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ABSTRACT 

 
MD. MOKHLESUR RAHMAN. Investigating the Determinants of Autonomous Vehicles and 

Their Potential Impacts on Travel Behaviors and Land Use Distribution.  

(Under the direction of DR. JEAN-CLAUDE THILL) 

 

Autonomous Vehicles (AVs) are imminent and they are not in people’s dreams now. Now the 

burning questions the research community is interested in include how quickly AVs would be 

implemented for public use, whether people would accept them, and how AVs would change the 

ecosystem of transportation and the built environment. Stimulated by these questions, this dissertation 

aims to investigate the factors that influence people’s Behavioral Intention (BI) to adopt AVs and 

Shared AVs (SAVs). In addition, this study is intended to investigate the potential impacts of AVs 

on land use patterns and people’s travel behaviors. This dissertation consists of six papers as discussed 

hereunder. 

The first article presents a state-of-the-art literature review to understand people’s perceptions 

and opinions of AVs and the factors that influence AV adoption. Results show that the socioeconomic 

profile of individuals and their household, their psychological factors (e.g., usefulness, ease of use, 

risk), and knowledge and familiarity with AV technologies would affect AV adoption. Additionally, 

urban form (e.g., density, land use diversity), transportation factors (e.g., travel mode, distance, and 

time), affinity to new technology, and institutional regulations would influence the AV adoption rate. 

The second review study critically analyzes the extant literature and summarizes the short, 

medium, and long-term effects of AVs based on a SWOT (Strength, Weakness, Opportunity, and 

Threat) analysis. Results show that AV would influence transportation and human mobility by 

reducing vehicle ownership, Vehicle Miles Traveled (VMT), congestion, travel costs, energy use, 

and increasing accessibility, mobility, safety and security, and revenue generation for commercial 
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operators. AVs would encourage dispersed urban development, reduce parking demand, and enhance 

network capacity. Additionally, AVs would increase the convenience and productivity of passengers 

by providing amenities for multitasking opportunities. 

The third paper investigates the key factors that influence people’s tendency to purchase and 

use personal AVs after collecting data from the 2019 California Vehicle Survey. Results from the 

Structural Equation Model (SEM) indicate that working-age adults, children, household income, per 

capita income, and educational attainment are positively associated with AV purchase intention. 

Similarly, psychological factors (e.g., perceived enjoyment, usefulness, and safety), prior knowledge 

of AVs, and experience with emerging technologies significantly influence people’s BI to purchase 

AVs. This study finds that family structure and psychological factors are the most influential factors 

in AV purchase intention of households than the built environment, other socioeconomic, and 

transportation factors. 

The fourth paper investigates the key elements of a household’s intentions to use pooled SAVs 

using the SEM framework. Collecting data from the 2019 California Vehicle survey, this study finds 

that higher educational attainment, income, labor force participation, Asian population, and urban 

living are negatively associated with SAVs. In contrast, young and working-age adults are positively 

associated with SAVs. Study results also show that people who prefer public transportation, car-

sharing, ride-hailing, and ride-sharing services are likely to use SAVs. The perceived usefulness, 

enjoyment, safety associated with AVs, and prior knowledge of AVs significantly influence people 

to use SAVs. The study concludes that people’s travel behaviors, positive attitudes to shared mobility, 

and psychological features are the key determinants of SAVs. 

The fifth paper studies the potential impacts of AVs on the spatial distribution of household 

and employment locations using the existing Swindon model of the TRANUS urban simulation 
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platform. Results show that the adoption of AVs encourages people to live outside of the city center 

by increasing convenience and reducing travel costs. On the other hand, AVs would increase 

employment opportunities in the city center by inducing more economic activities. This study finds 

that AVs would allow densification of the existing city center by releasing extra space from parking 

land areas along with peripheral new development over time. 

With the same TRANUS simulation platform, the sixth paper aims to assess the potential 

impacts of AVs on people’s travel behaviors such as trip generation, travel distance, travel time, and 

travel costs. Results indicate that AVs would intensify people’s overall travel demand by increasing 

accessibility. On the other hand, AVs are likely to reduce vehicle ownership, travel distance, travel 

time, travel costs, and vehicle hours traveled by reducing solo driving and by inducing shared 

mobility. AVs also have the potential to reduce public and active transportation. 

This study makes significant contributions by unraveling critical issues of AVs and their short-

, medium-, and long-term impacts. The findings will be helpful for policymakers and professionals 

to implement appropriate policies to manage travel demand and urban growth, and to urban and 

transportation scholars in the understanding of the complex mutual relationships between 

transportation, mobility, and the conditions of urban environments. 
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CHAPTER 1: INTRODUCTION 

 

1. Research Motivation 

Autonomous Vehicles (AVs) are imminent. Now, the burning questions researchers 

and policymakers are interested in include how quickly they will arrive, when they will be 

matured, how they will share the roadway space with conventional vehicles, and what 

would cause uncertainty in the development and market penetration of AVs (Heineke et 

al., 2021; Stein, 2020). Additionally, researchers and policymakers are eager to get insights 

on whether people would adopt them, how fast and how large would the adoption be, how 

would people adjust their travel patterns, how will the AVs influence people’s destination 

choices, and how the institutional settings will be changed. 

Inspired by these salient questions, researchers are studying people’s current level of 

knowledge on AVs and the key determinants of AVs. Although many studies have 

investigated people’s perceptions and opinions, and key factors of AVs, public attitudes 

towards AVs are changing rapidly with the pace this novel technology is developing. 

Researchers also investigating the anticipated impacts of AVs on urban transportation and 

the built environment. Previous studies primarily focused on the short- and medium-term 

impacts of AVs on transportation, human travel patterns, and the environment. However, 

there is a knowledge gap in the literature on the long-term effects of AVs on urban land-

use patterns. Considering the profound effects of AVs, this study is conducted to enhance 

understanding of the matters of AVs that are still uncertain and yet to be experienced by 

the world. 
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The main objectives of the study are to investigate the factors that influence people’s 

Behavioral Intention (BI) to adopt AVs and Shared AVs (SAVs). Besides, this study is 

intended to investigate the potential impacts of AVs on the spatial distribution of 

households and employment locations and people’s travel behaviors. The following 

research questions have been envisioned which founded the basis of this dissertation: 

1) How would people’s socioeconomic and demographic characteristics influence 

people’s BI to adopt and use AVs and SAVs? 

2) How would factors of the built environment, transportation, and technology 

influence people to adopt and use AVs and SAVs? 

3) What are the impacts of AVs on the spatial distribution of household and 

employment locations? 

4) What are the potential impacts of AVs on a household’s travel patterns such as trip 

generation, travel distance, travel time, and costs? 

2. Research design 

The major steps of this study are illustrated in Figure 1.1. As presented in this figure, 

this study was conceptualized after conducting a preliminary literature review to identify 

research gaps in the extant literature. Consequently, four main research questions were 

formulated. An extensive literature review was conducted to understand people’s 

perceptions and opinions, and the key determinants that influence people’s BI to adopt AVs 

and SAVs. Additionally, the impacts of AVs on urban transportation and the built 

environment were investigated by critically reviewing the extant literature. To investigate 

the key determinants of AV purchase intention of people and use of SAV, data were 

collected from the 2019 California Vehicle Survey (Transportation Secure Data Center, 
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2019). Additionally, to investigate the effects of AVs on the spatial distribution of 

household and employment locations, the existing Swindon model developed in the 

TRANUS framework was selected (Tomás de la Barra et al., 2011).  

A Structural Equation Model (SEM) framework was used to calibrate models to 

assess people’s BI to purchase AVs and use SAVs. In the TRANUS platform, land-use and 

transportation modes were developed to understand the spatial distribution of household 

and employment locations and people’s travel patterns due to the adoption of AVs. Finally, 

results from the literature review and model building were analyzed and discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Flowchart showing different stages of this dissertation 
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3. Research impacts and outcomes 

AVs are yet to be a regular transport mode and little is known about them. At present, 

people have very limited knowledge about AVs. This study has a significant contribution 

by revealing the facts about the willingness of people to adopt and use AVs which is 

considered a major challenge to increasing the market share of AVs. The impacts of AV 

adoption are still evolving and unclear. Hence, this study would have significant 

contributions to the literature by unraveling critical issues of AVs and their short-, medium-

, and long-term impacts. The findings would be helpful for policymakers and professionals 

involved in transportation and city planning to implement appropriate policies to manage 

travel demand and urban growth by anticipating the change in human travel patterns, 

transportation systems, and land uses.  

This research deals with a scientific paradigm which is evolutionary in nature by 

discovering new knowledge database. The broader impacts of this study include the 

production of high-quality research outcomes. The scientific community will be benefited 

from this research. The research outcomes will be disseminated to the scientific community 

through academic publications, which will facilitate further research and enhance the 

existing body of literature. 

4. Organization of the dissertation 

The rest of the dissertation is structured as follows. Chapter 2 presents a literature 

review to find out the drives that influence people’s willingness to adopt AVs. The potential 

impacts of AVs on transportation and human mobility, the urban built environment, energy 

and environment, and people’s safety and security, and convenience are discussed in 

Chapter 3 by performing a comprehensive literature review. Chapter 4 empirically 
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investigates the determinants of household purchase intention of AVs taking California as 

a case study. The key determinants of SAVs in California are evaluated in Chapter 5. The 

potential impacts of AVs on people’s travel behaviors and travel demand are discussed in 

Chapter 6. Chapter 7 simulates the potential impacts of AVs on the spatial distribution of 

household and employment locations. Lastly, Chapter 8 outlines the concluding remarks. 
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CHAPTER 2: WHAT DRIVES THE WILLINGNESS TO ADOPT AUTONOMOUS 

VEHICLES? A REVIEW OF PEOPLE PERCEPTIONS AND OPINIONS 

Abstract 

This article presents a state-of-the-art literature review to understand people’s 

perceptions and opinions of Autonomous Vehicles (AVs) and the factors that influence AV 

adoption. A strategic literature search was conducted to select articles for this review. Most 

of the articles were published within the last five years and they used a household 

questionnaire survey to collect data. Mostly they used statistical and econometric methods 

to evaluate the factors that affect people’s intentions to adopt AVs. The results show that 

the socioeconomic profile of individuals and their household, their psychological factors 

(e.g., usefulness, ease of use, trust, risk), and knowledge and familiarity with AV 

technologies would affect AV adoption tendency. User attributes also indirectly affect AV 

adoption by influencing the psychological factors of users. Moreover, I identified some 

opportunities (e.g., safety and security, low congestion, energy use, and emission) and 

challenges (e.g., system failure, privacy breach, and legal issues) that would significantly 

influence people’s tendency to adopt AVs. Urban form (e.g., urban/rural, density, land use 

diversity), transportation factors (e.g., travel mode, distance, and time), affinity to new 

technology, and the institutional regulations would also influence AV adoption rate. 

Finally, I have identified some limitations of previous studies and provided some directions 

for future research. 

Keywords: Autonomous vehicle, self-driving car, driverless vehicle, transportation, public 

perceptions, willingness to use/pay, users, review 
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1. Introduction 

In this age of motorization, high vehicle ownership, travel cost, traffic accident, 

congestion, energy use, and carbon emission motivate business and civic leaders to develop 

alternative mobility options. Recent innovations and services such as Electric Vehicles 

(EV), Connected Vehicles (CV), Autonomous Vehicles (AV), and shared mobility are the 

most significant advances in transportation; they are expected to transform overall 

transportation systems in the coming years (Bansal & Kockelman, 2018; Castritius et al., 

2020; Gruel & Stanford, 2016; Piao et al., 2016). These technological breakthroughs may 

bring fundamental changes in vehicle ownership, travel patterns, parking demand, 

infrastructure supply, energy use, and emissions (Compostella et al., 2020; Daziano et al., 

2017). However, as some of them remain to be deployed broadly, such as in the case of 

AVs, the extent of the impacts put forth on people’s mobility, on vehicular movement, and 

on urban development patterns is still quite uncertain and often evaluated with computer 

simulations only (Cyganski et al., 2018). While it is envisioned that people will interact 

with AVs actively as passengers or passively as road users (Castritius et al., 2020), an 

assessment of their willingness to accept this new technology is crucial to predict the 

market penetration of AVs (Penmetsa et al., 2019) and to plan for ensuing degrees of 

departure from business as usual trends in urban and territorial organization. Thus, this 

study is intended to understand people’s perceptions and opinions on AVs and the factors 

that influence their willingness to adopt them. 

AVs (also known as self-driving, driverless, and robotic cars) are vehicles that can 

drive and navigate themselves without human control by using sensing technologies (e.g., 

radar, Global Positioning System (GPS), and computer vision) and control systems (i.e., 
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sensors) (Daziano et al., 2017; Howard & Dai, 2014; Van den Berg & Verhoef, 2016). 

According to the National Highway Traffic Safety Administration (NHTSA), AVs are 

those vehicles in which at least one of the critical safety control functions (e.g., steering, 

acceleration/deceleration, or braking) are performed without human input (Kopelias et al., 

2020). AVs have some level of automation to assist drivers or replace drivers to take full 

control of the vehicle (Narayanan et al., 2020). The Society of Automotive Engineers 

(SAE) differentiates between 5 levels1 of vehicle autonomy ranges, from Level 0 (No 

autonomy) to Level 5 (Full autonomy) (SAE International, 2018).  

An increasing number of studies are exploring people’s perception and opinions 

about AVs and investigating the possible impacts of AVs on transportation and mobility, 

the environment, and urban development. Researchers have echoed the expectation that 

AVs would offer a wide range of social, economic, and environmental benefits to city 

dwellers, despite some concerns about system security and data privacy (Schoettle & 

Sivak, 2014b). They projected a reduction in traffic crashes, congestion, vehicle ownership, 

parking demand, energy consumption and emissions, and an increase in human mobility 

and convenience (Soteropoulos et al., 2019; Sparrow & Howard, 2017; Tafidis et al., 2021). 

Additionally, Shared AVs (SAVs) have the potentials to reduce overall travel distance and 

time by reducing empty Vehicle Miles Traveled (VMT). Considering the enormous 

possibilities of AVs as a new mobility option, governments and manufacturers around the 

                                                           
1 Level 0 indicates no automation and the vehicle is fully controlled by a human driver. In Level 1 of 

autonomy, the vehicle has some driver assistance system for either steering or acceleration/deceleration. 

Partial autonomy is ascribed in Level 2, where the vehicle has driver assistance systems for both steering and 

acceleration/deceleration. In Level 3, the vehicle has a specific performance by the automated driving system 

with the expectation that the driver will respond. Level 4 indicates higher automation of the vehicle, which 

has a specific performance by an automated driving system, even if a driver does not respond. Level 5 

indicates the full automation of the vehicle and the vehicle is operated by an automated driving system 

without human interventions. 
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world are showing a growing interest in formulating AV policies, in adopting AV 

technology elements (e.g., adaptive cruise control, automatic parking, lane changing, and 

braking), and in on-road vehicle testing (Cohen & Cavoli, 2019; Hess, 2020). Most of the 

automobile companies have retrofitted existing vehicles by incorporating some extent of 

autonomy and some companies (e.g., Mercedes-Benz, Tesla, Google, Apple, Uber, Lyft) 

have already developed and tested full AVs (Talebian & Mishra, 2018). Thus, AVs are not 

a fantasy anymore and it is expected that very soon (i.e., Level 2 vehicle by 2025, Level 3 

by 2040, and Level 4 or 5 by 2050) they would be used by millions of people for their daily 

travels. 

At present, most commercially operated AVs include Level 1 ~ Level 3 autonomy 

(e.g., emergency braking, blind-spot detection, lane-keeping) only due to limited progress 

in technology and to the high cost of sensors (Van Brummelen et al., 2018). Researchers 

have argued that a higher level of vehicle autonomy would induce people to raise their 

outlook on adoption (Schoettle & Sivak, 2014b). Although many studies have investigated 

the level of human acceptance of AVs, they often do so inadequately, particularly as far as 

the pace this new technology would be accepted and adopted is concerned (Gurumurthy & 

Kockelman, 2020; Hilgarter & Granig, 2020; Van Brummelen et al., 2018). It is also 

postulated that intricate regulations, technical difficulties, public perceptions, and safety 

concerns would restrain the broad base adoption of AVs (Clark et al., 2019). However, 

public perceptions of AVs are rather fluid, evolving rapidly with increasing access to 

vehicles and more widespread discourse on this mobility technology (Gurumurthy & 

Kockelman, 2020). Assessing public perceptions on AVs and identifying the factors that 

influence public perception are essential for estimating and understanding the likelihood 
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of AV adoption by the public at large, and for the successful integration of AVs with 

existing traffic management systems and practices (Hilgarter & Granig, 2020). Therefore, 

in this review, I will: 

1) Evaluate the perceptions and opinions of people on AVs in different study 

contexts; 

2) Identify the factors (e.g., social, economic, psychological, environmental, 

technological) that influence people’s perceptions towards AVs; and  

3) Specify research gaps in the existing literature that require further investigation. 

The main contributions of this review paper are five-fold: 

1) Assessing people’s perceptions, opinions, knowledge, and willingness to adopt 

and use AVs. 

2) Investigating the socio-economic, psychological, institutional, transportation, 

built environmental and technological factors that influence behavioral intentions 

of people towards adopting AVs. 

3) Developing a conceptual framework that articulates the complex relationships 

between people’s socio-economic features, psychological factors, urban form, 

transportation factors, institutional settings, opportunities and challenges 

regarding AVs, on the one hand, and people’s behavioral intentions to adopt AVs, 

on the other hand.   

4) Identifying key concepts discussed in the previous studies, data used and methods 

applied for addressing their research questions. 
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5) Proposing future research directions, considering the limitations of the prior 

studies and issues on this new transportation option that have so far not been fully 

addressed. 

The rest of the paper is outlined as follows. The second section introduces search 

strategies and different attributes of reviewed articles and reports. A synthesis of the results 

from previous studies is presented in the third section. Finally, research problems and 

directions for future study are drawn in section four. 

2. Methods and materials 

2.1 Study approach 

This state-of-the-art literature review has been conducted to identify, evaluate, and 

critically analyze relevant scholarship to understand people’s perceptions and opinions 

about AVs and to identify the factors that influence AV adoption. The overall study 

approach is illustrated in Figure 2.1. The literature search was conducted to select published 

articles and reports to be included in the review process. Some keywords (e.g., autonomous 

vehicle, connected and autonomous vehicle, self-driving car, driverless car, public 

perceptions, opinions, willingness, attitude, opportunities, and challenges) were used as the 

search terms to identify related articles. Widely used databases such as ScienceDirect, 

Scopus, SAGE Journals, SpringerLink, Taylor & Francis, and Web of Science, Google 

Scholar, and the website of different organizations, are the main platforms to identify 

articles and reports suitable for inclusion in the review process. Items were selected based 

on the following criteria: 

1) Whether the article/report is written in English;  

2) Whether the study was conducted within the last five years; and  
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3) Whether the study has evaluated perceptions and opinions on AVs. 

A few studies conducted before 2015 are included in this review for a more 

comprehensive scan of scenarios and technological developments related to AVs and 

Connected and Autonomous Vehicles (CAVs). The search identified more than 100 articles 

and reports. However, after closer examination, 50 were deemed pertinent to the objectives 

of the study and are included in this state-of-the-art review study. Of these items, 62% have 

been published in just two periodicals, namely Transportation Research Part C: Emerging 

Technologies (32%) and Transportation Research Part F: Traffic Psychology and 

Behaviour (30%). About 90% of the selected items were published between 2015 and 2020, 

while only 10% were published before 2015. During the selection process of published 

works, the researchers were careful to select them from different study contexts to get a 

comprehensive review. Finally, these research items were critically analyzed to understand 

people’s perceptions and opinions about AVs and identify the factors that influence AV 

adoption. 

 

 

 

 

 

 

2.2 Attributes of reviewed articles and reports 

Different attributes (e.g., authors, study contexts, data sources, sample size, and 

methods) of articles and reports reviewed for this review study are reported in Table 2.1. 

Keywords 

identification 

Literature 

search 

English? 

Last five 

years? 

Public 

perceptions? 

Inclusion in 

the review 

Critical review 

and analysis 

Figure 2.1: Selection procedures of scholarly work and study approach 
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The table indicates that 32.31%, 27.69%, and 26.15% of articles/reports have been 

conducted in North American, European countries, and Asian countries, respectively; also, 

13.85% of studies are about the Australian context. Most of the studies (80%) conducted 

web-based or face-to-face household questionnaire surveys to collect information on 

people’s perceptions and opinions on AVs. However, a handful of studies (14%) performed 

experiments and collected data from the participants of driving simulators. There is high 

variability in sample sizes in the various studies. The smallest sample (i.e., 19) is used in 

Hilgarter and Granig (2020), while Shin et al. (2019) collected data from 246,642 

individuals, which adequately represent the population of the study area. Table 2.1 also 

indicates that studies have used a variety of statistical and econometric models to 

conceptualize people’s perceptions of AVs and associated factors. 

Table 2.1: Characteristics of reviewed articles and reports 

Author Study area Data source Sample size Methodology 

(Panagiotopoulos & 

Dimitrakopoulos, 

2018) 

Athens, Greece Online survey 483 SEM, FA 

(Xu et al., 2018) Xi'an, China Participants in a field 

test 

300 SEM, FA, MLR 

(Rahman et al., 2017) Boston, MA Participants in 

driving simulator, 

online survey 

430 SEM, FA, MLR 

(Bansal et al., 2016) Austin, USA Online survey 347 OPM, SUM 

(Kyriakidis et al., 

2015) 

109 countries Online survey 4886 DS 

(Schoettle & Sivak, 

2014b) 

US, UK, and 

Australia 

Online survey 1533 DS, ANOVA 

(Schoettle & Sivak, 

2014a) 

China, India, and 

Japan 

Online survey 1722 DS, ANOVA 

(Underwood & 

Firmin, 2014) 

Expert around the 

world 

Expert opinion from 

AV Symposium, 

2014 

217 DS 

(Howard & Dai, 

2014) 

Berkeley, 

California 

Opinion of museum 

visitors 

107 MNL, LLM  

(Begg, 2014) London, UK Survey of transport 

professionals 

3500 DS 

(Bazilinskyy et al., 

2015) 

112 countries of 

the world 

Online survey 8862 DS 

(Piao et al., 2016) La Rochelle, 

France 

Online and telephone 

survey 

425 DS 
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(Salonen, 2018) Vantaa, Finland Participants with 

experience of 

driverless shuttle 

197 DS, ANOVA 

(Shin et al., 2015) Six cities in South 

Korea 

Stated preference 

survey 

633 MDCP, MNP 

(Krueger et al., 2016) Adelaide, 

Brisbane, 

Melbourne, Perth, 

Sydney 

Stated preference 

survey 

435 MLM 

(Haboucha et al., 

2017) 

Israel 

and North America 

Stated preference 

survey 

721 LKM, FA 

(Daziano et al., 2017) USA Online survey 1260 CLM, PRPLM, 

SRPLM 

(König & Neumayr, 

2017) 

33 countries Online survey 489 DS 

(Nazari et al., 2018) Washington, USA Travel survey 2726 OPM, SEM 

(Zhang et al., 2018) Atlanta, USA Travel survey 10278 LRM, MIP 

(Talebian & Mishra, 

2018) 

Memphis, USA Questionnaire survey 327 DS 

(Kapser & 

Abdelrahman, 2020) 

Germany Online survey 501 SEM 

(Zhang et al., 2020) China Questionnaire survey 647 SEM 

(Gurumurthy & 

Kockelman, 2020) 

USA Online survey 2588 MNL 

(Shin et al., 2019) Japan Online survey 246642 MLR, OLR 

(Wadud & Huda, 

2019) 

Bangladesh Online survey 621 MLR 

(Laidlaw et al., 

2018b) 

Toronto and 

Hamilton Area, 

Canada 

Online survey 3201 PM 

(Bansal & 

Kockelman, 2017) 

USA Online survey 2167 BLM, WMNL 

(Webb et al., 2019) Brisbane, Australia Household survey 447 MNL 

(Bansal & 

Kockelman, 2018) 

Texas, USA Online survey 1088 OPM 

(Kaur & Rampersad, 

2018) 

Adelaide, Australia Online survey 101 FA 

(Hulse et al., 2018) UK Online survey 916 MNL 

(Kaye et al., 2020) Australia Online survey 505 MLR 

(Xu & Fan, 2019) China Online survey 1164 DS, ANOVA 

(Clark et al., 2019) UK Experimental study 30 ANOVA, PC 

(Faas et al., 2020) Germany Experimental study 59 ANOVA, HLM 

(Rahimi et al., 2020) US Stated preference 

survey 

1390 SEM 

(Hilgarter & Granig, 

2020) 

Austria Face-to-face 

interviews 

19 DS, qualitative 

analysis 

(Castritius et al., 

2020) 

Germany and 

California 

Online survey 536 FA, SEM, LRM 

(Penmetsa et al., 

2019) 

Pennsylvania, USA General public 

survey 

798 DS 

(Nordhoff et al., 

2020) 

Eight European 

countries 

Online survey 9118 FA, SEM 

(Hagl & Kouabenan, 

2020) 

Germany Experimental study 101 DS, FA, 

ANOVA 
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(Ha et al., 2020) Korea Experimental study 48 DS, FA, 

ANOVA, MLR 

(X. Wang et al., 

2020) 

Singapore Face-to-face 

interviews 

353 FA, SEM 

(Zhu et al., 2020) Beijing, China Face-to-face 

interviews 

355 FA, SEM 

(S. Wang et al., 2020) USA Online survey 721 FA, MNL 

(Chen, 2019) Taiwan Face-to-face 

interviews 

700 FA, SEM, 

ANOVA 

(Yuen et al., 2020) Seoul, Republic of 

Korea 

Online survey 526 FA, SEM 

(Feys et al., 2020) Brussels, Belgium Online survey 529 DS, HLM 

(Zmud & Sener, 

2017) 

Austin, TX, USA Online survey 556 DS 

 

DS = Descriptive Statistics, ANOVA = Analysis of Variance, PC = Pearson Correlation, SEM = Structural 

Equation Model, FA = Factor Analysis, MLR = Multiple Linear Regression, BLM = Binary Logit Model, 

MNL = Multinomial Logit, WMNL = Weighted Multinomial Logit Model, PM = Probit Model, OPM = 

Ordered Probit Model, OLR = Ordered Logistic Regression, SUM = Seemingly Unrelated Model, MDCP = 

Multiple Discrete–Continuous Probit, MNP = Multinomial Probit Model, MLM = Mixed Logit Model, LKM 

= Logit Kernel Model, CLM = Conditional Logit Model, PRPLM = Parametric Random Parameter Logit 

Model, SRPLM = Semiparametric Random Parameter Logit Model, LLM = Log-Linear Regression, LRM = 

Logistic Regression Model, MIP = Mixed-Integer Programming, HLM = Hierarchical Linear Model 
 

The key concepts discussed in the reviewed papers are identified in Figure 2.2. The 

majority of studies (80%) collected socioeconomic information on the respondents and 

investigated their effects on the decision-making process to adopt AVs. A considerable 

number of studies explored people’s knowledge of AVs (42%) and opportunities and 

challenges (40%) towards the increase of AV market share. A nearly equal number of 

studies (34% and 32%) investigated the influence of psychological and transportation 

factors on AVs adoption, respectively. About 24% of studies discussed people’s inclination 

to adopt and use AVs. The influence of urban form (20%) and technology savviness (14%) 

on AVs adoption was mentioned in a relatively small number of studies. The condition and 

effects of institutional settings were described by only 4% of studies. Considering the 

significant implications of psychological and socioeconomic attributes, transportation 

factors, urban form, technological innovation, and institutional regulations and guidelines 
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in motivating people towards AVs, their detailed discussion in different study contexts with 

a diverse background of customers is crucial. 

 
Figure 2.2: Key concepts discussed in the reviewed articles 

3. Synopsis of previous literature 

3.1 Contextualization of the factors of AV adoption 

A conceptual framework is proposed to cohesively articulate the factors that 

influence people towards adoption and use of AVs. Figure 2.3 shows the factors that fit 

this framework, and the interactions between them; this review espouses the structure 

conveyed by this framework. The framework is centered on the individual person and/or 

household positioning themselves with respect to the AV mobility option in terms of 

espousing adoption and use of AVs or against it. Some factors are internal and pertain to 

the psychology and cognition of technological change, and innovation, risk aversion, trust, 

sense of usefulness. Affinity to new technologies also influences individuals towards AVs. 

For example, people are interested to adopt and use vehicles if the vehicles are equipped 

with cutting-edge technologies (e.g., automated speed control, braking and parking, 

collision warning, blind-spot detection, lane-changing warning). Increasing trust in AVs to 
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reduce accidents induces people to use AVs. Thus, these factors significantly affect the 

decision-making process of consumers to adopt and use AVs. 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

Other internal factors include various user attributes (i.e., socioeconomic features) 

that condition attitudes and willingness to adopt. For example, people with higher income 

and educational attainment are more willing to adopt and use AVs. User attributes also 

affect AV adoption and use indirectly, by influencing psychological factors of potential 

users regarding AVs.  
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factors 

Psychological 

factors 

Institutional 

factors 

Urban 

form 

Density, land use, 

urban/rural status 

Ease, usefulness, risk, 

safety, trust, influence 

Transport mode, purpose, 

distance, and price 

Incentives, regulations, 
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Figure 2.3: Contextualization of the factors that influence AV adoption and use 
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Other factors are exogeneous, such as factors of urban form (e.g., urban/rural, density, 

land use diversity), which may also influence AV adoption outcomes by shaping people’s 

preferences. For example, urban residents are more interested to adopt and use AVs 

compared to rural people. 

Exogeneous factors also encompass transportation factors (e.g., travel mode, 

distance, and time) and the institutional context of policies and politics. For example, 

people who mostly use public transportation are interested to use SAVs, while people who 

drive to destinations are more interested in owning their personal AVs. The ambient 

technologies and attitudes towards them form a socio-technical context that may evolve 

over time. Increasing trust in AVs to enhance traffic safety may induce more people to use 

AVs. 

3.2 People’s willingness to use AVs and their associated factors 

Investigating the willingness of people to adopt and use AVs, most studies observed 

that people are unwilling to spend more money to adopt and use personal AVs or add AV 

technologies to their vehicles (Bansal & Kockelman, 2017; König & Neumayr, 2017; 

Nazari et al., 2018). Rather, they are more interested to ride an AV than owing or leasing 

an AV (König & Neumayr, 2017). Despite higher price, close to half the respondents 

(48.72%) in Washington State showed an interest in personal AVs for commuting purposes 

due to convenience associated with AVs (Nazari et al., 2018). Surveying in the US, Bansal 

and Kockelman (2017) also found that about 45.8 to 50.7% of respondents showed a certain 

interest in AV technologies.  

As indicated in Table 2.2, studies have also shown that the most important factors 

that control people’s willingness to use AVs include several socio-economic traits (e.g., 
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higher household income, presence of children in the household), personal attitudes like 

being tech savvy, mobility conditions (car ownership, driving alone, travel assistance for 

disadvantaged people, better connectivity, driving scope on freeways and inner-city roads, 

and technological advancements (higher traffic safety and burden of driving) (Bansal et al., 

2016; Shin et al., 2015; Shin et al., 2019). In contrast, the most prominent factors that 

dampen people’s willingness to use AVs include socio-economic traits (holding a driver’s 

license), personal attitudes (security, ride sharing attitudes), mobility aspects (driver’s 

license, driving on local roads only), costs (vehicle purchase and maintenance cost), and 

technological advancements (cybersecurity) (Bansal et al., 2016; Gurumurthy & 

Kockelman, 2020; Shin et al., 2019). Reduction in purchase and operating costs could 

increase the willingness of the people to use AVs. For example, reducing travel costs from 

$1/mile to $3/mile can increase people’s interest from 3% to 41% to use AVs in the US 

(Bansal et al., 2016). Thus, overall ownership and maintenance costs could significantly 

determine people’s willingness to adopt and use AVs.   

Table 2.2: Factors influencing people’s willingness to use AVs 

Study Positive factors Negative factors 

(Bansal et al., 

2016) 

Social acceptance, reliability, high income, 

tech savvy, presence of children, driving 

alone, urban living, higher VMT, long 

commute. 

Holding license, living in 

job-dense areas, elderly, 

familiarity with carsharing 

and ridesharing. 

(Bansal & 

Kockelman, 2018) 

Familiarity with Google car, supportive of 

government intervention, high income, 

higher VMT, experienced fatal crashes, 

connectivity. 

Holding license, elderly, 

living in dense area, living 

far away from transit 

stations, familiarity with 

ride-sourcing services. 

(Kyriakidis et al., 

2015) 

Higher VMT, experience with automatic 

cruise control feature, male, higher income. 

- 

(Shin et al., 2015) Cutting edge AV features. High purchase price, 

concerned about safety. 

(Gurumurthy & 

Kockelman, 2020) 

Long-distance business travel, high income, 

college educated, employment density. 

Higher travel time, elderly, 

presence of a worker in 

household, holding driver's 

license, population density. 
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(Shin et al., 2019) Male, travel assistance for elderly, high 

income, children in household, car 

ownership, AV features. 

Higher purchase and 

maintenance cost, 

information leakage to 

third parties, long travel 

time, driving on local 

roads, driver license. 

(Laidlaw et al., 

2018b) 

High income, male, possession of a 

smartphone, employment density, 

familiarity with and user of shared mobility. 

Unaware of Google car. 

(Webb et al., 2019) High income, environmentally aware, open 

to public transport and ride-sharing options. 

- 

(Bansal & 

Kockelman, 2017) 

Long travel distance, experienced with 

automated features. 

- 

 

Some studies have investigated people’s attitudes (i.e., positive, negative) towards 

AVs. Using user opinion surveys, it is often found that most people have a positive 

intention to adopt and use AVs due to the improved accessibility they afford for all, to 

various amenities, cutting-edge technologies, and potentiality to enhance traffic safety 

(Feys et al., 2020; Howard & Dai, 2014; S. Wang et al., 2020). Surveys in multiple 

countries point that 52.2 to 61.9% of respondents in Australia, the US, and the UK 

(Schoettle & Sivak, 2014b) and 43 to 87.4% of respondents in China, India, and Japan 

(Schoettle & Sivak, 2014a) have a positive impression of vehicle automation. Also, only 

11.3 to 16.4% of respondents have some negative impression in Australia, the US, and the 

UK, due in large part to legal liabilities, privacy concerns, and safety issues (Schoettle & 

Sivak, 2014b).   

Investigating positive and negative attitudes towards automated driving in 112 

countries, Bazilinskyy et al. (2015) found that 39% of respondents showed a positive 

attitude and 23% showed a negative attitude to AVs. Researchers in Athens, Greece 

(Panagiotopoulos & Dimitrakopoulos, 2018) found that 58% and 12% of respondents have 

positive and negative perceptions about AVs, respectively. Piao et al. (2016) observed that 

66.67% of respondents in the city of La Rochelle, France, would like to experience 
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automated buses, even if there are human-operated buses on the street.  These studies 

demonstrate that more people have positive perception of AVs and they are interested to 

use AVs in the near future as it seems safe, comfortable, fun, and easy to navigate, despite 

some uncertainties (e.g., emergency reactions, technical failure, and cyber-attack) (Feys et 

al., 2020). 

Surveying in the US, S. Wang et al. (2020) found that 36.7% of respondents have a 

positive outlook on AVs and 21.8% have a negative outlook. This study also found that the 

people who own smart devices and are familiar with AVs are more inclined to own and use 

AVs. Over 40% of respondents in Berkeley, California (Howard & Dai, 2014) and about 

30.2% of respondents in California (Castritius et al., 2020) are positive to purchase AVs or 

retrofit their current vehicles with such technologies. About 24% and 57% of respondents 

in Austin, TX would like to add Level 3 and Level 4 automation in their next vehicles 

(Bansal et al., 2016). In the same study context,  researchers in (Zmud & Sener, 2017) 

found that 59% of respondents are interested to own an AV and 41% would like to share 

AVs. Surveying vulnerable road users (e.g., pedestrians, cyclists) in Pittsburgh, PA, 

Penmetsa et al. (2019) found that many respondents (nearly 70%) approve AVs on the 

street because they did not find any difference between AVs and human-operated vehicles 

and did not experience any negative interaction with AVs (i.e., unexpected movement of 

AVs). However, some researchers (Bansal & Kockelman, 2018; S. Wang et al., 2020) 

argued that many Americans are not yet confident and ready to use AVs for work and non-

work trips due to associated legal and safety uncertainties, but would be major consumers 

of AVs compared to people from other parts of the world.  
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Investigating perceptions and attitudes of populations, researchers reported that many 

people would be interested to adopt this novel technology. These studies applied various 

existing theories such as the Theory of Reasoned Action (TRA), Theory of Planned 

Behavior (TPB), Technology Acceptance Model (Ajzen, 1985; Davis, 1985; Fisbein & 

Ajzen, 1975) to conceptualize and understand the factors that influence the Behavioral 

Intention (BI) of people to adopt AVs. According to these theories, human BI to actual AV 

use is directly influenced by behavioral control factors (e.g., socioeconomic and travel 

factors), objective factors (i.e., urban form), and psychological factors (i.e., perceived 

usefulness and perceived ease of use). Additionally, the model indicates that the actual use 

of AVs also depends on the availability of novel technology (e.g., EV, solar panel) and 

people’s affinity towards new technologies. Socioeconomic factors also indirectly affect 

AV use by influencing objective factors, psychological factors, and the affinity of the 

people towards a technology. 

3.3 Opportunities and challenges to adopt autonomous vehicles 

A considerable number of studies have investigated people’s opinions and 

perceptions on the opportunities and challenges to adopt and use AVs. As reported in Table 

2.3, there are many social, economic, transportation, environmental, technical, legal, and 

institutional opportunities and challenges for the successful implementation of AVs. 

Table 2.3: Respondents opinion on opportunities and challenges to adopt AVs 

Author Opportunities (%) Challenges (%) 

(Panagiotopoulos 

& 

Dimitrakopoulos, 

2018) 

Solution to many problems (88%), easy to 

operate (64%), clear and understandable 

interaction (69%), easy to become skillful 

(66%), useful to meet driving needs (46%), 

safe travel (44%), interesting travel (38.3%), 

low crashes (55.3%) 

Safety concern (55%), waste of 

time (65.6%), make life more 

complicated (58.8%), do not 

increase social status (33%) 

(Bansal et al., 

2016) 

Reduction in crash (63%), talk or text to other 

(75%), surf the internet 36%), email while 

driving (45.2%) 

Interactions with conventional 

vehicles (48%), affordability 
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(38%), equipment or system 

failure (50%) 

(Schoettle & 

Sivak, 2014b) 

Fuel economy (72%), travel time saving 

(43%), few crashes (70.4%), reduced severity 

of crash (71.4%), improved emergency 

response (66.9%), low emission (66.3%), low 

insurance cost (55.5%), less traffic congestion 

(51.8%) 

System failure (80.7%), legal 

liability (74.1%), system security 

(68.7%), vehicle security 

(67.8%), data privacy (63.7%), 

interacting with conventional 

vehicles (69.7%), interacting with 

pedestrians/bicyclists (69.8%), 

learning to use AV (53.5%), 

system performance in poor 

weather (62.8%), unexpected 

situation (75.7%), no driver 

control (54.3%) 

(Schoettle & 

Sivak, 2014a) 

China: Few crashes (85.7%), reduced severity 

of crash (85.1%), improved emergency 

response to crash (88.8%), shorter travel time 

(78.3%), low insurance cost (78.5%). 

India: less traffic congestion (72.3%), better 

fuel economy (85.9%) 

China: system failure (68.0%), 

legal liability (55.1%), interacting 

with pedestrians and bicyclists 

(42.6%), system performance in 

poor weather (59.6%), AVs 

confused by unexpected situations 

(56.1%) 

India: system security (54.6%), 

Vehicle security (57.3%), data 

privacy (50.9%), learning to use 

AVs (43.6%) 

(Howard & Dai, 

2014) 

Safe (75%), convenience (61%), amenities 

(e.g. ability to text message or multitask while 

driving) (53%) 

Liability (70%), cost (60%), lack 

of control (53%) 

(Piao et al., 2016) Increased mobility (58%), reduced fuel 

consumption and emission (56%), low bus 

fares (64%), low insurance rates (53%), low 

parking costs (49%), safer driving (36%), 

reduced taxi fares (36%), allows to do other 

things (20%), improved safety (80% for 

automated bus, 89% for automated car) 

Equipment/system failures (66%), 

legal liability (56%), vehicle 

security (54%) 

(Gurumurthy & 

Kockelman, 2020) 

Comfortable with data sharing for policy 

purpose (48%) 

Privacy concern (89%), unwilling 

to pay to anonymize location 

(39.8%), oppose data sharing for 

advertising purposes (50%)  

(Shin et al., 2019) Reduced traffic crashes and improved comfort 

and convenience (37.3%), no need for driver’s 

license (12%), reduced mobility and crashes 

related problems of elderly persons (50%) 

Technological dependability 

(43.48%), vehicle safety 

(31.43%) of FAV, cost of new 

and not-yet-available technology 

(25.26%) 

(Bansal & 

Kockelman, 2017) 

Enjoyable (75.7%), Advance technology 

(54.4%), comfortable (19.5%), reliable (49%), 

Omnipresent in future (41.4%), comfortable 

to transmit information to other vehicles 

(50.4%), to vehicle manufacturers (42.9%), to 

insurance companies (36.4%) and to toll 

operators (33.3%), trust technology 

companies (62.3%) and luxury vehicle 

manufacturers (49.5%), willing to use for 

everyday trips (40%) 

Fear of technology (58.4%), not 

realistic (44%), unwilling to use 

for short distance (42.5%) and 

long-distance (40%) trips 
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(Bansal & 

Kockelman, 2018) 

Talking to others (59.5%), looking out the 

window (59.4%), fuel economy (53.9%), 

crash reduction (53.1%), emergency 

notification (71.5%), vehicle health reporting 

(68.5%), use of AVs for all trips (33.9%) and 

social or recreational trips (24.7%) 

Congested streets (36.1%) 

(Rahimi et al., 

2020) 

Improved safety (43.3%), reduced driving 

stress (40.6%), better technology (30.8%), 

collision avoidance (52.9%), improved fuel 

efficiency (46.5%), lane-keep assistance 

(26.5%). 

Data privacy (58.4%), trust issue 

(46.6%), reliability (48.7%), 

higher travel time (64.8%) 

(Kaye et al., 2020) Reduction of human error in crashes 

(35.64%), multi-tasking (30%), reduction of 

risk-taking behaviors (29.3%) 

High cost (59.21%), lack of trust 

(32.1%), no control of vehicle 

(37.22%), technology 

malfunction (34.26%), safety for 

self and others (20%), safety of 

vehicle (21.39%), loss of driving 

skill (14.1%) 

(Castritius et al., 

2020) 

 Reliability (California: 30.1%, 

Germany: 25.0%), problems 

when entering/exiting the 

highway (Cal: 23.9%, Ger 

25.4%), issues with cut-in 

vehicles (Cal: 15.3%, Ger: 

18.7%) 

(Hilgarter & 

Granig, 2020) 

Feel safe (84.2%) Lack of confidence in technology 

(10.5%) 

(Zmud & Sener, 

2017) 

 Lack of trust in technology 

(41%), safety (24%), cost (22%), 

Concern about using internet and 

internet enabled technologies 

(51%), privacy concerns (71%)  

(Nordhoff et al., 

2020) 

Easy to use (71.06%), easy to become skillful 

to use AV (60.35%), use of travel time for 

secondary activities (41.85%), fun to drive 

(53.21%), enjoyable (52.54%), use for 

everyday trips (53.45%), meet daily mobility 

needs (53.27%), entertaining (51.04%), reach 

destination safely (48.67%) 

 

(Penmetsa et al., 

2019) 

Improved road safety (62%), safe to share 

with other modes of transportation (43%), 

reduced traffic fatalities and injuries (67%)  

Set regulation for AV testing 

(70%) 

(Xu & Fan, 2019) Trust (51.32%), lower insurance rates 

(45.28%), willing to pay more (69.24%) 

Increased risk (43.86%) 

(Nazari et al., 

2018) 

Reduced congestion (22.96%)  

(Chen, 2019) Novelty technology (75.7%), low pollution 

(18.4%), integration with public 

transportation (3.7%) 

 

 

Traffic safety and security from crashes, reliability and confidence in technology, 

system failure due to poor internet connection and virus attach, and losing control of car 
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are regarded as people’s prime concerns (Bansal & Kockelman, 2018; Kaur & Rampersad, 

2018; Talebian & Mishra, 2018). Nazari et al. (2018) have found safety concerns to have 

the highest marginal effect on AV adoption (i.e., a one-unit decrease in safety concern may 

reduce the probability of people’s willingness to adopt AVs by over 100%). Unattended 

drop-offs and pick-ups of children and the anticipated increased number of pedestrian 

traffic crashes may make AV adoption more challenging (Kaur & Rampersad, 2018). Thus, 

it is imperative to increase the perceived safety and security of people to boost AV 

adoption. Similar to traffic safety concern, the lack of personal data privacy from hackers 

(i.e., location tracking, surveillance) poses a major threat to adopt and use AVs (Haboucha 

et al., 2017; Hilgarter & Granig, 2020; Rahimi et al., 2020). Thus, the protection of personal 

privacy is critical to encourage the public to use AVs.  

A considerable number of studies have mentioned that the current immature 

development of AV technologies, insufficient institutional infrastructure, and absence of 

integration with the existing traffic environment would cause major legal challenges for 

vehicle owners, manufacturers, and insurance companies (Castritius et al., 2020; Howard 

& Dai, 2014; König & Neumayr, 2017). The inadequate legal resolutions and institutional 

setup are leading causes of lagging development of AV technologies and of the lower level 

of acceptance in the public (Hilgarter & Granig, 2020). However, people who are 

passengers of a vehicle have less legal concern compared to the drivers of the vehicles due 

to the legal liability for the drivers and owners of the vehicles (Schoettle & Sivak, 2014b). 

Besides, the high initial cost of AVs and high maintenance cost would restrict people 

particularly from low- and medium-income groups to purchase and use AVs (Hilgarter & 

Granig, 2020; Howard & Dai, 2014; Talebian & Mishra, 2018). Thus, affordability among 
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certain socio-economic groups could be another major challenge for increasing market 

share of AVs (Bansal & Kockelman, 2018).   

Researchers also mentioned that people who value fuel economy (Howard & Dai, 

2014) and greener transportation (Haboucha et al., 2017; Talebian & Mishra, 2018) are 

more interested in adopting and using AVs compared to their counterparts. Similarly, 

mobility for disadvantaged people (e.g., elderly, disabled) (König & Neumayr, 2017; 

Talebian & Mishra, 2018) and improved  amenities and services (Howard & Dai, 2014; 

Rahimi et al., 2020) motivate people to use AVs. Moreover, the possibility afforded by 

AVs to reduce traffic congestion and travel time, and people’s engagement in other 

activities, and social recognition induce them to adopt and use AVs (König & Neumayr, 

2017; Nazari et al., 2018; Rahimi et al., 2020).  

The extant literature shows that the potentiality of AVs to reduce accidents and 

congestion, better amenities to engage in other activities, and proper integration with public 

transportation could motivate people to use AVs. On the other hand, high costs, security 

issues, system failure, and violation of personal privacy discourage people to adopt AVs. 

In conclusion, these opportunities need to be nurtured and ensured and challenges should 

be minimized to increase public acceptance of AVs. 

3.4 Psychological factors of AV adoption 

Most studies have investigated the influence of psychological factors on the 

behavioral intentions of people to adopt and use AVs. Taking Behavioral Intention (BI) to 

adopt and use as the dependent variable, these studies have estimated the impacts of 

Perceived Usefulness (PU), Perceived Trust (PT), Perceived Ease to Use (PEU), Social 

Influence (SI), and Traffic Safety (TS) on AV adoption and use. These studies have 
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mentioned that different psychological factors significantly influence the adoption and use 

of AVs. Compared to other factors (e.g., socioeconomic and demographic, built 

environment), psychological factors solely explain 43.7% (Panagiotopoulos & 

Dimitrakopoulos, 2018), 67.8% (Kaye et al., 2020), 69% (Yuen et al., 2020), 71% (Rahman 

et al., 2017), and 76% (Kapser & Abdelrahman, 2020) variation in the BI of the people to 

adopt and use AVs. Table 2.4 shows the impacts of different psychological factors on the 

BI of people to adopt and use AVs, as expressed by the standardized coefficients of the 

factors on BI. 

Table 2.4: Impacts (standardized coefficient) of psychological factors on BI to adopt AVs 

Authors PU  PT  PEU SI TS PR PBC TA PS 

(Panagiotopoulos & 

Dimitrakopoulos, 2018) 

0.52 0.15 0.13 0.14      

(Xu et al., 2018) 0.43 0.12 0.19  0.14     

(Rahman et al., 2017) 0.80  0.13 0.10      

(Zhang et al., 2020) 0.13 0.37 0.14 0.10      

(Kapser & Abdelrahman, 

2020) 

0.23  -0.05 0.17  -0.17   -0.28 

(Castritius et al., 2020) 0.49  0.29       

(Nordhoff et al., 2020) 0.14  0.05 0.40      

(Zhu et al., 2020) 0.42     -0.11    

(Chen, 2019) 0.35 0.04        

(Yuen et al., 2020) 0.45 0.45        

(Kaye et al., 2020) 0.64   0.30   -0.05   

(Rahman et al., 2017) 0.29   0.05   -0.05   

(Chen, 2019) 0.22 0.13 0.43       

(Zhang et al., 2020)  0.20  0.10      

(Hulse et al., 2018)      -0.24    

(X. Wang et al., 2020)        -0.11  

(Zhu et al., 2020) 0.42   0.09  -0.11    

BI = Behavioral Intention, PU = Perceived Usefulness, PT = Perceived Trust, PEU = Perceived Ease of Use, 

SI = Social Influence, TS = Traffic Safety, PR = Perceived Risk, PBC = Perceived Behavioral Control, TA 

= Technology Anxiety, PS = Price Sensitivity. 

Table 2.4 indicates that PU has the strongest impact on BI compared to other factors. 

A sense of usefulness by adding autonomous features to vehicles such as Adaptive Cruise 

Control (ACC), self-parking assistance, and vocal interactions positively influences 

people’s BI to use AVs (Clark et al., 2019; Nordhoff et al., 2020; Shin et al., 2015). 



28 
 

 
 

Usefulness also increases when people can engage in other activities (e.g., talking on the 

phone, reading) while traveling in AVs (Wadud & Huda, 2019). Additionally, PEU of AV 

has a significantly positive effect on PU of AVs (Chen, 2019). However, familiarity with 

smart phone and smart vehicle technologies, prior knowledge, and experience of AVs 

could increase the impacts of PU and PEU on BI and correlations among themselves (Clark 

et al., 2019; Nordhoff et al., 2020). Performing a study considering before and after AV 

experience, Xu et al. (2018) mentioned that prior AV experience increases PU by 0.08 unit, 

PEU by 0.12 unit, , and BI by 0.02 unit. This study also estimated that sociodemographic 

factors (e.g., age, gender, income, and driving experience) have a very limited influence 

on BI to AV adoption compared to psychological factors, which is also supported by other 

studies (Kapser & Abdelrahman, 2020; Zhang et al., 2020).  

Researchers have considered PT on technology as one of the most important 

psychological factors that induce people to adopt AVs (Table 2.4). Vehicles equipped with 

ADAS increase the trust of the users by reducing the probability of crashes and increasing 

the controllability of risky driving compared to vehicles without ADAS technology 

(Castritius et al., 2020; Ha et al., 2020; Hagl & Kouabenan, 2020). Moreover, an external 

human-machine interface that displays information could increase BI towards AVs by 

increasing safety, trust, intelligence, and transparency (Faas et al., 2020). Trust increases 

when AVs become predictable and understandable, complete tasks accurately and 

correctly, and allow users to get control of the vehicle when they desired (Haboucha et al., 

2017; Yuen et al., 2020). Researchers (Zhang et al., 2020) mentioned that personality traits 

have a significant influence on the trust of individuals in AVs. For example, open-

mindedness and sensation seeking have a positive effect on trust, while neuroticism (i.e., 
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frequently changing mode) and agreeableness have negative effect on trust. Thus, it is 

imperative to build trust of users by promoting AVs rather than only focusing on usefulness 

and ease of use to increase acceptance of AVs.  

Some studies have reported that PR affects the BI of people (Table 2.4). Fear of 

crashes, cyber-attack, operating speed, inclement weather, and sharing AVs with unknown 

persons could be the main causes of perceived risk. People perceive a higher risk when 

AVs are operated at a slow speed on a clear day, whereas people perceive a lower risk 

when AVs are operated at a slow speed on a snowy night (Ha et al., 2020). Self-identity 

concern (i.e., AV is a threat to their personal identity as a driver) adversely influences users' 

willingness to use AV technologies (X. Wang et al., 2020). Thus, people show negative 

attitudes to AVs and are unwilling to share AVs with unknown persons to avoid risk (S. 

Wang et al., 2020).  

Many studies have reported that social norm and conformity (i.e., influence from 

relatives, friends, and neighbors) influence BI to use AV (Table 2.4). Bansal and 

Kockelman (2018) found that about 47% of Texans are willing to adopt AVs when their 

friends also do so. Similarly, Bansal et al. (2016) reported that about half of the respondents 

would adopt AVs after the adoption of AVs by their relatives, friends, and neighbors which 

confirms that people's willingness to use AVs  is partly influenced by social norms and 

status symbol. Social influence positively affects PU, PEU, and PT, consequently 

determine whether people would use AVs or not (Zhang et al., 2020). 

The higher price of the vehicle and travel costs could negatively affect BI to use AVs. 

Kapser and Abdelrahman (2020) reported that price sensitivity (i.e., how demand changes 

with changing price of a product) is the strongest factor to influence BI to use AVs 
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compared to performance expectancy, hedonic motivation, perceived risk, social influence, 

and facilitating conditions.  

Some studies have mentioned that confidence and self-efficacy (i.e., capabilities) of 

users, relative advantages, observability, compatibility, trialability, and pro-AV attitudes 

directly drive people's intentions to adopt and use AVs (Chen, 2019; Yuen et al., 2020; Zhu 

et al., 2020). Similarly, extant studies observed that enjoyment, comfort and convenience, 

and hedonic motivation (i.e., fun, enjoyable, entertaining) positively influence people’s BI 

to use AVs (Chen, 2019; Feys et al., 2020; Kapser & Abdelrahman, 2020). People’s 

willingness to adopt and use AVs also increases because of perceived value (i.e., offer 

superior benefits, more utility) and performance of AVs  (Rahman et al., 2017; Yuen et al., 

2020). Perceived value also indirectly increases people’s BI by increasing trust and 

reducing risks through addressing individual's expectations, offering more incentives, 

increasing safety and reliability. In contrast, losing control of vehicles, obsession for 

luxury, image and prestige, and complexity reduce people’s intentions to use AVs (Howard 

& Dai, 2014; Sparrow & Howard, 2017).  

This discussion based on previous studies underscores that PU, PT PEU, SI, and TS 

motivate people to use AVs. On the other hand, PR, TA, and high price reduce intentions 

of people to adopt AVs. Thus, psychological factors have significant contributions to 

define people’s BI to adopt and use AVs.  

3.5 People’s knowledge and experience of AVs 

Prior knowledge about AVs is considered as one of the main factors that can influence 

people towards AVs. Recent studies have reported that most participants are unfamiliar 

with AVs and are unaware of automated cars that are already plying the streets of a number 
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of cities (Bansal & Kockelman, 2018; Laidlaw et al., 2018b). Additionally, the vast 

majority of people (i.e., 99%) have never had any experience of an AV in their life (Kaur 

& Rampersad, 2018; Rahman et al., 2017). There is strong evidence that awareness and 

information on the perceived benefits of AVs may motivate AV adoption and willingness 

to pay for AV services (Daziano et al., 2017; Feys et al., 2020; Hilgarter & Granig, 2020). 

Thus, there is an imperative need to better inform the general population about AVs to 

level the plane field and increase their market share.  

Table 2.5 shows the status of prior knowledge of people on AVs across various 

studies. Although the table shows that many people (from 49 to 98.80% in various studies) 

have heard of AVs, in reality, most of them have very limited idea about AVs and have 

seldom experienced AV rides. Many people consider anti-lock braking systems, which are 

very basic in the strata of vehicle autonomy as a form of automation (Bansal et al., 2016). 

Thus, most people have scant knowledge of AVs and their level of autonomy (i.e., partial 

human control to no control) due to limited availability of AVs for private use. People 

mainly receive generic information on AVs from mass media and social media, which 

indicates that AVs are still not a tangible reality that people can well relate to (Zhu et al., 

2020).  

Table 2.5: Knowledge of respondents on AVs 

Author Heard of AVs (%) 

(Panagiotopoulos & Dimitrakopoulos, 2018) 71.4% 

(Xu et al., 2018) 94.3% 

(Rahman et al., 2017) 63% 

(Bansal et al., 2016) 80% (Google car), 47% (CAV) 

(Kyriakidis et al., 2015) 52.2% 

(Schoettle & Sivak, 2014b) 66% overall (70.9% in USA, 66% in UK and 

61% in Australia) 

(Schoettle & Sivak, 2014a) 87% (China), 73.8% (India), 57.4% (Japan) 

(Piao et al., 2016) 87% 

(König & Neumayr, 2017) Over 95% 



32 
 

 
 

(Zhang et al., 2020) 98.8% 

(Kapser & Abdelrahman, 2020) 49% 

(Wadud & Huda, 2019) 90% 

(Bansal & Kockelman, 2018) 59% 
(Xu & Fan, 2019) 94.67% 

(Kaye et al., 2020) 78.4% 
 

Conducting a survey in eight European countries, Nordhoff et al. (2020) investigated 

the experience of drivers with different features of Advanced Driver Assistance Systems 

(ADDS) (Figure 2.4). The figure shows that a considerable number of drivers have parking 

assistance (37.83%) and ACC (30.39%) in their vehicles. However, most of the drivers do 

not have any advanced driving assistance system. During the survey, 47-64% of 

respondents expected to have them in the vehicles and use them in the future. Although 

many of the respondents do not have advanced system in their cars, they have showed their 

interests to experience ADDS features, which confirms their affinity towards advanced 

technology to make travel safer and enjoyable. 

 

Figure 2.4: Experience with ADDS, adopted from (Nordhoff et al., 2020) 

3.6 Socio-economic features of respondents and their influence on AV adoption 

People’s socio-economic characteristics are considerations that tend to predispose 

them towards AVs. Thus, many studies have explored diverse socio-economic features of 
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people and their impact on AV adoption. The following subsections discuss in turn the 

impacts of various socio-economic features on the AV adoption tendency. 

3.6.1 Age of the respondents 

Most studies have reported that young people are more interested in using AVs, 

compared to the elderly (Nordhoff et al., 2020; Rahimi et al., 2020; S. Wang et al., 2020; 

Webb et al., 2019). Panagiotopoulos and Dimitrakopoulos (2018) reported that respondents 

in the 18-40 age cohort (60.1%) are more likely to adopt and use AVs compared to the 

people who are over 40 years old (55.5%). Researchers in (Piao et al., 2016) found that 

56% of respondents aged over 65 would use automated cars compared to 62% aged 18 to 

34 and 61% aged between 35-64. They also reported that 52% of respondents aged 18-34 

would own an AV compared to 39% aged 34-65, and 43% aged over 65. Thus, young 

adults and people with multimodal travel behaviors are more interested to adopt and use 

personal AVs and SAVs than the elderly (Haboucha et al., 2017; Krueger et al., 2016; 

Nazari et al., 2018). 

At variance with the above studies, Shin et al. (2015) reported that younger people 

are less likely to adopt technologically advanced vehicles (e.g., EVs) due to the high 

purchase price, low driving range, and accessibility to charging stations. Also, a few studies 

have mentioned no significant associations between age and public acceptance of AV 

(Salonen, 2018; Wadud & Huda, 2019). Zmud and Sener (2017) observed almost a similar 

trend of AV adoption among the younger (less than 30 years) and elderly (65+) persons 

(i.e., 53% of 30-45 years, 55% of 45-65 years). Researchers argued that elderly people are 

pragmatists (positive), while the youngers are either conservatives (negative and skeptical) 
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and enthusiasts (positive) (Hilgarter & Granig, 2020). Thus, the acceptance and rejection 

of AVs comprise a balanced distribution of elderly and young people.   

3.6.2 Gender of the respondents 

Studies have investigated the discrepancies in AV adoption and use between males 

and females. Gender analysis shows that men are more likely to adopt and use personal 

AVs and SAVs compared to women due to better economic condition, affinity to 

technology, and the perceived safety and security of AVs (Howard & Dai, 2014; Nazari et 

al., 2018; Nordhoff et al., 2020). For example, Piao et al. (2016) found that 64% and 49% 

of males would use and own AVs compared to 55% and 39% of females, respectively. 

Additionally, many females hold the view that most of the expected benefits from AVs are 

unlikely to materialize (Schoettle & Sivak, 2014b). However, researchers have argued that 

the likelihood to use AVs by females depends on the perceived safety, in-vehicle security, 

and emergency management systems (Salonen, 2018; Webb et al., 2019). Thus, it is crucial 

to improve AVs’ safety and security and their perception in the public to overcome female 

apprehension towards the use of AVs.  

3.6.3 Marital status 

Studies have observed that married couples are more likely to adopt and use AVs and 

SAVs compared to singles due to improved safety measures, amenities such as multi-

tasking opportunity, and scopes to share AVs within the household, which could reduce 

overall travel costs (Howard & Dai, 2014; Nazari et al., 2018; Webb et al., 2019). 

Moreover, married people are usually economically better off than single and non-married 

people, which conditions their greater affinity to personal AVs (Howard & Dai, 2014). On 

the other hand, Gurumurthy and Kockelman (2020) reported that single persons are more 
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likely to use AVs and SAVs with dynamic ride sharing services, which have the potential 

to reduce travel costs. Thus, splitting travel costs by sharing mobility with ride companions 

may induce single individuals to use AVs and SAVs.  

In addition, families holding conservative views are less likely to use AVs until it 

becomes more mainstream and people gain experience of it (Daziano et al., 2017). Thus, 

besides the marital status of the respondents, some other factors (e.g., progressive attitudes, 

technology) also determine AV adoption and use tendency of a family.  

3.6.4 Educational attainment 

The level of education significantly regulates people’s willingness to adopt AVs and 

SAVs. Many studies have assessed the impacts of educational attainment on AV adoption 

rate. The level of education is seen to be positively associated with people’s intention to 

adopt and use AVs and SAVs for personal travel purposes because they may already know 

about AVs and are more receptive to new ideas (e.g., shared mobility) and technologies 

(Daziano et al., 2017; Gurumurthy & Kockelman, 2020; Nazari et al., 2018). For example, 

Piao et al. (2016) reported that 71% of respondents with higher education (bachelor’s and 

above) are interested to use AVs compared to 52% of respondents with lower education 

(below bachelor's degree). Moreover, 28% of respondents with higher education would 

consider using SAVs (e.g., car-sharing/car-pooling/taxis) compared to 8% of their 

counterparts. Thus, people with educational attainment of bachelor and above are more 

likely to use AVs compared to people with primary school, secondary school, and some 

college education.  

People with higher education perceive that AVs would reduce the number and 

severity of traffic crashes, congestion, travel times, and operational cost (e.g., insurance 
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cost, driver salary) (Schoettle & Sivak, 2014b). The perceived benefits of AVs are 

relatively greater among the highly educated persons and users of on-demand mobility 

services compared to less educated persons and users of conventional Internal Combustion 

Engine (ICE) vehicles (Krueger et al., 2019; Yuen et al., 2020). Thus, it can be argued that 

the level of education has a significant impact on the AV market share, as demonstrated by 

a large number of studies.  

3.6.5 Household income 

Among the socioeconomic covariates, employment status and household income are 

the critical factors to determine AV ownership. Many studies have found that household 

income is positively associated with AV adoption and use because high-income people 

have the capacity to afford AVs and they are more likely to pay extra money for improved 

facilities in cars (Bansal et al., 2016; Rahimi et al., 2020; Yuen et al., 2020). Zmud and 

Sener (2017) found that 56% of people with income under $25K are unwilling to use AVs 

and 54% of people with income $25k-$50k are more likely to use AVs. However, people 

with higher income are less interested to share AVs with other and unknown persons (S. 

Wang et al., 2020). In contrast, low-income people, unemployed, homemakers, and retired 

persons are less likely to adopt and use AVs compared to ICE vehicles (Daziano et al., 

2017; Nazari et al., 2018; Shin et al., 2015).  

Some studies also mentioned that full-time employment is positively associated with 

AV ownership and use due to their higher ability to pay (Gurumurthy & Kockelman, 2020; 

Nazari et al., 2018; Schoettle & Sivak, 2014b). Employed people are more likely to own 

and use AVs compared to the unemployed, student, and retired persons due to higher 

purchase prices and operating costs of AVs. Also, single-member earning households are 
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less interested to own and use AVs (Gurumurthy & Kockelman, 2020). Thus, employment 

status with a higher household income is crucial to the adoption and use of AVs.  

3.6.6 Household size and composition 

Some studies also investigated the size, composition, and type of households on AV 

adoption. These studies reported that households with children and disabled persons have 

a positive attitude to adopt and use AVs due to better safety measures and driverless 

services (Daziano et al., 2017; Laidlaw et al., 2018a; S. Wang et al., 2020). Moreover, 

people in larger households, and those from Hispanic and Asian communities are more 

interested in AVs and highly appreciate the technology to improve mobility of the 

disadvantaged segments of society (Howard & Dai, 2014). However, some large 

households with more than 4 members are less likely to adopt and use AVs and SAVs due 

to safety and security reasons (Gurumurthy & Kockelman, 2020; Rahimi et al., 2020). 

Along the same line, households with children are very cautious to use AVs and SAVs due 

to perceived safety risks among the parents (Wadud & Huda, 2019; Webb et al., 2019; 

Zmud & Sener, 2017). Thus, household size and composition of the household have a 

significant influence on the behavioral intention towards using AVs and SAVs.  

3.6.7 Vehicle ownership and holding of a driver’s license 

Household vehicle ownership and driver’s license possession could influence AV use 

and vehicle sharing tendency. A considerable number of studies have evaluated the impacts 

of vehicle ownership and possession of a valid driving license. Some of these studies have 

argued that vehicle ownership and number, and driving preference are positively associated 

with AVs and SAVs due to availed benefits of cars and familiarity with AVs (Daziano et 

al., 2017; Wadud & Huda, 2019; S. Wang et al., 2020). Moreover, people with a strong 
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inclination to regular ride-sourcing services are more interested in vehicle automation and 

connectivity (Rahimi et al., 2020). Researchers in (Shin et al., 2015) mentioned that drivers 

are more interested in alternative fuel vehicles (e.g., hybrid, and electric) than non-drivers 

due to their familiarity with alternative fuel vehicles and proven track record of driving. 

Consequently, it is assumed that people who drive regularly have strong preferences for 

AVs and other alternative fuel vehicles, compared to people who infrequently drive a car 

(König & Neumayr, 2017; Zmud & Sener, 2017). Moreover, current vehicles equipped 

with automated features strongly influence people to be enthusiastic about AVs (Zmud & 

Sener, 2017). 

Some studies also observed that SOV drivers are less likely to adopt and use AVs 

compared to others, considering their preference for driving, and losing the excitement and 

pleasure of driving (Bansal et al., 2016; Howard & Dai, 2014; Webb et al., 2019). 

Researchers also found a slightly higher tendency to use AVs among the people who walk 

and carpool (57%) compared to drivers (52%) (Zmud & Sener, 2017). Thus, vehicle 

ownership and holding of a driving license could influence the adoption and use of AVs. 

3.7 Transportation factors and their impacts on AV adoption 

Many studies have investigated the impacts of various travel factors on AV adoption 

and use. Krueger et al. (2016) found that people professing an interest and preference for 

public transportation, car sharing, and walking are also favorably disposed towards SAV 

and AV technologies due to pro-environmental and multi-modality attitudes. Moreover, 

drivers of cars, motorcycles, and scooters are very interested to use SAVs for their travel 

purposes because of their interests in ride-sourcing shared mobility. Researchers in (Nazari 

et al., 2018) found that people passionate about green travel (e.g., walking, public transport) 
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are very interested in AV ownership and rental. Thus, preference for particular 

transportation modes may be critical determinants for AV and SAV adoption and use.  

Gurumurthy and Kockelman (2020) reported a positive association of travel distance 

with SAVs usage. In contrast, some researchers have found that people who travel more 

(i.e., total daily VMT) are not favorably disposed towards AV technology for daily use 

(Nazari et al., 2018). Thus, people would prefer personal AVs for short-distance 

commuting trips and SAVs for long-distance business and recreation trips. Some studies 

have found that travel time is positively associated with AV use. For example, Rahimi et 

al. (2020) observed that long travel times (above 30 min) have positive effects on AVs use 

due to low travel costs and the multi-tasking features of AV riding. Similarly, Nazari et al. 

(2018) and Haboucha et al. (2017) reported that travel time has a positive association with 

preference for personal AVs and SAVs. Although a low in and outside vehicle waiting time 

(around 5 minutes) has insignificant influence on SAV use (Krueger et al., 2016), 

researchers elsewhere found that the extra time added to travel time when SAV is used 

reduces people’s interest in AVs (Gurumurthy & Kockelman, 2020).  Thus, smooth travel 

with minimum travel and waiting time would encourage people to use SAV for their daily 

travel purposes. 

Researchers have reported that high purchase, operation and maintenance costs 

dissuade people to travel by AVs and SAVs (Daziano et al., 2017; Haboucha et al., 2017; 

Krueger et al., 2016). In contrast, providing free parking space at the workplace may 

increase the use of AVs and SAVs (Nazari et al., 2018). However, people are more 

interested to use SAVs than private AVs to reduce overall travel costs (Daziano et al., 2017; 

Haboucha et al., 2017). Some studies have also found that shopping, medical, business, 
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and recreation trips are negatively associated with AVs with dynamic ride sharing option 

(Gurumurthy & Kockelman, 2020; Krueger et al., 2016). People mostly use existing 

personal gasoline vehicles for work and groceries and public transport for traveling to large 

cities, and bicycle for free time relaxation trips (Hilgarter & Granig, 2020). Still, many 

respondents consider AV as an alternative mode of transportation. However, the 

respondents envisioned a greater potentiality of AVs for tourism, healthcare, and passenger 

transportation for public transportation.  

In summary, the extant literature shows that different travel factors (e.g., mode, 

purposes, distance, time, and costs) are likely to condition people’s intentions to use AVs 

and SAVs. Yet, people are less likely to adopt AVs as their primary household’s means of 

transportation. AV would be used for business and recreation travel purposes with 

increasing amenities and reducing technological uncertainties.    

3.8 Impacts of the built environment on AV adoption 

Many studies have evaluated whether the built environment and its properties may 

be associated with AV adoption and use. Researchers have observed that people who live 

in urban areas are more likely to adopt and use AVs and SAVs compared to people who 

live in suburban and rural areas because these new mobility options reduce parking costs 

and searching time, and because of people’s openness to accept promising alternatives that 

can reduce travel externalities (e.g., accidents, congestions) (Bansal et al., 2016; König & 

Neumayr, 2017; Nazari et al., 2018). Recent evidence shows that people who live in areas 

with high population and employment density (e.g., Central Business District (CBD)) and 

mixed land-uses are inclined towards AV adoption and use (Gurumurthy & Kockelman, 

2020; Laidlaw et al., 2018a; Webb et al., 2019). Researchers also found that people who 
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live in urban areas may have a negative attitude towards SAV due to their unwillingness to 

share vehicle with others (S. Wang et al., 2020). However, affluent urban residents have 

the capability to own a personal AV due to their better socioeconomic condition compared 

to households live in rural areas. People living outside of urban areas may embrace the 

availability of SAVs due to absence of public and nonmotorized transportation (Hilgarter 

& Granig, 2020). Thus, the built environment provides a context that may be quite 

influential in shaping behavioral intentions to adopt AVs and SAVs. 

3.9 Impacts of technology savviness on AV adoption and use 

The extant literature suggests that people’s pro-technology attitude is positively 

associated with AVs and SAVs (Rahimi et al., 2020; Shin et al., 2015; S. Wang et al., 

2020). The enhanced services (e.g., convenience, less travel time and cost, high driving 

range) and improved safety features due to cutting-edge technology motivate people to be 

positively disposed towards AVs (Daziano et al., 2017; Rahimi et al., 2020). However, a 

different scenario is observed in the US despite being the largest manufacturer of high-

technology products (National Science Foundation, 2018; Zmud & Sener, 2017). 

Conducting an on-line based survey, Zmud and Sener (2017) found that about 66% of 

respondents identified themselves as late adopters of AV technologies and about 13% are 

outright laggards who would adopt at the very last moment, considering the uncertainties 

associated with AVs. In contrast, only 21% considered themselves as early adopters (i.e., 

first to adopt). Thus, it would appear that most people would wait and observe the trend of 

AV adoption before banding the wagon. However, it is believed that Americans would 

ultimately be the first adopters of AVs when these vehicles will be available on the road 

for public use, considering their greater affinity to new technologies. 
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3.10 Impacts of institutional factors on AV adoption 

Recent literature has reported that an effective infrastructure and institutional 

framework (e.g., regulations, incentives, research, and development) could positively 

affect AV adoption(Howard & Dai, 2014). Conducting an online survey in the US, S. 

Wang et al. (2020) reported that people who support rigid traffic regulations have a positive 

attitude towards adopting and using AVs. Thus, city authority should implement efficient 

institutional regulations to manage transportation system and provide adequate 

infrastructure to support the increase in the market share of AVs. 

4. Discussion and conclusions  

4.1 Summary 

Considering the higher social, economic, and environmental costs of conventional 

vehicles to individuals, decision-makers are thinking of the possible introduction of AVs 

and this alternative mode of transportation would be a reality shortly. Considering the 

critical role of the users, this study investigated the perceptions and opinions of people and 

identified the factors that influence people to use and adopt AVs through the review of the 

extant literature. A strategic literature search was conducted to select articles and reports 

for this review. Most of the articles were published within the last five years and used a 

household questionnaire survey to collect data. Mostly they used statistical and 

econometric methods to evaluate the factors that affect people’s intention to adopt AVs. 

The review results show that various user socioeconomic features, knowledge and 

familiarity with AV technologies and psychological factors (e.g., usefulness, ease of use, 

trust, risk) would affect AV adoption tendency. User attributes also indirectly affect AV 

adoption by influencing the psychological factors of users regarding AVs. The study also 
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identified some opportunities (e.g., safety and security, low congestion, energy use, and 

emission) and challenges (e.g., system failure, privacy breach, and legal issues) that would 

significantly influence people’s tendency to adopt AVs. Urban form (e.g., urban/rural, 

density, land use diversity), transportation factors (e.g., travel mode, distance, and time) 

affinity to new technology, and the institutional settings would also influence AV adoption 

rates. 

4.2 Study limitations and directions for future research 

Analyzing the findings and methodologies of previous studies, I have identified some 

limitations, which require further attention. Future research could address the following 

aspects to realize people’s perceptions and opinions on AVs and the related factors: 

1) Some studies selected samples from a specific stratum (e.g., higher educated 

people, experts, tech-savvy, visitors of pilot vehicles) ignoring the majority 

population, which may reflect a self-selection bias and non-response bias under a 

controlled environment (Faas et al., 2020; Kaur & Rampersad, 2018; Zhu et al., 

2020). Thus, a large, diverse, and representative segment of people should be 

included in the sample to obtain unbiased, true, and insightful results (Haboucha 

et al., 2017; X. Wang et al., 2020; Xu et al., 2018). 

2) Psychological factors are often inadequately measured in studies (Ha et al., 2020; 

Hagl & Kouabenan, 2020; Xu & Fan, 2019), failing to capture their complete 

effects on the behavioral intentions to adopt and use AVs. Thus, it is 

recommended to include all factors of human psychology to understand fully their 

effects on AVs adoption. Moreover, researchers suggested to survey the same 

panel of respondents repeatedly over time to be in a position to trace changes in 
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attitudes and perceptions based on their understanding from peers, relatives, and 

social and electric media, real-life experience of AVs, availability of cutting-edge 

technology, sense of personal risks, and  changes in household locations (i.e., 

rural versus urban) (S. Wang et al., 2020). This would also enable a more direct 

assessment of causal pathways. 

3) By keeping the questionnaire short and simple, many important questions were 

excluded from the survey (also reflected in Figure 2.2) that could significantly 

influence people’s perceptions. Thus, the effects of willingness to pay and use 

should be investigated considering different costs, urban form, traffic scenarios, 

technological advancement and uncertainty in technology, and institutional 

settings (Feys et al., 2020; Hagl & Kouabenan, 2020; Zhu et al., 2020). Moreover, 

productivity, efficiency, and all types of impacts of AVs should be considered to 

estimate consumer’s psychology and intentions to adopt AVs (Sparrow & 

Howard, 2017; Zhu et al., 2020). 

4) As AVs are not yet available to people, most studies collected data based on the 

imaginary of travelers, assuming hypothetical driving and urban setting (i.e., a 

typical road segment, same speed, homogeneous traffic scenario), and educating 

respondents about AVs beforehand, which may be at variance from the real-world 

scenario and could influence perceptions of people (Clark et al., 2019; 

Gurumurthy & Kockelman, 2020; Yuen et al., 2020). Moreover, some studies 

also generated synthetic data using driving simulators where participants just sit 

behind the wheel without doing any direct maneuver, which does not capture a 

real representation of the population (Ha et al., 2020; Xu et al., 2018; Zhang et 



45 
 

 
 

al., 2018). Thus, further studies should consider mixed methods and relevant user-

behavior data reflecting real-world urban environment and traffic scenarios (e.g., 

mixed traffic) which can provide a higher level of accuracy in assessing 

perceptions and opinions of people on AVs (Faas et al., 2020; Salonen, 2018). 

5) Despite numerous limitations and unfavorable circumstances, the extant literature 

has attempted to understand a topic and situation which would be materialized in 

the future and provided significant insights that would be helpful for 

policymakers (König & Neumayr, 2017). However, limited existing knowledge 

of AVs, constant progress in vehicle and communication technologies, and 

inadequate evidence on AVs’ ability to avoid potential crashes call for new 

initiatives that can focus on changes in people’s perceptions and mobility 

preferences with the advent of new technologies and travel options (Chen, 2019; 

Kaye et al., 2020; König & Neumayr, 2017). 

6) Given the number of existing studies on AVs, a systematic econometric meta-

analysis could be conducted to estimate the effects of different factors on AV 

adoption and generalize the results of individual studies. 

7) Considering the effects of recent health crises due to the COVID-19 pandemic on 

human mobility (Bhouri et al., 2021; Chan et al., 2020; Hu et al., 2021; Rahman 

et al., 2020; Rahman et al., 2021), future research should investigate how this 

pandemic could change perceptions and opinions of people to share AVs with 

others amidst the fear of disease transmission and how a more resilient 

transportation and mobility system can be fostered.   
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CHAPTER 3: IMPACTS OF CONNECTED AND AUTONOMOUS VEHICLES ON URBAN 

TRANSPORTATION AND ENVIRONMENT: A COMPREHENSIVE REVIEW 

Abstract 

Technological innovation (e.g., electric vehicle, automation) has significant effects 

on urban transportation and environment. Some of the early review papers systematically 

evaluated the short and medium-term effects of Autonomous Vehicles (AVs) disregarding 

long-term effects on the urban built environment. Thus, this systematic review study 

discusses the short, medium, and long-term effects of AVs by reviewing 130 published 

papers. These papers were collected from multiple sources using some keywords. This 

review study critically analyzes previous papers and summarizes the key findings based on 

a SWOT (Strength, Weakness, Opportunity, and Threat) analysis. First, AV would 

influence urban transportation and human mobility by reducing vehicle ownership, public 

and active travel, Vehicle Miles Traveled (VMT), traffic delay and congestion, travel costs, 

and increasing accessibility, mobility, and revenue generation for commercial operators. 

Second, AVs would have long term effects by encouraging dispersed urban development, 

reducing parking demand, and enhancing network capacity. Third, AVs would reduce 

energy consumption and protect the environment by reducing Greenhouse Emission 

(GHG) emissions. Fourth, most people are very concerned about personal safety, security, 

and privacy from cyberattacks, maliciously controlled vehicles, and software hacks. 

However, AVs would reduce traffic crashes involving human errors and increase the 

convenience and productivity of passengers by providing amenities for multitasking 

opportunities. Finally, the study identified research gaps in the existing literature and 

proposed some directions for further research.  
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1. Introduction 

People have used automobiles to travel within and between urban areas since the mid-

twentieth century (Howard & Dai, 2014). Nowadays, it has become an integral part of 

urban life. Technological advancements such as the introduction of Internal Combustion 

Engines (ICEs), transmission systems, electric motors, steering and cruise control, and 

emission control technologies are easing people’s life and reorganizing city structure (Kim, 

2018). While providing benefits to populations, automobiles are also adversely affecting 

human societies and their environment. The massive use of Single-Occupancy Vehicles 

(SOVs) is associated with travel delays, traffic congestion, traffic crashes, energy 

consumption, air pollution, and urban sprawl. Mutation of the transportation system by 

shifting from ICEs to Electric Vehicles (EVs), and by introducing Intelligent 

Transportation Systems (ITS), ride-sharing, on-demand services, and Travel Demand 

Management (TDM) measures has shown evidence to reduce energy use and carbon 

emission, traffic crashes and congestion (Bansal & Kockelman, 2017; Howard & Dai, 

2014). However, a combination of these strategies has the potential to bring dramatic 

changes to the transportation system, to urban mobility in terms of where people live, 

where they work, shop and recreate individually and collectively, and hence to the spatial 

structure of urban environments. This study investigates the impacts of Connected and 

Autonomous Vehicles (CAVs) on urban transportation and on the geography of urban 

environments by conducting a state-of-the-art review of the literature. 

Many high tech and more traditional automobile companies have been working 

relentlessly to develop  Automated Vehicles (AVs), which can arguably be seen as a new 
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mobility option, to reduce traffic accidents  (Moorthy et al., 2017; Narayanan et al., 2020). 

Google’s self-driving cars have already been driven more than 20 million miles on public 

roads in 25 cities of the United States as of January 6, 2020. It has been reported that Audi 

has intended to introduce AVs by 2023, Ford by 2025, GM by 2022, Nissan by 2022, 

Hyundai and Kia by 2023, BMW by 2024, Toyota by 2022, Tesla by 2023, Jaguar and 

Land-Rover by 2024, Volkswagen by 2025, and Daimler Benz by 2025 (Day, 2021; Kim, 

2018). Despite they all have promised, AVs remain heavily limited at this stage (Day, 

2021). However, it is worth mentioning that automated vehicles were first demonstrated 

by the Houdina Radio Control Company in New York and the Achen Motor Company in 

Milwaukee in 1926, which laid the foundation of the automated enterprise (Howard & Dai, 

2014; Murthy, 2017).  

Thus, it is anticipated that AVs would be a reality in the foreseeable future and that 

it could deeply influence human mobility, the built environment, the socio-economic fabric 

of cities, and city planning and governance (Fayyaz et al., 2022; Grindsted et al., 2022; Lee 

et al., 2022). In parallel, decision makers and city planners should prepare policies and 

plans accommodating issues related to AVs. Many researchers have already conducted 

studies to understand the potential impacts of AVs on people’s travel behaviors and the 

urban built environment to facilitate the process (Fagnant & Kockelman, 2015; Fraedrich 

et al., 2019; Kapser & Abdelrahman, 2020; Meyer et al., 2017). Considering the greater 

role of people’s safety and security in shaping their travel patterns, previous studies have 

also explored the urban futures with AVs from the perspectives of personal safety, privacy, 

and security. These studies have serious drawbacks include a heavy reliance on 

assumptions, simulations, hypothetical driving settings, etc., which may deviate from the 
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real-world situations. Nonetheless, they are significantly contributing to the current body 

of literature aimed at unraveling the possible responses to AV adoption in human travel 

patterns and in the urban built environment. Thus, it is essential to have a comprehensive 

overview of the current literature and synthesize the existing knowledge domain. 

Some of the early review papers systematically evaluated the short and medium-term 

effects of AVs and disregarded long-term effects on the urban built environment such as 

people’s household and employment location decisions and parking demand (Bahamonde-

Birke et al., 2018; Kopelias et al., 2020; Tafidis et al., 2021). To the best of our knowledge, 

no previous review study explored the current status of AV adoption and future evolution. 

Thus, this review study has significant contributions to the literature by consolidating 

existing bodies of literature. The main contributions of this updated comprehensive review 

paper are threefold. First, the paper critically reviews the state-of the-art literature on the 

short, medium, and long-term effects of AVs on urban transportation and mobility. Second, 

it looks at the possible longer-term adjustments to the geography of the built and natural 

environments of urban regions in the wake of shifts towards more AVs as future markets 

for AVs become more grounded. Finally, the paper identifies key concepts and provides a 

foundation for future research by pinpointing research gaps in the existing literature. In this 

study, I aim to understand current scenarios and potential benefits and costs of AVs after 

reviewing relevant published scholarship.  

The rest of the paper is structured as follows. Our study approach is presented in 

Section Two. The third section discusses the definition, concept, evolution, and adoption 

of AVs in different countries across the globe. The potential impacts of AVs are presented 

in the fourth section. Under Section Four, Subsection 4.1 outlines the impacts of AVs on 
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transportation and human mobility, Subsection 4.2 discusses the impacts of AVs on the 

urban built environment, Subsection 4.3 summarizes the impacts of AVs on energy and 

environment, and Subsection 4.4 explains the impacts of AVs on people’s safety and 

security, and convenience. Finally, research problems and directions for future study are 

discussed in the last section. 

2. Study approach 

This systematic literature review is conducted to identify, evaluate, and critically 

analyze relevant scholarship to understand the current status and impacts of AVs. A 

systematic review can efficiently integrate, compare, and synthesize existing 

insurmountable information and provide a foundation for rational decision-making.  

To this end, a literature search is conducted to select published articles and reports to 

be included in the review process. The articles and reports are selected based on (1) whether 

the article/report was written in English, (2) whether the study was conducted within the 

last five years, and (3) whether the study has investigated the impacts of AVs, Shared 

Autonomous Vehicles (SAVs), and CAVs, on transportation and mobility, environment, 

and urban form. However, a few studies that were conducted before 2015 are included in 

this systematic review to provide a comprehensive overview of possible scenarios and 

technological developments related to AVs, SAVs, and CAVs. ScienceDirect, Scopus, 

SAGE Journals, SpringerLink, Taylor & Francis, and Web of Science, the website of 

different organizations, and Google Scholar are the primary sources to search for suitable 

articles and reports.  
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Some keywords are used as the search terms, namely “autonomous vehicle”, 

“connected and autonomous vehicle”, “self-driving car”, “driverless car”, “urban form”, 

“urban development”, “parking”, “congestion”, “safety”, “accident”, “energy 

consumption”, “emission”, “vehicle ownership”. The following search strings are used to 

retrieve relevant articles from each of the database: “autonomous vehicle” OR “connected 

and autonomous vehicle” OR “self-driving car” OR “driverless car”) AND (“urban form” 

OR “urban development” OR “parking” OR “congestion” OR “safety”, “accident” OR 

Topic selection: 

Autonomous vehicle 

Literature search 

using keywords 

Article/report 

written in English? 
Excluded 

Conducted within 

last five years? 
Excluded 

No 

No 

Yes 

Investigated impacts 

of AVs/CAVs? 
Excluded 

No 

Yes 

Yes 

130 articles 

Selected for review 

Figure 3.1: Selection procedures of articles and reports 
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“energy consumption” OR “emission” OR “vehicle ownership”) AND English. The 

selection procedures of the studied articles and reports are illustrated in Figure 3.1. 

The search identified 360 articles and reports. However, after careful assessment of 

each item, only 130 items were deemed directly pertinent to the search terms and objectives 

of the study. They form the basis of this systematic review. Of these items, 18.84%, 7.25%, 

and 4.35% of the articles have been published in the following three periodicals, 

respectively: Transportation Research Part C: Emerging Technologies, Transportation 

Research Part A: Policy and Practice, and Transportation Research Record. About 87% of 

the articles and reports were published from 2015 to 2020. Also, 46.27% and 18.66% of 

articles/reports pertained to North American and European countries, respectively. In 

addition, 8.21% and 3.73% of studies have been conducted in Asian countries and 

Australia, respectively. Moreover, about 11.94% of them are review studies and 11.19% 

have been conducted in multiple countries. During the selection process of articles/reports, 

the researchers were careful to select them from different study contexts to get a 

comprehensive review. These research items are critically analyzed to understand the 

current and future implementation of AVs and its impacts on transportation and mobility, 

environment, and urban form. 
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Figure 3.2: Key concepts discussed in the reviewed papers 

The key concepts and themes discussed in the extant literature are presented in Figure 

3.2. Many previous studies focused on the impacts of AVs on energy consumption 

(26.15%) and traffic delay and congestion (23.85%) followed by Vehicle Miles Traveled 

(VMT) (20%) and Greenhouse Emission (GHG) emission (20%).  Also, a considerable 

number of studies have explored the effects of AVs on parking demand (19.23%), travel 

costs and revenue generation (19.23%), safety, security, and personal privacy (18.46%). In 

contrast, a few studies discussed the possible integration of shared mobility, AV, and EV 

(3.85%), impacts of AVs on employment opportunity (6.15%), infrastructure capacity 

(8.46%), and public transportation (9.23%).  
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Figure 3.3: Data source of the selected articles/reports 

Figure 3.3 shows the data sources of the reviewed articles/reports. The results indicate 

that 29.17 and 25.69% of studies conducted web-based household surveys and simulations 

(e.g., field test, experimental driving), respectively, to collect data. In contrast, only 1.39 

and 6.25% of studies used data from census and national surveys, respectively. Most of 

these studies used data from census and national surveys to generate synthetic data under 

different assumptions to simulate AV scenarios. Thus, the studies using these data may not 

estimate the actual impacts of AVs on transportation and the urban environment. 

Additionally, an equal number of studies (about 18.75% each) collected information from 

published literature (e.g., articles, reports) and other sources (e.g. private, public 

organizations, national labs).  

Of the published literature surveyed (Figure 3.4), 34.85% of studies used simulation 

techniques (e.g., agent-based simulation) to understand the impacts of AVs, and 20.45% 

used regression techniques (e.g., discrete choice models, structural equation models). Of 

the balance, 4.55% used probabilistic techniques, while the rest (40.15%) relied on other 

statistical methods (e.g., descriptive statistics, tests of hypotheses).  

1.39

6.25

18.75 18.75

25.69

29.17

0

5

10

15

20

25

30

35

Census National

survey

Literature

Review

Others Simulation Household

survey

P
er

ce
n

t 
o

f 
st

u
d

ie
s

Data source



60 
 

 
 

 

Figure 3.4: Methods used in the selected articles/reports 

3. The concept and evolution of autonomous vehicle 

AV (also known as a self-driving car, driverless car, robotic car) is able to drive and 

navigate without direct human inputs by using sensing technology (e.g., radar, Global 

Positioning System (GPS), and computer vision) and advanced control system (i.e., sensor) 

(Howard & Dai, 2014; Narayanan et al., 2020). Many cars are already equipped with 

cameras and sensors to avoid potential crashes (Kim, 2018; Van Brummelen et al., 2018). 

These automated vehicles will bring revolutionary changes in people’s mobility, 

transportation systems, and land-use patterns (Brown et al., 2014; Meyer et al., 2017). As 

a distinctive feature, AVs have some level of automation to assist drivers or replace drivers 

to take full control of the vehicle (Narayanan et al., 2020). According to the Society of 

Automotive Engineers (SAE) (SAE International, 2018), the level of vehicle autonomy 

ranges from Level 0 (i.e., no autonomy) to Level 5 (i.e., full vehicle autonomy) (Figure 

3.5).  
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The National Highway Traffic Safety Administration (NHTSA) of the United States 

Department of Transportation (USDOT) proposed a safety rule in 2016 that all vehicles 

produced after 2020 would be equipped with Vehicle to Vehicle (V2V) communication 

technology to send and receive safety messages (Administration, 2016b). Although 

NHTSA has yet to mandate any V2V safety measures, it is expected that vehicles would 

gradually be equipped with safety equipment (i.e., short-rage communication, safety 

messages) to protect lives. Moreover, NHTSA has adopted the standard of vehicle 

automation prescribed by SAE (Administration, 2016a, 2017). These interventions from a 

top-tier transportation safety agency demonstrate their seriousness towards vehicle 

automation for curbing traffic crashes.  

It is anticipated that on-demand mobility services and vehicle automation will grow 

rapidly in the coming decades (Jones & Leibowicz, 2019). The annual global sales of AVs 

would grow to $173.15 billion by 2030, with a 65.31% contribution from shared mobility 

(Sullivan, 2018). Thus, AV is a reality now and it is expected that it would become a daily 

travel mode for many people shortly (i.e., 10-30 years) (Stocker & Shaheen, 2018; 

Zakharenko, 2016).  

Despite enormous efforts by different companies and agencies, AVs are yet to be a 

regular transportation mode. Some studies investigated the current implementation status 

of AVs and their future evolution across the world (Bansal & Kockelman, 2017; 

Nieuwenhuijsen et al., 2018). For example, Zhang and Wang (2020) estimated that the 
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Figure 3.5: Level of vehicle autonomy 
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market share of AVs may vary from 20% to 90% by 2040 in Atlanta, the United States 

(US). Conducting a web-based survey of 246,642 Japanese residents between November 

and December 2015, Shin et al. (2019) reported that 53% of respondents expect AVs to be 

on the market in 15 years, whereas 40% expect a 6 to 10 years timeframe. Considering 

2030 as the year of level 4 and 5 AVs introduction, Trommer et al. (2018) calculated that 

the market share of AVs (level 4 and 5) would be 17% in Germany and 11% in the US, by 

2035. Another study predicted that the market share of AVs would be about 80% in Korea 

in 2060 (Kim et al., 2015).  Litman (2017) commented that level 5 AVs would be able to 

operate commercially and legally in the 2020s with limited jurisdiction and performance. 

However, most benefits of AVs will be prominent and significant in the 2050s to 2060s 

when AVs would be common and affordable.  

Based on this discussion, an expected timeline from planning to full implementation 

of AVs is portrayed in Figure 3.6. The figure illustrates that AVs will be available for 

people’s regular use incrementally over the coming decades. Literature shows that 

countries around the world are resolute to test and employ AVs. At the same time, city 

planners are making strategies to adjust to a new reality. However, most urban 

policymakers are yet to start formulating plans for AV adoption due to a lack of real-world 

experience (González-González et al., 2019). Thus, it is necessary to understand the merits 

and demerits of AVs through their impacts on people, communities, and cities for informed 

decision-making.  
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Figure 3.6: Expected timeline of AV’s planning to implementation 
 

4. The potential impacts of AVs 

AVs would have both positive and negative effects on people and society. To better 

understand the potential impacts of AVs and their associated advantages and 

disadvantages, a SWOT (Strength, Weakness, Opportunity, and Threat) analysis is 

performed after reviewing the existing literature, inspired by (Litman, 2017; University of 

Kentucky, 2020). As illustrated in Figure 3.7, Strengths and Weaknesses indicate the 

advantages and disadvantages of AVs, respectively, for the users. On the other hand, 

Opportunities and Threats illustrate the advantages and disadvantages of AVs for other 

people and surrounding environments. With the underpinning provided by Figure 3.7, the 
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and automobile companies

2030
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AVs, more accepted technology

2040
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2050
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significant, further price reduction, technology fees reduction, dominate road
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2070
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potential positive and negative effects of AVs on people’s travel pattern, environment, and 

urban built environment are discussed below. Firstly, Subsection 4.1 explains the impacts 

of AVs on transportation and human mobility. Secondly, the impacts of AVs on the urban 

built environment are illustrates in Subsection 4.2. Thirdly, Subsection 4.3 outlines the 

impacts of AVs on energy and environment. Finally, Subsection 4.4 summarizes the 

impacts on people’s safety and security, and convenience.  
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4.1 Impacts on transportation and human mobility 

As presented in Figure 3.7, the main strengths associated with AVs include delay and 

congestion reduction, increased accessibility and mobility, travel cost savings, and revenue 

generation for ride-sharing companies. The opportunities afforded by AVs include 

reduction in vehicle ownership and integration of SAV and EV. On the other hand, the 

main weaknesses of AVs are higher vehicle purchase costs and higher VMT, while critical 

threats would consist in an increase in travel demand and a reduction in public and active 

transportation. Based on the findings from the extant literature articulated in Figure 3.7, 

this section discusses the potential impacts of AVs on transportation and human mobility. 

The transportation aspects discuss here include public transportation, traffic delay and 

congestion. The aspects related to human mobility encompass vehicle ownership, VMT, 

and accessibility and mobility. 

4.1.1 Vehicle ownership 

The introduction and adoption of commercial AVs are likely to reduce the need for 

households to own cars by way of an increase in ride-sharing services (e.g., SAVs) 

(Clements & Kockelman, 2017; Krueger et al., 2016; Tirachini et al., 2020). Fagnant and 

Kockelman (2014) reported that each SAV can serve 31-41 passengers per day and 

therefore can reduce vehicle ownership. More private vehicles could be reduced at a higher 

rate of SAVs adoption in areas with low household density and a high number of long-

distance trips (Fagnant & Kockelman, 2018). Even privately owned AVs could be rented 

out to generate income when they are not driven by the owners and could further reduce 

vehicle ownership (Sparrow & Howard, 2017). Arbib and Seba (2017) forecasted that the 

number of vehicles would drop from 247 million in 2020 to 44 million in 2030 in the US 
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due to the expected popularity of AVs among Americans. Consequently, citizens may 

experience a 70% reduction in the supply of cars and trucks. Using the 2011 Atlanta travel 

survey data, Zhang et al. (2018) found a reduction in vehicle ownership among over 18% 

of households. Each of these households can reduce about 1.1 vehicles and maintain their 

current travel pattern. Thus, as reported in Table 3.1, AVs and SAVs have the potential to 

reduce vehicle ownership without changing people’s existing travel demand.  

Table 3.1: Impact of AV on vehicle ownership 

Study Car ownership reduction 

(Kim, 2018) 44% reduction in ownership per household 

(Zhang et al., 2018) 9.5% reduction in private vehicles 

(Fagnant & Kockelman, 2014) 10-fold reduction in private vehicles 

(Arbib & Seba, 2017) 80% reduction in vehicles 

(Fagnant & Kockelman, 2018) 10-fold reduction in private vehicles 

(Levin et al., 2017) -One SAV could replace 3.6 private vehicles 

-Each SAV can carry up to 4 people with 1000 SAVs and 

serve 31.4-person trips with 2000 SAVs in the system 

(Fagnant & Kockelman, 2015) 10% penetration reduces vehicles by 4.7% (23.7% in 50% 

and 42.6% in 90% penetration) 

(Zhang et al., 2018) Private vehicle ownership reduced from 9.5% (no delay) 

to 12.3% (15 min delay). 

(Narayanan et al., 2020) Occupancy increases from 1.2 to 3, 10 vehicles are replaced 

by 1.18 vehicles. 

(Loeb & Kockelman, 2019) Low-range and slow charge Shared Autonomous Electric 

Vehicles (SAEVs) replace 3.75 vehicles, long-range and 

fast charge SAEVs replace 8-11.5 vehicles 

(Milakis et al., 2017) 67% to over 90% reduction 

(Frey, 2017) -30,000 AVs will displace 50% peak commuters for 2 

million people in the US. 

-4 million AVs will replace 50% of all commuter traffic 

(Ma et al., 2017) Each SAV replaces over 13 private vehicles or traditional 

taxis. 

(Chehri & Mouftah, 2019) 30% reduction in vehicle number 

(Cyganski et al., 2018) 35% reduction in personal car use and 11.6% to 8.6% 

reduction in car drive with a reduced fleet size in 2030 than 

2010 

(Chen et al., 2016) -an 80-mile and a 200-mile range Level 2 SAEVs could 

replace 3.7 and 5.5 private cars, respectively 

-Level 3 fast charger can replace 5.4 vehicles for 80-mile 

and 6.8 vehicles for 200-mile 
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Research has shown that dynamic ride-sharing (i.e., serving multiple travelers with 

similar origins, destinations, and departure times) can significantly reduce the number of 

vehicles. For example, Levin et al. (2017) found that dynamic ride-sharing may reduce 

vehicle ownership, provide low-cost service, and attract more people by combing multiple 

trips with the same travel route and destination (e.g., business district). Thus, researchers 

have recommended mode sharing in larger vehicles (e.g., vans) and promoting public 

transportation with enhanced quality of services to reduce vehicle ownership (Tirachini et 

al., 2020). Additionally, accepting some flexible activity schedule can reduce vehicle 

ownership (i.e., up to 15-minute delays in arrival at the destination can reduce private AVs 

ownership by 18.3% to 24.1%) (Zhang et al., 2018).  

4.1.2 Public transportation 

It has been argued that AVs are the most disruptive technologies in the transport 

sector, having the potential to diminish public transit trips (Hess, 2020; Kapser & 

Abdelrahman, 2020; Meyer et al., 2017). The availability of shared vehicles and use of 

SAVs may further reduce public and active transportation (Clements & Kockelman, 2017; 

Cyganski et al., 2018; Narayanan et al., 2020). Thus, AVs may be regarded as a major 

existential threat to present and future transit systems (Handsfield, 2011).  

However, when seen as a shared mobility option, AVs could be integrated with an 

efficient public transport system to ensure the sustainability of urban transportation systems 

(Narayanan et al., 2020; Sparrow & Howard, 2017). Public transport carries a high number 

of passengers from one station to another, but some other transport option is needed to 

transfer people from home and workplace to stations. AVs can solve this last-mile problem 

and attract passengers from private vehicles to public transit (Moorthy et al., 2017; Sparrow 
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& Howard, 2017). Thus, AVs should be mobilized as such they do not disrupt the current 

transport system but increase its efficiency and cost-effectiveness. 

Similar to Transit-Oriented Development (TOD), Robocar-Oriented Development 

(ROD) (Templeton, n.d.) could be promoted in areas surrounding transit stations. ROD 

would be a high residential density and mixed-use development with minimal auto 

facilities. People would mainly use SAVs to travel to transit stations as a short-distance 

shuttle service would. There would be convenient drop-off and pick-up zones very close 

to the entrance of the stations. Multilevel drop-off or pick-up zones also could be built to 

optimize space utilization where land value is comparatively higher. There would be a 

vehicle-waiting zone from where personal and shared AVs would drop and pick up riders. 

Thus, through strategically using AVs, public transport would be popular among the people 

and a sustainable transportation system could be achieved. 

4.1.3 Vehicle miles traveled 

Thanks to better accessibility and mobility, empty-vehicle travel, and relocation of 

parking outside of the city center, AVs would increase per capita travel distance and VMT 

(Trommer et al., 2018; Wadud et al., 2016; Zhang & Wang, 2020). People would choose 

to live further away from their workplace due to lower transportation costs and to the drop 

in the value of travel time by multitasking, which leads to additional VMT (Childress et 

al., 2015; Gelauff et al., 2019). Thus, AVs are likely to increase travel distance and VMT, 

as summarized in Table 3.2. 

Table 3.2: Impact on travel distance and VMT 

Study Impact on travel distance/VMT 

(Narayanan et al., 2020) Trip length: -15% to +14%, VMT: -45% to +89% 

(Gelauff et al., 2019) 5 - 25% increase in VMT 

(Fagnant & Kockelman, 2014) Up to 10% increase in travel distance 
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(Fagnant & Kockelman, 2015) 2 - 9% increase in VMT 

(Zhang et al., 2015) 15.3 - 62.3% increase in daily VMT 

(Zhang et al., 2018) Median VMT increase of 26.5 miles per household, total 

VMT increase of 13.3% 

(Loeb & Kockelman, 2019) 6.05 - 14.2% increase in empty VMT per SAV  

(Wadud et al., 2016) 2 - 10% increase in VMT 

(Tirachini et al., 2020) VKT increase of SAV: 7 to 10 km/passenger, VKT 

increase of buses: 0.4 to 1.1 km/passenger 

(Childress et al., 2015) 11 - 20% more empty VMT by SAVs 

(Loeb et al., 2018) SAEV on average generate 19.6 – 31.5% more vacant 

VMT 

(Levin et al., 2017) Personal AV has a 2.5% lower VMT than a personal 

conventional vehicle 
(Harper et al., 2016) 2 – 14% increase in annual VMT 

(Ma et al., 2017) 15% increase in VMT 

(Carrese et al., 2019) 100% penetration of ride-sharing reduces VMT up to 

19% 

(Auld et al., 2018) 42% increase in travel distance 

(Alam & Habib, 2018) 15% (20%) share of SAV increases VKT by 1.73% 

(14%) 

(Hörl, 2017) 28.01% and 30.57% empty VMT in Taxi and taxi pool, 

respectively for 1000 AVs on the fleet. 

(Zhang & Guhathakurta, 2017) 5-14% VMT increase 

(Arbib & Seba, 2017) VMT increased by 50% in 2030 over 2015 
 

Some studies have mentioned that the average travel distance by AVs is not 

significantly higher than a conventional car or taxi (Ma et al., 2017; Moorthy et al., 2017). 

They argued that increased VMT can be compensated by reducing the total number of 

vehicles required for passenger transport and by optimizing trip chaining (Ma et al., 2017). 

VMT could also be reduced by increasing dynamic ride-sharing (Fagnant & Kockelman, 

2018; Milakis et al., 2017). Fagnant and Kockelman (2018) observed that a 20% to 30 % 

increase in trip share would reduce VMT by 4.4 miles per shared-trip (i.e., a 4.2 % 

reduction). Thus, increasing SAVs, particularly within a high-density area, may reduce 

empty VMT (Fagnant & Kockelman, 2014; Levin et al., 2017). Furthermore, the 

implementation of a flexible work schedule could reduce the average VMT per traveler 

(Greenblatt & Saxena, 2015; Kyriakidis et al., 2015). A flexible work schedule will allow 
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workers to work at variable work rosters and SAV drop-offs and pick-ups can be 

coordinated to reduce empty VMT. 

4.1.4 Traffic delay and congestion 

AVs have the potential to reduce traffic delay and congestion by promoting ride-

sharing options, and by smoothing traffic flows using Adaptive Cruise Control (ACC) 

measures and traffic monitoring systems (Alam & Habib, 2018; Daziano et al., 2017; 

Krueger et al., 2016). A higher rate of automation, dedicated lanes for AVs/CAVs, and 

dynamic control of the fleet size could significantly reduce travel time and delay by 

increasing roadway capacity and throughput of vehicles and by reducing empty trips 

(Amirgholy et al., 2020; Levin et al., 2017; Zhang et al., 2015). Under a 100% AV scenario 

in 2060, Kim et al. (2015) calculated that about 3 million vehicle hours will be saved in the 

Seoul Metropolitan Area (SMA) which is equivalent to saving one hour for each trip to the 

SMA in 2013. Thus, SAVs in a dynamic ride-sharing situation could be an effective policy 

option to reduce traffic delay and congestion, as also reported in Table 3.3. 

Table 3.3: Impact on traffic delay and congestion 

Study Impact on delay/congestion/speed 

(Fagnant & Kockelman, 

2015) 

Drop of 15% in freeway congestion delay at 10% AV 

penetration 

(Carrese et al., 2019) At 100% penetration of SAV, travel time reduction of 10 - 19% 

(Levin et al., 2017) -Personal AV (PAVs) can reduce average travel time by 73% 

over personal car 

-160% increase in SAVs reduces travel time by 70% 

(Amirgholy et al., 2020) A higher market share and optimal lane management strategy 

reduce delay up to 78%, limit increase of travel time to 5%, and 

reduce delay cost by 66% 

(Atiyeh, 2012) 35 - 39% less congestion and 8-13% higher traffic speeds at 

50% penetration 

(Zhang et al., 2015) Average waiting time reduced by 98.4% with a 45.45% increase 

in SAVs 

(Zhang et al., 2018) -V/C ratio increased by 6.79 - 8.44% due to increased travel 

demand 
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-V/C ratio increased by 4.99% and 4.39% on expressways and 

minor arterials 

(Papadoulis et al., 2019) -Travel time increased by 20% in a 100% penetration rate  

(Auld et al., 2018) 30%-50% reduction in the value of travel time 

(Qi et al., 2018) -10.7% time saving due to driving assistance via HMI (human-

machine interface) 

-Increase of time by 3.2% due to partially automated driving 

(Chehri & Mouftah, 2019) Urban travel time reduction of 30% 

(Martinez & Viegas, 

2017) 

30% congestion reduction with full adoption of SAVs 

(Kockelman et al., 2017) 78% reduction in travel time at a 100% AVs penetration 

(Wellik & Kockelman, 

2020) 

3.4 to 8.1% increase in travel time to work at 100% AV scenario  

 

Researchers also reported that an heterogeneous traffic situation (i.e., a mixture of 

PAVs and SAVs) could increase delay and congestion by reducing the average speed of 

the network (Narayanan et al., 2020). Carrese et al. (2019) reported that SAVs could yield 

a positive impact for intra-urban trips but suburban commuters may experience extra traffic 

congestion due to the huge relocation of residents to suburbs. Some people also believe 

that AVs are unlikely to reduce congestion and travel time in suburban, exurban, rural areas 

and urban commercial facilities due to higher travel demand in these particular areas (Piao 

et al., 2016; Schoettle & Sivak, 2014b; Van Brummelen et al., 2018). Considering the 

potential for congestion reduction by AVs, policymakers should implement appropriate 

policy measures to achieve a higher rate of AV penetration and vehicle ride sharing. 

4.1.5 Accessibility and mobility 

As indicated in the literature, AVs are expected to increase the accessibility and 

mobility of all people, including persons with need for special assistance (i.e., disabled, 

elderly, children) and without driving licenses (Daziano et al., 2017; Martinez & Viegas, 

2017; Trommer et al., 2018). Researchers found a 2–10% (Wadud et al., 2016), 1.4-10.3% 

(Narayanan et al., 2020), and 14% (Milakis et al., 2017) increase in overall travel demand 

due to improved accessibility by AVs. People choose AVs as a useful tool to mitigate 
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mobility and accident-related problems (Shin et al., 2019). AVs would enhance social 

justice and welfare for all people and provide scope to achieve a sustainable transportation 

system (Hess, 2020; Milakis et al., 2017). However, increased travel demands may well  

exceed roadway capacity and may lead to worsening traffic congestion (Meyer et al., 

2017). In such situations, a large SAV (e.g., van, bus) could be implemented to reduce 

traffic congestion by transferring groups of passengers simultaneously. 

 

Figure 3.8: Travel strategies of US people (age 18-64) with disabilities (FHWA, 2018) 

According to the Bureau of Transportation Statistics of the USDOT, about 25.5 

million Americans have travel limitations due to disabilities (Brumbaugh, 2018). Among 

them, about 3.6 million do not leave their homes due to low vehicle ownership, driver’s 

license possession, and unemployment. They mostly depend on other family members and 

friends for travel purposes. Information on the travel strategies of US people with 

disabilities (ages 18-64) is collected from the 2017 National Household Travel Survey 

(NHTS) and presented in Figure 3.8. It is estimated that 70.6% of them reduced day-to-day 

travel, whereas 44.3% depend on others for travel. About 21.6% and 14.4% of them are 

giving up driving and using less public transport, respectively. Moreover, about 14.4% of 
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them are using special transportation facilities (i.e., dial-a-ride or reduced-fare taxi). 

However, improving shared mobility could increase their mobility. AV technologies could 

further increase the mobility of people with disabilities substantially who are unable to 

drive and travel otherwise (Brumbaugh, 2018). 

4.1.6 Travel costs and revenue generation 

Many researchers have reported that the automation of vehicles may reduce travel 

costs to people by reducing vehicle operation and maintenance costs (e.g., fuel, insurance 

fees) (Kopelias et al., 2020; Nunes & Hernandez, 2020; Zakharenko, 2016) (Table 3.4). 

SAVs could further reduce travel costs by avoiding parking fees and reducing fleet size 

(Loeb et al., 2018). Ride-sourcing AVs by Transport Network Companies (TNCs) are 

much cheaper than solo driving due to no cost of driver, depreciation, and insurance 

(Compostella et al., 2020). Although the initial price is high, total lifetime costs remain 

minor when paying back for 400,000 miles of service life. AVs also could reduce the value 

of travel time as people can spend time in other activities (e.g., reading, talking with friends, 

e-work) while riding in a vehicle (Van den Berg & Verhoef, 2016). On the other hand, 

some studies also reported that AVs would increase third-party liability coverage (Xu & 

Fan, 2019). Additionally, policymakers are yet to decide whether travelers or 

manufacturers would pay insurance premium for AVs due to newly perceived cyber risks 

bedsides risks of traffic accidents (Yeomans, 2014).  Thus, there is uncertainty in reducing 

overall cost of AV ownership and use considering diverse insurance such as third-party 

insurance, comprehensive vehicle insurance, public liability insurance, product liability 

insurance, self-insurance etc. (Abu Bakar et al., 2022). 
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Table 3.4: Impacts of AVs on travel costs and revenue generation 

Study Impacts on travel costs and revenue generation 

(Fagnant & Kockelman, 2014) SAVs reduce average trip costs by 30 to 85% 

(Van den Berg & Verhoef, 

2016) 

2 to 40% reduction in total travel costs by AVs compared 

to no-AV condition 

(Milakis et al., 2017) Social benefits/AV/year could reach $3900 at 90% AV 

adoption 

(Wadud, 2017) At least a 15% reduction in the total cost of ownership 

from full automation 

(Moorthy et al., 2017) Travel cost of AV ($13.71) is less than personal vehicle 

($14.01), higher reduction of travel time in AV ($18.20) 

than personal vehicle ($15.9) 

(Fagnant & Kockelman, 2018) Fleet operator paying $70,000/SAV could earn 19 %/year 

while offering services at $1.00/mile for a non-shared trip 

(i.e., 33% less from traditional taxi fare)  

(Greenblatt & Saxena, 2015) -Cost/mile is lower for SAV (30-50 US¢/mile) than private 

vehicles (80 US¢/mile) 

-AV would add 3-4 (shared) to 11 (private) US¢/mile to 

the total cost 

(Gelauff et al., 2019) Up to 10% of welfare benefits due to population relocation 

and land-use changes 

(Narayanan et al., 2020) -Value of travel time reduced from 10 to 31%, household 

savings per year increased by $5600, and revenue 

generation increased by 19% 

(Fagnant & Kockelman, 2015) $2000 to $4000/year/AV benefits from crash savings, 

travel time reduction, fuel efficiency, and parking benefits  

-Parking saving $3.2, $250 savings per AV, 756 million 

hours travel time saving, 102 million gallons fuel saving 

(Compostella et al., 2020) -Cost reduced by 4-10%/year after commercial introduction  

-50% decrease in maintenance and insurance costs reduce 

$0.04 per VMT 

-Decreasing AV cost to $3333 per vehicle lowers cost by 

$0.06 per mile 

-A $2.75 congestion charge increases the short trip cost by 

140% and long trip by 28% 

(Nunes & Hernandez, 2020) Revenue increased by 30% with increasing occupancy from 

1.67 to 2.2 and 75% with increasing occupancy from 1.67 

to 2.92, whereas single AV lowered profits by 37%. 

(Chehri & Mouftah, 2019) Reduce travel costs by 50% 

(Martinez & Viegas, 2017) SAV reduce travel cost by 45%/km than public transport 

(Clements & Kockelman, 2017) A higher share of CAV saves $3800/American/year by 

reducing costs related to insurance, accidents, vehicle 

repair, personal travel, legal service, etc.     

(Kockelman et al., 2017) 75% reduction of crash costs, $1357 per year cost savings 

per driver  
 

The adoption of AVs would increase the welfare benefits of citizens and revenue 

generation of commercial transportation operators (Narayanan et al., 2020). On average, 
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AVs could yield up to 5 billion euros in savings per year in the Netherlands under full 

automation by reducing generalized transport costs and modal split (Gelauff et al., 2019). 

Fagnant and Kockelman (2015) found a total of $196 billion economic benefits with 90% 

AV market share in the US due to cost reduction for congestion, crash, travel time, fuel 

use, and parking fees. These benefits, although small compared to commercial taxi 

operation, will be enjoyed by households in the wealthiest percentile under full automation 

in personal cars (Wadud, 2017).  

The extant literature shows that AVs and SAVs are likely to reduce transportation 

costs and increase revenue generation for commercial fleet operators. Thus, researchers 

have suggested to expand funding for R&D and formulating guidelines for AVs to increase 

AV use (Fagnant & Kockelman, 2015). 

4.1.7 Integration of shared mobility, AV, and EV 

SAVs would be more popular than other vehicles operated by TNCs due to cheaper, 

safer, and more efficient transport options. Researchers indicated that SAVs can further 

influence people’s travel behaviors by embracing cutting-edge EV technologies (Loeb & 

Kockelman, 2019; Offer, 2015; Zhang et al., 2020). Hence, SAEVs will be efficient (e.g., 

low travel costs, energy use, empty VMT) and reliable. However, Chen et al. (2016) 

mentioned that long-range and fast-charger SAEVs can serve 96-98% of trip requests with 

an average wait time of 7-10 minutes per trip. In contrast, short-range and slow-charger 

SAEVs would be unable to serve 55% and a further 5.4% of trips due to poor response 

time and trip length, respectively (Loeb & Kockelman, 2019). Thus, long-range and fast 

charger SAEVs are more efficient compared to short range and slow charger SAEVs. 

Simulating a similar scenario for Austin, Chen et al. (2016) found that empty VMT could 
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drop to 3–4%, average wait times could shrink to 2-4 minutes per trip, and 5-9 private 

vehicle could be replaced by each SAEV. Thus, SAEVs have the potential to reduce vehicle 

ownership, empty VMT, response time, and wait time. 

 

 

 

 

 
 

 

Figure 3.9: Future of transportation system, modified from (Dennis et al., 2017; Shaheen, 2015) 
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renewable power source. An SAEV can reduce energy use by 90-100% compared to ICEs 
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agent-based modeling, researchers in (Zhang et al., 2020) found that each SAEV can 
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to reduce travel costs by reducing vehicle operation costs.  Thus, the integration of AVs 

and EV technologies with adequate vehicles has a synergistic effect on reducing VMT, 

vehicle ownership, travel cost, and GHG emissions (Offer, 2015). Researchers have 

mentioned that future transportation would consist of shared and on-demand mobility, 

CAVs, and EVs to provide improved transportation services to population. Figure 3.9 

illustrates the paradigm shift of the transportation system with the advent of technologies 

where a proper integration of SAEVs will provide reliable transportation for people. 

4.2 Impacts of AVs on the urban built environment 

Figure 3.7 indicates that AVs would have the opportunity to reduce parking demand 

and cost, but would also increase roadway capacity. However, the main threats AVs may 

cause include increased demand for transport infrastructure and urban expansion. Based on 

the existing literature this subsection explains the potential impacts of AVs on the urban 

built environment. 

4.2.1 Patterns of urban growth 

Many studies have mentioned that the advent of AVs would influence the layout of 

urban areas (González-González et al., 2019; Meyer et al., 2017; Van den Berg & Verhoef, 

2016). By reducing travel costs, they possibly influence residential and work locations, and 

intensify urban sprawl and inefficient use of land (Fraedrich et al., 2019; Krueger et al., 

2019; Zakharenko, 2016). An agent-based simulation study in Korea found new and 

scattered growth throughout the region and also around urban centers due to households’ 

preference for urban amenities in a scenario where 100% of vehicles are assumed to be 

AVs compared to the business as usual scenario over the next five decades (Kim et al., 

2015). The adoption of AVs may increase city radius by 3.5%, land area by 7.1%, and 
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residential area by 7.6% (Zakharenko, 2016). Under current policies and conditions (i.e., 

high initial purchase cost and low performance, reduction in travel time and costs, personal 

AVs), AVs can increase urban expansion by 10-30% (Litman, 2017). Thus, policymakers 

should understand the potential impacts of AVs on spatial distribution of land uses to 

facilitate the emergence of AVs without hampering urban living and development. 

Conducting a web-based survey, Carrese et al. (2019) found that about 40% of 

respondents would move to the suburbs under the AV regime in Rome, Italy. Similarly, 

Wellik and Kockelman (2020) reported a 5.3 to 5.5% reduction in the number of 

households living in the metropolitan regions of Austin, TX at a 100% AV scenario 

compared to a 0% AV scenario over a 27-year timespan (2013-2040). They also mentioned 

a 5.8 to 6.2% growth in the number of households living in the non-metropolitan regions 

of Austin. Thus, AV would influence people’s residential locations by increasing 

accessibility, mobility, and convenience and reducing the value of travel time. 

Experts confirmed that, in conjunction with developing new peripheral centers, AVs 

would also densify the existing development by allocating more spaces for residential, 

economic, and leisure activities (González-González et al., 2019; Milakis et al., 2018). 

Space released from on and off-street parking could be used for building wider sidewalks, 

bicycle paths, delivery bays, and new public facilities (Clements & Kockelman, 2017; 

Martinez & Viegas, 2017). Thus, AVs are likely to change the urban landscape by 

densifying existing development.  

A majority of the literature points that AVs would lead to dispersed urban 

development by enhancing the mobility of the people and reducing travel costs. Polycentric 

development may be seen surrounding the urban areas due to new development induced 
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by AVs. Consequently, it is likely that city land area and residential and commercial land 

use would increase. At the same time, a densification would be observed in the city core 

by allocating space released from parking spaces for new residential, commercial and 

recreational development.  

4.2.2 Parking demand 

Besides influencing the physical extent of urban areas, AVs could influence urban 

form by reducing the demand for parking in the urban center (Clements & Kockelman, 

2017; Kopelias et al., 2020; Van den Berg & Verhoef, 2016). As indicated in Table 3.5, 

AVs would reduce overall parking demand quite drastically. As a case in point, a recent 

simulation study estimated 10%, 42%, and 75% reductions in parking land area by 2020, 

2030, and 2040, respectively in the Atlanta core after introducing SAVs (Zhang & Wang, 

2020). Conducting a study in Los Angeles County, researchers in (Chester et al., 2015) 

observed that about 14% of county area are used for parking. However, this parking area 

could be reclaimed, particularly in the city center, and repurposed for building high-quality 

and attractive spaces for economic activities to increase land productivity (González-

González et al., 2019; Zakharenko, 2016). Wellik and Kockelman (2020) reported a 19.4% 

to 62.9% increase in developable land in Austin at a 100% AVs scenario over a 0% AVs 

scenario due to reduction in parking demand.  

Table 3.5: Impact of AV on parking demand 

Study Impact on parking space 

(Fagnant & Kockelman, 2014) Average 11 parking space reduction per SAV 

(Narayanan et al., 2020) 48% to 90% reduction in parking land area  

(Milakis et al., 2017) Up to 90% reduction in parking land area 

(Zhang et al., 2015) Up to 90% reduction in parking land area at a 2% SAV 

penetration and about 8.6% reduction in parking land 

area per SAV 

(Kondor et al., 2018) 50% reduction of parking land area by SAVs 

(Kim, 2018) 40% reduction of parking lots 
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(Chehri & Mouftah, 2019) 40% reduction in overall parking land area and 44% 

reduction in required parking spots 

(Zhang & Guhathakurta, 2017) 4.5% reduction in parking land area at a 5% SAV 

adoption and over 20 parking spots reduction per SAV 
 

In contrast, some studies have also mentioned an increase in parking demand due to 

increase in people’s travel demand and lack of ride-sharing services (Zakharenko, 2016; 

Zhang & Wang, 2020). However, people’s willingness to share vehicles, the availability of 

AV ride-sharing services, and higher penetration rates of SAVs can significantly reduce 

parking demand (Milakis et al., 2017; Zhang et al., 2015). Thus, researchers (Narayanan et 

al., 2020) have suggested to take policy actions to augment the use  of SAVs and thereby 

reduce overall vehicle parking demand.  

Most of the previous studies have argued that higher penetration of AVs and SAVs 

may lower parking demand in residential areas and city centers by reducing car ownership 

and increasing ride-sharing. Moreover, AVs may self-park in less expensive areas outside 

of city centers and reduce parking demand in the city core (Fagnant & Kockelman, 2015). 

Consequently, space released from vehicle parking would be used for other purposes, such 

as developing activity centers and high-quality recreation spaces. Since AVs can reduce 

car ownership, it is likely that less space will be used for building streets, parking, garages, 

and possibly allow high density and mixed uses development (Dennis et al., 2017; KPMG 

International, 2019). If someone choses to own an AV, living in the outskirts of the city 

may be preferred, with parking provision just immediately outside of the city center to 

reduce traffic volume in the city. A multi-storied parking complex could be built at the 

edge of the city center to accommodate commuting traffic to reduce space utilization at the 

centers. However, convenient drop-off and pick-up locations could be provided near 

residences and workplaces for the convenience of travelers.  
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4.2.3 Infrastructure capacity 

The extant literature reveals that vehicle automation can increase road and 

intersection capacity by vehicle platooning, using Cooperative Adaptive Cruise Control 

(CACC), and exchanging information between them (Kopelias et al., 2020; Meyer et al., 

2017; Zhang et al., 2018). The results in Table 3.6 show that AVs are likely to increase 

roadway capacity by using existing facilities more efficiently without adding any lanes 

(Fernandes & Nunes, 2012). Thus, the necessity of roadway expansion could be avoided. 

However, capacity could be affected by the presence of heterogeneous traffic which could 

disrupt communication among vehicles (Milakis et al., 2017).  

Table 3.6: Impact of AV on roadway capacity 

Study Capacity increase 

(Fernandes & Nunes, 2012) 367% 

(Van den Berg & Verhoef, 2016) 7 - 200%  

(Narayanan et al., 2020) 43% to 273% on highway, 40% on urban roads, 9.39% to 

39.21% with 100% penetration, 215% at 100% penetration 

with connectivity and 9.38% without connectivity 

(Milakis et al., 2017) 40% (100%) penetration of AVs increases capacity by 

over 10% (200%). 

(Shladover et al., 2012) -10%, 50%, and 90% penetration of CACC increase 1%, 

21% and 80%, respectively. 

-20%, 30%, and 50% to 60% penetration of vehicles with 

Vehicle Awareness Devices (VAD) increase capacity by 

7%, over 10%, and 15%, compared with cases without 

VADs. 

(Tientrakool et al., 2011) About 43% to 273% capacity increase by CAVs due to 

sensors and communication technologies 

-34.85% to 83.5% reduction in gaps between vehicles 

due to communication technologies and sensor   
(Shladover et al., 2012) A 100% increase in capacity by each vehicle equipped 

with short-range communication radios (e.g., CACC, 

VAD) 
 

CAVs could increase roadway capacity substantially by reducing the average 

distance between vehicles with the help of sensors and communication technologies 

(Tientrakool et al., 2011). Roadway capacity also increases if all vehicles have CACC and 
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Vehicle Awareness Devices (VAD) (Shladover et al., 2012). Thus, AVs with appropriate 

sensing and communication technologies may have a greater influence on increasing 

roadway capacity. Greater capacity benefits could be achieved even at a lower penetration 

of AVs if the non-ACC vehicle populations are equipped with VADs which can serve as 

the lead vehicles for the CACC vehicles (Shladover et al., 2012). In contrast, Narayanan et 

al. (2020) mentioned that AVs should be more than 20% of the vehicle population to 

achieve an increase in roadway capacity. Thus, a large enough number of CAV is essential 

in the market to increase communication between them and thereby to increase roadway 

capacity over a mixed traffic situation (i.e., non-, semi-, full AV). 

4.3 Impacts of AVs on energy and environment 

AVs have the opportunities to protect the natural environment by reducing transport 

energy use and GHG emissions and by increasing vehicle fuel efficiency. This subsection 

illustrates the potential impacts of AVs on energy and environment critically reviewing the 

existing literature. 

4.3.1 Transport energy consumption 

As presented in Table 3.7, AVs could reduce energy use by decreasing vehicle 

ownership and weight, and operating vehicles efficiently by limiting acceleration and 

deceleration using ACC with lane assist systems and Vehicle-to-Everything (V2X) 

communication (Haboucha et al., 2017; Loeb et al., 2018; Mersky & Samaras, 2016). A 

coordinated flow of CAVs could also increase the energy efficiency of gasoline vehicles 

in mixed traffic situations by establishing a harmonized relationship with the surrounding 

traffic even at a lower level of CAVs penetration (Vahidi & Sciarretta, 2018). Energy use 

could be further reduced by implementing the ride-sharing services of AVs particularly in 
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the urban areas where most of the travel demand is higher (Greenblatt & Saxena, 2015; 

Ross & Guhathakurta, 2017). Thus, prior knowledge on roadway environment (e.g., speed 

limit, grade, curve), avoiding frequent starts and stops, efficient lane change, coordinated 

and smooth flow, proper signal phasing and timing, vehicle weight reduction and right-

sizing, and vehicle sharing, could reduce transport energy consumption significantly 

(Vahidi & Sciarretta, 2018; Wadud et al., 2016).  

Table 3.7: Impact on transport energy use 

Study Impacts on energy use 

(Fagnant & Kockelman, 2014) Each SAV will reduce energy use by 12% 

(Kopelias et al., 2020) CAVs reduce fuel use by 30-90%   

(Qi et al., 2018) 12 - 22% energy savings from driving assistance via HMI 

and partially automation 

(Atiyeh, 2012) Increase fuel economy by 23–39% for all vehicles in 

freeway travel stream 

(Chen et al., 2018) As high as a 90% improvement in fuel economy by each 

automated vehicle 

(Narayanan et al., 2020) Energy consumption reduced by 37% to 80% by SAVs 

(Moorthy et al., 2017) Public transit with last-mile AV would save energy up to 

37% than personal vehicle 

(Arbib & Seba, 2017) About 30% reduction in 2030 compared to 2020, the 

price will fall to $25 per barrel 

(Kim, 2018) About 56% reduction in 2030 compared to 2016 

(Manzie et al., 2007) Only 7s traffic look-ahead ability to improve fuel 

economy by 33% 

(Greenblatt & Saxena, 2015) A 10% decrease in single-occupancy VMT reduces 

energy use by about 3%. 

(Bullis, 2011) 4-m inter-track spacing reduce fuel consumption by 10-

15% 

(Milakis et al., 2017) -Up to 45% fuel savings by control algorithms and 

optimization systems 

-About 90-100% of energy saving by battery SAEVs 

(Vahidi & Sciarretta, 2018) 2 - 50% energy gain due to advanced knowledge of road 

grade, proper signal phasing and timing, cooperative car 

following and lane selection 

(Wadud et al., 2016) 0 - 45% reduction due to congestion mitigation, 

platooning, eco-driving, light-weighting, right sizing, 

reduced infrastructure and 0 - 60% increase due to higher 

speed, increased features and travel demand 

(Brown et al., 2014) AVs could reduce energy use by over 90%. However, 

under rise in service demand and speed of AVs, energy 

use could increase to 173% 
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(Chehri & Mouftah, 2019) ACC, eco-driving, and inter-vehicle communication 

reduce fuel use by 2-4% 

(Liu et al., 2017) 11 to 55% reduction by CAV 

(Ross & Guhathakurta, 2017) Over 50% of energy savings by ride-sharing of full AVs 
 

In contrast, some researchers also found that AVs and ride-sharing schemes could 

potentially increase energy consumption because of increased travel demand, VMT, and 

traffic speed, and in case automobile-oriented developments are encouraged (González-

González et al., 2019; Ross & Guhathakurta, 2017). Vehicle automation can also generate 

longer and more energy-intensive commutes, replace energy-efficient public 

transportation, induce urban sprawl, and thus increase energy use (Hess, 2020). 

Additionally, reduction in the Value of Travel Time (VOT) can increase fuel use 

substantially by increasing long-distance trips (Auld et al., 2018). Thus, the net effect of 

AVs on transport energy use is uncertain, which warrants further investigation (Milakis et 

al., 2017). 

Although automation would reduce overall energy use, oil demand for electricity 

generation will increase to charge AVs. Kim (2018) estimated that to charge 44 million 

AVs with a battery of 70kWh, the industry would require 3080 GWh per day extra energy 

by 2030 in the US, assuming each AV charge once a day. About 33 more nuclear power 

plants of equal size to Palo Verde nuclear power plant in Arizona would be required with 

24 hours of operation each day to generate that amount of electricity. Thus, the 

policymakers should take appropriate actions to manage additional energy demand 

considering the anticipated impacts on the electrical grids. 

4.3.2 Transport GHG emissions 

Researchers found that AV technologies can significantly reduce NOx and COx 

emissions (Duan et al., 2020; González-González et al., 2019; Haboucha et al., 2017). 
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CAVs, SAVs, and on-demand mobility options can further reduce emissions by lowering 

the number of engine start, energy consumption, and vehicle ownership (Coulombel et al., 

2019; Wadud & Anable, 2016). Jones and Leibowicz (2019) found that the adoption of 

SAVs could be more impactful for controlling vehicle emissions than a carbon tax policy 

despite higher VMT. The estimations of emission reduction by different types of AVs are 

presented in Table 3.8. Overall, AVs show the potential to reduce emissions and improve 

air quality. However, a lower share of AVs (i.e., 30%) could increase emission due to a 

slight rise in traffic demand, traffic flow, and aggressive acceleration after a stop to cruise 

control the vehicle speed (Rafael et al., 2020). Shared and battery AVs have a greater 

potential to reduce emissions significantly. 

Table 3.8: Emission reduction by AVs 

Study Emission reduction 

(Milakis et al., 2017) Up to 94% reduction in GHG emission 

(Greenblatt & Saxena, 2015) 87-94% reduction in GHG emissions per mile 

(Kopelias et al., 2020) CAVs reduce GHG emission by 5 to 94% 

(Wadud et al., 2016) 20% reduction in carbon emission 

(Rafael et al., 2020) 30% reduction of both NOx and CO2 emissions  

(Fagnant & Kockelman, 2014) 5.6 to 49% reduction in GHG, 34% CO, 19% SO2, 18% 

NOx, 49% VOC, and 6.5% PM10 emission reduction by 

each SAV 

(Narayanan et al., 2020) 10 to 94% emission reduction by SAVs 

(Greenblatt & Shaheen, 2015) 63 - 82% GHG reduction per mile compared to private 

gasoline vehicles 

(Vahidi & Sciarretta, 2018) 1 - 18% emission reduction due to cooperative control 

(Igliński & Babiak, 2017) 40 - 60% reduction in GHG emission 

(Chehri & Mouftah, 2019) 66% GHG emission reduction 

(Martinez & Viegas, 2017) 40% reduction in carbon emission  

(Liu et al., 2017) 3 to 19.09% reduction in emission 

(Eilbert et al., 2017) Up to 215% reduction in emission 
 

AVs operated as shuttle services (6 kg CO2-equivalent per passenger) emits lower 

carbon in the whole life than the AVs operated as a personal vehicle (10 kg CO2-equivalent 

per passenger) (Moorthy et al., 2017). However, the net effect of AVs on GHG emissions 

remains ambiguous (Milakis et al., 2017). Travel demand reduction due to shared mobility 
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is canceled out by the increased travel distance and empty running (Wadud et al., 2016). 

Thus, further research is more likely necessary to determine the actual effect of AVs on 

emission reduction (Rafael et al., 2020). 

4.4 Impacts on people’s safety and security, and convenience 

The key strengths of AVs include people’s safe travel, increased convenience, and 

productivity, and reduced driving stress, as indicated in Figure 3.7. The prominent 

weaknesses people would encounter include breach of personal privacy, misuse of 

technology, and system failure due to the adoption of AVs. On the other hand, one of the 

main threats people would experience is increased criminal activities. This subsection 

describes the potential impacts of AVs on the safety and security, and convenience of 

people. 

4.4.1 Safety, security, and personal privacy 

The extant literature indicates that AVs would increase the safety and security of 

passengers (Duan et al., 2020; Trommer et al., 2018; Vahidi & Sciarretta, 2018). Vehicles 

equipped with ADDS, higher levels of automation (i.e., level 3 or higher), and a higher rate 

of AV adoption would increase people’s safety and security (Milakis et al., 2017). The 

opinions expressed by potential riders on the safety, security and emergency responses of 

AVs are presented in Table 3.9. The results show that most people are very concerned 

about personal safety, security, and privacy. The main sources of concern are cyberattacks, 

maliciously controlled vehicles, and software hacks (Milakis et al., 2017).  

Table 3.9: Opinion of people regarding safety, security, and personal privacy 

Study Opinions 

(Piao et al., 2016) 44% and 22% of people very concerned about their security for 

evening/night-time services and daytime services, respectively 
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(Salonen, 2018) -37%, 8%, and 8% of respondents think driverless shuttle bus is 

much safer, secure, and have better emergency management 

system than a conventional bus, respectively 

-36%, 28%, and 38% of respondents think shuttle bus are same 

to conventional bus in safety, security, and emergency 

management, respectively 

-27%, 64%, and 54% of respondents think safety, security, and 

emergency management of driverless shuttle buses, respectively 

are much worse or worse than the conventional bus 

(Begg, 2014) 36% agreed and 24% strongly agreed that AVs will improve 

safety and security 

(Underwood & Firmin, 

2014). 

25% of experts agree that AVs will be more than twice as safe as 

conventional vehicles 

(Xu & Fan, 2019) 42.35% of people expected lower risks associated with AV, 

16.02% consider AVs would increase the risk substantially 

(Hulse et al., 2018) About 10% of participants directly opposed AVs, 43% of 

participants expressed acceptance of AVs, 46% of them are 

uncertain. 

(Schoettle & Sivak, 2014a) 50.9%, 54.6%, and 57.3% of people expressed concern on data 

privacy, system security, and vehicle security from hackers, 

respectively 

(Schoettle & Sivak, 2014b) System security from hackers (68.7%), vehicle security from 

hackers (67.8%), and data privacy (63.7%) are leading concerns 

of people for riding SAVs 

(Panagiotopoulos & 

Dimitrakopoulos, 2018) 

31% are concerned about system security and data privacy, 

26.7% are somewhat frightened 

(Salonen, 2018) 64% of passengers have the worst experience in driverless shuttle 

buses 
 

Many researchers found that AVs would breach privacy of the passengers by 

increasing the level of surveillance of mobility patterns, which may threaten people’s 

security and privacy and discourage people to buy and share AVs (González-González et 

al., 2019; Hess, 2020; Howard & Dai, 2014). They could be easily tracked down by using 

locational information and knowing what travel destinations are (König & Neumayr, 

2017). Consequently, people would be unwilling to use SAVs. For example, Gurumurthy 

and Kockelman (2020) reported that only 4 to 8% of Americans and 5 to 11.0% of Texans 

are willing to use SAVs with strangers. Thus, personal privacy is one of the main factors 
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that affect SAVs. Similar to privacy issues, people are concerned about the misuse of 

technology by unscrupulous individuals (software hackers) (Kyriakidis et al., 2015; Van 

den Berg & Verhoef, 2016). During the survey, many riders recommended to increase the 

security and maintain their privacy to increase the use of AVs and SAVs (Salonen, 2018). 

Thus, appropriate regulations and standards should be implemented to augment the safety, 

security, and data privacy of the riders, which could positively influence AV adoption 

(Fagnant & Kockelman, 2015; Kaur & Rampersad, 2018).  

4.4.2 Traffic crashes 

It is estimated that AVs can avoid more than 90% of all crashes that involve human 

errors by adding collision avoidance technologies (Chehri & Mouftah, 2019; Daziano et 

al., 2017; Nunes & Hernandez, 2020). More than 40% of fatal crashes due to human factors 

can be avoided by using AV technologies (e.g., ACC, lane change warnings, on-board 

navigation) (Fagnant & Kockelman, 2015). Conducting a simulation study in England, 

Papadoulis et al. (2019) reported that CAVs would reduce traffic crashes by 12 to 94% 

with a 25 to 100% penetration rate. The majority of these crashes, particularly at a higher 

rate of penetration, would be eliminated by designing the control system of vehicles to 

avoid collisions in the merging and diverging areas due to high variations of speeds and 

lane change occurrence. Collecting data from police-reported crashes from 2005 to 2008, 

Najm et al. (2010) estimated that V2V and Vehicle to Infrastructure (V2I) could reduce 72 

to 83% of crashes. Thus, vehicle automation and various connectivity technologies are 

likely to reduce vehicle crashes. 

Conducting online surveys, researchers found that 37.30 to 88.80% of respondents 

would like to adopt AVs due to their capability to reduce the number and severity of 
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crashes, and improve emergency response to crashes (Piao et al., 2016; Schoettle & Sivak, 

2014a, 2014b). Although AVs could reduce the number of crashes caused by human errors, 

they are also prone to accidents themselves due to faulty design (Bansal et al., 2016). These 

studies mentioned that during the survey many of the respondents (50-96.1%) expressed 

concerns about system failure of AVs, which may pose threats to public health. Thus, 

adequate R&D and comprehensive testing of AVs are required to mitigate risks associated 

with AVs and address public concerns. 

4.4.3 Convenience and productivity 

Many researchers mentioned that AVs would increase the convenience, efficiency, 

and productivity of riders while traveling despite paying low transportation costs (Clements 

& Kockelman, 2017; Hess, 2020; Vahidi & Sciarretta, 2018). People would be involved in 

a variety of productive activities (e.g., reading, messaging, talking on the phone, sleeping) 

rather than passing time idling, which makes the journey meaningful and useful (Piao et 

al., 2016; Schoettle & Sivak, 2014b). Wadud and Huda (2019) reported that car passengers 

engage in 3.6 different types of activities in each leg of the journey. Talking or texting 

friends and looking out of the window are the most appealing tasks among people traveling 

in AVs (Howard & Dai, 2014; Schoettle & Sivak, 2014b). Thus, automated driving can 

significantly increase the convenience and efficiency of the journey by engaging people in 

different activities. 

AVs can also increase the convenience of passengers by reducing waiting time, 

particularly during peak hours via dynamic ride-sharing (Fagnant & Kockelman, 2014; 

Fagnant & Kockelman, 2018). Fagnant and Kockelman (2018) found that total service time 

(i.e., wait, pick-up/drop-off, and in-vehicle) could be reduced from 15 minutes to 14.7 



90 
 

 
 

minutes via dynamic ride-sharing. Fagnant and Kockelman (2014) also found that average 

wait time could be reduced by 51% when the trip rates are doubled and fleet size is 

increased to 92%. Thus, a large enough number of SAVs is required to increase the 

convenience and service quality for passengers by reducing overall wait time. 

5. Conclusion and directions for future study 

The extant literature shows that AVs have the potential to bring dramatic changes to 

urban transportation systems, their use by populations and to the spatial structure and 

conditions of the urban built environment. Previous review papers systematically evaluated 

the short and medium-term effects of AVs on transportation and human mobility and 

disregarded long-term effects on the urban built environment. This updated systematic 

literature review identified, evaluated, and critically analyzed relevant scholarship to 

understand the current status and impacts of AVs. To better understand the impacts of AVs 

and their associated advantages and disadvantages, a SWOT analysis was performed. With 

the underpinning provided by the SWOT analysis (Figure 3.7), the potential positive and 

negative effects of AVs on people’s travel pattern, environment, and urban built 

environment are discussed. This study significantly contributes to the literature by 

investigating the current status of AV research and adoption in different study contexts and 

the potential short, medium, and long-term impacts of AVs. The study also contributes by 

identifying the research gaps in the existing literature and proposing the directions for 

further research.  

Investigating the current status of implementation, researchers reported that AVs will 

be available for people’s regular use incrementally over the coming decades. The findings 

from the existing literature show that AV would influence urban transportation and human 
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mobility by reducing vehicle ownership, public and active travel, VMT, traffic delay and 

congestion, travel costs, and increasing accessibility, mobility, and revenue generation for 

commercial operators. Some studies also mentioned that AVs can further influence 

people’s travel behaviors by embracing cutting-edge EV technologies and providing shared 

and on-demand mobility services. Investigating the long-term effects, researchers reported 

that AVs would encourage dispersed urban development, reduce parking demand in city 

centers and residential areas, and enhance the capacity of the road network. Some studies 

also observe that AVs have the potential to reduce energy consumption and protect the 

environment by reducing GHG emissions. Investigating people’s safety, security, and 

privacy, the extant literature reported that most people are very concerned about personal 

safety, security, and privacy from strangers, cyberattacks, maliciously controlled vehicles, 

and software hacks. On the other hand, researchers mentioned that AVs are able to reduce 

traffic crashes involving human errors and increase the convenience and productivity of 

passengers by providing amenities for multitasking opportunities.  

Researchers also believe that SAVs have greater positive impacts on transportation 

and  urban environment compared to private AVs (University of Kentucky, 2020). SAVs 

in a dynamic ride-sharing situation could be an effective policy option to reduce vehicle 

ownership, traffic congestion and travel time, and improve overall performance of the 

transportation system (Loeb et al., 2018; Zhang et al., 2015). Researchers proposed to 

formulate appropriate funding mechanisms and policies to encourage ride-sharing and on-

demand mobility among travelers to increase use of SAVs (Ross & Guhathakurta, 2017). 

Thus, pertinent policies in transportation (e.g., automation of transit, integration of transit 

and non-motorized transport, encourage shared and micro mobility), infrastructure (e.g., 
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adjustment, and redesign of existing roads), and urban planning (e.g., update of urban 

development plans, land-use plans, parking policies and design, green belt) are essential to 

realize the benefits of AVs. Moreover, law and order situation need to be improved to 

provide safety and security of the passenger while sharing AVs.  

Despite huge contributions to the literature, previous studies have some prominent 

drawbacks. The limitations of the reviewed papers are discussed below to identify research 

gaps and provide guidelines for future research. 

1) AVs are not currently available for people to use; thus, many simulation studies 

estimating impacts of AVs is solely based on assumptions (e.g., same vehicle and 

speed, similar travel behaviors, vehicles shared by household members only), 

imaginations of riders in simulate urban setting (e.g., grid city, typical city), and 

limited testing (Compostella et al., 2020; Fagnant & Kockelman, 2015; Zhang et al., 

2018). Sometimes, vehicles are operated in a homogeneous traffic environment with 

a little interaction with neighboring vehicles (Piao et al., 2016). Moreover, lower 

levels of autonomy (i.e., Level 1, 2 or 3) were used to understand people’s 

perceptions and assess the impacts of fully automated vehicles (Level 4 or 5) 

(Rahman et al., 2017; Xu et al., 2018). Thus, future studies should investigate the 

impacts of AVs considering heterogenous traffic environment allowing interactions 

with other vehicles, inclement weather conditions, and full automation of vehicles 

(Level 5) to gauge the real-world impacts of AVs. 

2) Conducting stated preference surveys, some studies investigated travel patterns of 

persons with prior knowledge on AVs, and with technological affinity disregarding 

other sections of people (Haboucha et al., 2017; Kapser & Abdelrahman, 2020; 
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König & Neumayr, 2017). Some studies consider travel by private AVs or SAVs, 

which partially represent a large and complex transportation system (Duan et al., 

2020; Krueger et al., 2016; Salonen, 2018). Thus, future studies should draw 

samples from all sections of people and investigate people’s travel patterns by AVs 

and SAVs to understand a holistic overview of the complex system.  

3) Some studies only considered part of trips ignoring vehicle operations for fueling 

and parking to estimate the impact of AVs (Compostella et al., 2020; Ma et al., 

2017). Additionally, studies also deal with the last-mile transportation problems 

(i.e., travel to and from transit station) (Moorthy et al., 2017) and consider a small 

section of the whole network (e.g. a junction) (Papadoulis et al., 2019). Thus, a study 

considering the whole transport network of a city is necessary to understand the 

overall impacts of AVs. 

4) Most of the studies considered the costs of ownership to estimate the travel costs by 

AVs disregarding the vehicle operation and maintenance costs (Wadud, 2017). 

Some studies only consider fare collection to estimate the revenue generation 

ignoring the maintenance and refueling costs (Duan et al., 2020; Nunes & 

Hernandez, 2020). Thus, a comprehensive estimation of travel costs and revenue 

generation comprising of all factors is necessary to guide customers and commercial 

operators.  

5) Although some researchers mentioned some positive (e.g., densification, economic 

growth) and negative (e.g., urban expansion, higher trip length) (Gelauff et al., 2019; 

Kim et al., 2020; Milakis et al., 2018) effects, still it is unclear and there is little 

evidence on how AVs would effects people’s residential and employment location 



94 
 

 
 

decisions (Kim et al., 2020; Krueger et al., 2019).  Thus, future researchers should 

investigate the long-term effects of AVs on urban land-use patterns.  

6) Door-to-door services provided by AVs would reduce walking and cycling trips, 

increase physical inactivity and related health problems (González-González et al., 

2019). However, to the best of our knowledge, there is no empirical study to 

investigate the impacts of AVs on public health (Crayton & Meier, 2017; Sohrabi et 

al., 2020). Thus, it is essential for the researchers to conduct studies and evaluate the 

possible impacts of AVs on public health considering the change in human travel 

behaviors and urban built environment, which may affect policy decisions. 
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CHAPTER 4: DETERMINANTS OF HOUSEHOLD PURCHASE INTENTION OF 

AUTONOMOUS VEHICLES: EMPIRICAL EVIDENCE FROM CALIFORNIA 

Abstract 

This study aims to investigate people’s perceptions and opinions on Autonomous 

Vehicles (AVs) and the key factors that influence people’s Behavioral Intention (BI) to 

purchase and use AVs. Data were sourced from the 2019 California Vehicle Survey to 

explore the determinants of AV purchase. A Structural Equation Model (SEM) of stated 

intentions is estimated to validate a theoretical framework drawn on relevant bodies of 

literature. The descriptive statistics show that many people are already aware of AVs. Many 

people also think that traveling by AVs is enjoyable, safe, and effective, although some of 

them would miss the joy of driving and would not entrust a driverless AV to shuttle their 

children. Results from the SEM indicate that working-age adults, children, household 

income, per capita income, and educational attainment are positively associated with AV 

purchase intention. Similarly, psychological factors (e.g., perceived enjoyment, usefulness, 

and safety), prior knowledge of AVs, and experience of emerging technologies (e.g., 

electric vehicles) significantly influence BI to purchase AVs. This study found that family 

structure and psychological factors are the most influential factors of AV purchase 

intention, and more so than the built environment, other socioeconomic, and transportation 

factors.  

Keywords: Autonomous Vehicle, Public Acceptance, Theory of Planned Behavior, Theory 

of Reasoned Action, Technology Acceptance Model, Structural Equation Modelling 
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1. Introduction 

Connected and autonomous vehicles will reshape the automobile industry and recast 

how humans travel in cities in the near future (Acheampong & Cugurullo, 2019; Losada-

Rojas & Gkritza, 2021). Many high-tech and automobile companies are determined to 

bring forth the new mobility option of Autonomous Vehicles (AVs) to modern societies 

(Kim, 2018; Moorthy et al., 2017). It is estimated that the rapid progress in the research 

and development of the constellation of technologies that enable AVs will shepherd the 

rise of their share of the global private vehicle market to 25% by 2040 (Yuen et al., 2020a). 

However, the impacts of AVs on peoples’ travel patterns, transportation systems, and 

physical and built environments are still largely unknown. Moreover, people’s acceptance 

of this new technology is key for successful distribution of AVs (Mara & Meyer, 2022) 

and will condition the nature and scale of these impacts. Given the knowledge gap, this 

study aims to enhance our understanding of the key determinants of people’s tendency to 

purchase and adopt personal AVs, looking at a range of factors, including socioeconomic, 

demographic, transportation, technology, the built environment, and vehicle-specific (i.e., 

safety, convenience, usefulness) elements.  

AVs are capable of driving and navigating without direct human input by using 

sensing technologies (e.g., radar, Global Positioning System (GPS), and computer vision) 

and advanced control systems (i.e., sensor) (Narayanan et al., 2020). According to the 

Society of Automotive Engineers (SAE) (SAE International, 2018), AVs have six levels of 

autonomy ranging from Level 0 (No autonomy to assist drivers or replace drivers to control 

the vehicle) to Level 5 (Full autonomy). Many cars are already equipped with cameras and 

sensors to avoid potential crashes (Kim, 2018; Van Brummelen et al., 2018). Researchers 
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have predicted that Level 5 AVs would be available commercially in the 2020s to 2030s 

(Litman, 2017; Trommer et al., 2018). However, most benefits of AVs will become 

prominent in the 2050s to 2060s when these vehicles would be common and affordable 

(Litman, 2017). In this study, I will investigate the determinants of Level 5 AVs.  

Despite tremendous advancements in research and development, the implementation 

of this novel technology is still in its infancy and the presence of AVs on public roads is 

yet to materialize. Consequently, most people have very limited knowledge of AVs, which 

could curb the introduction and slow the widespread availability of AVs. Findings on the 

behavioral intention of people to adopt AVs and on associated socioeconomic, urban, and 

technological factors are far from conclusive at this time and have not fully accounted for 

the complex interplay between personal preferences and influences from the broader 

community and socio-spatial environment. Thus, it is timely to study the factors that 

influence people’s intentions to purchase and use AVs. The following research questions 

frame this study: 

1) What are the perceptions, opinions, and expectations of people about AVs? 

2) How would people’s socioeconomic and demographic characteristics influence 

Behavioral Intention (BI) to purchase AVs for their travel purposes? 

3) How would awareness of AVs, and perception of their convenience, comfort, and 

safety influence people’s BI to purchase and use AVs?  

4) How would factors of the built environment, transportation, and technology 

influence people to purchase and use AVs for meeting their travel demand? 

This study uses data from the 2019 California Vehicle Survey (Transportation Secure 

Data Center, 2019); by design, the sampling scheme of this household survey includes 
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responses from actual users of electric vehicles. This survey comprises data on opinions 

and perceptions of people about self-driving vehicles through a 12-question survey 

instrument, which allows to address some of the stated research problems. 

The rest of the paper is organized as follows: Section Two discusses findings from 

the relevant literature, presents the theoretical framework, and outlines the hypotheses of 

the study. The research design is presented in Section Three. The main results of our 

analysis are presented in Section Four. Section Five articulates the discussion of these 

results. Section Six concludes the study by indicating directions for future research. 

2. Literature review and theoretical framework 

2.1 Synopsis of literature 

A considerable number of empirical studies have evaluated the factors that influence 

people to purchase and use AVs. A summary of the findings from the extant literature is 

presented in Table 4.1. In substance, the intention of customers to purchase and use AVs 

is strongly influenced by people’s socio-economic and demographic features. For example, 

working-age adults, elderly and disabled persons, males, married persons, people with 

bachelor’s education, high income, children, and vehicle ownership are more interested to 

purchase and adopt AVs. Similarly, prior knowledge of AVs positively influences people 

to purchase and use AVs. In contrast, educational attainment limited to high school, low 

household income, a household without private vehicles, and possession of a driving 

license are negatively associated with AV purchase and adoption. Besides a variety of user 

attributes, psychological and social factors affect AV adoption tendency. For example, 

people’s perception of the usefulness, ease of use, trustworthiness, safety, and social 

influences increase the willingness of people to purchase and use AVs. On the other hand, 
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perceived risk and technology anxiety negatively affect the tendency of people to purchase 

and use AVs. 

Table 4.1: Concepts describing AV ownership in the literature 

Feature Relationship References 

Age Median age Positive (Bansal & Kockelman, 2017; Hilgarter 

& Granig, 2020; Hulse et al., 2018) 

Less than 50 Positive (Panagiotopoulos & Dimitrakopoulos, 

2018; Piao et al., 2016; X. Wang et al., 

2020)  

50 and above Negative 

Gender  Male Positive (Howard & Dai, 2014; Wadud & Huda, 

2019; Zmud & Sener, 2017) 

Marital status Married/ couple Positive (Howard & Dai, 2014; Nazari et al., 

2018; Webb et al., 2019) 

Education Bachelor/ Master Positive (Daziano et al., 2017; Haboucha et al., 

2017; Nazari et al., 2018) High school/college Negative 

Income High income (more 

than $100,000) 

Positive (Bansal et al., 2016; S. Wang et al., 

2020; Webb et al., 2019) 

Low income Negative 

Household 

size and 

composition 

Large household (3 and 

less)  

Mixed (Positive 

and negative) 

(Gurumurthy & Kockelman, 2020; 

Laidlaw et al., 2018a; Nazari et al., 

2018) Household with 

children 

Mixed (Positive 

and negative)  

Elderly, disabled Positive 

Vehicle 

ownership 

No or 1 Negative (Daziano et al., 2017; Wadud & Huda, 

2019; S. Wang et al., 2020) 2 and more Positive 

License Yes Negative (Howard & Dai, 2014; Nazari et al., 

2018; Webb et al., 2019; Zmud & 

Sener, 2017) 

AV Knowledge Positive (Feys et al., 2020; Hilgarter & Granig, 

2020; König & Neumayr, 2017) 

Psychological 

factors 

Perceived usefulness Positive (Castritius et al., 2020; Nordhoff et al., 

2020; Shin et al., 2015) 

Perceived trust Positive (Castritius et al., 2020; Chen, 2019; 

Hagl & Kouabenan, 2020) 

Perceived ease to use Positive (Castritius et al., 2020; Nordhoff et al., 

2020; Xu et al., 2018) 

Social influence Positive Bansal and Kockelman (2018); (Bansal 

et al., 2016; Nordhoff et al., 2020) 

Traffic safety Positive (Xu et al., 2018) 

Perceived risk Negative (Ha et al., 2020; Hulse et al., 2018; Zhu 

et al., 2020) 

Technology anxiety Negative (X. Wang et al., 2020) 

Built Environment  

Population density Positive (Gurumurthy & Kockelman, 2020; 

Nazari et al., 2018; Webb et al., 2019) Employment density Positive 

Mixed land use Positive 
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Travel distance to city 

center/CBD/Workplace 

Positive (Haboucha et al., 2017; Nazari et al., 

2018; Rahimi et al., 2020) 

Urban area/Rural Positive /less 

likely 

(Daziano et al., 2017; König & 

Neumayr, 2017; Nazari et al., 2018) 

Transportation Factors  

Public (e.g., bus, train) and green (e.g., 

walk, cycle) transport 

Positive (Hilgarter & Granig, 2020; Krueger et 

al., 2016; Nazari et al., 2018) 

Ride-sourcing, car share Positive (Krueger et al., 2016; Rahimi et al., 

2020) 

Work trip Positive (Gurumurthy & Kockelman, 2020; 

Krueger et al., 2016) Shopping and recreation trips Negative 

Purchase price of vehicles Negative (Daziano et al., 2017; Haboucha et al., 

2017; Krueger et al., 2016) 

Technology affinity Positive (Rahimi et al., 2020; S. Wang et al., 

2020) 

Institutional Aspects  

Incentive (e.g. price rebate, tax 

reduction, and subsidy) 

Positive Howard and Dai (2014); (S. Wang et 

al., 2020) 

Traffic regulation Positive 

Research and Development Positive 

Separate infrastructure Positive 
 

People’s preference for adopting and using AVs also depends on the context provided 

by their built environment (e.g., density, land-use diversity). For example, high population 

and employment density, mixed land use, and high travel distance to destinations increase 

people’s willingness to use AVs. Additionally, urban people are more interested to 

purchase and use AVs than rural residents.  

The rate of AV adoption is also influenced by different transportation factors (e.g., 

travel mode, distance, and time) and institutional supports. For example, people who 

mostly use public and active transportation and ride-sharing services are interested to use 

shared AVs, and people who drive to work are more interested in owning personal AVs. 

Affinity to new technologies also influences individuals towards AVs. In this respect, 

people are interested to purchase and use vehicles if the vehicles are equipped with cutting-

edge technologies (e.g., automated speed control, braking and parking, collision warning, 
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blind-spot detection, lane-changing warning). In contrast, people are less likely to use AVs 

when they make shopping and recreational trips. Similarly, a high vehicle price reduces the 

willingness to purchase AVs. However, active support from central and local governments 

(e.g., incentives, research and development, infrastructure) strengthens people’s resolve to 

purchase and use AVs.  

Thus, the extant literature indicates that people’s socio-economic, demographic, and 

psychological factors, the built environment, transportation features, and institutional 

aspects have a greater role in deciding on the AV adoption intention of households.   

2.2 Theoretical framework 

Various theories have been advanced to describe human behaviors for choosing an 

alternative. These theories demonstrate that human behavior is influenced by some internal 

(e.g., personal attitudes, norms) and external (e.g., incentives, institutional constraints, 

surrounding environment) factors (Adjei & Behrens, 2012). Some popular theories are 

discussed hereafter. 

2.2.1 Theory of Reasoned Action 

The Theory of Reasoned Action (TRA) is a widely recognized model in social 

psychology that intends to explore the core determinants of individual BI towards an action 

(Ajzen & Fishbein, 1980; Madden et al., 1992). According to TRA, BI for a specific action 

is jointly determined by attitude (i.e., positive or negative) towards the behavior and by 

subjective norms (i.e., the influence of other people on behavioral action), as depicted in 

Figure 4.1. Attitude towards a behavior is determined by the user’s salient beliefs or 

information about the probability that performing a behavior has a consequence and leads 

to a specific outcome (Davis et al., 1989; Madden et al., 1992). Subjective norms are 



110 
 

 
 

determined by individual normative beliefs (i.e., perceived expectation of individual or 

group) and his/her motivation to comply with these expectations. 

 

 

 

 

 

 

2.2.2 Theory of Planned Behaviors 

Researchers have used the Theory of Planned Behavior (TPB) to investigate the 

factors that influence people’s travel mode choice behaviors (Bamberg, 2006; Bamberg et 

al., 2003; Conner & Armitage, 1998; Heath & Gifford, 2002). They particularly 

investigated psychological factors of travel mode choice. However, the surrounding 

physical environment (i.e., urban form) also influences travel behaviors.  

 

 

 

 

 

 

 

 

 

 

Ajzen (1985) first introduced the TPB theory based on TRA to investigate the 

influence of external factors (i.e. where people have no control) on behavioral actions. 

According to Figure 4.2, the TPB explains that human behavior is dependent on the 

Attitude towards 

behaviors 

Subjective norms 

Perceived 

behavioral control 

Intention Behaviors 

Attitude towards 

behavior  Behavioral 

Intention 

(BI) 
Subjective norm  

Actual 

behavior 

Figure 4.1: Theory of Reasoned Action (TRA) 

Figure 4.2: Theory of Planned Behavior, adopted from (Ajzen, 1985), (Ajzen, 1991) 
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intention to behavioral change (Morris et al., 2012). Intentions are influenced by attitudes, 

subjective norms, and perceived behavioral control measures. Attitude indicates the belief 

and values of a behavioral outcome. Subjective norms denote the collective perception of 

other people on the decision faced by the decision makers (i.e., other people suggest the 

final decision) and social pressure towards the behavioral outcome. Perceived behavioral 

control represents external factors (e.g., ability, opportunity, resources, skill) to choose an 

alternative. 

2.2.3 Technology Acceptance Model 

The Technology Acceptance Model (TAM) is a widely used model to understand 

how users accept and use a technology (Lee et al., 2003; Zhang et al., 2020). Davis (1985) 

originally proposed the TAM based on the TRA (Fisbein & Ajzen, 1975). According to the 

initial version of TAM, users’ attitude is the main determinants to understand whether they 

will accept it or not. As indicated in Figure 4.3, user’s Attitude Towards Technology (ATT) 

depends on two major beliefs: Perceived Usefulness (PU) and Perceived Ease of Use (PEU) 

(Davis, 1985; Davis et al., 1989). ATT is defined as the positive or negative feelings of an 

individual about the performance of a technology. PU of technology is defined as the 

degree to which it can enhance the job performance of the users. On the other hand, PEU 

is defined as the degree to which it can reduce the physical and mental effort of the users. 

PEU has a direct causal effect on PU since all are equal. The technology that is easy to use 

increases the job performance of the users.  
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The model also demonstrated that external features (e.g., socio-economic features, 

nature of the behavioral outcomes, prior behavior, and persuasive communication) have 

direct effects on PU and PEU. These external features indirectly influence people’s attitude 

and belief by directly affecting PU and PEU. The model indicates that positive ATT and 

high PU significantly influence people to use technology. The earlier version of TAM 

includes core variables of user motivation (i.e., PU, PEU, and ATT) and outcome variables 

(i.e., BI, actual technology use) along with some external factors (Scherer et al., 2019). 

However, Davis (1989) proposed another version of TAM (Figure 4.4) where they argued 

that ATT is not an influencing factor, rather PU and PEU have direct and positive effects 

on the intentions of individuals toward technology use (Rahman et al., 2017). 
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Figure 4.3: TAM (1985) 

Figure 4.4: TAM (1989) 



113 
 

 
 

2.2.4 Theoretical framework to investigate the factors affecting BI to use AV 

Based on the findings from the literature and existing theories (e.g., TRA, TPB, and 

TAM), a theoretical framework dubbed the Integrated Technology Acceptance Model 

(ITAM) is proposed to investigate the factors that influence people’s BI to adopt and use 

AVs. The new model is more aligned with the updated version of TAM where Davis (1989) 

argued that PU and PEU have direct effect on BI rather than ATT. Figure 4.5 shows the 

proposed ITAM featuring the behavioral control factors, objective factors, and people’s 

attitudes towards AVs that influence AV purchase and use intention of the people.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the ITAM, human BI to actual AV use is directly influenced by 

behavioral control factors (e.g., socioeconomic and travel factors), objective factors (i.e., 

Behavioral 

Intention 

(BI) 

Actual 

system 

use  

Perceived 

usefulness (PU)  

Perceived ease 

of use (PEU)  

Objective 

factors 

Behavioral 

control factors 

Travel factors (vehicle 

type, trip length, mode) 

Socio-economic (age, 

family size, education, 

income, vehicle ownership) 

Densit

y 

Diversit

y 

Technology  

PEV  

Solar 

Panel  

Figure 4.5: Integrated Technology Acceptance Model (ITAM) 
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urban form), and psychological factors (i.e., PU and PEU). Additionally, the model 

indicates that the actual use of AVs also depends on the availability of novel technology 

(e.g., EV, solar panel) and the affinity of the people towards new technologies. 

Socioeconomic factors also indirectly affect AV use by influencing objective factors, 

psychological factors, and the affinity of the people towards a technology. 

Based on the conceptual framework of ITAM and the review of the literature, a 

number of research hypotheses are formulated as follows. 

a) Socioeconomic and demographic factors 

1) Young, working-age adults, and households with children have a positive BI to 

purchase AVs (Hypothesis 1 (H1)). 

2) Education attainment is positively associated with BI to purchase AVs (H2). 

3) People with higher household income are more interested to purchase AVs compared 

to their counterparts (H3). 

b) Travel factors 

1) Preference for ride-hailing and ride-sharing services are negatively associated with 

BI to purchase AVs (H4). 

2) People who prefer public transport for their daily travel purposes are unwilling to 

purchase AVs (H5). 

c) The built environment 

1) High population and employment density and high walkability score are positively 

associated with BI to purchase AVs (H6).  



115 
 

 
 

2) Mixed land uses and short travel distance to workplaces are positively associated with 

BI to purchase AVs (H7). 

3) People who live in neighborhoods with a higher number of democratic supporters are 

interested to purchase AVs (H8). 

d) Psychological factors 

1) Perceived usefulness, safety, and effectiveness are positively related to BI to purchase 

AVs (H9). 

2) People having familiarity with advanced automated technologies are likely to 

purchase AVs (H10).  

3) Age, income, and education positively mediate people’s psychological attributes to 

purchase AVs (H11). 

e) Technological development 

1) Experience with alternative fuel vehicles (e.g., electric vehicles, hybrid electric 

vehicles, fuel cell vehicles) is positively associated with BI to purchase AV (H12). 

2) Households’ preference for gasoline vehicles is negatively associated with BI to 

purchase AV (H13). 

3) Working-age adults, high income, and education level mediate people’s 

technological preference to purchase AV (H14). 

3. Research design 

3.1 Data 

To conduct this study, data are sourced from the 2019 California Vehicle Survey 

conducted by the California Energy Commission (Transportation Secure Data Center, 
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2019). The survey collected data to assess transportation fuel needs and provide key policy 

guidelines for transportation planning in California. The survey assessed consumer 

preferences for light-duty vehicles (i.e., personal and commercial) and Electric Vehicles 

(EVs). This survey collected economic and demographic data, vehicle information 

including vehicle and fuel types, vehicle choice information using a stated preference 

survey. Moreover, charging behavior, electricity rates, and main motivations for 

purchasing EVs were collected from the EV owners. In addition, a total of 13 questions 

were articulated to know people’s perceptions, opinions, intentions, and motivation 

towards self-driving cars and ride-sharing facilities. The study analyzes the data collected 

from residential surveys only. A total of 4,248 individuals including 718 EV owners 

participated in an online-based residential survey. A stratified random sampling technique 

was used to collect data from six regions: San Francisco, Sacramento, Central Valley, Los 

Angeles, San Diego, and the Rest of California. Households were selected randomly by 

address at the county level and invited to participate in the survey in such a way to ensure 

that samples are proportional to the population in each county. 

Other data sources include the American Community Survey (US Census Bureau, 

2018), Environmental Protection Agency (Environmental Protection Agency, 2020), and 

California State Association of Counties (California State Association of Counties, 2019). 

The data aggregated at the county level were collected and combined with the 2019 

California Vehicle Survey. Finally, the data were processed (i.e., missing value imputation 

with the median values, creation of new variables from the original data) and analyzed to 

test the research hypotheses. A detailed description of the variables used in the study is 

presented in Table 4.2. 
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Table 4.2: Description of the variables 

Variable Variable Description Measure Source 

Dependent variable 

AV_HH Household's intention to purchase AV 1 = Wait and try to 

avoid ever buying, 2 = 

eventually buy when 

they are in common 

use, 3 = One of the 

first to buy an AV 

CVS 

Independent variables 

AGE1 Age of the respondent between 18 and 64 years 1 = Yes, 0 = No CVS 

AGE3 Age of the respondent between 18 and 34 years 1 = Yes, 0 = No CVS 

MEM5 Number of people age 15 or below in the household # CVS 

EVHE Experience in owning or leasing an electric or 

hydrogen cell vehicle (e.g., HEV, PHEV, BEV, and 

FCV) of the household 

1 = Yes, 0 = No CVS 

CHARGE EV charging spots at the workplace 1 = Yes, 0 = No CVS 

GAS Willingness to consider gasoline-only vehicle 1 = Yes, 0 = No CVS 

PHEV Willingness to consider PHEV only vehicle 1 = Yes, 0 = No CVS 

BEV Willingness to consider BEV only vehicle 1 = Yes, 0 = No CVS 

PFCEV Willingness to consider PFCEV only vehicle 1 = Yes, 0 = No CVS 

PUB2 Use of public transportation (e.g., bus, light 

rail/tram/subway, and commuter train) for trips in the 

local area 

1 = Yes, 0 = No CVS 

RH2 Use of ride-hailing services (e.g., Taxi, Uber/Lyft, 

Uberpool/Lyftline) for trips in the local area 

1 = Yes, 0 = No CVS 

RS1 Availability of ride-sharing services (e.g., bikeshare, 

Car2Go, ZipCar, Jump) for trips in the local area 

1 = Yes, 0 = No CVS 

RS2 Use of ride-sharing services for trips in the local area 1 = Yes, 0 = No CVS 

MODE_F3 Frequency to use Light rail/tram/subway (e.g., 

BART, LA Metro) 

1= >1/month, 2 = 1-3 

times/month, 3 = 1-2 

times/week, and 4 = ≥ 

3 times/week 

CVS 

AV_AW Familiarity of the respondent with AVs 1 = Never heard, 2 = 

Heard but not familiar, 

3 = heard and 

somewhat familiar, 

and 4 = heard and very 

familiar 

CVS 

AV1 AVs would enable the respondent to enjoy traveling 

more (e.g., watch the scenery, rest) 

1 = Strongly disagree, 

2 = Somewhat 

disagree, 3 = 

Somewhat agree, and 

4 = Strongly agree 

CVS 

AV2 People would miss the joy of driving and be in 

control 

CVS 

AV3 People would accept longer travel times so the AV 

could drive at a low speed to prevent unsafe 

situations for pedestrians and bicyclists 

CVS 

AV5 People would reduce time at the regular workplace 

and work more in the AVs 

CVS 

AV6 People would send an empty AV to pick up/drop off 

my child 

CVS 

AV7 People would be able to travel more often even when 

he is tired, sleepy, or under the influence of 

alcohol/medications 

CVS 

HHI3 Annual household income $100K and above 1 = Yes, 0 = No CVS 
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POPDEN Population density aggregated at the county level People/km2 ACS 

EDU5 Population 25 years and over have bachelor and 

above degree aggregated at the county level 

% ACS 

PCI Per capita income in the past 12 months aggregated 

at the county level 

$ ACS 

EMP Employment density aggregated at the county level Jobs/acre EPA 

ENTROPY Employment and household entropy aggregated at 

the county level 

Index EPA 

WI Walkability index aggregated at the county level Index EPA 

VMT 

Average daily VMT per worker aggregated at the 

county level 

VMT/day/worker EPA 

EVD Registered Democrat Voters in 2019 aggregated at 

the county level 

% CSAC 

 

HEV = Hybrid Electric Vehicle, PHEV = Plug-In Hybrid Electric Vehicle, BEV = Battery Electric Vehicle, FCV = Fuel 

Cell Vehicle, PFCEV = Plug-In Fuel Cell Electric Vehicle, CVS = 2019 California Vehicle Survey, ACS = American 

Community Survey, EPA = Environmental Protection Agency, and CSAC = California State Association of Counties. 
 

Some variables require further elaborations. ENTROPY measures the diversity in 

population count and land-use areas in census block groups (Environmental Protection 

Agency, 2020). Since a geographic unit of interest is the county and since the county of 

residence is recorded in the survey, the county median value is used and related back to 

each survey response. The entropy value ranges from 0 to 1, where 0 indicates the absence 

of diversity and 1 indicates prefect diversity. 

The Walkability Index (WI) indicates the likelihood or feasibility of walking for 

utilitarian purposes (Environmental Protection Agency, 2020). This composite index is 

created using four built environment measures, namely the population and land-use entropy 

measure mentioned earlier, a measure of employment diversity (also using the entropy 

principle), the street intersection density, and the distance to the nearest transit stop, which 

are all considered as supporting walking. Similar to ENTROPY measure discussed above, 

the county median values of WI, EMP, and VMT are used and related back to each survey 

response.  

Tables 4.3 and 4.4 report the descriptive statistics of dependent and independent 

variables used in model building. Asking the intentions to purchase an AV for households, 
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the survey found that about 53.93% of respondents expressed their interest to purchase 

AVs (Table 4.4). Suffices it here to comment on the dependent variable. In the sample, 

8.97% of respondents self-identify as eager to be among the early customers who would 

purchase AVs, while 44.96% mentioned that they would wait and buy AV when AVs will 

be common in use. In addition, 46.07% of respondents would wait longer before 

purchasing an AV and even try to avoid buying an AV altogether.  

Table 4.3: Descriptive statistics of variables (N= 4,248) 

Variable Minimum Maximum Mean Std. Deviation 

MEM5 0.00 12.00 0.32 0.77 

POPDEN 0.60 7066.04 741.81 1072.17 

EDU5 12.05 58.79 34.98 10.06 

PCI 17,590.00 69,275.00 36,800.41 9,748.39 

EMP 0.00 7.24 1.62 1.11 

ENTROPY 0.37 0.65 0.51 0.03 

WI 3.58 16.00 12.71 1.89 

VMT 11.96 42.49 19.48 4.49 

EVD 14.34 49.16 34.60 7.71 
 

Table 4.4: Descriptive statistics on respondents’ socioeconomic features and opinions on 

technology and AVs (N= 4,248) 

Variable Measure Percent 

AGE1 No 34.70 

Yes 65.30 

AGE3 No 87.57 

Yes 12.43 

HHI3 No 57.84 

Yes 42.16 

EVHE 

No 88.30 

Yes 11.70 

CHARGE No 86.84 

Yes 13.16 

GAS No 42.37 

Yes 57.63 

PHEV No 53.15 

Yes 46.85 

BEV No 64.83 

Yes 35.17 

PFCEV No 86.42 

Yes 13.58 
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PUB2 No 64.74 

Yes 35.26 

RH2 No 54.24 

Yes 45.76 

RS1 No 41.48 

Yes 58.52 

RS2 No 92.75 

Yes 7.25 

MODE_F3 >1/month 91.41 

1-3 times/month 4.80 

1-2 times/week 1.65 

≥ 3 times/week 2.14 

AV_AW Never heard 4.47 

Heard but was not familiar 38.21 

heard and somewhat familiar 43.06 

heard and very familiar 14.27 

AV1 Strongly disagree 22.72 

Somewhat disagree 19.33 

Somewhat agree 39.76 

Strongly agree 18.20 

AV2 

Strongly disagree 11.80 

Somewhat disagree 19.60 

Somewhat agree 37.30 

Strongly agree 31.40 

AV3 Strongly disagree 23.73 

Somewhat disagree 23.07 

Somewhat agree 36.68 

Strongly agree 16.53 

AV5 Strongly disagree 46.00 

Somewhat disagree 28.63 

Somewhat agree 19.87 

Strongly agree 5.51 

AV6 Strongly disagree 61.06 

Somewhat disagree 19.11 

Somewhat agree 14.67 

Strongly agree 5.16 

AV7 Strongly disagree 28.27 

Somewhat disagree 19.35 

Somewhat agree 35.19 

Strongly agree 17.18 

AV_HH One of the first to buy an AV 8.97 

Eventually buy when they are in common use 44.96 

Wait and try to avoid ever buy 46.07   

Considering the enormous possibilities, many people are interested to adopt and use 

AVs in California. The California Department of Motor Vehicles (DMV) has already 

developed regulations for the manufacturers to follow during testing and before the 
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deployment of AVs to encourage innovation and promote safety (Department of Motor 

vehicles, 2021). The California DMV first permitted Nuro, a robotics company, to test AVs 

on public roads in 2017 and they got approval from DMV to deploy AVs for commercial 

use in the Bay Areas in December 2020 (Klar, 2020). Nuro is already operating AVs in 

partnership with 7-Eleven to deliver convenience store products (Hawkins, 2021). 

Currently, more than fifty robotics and auto companies are permitted to test full AVs in 

California including Waymo and General Motors (Subin & Wayland, 2021). It is expected 

that AVs would be common in California in a few years and people would use AVs for 

their daily travel purposes.  

3.2 Methods 

A Structural Equation Model (SEM) is employed to find the factors that affect 

people’s BI towards AVs using the conceptual framework described in Figure 4.5. SEM is 

commonly used in psychology, biological sciences, transportation, business, and 

environment to unveil complex relationships between dependent and independent variables 

by introducing mediators (Bayard & Jolly, 2007; Irfan et al., 2020; Janggu et al., 2014). As 

a powerful multivariate modeling technique, SEM combines various statistical tools such 

as regression, factor analysis, and path analysis (Shen et al., 2016; Wang et al., 2016). The 

main strengths of SEM include (1) the modeling of intervening indirect effects of 

explanatory variables on response variables, (2) the estimation of total effects in addition 

to direct and indirect effects, (3) estimation of the relationship between latent constructs 

and their manifest factors, and (4) correcting measurement error in all observed variables 

(Rahman et al., 2021; Van Acker et al., 2007). Moreover, SEM shows existing concepts in 

a structural model to estimate the relationships. 
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Based on Exploratory Factor Analysis (EFA) and existing concepts, eight latent 

constructs are generated based on observed variables. A Confirmatory Factor Analysis 

(CFA) is used to validate the model grounded on EFA and extant theories. Finally, the 

relationships between the dependent, mediator, and independent variables is estimated 

conducting a path analysis after controlling for socioeconomic features. A maximum 

likelihood estimator is used for estimating coefficients. Several fit indices (e.g., chi-square, 

RMSEA, SRMR, CFI, TLI) are used to verify the goodness-of-fit of the calibrated model. 

The model is calibrated with MPlus Version 7.4 (Muthén & Muthén, 2017). The Weighted 

Least Squares Means and Variance Adjusted Estimators (WLSMV) approach is used to 

estimate the model given the ordinal nature of the dependent variable. 

4. Results 

4.1. Calibrated model 

The complete structure of the calibrated model based on the CFA and path analysis 

is given in Figure 4.6. Some non-significant associations between latent constructs and 

outcome variables were excluded to achieve a robust model. The final specification of the 

model consists of interactions between explanatory and response variables through some 

mediators. As indicated in Figure 4.6, the rectangles represent the observed variables and 

circles indicate latent dimensions. It is worth mentioning that I also included some 

important factors of the built environment (e.g., activity density, workers per household, 

percent of high wage workers, jobs within 45 minutes auto travel time), transportation 

factors travel behavior (e.g., gas price, percentage of workers who choose public transport 

to work), technological factor (e.g., experience of solar panel), and socioeconomic factors 

(e.g., per capita gross domestic product, household size) in the base model. However, I 
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dropped these variables during model calibration to achieve the best-fit final model. 

Several variables (e.g., population and employment density, land-use diversity, VMT, 

share of registered democrat supporters, per capita income) are long-transformed to 

linearize the relationships captured in the model. 

The overall fit of the calibrated model is assessed on the basis of several fit indices 

(Table 4.5). All indices are within the acceptable range and thus satisfy the model 

requirements and confirm the model validity (Hu & Bentler, 1999; MacCallum et al., 1996; 

Rahman et al., 2020; Rahman et al., 2021).  

Table 4.5: Goodness-of-fit indices of the calibrated model 

Indices Recommended value Value 

Chi-Square  Lower values suggest better fit 8181.73 

TLI (Tucker Lewis Index) 0 to 1, 1 implies perfect fit 0.80 

CFI (Comparative Fit Index) 0 to 1, 1 implies perfect fit 0.82 

RMSEA (Root Mean Square 

Error of Approximation) 

<0.05 indicates very good fit (threshold level 

is 0.10) 

0.07 

SRMR (Standardized Root Mean 

Square Residual) 

<0.08 is generally considered a good fit 0.07 
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4.2 Standardized direct effects on the intention to purchase AVs 

The standardized coefficients of the calibrated SEM and the direction of modeled 

direct effects are given in Table 4.6. These coefficients indicate the direct connections 

between and among explanatory variables, response variables, and latent dimensions.  

0.31 

Figure 4.6: Calibrated model with direct standardized effects 
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Most interactions are significant at the P-value of 0.00, 0.01, or 0.05. However, some of 

the interactions with a P-value larger than 0.05 are kept to better understand the model and 

demonstrate a complete relationship. 

Table 4.6: Estimated standardized direct effects (N = 4,248) 

Relationship between observed/estimated variables and 

latent factors 

Estimate Z P 

AGE1  Family Structure 0.36      16.85       0.00 

AGE3  Family Structure 0.30        14.51       0.00 

MEM5  Family Structure 0.25       12.09       0.00 

l_POPDEN  Urban Structure 0.90      239.03       0.00 

l_EVD                Urban Structure 0.25       16.77       0.00 

EMP              Urban Structure 0.95       245.37       0.00 

WI  Urban Structure 0.87       197.94       0.00 

AV1  Usefulness and Safety 0.81   108.04       0.00 

AV2  Usefulness and Safety -0.37       -25.12       0.00 

AV3  Usefulness and Safety 0.62         57.56       0.00 

AV5  Usefulness and Safety 0.62            56.04       0.00 

AV6  Usefulness and Safety 0.60       52.31       0.00 

AV7  Usefulness and Safety 0.72      79.68       0.00 

EDU5  Affluence 0.38           21.89       0.00 

HHI3  Affluence 0.02       2.19       0.03 

l_PCI                Affluence 1.47       33.07       0.00 

RH2    Ride-share 0.56       34.77       0.00 

RS1  Ride-share 0.47       28.19       0.00 

RS2  Ride-share 0.42       24.62       0.00 

PUB2  Ride-share 0.60       36.87       0.00 

MODE_F3              Ride-share 0.45       25.94      0.00 

PHEV  Tech Affinity 0.38       21.51       0.00 

BEV  Tech Affinity 0.72       41.09       0.00 

PFCEV  Tech Affinity 0.48       28.78       0.00 

l_D2A                Urban Layout 1.00       207.01       0.00 

l_VMT               Urban Layout -0.34      -23.06       0.00 

EMP                Urban Layout 0.31       44.30       0.00 

EVHE  Tech Experience 0.33      15.14       0.00 

GAS  Tech Experience -0.52 -17.91       0.00 

Urban Structure  Family Structure 0.10       4.65       0.00 

Urban Structure  Affluence 0.07       5.44       0.00 

Urban Layout  Family Structure -0.04      -2.80       0.01 

Urban Layout  Affluence -0.57    -28.19 0.00 

Usefulness and 

Safety 

 Family Structure 0.65       31.18       0.00 

Usefulness and 

Safety 

 Affluence 0.02  1.82       0.07 

Tech Affinity  Family Structure 0.61       24.47       0.00 

Tech Affinity  Affluence 0.02 2.09       0.04 
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Tech Experience  Family Structure 0.47       11.03       0.00 

Tech Experience  Affluence 0.03       2.22       0.03 

AV_HH  Family Structure 0.20           3.36    0.00 

AV_HH  Urban Structure -0.01         -1.12       0.27 

AV_HH  Usefulness and Safety 0.50       17.02       0.00 

AV_HH  Affluence 0.01       0.95       0.35 

AV_HH  Ride-share -0.05       -2.12       0.03 

AV_HH  Tech Affinity -0.06       -1.39       0.16 

AV_HH  Urban Layout 0.01       1.02       0.31 

AV_HH  Tech Experience 0.24       5.42       0.00 

AV_HH  AV_AW              0.11       9.11       0.00 

AV_HH  CHARGE 0.02  1.79       0.07 
 

Eight latent dimensions are generated based on observed variables: 

1) Family Structure: AGE1, AGE3, and MEM5 

2) Affluence: EDU5, HHI3, and l_PCI 

3) Ride-share: RH2, RS1, RS2, PUB2, and MODE_F3 

4) Urban Structure: l_POPDEN, l_EVD, EMP, and WI 

5) Urban Layout: l_ENTROPY and l_VMT 

6) Perceived Usefulness and Safety: AV_1, AV_2, AV_3, AV_5, AV_6, AV_7 

7) Tech Affinity: PHEV, BEV, and PFCEV 

8) Tech Experience: EVHE and GAS 

I now proceed to discuss the estimated relationships between observed or estimated 

independent variables and each of the latent dimensions in the model successively. 

Family Structure: This exogeneous latent dimension represents the demographic 

structure of the household and is developed by AGE1, AGE3, and MEM5. As reported in 

Table 4.6, this latent dimension has a positive association with AV_HH (0.20), after 

accounting for other factors, which indicates that households with more working-age adults 

and children are likely to purchase AVs. Their motivations to purchase AVs are grounded 

in state and federal incentives (e.g. price rebate, tax reduction, and subsidy), research and 
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development, conducive traffic regulations, and infrastructure, in addition to affinity to 

advanced technologies. The study also finds that family structure is positively associated 

with the perceived usefulness and safety of AVs, tech affinity, and tech experience. 

Households with working adults and children lean towards advanced technology and have 

experience with advanced transportation modes (e.g., EVs), and hence they value the 

convenience, usefulness, and safety features of AVs (Nordhoff et al., 2020; Piao et al., 

2016; Webb et al., 2019).  

Affluence: This exogeneous latent factor denotes the prosperity of the household at 

the study context and is generated from three observed variables: EDU5, HHI3, and l_PCI. 

It is positively associated with AV_HH (0.01), which indicates that people living in areas 

with high household and per capita income, and having a higher number of people holding 

a bachelor’s degree or higher education are likely to purchase AVs, which resonates the 

findings from the previous literature (Bansal et al., 2016; Daziano et al., 2017; Rahimi et 

al., 2020). However, the relationship is statistically insignificant (P-value: 0.35). Affluence 

is also positively associated with the perceived usefulness and safety of AVs, tech affinity, 

and tech experience. Thus, prosperity in the household motivates people to adopt and 

experience advanced transportation options and thereby value the convenience, usefulness, 

and safety features of AVs despite high purchasing and operating prices. However, family 

composition has significant effects on influencing AV purchase intentions of the 

households compared to their affluence. 

Ride-share: This latent dimension represents the availability and use of public 

transportation and shared mobility options (i.e., ride-hailing and ride-sharing) in the local 

area. The ride-share latent dimension is developed based on five observed variables: RH2, 
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RS1, RS2, PUB2, and MODE_F3. As indicated in Table 4.6, shared mobility is 

characterized by the availability and use of public transportation (e.g., bus, light 

rail/tram/subway, and commuter train), ride-hailing services (e.g., Taxi, Uber/Lyft, 

Uberpool/Lyftline), and ride-sharing services (e.g., bike-share, Car2Go, ZipCar, Jump). 

SEM results (Figure 4.6) show that ride-share has a direct significant negative effect on 

AV_HH (-0.05). Thus, people who have ride-share mobility options in their localities and 

use them for daily travel purposes are unlikely to purchase personal AVs. The calibrated 

model explains that a one-unit increase in ride-sharing services significantly reduces 

people’s AV purchase intentions by 0.05 unit, other things being equal. However, they 

could be interested to use shared AVs (SAVs) motivated by multimodal travel behaviors, 

by willingness to share vehicles with fellow riders, and by concerns for reducing 

environmental degradation and transportation costs (Gurumurthy & Kockelman, 2020; 

Krueger et al., 2016; Nazari et al., 2018). 

Urban Structure: This endogenous latent dimension represents the patterns of the 

built environment in the study context. It is comprised of four calculated variables: 

l_POPDEN, l_EVD, EMP, and WI. The urban structure in California is characterized by 

high population and employment density, walkability, and a higher share of democrat 

supporters (Table 4.6). The calibrated model in Figure 4.6 shows that urban structure has 

a negative effect on AV_HH (-0.01), which indicates that people who live in urban areas 

with high population and employment density, walkability, and democrat supporters are 

unlikely to purchase AVs. The availability of good quality public transportation and ride-

sharing services in the urban context discourage people to purchase personal AVs. 

Moreover, they could adopt SAVs. However, the effect of urban structure on people’s 
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intention to purchase personal AVs is minimal and statistically insignificant (P-value: 

0.27). Thus, the urban structure has very little effect to determine household’s AV purchase 

intention. AVs would ensure convenience to the riders by providing then multitasking 

opportunities (i.e., people can work, talk with family and friends, and take a rest). Thus, 

because they would be in a better position to benefit from the advantages, people who live 

far from their workplaces would more likely purchase AVs compared to people who live 

in urban areas. Consequently, AVs have the potential to increase urban sprawl (González-

González et al., 2019; Meyer et al., 2017). 

Urban Layout: This endogenous latent dimension also represents the built 

environment of the study context. It is developed based on two calculated variables: 

l_ENTROPY and l_VMT. SEM estimation shows (Table 4.6) that the urban layout is 

positively associated with mixed land use and negatively associated with vehicle miles 

travelled. Thus, urban layout in the study context is distinguished by mixed land uses and 

low travel distance. Figure 4.6 indicates that urban layout is positively associated with 

AV_HH (0.01), which indicates that people who live in a neighborhood with a diversity of 

land uses and low travel distance are likely to purchase AVs, which is in agreement with 

the extant literature (Laidlaw et al., 2018a; Nazari et al., 2018). However, the association 

is statistically insignificant with a P-value of 0.31. Thus, this factor of the built environment 

has little effect to determine people’s AV purchase intention. 

Perceived Usefulness and Safety: This endogenous factor is developed by AV1, AV2, 

AV3, AV5, AV6, AV7. This is the only latent dimension that encompasses various features 

(e.g., convenience, usefulness, safety) of AVs. From the results reported in Table 4.6, I 

find that people enjoy traveling (i.e., watch scenery), make use of time by doing work or 
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taking a rest, and accept longer travel time to ensure the safety of pedestrians and bicyclists 

when traveling by AVs. On the other hand, people would miss the joy of driving. Figure 

4.6 reveals that perceived usefulness and safety are positively associated with AV_HH 

(0.50). Thus, perceived enjoyment and usefulness (e.g., work, talking on the phone, 

reading, taking a rest) significantly influence the BI of people to purchase AVs. Similarly, 

perceived lower risk for pedestrians, bicyclists, kids, and themselves due to the low speed 

of AVs influence people to purchase AVs. On the other hand, fear of losing control of 

vehicles discourages people to purchase AVs. Thus, those who enjoy driving are less likely 

to purchase an AV. The higher magnitude of the effect of perceived usefulness and safety 

indicates that this latent dimension has a greater role in deciding people’s BI to purchase 

AVs compared to socioeconomic features, and the factors of transportation and of the built 

environment. The study findings are also supported by the literature (Kaye et al., 2020; 

Rahman et al., 2017; Yuen et al., 2020b). 

Tech Affinity: This endogenous latent dimension is created based on three observed 

variables: PHEV, BEV, and PFCEV. As explained in Table 4.6, this latent dimension is 

positively associated with the willingness of the respondents to consider PHEV, BEV, and 

PFCEV in their future purchase. Tech affinity is negatively associated with AV_HH (-

0.06) which contradicts the extant literature (Rahimi et al., 2020; S. Wang et al., 2020). 

This finding indicates that despite a higher tendency to use technology, many people would 

wait and observe the trend of AV adoption before going to purchase this new technology 

due to risks and uncertainty associated with AVs (Zmud & Sener, 2017). However, the 

association between tech affinity and AV_HH is not statistically significant (P-value: 0.16).  
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Tech Experience: This endogenous factor is developed from two EVHE and GAS. It 

illustrates the previous experience of a household with owning or leasing an electric or 

hydrogen cell vehicle (e.g., HEV, PHEV, BEV, and FCV) and future intention to purchase 

gasoline vehicles. Table 4.6 indicates that tech experience is positively associated with 

AV_HH (0.24). Assuming everything is held equal, a one-unit increase in tech experience 

increases people’s BI to purchase AVs by 0.24 unit. People who have real experience with 

EVs and vehicles equipped with smart technologies (e.g., automated speed control, braking 

and parking, collision warning, blind-spot detection, lane changing warning) are more 

interested to purchase AVs compared to conventional gasoline vehicles (Chen, 2019; Shin 

et al., 2015). Thus, vehicles equipped with improved services for people  and ensuring 

safety, security, and personal privacy significantly motivate people to adoption and use 

AVs (Daziano et al., 2017; Rahimi et al., 2020). Figure 4.6 also indicates that people’s 

familiarity with AVs (AV_AW) is positively associated with people’s BI to purchase AVs 

(0.11). The people who have prior knowledge about AVs are more likely to purchase and 

use AVs compared to the people who have little knowledge or never heard of AVs. In the 

survey, 57.33% of respondents heard about AVs; hence it is assumed that these people 

would be the first to purchase and use AVs. Thus, prior knowledge about AVs is considered 

as one of the main factors that would influence people towards AVs, as mentioned in 

previous studies (Daziano et al., 2017; Feys et al., 2020; Laidlaw et al., 2018b). Similarly, 

the EV charging station at the workplace is positively associated with AV_HH (0.02). 

Thus, people who have access to an EV charging station at their work place are more likely 

to purchase and use AVs compared to their counterparts.   
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4.3 Standardized total effects on the intention to purchase AVs 

For a full account of the reasons, the total effects of latent dimensions on people’s 

AV purchase intentions considering both direct and indirect effects are presented in Table 

4.7, which are not explicitly mentioned in Figure 4.6.  

Table 4.7: Standardized total (direct and indirect) effects of latent factors on AV purchase 

Effects of latent factors on AV purchase Direct Indirect Total 

AV_HH  Family Structure 0.202 0.401 0.603 

AV_HH  Affluence 0.006 0.005 0.011 
 

As specified by the calibrated model (Figure 4.6), family structure and affluence are 

the only two latent factors that have indirect effects on people’s intention to purchase AVs 

by mediating urban structure, urban layout, tech affinity, tech experience, and usefulness 

and safety of AVs. Considering both direct and indirect effects, family structure has a total 

effect of 0.603 on people’s AV purchase intentions. Households with working adults and 

children are the first to purchase and use AVs due to their experience and affinity to 

advanced technologies, convenience, usefulness and improved safety features of AVs, and 

neighborhood selection. Similarly, affluence has a total effect of 0.011 consisting of direct 

(0.006) and indirect (0.005) effects. Better economic conditions and higher education 

attainment in the study context increase the affordability of AV purchase. However, the 

magnitude of the effect is rather minimal. After accounting for a number of built 

environment attributes, other socioeconomic features, and transportation factors, the family 

structure remains the most influential factor of AV purchase intention of households. Thus, 

the family structure comprising of adults and children is the key consideration in 

households’ intention to purchase AVs.  
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5. Discussion 

The study shows that many people are already aware of AVs and of services provided 

by AVs, which is vital to increase the market share of AVs. A considerable number of 

people also think that traveling by AVs is enjoyable, safe, and effective, although some 

would not send an empty AV to drop-off or pick-up their children due to insecurity and 

uncertainty. Regardless of personal preference for driving, many people are interested to 

purchase AVs when they will be available to the public. Additionally, the California state 

government has already introduced regulations to test and operate AVs. Thus, considering 

the enormous possibilities and favorable institutional supports, many people would 

purchase and use AVs in California. However, adequate measures (e.g., easy to operate 

and navigate, onboard driver, sharing option, incentives, a collaboration between state 

agency, tech, and automobile companies) need to be taken to motivate people to adopt and 

use AVs (Bazilinskyy et al., 2015; Feys et al., 2020; S. Wang et al., 2020).  

Results from the SEM indicate that households with more working-age adults and 

children are likely to purchase personal AVs. Similarly, people living in areas with higher 

household and per capita income, and people with higher educational attainment are 

positively associated with AVs purchase intention. Considering both direct and indirect 

effects, family structure and affluence of the study context also influence AV purchase of 

the household by interceding urban structure, urban layout, tech affinity and experience, 

and usefulness and safety of AVs. However, the family composition has significant effects 

on AV purchase intention than affluence. The results also show that the family structure 

remains the most influential factor after accounting for the built environment, other 

socioeconomic features, and transportation factors. Thus, the family structure is the key 
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consideration in households’ intention to purchase AVs. Overall, the study supports the 

hypotheses that younger people, working-age adults, households with children, education 

attainment, and high household income are positively associated with BI to purchase AVs 

(Hypotheses 1, 2, and 3). 

I also observed that people who are interested in public transportation, ride-hailing, 

and ride-sharing services and use them for daily travel purposes are unlikely to purchase 

AVs, which supports our hypotheses 4 and 5. However, these people demonstrate an 

interest in adopting SAVs for their daily commuting. Thus, appropriate initiatives should 

be implemented by transit agencies and other transport providers (i.e., Transport network 

companies) to provide SAVs for people who are driven to protect the environment and to 

ensure sustainable urban form  and transportation compared to private AVs (Narayanan et 

al., 2020; Sparrow & Howard, 2017). SAVs integrating with public transit could solve the 

last-mile problem and increase transit ridership and reduce transportation costs (Moorthy 

et al., 2017; Sparrow & Howard, 2017). Thus, SAVs should be introduced at large to realize 

the benefits of AVs and eventually encourage people to have an AV which will be shared 

by all household members. 

Similarly, people who live in urban areas with high population and employment 

density, walkability, and democrat supporters are unlikely to purchase personal AVs due 

to better access to public and shared transportation and consciousness to reduce emissions. 

However, mixed land use and vehicle travel distance encourage private AVs purchase. 

These findings lend support to hypothesis 7 but not to hypotheses 6 and 8. However, the 

convenience features of AVs (e.g., take rest, sleep, enjoy the scenery) may encourage 

people to live far from their workplaces. Thus, private AVs have the potentials to increase 
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urban sprawl (González-González et al., 2019; Meyer et al., 2017). Thus, it is essential for 

the policymakers to understand the potential effects of private AVs and formulate policies 

to protect the urban living and the environment.  

Different psychological factors such as perceived enjoyment, usefulness, and safety 

significantly influence people’s BI to purchase AVs. In contrast, people who enjoy driving 

are less likely to purchase an AV by fear of losing control of the vehicle. Overall, the latent 

dimension representing people’s psychological understanding have the greatest direct 

effect on AV purchase intention compared to socioeconomic features, and the factors of 

transportation and the built environment. The study also observes that the people who have 

prior knowledge about AVs would be the first to purchase and use AVs compared to the 

people who have little knowledge or never heard of AVs. These findings support 

hypotheses 9, 10, and 11.   

The study demonstrates that in spite of a higher affinity to technology, many people 

would wait and observe the trend of AV adoption before going to purchase this novel 

technology. However, according to many scholars Americans would be the first adopters 

of AVs when they will be available on the road for person use. The study also observes 

that people who have experience with EVs, FCEVs, and advanced safety equipment (e.g., 

emergency braking, parking assistance, collision warning, blind-spot detection) are more 

interested to purchase AVs, which supports hypotheses 12 and 13. Moreover, the structure 

and affluence of the family affect the tech affinity and experience of the household, which 

conforms with hypothesis 14. 
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6. Conclusions and future research agenda 

This study significantly contributes to the literature by empirically investigating 

public perceptions and opinions on AVs and the salient determinants of households’ AV 

purchase intentions. The study findings can advise transportation agencies, professionals, 

stakeholders, and AV developers to formulate pertinent policy guidelines for designing and 

implementing AVs (Zou et al., 2022). Since many people are already aware of the 

usefulness and convenience of AVs, some effective measures could further increase 

people’s willingness to use AVs. For example, the availability of adequate low-cost SAVs 

can provide hands-on experience to the people to assess anticipated benefits of AVs and 

consequently motivate people to adopt and use AVs (Bansal et al., 2016; Nazari et al., 

2018). Different ride-hailing and ride-sharing companies could be the pioneer to launch 

SAVs and let the people gain real-world experience of this efficient and novel 

transportation mode. 

Despite this, the strengths of this study are shattered by some cautionary limitations. 

These limitations are the results of the unavailability of AVs in the real-world, the lack of 

consistent results in previous studies, flawed study design and methodologies, and 

inadequate data collection, which have the potential to affect the findings of this study. 

However, careful considerations are undertaken to minimize the effects of the study 

limitations. The following research constraints are encountered in this study and pertinent 

research agenda are proposed:  

1) It is perceived that there is a lack of consistency in study results concerning people’s 

perceptions and opinions and the key determinants of AVs. Thus, comparing our 

results with previous studies to validate the study findings could be biased and 
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unsalable. Future study should select sample population from different states of the 

US to check consistency in the model results.  

2) Despite a considerable large sample size (i.e., 4,248 people), the views from the 

respondents are confined within the Californian geographic regions which could vary 

in other geographic regions (e.g., other states, countries). Moreover, California as a 

place for international migrants hosts a large number of respondents from diverse 

cultural and socioeconomic backgrounds. Thus, transferability and generalization of 

the study findings to other study regions is challenging and limited. However, 

researchers could replicate this study in other states and compare the results to check 

robustness of the model.  

3) To estimate the effects of urban form on AV purchase and use, I used data aggregated 

at the county level which is a coarse geographic unit. Thus, a finer granularity in the 

geographic unit should be used in future studies to get additional insights. 

4) The dependent variable of the study represents household’s intention to purchase AV 

and does not reflect responses of the individual family members. Thus, it is yet to 

fully capture the personal preference within the household to purchase and use AVs 

(Wali et al., 2021).  

5) This study primarily investigates the factors affecting household intention to 

purchase personal AVs. However, considering people’s use of public transportation 

and interest in shared mobility options (e.g., carshare, bikeshare, ride-sourcing), a 

study should be conducted to find out the factors that influence the AV share tendency 

of people. 
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6) Impacts of different opportunities (e.g., low congestion, emission) and challenges 

(e.g., legal aspect, breach of privacy, system failure) related to AVs, and institutional 

arrangement (e.g., incentives, regulations) are not evaluated, which requires further 

investigation.     

7) It is documented that AVs would increase the mobility of the elderly, children, and 

disabled persons. However, a study investigating AV adoption disparities among 

different income and racial groups is necessary to ensure justice and equity in 

transportation.  
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CHAPTER 5: DETERMINANTS OF SHARED AUTONOMOUS VEHICLES: EMPIRICAL 

EVIDENCE FROM CALIFORNIA 

 

Abstract 

The study investigates people’s perceptions of Shared Autonomous Vehicles (SAVs) 

and the key determinants of household intentions to use SAVs using a structural equation 

modeling framework. Data were sourced from the 2019 California Vehicle survey to 

estimate the complex association between dependent and independent variables via 

mediators. Results indicate that higher educational attainment, income, labor force 

participation, Asian population origin, and urban living are negatively associated with 

SAVs. In contrast, young and working-age adults are positively associated with SAVs. 

Study results also show that people who prefer public transportation, car-sharing, ride-

hailing, and ride-sharing services are more likely to use SAVs. The perceived usefulness, 

enjoyment, safety associated with Autonomous Vehicles (AVs) and prior knowledge of 

AVs significantly influence people to use SAVs, while the enjoyment of driving and the 

fear of losing control of vehicles are dissuasive factors. The study concludes that people’s 

travel behaviors, positive attitude to shared mobility, and psychological features of AVs 

are the key determinants of SAVs.  

Keywords: Shared Autonomous Vehicle, Public Acceptance, Theory of Planned Behavior, 

Theory of Reasoned Action, Technology Acceptance Model, Structural Equation 

Modelling 
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1. Introduction 

The emergence of smartphones and the social, economic, and environmental impacts 

of automobiles motivate people to use shared mobility options. New shared mobility 

options, such as car-sharing, ride-sourcing, and certain micro-mobility services, allow 

people to rent vehicles for the short-term and enjoy mobility as a service (Hu & Creutzig, 

2022; Machado et al., 2018). It has been argued that shared mobility would efficiently 

manage people’s travel demand by increasing the occupancy of vehicles and thereby 

reduce traffic congestion, energy use, and emissions (Chan & Shaheen, 2012; Hu & 

Creutzig, 2022). The usefulness of shared mobility can be further enhanced by integrating 

Autonomous Vehicles (AV) technologies and developing Shared AVs (SAVs) services. 

This new business model would provide low-cost driverless and on-demand mobility 

services, increase vehicle efficiency, reduce congestion and emissions, facilitate 

multimodality, and ensure clean and sustainable transportation (Fagnant & Kockelman, 

2018; Golbabaei et al., 2021). 

SAVs can be seen as disruptive as they may transform people’s lifestyle and travel 

patterns, transportation systems, and natural and built environments. Given the evolving 

socio-technical system of SAVs, how people would respond remains unsettled, while 

transport professionals and local public authorities are working at scoping adjustments to 

regulatory frameworks and infrastructures for SAVs (McKenzie, 2020). To the best of our 

knowledge, only a few studies have investigated public attitudes towards SAVs and the 

factors that may lead people to use SAVs. These studies tend to fall short, however, owing 

to a variety of reasons, including their use of  hypothetical stated choice experiments and 

low sample sizes (Krueger et al., 2016). Nonetheless, people’s willingness to accept this 
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new technology is key to higher use of SAVs and to having them realize their potential 

benefits (Mara & Meyer, 2022; Paddeu et al., 2020). Realizing the importance of public 

perceptions and advancing the extant literature, this study investigates the key determinants 

of people’s Behavioral Intentions (BI) to use SAVs for daily travel purposes. To this end, 

the following research questions are used: 

1) How would people’s socioeconomic and demographic characteristics influence them 

to use SAVs for their travel purposes? 

2) How would awareness, perceived convenience, comfort, and safety influence the 

tendency of people to use SAVs?  

3) How would factors of the built environment, transportation, and technology influence 

people to use SAVs for meeting their travel demands? 

The rest of the paper is organized as follows: Section Two summarizes the relevant 

literature, introduces research hypotheses, and explains the theoretical framework of the 

study. The research design is outlined in Section Three. The main results of the study are 

reported in Section Four. Section Five articulates the discussion of these empirical results. 

Conclusions are drawn in Section Six. 

2. Literature review and theoretical framework 

2.1 Findings from past studies 

SAVs are the convergence of shared mobility, AV technologies, smartphone services, 

and electrification; they are considered one of the most disruptive innovations of modern 

technological advances (Golbabaei et al., 2021; Stocker & Shaheen, 2018). SAVs can be 

shared exclusively by a travel party or simultaneously by multiple travel parties (Paddeu 
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et al., 2020). Although shared mobility has been extensively studied, understanding the 

characteristics of potential SAV users and identifying the potential opportunities and 

challenges of SAV adoption have drawn attention recently only. These studies have mainly 

investigated consumer preferences for SAVs, operational mechanisms, and the effect of 

SAVs on vehicle ownership and last-mile travel (Maeng & Cho, 2022; Menon et al., 2018; 

Moorthy et al., 2017).  

Extant research has found that male, young and working-age individuals, students 

and part-time workers, higher educational attainment, and black individuals are positively 

disposed towards SAVs (Barbour et al., 2019; Cartenì, 2020; Zhou et al., 2020). In contrast, 

the elderly, people with high income, households with children and a higher number of 

workers, single individuals, and full-time employees would be less likely to use SAVs (Hao 

et al., 2019; Krueger et al., 2016; Lavieri & Bhat, 2019). Although high income people and 

single individuals are unwilling to use SAVs, they are more inclined to use private SAVs 

(Gurumurthy & Kockelman, 2020; Lavieri & Bhat, 2019; Wang et al., 2020). Additionally, 

the elderly who aspire to engage in more social activities and have limited capability to 

travel are more interested to use SAVs (Hao et al., 2019). Thus, travelers’ socioeconomic 

and demographic factors significantly influence their behavioral intentions to use SAV for 

travel purposes. 

Researchers have found that individuals with inclination towards transit and 

multimodal travel, and with carsharing tendencies, those traveling by car as a passenger, 

and without a driver’s license are more likely to use SAVs due to their pro-environment 

quality, their innovation content, convenience, and scopes for social interactions (Asgari et 

al., 2018; Lavieri & Bhat, 2019; Zhou et al., 2020). In contrast, the tendency to travel alone 
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and higher vehicle ownership are negatively associated with SAVs (Hao et al., 2019; 

Lavieri et al., 2017). Previous studies also found that people are more likely to use SAVs 

for long distance business trips (Gurumurthy & Kockelman, 2020) and less likely to use 

them for recreational/leisure trips (Lavieri & Bhat, 2019). Therefore, people’s previous and 

current travel behaviors could describe their intentions to use SAVs. 

Breach of privacy, personal safety concerns, legal issues, insurance liabilities, and 

additional travel time for servicing other passengers could be major barriers to use SAVs 

(Asgari et al., 2018; Cartenì, 2020; Merfeld et al., 2019). Despite open-minded attitudes to 

accept AVs, many people are still reluctant to use AVs without a driver or share AVs with 

strangers (Wang et al., 2020). However, productive use of travel time and prior criminal 

background check could overcome this barrier. Researchers also found that perceived 

performance (i.e., the capacity of services, on time service, time saving, low congestion 

and emission), perceived ease of use, compatibility with novel technology, cost-

effectiveness, hedonic motivation (i.e., fun, enjoyable, and pleasant), perceived norm (i.e., 

the influence of friends, availability on roads), and perceived behavioral control (i.e., 

knowledge, skill, time, money, preference) positively influence people’s behavioral 

intentions to use SAVs (Hao et al., 2019; Merfeld et al., 2019; Wang et al., 2020). Tech-

savviness, prior knowledge and use of advanced technology (e.g., automated braking, lane 

and parking assistance), higher level of vehicle autonomy, enabling mobility for physically 

impaired individuals, and appropriate legal clarity (i.e., accident liability lies with service 

providers) could increase people’s tendency to use SAVs (Cartenì, 2020; Lavieri et al., 

2017; Maeng & Cho, 2022). Additionally, prior involvement in traffic crashes increases 

people’s willingness to use SAVs (Barbour et al., 2019). So, psychological factors have 
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major roles to motivate people to use SAVs. However, researchers also reported that people 

who use SAVs are less concerned about safety, security, privacy, reliability, travel time, 

and costs (Barbour et al., 2019). 

Research has found that social acceptability is the key to increasing SAV use (Paddeu 

et al., 2020). In this respect, critical components include improved mobility, accessibility 

and safety, reduction in environmental impacts, and ensuring social equity with regards to 

race, ethnicity, age, and disability status. Thus, given that the public rollout of  SAV 

services are still in the design and planning stage, they may be well positioned to overcome 

the deficiencies of other travel modes. 

People who live in urban areas are more likely to use SAVs compared to people who 

live in rural and less urban settings (Lavieri & Bhat, 2019; Merfeld et al., 2019). 

Researchers have also mentioned that demand for SAVs would be higher in megacities 

where facilities for vehicle parking are limited (Merfeld et al., 2019). Thus, considering the 

context of urbanization, privately owned AVs are more feasible in rural or suburban areas 

and SAVs are practical in urban areas (Merfeld et al., 2019). Although Wang et al. (2020) 

observed no significant impact of geographic location, they indicated that the availability 

of parking space at home or near residence significantly influences the propensity to share 

or own an AV. Barbour et al. (2019) noticed higher use of SAVs among the individuals 

who live close to grocery stores. Etminani-Ghasrodashti et al. (2021) explained that a 

supportive built environment (i.e., access to sidewalks, ramps, and curb cuts in pick-up and 

drop-off points) increases SAV use by the people with disabilities. The extant literature 

explains that, besides socioeconomic, transportation, psychological and social aspects, the 
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factors of the built environment have a significant role to determine people’s BI to use 

SAVs. 

2.2 Theoretical framework 

Adjei and Behrens (2012) have categorized the existing theories of human behavior 

for choosing among discrete alternatives based on the following questions: 

• How choices are made from different alternatives (e.g., rational choice theory)? 

• What factors affect the choice for an alternative (e.g., theory of planned behavior)? 

• When does behavior change occur (e.g., cognitive theory)? and  

• How do decision makers respond to behavioral change interventions (e.g., self-

perception theory)? 

These theories explain that people’s behaviors respond to both internal factors --such 

as attitudes and norms-- and other external factors --such as incentives, institutional 

constraints (Adjei & Behrens, 2012). Among them, the Theory of Reasoned Action (TRA) 

is widely recognized in social psychology to explore the core determinants of people’s BI 

towards an action (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1977; Madden et al., 1992). 

The central concept of the TRA is that people’s BI for a specific action is jointly determined 

by individual’s positive or negative attitudes and by subjective norms that indicate the 

influence of other people on behavioral action.  

Some studies have used the Theory of Planned Behavior (TPB) to investigate the 

psychological factors that influence people’s travel mode choices (Bamberg, 2006; 

Bamberg et al., 2003; Heath & Gifford, 2002). However, the surrounding built environment 

also influences travel behaviors. Consequently, Ajzen (1985) first introduced the TPB 

theory based on TRA to investigate the influence of external factors on behavioral actions. 
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The TPB explains that human behavior depends on the person’s intention to take some 

action (Morris et al., 2012; The World Bank, 2007). Their intentions are influenced by 

attitudes, subjective norms, and perceived behavioral control measures (i.e., ability, 

opportunity, resources, skill). 

The Technology Acceptance Model (TAM) is a widely used framework to 

understand how users accept and use a technology (Lee et al., 2003; Zhang et al., 2020). 

Davis (1985) initially proposed the TAM based on the TRA (Fisbein & Ajzen, 1975). 

According to the early TAM, users’ attitude is the main factors to understand people’s BI 

to accept or reject. However, Perceived Usefulness (PU) and Perceived Ease of Use (PEU) 

define user’s Attitude Towards Technology (ATT) (Davis, 1985; Davis et al., 1989). ATT 

denotes the positive or negative feelings about the performance of a technology. PU is 

defined as the degree to which a technology can enhance the job performance of the users. 

In contrast, PEU is defined as the degree to which it can reduce overall, physical and mental 

effort of the users. The model also demonstrates that the external features indirectly 

influence the attitude and beliefs of the users by directly affecting PU and PEU. Although, 

the earlier version of TAM indicates that ATT is the main factor (Scherer et al., 2019), 

Davis (1989) argued that ATT is not an influencing factor, but rather PU and PEU have 

direct and positive effects on the intentions of individuals toward technology use (Rahman 

et al., 2017). 

2.2.4 Theoretical framework of the BI to use SAVs 

Based on the extant literature and core concepts of behavioral theories, a theoretical 

framework – Integrated Technology Acceptance Model (ITAM) – is developed to 

investigate the factors of people’s BI to use SAVs. The proposed ITAM (Figure 5.1)  
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features the behavioral control factors, objective factors, and people’s attitudes towards 

AVs that influence the SAV use intention. It is aligned with the updated TAM. 

According to the ITAM, human BI towards actual SAV use is directly influenced by 

behavioral control factors, objective factors, and psychological factors. Additionally, the 

model posits that the actual use of SAVs also depends on the availability of novel 

technology such as EV, solar panel and people’s affinity towards new technologies. 

Besides direct effects, socioeconomic factors also have indirect effect on SAV use by 

moderating objective factors, psychological factors, and the affinity of the people towards 

a technology. 
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Figure 5.1: Integrated Technology Acceptance Model (ITAM) 
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The following hypotheses are formulated to address the research questions based on 

the extant literature and the conceptual framework of ITAM.  

a) Socioeconomic and demographic factors 

1) Young and working-age adults are positively associated with BI to use SAVs 

(Hypothesis 1). 

2) Family households are negatively associated with BI to use SAVs (Hypothesis 2). 

3) Education attainment is positively associated with BI to adopt SAVs (Hypothesis 3). 

4) People with employment status and higher household income are less interested to 

use SAVs compared to their counterparts (Hypothesis 4). 

b) The built environment 

1) High population and employment density are positively associated with BI to use 

SAVs (Hypothesis 5).  

2) Mixed land uses are positively associated with BI to use SAVs (Hypothesis 6). 

3) Neighborhoods with a higher share of zero-vehicle households are more conducive 

to SAV use (Hypothesis 7). 

c) Travel factors 

1) People who drive alone to work are less likely to use SAVs (Hypothesis 8). 

2) Preference for ride-hailing and ride-sharing services is positively associated with 

BI to adopt SAVs (Hypothesis 9). 

3) People who prefer public transport for their daily travel purposes are more likely to 

use SAVs (Hypothesis 10). 
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d) Psychological factors associated with SAVs 

1) Perceived usefulness, safety, and effectiveness are positively related to BI to use 

SAVs (Hypothesis 11). 

2) People having familiarity with advanced automated technologies are more likely to 

use SAVs (Hypothesis 12).  

3) Employment status, income, and education positively influence the psychological 

attributes of people to use SAVs (Hypothesis 13). 

e) Technological development 

1) Experience with alternative fuel vehicles (e.g., electric vehicles, hybrid electric 

vehicles, fuel cell vehicles) is positively associated with BI to use SAVs 

(Hypothesis 14). 

2) Employment status, high income, and education level are positively related to the 

technological preference of people to adopt SAV (Hypothesis 15). 

3. Research design 

3.1 Data 

To understand the factors that influence people’s inclination to adopt SAVs as a 

transportation mode, this study uses data from the 2019 California Vehicle Survey 

conducted by the California Energy Commission (California Energy Commission, 2022; 

Transportation Secure Data Center, 2019). The main purposes of the survey were to assess 

transportation fuel needs and provide key policy guidelines for transportation planning in 

California. The survey assessed consumer preferences for light-duty vehicles (both 

personal and commercial) in the context of expanding autonomous and electric vehicle 
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technologies. It collected economic and demographic data, vehicle information including 

vehicle and fuel types, and vehicle choice information using a stated preference approach. 

Moreover, charging behavior, electricity rates, and main motivations for purchasing EVs 

were collected from the EV owners. The survey instrument includes questions pertaining 

to perceptions, opinions, intentions, and motivations of people toward self-driving cars and 

ride-sharing facilities.  

This study uses only the online-based residential survey portion of the data. It 

includes a total of 4,248 responses, which encompass 718 responses by EV owners. A 

stratified random sampling technique was used to collect data from six regions across the 

state: San Francisco, Sacramento, Central Valley, Los Angeles, San Diego, and the rest of 

the state. Households were selected randomly by address at the county level and invited to 

participate in the survey in such a way to ensure that samples are proportional to the 

population of each county. 

Some data were also collected from the American Community Survey (US Census 

Bureau, 2018), Environmental Protection Agency (Environmental Protection Agency, 

2020), and California State Association of Counties (California State Association of 

Counties, 2019). These county-level data were then combined with the 2019 California 

Vehicle Survey as measures of the socioeconomic and demographic environment of each 

respondent and of their built environment. Finally, the data were processed (i.e., missing 

value imputation with the median values, creation of new variables from the original data) 

and analyzed to test the research hypotheses. Detailed description of the variables used in 

the study is given in Table 5.1. 
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Table 5.1: Description of the variables 

Variable Variable Description Measure Source 

Dependent variable 

AV_POOL Unlikely to use shared driverless services with 

strangers 

1 = Strongly agree, 2 = 

Somewhat agree, 3 = 

Somewhat disagree, and 

4 = Strongly disagree 

CVS 

Independent variables 

AGE1 Age of the respondent between 18 and 64 years 1 = Yes, 0 = No CVS 

PHEV Willingness to consider PHEV only vehicle 1 = Yes, 0 = No CVS 

BEV Willingness to consider BEV only vehicle 1 = Yes, 0 = No CVS 

PFCEV Willingness to consider PFCEV only vehicle 1 = Yes, 0 = No CVS 

PUB2 Use of public transportation (e.g., bus, light 

rail/tram/subway, and commuter train) for trips in the 

local area 

1 = Yes, 0 = No CVS 

RH2 Use of ride-hailing services (e.g., Taxi, Uber/Lyft, 

Uberpool/Lyftline) for trips in the local area 

1 = Yes, 0 = No CVS 

RS2 Use of ride-sharing services for trips in the local area 1 = Yes, 0 = No CVS 

AV_AW Familiarity of the respondent with AVs 1 = Never heard, 2 = 

Heard but not familiar, 3 

= heard and somewhat 

familiar, and 4 = heard 

and very familiar 

CVS 

AV1 AVs would enable the respondent to enjoy traveling 

more (e.g., watch the scenery, rest) 

1 = Strongly disagree, 2 

= Somewhat disagree, 3 

= Somewhat agree, and 

4 = Strongly agree 

CVS 

AV2 People would miss the joy of driving and be in 

control 

CVS 

AV3 People would accept longer travel times so the AV 

could drive at a low speed to prevent unsafe 

situations for pedestrians and bicyclists 

CVS 

AV5 People would reduce time at the regular workplace 

and work more in the AVs 

CVS 

AV6 People would send an empty AV to pick up/drop off 

their child 

CVS 

AV7 People would be able to travel more often even when 

they are tired, sleepy, or under the influence of 

alcohol/medications 

CVS 

RACE3 Asian population in the county % ACS 

HHI2 Households with $25,000 to $49,999 income in past 

12 months in the county 

% ACS 

HHI5 Households with $100,000 and more income in past 

12 months in the county 

% ACS 

POPDEN Population density in the county People/km2 ACS 

EDU5 Population 25 years and over with bachelor’s or 

above degree in the county 

% ACS 

PCI Per capita income in the past 12 months in the county $ ACS 

LF Population 16 years and over in the labor force in the 

county 

% ACS 

MHV Median value of the occupied housing units in the 

county 

$ ACS 

MY Median year of housing units in the county Year ACS 

BR1 Housing units with no bedroom in the county % ACS 

BR2 Housing units with 1 bedroom in the county % ACS 

FHH Family households in the county % ACS 
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HHS4 Family households of 5 and more persons in the 

county 

% ACS 

MTW1 Workers 16 years and over who drive alone to work 

in the county 

% ACS 

MTW2 Workers 16 years and over who choose to carpool to 

commute in the county 

% ACS 

D1D Gross activity density (employment + HUs) in the 

county 

(emp.+HUs)/acre EPA 

R_PCT Low wage workers in a CBG (home location) in 

2017 in the county 

% EPA 

PCT Zero-car households in CBG in 2018 in the county % EPA 

EVR Registered Republican Voters in 2019 in the county % CSAC 

GDP Gross Domestic Product per capita in 2018 in the 

county 

$/per capita CSAC 

PHEV = Plug-in Hybrid Electric Vehicle, BEV = Battery Electric vehicle, PFCEV = Plug-in Fuel Cell Electric Vehicle, 

CVS = 2019 California Vehicle Survey, ACS = American Community Survey, EPA = Environmental Protection Agency, 

and CSAC = California State Association of Counties. 
 

Tables 5.2 and 5.3 report the characteristics of the respondents, households, and 

counties in California by outlying the descriptive statistics of dependent and independent 

variables used in model building. Asking their intentions to use SAVs, the survey found 

that about 34.40% and 32.60% of respondents are strongly unlikely and somewhat unlikely, 

respectively, to use SAVs for their daily travel. In contrast, about 10.50% and 22.60% of 

respondents are strongly and somewhat interested to use SAVs for their daily travel.  

Table 5.2: Descriptive statistics of the variables (N= 4,248) 

Variable Minimum Maximum Mean Std. Deviation 

EDU5 12.05 58.79 34.98 10.06 

RACE3 0.00 35.85 15.34 9.14 

HHI2 11.57 28.83 18.22 3.66 

HHI5 13.20 56.38 37.06 9.69 

PCI 17,590.00 69,275.00 36,800.41 9,748.39 

LF 35.12 73.08 63.85 3.50 

MHV 133,300.00 1,009,500.00 551,136.55 199,935.60 

MY 1942.00 1991.00 1973.10 9.08 

FHH 47.87 79.90 68.62 4.92 

BR1 0.90 14.92 4.15 2.47 

BR2 5.47 25.81 13.67 4.47 

HHS4 5.83 30.51 19.17 3.94 

MTW1 32.94 81.81 73.59 7.81 

MTW3 0.00 34.22 5.11 5.78 

GDP 36,309.27 210,532.00 80,843.83 36,843.50 

EVR 4.87 41.69 18.65 6.57 

PCT 0.00 22.00 4.08 2.99 

R_PCT 15.00 36.00 20.92 2.88 
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D1D 0.01 27.12 6.94 3.92 

POPDEN 0.60 7066.04 741.81 1072.17 
 

Table 5.3: People’s socioeconomic features and opinions on technology and AVs (N= 4,248) 

Variable Measure Percent 

AGE1 No 34.70 

Yes 65.30 

PHEV No 53.15 

Yes 46.85 

BEV No 64.83 

Yes 35.17 

PFCEV No 86.42 

Yes 13.58 

PUB2 No 64.74 

Yes 35.26 

RH2 No 54.24 

Yes 45.76 

RS2 No 92.75 

Yes 7.25 

AV_AW Never heard 4.47 

Heard but was not familiar 38.21 

Heard and somewhat familiar 43.06 

Heard and very familiar 14.27 

AV1 Strongly disagree 22.72 

Somewhat disagree 19.33 

Somewhat agree 39.76 

Strongly agree 18.20 

AV2 Strongly disagree 11.80 

Somewhat disagree 19.60 

Somewhat agree 37.30 

Strongly agree 31.40 

AV3 Strongly disagree 23.73 

Somewhat disagree 23.07 

Somewhat agree 36.68 

Strongly agree 16.53 

AV5 Strongly disagree 46.00 

Somewhat disagree 28.63 

Somewhat agree 19.87 

Strongly agree 5.51 

AV6 Strongly disagree 61.06 

Somewhat disagree 19.11 

Somewhat agree 14.67 

Strongly agree 5.16 

AV7 Strongly disagree 28.27 

Somewhat disagree 19.35 

Somewhat agree 35.19 

Strongly agree 17.18 

AV_POOL Strongly disagree 10.50 
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Somewhat disagree 22.60 

Somewhat agree 32.60 

Strongly agree 34.40 
 

Thus, the survey reveals that about one-third of the respondents are interested to adopt 

and use SAVs in California. The California Department of Motor Vehicles (DMV) has 

already developed regulations for the manufacturers to follow during testing and before the 

deployment of AVs on the roads to encourage innovation and promote safety (Department 

of Motor vehicles, 2021). The California DMV first permitted Nuro, a robotics company, 

to test AVs on public roads in 2017 and they got approval from DMV to deploy AVs for 

commercial use on some streets in the Bay Area in December 2020 (Klar, 2020). 

Consequently, Nuro is already operating AVs in partnership with 7-Eleven to deliver 

convenience store products (Hawkins, 2021). Currently, more than fifty robotics and auto 

companies are permitted to test full AVs in California including Waymo and General 

Motors (Subin & Wayland, 2021). It is expected that AVs would be common on the streets 

of California in a few years and people would use AVs for their daily travel purposes. Thus, 

a study investigating people’s perceptions, and the factors that influence people to adopt 

and use AVs is appropriate and timely. 

3.2 Methods 

A Structural Equation Model (SEM) is employed to find the factors that affect 

peoples’ BI toward AVs using the theoretical and conceptual framework described in 

Figure 5.1. SEM is popularly used by researchers in psychology and biological sciences, 

transportation, business, and environmental studies to unveil complex relationships 

between dependent and independent variables by introducing mediators (Bayard & Jolly, 

2007; Irfan et al., 2020; Janggu et al., 2014; Scherer et al., 2019). As a powerful 
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multivariate modeling approach, SEM combines several statistical tools such as regression, 

factor analysis, and path analysis, to study causal relationships between dependent and 

independent variables (Shen et al., 2016; Wang et al., 2016). The main strengths of SEM 

include (1) calculating interceding indirect effects of predictors on outcome variables, (2) 

estimating total effects through direct and indirect effects, and (3) estimation of the 

relationship between latent constructs and their manifest factors (Van Acker et al., 2007; 

Wang et al., 2016). Moreover, SEM shows existing theories in a structural model wherein 

all the relationships are explicitly specified and estimated (Rahman et al., 2021; Wang et 

al., 2016).  

Eight latent constructs are generated based on Exploratory Factor Analysis (EFA) 

and extant theories. The constructed model is verified with a Confirmatory Factor Analysis 

(CFA). Lastly, a path analysis is performed to evaluate the relationships between outcome 

variable, mediator, and predictors accounting for socioeconomic features. Several fit 

measures (e.g., chi-square, RMSEA, CFI, TLI) are employed to verify the robustness of 

the model. The model is calibrated with MPlus Version 7.4 (Muthén & Muthén, 2017). To 

estimate the model with a categorical (ordinal) dependent variable, this study uses the 

Weighted Least Squares Means and Variance Adjusted (WLSMV) estimation approach.  

4. Results 

4.1. Calibrated model 

The overall calibrated model is shown in Figure 5.2. Several non-significant relations 

are omitted to attain a robust model. The final estimated model includes interactions 

between predictors and outcome variable through mediators. In Figure 5.2, the observed 

variables are denoted by rectangles and circles indicate latent dimensions. It is worth 
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mentioning that several factors fitting our conceptual model were dropped from the final 

model after testing to achieve the best-fit final model. These include factors of the built 

environment (e.g., activity density, workers per household, percent of high wage workers, 

jobs within 45 minutes of auto travel time), transportation and travel behavior factors (e.g., 

gas price, percentage of workers who choose public transport to work), technological factor 

(e.g., the experience of solar panel), and socioeconomic factors (e.g., per capita gross 

domestic product, household size). Several variables (e.g., population and employment 

density, land-use diversity, VMT, the share of registered democrat supporters, per capita 

income) are long-transformed to linearize the relationships captured in the model. 

The overall fit of the estimated model is assessed based on several goodness-of-fit 

indices (Table 5.4). All fit indices are within the acceptable range and thus satisfy the model 

requirements and confirm the model validity (Hu & Bentler, 1999; MacCallum et al., 1996; 

Rahman et al., 2020).  

Table 5.4: Goodness-of-fit indices of the calibrated model 

Indices Recommended value Value 

Chi-Square  Lower values indicate a better fit 29,348.32 

TLI (Tucker Lewis Index) 0 to 1, 1 suggests a perfect fit 0.57 

CFI (Comparative Fit Index) 0 to 1, 1 suggests a perfect fit 0.52 

RMSEA (Root Mean Square Error 

of Approximation) 

<0.05 indicates a very good fit (threshold 

level is 0.10) 

0.11 
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4.2 Standardized direct effects on the intention to use SAVs 

The standardized coefficients of the calibrated SEM and the direction of modeled 

direct effects are given in Table 5.5. These coefficients indicate the direct associations 
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Figure 5.2: Calibrated model with direct standardized effects 
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between and among predictors, outcome variables, and latent dimensions. It indicates that 

most of the associations are statistically significant at the 0.00, 0.01, or 0.05 levels. 

However, some of the interactions with a P-value above 0.05 are kept to better understand 

the model and demonstrate a complete relationship. 

Table 5.5: Estimated standardized direct effects (N= 4,248) 

Relationship between observe/estimated variables and latent 

factors 

Estimate Z P 

l_RACE3  Socioeconomic Attributes 0.86 152.99 0.00 

l_EDU5  Socioeconomic Attributes 0.91 300.46 0.00 

l_HHI2  Socioeconomic Attributes -0.74 -150.96 0.00 

l_HHI5  Socioeconomic Attributes 0.78 151.43 0.00 

l_LF  Socioeconomic Attributes 0.93 203.73 0.00 

R_PCT  Socioeconomic Attributes -0.71 -147.47 0.00 

l_PCI  Socioeconomic Attributes 0.84 213.68 0.00 

l_MHV  Socioeconomic Attributes 0.96 344.64 0.00 

l_GDP  Socioeconomic Attributes 0.96 261.27 0.00 

MY  Housing Structure 1.01 245.74 0.00 

BR1  Housing Structure -0.84 -188.47 0.00 

BR2  Housing Structure -0.99 -230.33 0.00 

EVR  Housing Structure 0.89 152.44 0.00 

l_FHH  Family Size 1.32 54.43 0.00 

l_HHS4  Family Size 0.43 34.58 0.00 

l_POPDEN  Urban Structure 0.98 166.76 0.00 

l_PCT  Urban Structure 0.31 34.98 0.00 

l_D1D  Urban Structure 1.07 237.68 0.00 

AV1  Usefulness and Safety 0.84 96.05 0.00 

AV2  Usefulness and Safety -0.45 -29.58 0.00 

AV3  Usefulness and Safety 0.66 57.79 0.00 

AV5  Usefulness and Safety 0.69 60.05 0.00 

AV6  Usefulness and Safety 0.71 57.05 0.00 

AV7  Usefulness and Safety 0.77 77.90 0.00 

PUB2  Travel Behavior 0.45 26.42 0.00 

l_MTW1  Travel Behavior -0.76 -177.50 0.00 

l_MTW2  Travel Behavior 0.96 272.56 0.00 

RH2  Ride Sharing 1.10 12.70 0.00 

RS2  Ride Sharing 0.51 11.69 0.00 

PHEV  Tech Affinity 0.45 12.23 0.00 

BEV  Tech Affinity 0.95 17.22 0.00 

PFCEV  Tech Affinity 0.63 15.95 0.00 

Urban Structure  Socioeconomic Attributes 0.29 49.68 0.00 

Urban Structure  Housing Structure -0.60 -113.80 0.00 

Tech Affinity  Socioeconomic Attributes 0.09 2.67 0.01 

Tech Affinity  Housing Structure 0.12 2.85 0.00 

Tech Affinity  Travel Behavior 0.16 2.99 0.00 
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Tech Affinity  Ride Sharing 0.21 6.61 0.00 

Usefulness and Safety  Socioeconomic Attributes 0.09 4.83 0.00 

Usefulness and Safety  Housing Structure -0.04 -2.16 0.03 

Usefulness and Safety  Family Size -0.03 -2.02 0.04 

AV_POOL  Socioeconomic Attributes -0.04 -1.52 0.13 

AV_POOL  Housing Structure 0.06  1.95  0.05  

AV_POOL  Urban Structure -0.03 -1.38 0.17 

AV_POOL  Usefulness and Safety 0.33 21.56 0.00 

AV_POOL  Travel Behavior 0.15 3.97 0.00 

AV_POOL  Ride Sharing 0.11 4.90 0.00 

AV_POOL  Tech Affinity 0.23 9.94 0.00 

AV_POOL  AV_AW              0.11 7.03 0.00 

AV_POOL  AGE1 0.12 7.69 0.00 
 

Eight latent dimensions are created based on observed and calculated variables.  

1) Socioeconomic Attributes: l_RACE3, l_EDU5, l_HHI2, l_HHI5, l_LF, R_PCT, 

l_PCI, l_MHV, and l_GDP 

2) Housing Structure: MY, BR1, BR2, EVR 

3) Family Size: l_FHH and l_HHS4 

4) Travel Behavior: PUB2, l_MTW1, and l_MTW2 

5) Ride-sharing: RH2 and RS2 

6) Urban Structure: l_POPDEN, l_PCT, and l_D1D 

7) Perceived Usefulness and Safety: AV_1, AV_2, AV_3, AV_5, AV_6, AV_7 

8) Tech Affinity: PHEV, BEV, and PFCEV 

I now proceed to examine the estimated relationships between observed or estimated 

independent variables and each of the latent dimensions in the model successively in the 

context of the hypotheses laid out in Section 2.2.4. 

Socioeconomic Attributes: This exogenous latent dimension represents the 

socioeconomic status of the people in the study area. As indicated in Table 5.5, this latent 

dimension is negatively associated with AV_POOL, which indicates that people living in 
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areas with a higher number of highly educated individuals, household income, labor force 

participation, and Asian identity are less interested in using SAVs. However, the 

relationship is of marginal statistical significance (P-value of 0.13). Also, I find that this 

latent dimension is positively associated with the latent dimensions of tech affinity and 

perceived usefulness and safety of AVs. Thus, people in the higher socioeconomic strata 

have a greater affinity for Alternative Fuel Vehicles (AFVs) (i.e., EVs) and consider AVs 

as useful and safe. 

Housing Structure: This exogenous latent dimension represents the physical features 

of the housing units in the study context. As indicated in Table 5.5, it is positively 

associated with AV_POOL, which indicates that people living in housing units with more 

than one bedroom and built after the 1970s, and located in an area with a higher share of 

republican voters are interested in using SAVs, after controlling for other factors.  

Family Size: This exogenous latent dimension is positively associated with l_FHH 

and l_HHS4 (Table 5.5). The table also indicates that family size is negatively associated 

with the perceived usefulness and safety of AVs. Thus, people living in areas with a higher 

share of family household are concerned about the usefulness, convenience, and safety 

features of AVs due to the uncertainty and insecurity of family members associated with 

AVs, but no direct effect on the intention to use SAVs is found.  

Urban Structure: This endogenous latent dimension represents the patterns of the 

built environment. It is positively associated with l_POPDEN, l_PCT, and l_D1D (Table 

5.5). The calibrated model in Figure 5.2 indicates that urban structure has a negative direct 

effect on AV_POOL, which indicates that people who live in urban areas with high 

population and activity density and where car ownership is lower are less likely to use 
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SAVs. The possible explanation lies in the fact that high quality public transportation 

services in the urban areas could dissuade people from using SAVs. Moreover, people 

living in such communities would prefer to walk or use bicycles in the urban areas where 

activities are in closer proximity and reachable in a short travel time. Thus, people in these 

urban environments are less likely to use SAVs despite the enormous convenience and 

usefulness of AVs.  

Travel Behavior: This exogenous latent dimension denotes people’s travel pattern 

and is created from PUB2, l_MTW1, and l_MTW2. It has a positive association with PUB2 

and l_MTW2 and negatively associated with l_MTW1 (Table 5.5). It is also noticed that 

travel behavior is positively associated with AV_POOL. Thus, the people who use public 

transportation for local travel and carpool to work would also likely use SAVs. On the 

other hand, the people who drive alone to work are less likely to use SAVs.  

Ride Sharing: This exogenous latent dimension denotes people’s ride sharing status. 

As it is positively associated with both of the observed variables (RH2 and RS2), the study 

finds that shared mobility is characterized by the use of different ride-hailing (e.g., Taxi, 

Uber/Lyft, Uberpool/Lyftline) and ride-sharing services (e.g., bike-share, Car2Go, ZipCar, 

Jump) for trips in the local area. Table 5.5 denotes that ride sharing is positively associated 

with AV_POOL (0.11). All other things held constant, a one-unit increase in ride-sharing 

services increases people’s intentions to use SAVs by 0.11 units. Thus, people’s tendency 

to use ride-sharing services with family and friends significantly increases their willingness 

to use SAVs.  

Perceived Usefulness and Safety: This endogenous latent factor is the only latent 

dimension that represents convenience, usefulness, and safety features of AVs. As 
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indicated in Table 5.5, people enjoy traveling (i.e., watching scenery) by AVs, do 

multitasking while traveling by AVs, and accept longer travel time by AVs to ensure the 

safety of pedestrians and bicyclists. On the other hand, people would miss the joy of 

driving. Figure 5.2 reveals that perceived usefulness and safety are positively associated 

with AV_POOL (0.33). Other things being constant, a one-unit increase in perceived 

usefulness and safety increases people’s willingness to use SAVs by 0.33 units. Thus, 

perceived enjoyment and usefulness and perceived lower risk for pedestrians, bicyclists, 

kids, and themselves have a greater role in motivating people to use SAVs. In contrast, fear 

and apprehension of losing control of the vehicle they ride in would dissuade people to use 

SAVs. A higher magnitude of the effect indicates that this latent dimension has a greater 

role in influencing the intention of people to use SAVs. Thus, psychological factors 

associated with AVs have a much greater power to influence the willingness of people to 

share AVs compared to socioeconomic features, and the factors of transportation and of 

the built environment. 

Tech Affinity: This endogenous latent dimension explains people’s tech affinity and 

their willingness to consider AFVs as their travel mode. It encompasses three observed 

variables (PHEV, BEV, and PFCEV) and is positively associated with the willingness of 

the respondents to consider PHEV, BEV, and PFCEV in their future purchases (Table 5.5). 

The calibrated model in Figure 5.2 shows that tech affinity has a significant direct positive 

impact on AV_POOL (0.23). All other things held identical, a one-unit increase in people’s 

tech affinity increases their willingness to use SAVs by 0.23 units. Thus, people who have 

prior experience of EVs and who are interested in advanced AV technologies have a much 

higher tendency to use SAVs (Chen, 2019; Shin et al., 2015).  
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The calibrated model in Figure 5.2 also indicates that people’s familiarity with AVs 

(AV_AW) is positively associated with their intention to use SAVs (0.11). Thus, a one-

unit increase in people’s familiarity with AVs increases their willingness to use SAVs by 

0.11 units, all other things being held equal. The people who have prior knowledge of AVs 

are more likely to use SAVs with strangers compared to the people who have little 

knowledge of AVs or have never heard of them. The California vehicle survey indicates 

that about 57.33% of respondents have heard about AVs; hence it is assumed that these 

people would be willing to use SAVs. Thus, prior knowledge about AVs is considered one 

of the main factors that would influence people toward AVs, as mentioned in previous 

studies (Hilgarter & Granig, 2020; Laidlaw et al., 2018; Webb et al., 2019). Similarly, the 

model also explains that working-age people (aged between 18 and 64 years) are positively 

associated with AV_POOL (0.12). A one-unit increase in the working-age population 

increases SAV use with strangers by 0.12 units, all other things being held equal. Thus, the 

working-age people are more interested to use SAV due to their interest in public 

transportation and shared mobility. Perceived usefulness of AVs further induces working-

age people to use SAVs.  

4.3 Standardized total effects on the intention to use SAVs 

A number of latent factors have both direct and indirect effects on the use of SAVs. 

For a full account of the reasons for SAV adoption, the total effects of these latent factors 

can readily be calculated from the SEM estimates. They are presented in Table 5.6, taking 

into account direct and indirect effects which are not explicitly mentioned in Figure 5.2. 
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Table 5.6: Standardized total (direct and indirect) effects of latent factors on AV purchase 

Effects of latent factors on AV purchase Direct Indirect Total 

AV_POOL  Socioeconomic Attributes -0.04 0.04 0.01 

AV_POOL  Travel Behavior 0.15 0.04 0.18 

AV_POOL  Ride Sharing 0.11 0.05 0.16 

AV_POOL  Family Size -- -0.01 -0.01 

AV_POOL  Housing Structure 0.06 0.03 0.09 
 

As specified in Table 5.6, socioeconomic attributes have direct and indirect effects 

on people’s willingness to use SAVs by mediating urban structure, tech affinity, and 

perceived usefulness and safety of AVs. Considering both direct and indirect effects, the 

socioeconomic attributes have a total effect of 0.01 on sharing AVs with strangers. People 

living in areas with high socioeconomic status of households are interested to use SAVs 

due to their affinity to advanced technologies, improved AV amenities, and neighborhood 

selection in the areas with high population and activity density. However, the magnitude 

of this total effect is minimal and insignificant. Similarly, the housing structure has a total 

effect of 0.09 including direct and indirect effects through urban structure, tech affinity, 

and perceived usefulness and safety of AVs. On the other hand, family size only has an 

indirect effect of -0.01, mediating the perceived usefulness and safety of AVs. The 

magnitude of this effect is minimal. Table 5.6 also indicates that housing structure has 

greater effects on SAV use compared to socioeconomic attributes and family structure. 

Travel behavior has a total effect of 0.18 consisting of direct and indirect effects by 

mediating people’s tech affinity. Similarly, considering direct and indirect effects through 

tech affinity, ride sharing has a total effect of 0.16 on sharing AVs with strangers. Thus, 

people’s tendency to use public transportation, carpool, ride-hailing, and ride-sharing 

services significantly increase their intention to use SAVs with family, friends, and even 

strangers. People’s travel mode choice behaviors remain the most influential factor in 
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deciding SAV use after accounting for the built environment attributes, the physical 

structure of housing units, and socioeconomic features. Thus, people’s preference for 

public transportation and other ride-sharing services are the key factors to increase SAV 

adoption. 

5. Discussion 

The study found that many people are already aware of AVs and services provided 

by AVs in California. People consider that riding AVs is enjoyable, safe, and effective, 

although some of them would not send empty AVs to drop off or pick up their children due 

to insecurity and uncertainty. Nevertheless, many people are interested in using SAVs due 

to their prior experience with EVs and higher tendency to use public transportation and 

shared mobility options. Also, the California state government has already introduced 

regulations to test and operate AVs. Consequently, many people would be interested to use 

SAVs. However, appropriate strategies (e.g., onboard driver, incentives, collaboration with 

transport network companies, conducive built environment, and institutional framework) 

should be implemented to encourage people to use SAVs (Etminani-Ghasrodashti et al., 

2021; Feys et al., 2020). 

Results from the SEM indicate that people residing in areas with a higher share of 

highly educated individuals, household income, labor force participation, and Asian 

identity are less interested to use SAVs, which supports hypothesis 4 runs contrary to 

hypothesis 3. Accounting for indirect effects, it is also observed that people living in areas 

with high socioeconomic status have an interest in AVs due to their tech affinity and 

perceived usefulness and safety of AVs. Thus, it could be argued that although people with 

high education and income are less interested in SAVs, they are more interested to use 
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private AVs which echoed the findings of previous studies (Lavieri & Bhat, 2019; Wang 

et al., 2020). The results also indicate that young and working-age adults would be 

favorably inclined to use SAVs due to their interest in cutting-edge technologies and shared 

mobility, and financial ability, which supports hypothesis 1.  

Similarly, people living in areas with larger and newer housing units are more 

interested to use SAVs. The possible explanation lies in the fact that people living in larger 

and new housing have a greater consumption capability and are willing to use private 

SAVs, considering the convenience and usefulness associated with AVs. Although family 

size has no direct effect on SAVs, the indirect effect indicates that people living in the 

context with a higher share of family households are less interested to use SAVs due to 

uncertainty, breach of privacy, and safety issues associated with AVs which conforms with 

previous studies (Hao et al., 2019; Krueger et al., 2016) and supports hypothesis 2. Overall, 

socioeconomic attributes, housing structure, and family size illustrating the study context 

have limited influence on the BI of people to use SAVs. 

The study also estimated that people who live in urban areas with a higher population 

and activity density and a higher share of household with no car are less likely to use SAVs, 

which contradicts hypotheses 5, 6, and 7. The results challenge the findings from previous 

studies where researchers demonstrated that urban people would be more interested to use 

SAVs (Barbour et al., 2019; Lavieri & Bhat, 2019; Merfeld et al., 2019). The possible 

explanation lies in the fact that people in urban areas where activities are closely located 

would prefer to walk or use bicycles instead of using SAVs. Another possible explanation 

is that people who live in urban areas have higher household income. Therefore, 

considering better services offered by AVs, they could use private AVs compared to SAVs 
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which indicates the multifarious effect of household income. Moreover, a supportive built 

environment (e.g., ramp, appropriate pick-up and drop-off points) could further motivate 

people to use SAVs including the people with mobility challenges (Etminani-Ghasrodashti 

et al., 2021). Overall, the factors of the built environment have little power to govern 

people’s BI to use SAVs. 

Study results also showed that people who prefer public transportation, car-sharing, 

ride-hailing, and ride-sharing services for daily travel purposes are more likely to use 

SAVs. In contrast, people who drive alone to work are less likely to use SAVs. The findings 

agree with hypotheses 8, 9, and 10 and support previous studies (Asgari et al., 2018; Lavieri 

& Bhat, 2019; Zhou et al., 2020). Also, people’s travel behaviors and ride-sharing attitudes 

are the most influential factor to influence BI to use SAVs after accounting for 

socioeconomic features, family structure, the built environment, and transportation and 

psychological factors associated with AVs. Thus, people’s perceptions of shared mobility 

are one of the key factors in households’ intention to use SAVs. Integration of SAVs with 

existing on-demand ride-sharing services and identifying concerns, preferences, and 

expectations of potential users could be practical strategies to motivate people to use SAVs 

(Etminani-Ghasrodashti et al., 2021). 

The study also found that perceived enjoyment, usefulness, and safety significantly 

influence people to use SAVs. On the other hand, people who enjoy driving are less likely 

to use SAVs due to fear of losing control of vehicles. Thus, psychological features of AVs 

significantly influence people’s BI to use SAVs compared to socioeconomic features, 

housing structure, transportation factors, and the built environment. The study also 

observes that the people who have prior knowledge about AVs are more likely to use SAVs 
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compared to the people who have little knowledge of them or have never heard of AVs and 

never used an EVs. Additionally, people with high affordability and education are positive 

about the usefulness and convenience of AVs. These findings sustain hypotheses 11, 12, 

and 13 and align well with the conclusions from previous studies (Hao et al., 2019; Merfeld 

et al., 2019; Yuen et al., 2020). The study also found that people’s prior experience of using 

alternative fuel vehicles (e.g., electric vehicles, hybrid electric vehicles, fuel cell vehicles) 

significantly motivates people to use SAVs (accept hypothesis 14). Moreover, people with 

high income and education level have a greater affinity for advanced technology, which 

further motivates them to use SAVs (accept hypothesis 15). 

6. Conclusions and future research agenda 

This study significantly contributes to the literature by empirically investigating the 

prominent determinants of people’s intentions to use SAVs. The study findings can be 

helpful for transportation agencies, professionals, stakeholders, and AV developers to 

formulate relevant policies for designing and implementing SAVs. Since many people are 

already aware of AVs, some effective measures could increase the willingness of people 

to use SAVs. Appropriate initiatives should be implemented by transit agencies and other 

transport providers (i.e., transport network companies, bike-sharing companies) to 

facilitate SAVs, which are environmentally friendly and ensure multimodal transportation 

(Cohen et al., 2017; Narayanan et al., 2020; Sparrow & Howard, 2017). The ride-hailing 

and ride-sharing companies could pioneer the launch of SAVs and let the people have the 

real-world experience of this efficient and novel transportation mode.  

Through coordination with public transit agencies, SAVs can be implemented to 

solve the last-mile problem and thereby increase transit ridership and reduce transportation 
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costs (Moorthy et al., 2017; Sparrow & Howard, 2017). Planning agencies could 

implement several policy actions such as designated lanes for SAVs, priority curb space 

for SAVs in urban areas, and a higher posted speed of SAVs to ensure equity and motivate 

people to use SAVs (Cohen et al., 2017). Since many people already have their cars, they 

would be less interested to use SAVs. However, implementing some strategies such as 

playing music or movie of people’s choice, recommending some driving routes based on 

users’ travel history, and customized interior lighting and design could be implemented to 

develop psychological ownership to induce them to use SAVs (Lee et al., 2019). 

Despite insightful findings, the strengths of this study are shattered by some 

cautionary limitations. I identify hereunder some priority extensions of the present work:  

1) This research should be replicated in other states to establish the robustness of the 

model and compare possible variability under different cultural, socioeconomic, and 

political contexts.  

2) To understand the effects of the built environment, data related to the built 

environment aggregated at a finer granularity in the geographic unit (e.g., block 

group, census tract) should be used in future studies. 

3) As the technology context change quickly, and given the strong dependence of 

intentions formulation on knowledge and experience of AVs technologies, a 

longitudinal analysis would be invaluable to more cogently articulate the criticality 

of certain decision points in the shaping of opinions and better estimate when societal 

acceptability may become pervasive. 

4) The impacts of different opportunities (e.g., low congestion, emission) and 

challenges (e.g., legal aspect, breach of privacy, system failure) related to AVs, and 
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institutional arrangement (e.g., incentives, regulations) are not evaluated in this study, 

which requires further investigation. 

5) Future studies should investigate the equity aspects of SAV among different income 

and racial groups to ensure justice in transportation.  
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CHAPTER 6: SIMULATING THE POTENTIAL IMPACTS OF AUTONOMOUS VEHICLES 

ON TRAVEL BEHAVIORS AND TRAVEL DEMAND 

Abstract 

This study aims to assess the potential impacts of Autonomous Vehicles (AVs) on 

people’s travel behaviors such as trip generation, travel distance, travel time, and travel 

costs. Several hypotheses are formulated to address the research questions under a 

simulated environment using the TRANUS simulation framework. To estimate the 

possible effects of AVs, a transportation model is developed and calibrated for the city of 

Swindon, the United Kingdom (UK). Three hypothetical scenarios (i.e., baseline scenario, 

AVs adopted on local roads, and AVs adopted throughout the entire transportation 

network) are created to estimate the effects of AVs. Additionally, sensitivity analysis is 

performed by increasing the occupancy, speed, and wait time of AVs to check the 

robustness of the calibrated models. The results indicate that AVs would intensify people’s 

overall travel demand by increasing accessibility. On the other hand, AVs are likely to 

reduce vehicle ownership, travel distance, travel time, travel costs, and vehicle hours 

traveled by reducing solo driving and inducing shared mobility. AVs also have the potential 

to reduce public and active transportation. The study links the gap in the literature and 

sheds light on policy implications for informed policy-making considering the expected 

change in transportation systems by AVs. 

Keywords: Shared Mobility, Shared Autonomous Vehicle, Travel Behaviors, Trips, Travel 

Distance, Travel Time, Travel Costs, Simulation 
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1. Introduction 

Although sharing mobility among users via public transportation and taxis is familiar, 

recently cities are experiencing the rapid growth of new shared mobility services such as 

carsharing, ride-hailing, bike-sharing, etc. (Jiao et al., 2020). Researchers predicted 

numerous benefits of shared mobility such as lower car use, Vehicle Miles Traveled 

(VMT), congestion, energy use, and costs (Heineke et al., 2021; Jiao et al., 2020; Khan & 

Shaheen, 2021). Additionally, shared mobility provides transport services to all and 

ensures transportation safety, comfort, and convenience to people. Considering these 

anticipated potentials, this study aims to investigate the impacts of Autonomous Vehicles 

(AVs) shared by all household members on travel behaviors by conducting a simulation 

using the TRANUS framework.  

AVs could navigate automatically and facilitate people to share the same ride (Zhang 

et al., 2015). AVs could provide a similar level of convenience and flexibility as a personal 

car, which allows users to take a rest or engage in productive activities (Krueger et al., 

2016). Recently, AVs have received enormous attention from public and private 

organizations (Loeb et al., 2018). Nonetheless, the adoption and use of AVs are uncertain 

due to a lack of evidence on the potential impacts of AVs on people’s travel behaviors. 

Previously, most discussions on AVs were focused on the technology (Soteropoulos 

et al., 2018). A decent number of studies investigated the perceptions and key determinants 

of AVs (Hulse et al., 2018; Kim et al., 2022; Rahimi et al., 2020; Wang et al., 2020). 

Investigating the potential impacts of AVs on travel behaviors and transportation systems 

has received recent attention (Soteropoulos et al., 2018). On the other hand, very little is 

known about the potential impacts of Shared AVs (SAVs) on people’s travel behaviors. To 
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address this issue, this study estimates the potential impacts of AVs on travel behaviors 

(e.g., trips, travel distance, time) and bridges the gap in the literature. The following 

research questions are formulated to explore the impacts of AVs. 

1) What are the impacts of AVs on a household’s daily total number of trips? 

2) What are the impacts of AVs on Passenger-Km Traveled (PKT) and Vehicle-Km 

Traveled (VKT)? 

3) What are the impacts of AVs on the Vehicle-Hour Traveled (VHT)? 

4) What are the impacts of AVs on a household’s travel time and costs? 

The rest of the paper is organized as follows. Section Two discusses relevant past 

studies to understand the impacts of AVs and SAVs on travel behaviors, research 

hypotheses, and the theoretical framework for model building in TRANUS. Section Three 

outlines the overall research design. The detailed analysis of the results is presented in 

Section Four. Section Five discusses the results. Finally, Section Six draws the concluding 

remarks and provides guidance for future research.  

2. Literature review and theoretical framework 

2.1 Summary of past studies 

The ecosystem of urban transportation would change with the advent of AVs. It is 

expected that this new mobility choice would influence trip generation and distribution. A 

good understanding of how AVs would affect people’s travel decisions and transportation 

systems is essential. This review is intended to conceptualize the impacts of AVs on 

people’s trip generation, travel distance, vehicle ownership, travel costs, and time. 
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Investigating the impacts of AVs on people’s travel demand, the researcher found 

that AVs could upsurge overall household travel demand by providing transport services 

to all people including the disabled, elderly, children, and people without driving licenses 

(Martinez & Viegas, 2017; Narayanan et al., 2020). Similar to AVs (Harper et al., 2016; 

Trommer et al., 2018; Zakharenko, 2016), SAVs could also increase VMT by increasing 

empty VMT and relocating parking outside of the city center (Childress et al., 2015; Liu et 

al., 2017; Soteropoulos et al., 2018). However, additional VMT could be reduced by 

implementing dynamic ride-sharing services (i.e., serving multiple travelers with similar 

origins, destinations, and departure times) (Fagnant & Kockelman, 2018; Lokhandwala & 

Cai, 2018). Additionally, an increase in the number of SAVs particularly within a 

concentrated area (i.e., urban core), and people’s willingness to rideshare may reduce VMT 

(Bischoff et al., 2017; Fagnant & Kockelman, 2014; Levin et al., 2017). Thus, SAVs have 

the potential to reduce overall vehicular and passenger travel distance by adopting dynamic 

ride-sharing services. However, SAVs could increase long-distance travel by reducing 

travel costs and increasing multitasking (Gelauff et al., 2019; Heilig et al., 2017). 

Researchers have mentioned that AVs are likely to reduce car ownership by 

encouraging ride-sharing (Clements & Kockelman, 2017; Ma et al., 2017; Tirachini et al., 

2020). Even, privately owned AVs could be rented out when they are not used and further 

could reduce vehicle ownership (Sparrow & Howard, 2017). Thus, AVs have the potential 

to reduce vehicle ownership by increasing dynamic ridesharing (Fagnant & Kockelman, 

2018; Levin et al., 2017; Lokhandwala & Cai, 2018), despite an increase in travel demand 

(Fagnant & Kockelman, 2014).  
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The extant research has reported that AVs are likely to reduce transit and active travel 

(Booth et al., 2019; Kapser & Abdelrahman, 2020; Meyer et al., 2017). The availability of 

SAVs may further contract public and active transportation (Clements & Kockelman, 

2017; Cyganski et al., 2018) by disrupting the existing transportation operations and 

inducing a modal shift from public transport (Narayanan et al., 2020). Thus, AVs and SAVs 

may affect the existing and future transit systems (Handsfield, 2011). However, proper 

integration of AVs and SAVs with an efficient public transport system can increase transit 

use (Narayanan et al., 2020; Sparrow & Howard, 2017). 

Researchers mentioned that a higher share of AVs with dynamic ride-sharing could 

reduce travel time by reducing empty trips and eliminating searching time for parking 

(Levin et al., 2017; Loeb et al., 2018; Zhang et al., 2015). Additionally, SAVs can 

significantly reduce traffic delay and congestion by promoting ride-sharing options, 

smoothing traffic flows by minimizing acceleration and braking and traffic monitoring 

systems, and increasing the capacity of the roadway (Alam & Habib, 2018; Fagnant & 

Kockelman, 2015; Kopelias et al., 2020).  Thus, SAVs in a dynamic ride-sharing situation 

could be an effective policy option to reduce traffic congestion and overall travel time.  

AVs could reduce the value of travel time by providing people with multitasking 

opportunities (e.g., reading, and talking with friends) (Van den Berg & Verhoef, 2016). 

Consequently, AVs have the potential to increase VHT (Childress et al., 2015; K. Kim et 

al., 2015; Soteropoulos et al., 2018). Unlike AVs, SAVs could reduce VHT if there is no 

possibility of using personal vehicles and the value of travel time is increased (Childress et 

al., 2015; Soteropoulos et al., 2018). Since SAVs would provide a lower level of 
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convenience and flexibility compared to private AVs, people would spend less time in 

SAVs, and thereby overall VHT would reduce. 

Automation of vehicles is likely to reduce people’s travel costs by moderating vehicle 

operation and maintenance costs (Duan et al., 2020; Nunes & Hernandez, 2020; Piao et al., 

2016). SAVs could further reduce travel costs by avoiding parking fees and reducing the 

fleet size (Compostella et al., 2020; Loeb et al., 2018; Martinez & Viegas, 2017). Ride-

sharing AVs are much cheaper than solo driving due to low costs for drivers, depreciation, 

and insurance (Compostella et al., 2020). Thus, AVs and SAVs have the potential to reduce 

households’ overall vehicle operation and maintenance costs. 

Based on the literature review, the following hypotheses have been formulated to 

address the research questions of the study after reviewing relevant literature.  

1) AVs would increase people’s overall travel demand (i.e., trips) by providing transport 

services to all people, particularly children, the elderly, and mobility-challenged 

people (H1). 

2) Overall, the personal car usage would be reduced since one AV would be sufficient 

for a family of four members to meet their travel demands (H2).  

3) AVs could decline the use of public transportation (e.g., bus, train) and active travel 

(e.g., walking and cycling) of people (H3). 

4) AVs would reduce PKT and VKT by increasing people’s vehicle sharing tendency 

and reducing empty VKT (H4). 

5) AVs would reduce the overall VHT and increase the performance of the 

transportation system (H5). 
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6) Adoption of AVs would reduce overall travel time and traffic delays by promoting 

ride-sharing and avoiding empty trips and vehicle parking (H6). 

7) Adoption of AVs would reduce overall travel costs by reducing vehicle operation and 

maintenance costs (H7). 

2.2 Theoretical framework 

This subsection discusses the theoretical aspects to simulate the impacts of AVs on 

people’s travel behaviors using Land Use and Transportation Interaction (LUTI) models 

after introducing AVs within the transportation system. 

2.2.1 A brief overview of land use and transport interaction models 

Literature suggests that changes in transportation systems influence urban 

development patterns (Cervero & Kockelman, 1997; Rahman, Hossain, et al., 2021; 

Zondag et al., 2015). Concurrently, changes in development patterns influence 

transportation activities. Thus, transportation and land use have a mutual but complex 

relationship (Holz-Rau & Scheiner, 2019; Soria-Lara et al., 2016; Wegener & Fürst, 2004). 

The complex two-way interactions can be easily conceptualized by the “land use transport 

feedback cycle” presented in Figure 6.1 (Acheampong & Silva, 2015; Wegener, 2004; 

Wegener & Fürst, 2004). According to the feedback cycle, the distribution of land uses 

determines the locations of human activities. Through the transportation system, human 

activities fulfill spatial interaction or trips and travel from one destination to another. 

Transport infrastructure and facilities create opportunities for spatial interaction of human 

activities.  

Many studies over the past 60-70 years have investigated the impacts of 

transportation policies on travel patterns and destination location choices (Acheampong & 
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Silva, 2015; Chang, 2006; Wegener & Fürst, 2004). They used various types of LUTI 

models, including the TIGRIS XL model (Zondag et al., 2015), UrbanSim (Joshi et al., 

2006; Waddell, 2002; Waddell et al., 2003), agent-based model (K.-H. Kim et al., 2015; 

Zhang et al., 2020; Zhang et al., 2015). Some studies also used TRANUS to develop land 

use and transport interaction models (Bujanda et al., 2011; Capelle et al., 2019; Pupier, 

2013; Vichiensan et al., 2005). Since this study has used TRANUS, the theoretical 

discussion focuses on the theories related to land use and transport interaction models 

developed in TRANUS. 

 

Figure 6.1: Land use transport feedback cycle 
 

TRANUS is used for simulating the effects of transport policies adopted at urban, 

regional, and national levels. Originally conceptualized by De la Barra and Rickaby (1982) 

and Thompson (1990), developed at the Central University of Venezuela (Brown et al., 

1998), and maintained by Modelistica (2005), TRANUS is a free and well-documented 

software package (Capelle et al., 2019; Dutta et al., 2012; Morton et al., 2008).  
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2.2.2 Theoretical basis of land use and transport interactions in TRANUS 

The theoretical basis of LUTI models in TRANUS system is based on the concept of 

spatial microeconomics theories, gravity-based theories, input-output model, discrete 

choice model, and Dijkstra transportation model (Hansen, 1959; Lowry, 1964; Modelistica, 

2005). The spatial microeconomics theories indicate that landowners rent properties at the 

maximum price and renters try to maximize their revenue by renting the property at a lower 

price and reducing transportation costs.  Gravity-based models explain that interaction 

between two zones is proportional to the number facilities in each zone and inversely 

proportional to the distance friction. Input-output model illustrates the intersectoral flows. 

The discrete choice model shows that people logically choose an option which provides 

maximum benefit or utility. Lastly, the TRANUS family tree also includes traditional 

transportation models proposed by Dijkstra in the 1950s (Modelistica, 2005; Zhang et al., 

2016).  

2.2.3 Main components of the TRANUS model 

As shown in Figure 6.2, the two main subsystems of the LUTI model in the TRANUS 

are the activities subsystem and the transport subsystem (Modelistica, 2005). There are 

demand and supply elements in each subsystem that interact to achieve an equilibrium 

state. Location and interaction between activities (e.g., households, industries) indicate 

demand-side elements and real estate supply (i.e., land, floor space) indicates the supply-

side elements of the activities subsystem. In the transportation subsystem, travel demand 

for transferring people and goods from the origin to destinations represents demand-side 

elements and physical infrastructure and transport operators represent the supply-side 

elements. The components of activities and transport subsystems are fully interrelated and 
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mutually dependent. The interaction between activities causes travel demand and in 

response transportation supply affects the location and interaction of activities and land 

supply in the real estate market. 

 

 

 

 

 

 

 

 

2.2.4 Dynamic relationship between land use and transportation 

The two main components of the LUTI model are dynamically related to each other 

via time (Modelistica, 2005). The dynamic relationship between land use and 

transportation systems is presented in Figure 6.3. As indicated in Figure 6.3, the interaction 

between transportation and land use is dynamic through time t1, t2, t3, and so on. The 

interaction between activities in space generates functional flows of jobs or households 

from one sector to another, which create travel demand. The travel demand is assigned to 

the transport system in the same period. However, the state of equilibrium in transport 

demand and supply determines the accessibility between locations and influences 

economic flows and provides feedback for the next period. Thus, accessibility in time t1 

affects functional flows in time2 and so on.  

 

 

Location and interaction 

between activities 

Real Estate supply 

Demand for transport 

services 

Physical and operative 

transport supply 

Activities Transportation 

Transport 

demand 

Accessibility and 

transport cost 

Equilibrium Equilibrium 

Figure 6.2: Main elements of a LUTI model in 

TRANUS 
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3. Research design 

TRANUS simulates the location of activities (e.g., residential, employment) and 

transportation systems as they are closely related. Space and activities interact with each 

other and demand transportation systems (e.g., roads, modes). The LUTI model in the 

TRANUS system has two main components: the land-use component and the 

transportation component. In this study, the transportation model is developed to estimate 

the effects of AVs on people’s travel behaviors after heavily customizing TRANUS to 

handle AVs. 

3.1 Study context 

In this study, the concept of land use and transportation interaction model integrated 

with the TRANUS system has been applied to the city of Swindon, the United Kingdom 

(UK) (Tomás de la Barra et al., 2011). Figure 6.4a indicates the boundary of the city 

including contiguous rural hinterland and villages, highlighting the urban core of the city. 

There are 56 internal and 9 external zones in Swindon. The external zones were created to 

estimate the effect of external trips. Since, the land use and transportation interaction 

models are complex with many economic sectors, floor space, land types, and 

Activities location 

and land use 

Transport system 

Activities location 

and land use 

Transport system 

Activities location 

and land use 

Transport system 

Time 

t1 

Time 

t2 

Time 

t3 

Figure 6.3: Dynamic relationship between land use and transportation 
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transportation systems, taking a small study area with few zones to develop the models is 

convenient and faster in the current computer configurations. Figures 6.4b represents the 

spatial distribution of residential land types and 6.4c illustrates the distribution of 

employment land types in Swindon. 

 

Swindon is a small English city with relatively few zones, about half-way between 

Bristol and Oxford. The city had 490,000 population in 2020, with a density of 222 

persons/km2 (UK Census, 2020). Swindon’s economy are thriving due to strong financial 

services and advanced manufacturing and engineering activities (Swindon Borough 

Council, 2022). The main purposes to consider Swindon as the study area are as follows: 

a) I am evaluating the theories associated with AVs, thus, it is convenient to use the 

existing model with significant modifications to account for AV use.  

a b 

c 

Figure 6.4: (a) Subdivision of study area into 

zones, (b) distribution of residential land types, 

and (c) distribution of employment land types. 
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b) Using an existing model could provide a baseline to compare the results. Given that, 

there is little scope to authenticate the results due to the unavailability of AVs, thus 

using an existing model provides scope for validating and checking the results on 

how people would travel after adopting AVs. 

c) The Swindon model is equipped with data, thus using this model as a reference would 

reduce data collection, cleaning, and organizing time significantly. 

d) Researchers usually use parameter values from existing models and previous studies. 

Thus, using the Swindon model for investigating the potential impacts of AVs is 

suitable and falls within the common practices of the researchers. 

e) The development, adoption, and evaluation of AVs are still in the preliminary phases. 

Many stakeholders are undertaking pilot projects to test AVs, review regulations, 

assess the infrastructural requirements, evaluate the effectiveness of AVs, and allow 

users to experience AVs.  Currently, the implementation of AVs is limited to a small 

and controlled environment (e.g., university area, parks) to gauge their effectiveness. 

As such, it is likely that AVs would be implemented in small cities first before 

adopting them in large urban areas. Thus, it is appropriate to take Swindon as a case 

to understand the effects of AVs. 

3.2 Land use model 

The land use model is the first component of the integrated LUTI model in the 

TRANUS system. In this study, I developed land use model to quantitatively estimates the 

effects of AVs on the spatial distribution of land uses (Acheampong & Silva, 2015). As 

shown in Figure 6.5, a land-use model development includes the delineation of the study 
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area, division of study area into zones, the definition of activity sectors, distribution of floor 

space and land for different activity types, and the generation of functional flows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The city of Swindon is subdivided into internal and external zones. The entire urban 

economy is divided into exogenous (i.e., depend on external forces) and induced (i.e., 

generated within the zones by other activities) sectors to define activity sectors in Swindon. 

The sectors include employment (e.g., industry, agriculture, government, retail, office, 

education, health) and household (e.g., low-, medium-, and high-income) sectors. Floor 

space (e.g., sheds, terraces and flats, detached and semi-detached houses) and land types 

(e.g., industrial, business park, mixed land, residential) are assigned for different activity 

sectors using a multinomial logit model. These activity sectors generate intersectoral 

Study area and zones 

Urban economy: 

Exogenous or induced 

Floor space and land 

types for activity sectors 

Employment sectors 

Household types 

Setting up activity 

sectors in TRANUS 

Functional flow: flow of 

jobs and households 

O-D matrix: used as an input 

in the transportation model 

Figure 6.5: Different steps of land use model in TRANUS 
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functional flows of jobs and households. Low-, medium-, and high-income households 

generate trips to work and trips attracted by retail and warehousing, office, education, and 

health activity sectors are defined as trips to services. The outputs are arranged in Origin-

Destination (O-D) matrix to use it in the transportation model. A detailed description of 

the land use model in TRANUS is provided in Chapter 7. 

To generate trip matrices, it is assumed that all flows are commuter trips to work and 

trips to services and indicated as 1. Trips are calculated for one day and expansion factors 

are used to estimate the trips for a month. A factor of 1 is considered for trips to work and 

services. Finally, I assumed that trips are unidirectional (i.e., people typically go to work 

from home and come back home again after work) and a factor of 1 is used for both trips 

to production and consumption.  

3.3 Transportation model 

The transportation model is the second component of the integrated LUTI model in 

the TRANUS system. In the study, this component investigates people’s travel patterns 

due to adoption of AVs considering the existing demand and supply of transport 

infrastructure and transport operators. Outputs of the land use model are used to simulate 

travel patterns in this model. Since the output is in matrix form, there is no need for trip 

distribution in the transportation model in TRANUS. Modal split and traffic assignment 

are integrated with the procedures of the transport model. Thus, separate models for modal 

split and traffic assignment are not required. Developing a transportation model in 

TRANUS mainly includes defining different components of transport demand and supply 

categories (Tomás de la Barra et al., 2011).   
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3.2.1. Demand categories 

The demand component in transportation model indicates the functional flows of jobs 

and households generated from activity sectors in O-D matrix to simulate travel patterns. 

The parameter details of transport modes (e.g., occupancy, travel time, waiting time, 

vehicle availability) are defined in TRANUS to complete those travel demands.  

3.2.2. Supply categories 

In the TRANUS transportation model, supply categories are divided into physical 

supply and operative supply (Tomás de la Barra et al., 2011). The physical elements include 

roads, cycles way, railways, busways, stations, and so on and are presented as a transport 

network comprising links and nodes. Each link is categorized based on its length, capacity, 

speed, cost, etc. Table A1 in the Appendix describes the link types adopted in the model 

with assigned speeds.  

On the other hand, operative elements (e.g., modes, operators, and routes) use the 

physical infrastructure to provide transport services to customers. In TRANUS, a single-

mode approach (e.g., passenger) is used and an integrated multimodal transport network is 

used. Travelers are free to select a combination of transport operators to travel from origin 

to destination with some restrictions in selecting the combinations, as indicated in Table 

A2 in Appendices.  

In the Swindon model, the operators are defined as normal (i.e., move freely around 

the network), transit (i.e., move freely around the network but charge fares and have a 

waiting time, such as a taxi), transit with routes (i.e., use specific route), and non-motorized 

(e.g., walking and cycling) (Table 6.1) (Tomás de la Barra et al., 2011). There are two types 

of cars such as Single-Occupancy Vehicle (SOV) and High-Occupancy Vehicle (HOV) 
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(i.e., more than two occupants). In this study, I assumed that AVs would be shared by 

household members similar to HOV which is reflected in occupancy setting in TRANUS. 

Additionally, AVs would be operated by battery. Buses are classified into regular and 

express buses based on their services, speed, and tariff structure along with other public 

transportation (e.g., minibus, train, and rural bus). The park-and-ride operator provides 

access from one operator to another. 

Table 6.1: Types of transport operators 

Operator Type 

Single-Occupancy Vehicle (SOV) Normal 

High-Occupancy Vehicle (HOV) Normal 

Autonomous Vehicle (AV) Normal 

Regular and express Bus Transit with routes 

Rural bus, all type Transit with routes 

Minibus Transit with routes 

Passenger rail Transit with routes 

Walk Non-motorized 

Bicycle Non-motorized 

Park-and-Ride (P&R) Normal 
 

Table 6.2 demonstrates basic parameters associated with different operators in the 

model. I followed the recommendation model parametrization for the city of Swindon with 

adjustments to allow for AVs. The occupancy of an operator indicates that the model can 

assign passengers to this capacity. The time factor indicates how long an operator can 

operate within 24 hours. Waiting time indicates how long a passenger will have to wait to 

get that operator. Speed in km/hour indicates the maximum speed an operator can achieve 

on the defined network. Operators with no speed mean either they have a specified network 

(e.g., rail) or they cannot travel (e.g., park-and-ride). Passenger Car Equivalent (PCE) is 

used to calculate an equivalent number of vehicles compared to a car by multiplying the 

total number of vehicles. A higher value of overlap factor indicates that the program will 
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try to avoid that path during the path search. Distance indicates the travel cost of the 

operator per unit distance.  

Table 6.2: Parameter associated with each operator 

Operator Occupa

ncy 

Time 

factor 

(hour) 

Waiting 

time 

(hour) 

Target 

occupancy 

(%) 

Speed 

(km/h

our) 

PCE Distance Overlap 

factor 

Penalize 

SOV 1 24 0  68 1 0.17 4 1.1 

HOV 2.3 24 0  64 1.05 0.17 4 1.1 

AV 2.3 24 0  64 1.05 0.17 4 1.1 

Bus 61 16 0.08 50 50 2.5 0.55 1.4 1 

Rural bus 53 16 0.08 50 50 2.5 0.55 1.4 1 

Minibus 35 16 0.08 50 55 2 0.35 1.4 1 

Rail 350 18 0.1 50    1 1 

Walk 1 24 0  5   1.4 1 

Bicycle 1 24 0  12 0.2  2 1 

Park-and-

ride 

1 24 0.05     1 1 

 

Figure 6.6 shows the steps of the transportation model in TRANUS. The development 

of the transportation model includes taking travel demand data from the land use model, 

importing the transport network, assigning link type, administrator, and parameters to the 

network, assigning operator type, combination type, and parameters to the operators, and 

assigning operators to the network. TRANUS uses probabilistic multinomial logit models 

for assigning household trips to transport operators based on their utilities. TRANUS uses 

the same logit model to assign operators to transport network based on their properties. 
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3.3 Hypothetical scenarios to estimate the effects of AVs 

To investigate the potential impacts of AVs, a set of hypothetical scenarios are 

envisioned. Parameters and information/data on transportation links and nodes (e.g., types, 

capacity, speed), and types, capacity, waiting time, and speed of different operators 

presented in Tables 6.1 and 6.2 are used to calculate outputs of scenario in transportation 

models. Data on types and elasticity of activity sectors, floor space and land types, trip 

categories discussed in Chapter 7 are used for developing a land use model are used to 

calculate the outputs of the scenarios. Additionally, the land use model is set for up to 200 

Define demand category 
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Physical supply Operative supply 

Assigning link type 

and administrator 

Assign operator 

types 

Define operator 

combination 

Parameter setting 

of the operator 

Assign operator to 

the network 

Import network 
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Transportation 
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Figure 6.6: Different steps in the transportation model in TRANUS 
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iterations with a convergence factor of 0.0001. On the other hand, the transportation model 

is set for up to 18 iterations with a convergence factor of 0.001. In both cases, a smoothing 

factor of one is assigned, which indicates that the values of each iteration are averaged with 

the values from the previous iteration with an equal proportion. 

1) Baseline scenario 

Initially, a baseline scenario (B) is developed by considering the existing land use 

and transportation attributes of the Swindon model. Values of the parameters of 

transportation links, nodes, and operators presented in Tables 6.1 and 6.2 and 

information on activity sectors, floor space, and land types discussed in Chapter 7 are 

used to estimate people’s travel patterns under the current policy framework and 

without the adoption of AVs.  

2) Scenario 1: Introduction of AVs on the local roads only 

Scenario 1 (S1) is developed to explore the potential impacts of AVs on people’s 

travel behaviors under the condition that AVs would be operated on local roads only. 

Access road, central narrow and wide, peripheral narrow and broad link types 

mentioned in Table A1 are selected for adopting AVs and examined the impacts of 

this policy option on people’s travel behaviors. Similar to the baseline scenario, the 

above-mentioned data and parameters are used to develop this model. 

3) Scenario 2: Introduction of AVs to the entire transportation network.  

Scenario 2 (S2) investigates the impacts of AVs when AVs would be allowed to 

navigate throughout the entire transportation network of the city. However, some 

mode-specific routes such as bus-only routes and lanes, railway, and cycle lanes are 
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free from any AV operation. Scenario 2 also considers the above-mentioned 

parameters and information. 

Sensitivity analyses are performed to check the robustness of the simulation results 

by changing model assumptions and values of the parameters. Table 6.3 indicates different 

criteria to assess the sensitivity of the model. Increasing AV occupancy and speed, and 

wait time, and allowing growth in jobs, sensitivity analyses are conducted to explore the 

change in the travel patterns. 

Table 6.3: Criteria for sensitivity analysis 

Parameter Base scenario Changes in parameter 

Occupancy of AV S2 10%, 20%, 30, and 40% increase in occupancy 

Wait time of AVs S2 1, 2, 3, 4, 5, and 10 minutes extra wait time 

Speed of AVs S2 5%, 10%, 15%, and 20% increase in speed 
 

Finally, the percent change of trips, travel distance, travel time and costs, and vehicle 

hours of traveled in different hypothetical scenarios are calculated and compared to 

understand the potential impacts of AVs.  

4. Results 

This study explores the change in daily trips, travel distance, travel time, and travel 

costs of high-income (HWHigh), medium-income (HWMed), and low-income (HWLow) 

households to work and to service centers (i.e., retail and warehouses, offices, healthcare 

facilities), educational institutions, and external zones (i.e., external). Similarly, this study 

examines the change in people’s travel patterns by different modes of transportation. The 

study also checks the sensitivity of simulation results by increasing occupancy, wait time, 

and speed of AVs. 
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4.1 The impacts of AVs on daily trips 

4.1.1 Impacts on the number of daily trips by trip categories 

The potential impacts of AVs on household’s daily trip generation are presented in 

Figure 6.7. The figure indicates that the adoption of AVs in S2 reduces household trips to 

work, services centers, and education institutions compared to the baseline scenario (-0.42 

to -0.21%) and S1 (-0.42 to -0.21%). The overall daily trips made by high, medium, and 

low-income households are reduced due to sharing of AVs with other household members 

and fellow riders. In contrast, the total number of external trips increases slightly in S1 

(0.003%) and S2 (1.49%) compared to baseline. Similarly, total external trips increase in 

S2 (1.49%) compared to S1 due to the wide adoption of AVs which allow people from 

surrounding cities and regions of Swindon to commute daily and thereby increase the total 

number of trips. The convenience and enjoyment while riding AVs particularly motivate 

people to make long-distance trips from external zones. Consequently, the total number of 

trips increased in S2 (1.48% compared to baseline and 1.49% compared to S1) due to the 

wide adoption of AVs, higher speed of AVs, no waiting time of AVs compared to public 

transportation, and available amenities for other activities (e.g., sleeping, talking, reading).  
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Figure 6.7: Impacts of AVs on the number of daily trips by trip categories 
 

The sensitivity of the model is assessed by changing occupancy, wait time, and speed 

of AVs to quantify how the change in daily trips is related to the change in model 

parameters associated with AVs. Increasing occupancy of AVs by 10%, 20%, 30%, 40%, 

and 50% (Figure 6.7a), the study notices a decreasing trend in daily trip generation 

particularly for high-income households to work and the total number of trips, albeit the 

change is very trivial (about -0.02%). Thus, sharing AVs has the potential to reduce the 

total number of trips compared to private use. Similarly, by increasing the speed of AVs 

by 5%, 10%, 15%, and 20% (Figure 6.7c), the study finds a lower number of trips by 

encouraging people to make long-distance trips. Increasing the wait time of AVs by 1, 2, 

3, 4, 5, and 10 minutes (Figure 6.7b), the study also observes a 0.05 to 0.06% reduction in 
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people’s trip generation. Thus, increasing the wait time for AVs increases their disutility 

and reduces people’s willingness to use AVs. However, the impact of the wait time is 

greater than the occupancy and speed of AVs. 

4.1.2 Impacts on the number of daily trips by travel modes 

Results in Figure 6.8 indicate that introduction of AVs in S1 and S2 reduces trips 

made by SOVs, HOVs, buses, walking, and cycling (-6.07 to -0.82% in S1 and -9.16 to -

1.59% in S2 compared to baseline scenario) due to wide AV adoption, no wait time, higher 

speed compared to public transport. AVs capture these reduced trips and hence the market 

share of AVs increased by 21.48% in S1 and 31.87% in S2 compared to the baseline 

scenario. However, the number of AV trips is lower in S2 compared to S1 due to a higher 

long-distance trip induced by the wide adoption of AVs on major roads (e.g., motorways, 

dual carriageways). The study also observes that AV adoption reduces the total number of 

trips by travel modes by 5.95% in S1 and 7.5% in S2 through increasing shared mobility 

and seamless movement and reducing solo driving. Thus, AVs are very effective to address 

people’s higher travel demand (i.e., increase in total household daily trips). 
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Figure 6.8: Impacts of AVs on the daily trips by travel modes 
 

Increasing occupancy of AVs by 10 to 50% (Figure 6.8a), it is noticed that the market 

share of AVs increased from 3.10 to 12.91%. However, the total number of trips reduced 
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the utility of AVs and hence attracting passengers from other modes of transportation. 
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of the people. On the other hand, increase in wait time of AVs by 1 to 5 and 10 minutes 
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increased by 8.11 to 8.80% including a considerable increase in trips by SOVs (8.69 to 

13.53%), and HOVs (4.15 to 7.86%), walks (5.76 to 6.11%), and cycle (3.27 to 4.55%). 

Thus, an increase in the disutility of AVs (i.e., extra wait time), discourages people to use 

AVs. Consequently, a shift in trips from AVs to traditional vehicles and an increase in the 

total number of trips are observed. Thus, AVs have the potential to influence the total 

number of household trips by changing perceptions of people and utilities of AVs. 

4.2 The impacts of AVs on travel distance 

4.2.1 Impacts on the daily travel distance of different trip categories 

Figure 6.9 explains that the adoption of AVs in S1 and S2 reduces household’s travel 

distance to work (-0.22 to -0.01%), services (-0.0 to -0.05%), and education centers (-0.03 

to -0.01%) compared to baseline scenario by increasing shared mobility of the people. 

However, a higher reduction in travel distance of all trips is observed in S2 compared to 

S1. In contrast, the travel distance of external trips increased by 0.25% in S1 and 0.54% in 

S2 due to growth in long-distance external trips induced by AV implementation all over 

the transport network. The adoption of AVs on major roads besides local roads leads to 

long-distance external trips in S2 compared to S1. Subsequently, total travel distance 

increased in S2 by 0.93% and 1.30% compared to baseline and S1 scenarios, respectively 

due to increasing exogenous activities triggered by AVs. However, the adoption of AVs 

on local roads (S1) have the potential to reduce household total travel distance (-0.36%) 

compared to the baseline scenario by inducing short distance AV travel to destinations. 
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Figure 6.9: Impacts of AVs on the daily travel distance of different trip categories 
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Increasing occupancy of AVs by 10 to 50% (Figure 6.9a), it is noticed that the travel 

distance of high-income households to work (about 0.18%) and external trips (-0.12 to -

0.04%) reduced compared to S2 who are considered as the potential consumers of AVs. 

However, total travel distance increased due to the increased travel distance of other trip 

categories. Similarly, by increasing the speed of AVs by 5 to 20% (Figure 6.9c), a 0.15% 

reduction in travel distance of high-income households is observed. Thus, increasing 

occupancy and speed has the potential to increase AV use and thereby reduce people’s 

overall travel distance. On the other hand, increased wait time by 1 to 5, and 10 minutes 

(Figure 6.9b) also reduces travel distance (-0.29 to -0.14%) particularly of AVs users (i.e., 

high-income households) by depressing AV use and thereby reduce travel distance. We 

also observed that wait time has greater effects on AV use compared to occupancy and 

speed. 

4.2.2 Impacts on PKT by travel modes 

The adoption of AVs reduces PKT by all travel modes including a higher rate of 

reduction in SOVs (-4.91% in S1 and -14.84% in S2 than baseline) and HOVs (-3.98% in 

S1 and -12.23% in S2 than baseline) (Figure 6.10). Similarly, PKT by public transportation 

and active transportation is also reduced. In contrast, PKT by AVs increased by 12.04% in 

S1 and 31.87% in S2. Thus, the adoption of AVs induces the shift of passenger travel from 

other modes of transportation. Similar to the household travel distance, the adoption of 

AVs on local roads (S1) have the potential to reduce total travel distance by different modes 

of transportation (-0.36%) compared to the baseline scenario by inducing short-distance 

AVs travel to destinations. Although total PKT reduced in S1, the overall passenger travel 

increased in S2 due to the wide adoption of AVs, higher personal travel, and a higher 
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number of long-distance external trips. Thus, the wide adoption of AVs has the potential 

to increase PKT by increasing long-distance passenger travel to the city center or 

workplaces from surrounding cities and towns. 

 

 

 

Figure 6.10: Impacts of AVs on PKT by travel modes 
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Increasing occupancy of AVs (Figure 6.10a), we notice an increase in AV use from 

3.70% to 15.30% under 10% to 50% increase in occupancy, respectively. Thus, a higher 

capacity of AVs draws passenger from other transport modes and generate a higher PKT, 

although the overall increment is negligible (0.24 to 0.79%). Similarly, a rise in speed 

(Figure 6.10c) increases AV use by 0.33 to 1.93%. However, overall VKT reduced by 0.06 

to 0.19%. Thus, increasing speed is more effective than occupancy to induce people to use 

AVs and reduce overall PKT. On the other hand, increasing wait time (Figure 6.10b) 

reduces passenger travel by AVs and increases passenger travel by SOV, HOV, Bus, and 

active transportation. Thus, the addition of disutility to AVs discourages AV use and 

thereby increases total PKT by increasing travel using SOVs and HOVs. 

4.2.3 Impacts on VKT by travel modes 

Figure 6.11 shows that the implementation of AVs reduces overall vehicle travel in 

both S1 (-2.56%) and S2 (-9.07%) compared to the baseline scenario including a higher 

reduction in SOVs (-6.39% in S1 and -18.58% in S2) and HOVs (-2.04% in S1 and -5.65% 

in S2). On the other hand, VKT by AVs increased by 8.42% in S1 and 24.18% in S2 

compared to the baseline scenario. Similarly, VKT by bus, minibus, and rural bus increased 

slightly by 0.01 to 0.02%. and public transportation increased. Thus, unlike PKT, the 

adoption of AVs has the potential to reduce overall VKT by increasing the use of AVs and 

public transportation and reducing empty VKT. 



211 
 

 
 

 

 

 

Figure 6.11: Impacts of AVs on VKT by travel modes 
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Increasing occupancy of AVs (Figure 6.11a), a significant decrease in overall VKT 

is observed (i.e., VKT decreased by 3.78% under 10% increase in occupancy to 16.32% 

by 50% increase in occupancy) due to a higher share of AVs (1.31 to 4.56% increase) and 

public transportation (0.01 to 0.04% increase) and lower share of SOVs (1.15 to 3.58% 

decrease) and HOVs (0.18 to 1.08% decrease). A similar situation, yet at a lower 

magnitude, is also observed when we increase the speed of AVs (Figure 6.11c). However, 

we observe a reduction in VKT of AVs by 19.48% under 1-minute wait time to 24.09% 

under 10 minutes wait time (Figure 6.11b). We also observe that adding extra wait time 

increases overall VKT by 6.73% to 13.47% by increasing the VKT of SOVs and HOVs. 

This sensitivity analysis confirms that a higher utility in AVs would encourage people to 

use AVs and thereby reduce overall travel distance by vehicles. 

4.3 The impacts of AVs on travel time 

4.3.1 Impacts on household’s travel time 

Figure 6.12 shows that the adoption of AVs slightly increases the travel time of high-

income households to work and external trips in both S1 (0.18% and 1.5%, respectively) 

and S2 (0.27% and 0.63%, respectively) due to a higher number of long-distance trips 

carried out by AVs. In contrast, the travel time of all other trips reduces. Thus, overall 

household travel time is reduced significantly (4.72% reduction in S1 and 21.79% 

reduction in S2 compared to the baseline scenario). The figure also demonstrates that the 

adoption of AVs throughout the transportation network further reduced travel time by 

17.92% compared to the adoption of AVs on local roads only. Thus, the wide adoption of 

AVs ensures seamless transportation services to the people and thereby saves travel time 
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to destinations. The findings confirm that AVs have the potential to reduce the overall 

travel time of the people. 

 

  

 

Figure 6.12: Impacts of AVs on household travel time 
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Increasing occupancy of AVs (Figure 6.12a), a substantial reduction in overall travel 

time is observed (i.e., 2.06 to 7.16% reduction due to a 10 to 50% increase in occupancy 

of AVs). Similarly, a reduction in household’s travel time to work, service, and education 

are also seen. However, the travel time of external trips increased slightly by 0.83 to 2.86% 

due to a 10 to 50% increase in occupancy of AVs. A higher number of trips from outside 

of the city and additional time for passenger pick-up and drop-off cause this slight increase 

in travel time. Similarly, by increasing the speed of AVs (Figure 6.12c), we observe a 2.04 

to 8.42% reduction in overall travel time due to a 5 to 20% increase in speed including 

travel time reduction in all other trips. However, travel time for external trips increased by 

0.34 to 1.38% under the same rise in speed due to a higher travel demand from external 

zones. As expected, on the other hand, an extra wait time for AVs (Figure 6.12b), increases 

overall travel time (8.35 to 27.59% in 1 min to 10 minutes extra time) by reducing AV use 

which is reflected in trips made by high-income households and external trips. Extra wait 

time discourages people to use AVs and thus reduces travel time for high-income 

household trips to work (0.27 to 0.92% reduction) and trips from external zones (0.13 to 

3.05% reduction).  

4.3.2 Impacts on vehicle hours of traveled 

Figure 6.13 illustrates that the adoption of AVs significantly reduces overall VHT 

(i.e., a 3.03 and 24.6% reduction in S1 and S2, respectively). The VHT by SOVs reduces 

by 10.22% and 20.65% in S1 and S2, respectively compared to the baseline scenario. A 

similar reduction in VHT by HOVs is also seen in S1 (-3.35%) and S2 (-7.28%).  

Conversely, VHT by AVs increases by 13.56% in S1 and 27.85% in S2 due to the wide 

adoption of AVs. By doing so, AVs induce people to shift from SOVs and HOVs and 
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thereby reduce overall travel time by other vehicles. A higher reduction of VHT (-22.2%) 

is noticed in S2 compared to S1. Thus, the adoption of AVs throughout the transportation 

network is effective to attract people to AVs and reduce overall travel time. However, a 

0.002%, 0.01%, and 0.01% increase in VHT of bus, minibus, and rural buses, respectively 

are seen in S1. Similarly, a 0.02%, 0.03%, and 0.04% increase in VHT of bus, minibus, 

and rural buses, respectively are observed in S2. Thus, AVs have very little influence on 

the VHT of public transportation. 
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Figure 6.13: Impacts of AVs on vehicle hours of traveled 
 

Increasing occupancy of AVs (Figure 6.13a), a significant reduction in overall VHT 

is observed (i.e., 5.25 to 20.9% reduction in total VHT due to a 10 to 50% increase in 

occupancy). Similarly, a 1.16 to 3.43% reduction in VHT of SOV is noticed due to a 10 to 

50% increase in occupancy and a 0.04 to 0.10% reduction in VHT of HOVs due to a 30 to 

50% increase in occupancy. Thus, higher occupancy of AVs has the potential to attract 

more passengers and reduce overall VHT. Increasing the speed of AVs (Figure 6.13c), we 

also observed a decrease in overall VHT (i.e., a 3.03 and 24.6% reduction of VHT in S1 

and S2 compared to the baseline scenario). VHT of SOVs and HOVs reduced by 10.22% 

and 3.35%, respectively in S1 and 20.65% and 7.28% in S2. In contrast, by adding extra 1 

to 10 minutes of wait time for AVs (Figure 6.13b) we notice a significant increase in total 

VHT (i.e., 8.62 to 30.66%). The increasing disutility of AVs by adding extra wait time 

demotivates people and diverts them to use SOVs and HOVs which is evident in Figure 

6.13b (i.e., a higher VHT for SOVs and HOVs due to a higher number of passengers).  

Thus, AVs have the potential to reduce overall VHT by increasing travel utility (e.g., high 

occupancy and speed and no wait time). 
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4.4 The impacts of AVs on travel costs 

4.4.1 Impacts on household travel costs 

As shown in Figure 6.14, the adoption of AVs in S1 and S2 reduces overall household 

travel costs (i.e., maintenance and operation) by 5.24% and 13.94%, respectively compared 

to the baseline scenario due to lower costs for parking, energy use, and cost-sharing among 

travel companions. Similarly, a reduction in travel costs is seen in household trips to work 

(-0.86 to -0.32%), education (-0.62 to -0.18%), and service centers (-0.75 to -0.35%) in S1 

and S2, respectively compared to the baseline scenario. Although travel costs of external 

trips increase, the growth is lower in S2 (1.64% compared to baseline) compared to S1 

(3.36% compared to baseline) which indicates that the wide adoption of AVs has the 

potential to reduce overall travel costs. 
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Figure 6.14: Impacts of AVs on household travel costs 
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work (-0.51 to -0.04%), service (-0.28 to 0.04%), and education (-0.20 to -0.02%) centers 

are also reduced. In contrast, travel costs of external trips increased slightly (0.21 to 1.30%) 

due to the increase in speed of AVs. However, increased occupancy has a greater influence 

on reducing travel costs compared to increased speed of AVs.  

On the other hand, adding extra wait time for AVs (Figure 6.14b), overall travel costs 

increased by 11.88 to 20.46% due to a reduction in AV use and an increase in the use of 

gasoline vehicles. Figure 6.14b also demonstrates that household’s travel costs to work 

(0.01 to 0.75%), service (0.07 to 0.60%), and education (0.05 to 0.42%) increased. In 

contrast, travel costs of external trips reduced by 0.04 to 2.51%. The reason behind travel 

costs reduction of external trips lies in the fact that the extra wait time of AVs compels 

people to choose other modes of transportation (e.g., SOVs, HOVs, public transportation). 

However, overall travel costs increased significantly by increasing operating and 

maintenance costs of SOVs and HOVs (i.e., costs for parking and energy use). Thus, AVs 

have the potential to reduce overall household travel costs by increasing utility (e.g., high 

occupancy and speed, no wait time, stable traffic flow due to automation and connectivity) 

and thereby attracting trips from other modes of transportation. 

4.4.2 Impacts on travel costs of different travel modes 

As indicated in Figure 6.15, the adoption of AVs reduces travel costs of SOVs by 

4.90% and 14.75% in S1 and S2, respectively, and HOVs by 1.51% and 4.52% in S1 and 

S2, respectively compared to the baseline scenario. The adoption of AVs alters people’s 

trip generation tendency from SOVs and HOVs to AVs due to greater utility associated 

with AVs (i.e., high occupancy compared to SOVs, low operation and maintenance costs, 

energy use compared to SOVs, HOVs, and public transportation). Thus, the adoption of 
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AVs reduces the overall costs of different travel modes by 5.4% in S1 and 15.7% in S2 

compared to the baseline scenario. However, the wide adoption of AVs has a greater 

influence to reduce travel costs than a limited adoption of AVs (10.9% reduction of travel 

costs in S2 compared to S1). Thus, AVs have the potential to reduce the overall travel costs 

of different modes. In contrast, AVs have little to deal with the travel costs of public 

transportation which indicates that AVs do not discourage people to use public 

transportation rather it facilitates people to use public transportation. 
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Figure 6.15: Impacts of AVs on travel costs of different travel modes 
 

Increasing occupancy of AVs (Figure 6.15a), it is observed that overall travel costs 

of different modes of transportation reduced by 4.05 to 17.2% due to a 10 to 50% increase 

in AV capacity, despite a slight increase in the travel costs by AVs (1.09 to 3.83%). A 

higher occupancy of AVs attracts more passengers from SOVs and HOVs and thereby 

reduces people’s travel costs of SOVs (-3.19 to -1.04%) and HOVs (-0.92 to -0.11%). 

Similarly, an increase in the speed of AVs (Figure 6.15c) reduces overall travel costs (-1.2 

to -0.94%) by reducing travel costs of SOVs (-1.80 to -0.33%). Although travel costs by 

HOVs increases slightly (0.53 to 1.2%), travel costs by bus, minibus, and rural bus remain 

almost unchanged (0.00 to 0.01% increase). On the other hand, an extra wait time (Figure 

6.15b) increases total transportation costs significantly (13.1 to 26.37%) by reducing AVs 

and increasing SOVs use. This is reflected by reducing travel costs of AVs (-18.99 to -

15.57%) and public transportation, and increasing travel costs of SOVs (10.64 to 24.26%). 

Thus, AVs have the potential to influence transportation costs of different travel modes 

and thereby the total cost of transportation of the people. 
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5. Discussion 

Using the calibrated Swindon model, the study shows that the wide adoption of AVs 

expands the total household’s daily trip generation by providing transport services to all 

people, which echoes the findings from the extant literature (Martinez & Viegas, 2017; 

Narayanan et al., 2020) and supports our hypothesis (H1). However, it is also observed that 

households’ trips to work, service, and education centers within the city shrink slightly due 

to people’s vehicle sharing tendency with family members. The overall increase in trip 

generation lies in the fact that AVs induce people to make long-distance trips from 

surrounding cities and regions to Swindon by reducing travel costs and providing amenities 

to perform multitasking (Gelauff et al., 2019; Heilig et al., 2017). Thus, AVs have the 

potential to reduce households’ trips within the city due to people’s willingness to share 

vehicles, despite a small increase in external trips. The sensitivity analysis reiterates that 

AVs have the potential to reduce overall households’ trips by increasing utility (e.g., 

availability, occupancy, speed) and reducing disutility (e.g., wait time) of AVs.  

Analyzing households’ trip generation by different modes of transportation, we 

observe that the wide adoption of AVs reduces the total number of trips by providing 

seamless travel opportunities. The introduction of AVs in the transportation system 

captures a significant number of household trips from another mode of transportation 

induced by the usefulness and convenience associated with AVs. Consequently, household 

trips by SOVs, HOVs, buses, walking, and cycling are reduced. Thus, AVs would reduce 

overall vehicle ownership, public transportation, and active travel by encouraging shared 

mobility and reducing solo driving, yet ensuring flexibility and convenience of travel. The 

sensitivity analysis also demonstrates that increased capacity and speed of AVs and no 
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extra wait time in AVs reduce overall household trips by increasing AV trips and 

decreasing trips by conventional vehicles and public and active transportation. The results 

imitate the past studies where researchers found that AVs would reduce vehicle ownership 

(Fagnant & Kockelman, 2014; Kim, 2018; Tirachini et al., 2020) and affect public transit 

trips and active travel (Clements & Kockelman, 2017; Cyganski et al., 2018; Narayanan et 

al., 2020) by increasing shared mobility. The findings also support our hypotheses (H2 and 

H3). 

Aggregating travel distance at the household level, we notice that AVs would reduce 

household travel distance to work, services, and education centers by increasing the vehicle 

sharing propensity of people. In contrast, a slight increase in travel distance of exogenous 

trips is observed due to growth in trips from external zones induced by AVs implemented 

all over the transport network. However, the adoption of AVs on local roads has the 

potential to reduce household total travel distance by inducing short-distance AV travel to 

destinations. A similar situation is also observed in the case of PKT (i.e., the adoption of 

AVs on local roads and throughout the transport network reduces PKT by SOVs, HOVs, 

and public and active transportation). Although adoption of AVs on local roads only 

reduces total PKT, the adoption of AVs throughout the transport network increases total 

PKT by increasing travel demand and long-distance external trips. Investigating the 

impacts on VKT, we perceive that the adoption of AVs on local roads and throughout the 

transport network reduces overall vehicle travel by encouraging shared travel and 

discouraging travel alone. The sensitivity analysis confirms that the adoption of AVs on 

local roads has the potential to reduce household travel distance and PKT by increasing 

short-distance AV trips. Similarly, the adoption of AVs is likely to reduce VKT by 
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increasing ride-sharing and reducing empty VKT for transferring passengers and searching 

for parking spots. The study results are consistent with the extant literature (Fagnant & 

Kockelman, 2014; Levin et al., 2017; Soteropoulos et al., 2018) and support our hypothesis 

(H4). 

Evaluating the potential impacts of AVs on households’ travel time, we diagnose that 

the adoption of AVs significantly reduces household travel time by increasing ride-sharing 

and reducing travel time for empty trips and searching for parking. The results also indicate 

that the wide adoption of AVs is more effective to reduce travel time by ensuring seamless 

connection throughout the city compared to AVs adopted on local roads. Thus, AVs would 

reduce overall households’ travel time, as also pointed out in the previous studies (Levin 

et al., 2017; Loeb et al., 2018; Zhang et al., 2015). Moreover, AVs reduce travel delay and 

congestion by promoting sharing travel and smoothing traffic flows (Alam & Habib, 2018; 

Fagnant & Kockelman, 2014; Krueger et al., 2016). The study also found that the adoption 

of AVs significantly reduces overall VHT by reducing solo driving and promoting shared 

travel. Unlike solo driving AVs which have the potential to increase VHT by reducing 

value of travel time (Van den Berg & Verhoef, 2016), shared AVs would reduce VHT by 

offering a lower level of flexibility and convenience (Childress et al., 2015; Soteropoulos 

et al., 2018). Similar to travel time, a wide adoption of AVs which ensure seamless 

transportation of passenger is more effective to reduce VHT compared to limited adoption. 

Thus, AVs have the potential to reduce overall travel time, traffic congestion, and VHT 

which supports our hypothesis (H5 and H6). 

This study also estimates that AVs have the potential to reduce overall household 

transportation costs by moderating vehicle operation and maintenance costs (parking, fuel, 
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insurance, and driver costs), reducing fleet size, and encouraging ride-sharing. The study 

findings also supported by the extant literature (Compostella et al., 2020; Loeb et al., 2018; 

Martinez & Viegas, 2017). Thus, it is likely that AVs would reduce overall travel cost of 

households, which sustenance the study hypothesis (H7).  

6. Conclusions and directions for future research 

The study links the gap in the literature by investigating the potential impacts of AVs 

on people’s travel behaviors. The study also sheds light on policy implications for informed 

policy-making by the decision-makers and transport professionals considering the 

expected change in transportation systems due to the advent of AVs. Since AVs are very 

effective to address the increasing travel demand of the people, the city authority should 

promote AVs. They could partner with transport network companies to promote AVs and 

make them affordable for the people. Since AVs are more likely to reduce traffic delay and 

congestion, an appropriate measure could be taken by the policymakers to increase in AV 

use to control traffic congestion, particularly in the city centers. For example, AVs in a 

dynamic ride-sharing situation could be implemented as an effective policy option to 

reduce traffic congestion and overall travel time (Fagnant & Kockelman, 2018; Krueger et 

al., 2016). AVs in the form of public transportation could be implemented as effective 

congestion mitigation strategies (Rahman, Najaf, et al., 2021). As the results indicated, 

AVs could suppress public and active transportation. To increase transit use and active 

travel, and ensure a sustainable transportation system, proper initiatives should be taken by 

the policymakers to integrate AVs with an efficient public transport system (Narayanan et 

al., 2020; Sparrow & Howard, 2017). 
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Despite significant contributions to the literature, the study is shuttered by some 

cautionary measures. Due to the absence of AVs and lack of data, this study estimated the 

potential effects based on numerous assumptions and simulations, which may be 

unreasonable in real-world situations. This study partially estimated the effects of AVs on 

transportation. A further study is necessary to estimate the effects of AVs on travel speed, 

energy consumption, carbon emission, traffic safety, the capacity of roads, etc. Moreover, 

another study is warranted to investigate the potential effects of AVs on the built 

environments.  We have experienced radical changes in people’s travel behaviors due to 

the recent COVID-19 pandemic (Bhouri et al., 2021; Chan et al., 2020; Rahman, Paul, et 

al., 2021). The current study fails to capture this scenario. Future studies should investigate 

how a public health crisis could influence the travel pattern of people including the use of 

AVs and SAVs. There is a lack of evidence of the potential impacts of AVs and SAVs on 

public health. Future study should focus on public health issues of vehicle automation to 

protect people from unforeseen fitness tragedies. 

Appendix: Supplementary Tables 

Table A1: Types of transportation links in the model 

Link-type Description of the link Assigned speed 

Access Access to zones without parking charges 25 kph 

Acc/wpark Access to zones with parking charges 25 kph 

CentNarr Central street narrow 30 kph 

CentWide Central street wide 38 kph 

PerNarr Peripheral street narrow 45 kph 

PerBroad Peripheral street broad 68 kph 

Mtway Motorway 90 kph 

DualCway Dual carriageway 80 kph 

CenNarrB Central street narrow buses only 30 kph 

CenWideB Central street wide buses only 35 kph 

AccessB Access to zones buses only (pedestrians) 5 kph 

Railway Railway line 30 kph 

Station Railway station (pedestrians) 5 kph 

P&R Park-and-ride 5 kph 

External For external zones 68 kph 
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PerNarrRC Peripheral street reduced capacity (parallel to bus lanes) 65 kph 

Cycle Cycle ways 12 kph 

BusLink Bus-only lane 35 kph 

CenNarrRC Central street narrow reduced capacity (parallel to bus lanes) 30 kph 

CenBroadRC Central street broad reduced capacity (parallel to bus lanes) 36 kph 

 

Table A2: Combination between operators 

From/To SOV HOV AV RegBus ExpBus LRTBus Walk P&R Metro LRT 

SOV           

HOV           

AV           

RegBus           

ExpBus           

LRTBus           

Walk           

P&R           

Metro           

LRT           

Shaded cell: Combinations are not allowed. 
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CHAPTER 7: SIMULATING THE POTENTIAL IMPACTS OF AUTONOMOUS VEHICLES 

ON THE SPATIAL DISTRIBUTION OF URBAN HOUSEHOLD AND EMPLOYMENT 

LOCATIONS 

 

Abstract 

The potential effects of Autonomous Vehicles (AVs) on land-use distribution in 

urban regions have received little attention. To bridge this gap, this study focuses on the 

potential impacts of AVs on the spatial distribution of household and employment 

locations. Using the existing Swindon model of the TRANUS platform, it estimates the 

effects of AVs on household and employment locations against a business-as-usual 

scenario. A sensitivity analysis is also carried out by allowing growth in jobs to check the 

robustness of the results. The simulation results show that the adoption of AVs would lead 

to a decrease in the number of households in the city center and an increase in households 

in the periphery of the city stemming from a reduction of travel time and an increase in 

accessibility. The wide adoption of AVs would increase employment in the city center and 

the urban periphery by inducing more economic activities. Sensitivity analysis confirms 

that AVs would allow densification of the existing city center by releasing extra space from 

parking land areas along with peripheral new development over time. Finally, the study 

provides some policy guidelines to control the growth of cities by investigating the long-

term effects of AVs. 

Keywords: Autonomous vehicles, built environment, land use, travel behaviors, simulation 
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1. Introduction 

The advent of autonomous vehicles (AVs) has captured the attention of individuals 

including transportation professionals, researchers, technology entrepreneurs, and travelers 

(Ho, 2019; Soteropoulos et al., 2018). Practitioners and policy makers in transport and 

urban planning are concerned about the effects that AVs may have on the core domain of 

city planning, that is the mutual interactions between transportation and land uses 

(Fraedrich et al., 2019). As of now, the predominant discussion on AVs is focused on 

cutting-edge technologies, human travel patterns, environmental consequences, private or 

shared models of deployment, ethics, liabilities, and the willingness of users to use AVs 

(Ho, 2019; Soteropoulos et al., 2018). However, the potential effects of AVs on land-use 

distribution in urban regions have received scant attention. To bridge this gap in the 

literature, this study investigates the potential impacts of AVs on the spatial distribution of 

household and employment locations. 

It is anticipated that AVs would have profound effects on society as a disruptive 

technology (Tao & Cao, 2022; W. Zhang et al., 2020). A considerable number of studies 

have reported that AVs would reduce traffic crashes, congestion, costs, and energy use, 

while increasing transport accessibility, travel demand, the capacity of roads, and 

convenience to users (Curl et al., 2018; Eluru & Choudhury, 2019; Golbabaei et al., 2021). 

It has been argued that AVs could also release land in city centers and in residential areas 

by reducing parking demand and reallocating newly freed space for developing housing, 

commercial, and urban amenities (Curl et al., 2018). Hence, there is real potential for AVs 

to change people’s residential location and urban land-use patterns by enhancing transport 

accessibility and reducing transportation costs, which would trigger urban expansion 
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(Cordera et al., 2021; Gelauff et al., 2019; Heilig et al., 2017). Thus, AVs may trigger 

changes that fundamentally alter the landscape of the built environment. 

Considering the complexity of possible urban futures of cities brought about by the 

arrival of AVs and preparing for this watershed time, urban researchers and professionals 

are exploring policies and strategies to manage people’s travel demand and control the 

growth of cities. Although previous studies have investigated the short- and medium-term 

effects of AVs, evidence on the long-term effects of AVs on urban land-use patterns is still 

fairly limited. Researchers are interested to know how AVs would influence urban land-

use patterns. Are future cities going to be more compact? Are urban landscapes going to 

be dominated by sprawl? Could polycentricity become a dominant model of urban form? 

To this end, this study aims to assess the potential impacts of AVs on the spatial distribution 

of household and employment locations. The analysis is conducted in a mid-size British 

city using the simulation platform provided by the TRANUS land-use and transportation 

interaction model. This study significantly contributes to policy formulation by providing 

insights into matters that are still quite uncertain and yet to be experienced in the real world. 

The following research questions are projected in this study to estimate the long-term 

effects of AVs: 

1) What are the impacts of AVs on the spatial distribution of household locations? 

2) What are the impacts of AVs on the spatial distribution of employment locations? 
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2. Literature review and theoretical framework 

2.1 Synthesis of past studies 

Although limited, previous studies provide empirical evidence on how AVs would 

influence the built environment and people’s destination location choices. Very few studies 

have explored the change in the land-use patterns due to large-scale adoption of AVs. For 

example, conducting a simulation study, Kang and Kim (2019) estimated the effects of 

AVs on urban land use in Seoul, Korea. Results show that AVs would reduce agricultural 

lands and increase residential and commercial areas on the outskirts of cities. Rural and 

exurban peripheries would be suburbanized due to convenient travel afforded by AVs, low 

land price, and the availability of green space. On the other hand, the city center would 

become denser and large commercial centers would see their size increase further. Small 

and non-intensive commercial areas would be converted to residential use if AVs can be 

adapted to resupply supermarkets and other retail outlets. Thus, AVs are likely to 

accentuate urban expansion towards peripheral areas and nearby rural areas owing to 

increased accessibility and reduced transport costs (Meyer et al., 2017). 

Some studies investigated how AVs would influence people’s destination choices for 

living and working (Gelauff et al., 2019; Kim et al., 2020; Meyer et al., 2017). For example, 

Thakur et al. (2016) explored people’s housing location choices in Melbourne, Australia 

by conducting a simulation study. They reported a 0.25% to 2% reduction in population 

within 30 km of the Central Business District (CBD) and a 2.47% increase in population 

beyond 30km from the CBD due to a 50% reduction in vehicle travel time by personal 

AVs. Conducting a survey, Carrese et al. (2019) mentioned that some households (about 

40%) are interested to relocate in the suburbs under the AV regime. Thus, personal AVs 
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are likely to reduce the population in and around city centers and increase the population 

in the outer suburbs. Since AVs will be able to fetch groceries from supermarkets and 

collect children from school by themselves, people can live, work, and shop at a greater 

distance (Kang & Kim, 2019; Milakis et al., 2017; Smith, 2012).As far as the adoption of 

SAVs is concerned, Thakur et al. (2016) reports effects similar to those of personal AVs. 

(Meyer et al., 2017; Zhang, 2017) pointed to the same effects. 

A considerable number of past studies have investigated the effects of AVs on 

parking demand in city centers and residential areas (Clements & Kockelman, 2017; 

Kopelias et al., 2020; Zhang et al., 2015). Some researchers mentioned that AVs are likely 

to reduce up to 90% of parking demand by decreasing car ownership (Milakis et al., 2017; 

Narayanan et al., 2020; Zhang et al., 2015). Some other researchers also estimated that 

AVs would reduce parking land areas by 50% (Kondor et al., 2018) to 40% (Chehri & 

Mouftah, 2019; Kim, 2018). These studies argued that a higher reduction in parking 

demand can be achieved by adopting SAVs compared to personal AVs (Milakis et al., 

2017; Zhang & Wang, 2020). The space released from vehicle parking and garages could 

be used for developing activity centers and high-quality recreation spaces (Dennis et al., 

2017; KPMG International, 2019). 

As indicated in the literature, AVs are likely to intensify urban expansion by reducing 

travel time, providing transport services to all people, and increasing people’s convenience 

by allowing multitasking. However, the adoption of SAVs to some extent could control 

urban sprawl. Indeed, AVs would also reduce parking demand in city centers and 

residential areas by reducing vehicle ownership. This newly freed space could be 

redeveloped for residential, economic, and recreational activities. In conclusion, earlier 



238 
 

 
 

studies suggest that AVs have the potential to influence the urban built environment by 

influencing land uses, location choice for households and businesses, and parking demand. 

The following hypotheses are formulated to investigate the impacts of AVs on 

destination locations. 

1) Since people can work while riding on an AV, AV users may see fewer obstacles to 

living in the suburban areas and outskirts of city centers (H1). 

2) In addition to the densification of existing city centers with various activities, 

concurrent peripheral development and suburbanization would be experienced by 

urban residents (H2). 

3) The space released from parking demand in city centers and residential areas will be 

used for residential, economic activities and recreational activities, which will lead 

to more employment generation (H3). 

2.2 Theoretical framework 

This subsection discusses the theoretical foundations to simulate the impacts of SAVs 

on people’s travel behaviors via Land Use and Transportation Interaction (LUTI) models 

after introducing SAVs within the existing transportation system. 

2.2.1 A brief overview of land use and transport interaction models 

A large number of studies have suggested that changes in transportation systems and 

associated policy measures influence urban development patterns and location choices of 

households and employment (Cervero & Kockelman, 1997; Zondag et al., 2015). 

Concurrently, changes in development patterns and land uses influence transportation 

activities (e.g., number of trips, travel mode choice, distance, time, and cost). Hence, it is 
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a common understanding that transportation and land use have a mutual but complex 

interaction, which provides mobility benefits (e.g., access to services and jobs, reduction 

in VMT) and reduces transportation externalities (e.g., congestion, emissions) (Holz-Rau 

& Scheiner, 2019; Soria-Lara et al., 2016; Wegener, 2021). Thus, policymakers should use 

transportation models that integrate land-use models for accurate estimation of the impacts 

of transportation policy options on urban development patterns and consequent 

transportation systems (Waddell, 2011; Zondag et al., 2015).  

The complex two-way interaction between transportation and land use can be easily 

conceptualized by the “land use transport feedback cycle” (Acheampong & Silva, 2015; 

Wegener, 2004) presented in Figure 7.1. According to the feedback cycle, the distribution 

of land uses (e.g., residential, industrial, commercial, institutional) over the urban space 

determines the locations of human activities (e.g., living, working, shopping, education, 

leisure). Through the transportation system, human activities distributed in space fulfill 

spatial interaction or trips and travel from one destination to another. Infrastructure and 

facilities (e.g., road network, transit stations, transport modes, schedule) in the 

transportation systems create opportunities for spatial interaction of human activities which 

is measured as accessibility. The level of accessibility in space and over time influences 

location decisions of human activities and thereby affects land use distribution across 

space.  
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Figure 7.1: Land use transport feedback cycle 
 

A good deal of research over the past 60-70 years have investigated the impacts of 

transportation policies on travel pattern (e.g., mode and route choice, travel distance and 

time), destination location choices, accessibility to destination, property values, and public 

health (Acheampong & Silva, 2015; Chang, 2006; Wegener & Fürst, 2004). Previous 

studies used various types of LUTI models (Wegener, 2004), including the TIGRIS XL 

model (Zondag et al., 2015), UrbanSim (Waddell, 2002; Waddell et al., 2003), Agent-based 

model (H. Zhang et al., 2020; Zhang et al., 2015) to evaluate alternative policy options. 

Some studies also used TRANUS to develop land use and transport interaction models 

(Bujanda et al., 2011; Pupier, 2013). Further discussion of the theoretical framework 

focuses on TRANUS as this modeling environment is used in the research reported later in 

this article. 

TRANUS is a simulation model well suited to assess the effects of transport policies 

and strategies in the context of an urban region. Originally conceptualized by De la Barra 

and Rickaby (1982) and Thompson (1990), TRANUS is a free, effective, and well-
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documented software package and widely accepted model by city planners and transport 

modelers (Capelle et al., 2019; Dutta et al., 2012; Morton et al., 2008). 

2.2.2 Theoretical basis of land use and transport interactions in TRANUS 

The theoretical basis of the TRANUS system are grounded in spatial microeconomics 

theory, gravity based theories, input-output model, random utility theory, and Dijkstra 

transportation model (Modelistica, 2005). According to the spatial microeconomics theory, 

landowners rent their properties at the maximum price and the person tries to maximize 

their revenue by renting a property at a cheaper price and reducing transportation costs by 

renting the property close to the activity center (e.g., city center, CBD) (Pupier, 2013). 

Gravity-based models indicate that interaction between two zones is proportional to the 

number of facilities in each zone and inversely proportional to the friction (e.g., distance, 

time) imposed by the infrastructure that connects those zones (De la Barra, 1989).  

The input-output model represents the urban economy with several zones or sectors 

and shows transactions between them (Modelistica, 2005). The main concept of random 

utility theory is that individuals logically choose an option from different alternatives, 

which provides the maximum level of benefit or utility (De la Barra, 1989). In this study, 

the logit model is used to choose floor space and land types for location of different 

activities. Lastly, the main concept of the Dijkstra algorithm is that it finds the shortest 

possible route from a transportation network for moving people and goods with minimum 

transfer costs and distance (Zhang et al., 2016).  
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2.2.3 Main components of the TRANUS model 

The two main components of the LUTI model (Figure 7.2) in TRANUS are the 

activities subsystem and the transport subsystem (Modelistica, 2005). Within each 

subsystem, there are demand and supply elements that interact to achieve an equilibrium 

state. In the activities subsystem, location and interaction between activities (e.g., 

households, industries) indicate demand-side elements, and real estate supply (i.e., land, 

floor space) indicates the supply-side elements. Activities interact with other activities to 

perform their function. Real estate developers provide spaces for performing different 

functions of the activities. When demands of activities for space are higher than the real 

estate supply in a specific place, land price/rent will increase to reduce demand for spaces 

to achieve equilibrium. Interaction between these activities generates travel demands. 

 

 

 

 

 

 

 

 

Travel demand for transferring people and goods from origins to destinations 

represents demand-side elements of the transportation subsystem. On the other hand, 

transport infrastructure and travel modes represent the supply side elements. Travel modes 

use transport infrastructure to perform their activities. . When travel demand becomes 

higher than supply, travel cost or time increases to achieve equilibrium. Interactions 

Location and interaction 

between activities 

Real Estate supply 

Demand for transport 

services 

Physical and operative 

transport supply 

Activities Transportation 

Transport 

demand 

Accessibility and 

transport cost 

Equilibrium Equilibrium 

Figure 7.2: Main elements of the LUTI model in TRANUS 
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between demand and supply of the transport subsystem impose friction in terms of 

accessibility and transport cost that affect the interaction between activities and land 

price/rent in the real estate market. 

2.2.4 Dynamic relationship between land use and transportation 

As indicated in Figure 7.3, the interaction between transportation and land use in 

TRANUS is dynamic through time based on discrete intervals (Modelistica, 2005). The 

interaction between activities in space generates functional flows (i.e., the flow of jobs or 

households from one sector to another), which create travel demand. The travel demand is 

assigned to the transport system in the same period. However, the state of equilibrium in 

transport demand and supply determines the accessibility between locations and influences 

economic flows and provides feedback for the next period. Thus, accessibility in time t1 

affects functional flows in time2 and so on.  

 

 

 

 

 

 

 

3. Research design 

To assess the potential impacts of AVs, a simulation study is performed using the 

TRANUS simulation environment. The impacts of AVs are investigated through the 

mutual relationship between the land-use component and the transportation component of 
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Figure 7.3: Dynamic relationship between land use and transportation 
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TRANUS. In this study, we estimate the effects of AVs on the location choices of 

employment and residences produced as the output of the land use model  iterated with the 

transportation model. While TRANUS’s transportation model does not explicitly allow for 

the treatment of AVs as a mobility option distinct from convention motor vehicles devoid 

of advanced autonomy features, it can be accommodated quite readily thanks to some 

careful customization of the simulation system. The systematic procedures for developing 

land use and transportation models are discussed below. The specific dispositions involved 

in the customization are presented next. 

3.1 Study area 

The study is conducted in the city of Swindon, United Kingdom, for which an 

calibrated instance of TRANUS is already available (Tomás de la Barra et al., 2011). 

Swindon is a medium sized city in Southwestern United Kingdom, about half-way between 

Bristol and Oxford. In 2020, the city had an estimated population of 490,000, with a density 

of 222 persons per square kilometer (UK Census, 2020).  The city has an historic urban 

center surrounded by a rather suburban and periurban hinterland encompassing a number 

of smaller villages.  Figure 7.4a shows the layout of Swindon and the urban core of the 

city.  

For modeling purposes, Swindon is broken down into 56 internal and 9 external 

zones. Figures 7.4b and 7.4c indicate the distribution of residential (i.e., residential and 

mixed lands) and employment (i.e., industrial, business parks and shopping centers, and 

mixed lands) land types in the city. Swindon’s economy has been expanding thanks to 

strong performance in financial and professional services and advanced manufacturing and 
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engineering (Swindon Borough Council, 2022). Nine external zones serve the purpose of 

accounting for meaningful external trips. 

   

 

This study uses the TRANUS LUTI model calibrated for Swindon as a baseline 

against which a series of alternative scenarios encompassing AV are being assessed with 

regards to land uses and their distribution across the urban region. Impacts on 

transportation, mobility, and accessibility metrics are also assessed, and results are reported 

in Chapter 6 for the same scenarios and variations thereof.  

It is advantageous to use an existing calibrated model that has been fully vetted. This 

approach permits us to dedicate our attention on customizing TRANUS to represent the 

main distinctive features of AVs over vehicles with little or no automation, conduct a 

sensitivity analysis on the AV variants to better capture the range of possible futures of the 

a b 

c 

Figure 7.4: (a) City of Swindon and its layout, 

(b) distribution of residential land types, and 

(c) distribution of employment land types 
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urban land system in response to various specifications of AV deployments (since AVs are 

not an operational reality at this time). Furthermore, as Swindon is small enough and its 

spatial structure is simple enough, the main differences between AV treatment scenarios  

and the baseline can be teased out with greater ease than for a more complex and more 

heterogeneous urban region with multiple layers of central and outlying business centers.   

Also, it may be reasonable to assume that AVs would be implemented in smaller cities 

before mega cities as transportation systems are easier to monitor and their impact on land 

use systems may involve fewer feedback responses that may be hard to predict and simulate 

at the present time.  

3.2 Land-use model 

I briefly introduce the calibrated land-use model for Swindon in this section. I discuss 

in turn the activity sectors, the distribution of floor space and land for different activity 

types, and the generation of functional flows.  

3.2.1 Activity sectors in the urban economy 

The urban economy of Swindon was divided into employment and household sectors 

(Tomás de la Barra et al., 2011). These activity sectors are exogenous (i.e., depend on 

external forces) and induced (i.e., generated within the zones by other activities). 

Conventionally, employment sectors include industry, agriculture, government, retail and 

warehouse, office, education, health, while households are divided into high-income, 

medium-income, and low-income cohorts. Further specification of these sectors with types 

and elasticity (i.e., the measure of the sensitivity of a sector due to changes in other sectors) 

is given in Table 7.1. 
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Table 7.1: Activity sectors in the model 

Activity sectors Type Elasticity 

Employment sectors  

Industry and agriculture employment Exogenous 0 

Government employment Exogenous 0 

Retail and warehouse employment Induced by household 0.8 

Office employment Induced by household 0.7 

Education employment Induced by household 0.8 

Health employment Induced by household 0.7 

Household types  

High-income household Induced by employment 0.6 

Medium-income household Induced by employment 0.7 

Low-income household Induced by employment 0.8 
 

 

3.2.3. Distribution of floor space and land types 

Every activity listed in Table 7.1 consumes some floor space and floor space 

consumes some land of certain types (Tomás de la Barra et al., 2011). Floor spaces include 

sheds, terraces and flats, detached and semi-detached houses and land types include 

industrial, business park, mixed land, residential land. Floor space and land type are non-

transportable by nature; thus, they will be consumed in the same zone where they are 

produced. 

In the model, a single activity may consume more than one floor space or land type. 

A multinomial logit choice model is used to assign floor space or land types for a specific 

activity sector when there is more than one option to choose from. Figure 7.5 illustrates the 

relationships between activities and floor space and between floor space and land types. It 

is assumed that the health and education sectors do not consume any type of defined floor 

space and land type; however, they consume a special type of land that is not included in 

the real estate market.  
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3.2.3. Functional flow generation 

Functional flow (i.e., the flow of jobs or households from one sector to another) is 

determined based on the state of the activity sector (e.g., exogenous, induced) (Tomás de 

la Barra et al., 2011). As indicated in Table 7.2, low-, medium-, and high-income 

households generate trips to work. On the other hand, trips attracted by retail and 

warehousing, office, education, and health activity sectors are defined as trips to services. 

The outputs of the functional flow are generated in the form of origin-destination (O-D) 

Activities Floor space type Land type 

Agriculture 

and industrial 

Government 

Retail and 

warehousing 

Office 

Health 

Education 

Low-income 

households 

Medium-income 

households 

High-income 

households 
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Framed 
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Semidetached 

houses 

Detached 

houses 

Industrial 

land 
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Mixed land 

Residential 

land 

Logit model 

Figure 7.5: Choices between activities, floor space, and land type 
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matrices. The transportation model uses these O-D matrices to generate actual trips of 

different types. 

Table 7.2: Generated trip categories 

Activity sector Trip category 

Low-income households Trips to work (low income)  

Medium income households Trips to work (medium income)  

High-income households Trips to work (high income)  

Retail and warehousing Trips to services 

Office Trips to services 

Education Trips to services 

Health Trips to services 
 

Different economic sectors and trip categories are defined in TRANUS to generate 

trip matrices automatically considering the following aspects. 

a) Flows include commuter trips to work and trips to services and indicated as 1. 

b) Trips are generated for a day and an expansion time factors is applied for 

weekdays and weekends to estimate trips for a month.  

c) All flows are trips to work and services, thus, a factor of 1 is considered for all 

flows.  

d) Trips are considered unidirectional (i.e., people typically go to work from home 

and come back home again after work) and a factor of 1 is used for both trips to 

production and consumption.  

The major steps of the land use model from delineating study area to generating trip 

matrices are shown in Figure 7.6. 
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3.3 Transportation model 

The transportation model is the second component of the LUTI model in TRANUS 

which investigates the effects of AVs on people’s travel patterns considering the existing 

transport facilities. As indicated in Figure 7.7, developing a transportation model in 

TRANUS mainly includes defining different components of transport demand and supply 

(Tomás de la Barra et al., 2011). Outputs of the land-use model are used in the 

transportation model as the demand component. The physical transportation network (i.e., 

links and nodes) are inputs of TRANUS and are assigned administrators and parameters 

(link types, length, capacity, speed, cost). Different transport operators are used to provide 

transport services. Different types of transport operators include Single-Occupancy 

Study area and zones 

Urban economy: 

Exogenous or induced 

Floor space and land 

types for activity sectors 

Employment sectors 

Household types 

Setting up activity 

sectors in TRANUS 

Functional flow: flow of 

jobs and households 

O-D matrix: used as an input 

in the transportation model 

Figure 7.6: Different steps of land use model in TRANUS 
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Vehicle (SOV), High-Occupancy Vehicle (HOV), AV, public transportation (e.g., bus, 

train), active transportation (e.g., walk, bicycle), and Park-and-Ride (P&R). In this study, 

AVs are defined as normal operator which indicate that AVs would move freely around 

the network. Additionally, AVs would be shared by household members which is reflected 

in occupancy setting in TRANUS and operated by battery. In TRANUS, types, 

combination, and parameters (e.g., occupancy, speed, costs) of different operators are 

assigned. Finally, operators are assigned to the transport network to generate traffic flows.  
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Figure 7.7: Different steps in the transportation model in TRANUS 
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TRANUS uses probabilistic multinomial logit models for assigning household trips 

to transport operators based on their utilities. Using the same logit model, TRANUS assigns 

operators to transport network based on their properties. A detailed discussion on the 

development of the transportation model is also provided in Chapter 6.   

3.4 Hypothetical scenarios to estimate the effects of AVs 

To investigate the potential impacts of AVs, a set of hypothetical scenarios are 

envisioned. Parameters and information/data on types and elasticity of activity sectors, 

floorspace, and land types presented in Tables 7.1 and 7.2, and Figure 7.5 are used to 

calculate the outputs of the scenarios in land use model. Different parameters of the 

transport network (e.g., link types, length, capacity, speed), data on operator types and 

parameter are discussed in Chapter 6 are used to calculate the outputs of the scenarios in 

the transportation model. The land-use model is set for up to 200 iterations with a 

convergence factor of 0.0001. On the other hand, the transportation model is set for up to 

18 iterations with a convergence factor of 0.001. In both cases, a smoothing factor of one 

is assigned, which indicates that the values of each iteration are averaged with the values 

from the previous iteration with an equal proportion. 

1) Baseline scenario 

Initially, a baseline scenario (B) is developed by considering the existing land use 

and transportation attributes of the Swindon model. Values of the parameters on 

activity sectors, transport nodes and links, and operators are used to estimate people’s 

destination location choices under the current policy framework and without the 

adoption of AVs.  
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2) Scenario 1: Introduction of AVs on the local roads only 

Scenario 1 (S1) is developed to explore the potential impacts of AVs under the 

condition that AVs would be operated on local roads only. Access road, central 

narrow and wide, peripheral narrow and broad link types mentioned in Chapter 6 are 

selected for adopting AVs and examined the impacts of this policy option. Similar to 

the baseline scenario, parameters on activity sectors, transport nodes and links, and 

operators are used to develop this model. 

3) Scenario 2: Introduction of AVs to the entire transportation network.  

Scenario 2 (S2) investigates the impacts of AVs when AVs would be allowed to 

navigate throughout the entire transportation network of the city. However, some 

mode-specific routes such as bus-only routes and lanes, railway, and cycle lanes are 

free from any AV operation. Scenario 2 also considers the above-mentioned 

parameters. 

Sensitivity analyses are performed to check the robustness of the simulation results 

by changing model assumptions and values of the parameters. Table 7.3 indicates different 

criteria to assess the sensitivity of the model. Increasing AV occupancy and speed, and 

wait time, and allowing growth in jobs, sensitivity analyses are conducted to explore the 

changes in the travel patterns. 

Table 7.3: Criteria for sensitivity analysis 

Parameter Base scenario Changes in parameter 

Growth in jobs S2 5%, 10%, 15%, and 20% growth of jobs in 

industry and government sectors 

Growth in jobs B 5%, 10%, 15%, and 20% growth of jobs in 

industry and government sectors 
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To understand the potential impacts of AVs, the spatial distribution of households 

and employments in different hypothetical scenarios are calculated and compared. The 

total number of households in Swindon is estimated by adding the number of low-income, 

medium-income, and high-income households in each zone. Similarly, the number of 

employees in different activity sectors are aggregated to get the total employment in each 

zone. The change (%) in the number of households and employments under different 

scenarios is calculated using Excel and GIS techniques. On the other hand, the household 

trips to work and different activity sectors by different modes of transportation and AVs 

are added to get the total number of trips and AV trips, respectively, assigned on the 

transportation network.  

4. Results 

4.1 Impacts on people’s household location 

Using Swindon as a case study, this study estimates the potential impacts of AVs on 

the spatial distribution of households in different scenarios (Figure 7.8). The change (%) 

in the household location in S1 compared to B is illustrated in Figure 7.8a. According to 

Figure 7.8a, the adoption of AVs on local roads in S1 (Figure 7.9a) lead to an increase in 

the number of households in the North, East, and South-East areas of Swindon. A decrease 

in households is observed in the South-West corner of the city. On the other hand, a 

decrease in the number of households is noticed in the city center when AVs are adopted 

on local roads only. Overall, a 0.10% decrease in households is estimated in the city center, 

and a 0.29% increase in households is estimated in the periphery of Swindon in S1 (Figure 

7.8d). 
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Figure 7.8b represents the change (%) in the household location in S2 compared to 

B. The adoption of AVs throughout the transportation network (Figure 7.9b) leads to a rise 

in households on the North, East, and South-West sides of the city. A decrease in 

households is observed in the city center. Due to the amenities and convenience provided 

by AVs, people would be interested to live in the periphery and outside of the city. Total, 

a 0.33% decrease and 0.64% increase in the number of households are estimated in the city 

center and periphery of Swindon, respectively, in S2 compared to B due to the wide 

adoption of AVs (Figure 7.8d).  

 

  

Figure 7.8: Impacts of AVs on people’s household location 

Figure 7.8a represents change (%) in the household location in S1 compared to B, 7.8b represents 

change (%) in household location in S2 compared to B, 7.8c represents change (%) in household 

location in S2 compared to S1, and 7.8d represents change in the total number of households in 

the city center and periphery of the city. 
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As indicated in Figure 7.8c, the wide adoption of AVs causes the reduction in 

households on the South, East, and North-West edges of Swindon and the increase in the 

South-West and North of the city in S2 compared to S1. Overall, the wide adoption of AVs 

encourages people to live in the periphery and surrounding areas of the city away from the 

city’s bustling and hustling. In total, a 0.23% decrease and 0.35% increase in the number 

of households are estimated in the city center and periphery, respectively, under S2 

compared to S1 due to the wide adoption of AVs (Figure 7.8d). The better connections and 

services provided by AVs encourage people to commute daily to the city where their jobs 

are located. 

  

Figure 7.9: Total number of AV trips in S1 and S2 
Figure 7.9a represents the AV loading in S1 and Figure 7.9b the AV loading in S2 

4.1.1 Distribution of household locations without AVs 

The spatial distribution of households under the growth in jobs and without adopting 

AVs is shown in Figure 7.10. Figures 7.10a, 7.10b, 7.10c, and 7.10d represent change (%) 

in household locations with 5%, 10%, 15%, and 20% growth in jobs, respectively 

compared to B. Considering different rates of growth in jobs, a similar pattern of household 

distribution is observed in Swindon. In Figures 7.10a to 7.10d, higher growth in the number 

of households is seen in the periphery compared to the city center. The availability of land 

a b 
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for residential development in the rural hinterland and villages located in the periphery 

would be the home for new households induced by the increased economic activities within 

the city. 

 

  

Figure 7.10: Distribution of household location under growth in jobs without AVs 
Figure 7.10a, 7.10b, 7.10c, and 7.10d represent change in household location with 5%, 10%, 

15%, and 20% growth in jobs, respectively compared to B. 
 

4.1.2 Distribution of household locations with AVs 

The spatial distribution of households under the growth in jobs and with the adoption 

of AVs is shown in Figure 7.11. Figures 7.11a, 7.11b, 7.11c, and 7.11d represent change 

(%) in household location with 5%, 10%, 15%, and 20% growth in jobs, respectively 

compared to S2. The figures indicate that the wide adoption of AVs throughout the 

transportation network leads to higher population growth in the city center. Higher 

population growth is also observed in the areas adjacent to the city center (e.g., zones 54, 

a b 

d c 
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55, 56, 57) and in the periphery (e.g., zones 52, 53, 63). In contrast, lower population 

growth is observed in the periphery, particularly in Zones 59, 61, 62, and 72.  

 

  

Figure 7.11: Distribution of household locations under growth in jobs with AVs 
Figure 7.11a, 7.11b, 7.11c, and 7.11d represent change in household location with 5%, 10%, 

15%, and 20% growth in jobs, respectively compared to S2. 
 

In Figures 7.11a and 7.11b, a decrease in population in the periphery is observed. In 

contrast, I observe an increase in population in the same zones of the periphery, as indicated 

in Figures 7.11c and 7.11d. These scenarios point out the fact that a lower increase in jobs 

(5% or 10%) would lead to concentrated development in the city center, in addition to some 

peripheral development. On the other hand, a higher increase in jobs (15% or 20%) would 

also induce new settlements in the periphery, besides densifying the city center. The 

available lands in the periphery suitable for housing development would accommodate new 

developments. People would be interested to live in the new settlements located on the 

a b 
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periphery due to better connectivity and amenities and convenience provided by AVs 

(Figure 7.12). However, it is observed that the overall population growth in the city center 

is higher than periphery. Thus, people sharing AV by household members are likely to live 

in the city center compared to the periphery. 

 

  

Figure 7.12: Total number of AV trips under 5%, 10%, 15%, and 20% growth of jobs 
Figure 7.12a, 7.12b, 7.12c, and 7.12d represent AV loading with 5%, 10%, 15% and 20% growth 

in jobs, respectively. 
 

The overall impacts of AVs on the spatial distribution of households in the city center 

and periphery, considering the growth in jobs, are illustrated in Figures 7.13a and 7.13b, 

respectively. As indicated in Figure 7.13a, higher growth in the number of households is 

observed in the city center under AV scenarios (4.51% to 15.47%) compared to non-AV 

scenarios (3.37% to 13.46%). In contrast, lower growth in households is reported in the 

periphery under AV scenarios (1.51% to 13.32%) compared to non-AV scenarios (4.76% 
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to 19.10%) (Figure 7.13b). The results show that AVs would induce more development in 

the city centers compared to the periphery and surrounding rural areas. 

  

Figure 7.13: Change (%) in the total number of households in city core (a) and periphery (b) 
 

4.2 Impacts on employment locations 

This study also estimates the potential impacts of AVs on the spatial distribution of 

people’s employment locations in different scenarios (Figure 7.14). The change (%) in the 

employment location in S1 compared to B is illustrated in Figure 7.14a. Figure 7.14a 

indicates that the adoption of AVs on local roads in S1 (Figure 7.9a) lead to an increase in 

the number of employments in the East and South-East corners of Swindon. A decrease in 

employment is observed in the South, West, and North-East corners of the city. In contrast, 

an increase in the number of employments is observed in the city center when AVs are 

adopted on local roads only. Overall, a 0.02% increase in employment is estimated in the 

city center, and a 0.08% decrease in employment is estimated in the periphery of Swindon 

in S1 (Figure 7.14d).  

Figure 7.14b represents the change (%) in the employment location in S2 compared 

to B. The adoption of AVs throughout the transportation network (Figure 7.9b) leads to a 

rise in employment on the North-West and South-East corners of the city. A decrease in 

employment is observed in the South, South-West, and North-East edges of Swindon. On 
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the other hand, an increase in employment is observed in the city center. Total, a 0.56% 

and 0.27% increase in the number of employments are estimated in the city center and 

periphery of Swindon, respectively, due to the wide adoption of AVs (Figure 7.14d). 

 

  

Figure 7.14: Impacts of AVs on employment locations 
Figure 7.14a represents change (%) in employment location in S1 compared to B, 7.14b 

represents change (%) in employment location in S2 compared to B, and 7.14c represents change 

(%) in employment location in S2 compared to S1, and 7.14d represents change in the total 

number of employments in the city center and periphery of the city. 
 

Figure 7.14c represents the change (%) in the employment location in S2 compared 

to S1. As indicated in Figure 7.14c, the wide adoption of AVs causes a reduction in 

employment on the South, East, and North-West edges and an increase in the South-West 

and North sides of the city under S2 compared to S1. On the contrary, employment is 

further increased in the city center under S2 compared to S1. Overall, the wide adoption of 

AVs leads to a 0.54% and 0.36% increase in employment in the city center and periphery 
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of the city, respectively, compared to the adoption of AVs on local roads only (Figure 

7.14d). 

4.2.1 Distribution of employment locations without AVs 

The spatial distribution of employment under the growth in jobs and without adopting 

AVs is shown in Figure 7.15. The change in (%) in employment distribution with 5%, 10%, 

15%, and 20% growth in jobs is presented in Figures 7.15a, 7.15b, 7.15c, and 7.15d, 

respectively, compared to B. Considering the growth in jobs at different rates, a similar 

pattern of employment distribution is observed in Swindon. According to Figures 7.15a to 

7.15d, higher growth in the number of employments is observed in the East, South-East, 

and North-West corners of Swindon. However, a higher growth in employment is observed 

in the city center compared to the periphery under non-AV scenarios (Figure 7.17a). The 

existing urban facilities and services likely attract more employment opportunities in the 

city centers compared to the rural hinterland and villages located on the periphery. 

  

a b 
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Figure 7.15: Distribution of employment locations under job growth and without AVs 

Figure 7.15a, 7.15b, 7.15c, and 7.15d represent change in employment with 5%, 10%, 15%, and 

20% growth in jobs, respectively compared to B. 
 

 

4.2.2 Distribution of employment location with AVs 

The spatial distribution of employment under the growth in jobs and with the 

adoption of AVs is shown in Figure 7.16. The change (%) in the number of employments 

under four scenarios such as 5%, 10%, 15%, and 20% growth in jobs is presented in Figures 

7.16a, 7.16b, 7.16c, and 7.16d, respectively compared to S2. The figures indicate that the 

wide adoption of AVs throughout the transportation network leads to higher growth in the 

number of employments on the North and South-East sides of Swindon. Particularly, 

higher growth in jobs is observed in zones 51, 52, 53, 56, 59, 60, 61, and 71 in the 

periphery. Similar growth in the number of employments is also observed in the city center 

in all four scenarios. However, the study found not much discrepancy in the change of 

employment in the city center and periphery of Swindon considering the employment 

growth and after the adoption of AVs (Figure 7.17). 

c d 
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Figure 7.16: Distribution of employment location under job growth and with AVs 
Figure 7.16a, 7.16b, 7.16c, and 7.16d represent change in employment location with 5%, 10%, 

15%, and 20% growth in jobs, respectively compared to S2. 
 

 

The overall impacts of AVs on the spatial distribution of employment in the city 

center and periphery considering the growth in jobs are illustrated in Figure 7.17a and 

Figure 7.17b, respectively. As indicated in Figure 7.17a, lower employment growth is 

observed in the city center under AV scenarios (3.17% to 14.82%) compared to non-AV 

scenarios (5.71% to 22.60%). The explanation of these findings lies in the fact that some 

small commercial development could be converted to residential and recreational uses 

because AVs would be able to get groceries from the supermarket by themselves. On the 

other hand, almost similar employment growth is observed in the periphery under AV 

(3.79% to 15.25%) and non-AV (3.68% to 15.26%) scenarios (Figure 7.17b). The results 

indicate that higher employment growth would happen in the city center compared to the 

a b 

c d 
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periphery under the non-AV situation. On the other hand, AVs would lead to an even 

distribution of employment between city centers and the periphery considering growth in 

jobs. The reason lies in the fact that the wide adoption of AVs would facilitate the 

movement of people and provide flexibility to choose employment locations. 

   

Figure 7.17: Change in the total number of employments in city core (a) and periphery (b) 
 

5. Discussion 

5.1 Impacts on household locations 

The study results show that the adoption of AVs leads to a decrease in the number of 

households in the city center and an increase in households in the periphery of the city. The 

magnitude of the impacts is higher in the wide adoption of AVs throughout the transport 

network compared to the AV adoption on local roads only. The better transportation 

connections, services, and convenience provided by AVs encourage people to live outside 

of the city and commute daily to the city where their jobs are located. The study findings 

on the implications of AVs on household location choice are consistent with the current 

literature and support the hypothesis (H1) of this study. The extant literature showed that 

people can live, work, and shop at a greater distance because AVs would fetch groceries 

from supermarkets and collect children from school by themselves, reduce travel costs, and 
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offer amenities for other activities (Milakis et al., 2017; Smith, 2012; Thakur et al., 2016). 

Thus, people could live in a residential area regardless of their job location. 

A sensitivity analysis is also conducted to estimate the overall impacts of AVs on the 

spatial distribution of households in the city considering the growth in jobs under AV and 

non-AV scenarios. The result indicates a higher growth in the number of households in the 

city center compared to the periphery in AVs scenarios. The opposite trend is observed in 

non-AV scenarios (i.e., higher growth in households in the periphery compared to the city 

center). Thus, it is hypothesized that AVs would allow densification of the existing city 

center by releasing extra space from parking land areas along with peripheral new 

development over time which supports the hypothesis (H2) of this study. The findings are 

also supported by the existing literature where researchers mentioned that AVs would 

densify city centers and at the same time increase peripheral suburbanization by converting 

agricultural land to residential uses (Kang & Kim, 2019; Meyer et al., 2017). 

5.2 Impacts on employment locations 

This study also finds that the adoption of AVs on the local roads leads to an increase 

in the number of employments in the city center and a decrease in employment in the 

periphery of the city. On the other hand, the wide adoption of AVs throughout the transport 

network increases employment in the city center and periphery of the city. However, the 

increase in the number of employments in the city center is higher compared to the 

periphery. The extant literature reported that AVs are likely to reduce parking demand in 

city centers and residential areas by reducing car ownership (Milakis et al., 2017; 

Narayanan et al., 2020; Zhang et al., 2015). This extra space released from parking land 

would be used for developing economic and recreational activities (Dennis et al., 2017; 
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KPMG International, 2019) which will lead to more employment generation. This finding 

supports the hypothesis (H3) of this study that space released from parking demand in city 

centers and residential areas will be used for residential, economic activities, and 

recreational activities which will lead to more employment generation. 

A sensitivity analysis is also conducted to estimate the overall impacts of AVs on the 

spatial distribution of employment location in the city considering the growth in jobs under 

AV and non-AV scenarios. Results show that employment growth is higher in the city 

center under non-AV scenarios compared to AV scenarios. However, an equal growth in 

employment is observed in the periphery under AV and non-AV scenarios. The finding 

indicates that the wide adoption of AVs would facilitate the movement of people and 

provide flexibility to choose employment locations throughout the city. The findings are 

consistent with the existing body of literature where researchers mentioned that AVs would 

encourage more economic development in the periphery and city centers besides residential 

development (Kang & Kim, 2019). However, they also mentioned that small and non-

intensive commercial areas in city centers would be converted into residential areas 

because AVs would be able to bring goods from the supermarkets. Thus, a slightly lower 

increase in employment particularly retail employment would be observed in the city 

center. 

6. Conclusions and directions for future research 

This study significantly contributes to the literature by investigating the potential 

impacts of AVs on the spatial distribution of household and employment locations. The 

findings indicate that the adoption of AVs encourages people to live outside of the city 

center by increasing convenience and reducing travel costs. On the other hand, AVs would 
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increase employment opportunities in the city center by inducing more economic activities. 

The study provides some policy guidelines which will be useful for the policymakers to 

manage future land-use patterns and control overall urban development. Since AVs are 

likely to increase urban sprawl, it is recommended to implement smart growth principles 

and take appropriate regulatory measures to control unplanned suburbanization (Smith, 

2012). Space released from parking land could be redeveloped for pedestrian-friendly 

environments (Tao & Cao, 2022). Accordingly, policymakers and urban planners should 

explore the design opportunities to make the freed space attractive for different physical 

activities. Researchers also mentioned that AVs can complement public transport and 

support urban development strategies (Fraedrich et al., 2019). Thus, policymakers should 

start exploring the possible options to brace this potential. The precise and connected 

operation of AVs would require narrower driving lanes compared to conventional cars. 

Thus, existing wide lanes could be narrowed and dedicated lanes could be built for transit 

services or expanded sidewalks for walking and bicycling (Tao & Cao, 2022).  

Despite some significant contributions to the literature, this study warrants further 

exploration to shed light on the discussion due to some limitations. First, I have assumed 

AV adoption on local roads and throughout the network rather than specifying the exact 

market share. Thus, a study is necessary to understand how ownership of AV (for example, 

5%, 10%, or 20%, etc. market share of AVs) could influence people’s destination location 

choices. Second, this study investigates the impacts of AVs on the spatial distribution of 

household and employment locations. Hence, another study should focus on exploring the 

effects of the built environment on the AV adoption intention of people. Third, there is 

inadequate evidence on how AV would influence the housing location of different income 
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groups. Therefore, it is critical to know the equity issues of AVs concerning the housing 

choices of people which require further investigation. Fourth, to the best of our knowledge, 

previous studies rarely investigated the potential implications of AVs on public health. 

Thus, it is essential to conduct a study to assess the public health issues of AVs. Lastly, 

people’s teleworking tendency and grave global epidemics could affect the travel behaviors 

of people. So, further study is required to realize how people would use AVs during 

massive teleworking and pandemic situations. 
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CHAPTER 8: CONCLUSIONS 

 

Autonomous Vehicles (AVs) are not in people’s dreams anymore. They are becoming 

a reality day by day. Extant research has demonstrated that the ongoing development of 

AVs would influence urban transportation systems and the built environment. The research 

and development of cutting-edge technologies and a higher market share of AVs would 

transform human mobility patterns and protect people from traffic crashes.  

Despite rapid advancement, the implementation of this novel technology is still 

restricted in the testing phase within a controlled environment. Most of the current 

commercially operated AVs include Level 1 ~ Level 3 autonomy (e.g., emergency braking, 

blind-spot detection, lane-keeping). Investigating current status of adoption, researchers 

mentioned that 50% of new vehicles would be Level 4 or 5 AVs by 2040, 50% of all 

vehicles would be AVs by 2060, and all vehicles would be AVs by end of this century. 

However, there are a lot of uncertainties associated with AVs which may cause interruption 

in the development of this novel technology. Due to the limited adoption of AVs for public 

use, most people are still unaware of AVs at this time. However, there is an urgent need to 

know people’s perceptions about AVs and their behavioral intention to accept AVs. 

Additionally, policymakers and industry partners are interested to know the short-, 

medium-, and long-term effects of AVs to prepare policy guidelines for the successful 

implementation of AVs.  

This dissertation strives to explain the research needs outlined above by conducting 

state-of-the-art literature reviews, developing empirical models, and performing 

simulations. Published scholarships were collected through a strategic search and analyzed 
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critically to know the existing knowledge base. Data were collected from the 2019 

California Vehicle Survey to identify the key determinants of AVs and Shared AVs 

(SAVs). The existing Swindon model developed within the TRANUS platform was 

considered to estimate the effects of AVs on destination location choices and travel 

behaviors.  

Results show that people’s socioeconomic profile, psychological factors, and 

knowledge and familiarity with AV technologies would affect AV and SAV use. 

Additionally, urban form (e.g., density, land use diversity), transportation factors (e.g., 

travel mode, distance, and time), affinity to new technology, and institutional regulations 

would influence AV and SAV adoption. However, people’s psychological factors are the 

most influential factor compared to the built environment, other socioeconomic, and 

transportation factors. The study also found that the adoption of AVs would encourage 

people to live outside of the city center and increase employment opportunities in the city 

center by inducing more economic activities. Additionally, AVs would increase people’s 

travel demand by providing transport services to all including mobility impaired 

individuals and reducing vehicle ownership, travel distance, travel time, travel costs, and 

vehicle hours traveled by reducing solo driving.  

This dissertation significantly contributes to the literature by identifying gaps in the 

existing bodies of literature and providing guidelines for future research. Additionally, this 

dissertation provides policy directions to the professionals involved in transportation and 

urban planning for taking strategies compatible with AVs and concurrently managing 

people’s travel demand and urban growth. Notwithstanding, this dissertation is affected by 

some major limitations as discussed.  
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First, given the number of existing studies on AVs, a systematic econometric meta-

analysis could be conducted to estimate the effects of different factors on AV adoption and 

generalize the results of individual studies. Second, the dependent variables of the study 

represent the household’s intention to purchase AVs and use SAVs and do not reflect 

personal choices. Thus, it is yet to fully capture the personal preference within the 

household. Third, some variables related to the built environment are aggregated at the 

county level to understand the effects of the built environment on AV purchase and use 

which is a coarse geographic unit. Thus, a finer granularity in the geographic unit (e.g., 

block group, census tract) should be used in future studies to get more focused insights. 

Fourth, I have assumed AV adoption on local roads and throughout the network rather than 

specifying the exact market penetration. Thus, a study is necessary to understand how 

ownership of AVs (for example, 5%, 10%, 20%, etc. market penetration of AVs) could 

influence people’s location choices of people and travel patterns. Fifth, I investigated the 

impacts of AVs on the spatial distribution of household and employment locations and 

people’s travel behaviors. Hence, further study should focus on assessing the effects of the 

built environment and people’s current travel patterns on AV adoption intention of people.  

Sixth, this dissertation partially estimated the effects of AVs on the built environment 

and transportation. A further study is necessary to estimate the effects of AVs on parking 

demand, roadway capacity, travel speed, household and transport energy use, carbon 

emission, and traffic safety. Seventh, house-to-house services provided by AVs would 

increase physical inactivity and related health problems. However, to the best of our 

knowledge, there is no empirical study to investigate the impacts of AVs on public health. 

Thus, it is essential to conduct a study to assess the public health implications of AVs. 
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Eighth, although it has been argued that AVs would increase the mobility of women, the 

elderly, children, and disabled persons, the research found that these strata of society hold 

negative opinions on AVs due to safety and security issues. Thus, a study investigating AV 

adoption disparities among different physical abilities, income, and racial groups is 

necessary to ensure justice and equity in transportation. Lastly, people’s teleworking 

tendency and grave global epidemics could affect their travel behaviors. So, further study 

is required to realize how people would use AVs during massive teleworking and pandemic 

situations. 

 


