discussed due to its shape. 

Both measured data and simulated data were used in the experiments for 

calculation. In the simulated data, the parameters for constructing the feature and the 

additional errors could be controlled. ‘Perfect parts’ was generated to verify the 

functionality of the algorithms. Various error sources were introduced and adjusted to test 

the robustness of the algorithms and to investigate the sensitivity of the calculation to 

errors. Measured data offered more complex variations of the data in the actual situations, 

which was largely related to the manufacturing processes. 

3.1. Measured Data 

Two physical parts were measured with continuous contact scanning on a Zeiss 

Prismo CMM with the VAST Gold probe head [15].  

Two different diameters on one cylinder, as shown in FIGURE 3.1, were 

measured with a 3mm diameter stylus and 30 mm extension. The upper cylinder with a 
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diameter of approximately 101.61 mm, referred to as ‘Part A’ in this paper, was 

measured with 10 levels of cross-sections, approximately 1.3 mm separation from each 

other, and 490 points on each level. The bottom cylinder with a diameter of 

approximately 104.05 mm is referred to as ‘Part B’ in this paper, and was measured with 

10 levels of cross-sections, approximately 1.5 mm separation from each other, and 492 

points on each level. The overshooting points in the scanning procedure were removed, 

and the stylus radius was corrected by the measuring machine.  

 

FIGURE 3.1: Cylinder containing Part A and Part B 

The third feature measured was a prismatic part with constant width shape as 

cross-sections, referred to as ‘Part C’ in the following discussion (FIGURE 3.2). Part C 

was measured with 5 mm probe, with the curve scanning function of the machine. It has a 

constant width of approximately 23.95 mm, and was measured with 20 levels of 168 

points, each level 1 mm from another. The stylus radius was corrected by the measuring 

machine. 
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FIGURE 3.2: Measured Part C 

3.2. Simulated Data 

Simulated cylinders are constructed based on 5 parameters (𝑥, 𝑦, 𝑙,𝑚, 𝑅) 

(FIGURE 3.3). (𝑥, 𝑦) defines the center of the reference surface, (𝑙,𝑚) defines the 

orientation of the axis, and 𝑅 is the radius of the cylinder. The samples are generated with 

even increments of center angle for each cross section and even increments in the axial 

direction for different levels. A text document containing the (𝑋, 𝑌, 𝑍, 𝐼, 𝐽, 𝐾) information 

of the designed points are generated for the simulated cylinder, and is read into the least-

squares fitting program later as input points.  

 

FIGURE 3.3: Model of a cylinder [16] 
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The first simulated cylinder is a reference part, which is a prefect cylinder with no 

deviation, referred to as Part CYL_S1 in the following discussion. The design parameters 

are:  

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑅0) = (0,0,0,0, 50) 

with units of (𝑥0, 𝑦0, 𝑅) being mm and units of (𝑙0,𝑚0) being radian. Other features of 

the cylinder include 

ℎ = 100 𝑚𝑚, the height of the cylinder, level height ranging from 0 to 90 mm 

with 10 mm increments; 

𝑛ℎ = 10, number of levels of cross-sections; 

𝑛𝑡ℎ = 500, number of points per cross-section; 

𝑛 = 10 ∗ 500 = 5000, total number of points; 

The second simulated cylinder, referred to as Part CYL_S2 is designed with 

deviations or errors in the parameters:  

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑅) = (0.1, 0.1, 0.001, 0.001, 50) 

with units of (𝑥0, 𝑦0, 𝑅) being mm and units of (𝑙0,𝑚0) being radian. The rest of the 

features are the same with CYL_S1. 

Additionally, normally distributed random errors are added to the radius of each 

point to simulate the form variations on a real part, the standard deviation of the 

distribution being 𝑑𝑒𝑣 = 20 𝜇𝑚. 

Simulated constant width shaped parts are constructed based on 7 parameters 

(𝑥, 𝑦,𝑚, 𝑙, 𝑎, 𝑏, 𝜃) (FIGURE 3.4). 𝑎 is side length of the equilateral triangle formed by the 

centers, 𝑏 is the extension to the sides as the smaller radius, (𝑥, 𝑦,𝑚, 𝑙) defines the center 

and axis of the prismatic shape, and 𝜃 defines the rotation about z axis since this is a 
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rotational variant part. The samples are generated with even increments of arc length in 

each cross section, which is in accordance with the scanning measurement of the actual 

part. In the axial direction, the sampled levels are in even increments. 

 

FIGURE 3.4: Model of constant width part 

The first simulated part is a reference part, referred to as Part CWP_S1. The 

designed primary parameters are:  

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0,0,0,0, 16,4,0) 

with unit of (𝑥0, 𝑦0, 𝑎, 𝑏) being mm and unit of (𝑙0,𝑚0) being radian. This part is 

simulated to be 20 mm in height, levels increments to be 1 mm. 20 levels and 216 points 

on each cross-section are simulated. Total number of points 𝑛 = 20 ∗ 216 = 4320. No 

form error was added to this simulation, which means this is a perfect part.   

The second simulated part is simulated with deviations, referred to as Part 

CWP_S2. The design parameters are:  

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0.01, 0.01, 0.001, 0.001, 16,4,0.0873) 
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with unit of (𝑥0, 𝑦0, 𝑎, 𝑏) being mm and unit of (𝑙0,𝑚0, 𝜃) being radian. Normally 

distributed random errors were added to the radius of each point, the standard deviation 

of the distribution being 𝑑𝑒𝑣 = 10 𝜇𝑚. The rest of the features are same with CWP_S1. 

 

 



 

 

 

 

 

 

CHAPTER 4:  LEAST-SQUARES SIZE 

 

 

According to the least-squares criterion, the fitted feature is determined by 

minimizing the sum of squares of the deviations between the data points and the fitted 

feature. For the cylinder, 𝑒𝑖 is defined as deviation in the radius from the actual point to 

the fitted feature, which is the difference between the radial distance of each point to the 

fitted center and the fitted radius. The detailed algorithms are explained in Section 4.1. 

For the constant width part, 𝑒𝑖 is also defined as deviation in the radial direction, but the 

radial distance of each point is relative to the fitted center of the specific arc it belongs to, 

instead of the center of the entire feature. 

The algorithm for solving the least-squares optimization in this thesis is based on 

the Gaussian-Newton method for non-linear least-squares solution of the cylinder [17] 

and a built-in function in Matlab, which is based on the Nelder–Mead “simplex” 

algorithm for the constant width shaped part [13].  

4.1. Algorithms of Least-squares Size 

4.1.1. Algorithms for the Least-squares Diameter of a Cylinder  

A cylinder surface, based on the five parameters 𝑿 = (𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑅0)
𝑇, could 

be modeled as FIGURE 4.1. (𝑥0, 𝑦0) is the translation of the center point on the reference 

surface from the origin of the alignment. (𝑙0, 𝑚0) is the tilt of the cylinder axis. 𝑅0 is the 

fitted radius of the cylinder. The deviation of an arbitrary point Pi to the fitted cylinder 

surface could be given as Equation (4.1) [17], if the axis is aligned with z axis. 
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ei = ri − (R0 + x0 cos θi + y0 sin θi + l0zi cos θi +m0zi sin θi)                    (4.1) 

 

FIGURE 4.1: Deviation model of a cylinder, translation and tilt 

 

FIGURE 4.2: Deviation model of a cylinder, an arbitrary cross section 

Since the part is non-linear deviated away from the origin, the points are adjusted 

or transformed first to be well aligned with the coordinate system, then the model could 

be used in the fitting. While the part is properly aligned with the coordinate system, this 

is a linear problem. However for the initial alignments, this is a non-linear least squares 

optimization, and the Gauss–Newton algorithm is implemented to find the minimum of 

the square sum of the residuals. The objective function is  
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𝐒 =∑𝒆𝒊
𝟐

𝑵

𝒊=𝟏

,                    (4.2)         

N = 1,2, …   is the total number of points. 

𝑨𝑖  is a vector of coefficients for 𝑿, which is made up of (𝑟𝑖, 𝑧𝑖, 𝜃𝑖) of the point 

index i. 

𝑨𝒊 = [cos 𝜃𝑖 ,  sin 𝜃𝑖 , 𝑧𝑖 cos 𝜃𝑖 , 𝑧𝑖 sin 𝜃𝑖 , 1];                     (4.3) 

𝑒𝑖 = 𝑟𝑖 − 𝑨𝑖 ∙ 𝑿 = 𝑟𝑖 −∑𝐴𝑖,𝑗 ∙ 𝑋𝑗  

5

𝑗=1

;                     (4.4) 

𝒓 = [𝑟𝑖, 𝑟2, … , 𝑟𝑁]
𝑇;                     (4.5) 

j = 1,2, … ,5, is the index of the parameters.      

To find the least-squares optimization, set the partial derivatives for each 

parameter to zero, so the equation for the j th parameter would be 

𝜕𝑆

𝜕𝑋𝒋
=∑2 ∙ 𝑒𝑖 ∙

𝜕𝑒𝑖
𝜕𝑿𝒋

𝑁

𝑖=1

= 0;                    (4.6) 

∑[(𝑟𝑖 −∑𝐴𝑖,𝑘 ∙ 𝑋𝑘  

5

𝑘=1

) ∙
𝜕(𝑟𝑖 − ∑ 𝐴𝑖,𝑘 ∙ 𝑋𝑘  

5
𝑘=1 )

𝜕𝑋𝒋
]

𝑁

𝑖=1

= 0; 

∑[(𝑟𝑖 −∑𝐴𝑖,𝑘 ∙ 𝑋𝑘  

5

𝑘=1

) ∙ (−𝐴𝑖𝑗)]

𝑁

𝑖=1

= 0; 

∑(𝑟𝑖 ∙ 𝐴𝑖𝑗)

𝑁

𝑖=1

−∑[𝐴𝑖𝑗 ∙ (∑𝐴𝑖,𝑘 ∙ 𝑋𝑘  

5

𝑘=1

)]

𝑁

𝑖=1

= 0; 

∑(𝑟𝑖 ∙ 𝐴𝑖𝑗)

𝑁

𝑖=1

=∑∑𝐴𝑖,𝑗 ∙ 𝐴𝑖,𝑘 ∙ 𝑋𝑘

5

𝑘=1

𝑁

𝑖=1

,        j = 1,2, … ,5; 

𝑨𝑗
𝑇 ∙ 𝒓 = 𝑨𝑗

𝑇 ∙ 𝑨 ∙ 𝑿;                    (4.7) 
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𝑨𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑜𝑙𝑜𝑚𝑛 𝑜𝑓 𝑨 

Put the equations for all the parameters in a group,  

𝑨𝑇 ∙ 𝒓 = 𝑨𝑇 ∙ 𝑨 ∙ 𝑿;                    (4.8)            

Solve the equation for 𝑿, 

𝑿 =   (𝑨𝑇 ∙ 𝑨)−𝟏  ∙ 𝑨𝑇 ∙ 𝒓;                     (4.9)        

The iteration process is shown in FIGURE 4.3. 

 

FIGURE 4.3: Flow chart of least-squares diameter calculation 

Firstly, an initial guess  𝑿(0) is offered for the first iteration. With 

the (𝑥0, 𝑦0, 𝑙0, 𝑚0) from the guess, the original points are translated so that the center is 

on z axis, and then rotated so the axis is aligned with z axis. For the following iterations, 

since a better alignment is achieved by solving the former iteration, an adjusted guess 

𝑿(𝑖)((𝑖) marking the cycle of iteration) offers the transformation. Transformations are 

carried out by imposing a matrix 𝒉𝒕𝒎 generated from  𝑿(0) or 𝑿(𝑖).  
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𝒉𝒕𝒎(𝒊) = 𝑹𝑦
(𝑖)
∙ 𝑹𝒙

(𝒊)
∙ 𝑻(𝑖)

=

[
 
 
 
 cos(−tan

−1 𝑙0
(𝑖)) 0 sin(−tan−1 𝑙0

(𝑖)) 0

0 1 0 0

−sin(−tan−1 𝑙0
(𝑖)) 0 cos(−tan−1 𝑙0

(𝑖)) 0

0 0 0 1]
 
 
 
 

 

∙  

[
 
 
 
 
1 0 0 0

0 cos(tan−1𝑚0
(𝑖)) − sin(tan−1𝑚0

(𝑖)) 0

0 sin(tan−1𝑚0
(𝑖)) cos(tan−1𝑚0

(𝑖)) 0

0 0 0 1]
 
 
 
 

 

∙  

[
 
 
 
 1 0 0 −𝑥0

(𝑖)

0 1 0 −𝑦0
(𝑖)

0 0 1 0
0 0 0 1 ]

 
 
 
 

 ;                     (4.10) 

[

𝒙
𝒚
𝒛
𝟏

]

(𝒊)

= 𝒉𝒕𝒎(𝒊) ∙ [

𝒙
𝒚
𝒛
𝟏

]

(𝟎)

                    (4.11); 

𝑹𝑦 and 𝑹𝒙are rotational matrix about the y axis and x axis. 𝑻 is the translation 

matrix to z axis. The translation is carried out first, and then the rotations. 

As the result of one iteration, after solving the final matrix function for 𝑿, the 

increments in the parameters to get a better alignment or closer fitting is gained. The 

guess for the next iteration would be  

𝑿(𝑖+1) = 𝑿(𝑖) + (𝑨(𝒊)
𝑇
∙ 𝑨(𝒊))

−𝟏

 ∙ 𝑨(𝒊)
𝑇
∙ 𝒓(𝒊), 𝑖 = 0,1,2, …,                     (4.12) 

The residuals of the points are  

𝒓𝒆𝒔 = 𝑨(𝒊) ∙ (𝑨(𝒊)
𝑇
∙ 𝑨(𝒊))

−𝟏

 ∙ 𝑨(𝒊)
𝑇
∙ 𝒓(𝒊) − 𝒓(𝒊);                     (4.13) 

The difference of one guess from its former guess is  

𝛿 = ‖(𝑨(𝒊)
𝑇
∙ 𝑨(𝒊))

−𝟏

 ∙ 𝑨(𝒊)
𝑇
∙ 𝒓(𝒊)‖ ;                    (4.14) 
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The iteration stops when the difference of the two guesses is within an acceptable 

amount, which is set to 10−12. This difference is set equal to 1 for the initial guess so it 

enters the loop for the first time. 

4.1.2. Algorithm of the Least-squares Fitting of a Constant Width Part 

A constant width part could be modeled with 7 parameters: 

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃).  (𝑥0, 𝑦0) are the translation of the center point from the origin of 

the alignment on the reference surface. (𝑙0,𝑚0) are the tilt of the axis. 𝑎 is the side length 

of the equilateral triangle formed by centers of the arcs, 𝑏 is the smaller radius of the two 

radii, b = r, as shown in FIGURE 4.4. The larger radius would be R = a + b.  𝜃 is the 

rotation about the axis, because the constant width shape is rotational variant.  

 

FIGURE 4.4: Deviation model of a constant width part, translation and tilt of axis 
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FIGURE 4.5: Deviation model of a constant width part, an arbitrary cross section 

The deviation of an arbitrary point 𝑃𝑖  to the fitted surface could be given as 𝑒𝑖 as 

shown in FIGURE 4.5. 𝑒𝑖 equals the difference between the distance of 𝑃𝑖 to the center of 

the arc that 𝑃𝑖  belongs to (distance denoted by 𝑑𝑖 ),  and the radius of that arc. Then the 

least-squares fitting procedure is to find the minimum of the square sum of the deviation 

of each point. 

S =∑𝑒𝑖
2

𝑁

𝑖=1

,                    (4.15)    

N = 1,2, …   is the total number of points. 

The iteration process is shown in FIGURE 4.6. 
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FIGURE 4.6: Flow chart of least-squares fitting of the constant width part 

Firstly, the points are transformed, same with the first step for the cylinders. 

Secondly, since the points belong to different arcs, each point needs to be located before 

calculating the deviation. When the part is well aligned, the three centers of the arcs 

could be offered based on the geometry of the constant width shape (FIGURE 4.7), which 

are (0,
√3

3
𝑎) , (−

1

2
𝑎, −

√3

6
𝑎), and (

1

2
𝑎, −

√3

6
𝑎). The central angle of an arbitrary point 

𝑃𝑖  about each center is calculated. The position of point 𝑃𝑖  is decided by matching these 

three central angles with the angle range of the arcs (Table 4.1).  

TABLE 4.1: Positioning of points 

Center Angle Range Corresponding 

Arc 
𝑑𝑖  𝑒𝑖  

(0,
√3

3
𝑎) [−

2

3
π,−

𝜋

3
) 

Arc1 𝑃𝑖 to (0,
√3

3
𝑎) 𝑒𝑖 

= 𝑑𝑖 − 𝑅 

(−
1

2
𝑎,−

√3

6
𝑎) (−π,−

2

3
π)& π 

Arc2 𝑃𝑖 to (−
1

2
𝑎,−

√3

6
𝑎) 𝑒𝑖 

= 𝑑𝑖 − 𝑟 
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TABLE 4.1: Continued 

(
1

2
𝑎,−

√3

6
𝑎) [

2

3
π, π) 

Arc3 𝑃𝑖 to (
1

2
𝑎,−

√3

6
𝑎) 𝑒𝑖 = 𝑑𝑖 –𝑅 

(0,
√3

3
𝑎) [

π

3
,
2

3
π) 

Arc4 𝑃𝑖 to (0,
√3

3
𝑎) 𝑒𝑖 = 𝑑𝑖 – 𝑟 

(−
1

2
𝑎,−

√3

6
𝑎) 

[0,
π

3
) 

Arc5 𝑃𝑖 to (−
1

2
𝑎,−

√3

6
𝑎) 𝑒𝑖 = 𝑑𝑖 − 𝑅 

(
1

2
𝑎,−

√3

6
𝑎) 

[−
π

3
, 0) Arc6 𝑃𝑖 to (

1

2
𝑎,−

√3

6
𝑎) 𝑒𝑖 = 𝑑𝑖 − 𝑟 

 

 

FIGURE 4.7: A well-aligned constant width shape 

Finally, the approximation is done with the objective function being S = ∑ 𝑒𝑖
2𝑁

𝑖=1  

by the Nelder-Mead simplex algorithm [13]. The algorithm first makes a simplex around 

the initial guess, and modifies the simplex repeatedly by processes such as reflecting, 

expanding, and contracting. A function in Matlab, fminsearch, could be used to find 

the minimum of S, as well as the best fit parameters to reach the minimum.  
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4.2. Application to Simulated and Measured Data 

For each part, including the simulated and measured part, an initial guess was 

offered and a fitted feature was calculated. The residual deviations could be an indicator 

of how far the individual points are from the fitted cylinder. The least-squares 

residual 𝑅𝑒𝑠 = ∑ 𝑟𝑒𝑠𝑖
2𝑛

𝑖 , 𝑖 = 1,2, … , 𝑛, is thus offered in the following analyses for 

reference.  

4.2.1. Least-squares Diameter of Simulated and Measured Cylinders 

For Part CYL_S1, with initial guess (𝑥0, 𝑦0, 𝑙0, 𝑚0) = (0, 0, 0, 0), the fitted 

cylinder was (𝑥, 𝑦, 𝑙,𝑚, 𝑅) = (−8.36 ∙ 10−15, −8.12 ∙ 10−15, 1.07 ∙ 10−15, 9.78 ∙

10−17, 49.999999999966440).  𝑅𝑒𝑠 = 3.5 ∙ 10−14𝑚𝑚2 for 5000 points. This fitting of 

‘perfect’ data shows a level of numerical errors remaining due to the resolution of the 

computer calculation and the stopping criterion of the fitting algorithm. 

For Part CYL_S2, with initial guess (𝑥0, 𝑦0, 𝑙0, 𝑚0) = (0, 0, 0, 0), the fitted 

cylinder was (𝑥, 𝑦, 𝑙,𝑚, 𝑅) = ( 0.0988, 0.0995, 0.0010, 0.0010, 50.0004) .  𝑅𝑒𝑠 =

1.98 𝑚𝑚2for 5000 points.  

The upper measured cylinder, or Part A, with initial guess (𝑥0, 𝑦0, 𝑙0, 𝑚0) =

(0, 0, 0, 0), the fitted cylinder was (𝑥, 𝑦, 𝑙, 𝑚, 𝑅) = ( −0.0622, 0.0132,−0.0001,

−0.0007,   50.8036).  𝑅𝑒𝑠 = 0.0071 𝑚𝑚2for 4900 points.  

One cross section of the fitted cylinder with exaggerated deviation is shown in 

FIGURE 4.8. The deviations are magnified by 5000 times. Besides the form deviations of 

the surface shown with blue lines, Part A exhibits some systematic deviations from a 

perfect circle at each cross-section, as shown by the difference of the fitted circle (red line) 

and the average circle (dashed black line). The diameter in the horizontal direction of this 
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figure is apparently shorter than that in the vertical direction. As a result, the two-point 

size (calculated in Chapter 5) shows a periodic waving pattern. The cross-section shown 

in FIGURE 4.8 is the one of the cross-sections, but this systematic deviation is typical for 

all cross-sections. 

 

FIGURE 4.8: A cross section of fitted Part A, magnification of deviation: 5000 

For the bottom measured cylinder, or Part B, with initial guess (𝑥0, 𝑦0, 𝑙0, 𝑚0) =

(0, 0, 0, 0), the fitted cylinder was (𝑥, 𝑦, 𝑙, 𝑚, 𝑅) = (−0.0008,−0.0007,−0.0000,

−0.0000, 52.0224).  𝑅𝑒𝑠 = 0.005 𝑚𝑚2 for 4920 points. Similar to Part A, the bottom 

cylinder also bears some systematic deviations from a circle in each cross-section, but it 

is less deviated than part A. However, there are more “spikes” on part B, due to the form 

characteristics of the surface or possibly dirt. 
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FIGURE 4.9: A cross section of fitted Part B, magnification of deviation: 5000 

If average the residual to each point, by dividing the residual by the number of 

points and taking the square root, the average residual in each point is approximately 1.2 

μm for Part A and 1.0 μm for Part B, which indicates how close the fitting is. 

4.2.2. Verification with NIST Reference Data and Results for Cylinders 

NIST offers a sequence of data sets and their least-squares fits as references for 

industrial self-checking. The data sets of NIST were fed into the program of this thesis as 

input points, and the fitted results were compared with those offered by NIST.  The result 

format of NIST is different from our set up, which is given by 7 numbers, 3 representing 

a point on the cylinder axis, 3 representing the direction cosines of the axis, and 1 

representing the diameter of the cylinder. To verify our program with NIST references, 

the results need to be formatted.  

There are some limitations of the program used in this thesis when tested with the 

reference data sets.  
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Firstly, our program is based on a model that the cylinder reference surface is 

aligned with the x-y plane. While in practice, the measured cylinder will also be basically 

aligned, so the z coordinates are not adjusted. The (𝑥0, 𝑦0) in the model is the intersection 

of the axis with the 𝑧 = 0 plane. Therefore, if the cylinder is far above or below the z 

origin, or it is in very large angle with z axis and far from the origin of the coordinate 

system, the initial guess of the center coordinates are very large or possibly tends to be 

infinity. As a result, the matrices in the fitting procedure might not behave well, thus not 

yielding a proper result. In this case, the original data could be transformed first to be 

better aligned with z axis for the convenience of calculation. 

Secondly, the initial guess plays an important role. Improper initial guess may 

lead to non-converging iterations. Better initial guesses offer a closer start for the 

iteration, and may converge to a closer result of estimation, leaving smaller residuals. The 

effect of the initial guess is not significantly shown in the calculation of the cylinders 

because the deviation model is relatively simple and is a linear model. When it comes to 

irregular shapes, for example the constant width part, the effect of initial guess will be 

more obvious, as could be seen in section 4.2.3. 

As an example of the verification, the fitted diameter from NIST of the first set of 

cylinder data is 57.289229507551100877, and from our program is 

57.289229507551056. Therefore, our result agrees to the 12
th

 digits in this case. 

4.2.3. Least-squares Fitting of Simulated and Measured Constant Width Part 

The effect of initial guess is much more obvious on the least-squares fitting result 

of this part than the cylinder.  
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For least-squares fitting of Part CWP_S1, Table 4.2 is a list of initial guesses, 

with the corresponding resulted convergence detector, fitted parameters, the residual of 

the objective function, and the calculation time of Matlab. 

TABLE 4.2: Experiments about initial guess with Part CW_S1 

Initial guess Conver

gence  

Fitted result Residual 

(Res, 

𝑚𝑚2) 

Cal. 

Time 

(s) 

(0,0,0,0, 0,0,0) No    

(0,0,0,0, 10,0,0) Yes ( 0.0189,−0.0222,−0.0094, 0.0246, 23.6074,    
− 0.0133,−0.0151) 

1.886
∙ 103 

30 

(0,0,0,0, 10,5,0) Yes 
 

(−0.0016,−0.0001,0.0001,0.0000,16.0000,4.0000   
− 0.0000) 

7.176
∙ 10−4 

18 

(0,0,0,0, 15,5,0) Yes (0.0004,−0.0001,−0.0000,0.0000,16.0000,4.0000   
− 0.0000) 

5.860
∙ 10−5 

17 

(0,0,0,0, 16,4,0) Yes (0,0,0,0, 16,4,0) 3.455
∙ 10−14 

4 

 

With initial guess (𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0,0,0,0,0,0,0), the result was not 

converging. The missing of dimension information (𝑎, 𝑏) made it difficult to find the 

proper solution. As the initial guess gets closer to the designed value, the fitted result gets 

closer to the designed value, the residual gets smaller and the calculation time gets 

shorter.  

For Part CWP_S2, with initial guess (𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0,0,0,0,0,0,0) the 

result was also not converging. With initial guess 

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0,0,0,0,16,4,0) the fitted parameters were 

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (−0.0107, −0.0080, 0.0010, 0.0010, 15.9990, 4.0004,

0.0872).  The best initial guess should be the designed parameters. With initial guess 

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0.01, 0.01, 0.001, 0.001, 16, 4, 0.0873) the fitted 
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parameters were (𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (−0.0104, −0.0091, 0.0009, 0.0010,

15.9993, 4.0003, 0.0872).   The residual was 0.087 𝑚𝑚2 for 4320 points, and the 

calculation time was 17s.  

For the measured Part C, the estimations of (𝑎, 𝑏 ) = (16, 4 )  are expected, 

according to approximated hand measurements. With initial guess 

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0,0,0,0,0,0,0) the result was not converging. With initial guess 

(𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (0,0,0,0,16,4,0) the fitting result was (𝑥0, 𝑦0, 𝑙0,𝑚0, 𝑎, 𝑏, 𝜃) =

( −0.0032, −0.0012, −0.0006, −0.0006, 15.9439, 3.9871, 0.0074). Since the 

nominal parameters were not available, better convergence could only be reached by 

using the fitted result as initial guess and running the calculation again. After optimizing 

the initial guess for 3 times, the fitted result tended to reach the best fit. The initial guess 

was (𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (−0.0154,   − 0.0117, 0.0002, 0.0001, 15.9454,

3.9863, 0.0073), and the fitted result was (𝑥0, 𝑦0, 𝑙0, 𝑚0, 𝑎, 𝑏, 𝜃) = (−0.0151,   −

0.0112, 0.0002, 0.0001, 15.9455, 3.9863, 0.0073). The residual was 4.4131 

𝑚𝑚2 for 3360 points, and the calculation time was 7.44s.  

The average residual in each point for Part C was approximately 36.1𝜇𝑚, which 

was not as tight a fitting as the cylinders. This is partially due to the complex shape of the 

part, the limitation of finding the best initial guess, and the actual characteristics of the 

measured part, which has defects shown in FIGURE 4.10. 



31 

 

FIGURE 4.10: Defect on Part C 

4.3. Uncertainty in the Calculation of Least-squares Diameter of Cylinder 

The errors come from 4 major sources in a practical CMM measurement and 

least-squares calculation procedure:  

1. Measurement errors, mainly coming from the machine errors, including the 

probing error (since we scanned the parts, this error would be the scanning error of the 

probe head), angular errors of all the machine axes, and squareness errors of the machine 

axes.  

2. Errors caused by the least-squares fitting procedure. The fitting procedure is an 

optimization procedure, and the convergence of the iterations is set to a limited extend, so 

errors will be introduced.  

3. Errors introduced by sampling. CMM obtain sampled points form the part, so 

the sampling strategy and density introduce errors into the calculation.  

4. Errors introduced by environment variations, for example temperature 

variation, or unstable fixtures.  
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A comprehensive uncertainty analysis should be a task specific analysis including 

all possible error sources. Since many items listed above were not accessible during the 

time period of this project, and it was the effects of  the least-squares procedure that is 

concerned in this thesis, only the second part of all the errors are discussed in details here, 

and the third part is discussed in section 4.3.2. This is not intended to be a comprehensive 

analysis, and the purpose is to show how sensitive is the least-squares size to factors such 

as the errors in the input points and sampling. As one instance of the analysis, data of part 

A is used in the following analysis.  

4.3.1. Uncertainty Analysis of Least-squares Fitting of a Cylinder 

This is a non-linear least-squares optimization, so a Monte Carlo process [19] is 

used in the uncertainty analysis. Least-squares fitting of the constant width part take at 

least several seconds, making the Monte Carlo process time consuming. Therefore, 

uncertainty analysis of least-squares fitting of a cylinder is offered as an example in the 

following section.  

As inputs into the optimization procedure, coordinates of each point contain errors 

as covered in the first group of error sources above. At the time of this analysis, good 

estimations for the angular and squareness errors of the machine were not provided. An 

experiment with simulated error terms was done by artificially feeding 1-5 arcsec each 

error term respectively into the data of part A, and checking the deviation caused in the 

least-squares result. This test was only valid for the purpose of checking the influence of 

angular and squareness errors of the machine, not valid for a rigorous uncertainty analysis. 

The result showed that the change in the fitted radius after feeding in most of the error 

terms was less than 0.5 nm. However, for some terms, the fitted radius was changed for 
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more than 1 nm, which was comparable to the amount of uncertainty offered by the 

following analysis.  

 The scanning error was introduced based on the specification of the machine with 

type B evaluation. It was associated to each point and propagated into the iteration 

procedure of fitting by the Monte Carlo process. The machine was a Zeiss PRISMO 7 

with ultra sensors and ultra accuracy, and the probe was VAST Gold. According to the 

specification sheet [16], the MPE (maximum permissible error) of the scanning error 

is1.1𝜇𝑚. According to ISO 10360-4:2000 [20], the scanning error could be modeled as 

range of change in radial distance (𝑟𝑖) of each point. It is uniformly distributed, within 

the interval of [−0.55μm, 0.55μm].  

The Monte Carlo propagation procedure is shown in FIGURE 4.11. 

 

FIGURE 4.11: Procedure of uncertainty analysis with Monte Carlo method 

M variations were introduced into each measured point, forming M groups of 

input points. M times of calculations were conducted and M least-squares diameters were 
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calculated. M=100,000 in the following offered result, and the entire procedure was done 

in Matlab, within 636 seconds. 

The probability histogram is shown in FIGURE 4.12. The best estimation is the 

mean of all resulted R 

�̅� = 50.8036419 𝑚𝑚 

Combined uncertainty is the uncertainty of mean 

𝑢𝑐 = 1.4 × 10
−6mm 

Therefore, the least-squares radius is offered as 

�̅� = 50.8036419 ± 1.4 × 10−6𝑚𝑚 

with coverage factor k=1. 

The least-squares diameter is offered as 

�̅� = 101.6072838 ± 2.7 × 10−6𝑚𝑚 

with coverage factor k=1. 

 

FIGURE 4.12: Probability histogram: the result radii from the Monte Carlo procedure 
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From this rough analysis, if the uncertainty introduced by the input points is in 

sub micro meter level, the uncertainty after the least-squares procedure would be 

nanometer level. This uncertainty should be interpreted as the uncertainty of the 

‘average’ effect of the least-squares procedure.  

4.3.2. Influence of Sampling  

To obtain subsets of data with different point density, smaller samples are 

extracted directly from the original measured data set. The first group of data set is the 

original data, which contains all the measured points. The second group of data sets is 

obtained by taking every second point of the measured points, so there are two sets of 

data in the second group, the odd numbered points and the even numbered points, and 

each contains half of the number of points of the original points. The third group of data 

sets is obtained by taking every third point of the measured points, so there are three sets 

of data in the third group, and each contains one third of the number of points of the 

original points.  

Each set of points is evaluated independently. For each set of points, the least-

squares diameter was calculated, and results of all the data sets of all the groups (50 

groups in total) were plotted. The following figures show the least-squares size 

distribution with respect to the number of points used in the evaluation. FIGURE 4.13 

shows the least-squares diameter of Part CYL_S2. FIGURE 4.14 shows that of part A 

and FIGURE 4.15 shows that of part B. 
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FIGURE 4.13: Least-squares diameters of subsets of simulated data 

 

FIGURE 4.14: Least-squares diameters of subsets of measured part A 
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FIGURE 4.15: Least-squares diameters of subsets of measured part B 

The least-squares diameter shows more dispersion with fewer sampled points, 

which means a larger uncertainty due to the sampling density introduced into the least-

squares result. A type A evaluation of the uncertainty could be done for each group of 

diameters [21]. Take the group with 123 sampling points in the Part A groups as an 

example, as shown in FIGURE 4.14. There are 40 sets of data in this group, therefore 40 

diameter values. There’s a possibility to arrive at any one of the values within the 

dispersion of this group if 123 sampling points are taken to calculate the least-squares 

diameter. With a type A evaluation, the best estimation, which is the mean of the 40 

values, is 101.607221, and the uncertainty of the mean is 24 nm.  

The result of the bottom cylinder (FIGURE 4.15) shows similar trend as 

simulated data. However, the result of Part A shows some more characteristics. The 

dispersion of the results for the 33
rd

 group of data sets, the subsets in which contain 148 

or 149 points, is much larger than the other groups, as marked in FIGURE 4.14. A 

(m
m

) 
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possible reason is the interaction of the sampled points with the cutter marks on the part 

surface.  

To verify this assumption, the frequency property of the radius values of all the 

points after the alignment was investigated. Characteristics of the radius values show the 

characteristics of the part surface. FIGURE 4.16 was obtained by carrying out the Fourier 

transform of the radius values, and the Frequency axis represents the spatial frequency of 

the surface moving along the circumference. The dominating frequency was at 0, in 

correspondence with the constant value of radius. All the other frequencies are at 10 to 

the -5 to 10 to the -4 order of magnitude. If eliminating the dominating frequency, a 

closer examine of the rest of the frequency components is shown in FIGURE 4.16.  

 

FIGURE 4.16: Frequency components of radius values of part A 

To focus on the frequency range that are in accordance with the sampling 

frequencies of the sub sets, and present the frequency axis in the form of group index of 

the sub sets, an adjusted figure is offered as FIGURE 4.17. X axis is the sampling factor 
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because the index of the sub sample group is also the factor of reducing the sample 

density. There are 3 outstanding peaks corresponding to the 8
th

 and 33
th

 group of 

sampling. Referring back to the diameter distribution of the subsets, the 33
th

 group shows 

much larger dispersion than other groups. The dispersion of group 8 is relatively larger 

than group 7 and 9, but due to the limitation of only 8 data points, the increase in the 

dispersion is not significant.  

 

FIGURE 4.17: Frequency components of radius values of part A 

The initial sampling frequency of the measured points is Fs =
𝑛

10∙2𝜋𝑅
 points per 

mm. 𝑛 is the total number of sampling points, 10 is the number of levels, 2𝜋𝑅 is the arc 

length per level, and 𝑅 could be estimated with the least-square radius. For Part A, 

Fs = 1.5350471643/mm. The spatial frequency corresponding to group 8 is 1/8 of the 

initial sampling frequency, which is F8 = 0.1918808955, and that of group 33 is 

F33 =
1

33
Fs = 0.0465165807. These peaks could be identified in FIGURE 4.16 as well. 
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Therefore, there are some characteristics of the part surface interacting with the sampling. 

These characteristics might come from the manufacturing process.   

 

  



 

 

 

 

 

 

CHAPTER 5:  TWO-POINT SIZE 

 

 

5.1. Introduction into Two-point Size 

The two-point size is one of the default operators for size in the ISO system. It is a 

local size and is defined as “distance between two opposite points taken on the feature of 

size” in ISO 14405-1 [5]. Tolerancing with two-point size theoretically requires that the 

infinite number of points on the feature be in conformance with the tolerance. In the 

measurement practice, the measurement is usually done on multiple points at different 

locations on the feature.  

 

FIGURE 5.1: Two-point definition from ISO 14405-1:2010 

As explained in Chapter 2, for some features the two-point size at certain points 

might not be accessible with gages. With coordinate measuring devices, sample points at 

these locations could be obtained and the two-point sizes could be calculated. Since it is 

not secured that both the point and its opposite point are sampled in the measurement 

process, the key point in calculation becomes how to locate the corresponding opposite 

point with information of its adjacent sampled points.  

ISO 14660-2 requires that the extracted surface be perpendicular to the associated 

cylinder axis, and the connection line between the local size points includes the 
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associated circle center [22]. These requirements are only indicated on cylinders as a 

feature of size. CWP is not a standard feature of size, these requirements could be 

interpreted as that the extracted surface should be perpendicular to the associated feature 

axis, and the connection line between the local points includes the associated center of 

cross-section.  

In the actual measurements, the measured data was sampled in the same height in 

the machine coordinate system, which means the sampled points might not be exactly on 

the plane perpendicular to the associated cylinder axis. The evaluations of two-point size 

were carried out still with the original sampled points but the distances were calculated in 

the cross-sections perpendicular to the axis (FIGURE 5.2) and added up to form the two-

point distance. Therefore the two “opposite points” are actually not in the same plane. For 

example, according to the fitted axis information offered in Section 4.2.1, the slope of the 

axis of part A is 1/(-0.0007) in x-z plane, the misalignment of the two points ∆=
𝐷

𝑡𝑎𝑛𝛿
≈

𝐷 ∙ (−0.0007) ≈ −70 𝜇𝑚 along the axis of the part.  Although there is a misalignment, 

the evaluated distance in FIGURE 5.1 is still a good approximation of the two-point size 

since they are evaluated perpendicular to the axis and the radial change over 70μm along 

the axis is very small. 

Since the two opposite points are actually not on the same perpendicular plane to 

the axis, the associated center of the cross section needs to be approximated by the 

associated axis. In a word, the two-point size is calculated by adding up the radial 

distances of the two points, and the radial distances are the distances from the point 

perpendicular to the associated axis.  The two-point size evaluation is equivalent to the 2-
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dimensional evaluation performed with all of the points projected onto any plane 

perpendicular to the cylinder axis. 

 

FIGURE 5.2: Misalignment of measurement and evaluation plane 

5.2. Algorithms for Two-point Size  

The key issue is to find the opposite point of each measurement point, and then 

the two-point size at each point could be obtained by adding up the distance of each point 

to the origin.  

Each sampled point is offered with its (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) data, and could be transformed 

to (𝜃𝑖, 𝑟𝑖, 𝑧𝑖) information. The procedure of two-point size calculation for one arbitrary 

point is shown in FIGURE 5.3.  
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FIGURE 5.3: Procedure of calculation for two-point size 

The opposite point of an arbitrary sampled point is 180 degree away from it 

through the center. It might be in the sampled points, then two-point size is calculated by 

adding up the radial distance of these two points. Most likely the opposite point is not 

sampled, then it is found by interpolating the two closest sampled points to it. The two 

points to be interpolated are the one in front of and the one behind the 180 degree point, 

and the result is the radial distance of the opposite point. The 𝑟𝑖 of each point takes up its 

share weighted by how far it is to the opposite point in terms of center angle in the 

interpolation. The sampled points are taken every certain length of scanning, which 

means if the feature consists of arcs of different radii of curvature, the points are not 

evenly distributed by center angles. Therefore, to make sure the opposite point is in 

between the two searched points, we could not simply search for the two closest points to 

the opposite point. The two closest points might be on the same side of the opposite 

point, so the relative positions of the two points also matter.  
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These two points to be interpolated, denoted by the former point and latter point 

with respect to the opposite point, are searched separately in the sampled points, with 

three situations they might fall in.  
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FIGURE 5.4: Three conditions when searching for interpolation points 

FIGURE 5.4 is offered with a cylinder as an example, and is given under the 

condition that the points are collected clockwise. For counter clockwise points, just 

exchange the description ‘former’ with ‘latter’, which will not affect the result of the 

search. 

When searching for the interpolating points for the opposite point of an arbitrary 

point P, the angles in FIGURE 5.4 refers to the difference of the center angles between 

the checked point and point P, and each sampled point is checked to find the adjacent 

points. 

∆𝜃𝑃 = 𝜃𝑖 − 𝜃𝑃                     (5.1) 

The former point would be found when  

∆𝜃𝑃 > π & (∆𝜃𝑃 − π) → min, if 𝜃𝑃 ∈ [0, 𝜋) 

𝑂𝑅 ∆𝜃𝑃 > −π & (∆𝜃𝑃 − (−𝜋)) → min, if 𝜃𝑃 ∈ [𝜋, 2𝜋)                    (5.2)  

The latter point would be found when 

∆𝜃𝑃 < π & (∆𝜃𝑃 − π) → max, if 𝜃𝑃 ∈ [0, 𝜋] 
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𝑂𝑅 ∆𝜃𝑃 < −π & (∆𝜃𝑃 − (−𝜋)) → max, if 𝜃𝑃 ∈ (𝜋, 2𝜋)                    (5.3) 

After the former and latter point are found, their information (𝜃𝑓 , 𝑟𝑓) and (𝜃𝑙 , 𝑟𝑙) 

could be used in the interpolation. Distance of the opposite point to the origin 

𝑟𝑜𝑝 = 𝑟𝑓 ∗
𝜃𝑓

𝜃𝑙 − 𝜃𝑓
+ 𝑟𝑙 ∗

𝜃𝑙
𝜃𝑙 − 𝜃𝑓

                    (5.4) 

The two-point size at point P is 

𝑑𝑃 = 𝑟𝑃 + 𝑟𝑜𝑝                    (5.5)  

For each sampled point, such a two-point size could be calculated.  

5.3. Application to Data 

5.3.1. Two-point Diameter of Cylinder 

Firstly, two-point diameter of Part CYL_S2  was calculated and shown in 

FIGURE 5.5. If the two-point diameter of this cylinder is limited in a tolerance, for 

example 100.0 ± 0.15 mm,  then all the measured points would be within tolerance. If, 

however, the tolerance is 100.0 ± 0.1 mm, there will be 8 points out of tolerance, and the 

part would be failed.  
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FIGURE 5.5: Two-point diameter at multiple points of the simulated cylinder 

The two-point size could also be used together with other specification modifiers. 

For example, a restricted portion of the feature could be toleranced. If only the first 5 

levels of the simulated cylinder is toleranced, which is point number 1 to 2500, the part 

will still be in tolerance if the tolerance is 100.0 ± 0.1 mm. Additionally, two-point size 

is one of the most used bases in calculation of rank-order size, which will be discussed in 

Chapter 6. 

The two-point size of Part A was calculated as shown in FIGURE 5.6. As 

discussed in 4.2.1, there is a periodic pattern in the result because of the deviation from a 

circular shape of the part. The 20 peaks in the figure correspond to the two-lobe nature of 

the parts in 10 levels. The amplitude of the varying local sizes is approximately 8.4 μm 

according to the first period. The range of this period is 14.6 μm. 

 

FIGURE 5.6: Two-point diameter at multiple locations of part A 
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Two-point size of Part B is calculated as shown in FIGURE 5.7. The amplitude of 

size variation of two-point diameters of Part B is slightly smaller than that of Part A, 

approximately 3.7μm for the first period. The dispersion is larger, range being 24.2 μm. 

This is also indicated in FIGURE 4.9 that the deviation from circular shape of part B is 

smaller than Part A, but there are more “spikes” in the form. 

 

FIGURE 5.7: Two-point diameter at multiple locations of part B 

5.3.2. Two-point Size of Constant Width Part 

The two-point size of a constant width part should show a periodic change due to 

the characteristic of the shape. The two-point size is supposed to change smoothly and 

periodically, as shown in FIGURE 5.8. The two-point size reaches a peak when the line 

connecting the two points goes through one of the three centers of the arcs. It reaches a 

valley when that line is parallel to one of the three sides of the equilateral triangle formed 
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by the centers of the arcs. FIGURE 5.9 is a set of two-point size of one cross section of a 

Part CWP_S1, which is a perfect part with no deviation.  

 

FIGURE 5.8: Peak and valley value of the two-point size of a constant width shape 

 

FIGURE 5.9: Two-point size at multiple points of one level of Part CWP_S1 

One peak value is reached when the two points are at A and B in FIGURE 5.6. 

This size is a+2b=24. (a=16, b=4 for Part CWP_S1)  
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A valley value is reached when the two points are at C and D and CD//EF. 

∠FOC =
5𝜋

6
, 𝐹𝑂 =

√3

3
a, FC = R = a + b; 

In ∆FOC, 𝐹𝐶2 = 𝐹𝑂2 + 𝑂𝐶2 − 2 ∗ 𝐹𝑂 ∗ 𝑂𝐶 ∗ cos∠𝐹𝑂𝐶 

(𝑎 + 𝑏)2 = (
√3

3
𝑎)

2

+𝑂𝐶2 − 2 ∗ (
√3

3
𝑎) ∗ 𝑂𝐶 ∗ cos (

5𝜋

6
) 

Same in ∆EOD 

(20)2 = (
√3

3
∗ 16)

2

+ 𝑂𝐶2 − 2 ∗ (
√3

3
∗ 16) ∗ 𝑂𝐶 ∗ cos (

5𝜋

6
) 

OC = 11.4594 

Therefore the valley value is 22.9188. 

Two-point size of Part CWP_S2 was calculated, the center and axis being the 

least-squares fitted ones with the best convergence. The curve is not as smooth as that of 

Part CWP_S1 because of the form deviations added. 

 

FIGURE 5.10: Two-point size at multiple points of one level of Part CWP_S1 
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Two-point size of measured Part C was calculated, result plotted in FIGURE 5.11. 

The variations of peak and valley values of the curve are partially due to the form of the 

actual part, and the uncertainty in the least-squares fitting since nominal parameters are 

not available. A more significant contributor is the defect on the part shown in FIGURE 

5.12, which causes the second valley and the third peak of the curve to deviate.  

 

FIGURE 5.11: Two-point size at multiple points of one level of Part C 

 

FIGURE 5.12: Defect on Part C



 

 

 

 

 

 

CHAPTER 6:  RANK-ORDER SIZE 

 

 

6.1. Introduction into Rank-order Size 

Rank-order size is defined “mathematically from a homogeneous set of local size 

values contained along and/or around the tolerance feature” in ISO 14405-1 [5]. It is a 

statistical size to be used upon a set of local size values, which could be “portion size, 

section size, spherical size, and two-point size” [5]. Two-point size is the most commonly 

used local size together with any of the rank-order size. Rank-order size in ISO 14405-1 

includes maximum size, minimum size, average size, median size, mid-range size and 

range of sizes. 

6.2. Algorithms of Rank-order Size  

Suppose a set of local size values be D = {𝑑𝑖}, 𝑖 = 1,2,3, … , 𝑛.  n is the total 

number of local size values collected or calculated. 

6.2.1. Maximum Size (SX)  

Maximum size is defined as “the maximum of the set of values of a local size 

along and/or around the tolerance feature”.  

6.2.2. Minimum Size (SN)  

Minimum size is defined as “the minimum of the set of values of a local size 

along and/or around the tolerance feature”. 
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6.2.3. Average Size (SA) 

Average size is defined as “the average of the set of values of a local size along 

and/or around the tolerance feature”. 

𝑑𝑎𝑣𝑔 =
1

𝑛
∑𝑑𝑖

𝑛

𝑖=1

 

6.2.4. Median Size (SM)  

Median size is defined as “the median value of the set of values of a local size 

along and/or around the tolerance feature”. Given the arranged local size values from 

𝑑𝑚𝑖𝑛 to  𝑑𝑚𝑎𝑥  in order, the median of the series {𝑑1
′ = 𝑑𝑚𝑖𝑛, 𝑑2

′ , 𝑑3
′ , … , 𝑑𝑛−1

′ , 𝑑𝑛
′ =

𝑑𝑚𝑎𝑥} is given by 

𝑑𝑚𝑒𝑑 =

{
 

 
𝑑𝑛+1

2

′ ,              𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑑𝑛
2

′ + 𝑑𝑛
2
+1

′

2
,       𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

6.2.5. Mid-range Size (SD)  

Mid-range size is defined as “the mean of the maximum and the minimum of the 

set of values of a local size along and/or around the tolerance feature”. 

𝑑𝑚𝑖𝑑 =
𝑑𝑚𝑎𝑥 + 𝑑𝑚𝑖𝑛

2
 

6.2.6. Range of Sizes (SR) 

Range of sizes is defined as “the difference between the maximum and the 

minimum of the set of values of a local size along and/or around the tolerance feature”. 

𝑑𝑟𝑛𝑔 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 
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6.3. Application to Data 

All calculations following are based on the two-point sizes at all points calculated 

in Chapter 5. For the cylinder, the result is the two-point diameter specifically. The rank-

order sizes for simulated and measured parts are listed in Table 6.1. 

TABLE 6.1: Rank-order sizes of example parts (mm) 

Modifier 
Description 

 

Part 

CYL_S2 
Part A Part B Part CWP_S2 Part C 

 Maximum size 100.1076 101.6167 104.0610   24.0314 23.9575 

 Minimum size 99.9091 101.6021 104.0368   22.8822 22.6605 

 Average size 99.9994 101.6072 104.0448   23.3917 23.3378 

 Median size 99.9988 101.6072 104.0447   23.3157 23.3008 

 Mid-range size 100.0083 101.6094 104.0489     23.4568 23.3090 

 Range of sizes 0.1985 0.0147 0.0241 1.1492 1.2970 

 

FIGURE 6.1 and 6.2 show histograms of the two-point sizes of Part A and C 

respectively, with the marked rank-order sizes to display their positions among the 

population of samples.  

 

FIGURE 6.1: Two-point diameters of part A with rank-order sizes 
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FIGURE 6.2: Two-point size of part C with rank-order sizes 

6.4. Influence of Sampling Strategy 

The same subsampling strategy same as in 4.3.2 is used to obtain the subsets of 

data with different data density. Each rank-order size of Part A for each subset of data is 

calculated, and their distribution displayed in FIGURE 6.3 through 6.8. 
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FIGURE 6.3: Maximum diameter for each subset 

 

FIGURE 6.4: Minimum diameter for each subset 

 

FIGURE 6.5: Average diameter for each subset 
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FIGURE 6.6: Median diameter for each subset 

 

FIGURE 6.7: Mid-range diameter for each subset 
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FIGURE 6.8: Range of diameter for each subset 

Firstly, the dispersion of rank-order size increases with less sampling points, 

which indicates larger uncertainty in the calculation.  

Secondly, for maximum diameter, this size of the first subset should be larger 

than that of any other subset. This is because the first group has the most sampling points, 

and should cover the largest diameter in all measurements. The subsets with less 

sampling points might lose this largest diameter during the sub sampling. Therefore, all 

the maximum size of the smaller samples should be smaller or equal to the maximum of 

the initial sample. However, in FIGURE 6.3, there are clearly larger diameters reached in 

the smaller sample groups. This is due to the interpolation method used to calculate the 

two-point size. As in FIGURE 6.9, different points are used in the interpolation in 

samples of different sampling frequency. Therefore, it is possible that the interpolation 

result of points in a smaller sampling frequency group is larger than that of points in 

larger sampling frequency.  
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This interpolation issue could be more clearly shown by an example of the 

constant width part measured with 3 points. If the three sampled points are at the 

positions as in FIGURE 6.10, the interpolation of the opposite point would be between 

the other two maxima, marked by the square. However the actual opposite point should 

be the circled point. 

 

FIGURE 6.9: Interpolation points of different sampling frequency 

 

FIGURE 6.10: Interpolation of selected points on a constant width part 
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Finally, in FIGURE 6.5 and 6.6, similar with the findings about FIGURE 4.13, 

dispersion of the sizes of group no 33, the subsets in which contain 148 or 149 points, is 

much larger than the other groups. This is also due to the interaction with manufacturing 

process.  

 



 

 

\ 

 

 

 

CHAPTER 7:  CONCLUSIONS AND FUTURE WORK 

 

 

7.1. Conclusions 

This thesis reviewed 8 of the 14 types of size defined in ISO 14405-1. Explicit 

algorithms were offered for calculation of each size. Characteristics of the sizes and their 

application with two example parts were discussed. The constant width part was included 

to address some characteristics of two-point size specifically. Some consideration of 

uncertainty was offered at the same time. 

The least-squares size is sensitive to the initial guess, errors in the measured 

points, sampling strategy and certain characteristics of the part. For least-squares 

criterion, the initial guess is important because of the non-linear nature of the problem 

Especially for constant width part, the effect of initial guess is significant. The calculation 

time is much longer than cylinder due to the complexity of the shape definition and the 

method used. Uncertainty analysis under limited conditions was offered. The errors of 

each input point are averaged out in the fitting procedure. Sampling strategy introduces 

larger uncertainty in the result, especially when the sampling interacts with characteristics 

of the part surface. 

For two-point size, the algorithms were offered. Two-point size is influenced by 

the shape of the part and possible defects on the actual part. Its deviation from the actual 

two-point size is due to the approximation of assessment cross-section, associated center, 

and due to the interpolation method. With coordinate information of multiple sampling 
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points, the key procedure is to identify the opposite points. A periodic pattern showed due 

to the deviation from the circular shape of the measured parts. Otherwise, the two-point 

size appeared to be approximately Gaussian distributed for the simulated part. Two-point 

size of constant width part should show smooth and stable periodic change. However, 

defect on the measured constant width part introduced a lot more variations. 

For rank-order sizes, which are based on the two-point sizes, the algorithms for 

each rank-order size were offered. Rank-order sizes are sensitive to sampling strategy and 

characteristics of the part. Due to the interpolation method used in calculation of two-

point size, the data sets with smaller sampling density might result in larger 

maximum/smaller minimum sizes than those with larger sampling density. 

A journal paper was published as a summary of the initial work [23]. 

7.2. Future Work 

This thesis offered some insights into understanding and application of size 

specifications in the ISO standard. The uncertainty analyses were merely a simple 

investigation into the influences, which could be improved by carrying out task specific 

uncertainty analyses. Besides, 6 more sizes are to be investigated as extended work. 

Experiences of investigating them could be implemented into analysis of the rest of the 

size definitions.  

In addition to the application of the size definitions to simple features, another 

important aspect is to explore their application in industry. For what design purposes 

would these sizes be significant, what are the dominant features then, and how the GD&T 

would be specified with these sizes, are some important questions to be answered. 
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