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ABSTRACT

BISWAJIT DIPAN BISWAS. Semi-Definite Programming Based Convex Optimal
Power Flow and Unit Commitment Methodologies of Power System with High

Penetration of Distributed Energy Resources. (Under the direction of DR.
SUKUMAR KAMALASADAN)

The ever-increasing popularity of distributed generation resources and modernization

of power system devices is making the power grid operations more complex. Fur-

thermore, the non-convexity of the optimal power flow (OPF) challenges the solver

to reach the global optimal solution and affects the overall accuracy of the solution.

To overcome this problem, the convex relaxation methods are increasingly adopted

to improve the computational efficiency of the solution and reach the global optimal

point. New convex optimization methods for Optimal Power Flow and Unit Com-

mitment applications are introduced in this research work. First, a multi-objective

OPF formulation for transmission networks is proposed. The objective function in-

cludes total generation cost and voltage stability margin. The effect of the weighting

factor of the objective functions on the solution has been observed. The formula-

tion is then tested on IEEE 14 bus and IEEE 118 bus systems, and the results are

analyzed. Second, a combined UC-OPF formulation is presented based on the mixed-

integer semidefinite programming. The UC and OPF consist of separate operating

constraints for power system operation. Thus combining the constraints can cover

the entire range of power system operations constraints. Since UC is mixed-integer

linear programming (MILP) problem and OPF is a convex optimization problem,

thus combining the two becomes a MISDP problem. The algorithm is developed and

tested using IEEE 14 bus, and IEEE 118 bus systems, and the results were validated.

Also, a branch-and-bound (BnB) approach is formulated for the combined UC-OPF

problem, and the solutions from the BnB approach are compared and validated with

a two-staged MISDP approach. Third, an SDP relaxed OPF formulation is presented
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for multi-phase unbalanced distribution networks. The approach is based on the

branch flow model of the network. The formulation includes detailed modeling of

voltage regulators, mutual coupling of the branch impedance matrix, and network

switches. The formulation is tested on IEEE 123 bus system and modified 650 bus

system, a part of the IEEE 8500 bus network. The solutions were compared with the

non-linear power flow solution using the same operating scenario. Due to the increase

of power system equipment and distributed generation resources in the distribution

network, along with the massive size of the network, the distributed approach to solve

the OPF problem has become a significant field of research. An alternating direction

method of multipliers(ADMM) based OPF formulation is discussed to solve a large-

scale network. For this, the power grid is divided into multiple sub-networks based

on geographical position or the location of the regulators then OPF sub-problems are

solved for each of the sub-networks iteratively until the global convergence is achieved.

The solution is compared with the centralized approach and validated. The algorithm

is tested on IEEE 123 bus system and 2500 bus system. The accuracy of the solution

in all the cases. It was found that all the methods are accurate, computationally

efficient, and provide global optimal solutions.
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CHAPTER 1: INTRODUCTION

The power system is one of the greatest outcomes of scientific advancement in the

history of humankind. It is also one of the most complex networks, which comprises

numerous generators, transmission lines, and distribution entities that operate relent-

lessly to deliver the electricity from the source to the consumers. In the conventional

topology of the power grid, large-scale generators inject thousands of megawatts of

power into the grid through a mesh architecture of high voltage transmission lines that

carries the power over a long distance towards the low voltage distribution feeders and

eventually to the end of line consumers. The distribution network was designed and

operated originally so that the power flow was unidirectional with varying unbalanced

loads in different phases.

But now, the power grid is on the edge of entering a new era of modernization due

to the ever-increasing popularity of distributed generation resources and controllable

loads. Even during the pandemic, due to the Covid-19 scenarios, the annual growth

rate of global renewable energy capacity has jumped over 45% in 2020, which is con-

sidered to be an "unprecedented boom." This rise includes a 90% rise in world wind

capacity followed by a 23% surge in solar power installation. This seems to be the

largest annual rate of increase since 1999. The cost of electricity from renewable

resources is already competitive with fossil fuels in many markets and is expected

to be reduced further. Along with the renewable energy sources, the market of the

automobile industry is also seeing a massive change. More than a million plug-in

electric vehicles have been sold solely in the US market since 2015. A rise in sales

of electric vehicles is shown in Fig. 1.1. This made major automobile manufacturers

turn their heads and focus on moving on producing electric vehicles.



2

Figure 1.1: Sales of plug-in electric vehicles in the US market.*Source:
https://www.anl.gov/esia/light-duty-electric-drive-vehicles-monthly-sales-update

1.1 Challenges Imposed by Distributed Energy Resources

But these renewable sources and energy storage systems as EVs, don’t bring only

good news. They have their drawbacks too. The most prominent of them is the lack

of stability in a generation. Renewable sources are highly intermittent in nature and

unpredictable. This characteristic poses a tough challenge in maintaining the balance

between supply and demand. Fig 1.2 shows solar electricity generation profile and

intermittency for a regular sunny day and an overcast day, respectively. Because of

clouds, solar electricity generation can drop as much as 80% in a few minutes and

return to an earlier stage once the cloud passes. As a result, the voltage and frequency

of the network may experience a severe fluctuation when a large amount of power,

whether generation or demand, goes off-line and, the next instant, comes online. Ac-

cording to the ANSI standard, the voltage of a distribution network must always stay

within +/-5% of 1 p.u. (0.95 p.u. to 1.05 p.u.). The legacy devices such as voltage

regulators and capacitor banks are used in the traditional distribution networks to

maintain the bus voltages under the assumption that the voltage change will be slow

and predictable along the distance. In such a conventional network, the bus voltage

magnitude normally drops with distance from the root node. It is because of the line

impedance. In converse, when a DER is connected somewhere in the distribution net-
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work, the power injected by the generator causes a spike in the voltage magnitude. If

the rise is too high, the network may fail to maintain the standard bus voltage range.

Moreover, suppose the generation is significantly higher than the demand. In that

case, a reverse power flow will be experienced in the substation node, where the re-

verse current will flow to the transmission network and interrupt the normal operation

of the controlling devices. This vulnerability introduces technical challenges in inte-

grating distributed generation resources in the distribution networks. The challenges

include voltage regulation, frequency regulation, grid stability, and power quality.

The distribution network can no longer maintain a unidirectional power flow with

increased penetration of distributed energy resources. This change in the classical

design paradigm asks for new approaches to the operation and protection of the grid

to manage the fast change in generation and demand and bi-directional power flow

from numerous distributed energy resources.

1.2 Scope of Grid Optimization

From the beginning, the operation of a power distribution network is a very com-

plex problem. Various power system operations run the network stable, such as power

flow, economic dispatch, optimal power flow, demand response, unit commitment,

and automatic generation control. The network operators perform all these opera-

tions to keep the system reliable. This thesis primarily emphasizes Optimal Power

Flow (OPF) and Unit Commitment (UC) among these power system operations. Be-

ing introduced in the 1960s, the optimal power flow is an optimization problem that

consists of control variables such as voltage magnitudes, capacitor bank status, and

voltage regulator tap position, subject to physical laws of electrical circuit and net-

work operational constraints. Conventionally, OPF was solved for only transmission

networks since it includes multiple sources, not at the distribution level. The power

flow was unidirectional, and the network behavior was predictable. But the necessity
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Figure 1.2: PV irradiance profiles on a typical (a) sunny day and (b) cloudy day.
*Source: [1]

of solving OPF for distribution networks has become more and more prominent for

the following reasons. Firstly, most of the network’s losses occur in the distribution

grid due to its highly resistive lines. And this loss can be optimized by carefully plac-

ing the DERs throughout the networks where they can feed the closely located loads

and reducing the long travel of power. By improving the voltage profile of the net-
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work, the system loss can be minimized significantly. However, the bottleneck is that

this task is beyond the capability of the conventional voltage regulators and shunt ca-

pacitors alone. For this problem, the DERs come with a possible solution too. Since

the DERs are originally a source of active power, while interconnecting them with

the grid, inverters act as the bridge. These inverters are also called smart inverters,

where they can provide reactive power support based on the rating. With this reactive

power support, the DER can significantly improve the voltage profile of the network.

In chapter 3, while formulating the OPF problem for distribution networks with high

penetration of DER, the reactive power output is considered the control variable to

minimize the objective function value. Then, we also studied the additional benefits

the network can achieve when we combined the reactive power support along with

the integer control of legacy devices. This thesis aims to identify some key aspects

to find the optimal solution to the OPF problem for distribution networks, which are

missing in the current works, and improve on those by presenting extensive theoret-

ical analysis and case studies. This also may provide the ground basis for future work.

1.3 Current Research Gaps, Proposed Research, and Main Contributions

Since its introduction, the formulation of various approaches for optimal power

flow(OPF) has drawn much interest from power system researchers. There has been

a new invention of features for distribution devices that requires further modifications

in the OPF formulations. Based on an extensive literature study on existing works of

optimal power flow solution methods, the gaps in the research area can be itemized

as follows:

• Traditionally, SDP relaxed BIM models are used for transmission networks, and

SOCP relaxed BFM models are applied for distribution networks. Knowing that

[2] SDP relaxation methods can provide a more accurate solution, the prospect

of utilizing the SDP framework for power distribution network optimization is
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worth exploring.

• In addition to the conventional objective of generation cost minimization, mod-

ern power distribution operation seeks solutions for other challenges such as

effective voltage regulation, DER hosting maximization, optimal device place-

ment, and cost minimization of the legacy device.

• Challenges associated with approximate modeling (less accurate) and/or accu-

rate modeling (complexity) of the power grid and devices.

• Challenges associated with not having robust optimization solvers that can in-

clude mixed-integer variables with semidefinite relaxed problems.

• Major challenges associated with modeling Unit Commitment problem includ-

ing power system matrices such as line losses and thermal limits.

• Challenges in developing a scalable and accurate model for unbalanced multi-

phase power distribution systems due to mathematical complexities even though

this is the need of the hour.

• Exploring the distributed optimal power flow architecture to solve large and

interconnected power grids and seeking solutions to overcome challenges related

to timely convergence and optimality conditions.

Based on the limitations found in the existing methods stated above, this thesis

finds a way to address those. Initially, in this thesis, we initially proposed SDP relaxed

OPF formulations for distribution networks using BIM and BFM models. Then, the

BFM-SDP OPF model incorporates the integer control for the legacy devices like

voltage regulators and capacitor banks using the MISDP approach. After that, using

the MISDP approach, we proposed formulations to combine UC and OPF problems.

Then the single-phase BFM-SDP OPF models are extended to unbalanced multiphase

networks along with the receding horizon control. Finally, we proposed a distributed
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and decentralized formulation to solve the OPF for large-scale partitioned networks.

There are numerous scopes in the state-of-the-art formulations of distribution system

OPF formulation. Chapter 2 will discuss the mathematical preliminaries related to

the optimal power flow, such as different power system models, convex relaxation

methods, semidefinite programming, and second-order programming. Then the rest

of this thesis consists of three chapters. In this section, we will briefly discuss those

chapters and portray the contributions of the thesis.

In chapter 3, an SDP relaxed optimal power flow problem for distribution networks

is formulated based on bus injection and branch flow model. A bus injection model

(BIM) for the distribution network to analyze different objective functions is proposed.

The proposed method was studied in IEEE 33 and 123 bus networks. Later in that

chapter, another model was proposed for distribution networks based on the branch

flow model (BFM). This model presents a novel approach to linearizing the integer

control of voltage regulators and a unified approach to the MISDP model. The main

contributions can be summarized as follows:

• The alternative BIM-SDP model reduces the computational burden due to the

large PSD matrix.

• The BFM-SDP OPF formulation is scalable for larger networks.

• The proposed unified MISDP model can be implemented on standard size dis-

tribution networks consisting of legacy devices.

Chapter 4 proposes an approach to solving the combined UC-OPF problem for

power systems. We know that both unit commitment and optimal power flow are

essential power system operations. However, each of them emphasizes a particular

aspect of the grid while another one is not. That’s why the combined approach

considers all the grid operation aspects for optimal setpoints. Here a two-staged

approach is proposed for the problem and compared with a unified method. Later, a
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branch and bound approach is presented and compared with the previous methods.

The contributions from this chapter are:

• The combined UC-OPF formulation includes the active power loss of the net-

work for power balance constraint in UC.

• Developed a combined UC-OPF model without leveraging the rounding of the

binary variables as done in the unified formulation.

• The proposed model provides close to global solutions and is scalable for large

networks.

Based on the BFM-SDP OPF model proposed in chapter 3 for the balanced single-

phase networks, extended work on the formulation of OPF for unbalanced multiphase

networks with high penetration of DER is presented in chapter 5. The proposed

method is tested for standard IEEE networks such as the IEEE 123 bus system with

three different levels of DER penetration and the 650 bus system, which is a part of

the IEEE 8500 bus network. The contributions from this chapter’s work are:

• The formulation of three-phase BFM-SDP OPF includes mutual coupling of

line impedance matrices.

• The three-phase OPF formulation consists of detailed modeling of voltage reg-

ulators and switches.

• The three-phase BFM-SDP OPF formulation is scalable for larger networks.

A distributed approach is proposed in chapter 6 to solve optimal power flow for

interconnected distribution systems in this chapter. In the case of a very large-

scale grid, the centralized approach to solving OPF can be very computationally

stressful for the solver. In such a scenario, the whole network can be partitioned into

small sub-systems, and they can solve their local OPF problem and communicate the
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boundary variables to reach convergence. After that, a further extension of this work

is presented as the decentralized approach, where the adjacent nodes communicate to

achieve convergence and remove the necessity of the central coordinator. Finally, an

analysis of the implementation in a real-time simulator is presented to validate the

real-world applicability of this model. The main contributions of this work are:

• The distributed OPF formulation makes the partition of the distribution net-

work based on the geographical position or location of voltage regulators.

• The distributed OPF formulation ensures convergence, and the underlying SDP-

based OPF formulation guarantees the tightness of the solution.

• The decentralized distributed OPF method removes the necessity of a central

coordinator, reducing the complexity of the communication network and the

chances of cyber-attacks.

Finally, chapter 7 concludes the dissertation and the pathway for future work.



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Optimal power flow is an optimization problem that works on finding an optimal

operating point of a power system that minimizes a specific cost function such as gen-

eration cost, transmission loss, or stability margin subject to a set of constraints, such

as power flow equations, line constraints, voltage constraints. Optimal power flow

considers many applications in power systems such as economic dispatch, unit com-

mitment, state estimation, stability and reliability assessment, and demand response.

Since the first formulation of OPF in 1962, there has been a great amount of research

in this field. [3] An elaborate survey can be found in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

The power flow equations are naturally quadratic, meaning the OPF problem can be

formulated as a quadratically constrained quadratic program(QCQP). This formula-

tion is non-convex and also NP-hard. Various optimization algorithms and relaxations

have been proposed to solve this problem. A widely used approach is linearizing the

power flow equation known as DC-OPF. This approach is well explained in [14],[15],

[16], [17]. More accurate approximations for linearizing the power flow equations

are explored in [18]. Convex relaxation of quadratic programs has been applied to

many mathematical problems. Compared to the DC approach of optimal power flow,

convex relaxation offers various advantages. Such as, the solution of DC-OPF may

not be feasible, so the solution may not satisfy the power flow equations. In that

case, some constraints may have to be tightened, reducing the solution’s efficiency.

Then, after convergence, most nonlinear programs give local optimal solutions. On

the other hand, convex optimization provides a globally optimal solution. In the

recent research in this area, convex relaxation of a radial distribution system is first
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proposed [19] as a second-order cone program (SOCP) using a branch flow model.

For mesh networks, a semidefinite program (SDP) was first proposed in [20] using the

bus injection model. The elaborate formulation of SOCP OPF for the distribution

systems [21] using the branch flow model is explained in [22], [23]. The exactness of

the solution from this OPF formulation is first studied in [24]. Simplification of SDP

relaxation using the graph theory and sparsity is proposed in [25], [26] and analyzed

in [27], [28]. Since the first concept of OPF was introduced in 1962, various method-

ologies have been explored by the researchers, which have been summarized in [29].

Most OPF methodologies focus on minimizing the generation cost. At the same time,

there are approaches where optimization emphasizes active power loss, variation in

market price, voltage stability index, and reactive power flow. This chapter mainly

summarizes various approaches done by the researchers to date in solving the OPF

problem. Then based on their advantages and limitations, why convex optimiza-

tion is more prospective than other methodologies is explained with the respective

formulation.

2.2 Power Flow Models

A power system network can be represented as a set of nodes and connecting lines.

Let us index the nodes with i = 1,2,3,...,n. Node 1 is considered as the reference node

or slack bus. The voltage magnitude and angle of the reference node are known. Any

network bus i may contain a load or generation or both. The net power injection

in node i can be represented by a complex number denoted as si, which is equal to

the difference between generation and load. The line between two nodes i and j is

represented by the impedance of the line zij. The inverse line impedance will give

us the line admittance yij. Two widely used models to analyze a power system: are

the bus injection model and the branch flow model. In the bus injection model, the

power system network is represented by an undirected graph G and a set of equations

in terms of nodal variables. On the other hand, the branch flow model represents
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the power network by a directed graph Ḡ and another set of equations in the form of

branch variables. The two models can be used to formulate and analyze power flow

problems.

2.2.1 Bus Injection Model

Suppose the power system network is represented by a undirected graph G =

(N , E), where N = 1,2,3,...,n is set of nodes and E ⊆ N ×N is the set of lines

connecting the nodes. Since this is a undirected graph, so the line (i, j) ∈ E and

(j, i) ∈ E represents the same line and interchangeable. The admittance matrix Y of

the network can be expressed as follows,

Yij =



∑
k∼i yij, if i = j,

−yij, if i ̸= j and i ∼ j,

0, otherwise.

(2.1)

The dimension of Y is N ×N , and it is a symmetric matrix. Now, for a node i ∈ N ,

let Vi be the rectangular expression of the node voltage. Let Ii and Si be the complex

current and apparent power injections on node i from the rest of the network. Then

the bus injection model can be expressed with the help of the following Kirchhoff

equation, power definition, and power balance equations:

I = Y V (2.2)

S = ViI
∗
i

si =
∑
j:ij̃

yHij Vi(V
H
i − V H

j )

The voltage of the slack bus and connected load in each bus are known for a power

flow problem. A set of (V, I, S) is to be calculated, which satisfies the set of equations

(2.2) mentioned before.
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2.2.2 Branch Flow Model

In this model, the power system network is represented by a connected graph Ḡ

= (N , Ē). Here N = 1, 2, 3, ..., n is set of nodes and E ⊆ N ×N is the set of lines

connecting the nodes where if (i, j) ∈ E, then (j, i) /∈ E since this is a directed graph.

In this model, the network topology can be represented by the connectivity matrix

Cil, where

Cie =


1, if line e ∈ E leaves node i ∈ N ,

−1, if line e ∈ E enters node i ∈ N ,

0, otherwise.

(2.3)

Let’s assume, Z = diag(zij, (i, j) ∈ E) is the m×m diagonal matrix of impedance

of line between nodes i and j. Now, for i ∈ N,Vi is the complex voltage of bus i,

Īij is the complex current, and S̄ij is the complex power in the sending end flowing

through the line between nodes i and j. This branch flow model comprises of following

equations in the terms of branch variables (V, Īij, S̄ij).

I = Z−1CtV (2.4)

Sij = ViI
∗
ij

sj =
∑

(Sij − zij|Iij|2)−
∑

Sjk

To solve a power flow problem using branch flow model, the voltage V1 at slack bus

is given and a set of (V, Īij, S̄ij) is to be calculated which satisfies (2.4). This model

is self-sufficient and does not rely on nodal currents or powers.
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2.3 Optimal Power Flow

The objective of optimal power flow is to dispatch the optimal operating point while

considering the generation limit constraints for each generator, voltage constraints of

buses, and line constraints. The generalized OPF problem can be formulated as [30].

Min
∑
i

zi (x, λ, λ
m,Γi) (2.5)

s.t.



h(x, γi, λi) = 0

h(xm, γm
i , λm

i ) = 0

ai ≤ g (x, λ, γi) ≤ ai

ami ≤ g (xm, λm, γm
i ) ≤ ami

bi ≤ f(λ, λm) ≤ bi

The functions h(.) and g(.) represent the problem’s equality and inequality con-

straints, which are bounded by the lower and upper limits of the dependent and

independent variables. Here, x ∈ N denotes the system’s dependent variable, the

node voltage magnitude. Vector γ ∈ NG represents the set of independent variables

of the system, which is active and reactive power generation at the generator buses.

The λ and λm stand for the parameter loading factor. Let us assume, in power net-

work, represented by a graph Ḡ = (N , E), the set of generator buses Γ ⊆ N and set

of lines λ ⊆ E. Let (V, Pg, Qg) denote the set of unknown vectors. We can write the

classical OPF problem in terms of the V , Pg, and Qg as follows
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Min
∑
i

fi (PGi) (2.6)

s.t.



PGi − PDi =
∑

Re[Vi(Vi − Vj)
∗y∗ij]

QGi −QDi =
∑

Im[Vi(Vi − Vj)
∗y∗ij]

Pmin ≤ PGi ≤ Pmax

Qmin ≤ QGi ≤ Qmax

V min ≤ |Vi| ≤ V max

P 2
lm +Q2

lm ≤ |Smax
lm |

where Pmin, Pmax, Qmin, Qmax, V min, V max, Smax
lm are the given set of parameters for

minimum and maximum limit of active power generation, reactive power generation,

bus voltage magnitude and line power flows. The objective function in (2.6) can be

reformulated in convex form.

2.4 Different Methods for OPF

From the beginning to date, various methods have been utilized to solve the optimal

power flow problem. In a high-level view, they can be categorized into two main

classes. They are conventional approaches and state-of-the-earth artificial intelligence

approaches. In 2.1 and 2.2the popular methodologies, the advantages and limitations

of conventional and artificial intelligence approaches are summarized [31].
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Table 2.1: Conventional methods to solve OPF

Method Pioneer Description Limitation Ref.

Gradient

Method

Dommel

HW

With the help of

the penalty function,

a nonlinear program-

ming method was de-

veloped to optimize

generation cost and

active power loss.

Largest network that

can be solved has

500 buses. Un-

able to include trans-

former tap.

[32]

C.M.Shen

et al.

Based on the

Lagrange-Kuhn-

Tucker condition,

proposed an indirect

approach to solve.

Includes transformer

tap but solves Eco-

nomic Dispatch

[33]

O. Alasc

et al.

Caarid on the

Dommel-Tinney

method by in-

tegrating outage

constraints for a

steady-state solu-

tion. It

Not applicable for

larger systems, and

choosing the appro-

priate gradient size

can ensure the solu-

tion.

[34]
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Newton

Method

A.M.H.

Rashed

This method uti-

lizes Lagrangian

Multipliers and

Newton’s Method.

This method has less

oscillation around

the solution with

the help of the

acceleration method.

Largest system this

method can solve is

the 179 bus system.

[35]

H.H.

Happ

This approach solves

the OPF problem

with the help of

the Jacobian ma-

trix. This method is

preferable for online

operations.

This method can

solve OPF for a

power system of

most 118 buses.

[36]

Linear

Program-

ming

W. Wells With the simplex

method, he designed

an economic schedul-

ing method for cost

minimization.

The disadvantage of

this method is that it

cannot be solved in

infeasible situations.

[37]
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R.Mota

Palomino

et al.

This method is

formulated using

a non-conventional

LP approach using

a piecewise differ-

entiable penalty

function.

This approach

is used mostly

for contingency-

constrained eco-

nomic dispatch.

[38]

E. Lobato

et al.

This method utilizes

a mixed-integer LP

approach to optimize

transmission line

losses and genera-

tor reactive power

margin.

This methodology is

mostly tested on the

Spanish power sys-

tem only.

[39]

Quadratic

Program-

ming

G.F.Reid

et al.

This method solves

OPF in quadratic

programming by

utilizing Wolde’s

algorithm.

This method is vali-

dated in 5, 14, 30, 57,

and 110 bus systems.

Not scalable to larger

systems.

[40]



19

T.C. Gi-

ras et al.

This methodol-

ogy is formulated

based on the Quasi-

Newton technique

and the Han-Powell

algorithm. The

convergence solution

is fast on smaller

systems.

Cannot be applica-

ble for larger real-life

power systems.

[41]

A. Berizzi

et al.

This approach for-

mulated enhanced

security-constrained

OPF with FACTS

devices and incor-

porated the Han

Powel algorithm.

This method solves

a nonlinear problem

by using the result of

successive quadratic

problems containing

linear constraints.

This approach is ap-

plied to the Italian

EHV network and 63

bus system.

[42]
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Interior

Point

Method

Momoh,

J.A. et al.

This method formu-

lated an extended

quadratic interior

point method using

enhanced initial

conditions to solve

OPF. The largest

system this method

verified is the 118

bus system.

This method cannot

incorporate contin-

gency constraints.

[43]

D. Xi-

Oying et

al.

This paper formu-

lated the interior

point branch and

cut method using

a strict polynomial

time algorithm.

In this approach,

they solved OPF

as a mixed integer

nonlinear problem.

The largest system it

can solve is the 57

bus system.

[44]
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Wei Yan

et al.

formulated a novel

approach by utiliz-

ing the predictor-

corrector original

dual interior point

method. This ap-

proach requires less

computation time to

solve OPF.

This approach can-

not be applicable in

practical larger sys-

tems.

[45]

Table 2.2: Artificial Intelligence methods to solve OPF

Method Pioneer Description Limitation Ref.

Genetic

Algo-

rithm

A.

Bakritzs

et al.

In this paper pro-

posed two genetic

algorithms to solve

the economic dis-

patch problem. This

method applies to

dynamic program-

ming.

The computation

time increases with

the increase of gen-

erator number in the

system

[46]
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M. Us-

man

Aslam et

al.

Proposed a method

to solve OPF by

using a genetic

algorithm with op-

timum non-uniform

mutation rate and

behavior.

This method is vali-

dated in 30 bus sys-

tems, not scalable to

larger systems.

[47]

Particle

Swarm

Optimiza-

tion

Hirotaka

Yoshida

et al.

This paper for-

mulated a particle

swarm optimization

to optimize reactive

power and voltage

var control.

The computation

time for a practical

larger system is high.

Reducing the burden

requires parallel

computation.

[48]

L.L. Lai

et al.

This paper proposed

a method to solve

OPF using PSO

incorporated with a

non-smooth input-

output characteristic

function.

Largest system this

method can solve is

IEEE 30 bus system.

[49]
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Bo Yang

et al.

Proposed a better

PSO with a hiding

practicability strat-

egy and neighbor

selection procedure

to solve OPF. This

approach ensures

a faster and more

accurate solution.

This method can

solve OPF for a

power system of

most 30 buses.

[50]

Pablo E.

Onate

and

Juan M.

Ramirez

In this paper, a novel

approach is proposed

to solve OPF with se-

curity constraints us-

ing PSO with recon-

struction operators.

This approach can

solve most IEEE 39

bus systems.

[51]

Gonggui

Chen et

al.

Proposed a newer

optimal power flow

to minimize reac-

tive power based

on a new PSO lo-

cal random search

algorithm.

This method is tested

on IEEE 30 bus sys-

tem and has limita-

tions for larger sys-

tems.

[52]
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H C Le-

ung et al.

In this paper, a

methodology is for-

mulated to solve

OPF with FACTS

devices to minimize

total cost. In this

approach, PSO is

incorporated with

AC power flow.

This methodol-

ogy is tested on

smaller IEEE 14 bus

systems.

[53]

2.5 Convex Relaxations

In the previous section, various methodologies are summarized for solving OPF.

Conventional approaches like linear programming or quadratic programming, most of

the time, fail to provide the global optimal solutions. On the other hand, state-of-the-

earth approaches like genetic algorithms or particle swarm optimization require higher

computational power, which is not feasible for real-life larger power systems with thou-

sands of nodes and generators. In that context, convex optimization provides global

optimal value for exact relaxations, and this approach can be implemented for prac-

tical larger power systems. Moreover, relaxations also help to ensure the feasibility

of a problem. If the relaxed problem is infeasible, the original non-convex problem is

also infeasible. If the relaxation is exact, the solution to the relaxed convex problem

will give the globally optimal value equal to the original non-convex problem. The

classification of convex relaxation is illustrated in2.1 [54]. The advantages and disad-

vantages of different methods of convex relaxations are summarized in 2.3. Among

these types of relaxations, semidefinite relaxation for the bus injection model and

SOCP relaxation for the branch flow model is explained in the next two sub-sections.
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Figure 2.1: Classification of different convex relaxation of OPF problem.

2.5.1 Semi-definite Programming

In this section, the mathematical basis of semidefinite programming will be dis-

cussed. Then it will be explored how this can be implemented in power system

optimization. Let us consider simple linear programming (LP) example,

minimize c.x

subject to, A.x = b

x ≥ 0

Here, x is the control variable, and c and A are the parameter matrices. All the

equations in objective function and constraints are linear or piecewise linear. Thus,

the whole problem is convex. Semidefinite programming is a generalization of linear

programming where the inequality constraints are represented by general inequalities



26

which correspond to the cone of positive semidefinite matrices [55, 56]. This is a pure

primal form of a semidefinite programming-based optimization problem,

Minimize trace(CX)

Subject to, trace(AiX) = bi, for i = 1, ..n

X ≽ 0

Here, X ∈ Sn is the decision variable; it is also a positive semidefinite matrix. Others,

b, C, and A, are symmetric matrices whose values are already known to the model.

The feasible set defined by the set of constraints is always convex. The objective

function is linear by nature. Thus the whole problem is linear and convex.

There are two main approaches for semidefinite relaxation of the OPF problem. Be-

tween them, Shor’s relaxation will be explained here. This approach was first intro-

duced [24]. It is evident from the formulation of optimal power flow 2.6 from the

rectangular complex voltage phasor representation of power flow equations that it

contains quadratic constraints. This makes the OPF problem a non-convex and non-

linear problem. In power system analysis, transmission systems are usually modeled

using the bus injection method. Due to the less computational burden because of

sparsity property, semidefinite relaxation fits best in a mesh network of the trans-

mission system. This method introduces a positive semidefinite matrix W to replace

V V ∗. After this, all the constraints can be written in the form of linear constraints

with respect to W . Let us assume, e1, e2, e3, ..., en are the basis vectors, then we can
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re-write the equations of classical optimal power flow as follows:

Min
∑
i

fi (PGi) (2.7)

s.t.



Pmin
i ≤ Tr{YiW}+ λPDi

≤ Pmax
i

Qmin
i ≤ Tr{ȲiW}+ λQDi

≤ Qmax
i

(V min
i )

2 ≤ Tr{JiW} ≤ (V max
i )2

Tr{YijW} ≤ Pmax
ij

Tr{JijW} ≤ △ (Vij)
2

W = V V T

W ≽ 0

rank(W ) = 1

In this formulation, the rank-1 constraint is the only non-convex constraint. This

constraint is relaxed in the formulation of the SDP relaxed OPF problem. If the

solution of this relaxed OPF problem gives a rank-1 W matrix, then the relaxation is

considered exact. The exactness of this formulation is an essential criterion because

this ensures that the solution for the relaxed SDP-OPF problem will be a solution

to the original non-convex OPF problem. Here the relaxation is implemented on

real-valued matrices, while a complex-valued Shor relaxation can be formulated using

Hermitian matrices [57]. The scope of work to utilize Shor’s relaxation for OPF in

the transmission system is given below:

• Exploiting the advantages of Shor’s relaxation, mixed integer constraints can be

introduced in semidefinite programming, and the OPF problem can be solved

as a Mixed Integer Semidefinite Program (MISDP).

• Though with the increase in the number of buses in a network n, the number of
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variables in the PSD constrained matrix increases with a ratio of n2, by utilizing

the chordal sparsity of the network and formulating necessary conditions, this

approach can solve the OPF for a network containing thousands of buses [58],

[59].

2.5.2 Second Order Cone Programming

The second order cone programming (SOCP) is a branch of convex optimization

which has the general form as

Minimize f(x)

Subject to,

||Aix+ bi||2 ≤ cix+ di

Fx = g

The SOCP relaxation takes place where the nonlinear equation is written in a cone

equation in the form of a 2-norm. Then the equality relation between both sides is

relaxed to an inequality. A second-order cone is convex by characteristic. In power

system analysis, the nonlinear power equation |V I∗|2 = SS∗ can be re-written as

a 2-norm, and the optimal power flow problem can be convexified using the SOCP

relaxation method. The SOCP formulation introduced convex relaxation of power

system optimization before the semidefinite relaxation. Jabr’s Relaxation [19] was

formulated for the radial network based on the bus injection model. Considering a few

assumptions, Jabr’s relaxation and Shor’s relaxation represent the same relaxed OPF

problem for the bus injection model of a network. Applying semidefinite relaxation

on a bus injection model has some limitations [60]. Unlike BIM, the branch flow

model uses branch variables like line current and line power flow. Here, relaxation

of the DistFlow equation [22] approach will focus on the branch flow model of a

radial system. Two relaxation stages are applied to convexify the OPF problem in
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the branch flow model. In the first step, the angle in the variables is relaxed. In

the branch flow model, the DistFlow equations are formulated to neglect the voltage

angles.

Min
∑
i

fi (Pj) (2.8)

s.t.



Pj =
∑

Pjk −
∑

(Pij −Rij|Iij|2) +Gj|V 2
j |

Qj =
∑

Qjk −
∑

(Qij −Xij|Iij|2) +Bj|V 2
j |

|Vj|2 = |Vi|2 − 2(RijPij +XijQij) + (R2
ij +X2

ij)|Iij|2

|Vi|2|Iij|2 = P 2
ij +Q2

ij

Pmin ≤ Pi ≤ Pmax

Qmin ≤ Qi ≤ Qmax

V min ≤ |Vi| ≤ V max

We can see from the formulation that the equality constraints contain quadratic terms

of node voltage and branch current flow. By replacing |Vi|2 and |Iij|2 with vi and λij

respectively we can remove the non-linearity. In the second step of relaxation, we write

the equation among voltage, line current, and power flow as an inequality constraint.

That’s how angle and convex relaxation are obtained in second-order conic relaxation.
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Finally, the SOCP-OPF takes the form as in2.9.

Min
∑
i

fi
(
PG

)
(2.9)

s.t.



PG
j =

∑
Pjk −

∑
(Pij −Rijλij) +Gjvj

QG
j =

∑
Qjk −

∑
(Qij −Xijλij) +Bjvj

vj = vi − 2(RijPij +XijQij) + (R2
ij +X2

ij)λij

vi + λij ≥ ||2Pij, 2Qij, λij − vi||2

Pmin ≤ Pi ≤ Pmax

Qmin ≤ Qi ≤ Qmax

(V min)2 ≤ vi ≤ (V max)2

There are a few scopes worth exploring in branch flow relaxation of the SOCP

method, which are as follows:

• To extend the work on solving the OPF problem from a smaller single phase

to a really large three-phase power network, branch flow SOCP relaxation has

more advantages than other approaches, [61]

• In the DistFlow equation of the power system, the voltage angles are neglected.

However, exploiting the scope from Jabr’s relaxation and QC relaxation, the

voltage angles can be included in the problem formulation, which will tighten

the relaxation and ensure the minimum gap in the relaxed solution.

• Branch flow relaxation has superior convergence characteristics to the bus injec-

tion model [62]. While combining relaxation methods, analyze the conditions

to ensure exactness.
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Table 2.3: Advantages and Disadvantages of Different Convex Relaxations

Method Advantage Disadvantage Ref.

Semidefinite

Relax-

ation

Shor’s Re-

laxation

Exact for most com-

mon power systems.

Ensures global opti-

mal solution Can be

extended to three-

phase network

Not exact for few

power systems.

Exactness is not

guaranteed for power

system optimization

other than OPF.

[24]

Moment

Relax-

ation

Generalizes Shor’s

relaxation to ensure

exactness in cases

where it fails.

Computational bur-

den increases with

the rise of system size

and relaxation order.

[63],

[64]

SOCP

Relax-

ation

Jabr’s Re-

laxation

Exact representation

of the radial network.

It does not ensure re-

covering a set of volt-

age angles that sum

to zero or mod of 2π

radian for cycles.

[65]

QC Re-

laxation

Augments Jabr’s re-

laxation with voltage

magnitude and an-

gles variables. Im-

plicitly relax the an-

gle consistency for a

cycle, thus applicable

for the mesh network.

It

Particularly effective

when applied to

problems with small

ranges for voltage

magnitude and angle

difference between

buses.

[66]
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DistFlow

Equation

Relax-

ation

Neglect voltage an-

gle, so the exact

representation of

the radial system.

Branch flow relax-

ation has numerical

convergence supe-

riority over bus

injection relaxation.

relaxation for the

mesh network.

[61]

∆ in-

equality,

loss in-

equality,

circle

inequality

relaxation

No known compari-

son of tightness and

computational char-

acteristics relative to

other relaxations.

[67],

[68]

Linear

Relax-

ation

Network

Flow Re-

laxation

Applicable for sys-

tems lined with series

impedance with non-

negative resistance

and reactance.

Systems with three

winding transformers

may result in neg-

ative resistance and

reactance.

[69]

Copper

Plate Re-

laxation

is simpler than the

network flow relax-

ation method.

Neglects power flow

equations entirely to

form a simple power

balance constraint.

[69]
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2.6 Summary

Convex relaxation for optimal power flow problem shows an impressive performance

in finding the global optimal solution. The scope of work by leveraging semidefinite

relaxation (Shor’s relaxation) to study bus injection models and SOCP relaxation

(Jabr’s and DistFlow method) for branch flow model has been discussed. Exploiting

the tightness of SDP relaxation in branch flow models, the size of the PSD matrices

will be minimized, and thus the computational stress on the solver. Then by adding

the mixed integer constraints, the formulation will add a new dimension to the unit

commitment problem. On another note, by combining SDP relaxations and the BFM

model, the regulator modeling and mutual coupling can be included in the OPF

formulation for an unbalanced network, and the scalability can be validated.



CHAPTER 3: SEMIDEFINITE PROGRAMMING FORMULATIONS OF DER

INTEGRATED OPF FOR POWER DISTRIBUTION SYSTEMS

3.1 Introduction

In this chapter, an SDP relaxed optimal power flow problem for distribution net-

works is proposed. A bus injection model (BIM) for the distribution network to

analyze different objective functions is presented. The proposed method was studied

in IEEE 33 and 123 bus networks. Later in that chapter, another model was proposed

for the distribution network based on the branch flow model (BFM). In this model, we

proposed a novel approach to linearizing the integer control of voltage regulator and

a unified approach to the MISDP model. The main contributions can be summarized

as follows:

• The alternative BIM-SDP model reduces the computational burden due to the

large PSD matrix.

• The BFM-SDP OPF formulation is scalable for larger networks.

• The proposed unified MISDP model can be implemented on standard size dis-

tribution networks consisting of legacy devices.

3.2 Background and Literature Review

In past decades, a significant amount of research has been done on devising for-

mulations to solve the OPF problem for large and realistic networks. One of the

most popular trends is to formulate the ACOPF problem in the form of a convex

optimization problem. Two major branches of convex OPF formulation are semidefi-

nite programming (SDP) relaxation, which is first proposed in[70], and second-order
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cone programming (SOCP) relaxation for radial networks, which is first proposed in

[65]. The numerical illustration of these convex formulations is discussed in [70, 65]

and the exactness of the relaxed model to the original problem is showcased in [71].

The SDP relaxation for OPF formulation has been one of the most active fields due

to some advantages of this formulation. It has been proven that if the relaxation is

exact, SDP can provide a globally optimal solution [72]. This has been one of the

strongest features of SDP relaxation. However, the exact relaxation occurs for some

specific cases such as radial networks, under load over satisfaction, and absence of

generation lower bounds. But the mathematical advantage of SDP relaxation is that

the derivation of Jacobian and Hessian matrices can be avoided for each particular

problem. Further simplification of SDP relaxation is made possible by utilizing the

sparsity property of the matrices [70, 59, 73, 74].

Initially, OPF has been mostly solved for the transmission networks. However, with

the increasing penetration of distributed generations in distribution networks, the ne-

cessity of OPF formulation for distribution networks is increasing rapidly. Since most

distribution networks are radial, the SDP relaxation can guarantee an exact formu-

lation and thus a globally optimal solution. A branch flow-based model can also be

a faster and more popular choice for solving OPF in distribution networks. However,

the advantage of the bus injection base model is that the rectangular representation

of bus voltages is considered here, conserving the angle information. In BFM models,

the angles of the bus voltage and line currents are relaxed. Thus, BIM-SDP can pro-

vide a more accurate solution preserving both voltage magnitude and angle. But the

conventional BIM-SDP OPF formulation possesses some drawbacks. The dimension

of the positive semidefinite (PSD) matrix in conventional BIM-SDP OPF is either n2

or 2n2 depending on the bus voltage representation, where n is the number of buses,

and to write each of the constraints, the whole PSD matrix needs to be used. Thus

it poses a very high computational burden on the solver.
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Later in this chapter, we proposed another formulation of SDP-OPF based on the

branch flow model (BFM) for radial networks, including the integer control of various

legacy devices. Conventionally, distribution networks include various discrete control-

lable devices such as load tap changers(LTC) and capacitor banks. These devices only

accept integer states such as in LTC; the tap position can vary from {-16, -15,.. to

..+15, +16} or binary states such as capacitor banks where the switches can only be

either closed{1} or open {0}. These devices have primarily been used to maintain the

system bus voltages between a specific bound. Since the distributed energy resource

(DER) penetration keeps increasing daily in a distribution network, the voltage reg-

ulation problem has become very complex. Due to the continuous intermittency in

the PV profile or load profile, the discrete devices must be operated frequently to

maintain the voltage regulated. This process reduces the lifespan of these discrete

devices significantly. As a solution, these continuous conventional energy resources

and discrete devices need to be operated in coordination.

The conventional OPF problem is a nonlinear, non-convex problem due to the rela-

tion of the continuous variables. In addition, control of the discrete devices such as

LTC and capacitor bank is a mixed integer problem(MIP). The combined formula-

tion thus takes the form of a mix integer nonlinear problem (MINLP), which is highly

complex, computationally heavy, and NP-hard. This means that with the increase of

discrete variables, the complexity of the model increases exponentially. That’s why,

unless some conditions are satisfied, and this problem is not tractable. In [75], for

a large network, the MINLP model of the OPF with numerous discrete controls has

been solved, but the solution is not guaranteed to be the global optimal, and also the

optimality gap is not ensured. Thus, recovering the global optimal solution for the

original mixed integer nonlinear opf problem is considered to be a prominent chal-

lenge. In previous works, researchers have proposed numerous approaches to handle

this problem. One of them is to use penalty function A part of the objective function.
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In [76], a penalty function has been used along with the rounding operation of the

integer variables to find the solution. In [77], the authors utilized the sensitivity of

the objective function to the inequality constraints to solve the problem. Penalty

functions are also used tesoler2013penalty to model the discrete variables efficiently,

making the model continuous and differentiable. Although, the drawback of using

the penalty function is that the solver reaches a sub-optimal solution in most cases.

In [78] a hybrid, the method has been proposed where the primal-dual interior point

method combines with meta-heuristics to speed up the convergence. Although this

approach suffers from the issue of scalability.

The other way to avoid the complexity of the original mixed integer nonlinear prob-

lem is to convert the formulation into a linearized or a convex relaxed model. In the

linear approximation approach, the power flow equations are converted into linear

constraints with few approximations as they are formulated in DC-OPF. Then the

combined problem takes the form of a mixed integer linear problem(MILP). The other

approach to handling non-linearity is to implement convex relaxation approaches.

The advantage of convex relaxed models is that it ensures the global exactness of the

modeling with the help of various robust approaches for convex relaxation. There

are a few methods for convexifying the original non-convex problem, such as semidef-

inite programming(SDP) [79, 80], second-order cone programming(SOCP) [81, 81],

chordal relaxation, [82]. In semidefinite programming, the nonlinear constraints are

relaxed by expressing in terms of a positive semidefinite matrix and relaxing the rank-

1 constraint for that matrix. On the other hand, in second-order cone programming,

the nonlinear constraint is re-written in terms of a second-order cone and written in

the form of an inequality constraint instead of an equality constraint. Then, in the

chordal relaxation method, the whole network is expressed in terms of cliques and

chords, even with imaginary branches if necessary. Then, semidefinite relaxations

can be followed for each clique to model the OPF problem. These different convex
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relaxation methods have advantages and disadvantages of their own. Such as, the

solution of the semidefinite relaxation model is tighter than the second order cone

models, although the SDP models put more computational stress on the solver than

the SOCP models [83]. On the other hand, it is proven in [84] that, under certain

circumstances, both SDP and SOCP relaxed models can recover the global optimal

solution of the original model.

In this chapter, an approach is proposed that reduces the computational burden

of the BIM-SDP OPF. The major advantage of the proposed approach is that it

provides:

• An exact relaxation of original OPF problem for BIM model of radial distribu-

tion network using semidefinite programming.

• Quadratic cost function while formulating convex SDP relaxed OPF problem.

• Less computational burden on the solver while guaranteeing a globally optimal

solution.

• A scalable OPF formulation of branch flow model using semidefinite relaxation

method.

• Includes linearized integer control for the grid legacy devices such as voltage

regulators and capacitor banks.

3.3 Problem Formulation

3.3.1 Conventional BIM-SDP Formulation

Let Yi denote the system admittance matrix, where each entries comprised of two

elements, Yij = Gij+iBij for each line (i, j) ∈ E and Gij and Bij are line conductance

and susceptance respectively. Now, let ei stands for the ith standard basis vector in

Rn. Now, introducing another matrix Y = eie
T
i Y, where T denotes the transpose
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of the matrix. Now, the matrices required for the power injection constraint can be

written as follows:

Yi =
1

2

Re
(
Yi + Y T

i

)
Im

(
Y T
i − Yi

)
Im

(
Yi − Y T

i

)
Re

(
Yi + Y T

i

)


Ȳn = −1

2

Im (
Yi + Y T

i

)
Re

(
Y T
i − Yi

)
Re

(
Yi − Y T

i

)
Im

(
Yi + Y T

i

)


Ji =
1

2

eieTi 0

0 eie
T
i


Lets define a vector V = [V1d, V2d, ..., Vn,d, V1q, V2q, ..., Vn,q] that contains the real and

imaginary values of bus voltages. Then a PSD matrix W can be introduced as W =

V V T . With these newly introduced matrices and variable the active and reactive

power injections at any bus i will be given by tr(YiW) and tr(ȲiW) respectively

and the square of the voltage magnitude of bus i will be given by tr(JiW). Here tr

stands for the trace. Then the OPF problem becomes

Min ω1

∑
i∈NG

{Ci2 (Tr{YiW}+ PDi
)2 (3.1)

+ Ci1 (Tr{YiW}+ PDi
) + Ci0}
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s.t.



Pmin
i ≤ Tr{YiW}+ PDi

≤ Pmax
i

Qmin
i ≤ Tr{ȲiW}+QDi

≤ Qmax
i

(V min
i )

2 ≤ Tr{JiW} ≤ (V max
i )2

Tr{YijW} ≤ Pmax
ij

Tr{JijW} ≤ △ (Vij)
2

tan (δmax)× Tr{KijW} − Tr{LijW} ≥ 0

W = V V T

W ≽ 0

Here ≽ 0 indicates the positive semidefiniteness of the corresponding matrix W . In

semidefinite relaxation, another assumption is made. The solution to the problem

(10) will be tight and accurate if the rank of the positive semidefinite matrix W is 1.

But the rank-1 constraint is non-convex. Thus, this constraint is relaxed to form a

convex problem.

3.3.2 Proposed BIM-SDP Formulation

Let the complex voltage phasor of bus i be written in following form Vi = ei+ if(i)

where, ei = |Vi|cosθi, fi = |Vi|sinθi and |Vi|2 = e2i + f 2
i . Here, θ is the voltage angle

of bus i. With this representation, the rectangular formulation of the original OPF

problem can be written as follows:
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Min
∑
i

fi (PGi) (3.2)

s.t.



PGi − PDi = Gii(e
2
i + f 2

i ) +
∑

[Gij(eiej + fifj)−

Bij(eifj − ejfi)]

QGi −QDi = −Bii(e
2
i + f 2

i ) +
∑

[−Bij(eiej + fifj)−

Gij(eifj − ejfi)]

Pmin ≤ PGi ≤ Pmax

Qmin ≤ QGi ≤ Qmax

V 2
min ≤ e2i + f 2

i ≤ V 2
max

P 2
ij +Q2

ij ≤ |Smax
ij |

Here the formulation 3.2 is nonconvex quadratic problem and the non-convexity comes

from either of the equations: |Vi|2 = e2i + f 2
i , eiej + fifj = |Vi||Vj|cos(θi − θj) and

eifj − ejfi = −|Vi||Vj|sin(θi − θj). To overcome this non-linearity, two more variable

matrices are introduced as c and s, where the diagonal and off-diagonal elements are

defined as cii = e2i + f 2
i , cij = eiej + fifj and sij = eifj − ejfi. With this new variable

set, the formulation 3.2 can be re-written as follows:
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Min
∑
i

fi (PGi) (3.3)

s.t.

PGi − PDi = Giicii +
∑

[Gijcij −Bijsij]

QGi −QDi = −Biicii +
∑

[−Bijcij −Gijsij]

Pmin ≤ PGi ≤ Pmax

Qmin ≤ QGi ≤ Qmax

V 2
min ≤ cii ≤ V 2

max

P 2
ij +Q2

ij ≤ |Smax
ij |

cij = cji, sij = −sji

c2ij + s2ij = ciicjj

This formulation was proposed by Jabr[65]. This is an exact formulation for power

system networks, especially radial ones. Although, this formulation still holds the

non-linearity in the last constraint of the formulation4.12. We can convexify this non-

convex formulation utilizing the semidefinite programming (SDP) relaxation. That

quadratic constraint can be written in the form of a 2 ∗ 2 matrix for all the lines of

the network as follows,

 cii cij + isij

cij − isij cjj

 ≽ 0 (3.4)

rank

 cii cij + isij

cij − isij cjj

 = 1 (3.5)
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But, equation 3.5 is not convex in nature. Thus, by relaxing 3.5 and replacing the

quadratic constraint in 4.12 with 3.5, we can finally write the SDP relaxed convex

formulation of BIM-OPF as:

Min
∑
i

fi (PGi) (3.6)

s.t.



PGi − PDi = Giicii +
∑

[Gijcij −Bijsij)]

QGi −QDi = −Biicii +
∑

[−Bijcij −Gijsij]

Pmin ≤ PGi ≤ Pmax

Qmin ≤ QGi ≤ Qmax

V 2
min ≤ cii ≤ V 2

max

P 2
ij +Q2

ij ≤ |Smax
ij |

cij = cji, sij = −sji cii cij + isij

cij − isij cjj

 ≽ 0

Now, we will test this proposed formulation for IEEE networks of various sizes to

test the exactness and scalability of the formulation.

3.3.3 Including Quadratic Cost Function

As shown before, the cost function of active power generation is quadratic, a non-

linear equation. While formulating a convex problem for optimal power flow, the

objective function has to be convex too. The general expression of the cost function

can be written as follows:

Cost, fi(PG,i) =
∑
i∈N

[C2,iP
2
G,i + C1,iPG,i + C0,i] (3.7)

Let’s assume we introduce a variable α such as,
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αi ≥ [C2,iP
2
G,i + C1,iPG,i + C0,i] (3.8)

Then, the total generation cost can be minimized by minimizing
∑

i∈N α. Now,

eqn 3.8 can be evolved as follows:

0 ≥ C2,iP
2
G,i + C1,iPG,i + C0,i − αi (3.9)

⇒ 0 ≥ 4C2,iP
2
G,i + 4[C1,iPG,i + C0,i − αi]

Now, introducing two more variables, x, and y, and substituting the following expres-

sions,

x = C1,iPG,i + C0,i − αi (3.10)

y = C2,iP
2
G,i

Then,

0 ≥ 4y + 4x

⇒ 0 ≥ 4y + (1 + x)2 − (1− x)2

⇒ (1− x) ≥ ||(2√y) + (1 + x)||2

In this approach, the nonlinear quadratic cost function for minimizing generation

cost can be written in the form of a cone, and the nonlinear OPF problem becomes

a convex optimization problem.

3.3.4 Advantage of Proposed Approach over Conventional Approaches

In conventional BIM-SDP relaxed OPF formulation, a positive semidefinite matrix

is formed by multiplying the complex voltage of every node with its conjugate. While

building the set of constraints, the whole PSD matrix is used each time, which is



45

not a significant issue for smaller networks. On the contrary, the real-world power

networks consist of thousands of buses, making the PSD matrix very large. The solver

and the machine go through a massive computational burden while formulating the

problem. This makes the whole process very slow; sometimes, the solver can’t handle

the problem of such dimension. The proposed approach can address the scalability

issue effectively. It can solve such systems which can not be solved using available

solvers following the conventional SDP-OPF formulation. Moreover, if the network’s

topology is radial, there will be a high number of zero entries in the PSD matrix,

making the matrix poorly conditioned for the solver. Since the proposed solution

considers specific entries of the PSD matrix to form the constraints, thus the number

of zero entries doesn’t cause any trouble for the solver. Another popular approach is

to use second-order cone programming(SOCP) formulation for large distribution or

transmission networks since SOCP formulation can handle large network problems.

But, since we know that the tightness of the SDP formulation is higher than the

SOCP, the proposed approach can ensure a more accurate global solution to the

problem. In another approach, branch flow models(BFM) seem to perform well with

large networks, and test studies show the same trend. Although BFM formulation

comprises four variables, bus voltage magnitude squared, line current flow squared,

line apparent power flow, and injected power at every bus. Where BIM formulation

has only one variable, and less number of variables poses less burden on the solver.

3.4 Convex Relaxation of Optimal Power Flow For Branch Flow Model

3.4.1 Optimal Power Flow Formulation

The optimal power flow formulation as an optimization problem consists of an

objective function subject to linear and nonlinear equality and inequality constraints.

Considering no loss of generality, for a single-phase radial distribution network, let

the adjacent buses of a branch be denoted by i and j. The resistance and reactance of

the branch are denoted by Rij and Xij. The impedance and admittance are indicated
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Figure 3.1: Modified 32 bus distribution test system

by zij and yij. The real and reactive power flowing through the branch from node i

to j are Pij and Qij and the apparent power Sij = Pij + jQij. The voltage of node i

is denoted by Vi and is bounded by the upper and lower limits V̄i and V i. Similarly,

the upper and lower bounds for active and reactive power generation are denoted as

PG,i, PG,i, QG,i and Q
G,i

. With these notations, the original problem formulation of

optimal power flow can be stated as:
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Figure 3.2: IEEE 123 bus distribution test system with 10% DG penetration

minimize f(V, PG, QG) (3.11)

subject to,∑
j:i→j

Pij = PG,i − PD,i

∑
j:i→j

Qij = QG,i −QD,i

Sij = Vi(V
∗
i − V ∗

j )y
∗
ij

PG,i ≤ PG,i ≤ PG,i

Q
G,i
≤ QG,i ≤ QG,i

P 2
ij +Q2

ij ≤ S
2

ij

V i ≤ ViV i
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The formulation mentioned above is a nonlinear problem (NLP). If we consider

having a tap changer or a voltage regulator in the branch between nodes i and j

and include the control of the tap position of the regulator in the formulation. The

voltages of the primary and secondary nodes of a regulator are connected as follows:

Vpri = tijVsec (3.12)

Here, tij is the tap ratio of the primary and secondary voltages for a specific tap
position. The value of tap ratio can be expressed in terms of minimum value of tap

ratio tmin, tap position, Tij and value of step tap ratio ∆tij.

tij = tmin + Tij∆tij (3.13)

If we combine 3.12 and 3.13 along with 3.11, the whole problem transforms into

a mixed integer non-linear problem. Because the relation in 3.12 is a mixed integer

equation, this transformation increases the complexity of the formulation by many

times. Although numerous solvers can handle large-scale NLP problems, there are

hardly any robust solvers which can solve an MINLP problem for a standard size

network OPF problem, including discrete controls of voltage regulators’ tap position.

3.4.2 BFM-SDP OPF

In this chapter, we mostly focus on formulating the OPF problem for the distribu-

tion systems. Hence the Branch Flow Model of the system is adopted to formulate

the OPF problem. Let us assume a graph G = (N,E) represents a radial distribution

network where N is the set of all vertices, and E is the set of all branches. The branch

flow model comprises the branch variables such as branch current, branch active, and

reactive power flow. Let Vi be the voltage of node i, Sij and Iij is the complex power

and currently flown through branch i− j, then the branch flow model can be stated
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as follows

Vi − Vj = zijIij,∀(i, j) ∈ E (3.14)

Sij = ViI
∗
ij,∀(i, j) ∈ E (3.15)

∑
k:j→k

Sjk −
∑
i:i→j

(Sij − zij|Iij|2) + y∗j |Vj|2 = sj (3.16)

Here, zij is the branch impedance, and sj is the injected complex power at node j.

The relaxed branch flow model is adopted from this equation by ignoring the angles of

the variables. By substituting the expression of current Iij from 3.15 into 3.14 yields

Vi − Vj = zijS
∗
ij/V

∗
i . Then taking the square of the magnitudes of this expression

derives the equation 3.18 as shown below. In the relaxed model the squared terms of

the node voltage and branch current replaces the previous variables as vi = |Vi|2 and

lij = |Iij|2. The relaxed BFM model is

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(Sij − zijlij),∀j ∈ E (3.17)

vj = vi − 2(z∗ijSij + zijS
∗
ij) + zijlijz

∗
ij,∀(i, j) ∈ E (3.18)

vilij = |Sij|2,∀(i, j) ∈ E (3.19)

The nonlinear equation 3.19 can be expressed in terms of a positive semidefinite

matrix as follows:  vi Sij

S∗
ij lij

 ≽ 0

rank

 vi Sij

S∗
ij lij

 = 1

The abovementioned equations still hold the non-convexity due to the rank-1 con-

straint of the PSD matrix. Relaxing the equation by adopting the semidefinite relax-
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ation (SDR), the BFM-SDP OPF problem is formulated:

Min
∑
i:i→j

Re{zij}Iij (3.20)

s.t.



sj =
∑

k:j→k Sjk −
∑

i:i→j(Sij − zij|lij|2)

vj = vi − (Sijz
∗
ij + zijS

∗
ij) + zijlijz

∗
ij vi Sij

S∗
ij lij

 ≽ 0

vref = VrefV
∗
ref

vmin ≤ vi ≤ vmax

Smin ≤ Si ≤ Smax

Figure 3.3: A simplified schematic of voltage regulator in the distribution network

3.5 Linearized Model of LTC

Let’s assume the branch between bus i and j contains a regulator with a fictitious

node depicting the primary of the primary node of the regulator as sketched in Fig.

3.3. Let Rij and Xij stand for the resistance and reactance of the branch before the

regulator. Let tij be the tap ratio of the primary and secondary node voltages. Thus

vreg = t2ij ∗ vj (3.21)
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Here, vreg and vj are the voltage magnitude squared of the primary and secondary

nodes of the regulator. Since all the terms in 3.21 are variables, it becomes a nonlinear

constraint, thus making the whole problem non-convex.

To linearize the problem, first, we can write the tap ratio in the following expression:

tij = tmin
ij + Tij∆tij (3.22)

∆tij = (tmax
ij − tmin

ij )/Kij (3.23)

where tmax
ij and tmin

ij are the maximum and minimum tap ratio and Kij is the total

number of tap positions. Tij stands for the integer tap position {0, 1, 2, ..., Kij}.

Here, the LTC is modeled as an ideal LTC with series impedance, where the series

impedance of the LTC is modeled as a stable branch in the branch flow model. Now,

we can write the Tij with the help of a binary variable pij,n as shown below:

tij = tmin
ij +∆tij

Nij∑
n=0

2npij,n (3.24)

Nij∑
n=0

2npij,n ≤ Kij (3.25)

Here, Nij is the length of the binary representation of Kij. Multiplying both side of

3.24 with vj and defining new variables mij = tijvj and xij = pij,nuj hereby obtained

mij = tmin
ij vj +∆tij

Nij∑
n=0

2nxij,n (3.26)

Now, xij = pij,nuj can be equivalently replaced with the help of big-M method

using the following equations

0 ≤ vj − xij,n ≤ (1− pij,n)M (3.27)

0 ≤ xij,n ≤ pij,nM (3.28)
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Applying the similar procedure to form vreg = tijmij and defining a new variable

yij,n = pij,nmij

vreg = tmin
ij +∆tij

Nij∑
n=0

2nyij,n (3.29)

0 ≤ mij − yij,n ≤ (1− pij,n)M (3.30)

0 ≤ yij,n ≤ pij,nM (3.31)

With the help of these newly formed equations, the linearized and convexified mod-
eling of the grid legacy device LTC is completed.

3.6 Formulation of the Proposed Mixed Integer OPF Problem

Combining the convexified BFM-SDP OPF problem with operational constraints

along with the linearized LTC constraints, the mixed integer SDP OPF model is

proposed here:

Min
∑
i:i→j

Re{zij}Iij (3.32)

Subject to

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(Sij − zij|lij|2) (3.33)

vj = vi − (Sijz
∗
ij + zijS

∗
ij) + zijlijz

∗
ij (3.34) vi Sij

S∗
ij lij

 ≽ 0 (3.35)

vref = VrefV
∗
ref (3.36)

vmin ≤ vi ≤ vmax (3.37)

Smin ≤ Si ≤ Smax (3.38)

(3.25)− (3.31)
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As mentioned earlier, the formulation of optimal power flow problem is evolved

based on various types of objective functions. In this study, we consider two different

objective functions. The most popular objective function used in OPF formulation is

to minimize line losses, as shown in 3.32. Let denote this active power loss function

as C1,
C1 =

∑
i:i→j

Re{zij}Iij (3.39)

Next, we consider another objective function to minimize the voltage deviation of

each bus from a nominal value. In this case, the objective function is combined

with the loss minimization since it is proven that convex relaxation is not exact

for objective functions which are not monotonously increasing. Since the voltage

deviation minimization is not a monotonously increasing function, in SDP or SOCP

relaxed formulation, combining the deviation with a gradually increasing function like

line losses is advised. This objective function is denoted as C2,

C2 = C1 +
∑
i:i∈N

|vi − vset|

Since the abs() function is a non-convex one, we need further modification to make

the model convex for this objective function. This objective is achieved by imple-

menting the epigraph model of convex relaxation. In this approach, another auxiliary

variable, ei is introduced where,

ei ≥ |vi − vset| (3.40)

So, if
∑

i∈N ei is minimized, the voltage deviation will be minimized, and a few addi-

tional constraints will be added to the existing MISDP-OPF as shown below.
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vi − vset ≤ ei (3.41)

vset − vi ≤ ei (3.42)

ei ≥ 0 (3.43)

Thus the problem for combined minimization of line loss and voltage deviation is

as follows:

Min C2 (3.44)

s.t.

(23)− (28), (15)− (21), (31)− (33)

Figure 3.4: Modified IEEE 123 bus system with DERs.

3.7 Case Studies

This section tests the proposed approach on different IEEE power system networks.

The formulation is implemented in the MATLAB platform using the YALMIP toolbox

for optimization. The solver used to solve the SDP-relaxed OPF is MOSEK. All

the simulations are performed on a windows computer with a 2.5GHz Intel Core i5
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processor and 16GB of memory. For test models, in this paper, modified IEEE 32

bus system and IEEE 123 bus system are evaluated to prove the scalability of the

proposed formulation. The single-line diagrams of the modified 32 bus system are

shown in Fig.3.1 with the DG buses marked. There are 6 distributed generators on

buses 7,12,13,15,16, and 24. Fig.3.2 shows the network topology and DG locations of

the IEEE 123 bus distribution system with 10% DG penetration. The installed DG

locations are 9, 28, 48, 58, 65, 76, 87, and 101. Four shunt capacitors are connected

at bus 85, 90, 92, and 94 capacity 200, 16.67, 16.67, and 16.67 KVAR.

3.7.1 Result Analysis from Alternative SDP-OPF Formulation

Fig.3.5 shows the voltage magnitude profile comparison of optimal power flow solu-

tion from the different formulations of modified 32 bus system, The same for the 123

bus system with 10% and 30% DG penetration are shown in Fig. 3.6 and 3.7. Table

3.1 shows the computational time consumed by the solver to solve the OPF problem

in different approaches. We can see that conventional BIM-SDP formulation takes

the longest time among the approaches. The proposed CS-SDP formulation is faster

than the conventional BIM-SDP and nonlinear approach, but it’s seen that BFM-

SDP is the fastest among the formulations. From the figures, we can see that, for

the smaller system such as the modified 32 bus network, the profiles from nonlinear

formulation, conventional BIM-SDP formulation, and proposed CS-SDP formulation

are the same. Although, for a larger system, such as IEEE 123 bus network with 10%

and 30% DG penetration, the conventional BIM-SDP OPF problem cannot be solved

by the solver due to out-of-memory storage error. Thus, the BFM-SDP approach’s

solution is compared with a nonlinear formulation using MATPOWER. In this com-

parison, we can see a difference in voltage profile between the BFM-SDP approach

and CS-SDP approach, although the profiles are almost the same in the nonlinear

approach and CS-SDP approach.

This statement is also validated by the result comparison shown in Table 3.2. In this
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Table 3.1: Computational time to solve OPF for test systems in different formulations

Formulations Solver Time (s)
32 bus 123 bus

NLPOPF(Matpower) 0.67 1.67
BIM-SDP OPF 2.3149 N/A
BFM-SDP OPF 0.3021 0.3067
CS-SDP OPF 0.3219 0.3654
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Figure 3.5: Voltage profile comparison of modified 32 bus system among different
OPF formulations

table, we can see that the difference in values of active and reactive power dispatch

from the substation in the nonlinear approach and proposed CS-SDP approach is

negligible where there is a small difference between the BFM-SDP approach and CS-

SDP approach. Albeit, for smaller networks, the solutions from nonlinear formulation,

conventional BIM-SDP OPF, and CS-SDP OPF are the same.

3.7.2 Result Analysis from MISDP-OPF Formulation

In the case studies for branch flow models, the performance of the proposed MISDP

OPF solution is tested on a single-phase representation of the IEEE 123-node system.

The existing unbalanced system extracts the positive sequence representation using
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Figure 3.6: Voltage profile comparison of IEEE 123 bus system with 10% DG pene-
tration among different OPF formulations
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Figure 3.7: Voltage profile comparison of IEEE 123 bus system with 30% DG pene-
tration among different OPF formulations

the OpenDSS software. The connected active and reactive loads are scaled down by

one-third factor. The single-line diagram of the network with LTC and DER locations
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Table 3.2: substation active and reactive power generation and active power line loss
comparison table

Psub(MW) Qsub(MVAR) Ploss(MW)
Modified 32 bus

NLPOPF 2.0274 1.4971 0.0674
BIM-SDP OPF 2.0274 1.4969 0.0674
CS-SDP OPF 2.0274 1.4969 0.0674

IEEE 123 bus system 10% DG
NLPOPF 0.9239 0.5099 0.0189

BFM-SDP OPF 0.9238 0.5068 0.0188
CS-SDP OPF 0.9239 0.5098 0.0189

IEEE 123 bus system 30% DG
NLPOPF 0.7299 0.3703 0.0114

BFM-SDP OPF 0.7297 0.3679 0.0113
CS-SDP OPF 0.7299 0.3699 0.0114

Table 3.3: Tap Position Comparison

123 node system with 10% DER
MISDP MISOCP MINLP

Tap Position -1, 0, -7 -3, -1, -6 -1, -2, 1
Psub(KW) 920.93 920.992 927

Qsub(KVAR) 254.334 250.93 510.5
Ploss(KW) 16.0034 16.0023 22.0734

Time(s) 11.2 1.08 25
Gap(pu) 4.14e-15 7.75e-07

is shown in Fig. 3.2. The active power capacity of the DERs is considered the same

as the active demand of the respective buses. The DERs are considered operating at

a 0.83 power factor, meaning the apparent power rating of each DER is 1.2 times the

active power rating. All the delta-connected loads are considered to be wye-connected

for ease of computation. All the LTCs are considered to be operating from -16 to 16

tap positions. For the binary representation of the tap position, a 6-bit representation

has been used. To solve the optimization problem CUTSDP solver in the YALMIP

optimization tool has been selected due to the scarcity of available solvers for MISDP

problems.
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Figure 3.8: Voltage profile comparison with 10% DERs.

3.7.2.1 Loss Minimization

In the first case, we solved the objective function of loss minimization. The same

objective function is solved using the proposed MISDP approach, and solutions are

compared with those from MISOCP and MINLP. Fig 3.8 shows the voltage profiles

from MISDP, MISOCP, and BFM-SDP OPF using the tap positions from the MISDP

approach. Table 3.3 shows the comparison of the numerical results. From the table,

we can see that, even though the numerical solutions such as dispatched active and

reactive power from the substation are very close. However, the tap positions and

the bus voltages deviate from one approach to another.

3.7.2.2 Combined Loss and Voltage Deviation Minimization

After minimizing the line losses in the distribution network, the next case was

selected a multi-objective model where both the voltage deviation and line losses

are to be minimized. The voltage deviation minimization objective function is not a

monotonically increasing function. As a result, the solver can not always guarantee
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Figure 3.9: Voltage profile comparison with 30% DERs.

Figure 3.10: Voltage profile comparison with 50% DERs.

the global optimal solution. That’s why it is combined with the loss minimization

objective to increase the objective function monotonically. On top of that, since this

is a combination of multiple functions, weighting factors have been used to set the

priorities for each function. It has been experienced that if the higher priority is

assigned to the voltage deviation function, the solver converges to a local optimal
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point, resulting in a higher optimality gap. After few trial and error, the weight

factors found for the global optimal point is w1 = 0.9 and w2 = 0.1, where w1 is the

weighting factor for loss minimization function and w2 is the weighting factor for the

voltage deviation function. Using the formulation mentioned in 3.44 and the weighting

factors mentioned, the proposed MISDP problem is solved by the CutSDP solver for

IEEE 123 bus network with different DER penetration levels. The voltage profiles

and numerical solutions are summarized. It was mentioned in the literature study

that there is a number of robust and reliable MISOCP solvers available commercially

which can solve large-scale MISOCP problems with a minimum optimality gap. In

that regard, the solution we achieved from the proposed MISDP model is compared

with the same from the MISOCP model. To solve the MISOCP models, Gurobi has

been used as the solver. The voltage profile and numerical solutions from the MISOCP

model are also showcased in Fig 3.8, 3.9, 3.10 and Table 3.3, 3.4, 3.5 along with the

MISDP solution. From those figures and tables, we can confirm that they align

exactly with each other, which validates the global optimality and tightness of the

proposed MISDP model. However, the computational time of MISDP is significantly

higher than the MISOCP models, which solely depends on the solvers. And it is

widely known that SDP problems are computationally more expensive than SOCP

problems.

3.7.3 Contributions of active, reactive power support and regulator control in loss

minimization

Some test cases were conducted to analyze the contribution of active and reactive

power support and the voltage regulator control in the formulation of optimal power

flow. Here, the optimal power flow for a distribution network for a specific load

profile is solved. Then the substation active power, reactive power dispatches, and

the network line losses are compared. The profiles are shown in Fig 3.11. The figure

shows that introducing active power support from the DERs improves the system
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Table 3.4: Tap Position Comparison

123 node system with 30% DER
MISDP MISOCP

Tap Position -3,-5,-4 -3,-1,-4
Psub(KW) 728.8389 728.8389
Qsub(KVAR) 147.219 146.423
Ploss(KW) 10.066 10.068
Time(s) 29.4 1.42
Gap(pu) 9.13e-7 7.46e-7

losses. But the reactive power support can reduce the line losses further. And finally,

the voltage regulator control can reduce the losses even more. Here, the test studies

were conducted on the IEEE 123 bus system with 10% DER penetration, and we’ve

noticed the improvement in loss minimization with the regulator control is much less.

But for a real-world network scale, the loss reduction will be a significant scale.
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Figure 3.11: substation active, reactive power, and system line loss profile comparison
for without DER, with active power only, with active and reactive power support,
and with regulator tap control.
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Table 3.5: Tap Position Comparison

123 node system with 50% DER
MISDP MISOCP

Tap Position -3,-1,-3 -3,-1,-3
Psub(KW) 518.513 518.517
Qsub(KVAR) 90.833 91.323
Ploss(KW) 5.1882 5.1892
Time(s) 28.3 1.14
Gap(pu) 1.02e-06 6.23e-07

3.8 Summary

Conventional SDP-based OPF formulations for the bus injection models of power

systems impose major computational burden for the off the shelf solvers. The compu-

tational stress increases exponentially with the size of the network. That’s why, the

conventional approach does not scale up to the real-world networks. The proposed

alternative BIM-SDP OPF approach reduces the complexity by relating the matrix

entries rather than the whole matrix for the constraint formulation. In the case stud-

ies, the proposed model scaled up for larger networks with conclusive accuracy. On

the other hand, the BFM-SDP OPF is also an exact formulation and converges to

the global optimal solution. Based on the BFM-SDP OPF, the integer control of the

legacy devices can also be included in the formulation. This algorithm can be used

for different objectives by choosing from various cost functions.



CHAPTER 4: MIXED INTEGER SEMIDEFINITE PROGRAMMING

FORMULATION MODEL UNIT COMMITMENT OPF APPLICATION

4.1 Introduction

This chapter discusses the Mixed Integer SemiDefinite Program(MISDP) based on

combined UCOPF formulation. Unit Commitment (UC) is an essential model in the

power system to optimally schedule the generating resources over a horizon of time

considering the load changes and various other factors. UC is a non-convex problem,

which also includes discrete variables. Since the beginning of UC formulation [85],

many types of research have explored different paths to formulate UC as a Mixed In-

teger Linear Programming (MILP) problem without network constraints [86, 87, 88].

Various types of research have been conducted over time for the formulation of this

problem that represents the power network in DC form with or without considering

active power losses [89, 90]. Generator scheduling using such models ignores reactive

power dispatch, which should be considered. Various methodologies have been ap-

plied to solve UC problems, such as Dynamic Programming[91, 92], Branch & Bound

(B&B) method [93], and Lagrangian Relaxation Method [94]. Each approach has its

drawbacks, such as B&B and genetic algorithm approaches are not computationally

efficient. One of the basic properties of the UC problem formulation is that it con-

siders mostly linear constraints. Also, it overlooks the losses in the system and other

line constraints. Those constraints are very crucial to getting the correct optimal

solution. OPF is another important model for power grid operations that consider

the power flow and balance constraints for specific nodes along with other line con-

straints. However, OPF is another non-convex, non-linear problem and NP-hard in

nature [95, 96, 71]. As a result, the combined formulation of UC with OPF is compli-
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cated to solve and poses higher stress for the solver[97]. There are few works where

the UC-OPF problem is solved in MINLP form [98, 99, 100]. Albeit the formulation

for the smaller system may be possible, the scalability of the MINLP version is an

issue. Nasri et al.[101] and Fu et al. [99] did extensive work on UC formulation, in-

cluding AC network and security constraints using Bender’s Decomposition method.

To convexify the non-convex OPF problem, various relaxation methods are utilized.

SDP relaxations have been studied to provide more exact solutions for mesh networks

in transmission systems than the second-order cone programming (SOCP) relaxation.

Though SDP relaxed problem puts an additional computational burden on the solver

than the SOCP problems, one major advantage is that SDP relaxed model contains

the bus voltage angle while SOCP models mostly do not. SDP relaxed OPF formula-

tions include rectangular representations of power flow equations [71, 102] or a polar

representation of the bus voltages [73].

In this chapter, a two-stage approach UC-OPF formulation is proposed as a com-

bination of the MILP UC problem and SDP OPF formulation. Comparisons with

unified MISDP UC-OPF formulation have been presented to show the advantage of

the two-staged approach. The contributions of this chapter are threefold. The ap-

proach develops a combined UC-OPF model a) without leveraging the rounding of

the binary variables as done in the unified formulation, b) Includes the active power

loss of the network for power balance constraint in UC, c) Provides close to global

solutions and scalable. The rest of the chapter is organized as follows. Section 4.2

discusses UC-OPF preliminaries. Conventional unified and proposed two-staged UC-

OPF formulation is described in Section 4.3. The numerical studies and comparison

are showcased in Section 4.4, and conclusions and future work are discussed in section

4.5.
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4.2 UC-OPF Preliminaries

This section will discuss the essential variables and parameters of unit commitment

and optimal power flow. Also, this section will elaborate on the constraints that

formulate the problem of unit commitment and OPF.

4.2.1 UC Constraints

The objective of UC is to determine a day-ahead schedule to minimize the power

system operation cost while supplying the demand and satisfying other constraints.

The UC constraints are briefly explained next.

4.2.1.1 Power Balance

The power balance equation without considering losses can be represented as

NG∑
g=1

PG
g,t −

N∑
n=1

PD
n,t = 0 (4.1)

4.2.1.2 Spinning Reserve

The utility must operate in a way that it should be able to accommodate the largest

generator of the system. That means there should be some generating resources

that are online but unloaded, and they can respond quickly in case of a loss of any

generator. The spinning reserve constraint is

rg,t ≤ RUg

G∑
g=1

rg,t = Rt

N∑
n=1

PD
n,t +Rt −

G∑
g=1

ug,tP
max
g = 0 (4.2)
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4.2.1.3 Minimum start-up and shut-down time of units

The minimum up and down time can be formulated as [103].

t∑
i=t−UTg+1

vg,i ≤ ug,t; ∀g ∈ NG,∀t ∈ [UTg + 1, T ] (4.3)

t∑
i=t−DTg+1

wg,i ≤ 1− ug,t; ∀g ∈ NG,∀t ∈ [DTg + 1, T ] (4.4)

4.2.1.4 Ramping up and Ramping Down

Further, the ramp-rate constraints can be represented as

Pg,t − Pg,t−1 ≤ RUg; ∀g ∈ NG (4.5)

Pg,t−1 − Pg,t ≤ RDg; ∀g ∈ NG (4.6)

4.2.1.5 Active and Reactive Power Generation Limit

The active and reactive power generation of the generating units are constrained

by the following boundaries,

Pmin
g ≤ Pg,t ≤ Pmax

g ; ∀g ∈ NG (4.7)

Qmin
g ≤ Qg,t ≤ Qmax

g ;∀g ∈ NG (4.8)

4.2.1.6 Voltage Boundary

The voltage magnitude of all the buses of the network is bounded by the following

constraint,

V min ≤ Vn ≤ V max;∀n ∈ N (4.9)



68

4.2.2 Power Flow Constraints

Let us assume, G = (N,E) represents an undirected graph as the power transmis-

sion network where N is the set of buses, and E is the set of branches. Let, Vi is the

voltage of bus i ∈ N . The power balance of the power network represents the equality

of total incoming power and outgoing power. If, PG
i , QG

i , PD
i , QD

i denotes the active

and reactive power generation and active and reactive power demand of bus i ∈ NG

and yij denotes the admittance of line between bus i and j, then the power balance

for the bus i can be written as shown below:

PG
i − PD

i =
N∑
i ̸=j

Re[Vi(Vi − Vj)
∗y∗ij] (4.10)

QG
i −QD

i =
N∑
i ̸=j

Im[Vi(Vi − Vj)
∗y∗ij] (4.11)

Here, ∗ denotes the complex conjugate of the parameter.

Let Y ∈CN×N be the admittance matrix of the network, where yij represents the

admittance for the line segment between bus i and j. Here, Yij = Gij + iBij where, G

and B represents the conductance and susceptance matrices. Also, Gii = gii−
∑

i ̸=j Gij

and Bii = bijj −
∑

i ̸=j Bij where, gii and bii are shunt conductance and susceptance

of bus i. Now, the bus voltage, Vi can be written in it’s rectangular form as, Vi =

ai + ibi and similarly, |Vi|2 = a2i + b2i represents the voltage magnitude squared for

that specific bus. With these notations, the power balance equations can be written

as follows:

PG
i − PG

i = Gii(a
2
i + b2i )+

∑
[Gij(aiaj + bibj)

−Bij(aibj − ajbi)] (4.12)

QG
i −QD

i = −Bii(a
2
i + b2i )+

∑
[−Bij(aiaj + bibj)

−Gij(aibj − ajbi)] (4.13)
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Here, this rectangular formulation of the power balance equation formulates the OPF

as a nonlinear and non-convex problem. Non-linearity is coming in the following

expressions of variables, (a2i +b2i ), (aiaj+bibj) and (aibj−ajbi). To get rid of this non-

linearity, following new variables are introduced as, cii = (a2i + b2i ), cij = (aiaj + bibj)

and dij = (aibj − ajbi). The newly introduced variables are related to each other

through the following equation, c2ij + d2ij = ciicjj. The updated formulation of power

balance constraints then becomes

PG
i − PD

i = Giicii +
∑

[Gijcij −Bijdij] (4.14)

QD
i −QD

i = −Biicii +
∑

[−Bijcij −Gijdij] (4.15)

where the matrix variables cii, cij and dij are related to each other as cij = cji, dij =

−dji, c2ij +d2ij = ciicjj. If a Hermitian matrix Z is introduced, such as, Z = V V ∗, then

all the variables cii, cij and dij can be mapped into Z as shown in equation 4.23

PG
i − PD

i = Giicii +
∑

[Gijcij −Bijdij] (4.16)

QG
i −QD

i = −Biicii +
∑

[−Bijcij −Gijdij] (4.17)

Pmin ≤ PGi ≤ Pmax (4.18)

Qmin ≤ QGi ≤ Qmax (4.19)

(V min)2 ≤ cii ≤ (V max)2 (4.20)

cij = cji (4.21)

dij = −dji (4.22)

Z =

 cii (cij + idij)

(cij − idij) cjj

 (4.23)

Z ≥ 0 (4.24)
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4.3 UC-OPF Formulations

In the following sub-sections, the mathematical formulations of the unified approach

to the UC-OPF problem and, later, the proposed two-staged UC-OPF problem is

derived in detail.

4.3.1 Unified UC-OPF Formulation

Combined UC-OPF formulation can be written in the MISDP form as in 4.2-4.9,

4.16 - 4.24. In this approach, the problem consists of both a mixed integer problem

and a convex optimization problem. Currently, there aren’t many mature MISDP

solvers that can solve large-scale complex MISDP problems, that’s why in this unified

approach, the binary variables are initialized as continuous variables, and once the

problem is solved then, with the help of rounding, the values of unit-commitment

variables, the ultimate solution is achieved. The formulation of the unified UC-OPF

problem is as follows:

Min :
T∑
t=1

NG∑
g=1

(ug,tf(P
G
g,t) + vg,tSUg) (4.25)
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Here, f(PG
g ) represents the generating cost function. The other cost associated is the

start-up cost of the generator SUg. The constraints are,

PG
i,t − PD

i,t = Giicii,t +
∑

[Gijcij,t −Bijdij,t] (4.26)

QG
i,t −QD

i,t = −Biicii,t +
∑

[−Bijcij,t −Gijdij,t] (4.27)

ui,tP
min
i ≤ PG

i,t ≤ ui,tP
max
i ;∀i ∈ G (4.28)

ui,tQ
min
i ≤ QG

i,t ≤ ui,tQ
max
i ;∀i ∈ G (4.29)

N∑
n=1

PD
n +Rt −

NG∑
g=1

ug,tP
max
g = 0 (4.30)

PG
g,t − PG

g,t−1 ≤ RUg;∀g ∈ NG (4.31)

PG
g,t−1 − PG

g,t ≤ RDg;∀g ∈ NG (4.32)
t∑

i=t−UTg+1

vg,i ≤ ug,t;∀g ∈ NG,∀t ∈ [UTg + 1, T ] (4.33)

t∑
i=t−DTg+1

wg,i ≤ 1− ug,t;∀g ∈ NG, ∀t ∈ [UDg + 1, T ] (4.34)

ui,t, vi,t, wi,t ∈ {0, 1} (4.35)

cij = cji (4.36)

dij = −dji (4.37)

Z =

 cii (cij + idij)

(cij − idij) cjj

 (4.38)

Z ≽ 0 (4.39)

(V min)2 ≤ cii ≤ (V max)2; ∀i ∈ N (4.40)

In the MISDP UC problem, the variables u, v, w are binary variables, but since

there are not enough mature solvers to solve large-scale MISDP problems, the binary

variables are relaxed to continuous variables. Then, a rounding-off approach is applied
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to obtain an integer solution. When the problem 4.25 - 4.3.1 is solved, the values of

the variable u, v, and w are converted to binary values using the rounding operation.

Then, those binary values solve the OPF problem to get the generation setpoints.

4.3.2 Two-staged UC-OPF Formulation

To solve integer recovery as mentioned above, in this chapter, initially, the value

of Plosst is an estimated system loss. Once the OPF problem is solved for the given

generator status, actual power loss is calculated. In the next iteration, while the

UC problem is to be formulated, that loss is updated in the power balance equation.

This iterative process is continued until the generator commitment status remains the

same for two successive iterations. The whole process is portrayed in the flow chart

in Fig. 4.1:

Algorithm 1 Proposed Two-staged UC-OPF
1: Initialize network parameters.
2: Initialize Ploss,1 as 5% of PD.
3: Use 4.1 - 4.9 to formulate UC problem.
4: From the solution, use the generator status value to identify the active generator
5: Use 4.16 - 4.24 to formulate OPF problem.
6: After convergence calculate Ploss, 2.
7: if (Ploss,1 = Ploss,2) then
8: Update the solution to dispatch generator
9: else

10: Update P k+1
loss,1 = P k

loss,2

11: end if

The MILP UC problem in the two-staged approach can be formulated as,

Min :
T∑
t=1

NG∑
g=1

(ug,tf(P
G
g,t) + vg,tSUg) (4.41)

Subject to :

Constraints : (4.28)− (4.35)

N∑
n=1

PD
n −

NG∑
g=1

PG
g,t + Plosst = 0;∀g ∈ NG (4.42)
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Figure 4.1: Flow chart for the two-staged approach of UC-OPF formulation.
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If u∗
g,t is obtained from UC solution, then using u∗

g,t as parameter, OPF in two-stage

formulation is modeled as,

Min :
T∑
t=1

NG∑
g=1

u∗
g,t f(P

G
g,t) (4.43)

Subject to :

Constraints : (4.26)− (4.29), (4.36)− (4.40)

4.3.3 Unified Branch and Bound Formulation

Since the unified formulation of UC-OPF is a MISDP problem that only a few

solvers can handle on a small scale, we’ve proposed a branch and bound method

where the integer variable will be initialized as a continuous variable and solve the

whole problem as an SDP model. Once converged, the value of the generator status

variables will be extracted. Then using the following approach, the branch and bound

methods are formulated.

4.3.3.1 Branch

The generator status value, u, most likely be a real number and does not satisfy the

constraint to be an integer. Then, a ui is selected; let’s assume the largest generator’s

status that does not meet the integer constraint and includes the following constraints,

ũ ≤ [u]

ũ ≥ [u] + 1

Here, ũi is the biggest number that does not exceeds ui
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4.3.3.2 Bound

Once a branch is created, each subproblem will be considered a branch, and the

result will be noted. The minimum value of the objective functions of all the sub-

problems will be regarded as the new lower bound. In this way, further down the

tree, branches will be created. For all the sub-problems, the minimum value of the

objective functions, where the integer constraint of the generator status variable is

satisfied, will be considered the new upper bound of the objective function value.

The result section further describes the implementation of this proposed branch and

bound method.

4.4 Numerical Case Studies

The proposed two-stage approach to solving the combined UC-OPF problem is

implemented in YALMIP, an optimization toolbox for MATLAB. The simulations

are conducted on modified IEEE 6 bus network, IEEE 14 bus, and IEEE 118 bus

test networks. The simulation is performed on a Dell laptop with a 2.5GHz Core

i5 processor and 16 GB RAM, running a 64bit Windows-10 operating system. To

test the approach, test systems of three different sizes were selected. For IEEE 6

bus system, there are 3 generators at buses 1, 2, and 3 of capacity 200MW, 150MW,

800MW respectively, and 3 load buses. A load profile is generated for 24 hours and

used to solve the problem. The maximum capacity of the generation is 1150 MW.

IEEE 14 bus network contains 5 generators and 11 loads. A 24-hour load profile is

also generated based on standard benchmark load conditions. The base voltage of the

system is 230 kV. IEEE 118 bus network consists of 19 generators, 35 synchronous

condensers, 177 lines, 9 transformers, and 91 loads.

4.4.1 UC-OPF for 6 bus system

The UC-OPF problem for the 6 bus system is solved using unified and two-staged

approaches. The generators’ parameters are given in Table 4.1. In a unified approach,
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Table 4.1: UC Parameters Limits for 6 Bus System

Constraints Gen 1 Gen 2 Gen 3
Ramping Up (MW) 55 50 20
Ramping Down (MW) 55 50 20
Minimum Up Time (Hr) 4 2 1
Minimum Down Time (Hr) 4 3 1

Table 4.2: UCOPF Solution for 6 Bus System

Parameters Unified MISDP Two-staged MISDP BnB
Total Pgen (MW) 5174.474 5174.127 5170.15
Total Ploss (MW) 22.0738 21.7274 17.749
Total Cost 84795.32 86602.04 80210.08

Figure 4.2: Generator status comparison of 6 bus systems for unified, two-staged, and
unified BnB approaches.

the binary variables are initially defined as continuous variables. Once the problem is

solved, the value of those variables is compared with a threshold value to perform the

rounding-off operation. Then the feasibility is checked by solving the OPF problem.

The total cost of this approach for 1-day is $84,795.32. For the two-stage approach,
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Figure 4.3: Total demand and generation comparison of 6 bus systems for a 24-hr
time horizon.

the total generation cost for the day is $86,602.04, which can be seen as higher than

the unified approach. The total cost of the unified BnB approach is $80,210.08.

However, the total active power loss in the two-staged approach is 21.73 MW, which

is lower than the 22.07 MW from the unified approach but more than the unified

BnB method, 17.749 MW (see Table 4.2). The generators’ status comparison from

both approaches is shown in Fig. 4.2. The voltage profile comparison between the

two approaches for the time of maximum and minimum loading is shown in Fig. 4.7.

The total demand and generation comparison on an hourly basis is shown in Fig. 4.3.

The total generation from the proposed approach for each time was compared with

the same from the unified approach. The maximum error was 0.038%. The way the

branches are created and bounds are updated in the proposed BnB method is shown

in Fig4.4. 4.4.2 UC-OPF for IEEE 14 bus system

In the case of the IEEE 14 bus system, the total generation cost and system ac-

tive power loss is less in the unified approach than in the two-staged approach. The

comparison is given in Table 4.4. The generator UC parameter data are shown in

Table 4.3. From the numerical solutions in this table, we can see the contrast of
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Figure 4.4: Solution process for BnB method for 6 bus networks.

improvement of results observed in the 6bus network using the unified BnB method.

The generators’ status in Fig. 4.5, in the unified approach, all the generators have

been committed, as the value of the generator status variable was higher than the

threshold value for all instances, While in the two-staged approach, the cheap gener-

ators (e.g., G1, G2) have been committed for all the time and costly generators (e.g.,

G3, G4, and G5) are offline for some periods following the minimum uptime. The

voltage profile comparison for the maximum and minimum loading time is shown in

Fig. 4.7. The demand and generation profile comparison for the test case is shown

in Fig. 4.6. The maximum error for the total active power generation comparison

between the approaches was 0.014%.4.4.3 UC-OPF for IEEE 118 bus system

For a large system like the modified IEEE 118 bus network, the unified approach

was not solvable as the number of constraints and variables are large. So, here only the

solution from the two-staged approach is presented. This problem is also formulated
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Table 4.3: UC Parameters Limit Value for IEEE 14 Bus System

Constraints Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
Ramping Up (MW) 55 50 50 40 30
Ramping Down (MW) 55 50 50 40 30
Minimum Up Time
(Hr) 4 2 1 2 1

Minimum Down Time
(Hr) 4 2 1 2 1

Table 4.4: UCOPF Solution for IEEE14 Bus System

Parameters Unified MISDP Two-staged MISDP BnB
Total Pgen (MW) 3898.189 3898.48 3910.029
Total Ploss (MW) 90.8890 91.183 102.7289
Total Cost 77963.775 77969.67 78200.58

for a 24-hr time horizon with a maximum load of around 6,800 MW, and the solver

could easily solve the problem. The generators’ cost coefficients for the system are

available in [104]. The total demand and generation profile for the whole time horizon

of the network is shown in Fig. 4.8. The solution has Pgen (MW) = 132396.31, Ploss

(MW) = 4135.41 and Generation cost ($) is 4135.41.

Table 4.5: UCOPF Solution for IEEE118 Bus System Using two-staged Approach

Parameters Two-staged UCOPF
Pgen (MW) 132396.31
Ploss (MW) 4135.41
Generation
Cost ($) 83541

4.5 Summary

In this chapter, a two-stage approach for UC-OPF formulation is proposed. The

approach is scalable, accurate with respect to optimal solutions, and feasible. For

example, due to the lack of availability of mature solvers, the unified UC-OPF problem

in the MISDP form cannot be solved for larger systems, i.e., IEEE 118 bus network,

where the two-staged approach was able to solve and is scalable for larger networks.



80

0 5 10 15 20 25

Time Period (Hr)

0

2

4

6

G
e
n
e
ra

to
r

Unified Approach

0 5 10 15 20 25

Time Period (Hr)

0

2

4

6

G
e
n
e
ra

to
r

Two-staged Approach

Figure 4.5: Generator status comparison of IEEE 14 bus system for unified and two-
staged approaches.

Table 4.6: Generator Cost Coefficients

Bus Cost Coeff.
($/MWh) Bus Cost Coeff.

($/MWh) Bus Cost Coeff.
($/MWh)

1 10 42 10 80 0.21
4 10 46 3.45 85 10
6 10 49 0.47 87 7.14
8 10 54 1.72 89 0.16
10 0.22 55 10 90 10
12 1.05 56 10 91 10
15 10 59 0.61 92 10
18 10 61 0.59 99 10
19 10 62 10 100 0.38
24 10 65 0.25 103 2
25 0.43 66 0.25 104 10
26 0.31 69 0.19 105 10
27 10 70 10 107 10
31 5.88 72 10 110 10
32 10 73 10 111 2.17
34 10 74 10 112 10
36 10 76 10 113 10
40 10 77 10 116 10

The solution from the two-staged approach may not be the most economical (we have

seen up to a 2% difference compared to the unified approach), but the scheduling

of the generating units is feasible. Future work includes extending to integrating
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Figure 4.6: Total demand and total generation comparison of IEEE 14 bus system
for 24-hr time horizon.

Figure 4.7: Voltage profile comparison for maximum and minimum loading hours in
6 and IEEE 14 bus systems.

contingency scenarios and tighter network constraints. Also, the computational time

can be reduced significantly by leveraging the matrix sparsity for larger networks.
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Figure 4.8: Total demand and total generation comparison of IEEE 118 bus system
for 24-hr time horizon.



CHAPTER 5: SEMIDEFINITE PROGRAMMING FORMULATIONS OF DER

INTEGRATED OPF FOR THREE PHASE POWER DISTRIBUTION SYSTEMS

5.1 Introduction

This chapter discusses optimal power flow for multiphase unbalanced distribution

networks. In general, the distribution systems are highly unbalanced due to the un-

balanced property of connected loads and the configuration of distribution lines. The

numerous generating resources make the system more unbalanced. Thus, the assump-

tion of the nearly balanced voltage of the phases cannot ensure the exactness of the

formulation. Also, the mutual coupling of the distribution lines contributes to the

unbalanced property. The R/X ratio of the distribution branches is also meager, and

the active power losses through the branches cannot be neglected. These complexities

make the original ACOPF problem a large numerical burden for the existing nonlin-

ear solvers.

A widely supported approach for this hardship of ACOPF is to solve the convexified

OPF problem. It offers several advantages to the problem. It is well proven that

if the relaxation is exact, then the optimal solution will be the same as the global

optimal solution of the original problem. A commonly adopted approach to convexify

the OPF problems is semidefinite relaxation. It is first proposed in [105] how to for-

mulate the OPF problem as a semidefinite program for single-phase power systems.

The assumptions and conditions under which the relaxation is exact are discussed

and studied in [71]. Later, in [65] it shows how to formulate the OPF problem in a

more solver-friendly way in terms of a second order cone problem. [81, 106] did an

extensive survey of the various convex relaxation methods of OPF for single-phase

distribution networks.
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OPF formulation for multiphase networks using the semidefinite relaxation method

was first proposed in [80]. Later in [61], it proposed a more stable formulation of OPF

for multiphase distribution networks using the branch flow model. This model was

based on the Wye-connected load in distribution systems, albeit both Wye and Delta-

connected loads can be present in distribution networks. Later in [107], they proposed

another updated formulation based on the branch flow model and semidefinite pro-

gramming, which includes both Wye and Delta connections in distribution networks.

In both of those publications, they did not consider the on-load tap changer(OLTC)

or voltage regulators of the network. Those formulations were proved to be very

exact, and the solutions were very close to the global optimal solution. Since the

OLTC and voltage regulators are essential components of distribution networks, it is

necessary to have an exact formulation that includes voltage regulators, transformers,

and the different connections and mutual coupling of real-world distribution networks.

5.2 Standard Power Flow Model of Multiphase Unbalanced Power System

Conventionally distribution networks are comprised of buses and lines. These buses

and lines are multiphased in existing networks, and the network topology is radial.

Usually, distribution networks are unbalanced since the total load connected to each

phase of the bus change with time. The root node of the distribution system is

called the substation bus, and the voltage magnitude of the substation bus is kept

constant all the time. The substation bus voltage’s phase angle is considered 0. Let

N = {1, 2, 3, ...., n} denotes the set of buses where bus 1 is the substation bus. Now,

assume (i, j) denotes a distribution line connecting bus i and j where both buses are

members of N . Let E represent the set of all the lines of the network. The direction

of the current flow through the lines can be expressed interchangeably; for example,

i→ j can also be written as j → i.

Since our focus is on the unbalanced multiphase distribution networks, let a,b, and
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c denote the three phases of the power system, and Φi stands for the phases of bus

i ∈ N , and Φij denotes the phases of branch between buses (i, j). Let the complex

voltage of bus i ∈ N is denoted by V ϕ where ϕ ∈ Φ is the set of phases of that

bus. Let, Iϕi is the complex current injection at bus i ∈ N and sϕi represents the

injected complex power at bus i ∈ N . Then, for the branch parameters, let, Iϕi,j

denotes the currents flown through each phase in line from i to j and Sϕ
i,j denotes the

apparent power flown through each phase of the line i→ j. Let, zi,j is the impedance

matrix of line (i, j) and the admittance matrix is defined by yi,j = z−1
i,j . In terms of

these variables, the power flow equations can be written for a distribution network as

follows:

Iij = yij(V
ϕij

i − V
ϕij

j ), i ∼ j (5.1)

Ii =
∑
j:i∼j

I
ϕij

ij , i ∈ N (5.2)

si = diag(ViI
H
i ), i ∈ N (5.3)

5.3 Optimal Power Flow for Unbalanced System

Optimal power flow determines the power generation from the sources that min-

imize the objective function value. Different objective functions are based on pref-

erence, such as generation cost minimization, line loss minimization, PV hosting

maximization, and voltage deviation minimization. In this chapter, our concern is to

minimize the line active power loss with the help of distributed generation resources

by solving OPF. Since the line loss is a function of line current, we can write the

objective functions as follows:

Minimize
∑

j:i∼j∈N

f(Iij)

Optimal power flow is an optimization problem. Thus it contains an objective
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function, equality constraints, and inequality constraints. The power balance equa-

tion of the power flow is considered the equality constraint of OPF. Other equality

constraints can be included depending on the extension of the formulation of OPF. In

the previous section, replacing the injected current with branch current and branch

power flow, we can write the power balance equation as shown below:

si =
∑
j:i∼j

diag[V
ϕij

i (V
ϕij

i − V
ϕij

j )HyHij ]
ϕi (5.4)

Along with this equality constraint, some boundary inequality constraints are

needed to be added to define the upper and lower bound for the variables used in the

formulation. The general bounds are for the injected or generated power for each bus

and the complex voltage of each bus.

smin
i ≤ si ≤ smax

i (5.5)

V1 = V ref
1 (5.6)

V min
i ≤ Vi ≤ V max

i (5.7)

In summary, the OPF problem can be stated as follows,

Minimize
∑

j:i∼j∈N

f(Iij) (5.8)

Subject to,

(5.4)− (5.7)

5.3.1 BFM-SDP OPF Formulation

The power systems can be modeled in various approaches; the most powerful ones

are Bus Injection Model (BIM) and Branch Flow Model (BFM). For radial networks,

BFM model is more numerically stable since in this approach the subtraction of

(V
ϕij

i − V
ϕij

j ) can be avoided. This subtraction may make the model ill-conditioned
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if the difference in voltage values is minimal. The branch flow model is expressed in

terms of the following equations,

1. Ohm’s law:
V

ϕij

i − V
ϕij

j = zijI
ϕij

ij (5.9)

2. Variable definition:

lij = I
ϕij

ij I
ϕijH
ij , Sij = V

ϕij

i IHij (5.10)

3. Power balance:

∑
i:i→j

diag(Sij − zijlij)
ϕj + sj =

∑
k:j→k

diag(Sjk)
ϕj (5.11)

Here, the injected power at bus i can be defined as the difference of power generated
at bus i and total load demand at bus i, i.e., si = sG,i − sD,i, i ∈ N .

Since the equation (5.10) is nonlinear, the whole optimization problem is non-convex.

This non-convexity can be resolved by using the semidefinite programming relaxation

approach. Let us introduce another variable vi such that, vi = ViV
H
i . Then, the

equation (5.9) can be written as:

V
ϕij

j = V
ϕij

i − zijI
ϕij

ij

Now, multiplying both sides of the equation by their Hermitian transpose, we obtain,

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij (5.12)

Furthermore, if we multiply the equation (5.10) with their hermitian transpose, we

get

SijS
H
ij = V

ϕij

i (V
ϕij

i )HIHij Iij (5.13)

SijS
H
ij = v

ϕij

i lij
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Equation (5.13) can be written as a positive semidefinite matrix that can hold the

rank-1 property. vϕij

i Sij

SH
ij lij

 =

V ϕij

i

Iij


V ϕij

i

Iij


H

(5.14)

With the help of these equations, another equivalent formulation of BFM optimal

power flow for the unbalanced radial network can be written as follows:

Minimizef(lij) (5.15a)

Subject to,

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij (5.15b)∑

i:i→j

diag(Sij − zijlij)
ϕj + sj =

∑
k:j→k

diag(Sjk)
ϕj (5.15c)

v1 = V ref
1 (V ref

1 )H (5.15d)

V min
i ≤ diag(vi) ≤ V max

i (5.15e)

smin
i ≤ si ≤ smax

i (5.15f)vϕij

i Sij

SH
ij ljj

 ≽ 0 (5.15g)

rank

vϕij

i Sij

SH
ij lij

 = 1 (5.15h)

The rank-1 constraint in the above formulation is non-convex. Thus, a semidefinite

relaxation can be obtained by relaxing the constraint (5.15h). Therefore, the BFM-

SDP relaxed OPF formulation for an unbalanced distribution network can be written

in the form as follows:
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Minimize
∑
j:i∼j

(zijlij) (5.16)

Subject to,

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij∑

i:i→j

diag(Sij − zijlij)
ϕj + sj =

∑
k:j→k

diag(Sjk)
ϕj

v1 = V ref
1 (V ref

1 )H

V min
i ≤ diag(vi) ≤ V max

i

smin
i ≤ si ≤ smax

ivϕij

i Sij

SH
ij lij

 ≽ 0

5.3.2 Regulator Modelling

A significant part of the modern power distribution networks is the step voltage reg-

ulators, which are tap-changing transformers. The acceptable range of operation for

distribution voltages is given by the American National Standards Institute (ANSI).

In an unbalanced system, three-phase lines and three single-phase regulators are in-

stalled. The voltages of the primary and secondary sides of the regulators are related

through ratios, and it is shown below:

ratio = [ra, rb, rc]
T (5.17)

[V sec
a , V sec

b , V sec
c ]T = [raV

pri
a , rbV

pri
b , rcV

pri
c ]T

where,

ra = 1 + 0.00625 ∗ Tapa

rb = 1 + 0.00625 ∗ Tapb (5.18)

rc = 1 + 0.00625 ∗ Tapc
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In the formulation, the voltage regulator in the line can be visualized in Fig. 5.1

Distribution 
System

Voltage 
Regulator

R X

P+iQ

Vpri(Vi) Vsec Vj

Figure 5.1: A simplified schematic of voltage regulator in the distribution network

In the formulation of the branch flow model, we mentioned that the voltage of both

ends of a branch is expressed through equation (5.15b). But if the branch contains

a regulator, we need further modification in the equation. The voltage of the load

end will be calculated in two steps. First, we calculate the secondary voltage of the

regulator using equation (5.17). Then the voltage of the load side of the branch will

be calculated using (5.15b), and the secondary voltage will be considered as the source

side voltage of the branch. In this regard, the voltage equation for regulator branches

can be written as follows:

vj = v
ϕij

i ∗ ratio− (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij

5.3.3 Modelling Switches

In power distribution network topology, switches play a very significant role. Since,

in most cases, distribution networks are radial, to ensure reliability and redundancy,

switches are used to supply the power to the customer if the primary supply line is

compromised. But the resistance and reactance value of the conductor of the switch is

meager. That’s why while solving for the voltage drop and power balance constraint
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for the switch, there is a possibility of a high feasibility gap. Which causes the

solution to deviate from the global solution. In this formulation, while constructing

the branch constraints, the line loss is ignored in the case of switches to overcome

that issue. Thus the voltages of both terminals of switches stay the same.

5.3.4 Modelling Mutual Coupling of Branches

The impedance matrix significantly differs while formulating the power flow equa-

tions for multiphase systems. Since radial distribution systems are unbalanced, the

mutual coupling of the branch impedance matrices plays a significant role in power

flow. While formulating the power balance constraints, in other approaches, it is

not easy to include the mutual impedance. Because not always a matrix can be in-

cluded in the constraint as a whole. For example, it is impossible to have a matrix

while writing the cone equation in SOCP formulation. But in SDP formulation, the

total impedance matrix can be considered while building the power flow or power

balance constraints. That’s why the proposed method can ensure more exactness in

the formulation.

5.4 Case Studies

To implement the three-phase OPF formulation for the unbalanced radial distribu-

tion systems, we have chosen IEEE 123 bus system. The nominal operating voltage

is 4.16KV. The network contains unbalanced loads with constant impedance, current

and power, underground and overhead lines, online tap changer, voltage regulators,

multiple switches, and shut capacitors. A simple single-line diagram of the IEEE 123

bus network is shown in Fig. 5.2. Four capacitor banks are connected to buses 83, 88,

90, and 92. Among them, the capacitor bank at bus 83 has three phases, and the rest

are single phases. There is an OLTC connected between buses 1 and 2, and 3 more

voltage regulators are situated between buses 9-14, 25-26, and 160-67. There are 6

Normally Closed switches connected between buses 13-152, 18-135, 60-160, 61-611,
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97-197, and 150-149.

Figure 5.2: A single line representation of the IEEE 123 bus system.

To test the three-phase OPF formulation, first, the approach was tested on the base

case scenario. Where all the DGs are made inactive, thus it is only the substation that

will dispatch the active and reactive power demanded by the connected loads. Later,

the nonlinear power flow was solved for the same case. Since solving the OPF without

any DGs and objective function is similar to the power flow analysis, the results from

both approaches should match if the formulation is exact. The comparison of the

voltage profile from both approaches is shown in Fig 5.4.

Table 5.1: Result comparison for IEEE 123 bus system base case

Psub,A

(KW)
Qsub,A

(KVar)
Psub,B

(KW)
Qsub,B

(KVar)
Psub,C

(KW)
Qsub,C

(KVar)
Power Flow 1463.86 582.1 963.48 343.68 1193.15 398.9
OPF 1471.6 633.3 921 299.2 1193.2 431.1

Since the approach provided a definitive solution for the IEEE 123 bus system, we

tried it on a modified 650 bus system. It is a part of the IEEE 8500 bus system. It
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Figure 5.3: Voltage profile comparison of BFM-SDP OPF and nonlinear PF for the
base case

contains 647 buses and 646 branches. All the branches of this network are three-phase

lines. The nominal voltage is 7.2KV, and the base MVA is 25MVA. The voltage of the

root node is considered to be 1.05 pu. The network has four voltage regulators: bus

219-218, 344-343, 234-233, and 3-4. Similar to the IEEE 123 bus system test case, the

OPF formulation was tested for the base case where all the DGs are considered to be

turned off and then simulated the OPF for the objective function of loss minimization.

Thus the result will be similar to the power flow solution. The comparison of voltage

magnitude profile comparison between the base case OPF and nonlinear power flow

solution is shown below:

Table 5.2: Result comparison for modified 650 bus system base case

PsubA
(MW)

QsubA
(MVar)

PsubB
(MW)

QsubB
(MVar)

PsubC
(MW)

QsubC
(MVar)

Power Flow 4.1492 2.5637 3.9920 3.2753 3.7744 -1.0413
OPF 4.1643 1.2073 3.9737 -6.250 3.7713 9.1973

Next, we can consider the 10% DG penetration for the system where in some

buses, DGs are connected. The capacity of the DGs is considered to be equal to the
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Figure 5.4: Voltage profile comparison of BFM-SDP OPF and nonlinear PF for 650
Bus network base case.

connected active power load to the bus. The reactive power capacity of the DG is

considered to be 48.43% of the active power capacity. Then in a similar approach, the

BFM-SDP OPF is solved using the proposed approach, and for the exact dispatch of

the DGs, the nonlinear power flow is solved, and all the solutions are compared to

test the exactness of the proposed approach. The comparison of the voltage profiles

is shown in Fig 5.5. The numerical solution values are summarised in Table 5.3. The

percentage error of node voltages from BFM-SDP OPF and power flow is shown in

Fig 5.6. The PSD matrices’ rank represents the solution’s accuracy for the BFM-SDP

OPF. The rank is calculated based on the ratio of the first two eigenvalues of those

matrices. The ratio values are presented in Fig 5.7. Finally, the computational time

consumed by the solver for solving OPF and the power flow of the test systems are

summarised in table 5.4

5.4.1 Receding Horizon Control for Unbalanced BFM-SDP OPF

Once the proposed formulation of optimal power flow for an unbalanced multiphase

distribution network was validated for individual timestamps, the next step was to
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Figure 5.5: Voltage profile comparison of BFM-SDP OPF and nonlinear PF for IEEE
123 Bus network with 10% DG penetration case.
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Figure 5.6: Percentage error of voltage profiles for three phases for 10% DG penetra-
tion case.
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Table 5.3: Result comparison for IEEE 123 bus system with 10% DG penetration
case

PsubA
(KW)

QsubA
(KVar)

PsubB
(KW)

QsubB
(KVar)

PsubC
(KW)

QsubC
(KVar)

Power Flow 1037.4 407.6 586 72.1 815.1 227.7
OPF 1089.0 490.0 586.5 194.7 814.9 272.1
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Figure 5.7: ratio of first two eigenvalues of PSD matrix for each branch represents
the matrix’s rank.

Table 5.4: Computational time to solve OPF for test systems in different formulations

Formulations Solver Time (s)
123 bus 650 bus

NLP-PF(Current Injection) 0.5089 21.41
BFM-SDP OPF 0.5291 2.3167

implement for multi-period approach for receding horizon control (RHC). Receding

horizon control is used to forecast dispatches in the day ahead approach. In this

approach, the time horizon for a whole time window is moving forward, and the

optimization problem is solved in each. The concept of receding horizon control is

depicted in Fig 5.8. The advantage of receding horizon control is that it can be

considered in solving the problem if some changes or adjustments occur at any time
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Figure 5.8: Concept of moving time horizon in receding horizon control method.

window. This removes the necessity to solve the whole issue for the total time. The

implementation of RCC using the proposed BFM-SDP OPF proves the scalability

of the method. In Fig 5.9 we have shown the substation active and reactive power

dispatch profiles for a period of 12 hours. For this case, 10% DER penetration of

the network was considered. The substation power from OPF is compared with the

power flow results for the same DER setpoints. The comparison shows the exactness

of the solution. We can see that, except for some hours, the active and reactive power

dispatch is almost similar to the power flow solution. In this simulation, a moving

horizon of 6 hours was considered, moving forward through the time window.

5.5 Summary

The proposed formulation for unbalanced radial distribution networks includes volt-

age regulator modeling, line switches, and mutual coupling in the branch impedance

matrix. The relaxation is considered to be exact, and the solutions are conclusive

considering the comparison with the power flow solution for similar operating con-

ditions. The implementation of receding horizon control using the proposed method

opens up the scope of integration of different inter-temporal constraint to the OPF

problem.
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Figure 5.9: Active and reactive power dispatch from substation compared with the
power flow solution with similar DER support to check the tightness of solution.



CHAPTER 6: ADMM BASED DISTRIBUTED OPTIMIZATION FOR DER

INTEGRATED POWER DISTRIBUTION SYSTEM

6.1 Introduction

This chapter presents the formulation of distributed optimal power flow for large

distribution networks based on ADMM and SDP relaxation. The objective of OPF

is to minimize or maximize a cost function such as minimizing the generation cost,

line losses, or maximizing voltage stability, DG generation. Numerous economic op-

erations of power systems such as economic dispatch, unit commitment, demand

response, and volt-var control are designed around OPF. Since the first approach to

solve the OPF problem was proposed by J. Carpentier in 1962 [3], many approaches

have been proposed by researchers to solve the problem. Detailed survey literature

on different formulations of OPF and the evolution of the problem formulation can

be found in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The original alternating current opti-

mal power flow (AC-OPF) problem is a non-linear, non-convex optimization problem.

Different relaxation methods have been explored to handle the non-convexity of the

problem. Semidefinite programming (SDP), second-order cone programming (SOCP),

and chordal relaxation are the most popular. Initially bus injection models (BIM)

of transmission networks utilized both SDP relaxation [65, 108, 102] and SOCP re-

laxation [109, 110] for OPF formulation. Since these are the relaxed model of the

original problem, the formulation is said to be exact if the solution of the original

problem can be recovered from the relaxed model. However, radial network modeling

requires additional considerations for exact modeling.

Another aspect of the conventional OPF formulations is that they are primarily

centralized operations. This means the original network is formulated as one single
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problem and solved as one model. However, as the distributed generation is becom-

ing more and more popular in today’s power system, it increases the total number of

variables in the formulation, thus increasing the problem’s difficulty level [111]. So,

OPF formulation of real-world distribution networks with thousands of nodes and

high DG penetration is complicated to solve with a centralized approach. Thus there

is a real need to solve distributed formulation of the OPF problem for the future dis-

tribution grid. In that regard, various distributed approaches have been proposed by

different researchers. The generalized approach breaks down the OPF problem into

subproblems that can be solved simultaneously. There are distributed formulations

based on the AC non-convex OPF problem as in [112, 113] which used the method

of multipliers. Tesun2013fully the formulation leveraged ADMM for distributed opti-

mization, but the main disadvantage of such formulation is that it does not guarantee

convergence. On the other hand, the distributed formulation of the convexified OPF

problem ensures convergence; primarily, ADMM-based convex methods combine the

benefits of the dual decomposition [114].

In this chapter, an approach has been proposed where a radial system is divided into

multiple regions. This division can be based on different criteria such as geographical

location, the position of the SVR, placement of the transformer, or switches. In this

approach, two main aspects are significant: intra-regional optimization and inter-

regional coordination. The intra-regional optimization model has been formulated

by utilizing the SDP relaxed branch flow model, and the inter-regional coordination

is implemented with the help of ADMM. The main contributions of this chapter

are as follows. This approach provides a simplified architecture to implement the

distributed formulation of the OPF problem for the radial distribution network. It

identifies the consensus region for the split network and implements ADMM to solve

the OPF problem in a fully distributed approach. All the regional OPF problems are

parallelizable and computationally cheaper than other distributed OPF counterparts.
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The rest of the chapter is organized in the following order. Section II describes

the mathematical preliminaries regarding the ADMM and OPF problem formulation.

Section III describes the proposed distributed OPF formulation based on ADMM;

system description and numerical case studies are discussed in section IV. Finally,

section V concludes the chapter and briefly discusses the future extension of this

work.

6.2 Mathematical Preliminaries

ADMM is an algorithm that leverages the better convergence properties of the

method of multipliers to solve constrained optimization problems. Assume a problem

in the following form,

Min f(x) + g(y) (6.1)

s.t.Ax+By = c

Here, x ∈ and y ∈ are the variables and A and B are parameter matrices. The

augmented Lagrangian equation of this problem can be written as:

Lρ(x, z, β) = f(x) + g(y) + βT (Ax+By − c) (6.2)

+
ρ

2
||Ax+By − c||22

ADMM solves the problem in three updation steps. First, x is updated with fixed y,

then y is solved with updated x from the previous step, and in the final step, β is
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updated from fixed values of x and y. These steps are as follows.

xk+1 := argmin
x
{f(x) + (βk)T (Ax+Byk − c) (6.3)

+
ρ

2
||Ax+Byk − c||22}

yk+1 := argmin
y
{g(y) + (βk)T (Axk+1 +By − c) (6.4)

+
ρ

2
||Axk+1 +By − c||22}

βk+1 := βk + ρ(Axk+1 +Byk+1 − c) (6.5)

Here ρ > 0 is the penalty factor, and β is the vector of lagrangian multipliers. The

convergence of the ADMM depends on the following criterion,

lim
k→∞

(Axk+1 +Byk+1 − c) = 0

6.2.1 Consensus Optimization via ADMM

If the objective function of the ADMM problem consists of N terms, then the

problem takes a new form, known as consensus ADMM. This form of the objective

function may represent minimizing the loss function of an individual area of the

distribution system or minimizing the line losses of a region of a large distribution

network. The problem can be written as

Min
N∑
i=1

f(x) (6.6)

s.t.xi − y = 0

Here, xi is the local variable, and y is the global variable, where the objective is to

converge all the local variables to the global value. In our application, the objective

is to minimize the line power loss in the network. The branch flow model formulation
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variables are bus voltage magnitude, line current, and active and reactive line power

flow. Thus in the consensus formulation, the constraint would be to converge the

bus voltage and line power flow of certain buses and lines between the regions ob-

served from each region. Section 6.3 discusses the definition of these local and global

variables, where the ADMM-based OPF problem is formulated. The augmented La-

grangian function for this scenario can be written as,

Lρ(x, y, β) =
N∑
i=1

(f(xi) + βT (xi − y) +
ρ

2
||xi − y||22)

The local variables xi and the global variable y are updated using the following steps,

xk+1
i := argmin

x
{f(xi) + (βk)T (xi − yk) +

ρ

2
||xi − yk||22} (6.7)

yk+1 :=
1

n

N∑
i=1

(xk+1
i ) (6.8)

βk+1 := βk + ρ(xk+1
i − yk+1) (6.9)

We propose a consensus ADMM approach to solve the OPF problem of a large dis-

tributed network where all the regions solve their OPF problem for a constraint set

and a global variable y. This iterative updating process continues till the error reduces

below the threshold value.

6.3 ADMM Based OPF Formulation

In the distributed approach to solving the OPF of a power network, consider that

the network is divided into multiple areas. Among them, one is the master network,

and the others are the sub-networks. There are communication links established

between master and sub-networks to exchange information. As shown in Figure 6.1,

let us assume the whole network is divided into 3 regions, where nodes 1, ....5 belong

to the master network, nodes 6, ....., 8 belong to sub-network 1, and nodes 9, ....12
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Figure 6.1: A distribution system divided into three regions

belongs to sub-network 2. Also, the branches between 4 − 6 shared by both master

network and sub-network 1 and 5− 9 shared by master network and sub-network 2.

Basically the area covered by branches 4− 6 and 5− 9 is the consensus area and the

variables P4−6, P5−9, Q4−6, Q5−9, V4, V5, V6, V9 represents the global variable Z. Each

area will solve the OPF problem of its region in parallel and assign the values. Next,

the global variable will be updated based on values calculated by each local iteration.

Then consensus will be achieved considering the preset threshold value.

6.3.1 Decentralized ADMM by Substituting Lagrange Multiplier

The consensus ADMM, as well as the original formulation of ADMM, does not

ensure a fully decentralized formation. The local variable and Lagrange multiplier

update using (6.3) and (6.5) can be performed locally. However, updating the global

variables using (6.4) for overlapping regions requires executing a central controller.

By replacing the global variable y and Lagrange multiplier β, it is possible to formu-

late a fully decentralized model. For that purpose, a new local variable vector w is

introduced for area a corresponding to the Lagrange multiplier βi,

wk
a := yka − βk

a/ρ (6.10)
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Further, leveraging the features of radial distribution networks, ADMM can be refor-

mulated for any local problem as

xk+1
a := argmin

x
{f(xa) +

ρ

2
||xa − wk||22} (6.11)

wk
a := wk

a + xk+1
a − xk+1

a + xk+1
b

2
(6.12)

6.3.2 Auto Tuning of Penalty Parameter by Residual Balancing

The convergence of ADMM based OPF problem is mathematically proven, al-

though the speed to convergence depends significantly on the choice of penalty pa-

rameter. One way to accelerate the ADMM convergence is to vary the penalty pa-

rameter depending on the residual values from each iteration. Various approaches

have been proposed by the researchers to implement a self-tuning penalty parameter

model. Most of those approaches require a central controller to look at the residual

values and update the penalty parameter. In the decentralized approach, the penalty

parameter for each area can be updated based on the local primal and dual resid-

ual values. So central coordination is not required anymore. The penalty parameter

tuning can be performed as

ρk+1
i =



ρki
1+τ

, if ||rki ||2 ≤ µ||dki ||2,

(1 + τ)ρki , if ||dki ||2 ≤ µ||rki ||2,

ρki , otherwise.

(6.13)

where µ and τ are parameters whose values are usually selected as µ = 0.1 and

τ = 1.0.
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6.3.3 Accelerated ADMM Method

In the accelerated ADMM approach, additional steps are included to update the

global variable yk+1 and Lagrange multiplier βk+1 as follows

ŷk+1
i = αk.yk+1 + (1− αk).yk (6.14)

ˆβk+1 = αk.βk+1 + (1− αk).βk (6.15)

αk =


1 + γk−1

γk+1 , if max(||rk||2,||sk||2)
max(||rk−1||2,||sk−1||2) ≤ 1

1, otherwise

(6.16)

where γ = [1 +
√
1 + 4(γk−1)2)]/2 for k > 1. Here r and s stand for the primal and

dual residuals.

6.3.4 BFM-SDP OPF

In this chapter, we mostly focus on formulating the OPF problem for the distribu-

tion systems. Hence the Branch Flow Model of the system is adopted to formulate

the OPF problem. Let us assume a graph G = (N,E) represents a radial distribution

network where N is the set of all vertices, and E is the set of all branches. The

branch flow model comprises branch variables such as branch current, branch active,

and reactive power flow. Let Vi be the voltage of node i, Sij and Iij is the complex

power and currently flown through branch i− j, then the branch flow model can be

stated as follows

Vi − Vj = zijIij,∀(i, j) ∈ E (6.17)

Sij = ViI
∗
ij,∀(i, j) ∈ E (6.18)∑

k:j→k

Sjk −
∑
i:i→j

(Sij − zij|Iij|2) + y∗j |Vj|2 = sj (6.19)
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Here, zij is the branch impedance, and sj is the injected complex power at node j. The

relaxed branch flow model is adopted from this equation by ignoring the angles of the

variables. By substituting the expression of current Iij from (6.18) into (6.17) yields

Vi − Vj = zijS
∗
ij/V

∗
i . Then taking the square of the magnitudes of this expression

derives the equation (6.21) as shown below. In the relaxed model the squared terms

of the node voltage and branch current replaces the previous variables as vi = |Vi|2

and lij = |Iij|2. The relaxed BFM model is

sj =
∑
k:j→k

Sjk −
∑
i:i→j

(Sij − zijlij) + yjvj,∀j ∈ E (6.20)

vj = vi − 2(z∗ijSij + zijS
∗
ij) + zijlijz

∗
ij,∀(i, j) ∈ E (6.21)

lij =
|Sij|2

vi
, ∀(i, j) ∈ E (6.22)

The non-linear equation (6.22) can be expressed in terms of a positive semidefinite

matrix as follows:  vi Sij

S∗
ij λij

 ≽ 0

rank

 vi Sij

S∗
ij λij

 = 1

The abovementioned equations still hold the non-convexity due to the rank-1 con-

straint of the PSD matrix. Relaxing the equation by adopting the semidefinite relax-
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ation (SDR), the BFM-SDP OPF problem is formulated:

Min
∑
i:i→j

zijIij (6.23)

s.t.



sj =
∑

k:j→k Sjk −
∑

i:i→j(Sij − zij|lij|2) + yjvj

vj = vi − (Sijz
∗
ij + zijS

∗
ij) + zijλijz

∗
ij vi Sij

S∗
ij λij

 ≥ 0

vref = VrefV
∗
ref

vmin ≤ vi ≤ vmax

Smin ≤ Si ≤ Smax

6.3.5 Implementing Consensus ADMM Based BFM-SDP-OPF

The distributed problem can be formulated for each region based on the consensus

ADMM and the BFM-SDP OPF formulation. Before that, the global variable z can

be defined as, y′=[PmnQmnPltQltVmVl]. The augmented OPF problem for each region can

be formulated as follows. For the master network, all the nodes, as shown in Fig.6.1

along with the consensus region nodes, are considered to formulate the augmented
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OPF problem.

Min
∑
i:i→j

zijIij + (βk
1 )

T (x1 − yk1) +
ρ

2
||x1 − yk1 ||22 (6.24)

s.t.



sj =
∑

k:j→k Sjk −
∑

i:i→j(Sij − zij|lij|2) + yjvj

vj = vi − (Sijz
∗
ij + zijS

∗
ij) + zijλijz

∗
ij vi Sij

S∗
ij λij

 ≥ 0

vref = VrefV
∗
ref

vmin ≤ vi ≤ vmax

Smin ≤ Si ≤ Smax

where y1 = y

Similarly, for sub-network 1, the augmented OPF problem can be formulated with

updated y as follows

y2 =

[
Pmn, Qmn, Vm

]T

The augmented Lagrangian objective function for sub-network 1 is as follows:

Min
∑
i:i→j

zijIij + (βk
2 )

T (x2 − yk2) +
ρ

2
||x2 − yk2 ||22 (6.25)

Further, for sub-network 2, the augmented OPF problem can be formulated with

updated y as follows,

y3 =

[
Plt, Qlt, Vl

]T
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With the objective function as

Min
∑
i:i→j

zijIij + (βk
3 )

T (x3 − yk3) +
ρ

2
||x3 − yk3 ||22 (6.26)

Once all the regions have done solving for the variable x then, the global variable y

is updated using Eq. (8) as,

y(1, 3, 5) = 0.5 ∗ [y1(1, 3, 5) + y2] (6.27)

y(2, 4, 6) = 0.5 ∗ [y1(2, 4, 6) + y3]

The primal and dual residual of the formulation are denoted as follows,

rk = ||xk − yk||2 (6.28)

sk = ρ||yk − yk−1||2

After that, the dual variable is updated using Eq. 6.38. Finally, the error is calculated

as,

errork =

∥∥∥∥∥∥∥
rk

sk−1

∥∥∥∥∥∥∥
2

(6.29)

The error threshold cut-off value is 10e−4. A global consensus is achieved if the error

value becomes less than the threshold.

6.3.6 Proposed Decentralized-SDP(D-SDP) OPF in ADMM Framework

6.3.6.1 Local OPF Problem for Each Area

-Based on the BFM-SDP model described in the previous sub-section, the local

OPF problem for each area can be formulated. For example, let’s consider the network

topology shown in Fig 6.1 where the whole network is partitioned into three local
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areas. The network partitioning can be done based on different aspects such as

geographical location, voltage regulator position, or location of the network switches.

Lets assume the set of buses of the local areas are denoted as N1 = {1 − 5, 6, 9},

N2 = {4, 6−8}, N3 = {5, 9−12}. Now the set of adjoining buses are N1∩N2 = {4, 6},

N1∩N3 = {5, 9}. Then the local OPF problems for each of these areas can be written

as follows:

Local OPF 1

Min

N1∑
i:i→j

zijIij

Local OPF 2

Min

N2∑
i:i→j

zijIij

Local OPF 2

Min

N3∑
i:i→j

zijIij

subject to

(25) - (30)

6.3.6.2 Distributed Formulation of OPF

Since all the local OPF problems are part of the global OPF for the whole network,

they need to communicate with each other to achieve the global optimal solution. To

do so, the objective functions of the local OPF problem are modified to the form

of an augmented lagrangian where the difference between local variable and global

variables are included along with the Lagrange multiplier and penalty parameters.
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The updated objective functions are as follows:

Min

N1∑
i:i→j

zijIij + (βk
1 )

T (x1 − yk1) +
ρ

2
||x1 − yk1 ||22 (6.30)

Min

N2∑
i:i→j

zijIij + (βk
2 )

T (x2 − yk2) +
ρ

2
||x2 − yk2 ||22 (6.31)

Min

N3∑
i:i→j

zijIij + (βk
3 )

T (x3 − yk3) +
ρ

2
||x3 − yk3 ||22 (6.32)

Here, x1, x2, x3 denotes the set of local variable, y1 = {v4, v5, v6, v9, P4,6, Q4,6, P5,9, Q5,9},

y2 = {v4, v6, P4,6, Q4,6} and y3 = {v5, v9, P5,9, Q5,9} are the set of global consensus vari-

ables. These global variables are needed to be updated in a separate step once the

central coordinator receives the information from local areas. Then, the Lagrange

multipliers β1, β2 and β3 are updated. In the objective functions, k denotes the num-

ber of iterations, and ρ stands for the penalty parameter. The ||.||2 denotes the second

norm of the variables.

6.3.6.3 Decentralization of the Distributed Model

In the fully decentralized proposed ADMM approach, the main contributions when

compared to the state-of-the-art are a) relaxing the global variable and introducing an

auxiliary local variable and b) introducing the convex model in the ADMM framework,

The combined formulation takes the form as

xk+1
i := argmin

x
{f(xi) +

ρ

2
||xi − wk||22} (6.33)

wk+1
i := wk

i + xk+1
i −

xk
i + xk

j

2
(6.34)
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For a generic network, as shown in Fig.6.1, the detailed implementation of the pro-

posed approach is explained below. The boundary bus i which is shared by adjoining

areas 1 and 2 will have it’s variables denoted as x1,i and x2,i. For the network in ex-

ample, x1,4 = x2,4 = y4, x1,6 = x2,6 = y6, x1,5 = x3,5 = y5 and x1,9 = x3,9 = y9. Now,

to implement the decentralized approach, a local auxiliary variable is introduced to

replace the global variable as

w1,4 = y4 −
β1,4

ρ
w1,6 = y6 −

β1,6

ρ

w2,4 = y4 −
β2,4

ρ
w2,6 = y6 −

β2,6

ρ

w1,5 = y5 −
β1,5

ρ
w1,9 = y9 −

β1,9

ρ

w3,5 = y5 −
β3,5

ρ
w3,9 = y9 −

β3,9

ρ

With the help of these local auxiliary variables, the update equation for area 1 can

be written as,

xk+1
1,i := argmin

x
{f(x1,i) +

ρ

2

∑
j∈N1∩N2∩N3

||x1,j − wk
1,j||22} (6.35)

wk+1
1,j := wk

1,j + xk+1
2,j −

xk
1,j + xk

2,j

2
; j ∈ N1 ∩N2 ∩N3 (6.36)

Here, the variable vectors can be expressed as, x1 = {v4, v6, P4,6, Q4,6, v5, v9, P5,9, Q5,9}

and wk
1 = {v̂k4 , v̂k6 , P̂ k

4,6, Q̂
k
4,6, v̂

k
5 , v̂

k
9 , P̂

k
5,9, Q̂

k
5,9}. Then the local OPF problem for area 1

will take the form as shown below:
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Min
∑
i:i→j

z1,ijI1,ij +
ρ1
2
[(x1 − wk

1)
2] (6.37)

subject to

(25) - (30)

Once the OPF is solved, the local auxiliary variable wk+1
1 is updated using (36), and

then the residuals are calculated for area 1 using the following equations:

rk1 = ||(xk
1,j − xk

2,j)/2|| (6.38)

dk1 = ||((xk
1,j + xk

2,j)− (xk−1
1,j + xk−1

2,j ))/2|| (6.39)

The convergence is assumed to be achieved once all the residuals are calculated and

max(rk, dk) ≤ ϵ. The error threshold cutoff value is 10e−4.

6.3.6.4 Auto Tuning of Penalty Parameter

If the convergence is not reached for the subproblem, then the penalty parameter

is updated using 6.40 based on the primal and dual residual ratio.

ρk+1
i =



ρki
1+τ

, if ||rki ||2 ≤ µ||dki ||2,

(1 + τ)ρki , if ||dki ||2 ≤ µ||rki ||2,

ρki , otherwise.

(6.40)

Here the value of ρ, τ , and µ are initialized at the beginning of the algorithm. The

update of the penalty parameter based on the relativity between the primal and dual

residual speeds up the convergence process. Since the penalty parameter update de-

pends only on the local residual, the decentralized approach stays operational without

the requirement of a central coordinator.
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Algorithm 2 Proposed Distributed OPF
1: Input network data.
2: Initialize y ← {1, 0}
3: Initialize ρ and β for ADMM formulation.
4: while (errork ≥ 10−4) do
5: Update x1 for region 1 using (6.24)
6: Update x2 for region 2 using (6.25)
7: Update x3 for region 3 using (6.26)
8: Update y using (6.27)
9: Update β for each region using (6.9)

10: Calculate primal and dual residual using (6.38)
11: error ← max(rk, dk)
12: end while

Algorithm 3 Proposed D-SDP ADMM
1: Initialize β ← rand, y ← {1, 0} and ρ← 10 for each subsystem.
2: Initialize µ← 0.1 and τ ← 1
3: Initialize the error ← 100.
4: Solve local OPF for each subsystem using objective function as (6.11).
5: All the adjacent subsystems share the solution for consensus variables.
6: Update the local auxiliary variables using (6.12).
7: Broadcast the updated local auxiliary variables to the adjacent subsystems.
8: Calculate the local primal and dual residuals, ra, da in all subsystems.
9: error ← max(rk+1

a , dk+1
a )

10: if (error ≥ 1e−4) then
11: Update the penalty parameter in each subsystem using (6.13)
12: end if

6.4 Result and Analysis

To test the scalability of the proposed approach, a large distribution network such

as a modified IEEE 123 bus system is utilized. The existing network is three-phase

and unbalanced. For this approach, the single-phase version is used, which is the

positive sequence equivalent of the existing network. The system operates at 4.16KV.

The total load connected to the system is 1163.3KW and 640KVAR. Some further

modifications were also done. Some distributed generation (DG) plants are introduced

into the system. The capacity of the DG generation is 10% of the total connected

load. The maximum active power generation capacity of the DG plants is considered
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equal to the active power demand of the respective bus. And the KVA rating of the

DG plants is considered 120% of the active power rating. The plants’ upper and lower

bound for the reactive power generation capacity are calculated.
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Figure 6.2: Modified IEEE 123 bus system with 10% DG penetration

Then the whole network is divided into three regions. There are switches between

nodes 20-118 and 15-117. The partitions are made on the location of those two

switches. The area containing substation node 1 is considered the master network.

This area is marked with a blue line in the figure. Next, the area enclosed by the red

line is considered sub-network 1. This is connected to the master network through

the switch between 20-118. Finally, the rest of the network is considered sub-network

2, connected to the master network through the switch at 15-117 and marked by a

green line in the figure. A single-line diagram of the network along with the DG

plant’s location in all three regions is shown in Fig.6.2.

In this case study, different scenarios were run for different values of penalty factor

ρ. It is known that primal and dual residual values, as well as the convergence speed,

depend greatly on the value of the penalty factor. A higher-valued penalty factor

increases dual variables; on the other hand, primal residual increases for smaller
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Figure 6.3: Comparison of substation active and reactive power, line power through
connecting lines, and active power loss for different scenarios.

penalty factors. Here we ran the simulation for different values of ρ such as, ρ =

0.7, 1.0, 10, 50, 100. The change in the number of iterations for convergence with the

change of penalty factor is observed. We can see in Fig.6.6 that, as the penalty factor

value increases, the value of dual residual increases. Though with a higher value of

penalty parameter, the gap between primal and dual residual decreases faster, the

solution for the lower value of ρ is more optimal. That statement can be proved
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Table 6.1: OPF solution comparison

Units
KW/Kvar

Centralized
BFM-SDP

Distributed
Non-ADMM

Distributed
(ρ =)

0.7 1 10 50
P_sub 921.0474 921.5347 921.4553 921.5349 1006.326 1152.632
Q_sub 251.0378 299.4837 287.1654 288.0038 477.5972 760.4315
P_loss 16.0574 16.5447 16.4653 16.5449 101.3359 247.6421
P20−118 182.0654 182.1052 182.0667 182.0667 182.0837 182.0843
Q20−118 111.0626 126.2216 111.1589 111.149 111.6502 111.1006
P15−117 502.3250 502.3033 502.3359 502.4029 502.6494 502.6225
Q15−117 10.61 42.9596 16.4653 11.4644 11.3007 11.1947
Time (s) 0.31 0.35 0.32 0.34 0.31 0.30

by the numerical results showcased in Table 6.1. The performance of the proposed

approach is also compared with another distributed OPF method proposed in [115]

which is noted as "Distributed (Non-ADMM) in the Table and figures. To compare

the solution of the proposed approach with the centralized OPF solution, the active

and reactive power generation from the substation, the total active power loss in the

system, and the node voltage profile are compared in Fig. 6.3. It can be seen in

Table 6.1 that, with the decrease of the value of ρ, the number of iterations increases,

albeit the resultant voltage profile is closer to the centralized OPF solution’s profile.

The comparison of the voltage profiles is shown in Fig. 6.5. It is also evident the

significance of choosing an appropriate penalty parameter. Since the formulation fails

to converge for a lower value as ρ = 0.1. The percentage optimality of the solution

from different values of the penalty factor can also be realized using the % error with

respect to the solution from the centralized approach. The % error in substation

active and reactive power is shown in Fig. 6.7.

6.4.1 Performance Analysis of D-SDP ADMM OPF

The proposed methodology is implemented on the following two IEEE test systems,

real-life feeders of power distribution systems. They are a) modified IEEE 123 bus

system as shown in Fig 6.8 and b) modified IEEE 8500 bus system as shown in Fig
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Figure 6.4: Voltage profile comparison among centralized OPF solution and proposed
distributed approach for different penalty factor values.

6.8

The IEEE-123 bus system is a heavily loaded feeder with one three-phase and 3

single-phase voltage regulator and four shunt capacitors. This power grid model has

been used to prove the applicability of the proposed OPF algorithm on a system with

more number of regulators. For this purpose, the converted single-phase network

is considered for OPF modeling using the OpenDSS software. First, a single-phase

representation of the Y bus is performed using a positive sequence representation of

the three-phase Y bus. Then from the Y bus matrix, the line impedance values are

extracted. The connected loads are also converted similarly. Table. 6.2 represents

the power grid loading.

Table 6.2: Test systems description

Sl
No

Test
System

Volt.
Reg. Trans. Shunt

Caps
Avg
R/X

Total
Load

1 IEEE 123 4 1 4 0.2645 1.1633 MW
0.64 MVAR

2 IEEE 8500 4 1177 4 0.2145 3.3252 MW
0.8335 MVAR



120

20 40 60 80 100 120

Bus

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

V
o

lt
a

g
e 

M
a

g
n

it
u

d
e 

(p
u

)

Centralized

Distributed (Non-ADMM)

Distributed (Rho = 0.7)

Distributed (ADMM approach 2)

Figure 6.5: Voltage profile comparison among centralized OPF solution and proposed
distributed approach for different penalty factor values.

The 8500-node test feeder consists of multiple feeder regulators, capacitor banks,

split-phase service transformers, and feeder secondaries. The circuit has a 115kV

source, 12.47kV medium voltage feeder sections, and a 120V low voltage feeder sec-

tion. There are 4876 three-phase, two-phase, and single-phase medium-voltage nodes.

The single-phase nodes are connected to 1177 split phase transformers. The two sec-

ondaries of these transformers are connected to load nodes using triplex lines. There

are 3041 A phase nodes, 2830B phase nodes, and 2660C phase nodes. Table. 6.2

represents the power grid loading.

For evaluating the performance of the proposed approach on the power grid with

DER, a 10%, 30%, and 50%, DER penetration is considered by placing DERs ran-

domly at different locations on the feeder. The capacity of the DERs is considered

equal to the loads connected to that bus. The reference bus voltage is considered as

1.05 pu. The upper and lower bound of voltage magnitude are set as 1.05 pu and 0.95

pu. For the IEEE 123 bus system, the base MVA is 5MVA; for the IEEE 8500 bus,

the base MVA is set as 1MVA. The details of the DERs, including the location (bus

number), size, and total number, are illustrated in Table. Table. 6.3 and Table. 6.4
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Figure 6.6: Primal and Dual residual values for the different magnitude of penalty
parameters.

for IEEE 123 and IEEE 8500 node system. The active power generation of the DERs

is considered equal to the bus’s active power demand. The solution of the proposed

decentralized method is compared with other state-of-the-art, including centralized

OPF, consensus ADMM-based OPF, residual balanced ADMM-based OPF, Acceler-

ated ADMM OPF, and Decentralized ADMM-based SDP-OPF. All the coding was

done in the MATLAB platform using the YALMIP optimization toolbox and MOSEK

solver.

6.4.2 The IEEE 123 node system:

First, the accuracy of the proposed method is analyzed on the base case (with-

out any DERs). The analysis is when compared to other centralized and distributed

methods. As the Nonlinear Programming (NLP) formulation provides a globally op-

timal solution (for near equilibrium conditions), the proposed approach is compared

with the NLP. The comparisons are with four distributed optimal power flow algo-

rithms viz. consensus ADMM (C-ADMM), residual balanced ADMM (RB-ADMM),

Accelerated ADMM (A-ADMM), and decentralized ADMM (D-ADMM), one cen-



122

0.7 1 10 50 100

Penalty Parameter

0

50

100

150

200

250

%
 e

rr
o
r

%error in Psub

%error in Qsub
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Figure 6.8: Modified IEEE 123 bus system with IBR Based DERs.

tralized approach based on NLP and the proposed D-SDP ADMM. Fig. 6.10 shows

the comparisons; It can be seen that the proposed approach provides an immediate

optimal solution when compared with NLP. It can also be seen that the solutions

from other approaches are not accurate when compared to NLP.

In Fig 6.10, the comparison of voltage profiles from different approaches is shown.

It can be observed that the distributed approaches such as A-ADMM, RB-ADMM, D-

ADMM, and C-ADMM are deviating from the global optimal solution. As illustrated,

the proposed approach can provide the closest solution to the globally optimal values

in the NLP. Further comparisons for higher levels of DER penetrations are performed.

From Fig.6.11 it can see that the solution from A-ADMM deviates most from the NLP



123

Table 6.3: DER location and rating for different penetration levels in IEEE 123 bus
system

DER
%

DER
Location

DER Power
Capacity
(KW)

DER Power
Capacity
(KVA)

10%

11,30,89,102 13.33 16
50 70 84
60 6.667 8
67 46.667 56
78 81.66 98

30%

8,11,18,2130,32,37,45,
64,77,89,101,102,106,109 13.33 16

53,57,60,86,98,113,116 6.667 8
50 70 84
67 46.667 56
78 81.66 98

50%

8,11,18,21,24,26,30,32,35,
37,45,55,64,71,77,81,84,89,
92,96,101,102,106,109,111

13.33 16

4,14,19,34,40,43,47,53,57,60,
86,98,113,116 6.667 8

50 70 84
67 46.667 56
68 25 30
78 81.66 98

solution and the voltage profile is very close to the lower bound for most buses. To get

a better comparison Fig. 6.12 is provided where all other profiles except A-ADMM

are compared. It can be seen that the profiles are close, but there are gaps among

NLP solutions and other approaches, while the proposed approach was able to be the

most accurate method.

Fig. 6.13 and Fig.6.14 shows a similar trend of the solution from the A-ADMM

approach. In Fig. 6.14, it can be seen that as the level of penetration increased, the

gap among the distributed ADMM profiles when compared to the central solutions

while the proposed method still gives the most accurate solution. Results showed

Fig. 6.15, and Fig. 6.16 validate the claim that the A-ADMM fails to provide the
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Table 6.4: DER location and active power rating for 10% DER penetration in 8500
bus system

DER
% DER Location

DER Active
Power Rating

(KW)

DER Capacity
(KVAR)

10%

1102,1183,1274,1368,1408,
1502,1642,1669,1674,1691,
1740,1816,1868,1883,2018,
1928,1969,1992,2043,2054,
2081,2092,2112,2139,2149,
2167,2180,2209,2299,2340,
2355,2364,2404,2420,2456,

2462,2516

2.9570 3.5484

34,43,59,62,66,69,102,120,
149,151,162,194,200,213,224,
230,239,247,252,267,284,329,
363,372,384,402,409,432,486,
502,607,612,621,690,761,794,
800,823,833,850,885,899,928,
951,995,1038,1138,1146,1239,

1304,1313,1321,1416,1466,1473,
1647,1713,1723,1809,1860,1907,
1911,1938,2066,2097,2188,2194,

2311,2321,2326,2429,2468

3.3900 4.068

23,40 5.0870 6.1044
2520 5.9130 7.0956
2485 29.560 35.472

global optimal solution while the proposed D-SDP ADMM approach still guaranty

the exact solution for any level of DER penetration.

The consensus ADMM-based OPF converged to the optimal solution with a mi-

nor gap compared with the global optimal solution from centralized OPF. Similar

convergence was achieved using the residual balanced ADMM-based OPF. Since the

residual balanced approach updates the penalty parameter after each iteration, it

shows a faster convergence speed. This is evident from data provided in Table6.5. In

the accelerated ADMM-based distributed OPF, the global variable and Lagrangian

multiplier are updated in additional steps. It is noted that this approach does not
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Figure 6.9: Modified IEEE 8500 bus one line diagram IBR Based DERs location.

Figure 6.10: Voltage profile comparison of modified IEEE 123 bus system with no
DG penetration.

guarantee faster convergence and globally optimal solutions all the time. The solution

from the decentralized ADMM was closest to the global optimal solution, although it

takes more iterations to achieve convergence. In the proposed approach, the penalty
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Figure 6.11: Voltage profile comparison of modified IEEE 123 bus system with 10%
DER penetration.

Figure 6.12: Voltage profile comparison of modified IEEE 123 bus system with 10%
DER penetration.

parameter auto-tuning helps speed up the convergence.

The exactness of the solution from the proposed D-SDP ADMM method is further

illustrated from the information provided in Table. 6.7. In Table. 6.7 substation

active and reactive power dispatch, along with the number of iterations and total



127

Figure 6.13: Voltage profile comparison of modified IEEE 123 bus system with 30%
DER penetration.

Figure 6.14: Voltage profile comparison of modified IEEE 123 bus system with 30%
DER penetration.

computational time to converge from different distributed methods, i.e., centralized

NLP, C-ADMM, RB-ADMM, A-ADMM, D-ADMM, and proposed D-SDP ADMM

for base system and 10%, 30% and 50% DER penetration cases are compiled. The

speed of the convergence for different methods can also be visualized from the plotting

of residuals. Fig 6.17-Fig 6.19 shows the residual profiles from different approaches

for different test system cases. In chronological order, the figures represent the base

system, 10%, and 30% DER penetration cases. It can be seen that the profiles from
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Figure 6.15: Voltage profile comparison of modified IEEE 123 bus system with 50%
DER penetration.

Figure 6.16: Voltage profile comparison of modified IEEE 123 bus system with 50%
DER penetration.

C-ADMM and RB-ADMM have similar slop while A-ADMM has the steepest slope

among the profiles. However, in the earlier discussion, it has been shown that A-

ADMM fails to provide the global optimal solution. The proposed D-SDP ADMM

method doesn’t have the fastest convergence property but is faster than the C-ADMM,

and RB-ADMM approaches and ensures the global optimal point. Please note that

residue for 50% DER penetration case is similar to that of 20% DER penetration

case, thus been omitted.
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Figure 6.17: Residual comparison of modified IEEE 123 bus system base case.

Figure 6.18: Residual comparison of modified IEEE 123 bus system with 10% DER
penetration.

6.4.3 Scalability Analysis (IEEE 8500 node system):

Once the proposed model could provide satisfactory results for the modified IEEE

123 bus system, it was tested on another real-world test network, the modified IEEE

8500 node system. In this case, 10% DER penetration was considered. The whole

network was partitioned into four interconnected subsystems. The numerical compar-

ison of the solution for different approaches is showcased in Table. 6.7. Although few
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Figure 6.19: Residual comparison of modified IEEE 123 bus system with 30% DER
penetration.

of the methods, i.e., residual balanced ADMM, accelerated ADMM, and decentral-

ized SDP ADMM, could not converge to an optimal solution for the given threshold

value. As shown before, the proposed method shows similar convergence properties

compared with the consensus ADMM method. The number of iterations and conver-

gence time is higher in the proposed method, but the solution is the closest to the

global optimal point. From Fig.?? it can be seen that there is a significant gap in

the consensus ADMM while the profile from the proposed approach is almost simi-

lar to the centralized solution. Fig.6.20 shows the maximum residual profile in each

iteration while solving the 8500 bus system using the proposed method. It is evident

from the slope of the plot that the auto-tuning of the penalty parameter significantly

improved the speed of convergence.

6.4.4 Validation Through Real-time Simulation

The numerical solution comparison from Table 6.7shows that the proposed dis-

tributed approach can converge at the global optimal solution with conclusive tight-

ness compared to the centralized and non-linear approaches. For further validation

and real-time applicability of the proposed method, the solution was validated using
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"

Figure 6.20: Residual comparison of modified IEEE 8500 bus system with 10% DG
penetration.

a real-time power system simulator Opal-RT. The real-time simulation and validation

setup is shown in Fig 6.21. The DER setpoints, such as active and reactive power

dispatches for each DER inverter, are transmitted to a similar model built inside

the Opar-RT simulator, and power flow was solved. Once done, the active and re-

active power dispatches from the Opal-RT simulation substation and the proposed

method’s similarities are very conclusive. These steps are simulated for a load profile

over 12 hours. The % error of the voltage profile from these two approaches is shown

in Fig 6.22. We can see that the maximum error is around 1.3%, which indicates

that the solutions are very similar. Also, the substation active and reactive power

dispatches from Oplar-RT simulations and the same from the OPF solution are com-

pared in Table6.9. From the Table, we can see that the solutions are almost similar,

thus conclusive. Since the objective function selected was to minimize the line active

power losses, thus, by comparing the substation active power dispatch, we can confirm

that the proposed approach’s solution is conclusive. Also, in the Opal-RT platform,

each simulation takes around 60ms, while the proposed approach consumes around

25.41s. In real-world DSO, the operators usually perform the real-time dispatch on

a 5 min time resolution. Since the computational time of our proposed approach is
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well below the 300s mark, it can be confirmed that the proposed approach can also

be implemented in actual world operations.

Figure 6.21: setup used for real-time simulation and validation using Opal-RT.

Figure 6.22: % Error of bus voltage magnitudes from proposed approach and OpalRT
simulation.
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6.5 Decentralized and Distributed Approach for Unbalanced System OPF

Problem

The numerical complexity of the optimal power flow problem for unbalanced net-

works significantly scales up with the networks’ size and the levels of DER penetration.

An alternative to solving such a complex problem in a centralized order is to follow

the distributed approach. Similar to the algorithm of ADMM-based distributed OPF

models for single-phase networks, a distributed approach for the three-phase unbal-

anced network will be discussed in this section.

Let us consider that several small local networks are connected through tie lines.

And all the local areas have access to the information of the adjoining buses to

their adjacent networks. Similar to the objective functions stated in ??, let’s assume

x = [vϕi

i , S
ϕij

ij ] is the set of control variables and y is the set of global consensus

variable. Also, let us denote β and ϕ as the Lagrange multiplier and penalty param-

eter for the augmented lagrangian equation. Then the expression of the augmented

lagrangian equation will be as follows:

Lρ(x, y, β) =
N∑
i=1

(f(xi)) + βT (xϕ
i − yϕ) +

ϕ

2
||xϕ

i − y||22 (6.41)

Although the actual expression in the modeling will not be as simple as shown here.

Since the voltage of a bus of an unbalanced network, V is a 3 ∗ 3 complex matrix,

the product of V V ∗ will also be a complex matrix of dimension 3 ∗ 3. If an objective

function contains complex entities in an optimization model, it cannot be considered a

convex optimization problem. That’s why all the variable matrices will be separated

by their real and imaginary counterparts and included in the objective function.

The next concern is that the 2-norm of a matrix is a non-linear term, which is not

convex. The matrices will be reshaped as a vector before the norm is calculated. Two

approaches were compared for the distributed OPF formulation of an unbalanced
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network. The consensus ADMM and proposed decentralized ADMM. They are briefly

discussed here.

6.5.1 Consensus ADMM Based Distributed OPF for Unbalanced Network

Let us consider the same network shown in Fig 6.1 where 3 sub-networks are inter-

connected through tie lines. Area 1 is connected to area 2 through tie line (4-6) and

area 3 through tie line (5-9). Area 1 has access to bus 5 and 9 information such as

voltages. Thus extended portion of area 1 will also include buses 5 and 9 while solving

the local OPF problem. Similarly, areas 2 and 3 will consist of buses 4 and 5 while

solving their local OPF. The control or primal variable update objective function will

take the form as shown below:

Area 1: xk+1
1 := argmin

x
{f(xi) + (βk

1 )
T ([Re(x1); Im(x1)]− [Re(yk1); Im(yk1)])+

ρ

2
||Reshape(Re(x1)−Re(yk1))||22 +

ρ

2
||Reshape(Im(x1)− Im(yk1))||22}

(6.42)

Area 2: xk+1
2 := argmin

x
{f(xi) + (βk

2 )
T ([Re(x2); Im(x2)]− [Re(yk2); Im(yk2)])+

ρ

2
||Reshape(Re(x2)−Re(yk2))||22 +

ρ

2
||Reshape(Im(x2)− Im(yk2))||22}

(6.43)

Area 3: xk+1
3 := argmin

x
{f(xi) + (βk

3 )
T ([Re(x3); Im(x3)]− [Re(yk3); Im(yk3)])+

ρ

2
||Reshape(Re(x3)−Re(yk3))||22 +

ρ

2
||Reshape(Im(x3)− Im(yk3))||22}

(6.44)
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The set of constraints will be the same as those used for BFM-SDP OPF in unbalanced

networks in chapter 5.

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij (6.45)∑

i:i→j

diag(Sij − zijlij)
ϕj + sj =

∑
k:j→k

diag(Sjk)
ϕj

v1 = V ref
1 (V ref

1 )H

V min
i ≤ diag(vi) ≤ V max

i

smin
i ≤ si ≤ smax

ivϕij

i Sij

SH
ij lij

 ≽ 0

Once the primal variable is updated, next the global variables will be updated using

the information gathered in the central coordinator as shown below:

Area 1 : yk+1
1 =

xk+1
1 + [xk+1

2 ;xk+1
3 ]

2
(6.46)

And finally, the Lagrange multiplier will be updated as

Area 1 : βk+1
1 := βk

1 + ρ(xk+1
1 − yk+1

1 ) (6.47)

Next, the residuals will be calculated for all the areas, and until the maximum of

the primal and dual residual stays higher than the threshold value, the algorithm

iterates. Proposed Decentralized Approach for Unbalanced System A distributed ap-

proach consists of a central coordinator, the communication setup required to collect

data from all the local areas, and transmitting back the global consensus variable val-

ues may cause traffic congestion sometimes. As a remedy to this issue, the proposed

decentralized approach was motivated. As described in section 6.3.6.3, in this frame-
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work, only the adjacent areas communicate with each other removing the necessity

of a central coordinator. The control variable update takes place as:

Area1 : xk+1
1 := argmin

x
{f(xi) +

ρ

2
||Reshape(Re(x1)−Re(wk

1))||22 +

ρ

2
||Reshape(Im(x1)− Im(wk

1))||22} (6.48)

The constraints for the power balance will be the same as they are in 6.45. Next, the

local auxiliary control variables will be updated as

Area1 : wk+1
1 := wk

1 + xk+1
1 − xk

1 + xk
2

2
(6.49)

Then the primal and dual residual values will be calculated and compared for the

convergence test.

6.5.2 Implementation of Distributed Approach for Unbalanced Network

Once the proposed decentralized distributed approach was validated for the single-

phase networks, it was further extended to the unbalanced multi-phase networks. A

modified portion of the IEEE 123 bus network is considered for the test system. It

consists of 74 buses, one OLTC near the substation, and 2 voltage regulators. The

total load connected to 3 phases is 855KW, 465KVAR at phase A, 505KW, 295KVAR

at phase B, and 705KW, 395kVAR at phase C. There are DERs connected at buses

11, 30, 50, 60, and 67. The active power capacity of the DERs is considered equal to

the load connected to that specific bus. The apparent power capacity of the inverters

is 120% of the active power capacity. This network is then partitioned into three local

areas based on the position of switches. The threshold value for the convergence of the

primal and dual residuals was considered as 1e−3. The value of µ and τ were selected

as 0.1 and 1.0. In the consensus ADMM approach, the value of the consensus variable

was considered 0 and 1 as a flat start. The initial value of the Lagrange multiplier
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was set as random numbers. The performance of the two methods was compared with

the help of the maximum residual value and objective function value throughout the

iterations. They are shown in Fig. 6.24. The first figure shows how the value of

residuals changed in iterations. We can see that the consensus ADMM reached the

cutoff value of 1e−2 before the proposed D-SDP ADMM approach because, at that

point of iteration, the proposed method started to slow down in reducing the residual

value. A similar characteristic is also seen in the next figure showing the plot of

objective function values. This figure shows that the value of the objective function,

line losses, in this case, follows almost the same path as it did in the consensus ADMM

method. Although in the case of single-phase models, we have seen that the proposed

method showed better performance in the accuracy of the solution, in this case, it

didn’t perform as much better as anticipated. Since in the proposed method, the

penalty parameter is tuned and two weighting factors µ and τ play an important role

in convergence, thus it requires careful tuning of those two parameters’ values for

faster convergence.

6.6 Summary

This chapter has formulated a fully distributed approach to solving the convexi-

fied OPF problem for a radial power system. The scalability of the formulation has

been tested on a modified IEEE 123 bus system with 10% DG penetration. This

formulation can also apply to larger networks. The significance of choosing a proper

penalty factor is shown by simulating different case scenarios. This formulation can

improve the time of convergence for realistic large networks by splitting the system

into small regions and solving the problem in parallel while ensuring inter-regional

coordination. The proposed decentralized distributed approach with auto-tuning of

penalty parameter helps to speed up the convergence as well as maintain high accu-

racy of the solution. Both of these methods are adaptable for real-time simulation

which has been tested implementing in OPAL-RT. Finally, the distributed and de-



138

Figure 6.23: Test system for distributed OPF algorithms for unbalanced networks.

centralized approaches are scaled up for the unbalanced networks and case studies

shown conclusive performance of the approaches.
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ADMM and proposed D-SDP ADMM OPF for unbalanced networks.
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Table 6.7: Comparison of substation power and number of iterations of Distributed
Optimization Methods

IEEE 123 Bus System with base case and different DG Penetration
All proposed methods are compared with 4 partitions

Comparisons Sub.
Power Base 10%

DG
30%
DG

50%
DG

Centralized
NLP

Psub
(KW) 1192.136 921.07 728.471 518.527

Qsub
(KVAR) 447.85 251.081 146.675 91.66

Iteration N/A N/A N/A N/A
Time (s) 0.4781 0.4772 0.4851 0.4869

Consensus
ADMM

(C-ADMM)

Psub
(KW) 1192.38 921.5 729.017 519.819

Qsub
(KVAR) 448.146 287.1 222.618 166.464

Iteration 166 108 130 179
Time (s) 38.3792 25.5744 31.213 42.1903

Residual
Balanced
ADMM

(RB-ADMM)

Psub
(KW) 1390.77 921.4 729.122 519.795

Qsub
(KVAR) 1327.48 287.1 222.662 166.502

Iteration 94 97 117 134
Time (s) 22.5885 23.4449 28.3374 32.264

Accelerated
ADMM

(A-ADMM)

Psub
(KW) 1152.40 922.847 607.636 581.744

Qsub
(KVAR) 1499.73 1266.08 1110.347 490.63

Iteration 52 14 32 54
Time (s) 12.2044 3.3418 7.5776 12.6954

D-ADMM

Psub
(KW) 921.536 921.2 729.112 518.746

Qsub
(KVAR) 309.92 251.3 274.48 24.256

Iteration 200+ 173 129 200+
Time (s) 47.84+ 41.2951 31.1019 47.76+

Proposed
Approach

Psub
(KW) 1192.362 921.2 725.548 518.507

Qsub
(KVAR) 448.024 251.144 153.271 114.81

Iteration 187 107 200+ 180
Time (s) 44.2442 25.4125 48.36+ 42.876
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Table 6.8: Summary of Observations

Objective Function- Loss Minimization
Methods Feasibility Optimality Accuracy Scalability
Centralized
NLP Feasible Global Opti-

mal
Most Accu-
rate

No

C-ADMM Feasible Global/Local
optimal

Accurate Scalable

RB-ADMM Feasible Global/Local
optimal

less accurate Scalable

A-ADMM Feasible Local optimal Inaccurate Scalable
D-ADMM Feasible Local optimal less accurate Scalable
Proposed
D-SDP
ADMM

Feasible Global opti-
mal

Very accu-
rate

Scalable

Table 6.9: Substation Active and Reactive Power Comparison between D-SDP OPF
and Realtime Simulation

D-SDP OPF Opal-RT PF
Hr Psub (MW) Qsub (MVAR) Psub (MW) Qsub (MVAR)
1 0.8462 0.2088 0.8508 0.1682
2 0.9305 0.2564 0.9341 0.2501
3 1.0907 0.3487 1.0913 0.3225
4 1.2627 0.4537 1.3132 0.4498
5 1.3764 0.5179 1.3687 0.5152
6 1.6080 0.6594 1.5907 0.6601
7 1.6860 0.7080 1.6647 0.6866
8 1.7936 0.7756 1.7665 0.7608
9 1.9413 0.8700 1.9051 0.8632
10 1.7348 0.7387 1.7111 0.7286
11 1.5790 0.6414 1.5799 0.6324
12 1.3094 0.4778 1.3183 0.4659
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Table 6.10: Numerical Solution Comparison for Different Distributed Approaches

Substation
Power Power Flow Centralized

OPF
Consensus
ADMM

D-SDP
ADMM

Active
Power
(KW)

Phase A 870.79 870.84 939.93 883.36
Phase B 507.17 507.17 465.30 524.89
Phase C 720.28 720.10 718.46 740.5

Reactive
Power
(KVAR)

Phase A 500.76 501.16 197.65 535.82
Phase B 303.81 304.07 272.69 331.1
Phase C 408.88 409.18 490.56 450.31



CHAPTER 7: Discrete Control of the Legacy Devices in Three-phase Distribution

Network

7.1 Introduction

In this chapter, a practical approach is proposed to solve the optimal power flow

problem for the power distribution network, which includes the discrete control of

the legacy devices such as voltage regulators and capacitor banks. In chapters 3 and

5, the convex optimal power flow problem has been formulated using the semidef-

inite relaxation method for branch flow models. In those formulations, the status

of the discrete devices was considered known parameters. Due to the intermittency

in renewable generation resources, the DSO faces severe challenges in maintaining a

smooth voltage profile. In earlier chapters, it’s already been shown that the reactive

power support from the DER inverters can improve the voltage profile significantly

and thus minimize the system-wide line loss. The motivation of this chapter is to

explore the scope of integrating the discrete device control with the optimal power

flow to minimize system loss further. Due to the lack of performance of the avail-

able MISDP solvers, the proposed approach decomposes the whole problem and is

implemented in a two-step way. Firstly, a linearized OPF problem will be formulated

for the unbalanced network. Then the integer control will be incorporated with the

LP-OPF, making it a non-linear problem. That problem will be linearized using the

big-M method, and the approximated MILP OPF problem will be completed. After

solving the MILP-OPF with initialized line loss values, the tap positions for the volt-

age regulators will be used to solve the proposed BFM-SDP OPF for an unbalanced

network. This process will continue in iteration, where in the next cycle, the line

loss values will be updated from the solution of BFM-SDP OPF. The iteration will
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continue until the losses from the successive iteration become equal, representing the

optimal tap position for the minimum line loss of the network.

7.2 Proposed Two-step Method for Discrete BFM-SDP OPF

This section will discuss the formulation of the LP-OPF, followed by the incorpora-

tion of integer control and linearization. Next, the BFM-SDP OPF formulation will

be discussed. Finally, the combined algorithm will be presented.

7.2.1 Linear Approximation of OPF

The original Optimal Power Flow is a non-linear problem. For the formulation of

the LP-OPF, the Distflow model is considered here. The distflow equations of the

power distribution network can be written as shown below:

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij (7.1)

∑
i:i→j

diag(Sij − zijlij) + sj =
∑
j:j→k

diag(Sjk)
ϕj (7.2)

SijS
H
ij = v

ϕij

i lij (7.3)

Here, vϕi

i denotes the voltage magnitude squared matrix of bus i and contains ϕ

phases, ϕ = {a, b, c}, lij denotes the current magnitude squared matrix of branch

between buses i and j, Sij represents the apparent power flow through the branch

and si denotes the injected power at bus i. To linearize the problem, two major

assumptions are considered.

• The line losses are negligible, zijlij ≪ Sij for i→ j

• The phase voltages are nearly balanced, i.e.,

V a
i

V b
i

≈ V b
i

V c
i

≈ V c
i

V a
i

≈ ej2π/3
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With the first assumption, the zijlij term can be neglected from the distflow equations.

Thus, equations 7.1 and 7.2 takes the form as shown below

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) (7.4)

∑
i:i→j

diag(Sij) + sj =
∑
j:j→k

diag(Sjk)
ϕj (7.5)

But, these form of the two equations creates a conflict. As it can be seen, 7.5 gives

us a feasible value for the diagonal entries of the branch apparent power Sij, but not

the off-diagonal entries. In this regard, from the second assumption, the off-diagonal

entries can be approximated using the following matrices,

α = e−j2π/3

γ =


1 α2 α

α 1 α2

α2 α 1


If we assume the phase voltages to be balanced, then by introducing a new expression

Ω, such as

Sij = γϕijΩij (7.6)

where, Ωij = diag(Sij) for the branch between buses i and j. Also, a loss term

will be initialized at the beginning of the formulation and included in the power

balance constraint as a parameter. Let’s denote the loss term as η. And with this
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approximation, the LP-OPF can be formulated as,

Minimize f(x) (7.7)

Subject to,

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) (7.8)

Sij = γϕijΩij (7.9)∑
i:i→j

(Ωij − ηij) + sj =
∑
j:j→k

Ω
ϕj

jk (7.10)

v0 = vref (7.11)

vmin ≤ vϕi

i ≤ vmax (7.12)

smin ≤ sϕi

i ≤ smax (7.13)

7.2.2 Including Discrete Control and Linearizing to MILP

Once the LP-OPF formulation is prepared, the regulator integer control is included.

Let’s assume the branch between bus i and j consists of a voltage regulator. Now,

the primary and secondary voltage relation can be depicted as

vreg = t2ij ∗ vj (7.14)

where vreg is the primary node and vj is the secondary node of the regulator. tij is

the tap ratio of the regulator, which can be written as

t
ϕij

ij = tmin
ij + Tij∆tij (7.15)

∆tij = (tmax
ij − tmin

ij )/Kij (7.16)
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here, tmin and tmax are the minimum and maximum ratios for the regulator. Now,

we can write the Tij in terms of a binary variable pij,n as shown below:

tij = tmin
ij +∆tij

Nij∑
n=0

2np
ϕij

ij,n (7.17)

Nij∑
n=0

2np
ϕij

ij,n ≤ Kij (7.18)

Here, Nij is the length of a binary representation of Kij. Multiplying both side of

3.24 with vj and defining new variables mij = tijvj and x
ϕij

ij = p
ϕij

ij,nuj hereby obtained

mij = tmin
ij vj +∆tij

Nij∑
n=0

2nx
ϕij

ij,n (7.19)

Now, xϕij

ij = p
ϕij

ij,nuj can be equivalently replaced with the help of big-M method using

the following equations

0 ≤ vj − x
ϕij

ij,n ≤ (1− p
ϕij

ij,n)M (7.20)

0 ≤ x
ϕij

ij,n ≤ p
ϕij

ij,nM (7.21)

Applying the similar procedure to form vreg = tijmij and defining a new variable

y
ϕij

ij,n = p
ϕij

ij,nmij

vreg = tmin
ij +∆tij

Nij∑
n=0

2ny
ϕij

ij,n (7.22)

0 ≤ mij − y
ϕij

ij,n ≤ (1− p
ϕij

ij,n)M (7.23)

0 ≤ y
ϕij

ij,n ≤ p
ϕij

ij,nM (7.24)
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Now, combining these equations with the LP-OPF model, the MILP-OPF formulation

will be completed as shown below,

Minimize f(x) (7.25)

Subject to,

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij )

Sij = γϕijΩij∑
i:i→j

(Ωij − ηij) + sj =
∑
j:j→k

Ω
ϕj

jk

v0 = vref

vmin ≤ vϕi

i ≤ vmax

smin ≤ sϕi

i ≤ smax

(7.18)− (7.24)
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7.2.3 BFM-SDP OPF for Unbalanced Network

The same formulation will be used to solve the convex optimal power flow for the

unbalanced network, which is proposed in chapter 5. The model is stated below,

Minimize
∑
j:i∼j

(zijlij) (7.26)

Subject to,

vj = v
ϕij

i − (Sijz
H
ij + zijS

H
ij ) + zijlijz

H
ij∑

i:i→j

diag(Sij − zijlij)
ϕj + sj =

∑
k:j→k

diag(Sjk)
ϕj

v1 = V ref
1 (V ref

1 )H

V min
i ≤ diag(vi) ≤ V max

i

smin
i ≤ si ≤ smax

ivϕij

i Sij

SH
ij lij

 ≽ 0

In this BFM-SDP OPF model, the tap position is considered a parameter that will

be provided from the solution of the proposed MILP-OPF.

7.2.4 Combined Two-Step Formulation

As indicated earlier, the complete discrete control is decomposed into two steps

and solved iteratively until the gap in the loss term converges.

7.3 Result and Analysis

The proposed MILP and SDP optimization models have been developed in YALMIP

and MATLAB, where the algorithms used appropriate solvers such as Gurobi and

Mosek for individual problems. All the tests are conducted on a Dell machine with a

2.5GHz Core i5 processor and 16GB memory.

The proposed model is tested in a small network of 5 buses, a small portion of the
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Figure 7.1: Flowchart of two staged MILP-SDP OPF framework
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Algorithm 4 Combined MILP-SDP OPF
1: input network parameters
2: initialize line losses Ploss_init ← 1e−4

3: iter ← 1
4: while Gap ≥ 0 do
5: Solve the MILP-OPF using (7.25)
6: Recover the tap position from solution
7: Initialize the tap setting for BFM-SDP OPF
8: Solve BFM-SDP OPF using (7.26)
9: Gap = abs(Ploss_init − Ploss)

10: if Gap ≥ 1e−4 then
11: Ploss_init ← Ploss

12: iter ← iter + 1
13: end if
14: end while

IEEE 123 bus system. It contains an OLTC in the first line after the substation node.

Three loads are connected in the system, and all are considered constant PQ loads.

There is a three-phase balanced load connected to bus 3, a single-phase load on bus 4,

and a two-phase load connected to bus 5. Total connected load 220 KW/ 110 KVAR.

The tap of the OLTC can change from {-16 to 16}. The numerical solution of the

proposed method for the small 5-bus system is compared to the power flow solution

for the exact tap position of the voltage regulator. Since we had no access to other

MISOCP or MINLP algorithms at the point of testing, it was impossible to compare

the solution of the similar problem from different approaches. In the test study, the

substation voltage was considered at 1.0 p.u. The objective was to minimize the line

loss. After the sub-problems converged, the tap position of the regulators found was

0, 0,−6. Then, the system’s power flow was solved using the same tap position. The

total time consumed by the solver to converge in the MILP-SDP-OPF method was.

First, the voltage magnitude profiles from both the OPF and power flow were com-

pared. The Comparison is shown in Fig. 7.2. We notice a minimum mismatch in the

voltages in phase C due to the mismatch in the reactive power injection in that phase.

The numerical solutions containing substation active and reactive power dispatch and
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Figure 7.2: Voltage profile comparison of MILP-SDP OPF and Power flow for 5 bus
networks.

the total line losses are summarized in Table 7.1. From that table also, we can see

that the gap in the active and reactive power injection in phase C is marginally more

than in the other two buses. Albeit, the maximum %error for all those values is less

than 1%, which indicates that the solution is conclusive.

Table 7.1: Numerical Solution Comparison

MILP-SDP OPF Power Flow
Active
Power
(KW)

Reactive
Power
(KVAR)

Active
Power
(KW)

Reactive
Power
(KVAR)

Substation
Power

Phase A 80.0111 40.108 80.011 40.103
Phase B 40.005 19.997 40.005 19.994
Phase C 100.111 50.167 100.971 50.081

Total Loss (KW) 0.1277 0.9880

7.4 Summary

The proposed two-step method is an initiative to solve the MISDP problem in a

decomposed manner. It is tested on a small network to validate the accuracy of the
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solution. To scale up the network, the MILP approach can be solved for IEEE 123 bus

network. The part left is formulating a generic approach to synchronize the branch

losses updated from the BFM-SDP-OPF solution. Once the generic incorporation is

done, then the scalability of the approach can be tested. Also, if any other MINLP

or MISOCP solution becomes available, then the comparison of the proposed method

can be tested for its performance with different approaches.



CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In this dissertation, we have proposed Optimal Power flow, and Unit Commitment

approaches for transmission and power distribution networks with and without Dis-

tributed Energy Resources (DER) based on Semi Definite Programming (SDP) vari-

ant of convex optimization. The OPF formulation also extended to the unbalanced

multi-phase networks, including legacy devices such as voltage regulators, transform-

ers, capacitor banks, and the mutual coupling of the branches. Finally, we have

presented distributed and decentralized approaches for solving OPF in partitioned

networks.

8.1 Conclusions

First, an alternative bus injection model-based SDP relaxed OPF formulation for

the distribution system is proposed, which reduces the computational complexity by

using the matrix entries for constraint formulation rather than the whole matrix. An

SDP relaxed OPF formulation is also presented using a branch flow model, including

integer control. It has been observed that

• This alternative BIM-SDP OPF formulation is exact and provides the global

optimal solution for the system.

• This formulation is scalable and can be implemented on larger power distribu-

tion systems.

• The BFM-SDP OPF provides a solution with a minimum optimality gap and is

scalable for large networks. The integer control can be combined with the OPF

formulation, and solutions are the global optimal solution after a conclusive

comparison with the original non-linear OPF solution.
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Second, a two-staged formulation of the combined UC-OPF problem is proposed.

The unit commitment problem is solved in a MILP manner, and the OPF is solved in

a BIM model-based SDP relaxed approach. Both the problem is solved in iteration

until convergence is achieved. The other observations are

• The unified Mixed Integer Semi Definite Program(MISDP) formulation is exact

and provides a global solution for larger systems.

• It includes the power loss term in the power balance constraint, which was

neglected in the original UC problem.

• It does not leverage the rounding operation of the integer variable. Thus the

solution is more accurate.

• The proposed branch and bound approach can provide the most economic solu-

tion for small networks but the performance starts to deteriorate as the system

size increases.

Next, a branch flow model-based SDP relaxed OPF is formulated for multi-phase un-

balanced radial distribution systems. The OPF problem formulation for multi-phase

networks is always complex. Following are the aspects observed in the formulation

• This formulation includes voltage regulator modeling of the network. That’s

why the formulation is more exact.

• The formulation considers the mutual coupling of the branch impedance matrix,

which makes the solution more tight and accurate.

• This formulation is scalable and tested for large distribution networks which are

radial and unbalanced in topology.

• The proposed method can be adapted for receding horizon control which can

include inter-temporal constraints.
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Later, a distributed formulation of OPF is proposed. It is formulated based on the

alternating direction method of multipliers(ADMM), and the underlying OPF formu-

lation is based on BFM-SDP. The distributed OPF is proven effective for large power

networks with higher DG penetration, and the solutions of the distributed approach

are found to be conclusive when compared with the solution to the centralized OPF

problem. The key observations are

• The distributed formulation is exact and tight and provides an accurate solution

compared with the centralized approach.

• This formulation reduces the computational stress of solvers for the larger net-

works.

• ADMM ensures the convergence of the iterative process, and BFM-SDP guar-

antees the global optimal solution of the problem.

• This approach is scalable and implemented on large distribution networks.

• Next, a decentralized approach is proposed with the auto-tuning of penalty

parameters, which improves the convergence speed and solution accuracy.

• The purposed methods can be implemented for real-time simulation.

• Later, the distributed and decentralized approaches are formulated for the un-

balanced networks.

Finally, the integer control of the legacy devices is included in the multi-phase BFM-

SDP OPF by adopting a two-stage approach. The main outcomes of the formulation

are,

• The two-staged approach is formulated by combining a MILP and BFM-SDP

OPF approaches.
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• Both the MILP and BFM-SDP methods are scalable for larger networks, thus

validating the scalability of the proposed approach.

8.2 Future Works

Future work that needs to be completed is as follows.

• Leverage the sparsity property of the large PSD matrix for the formulation,

reducing the consumed memory and, consequently, the solver time to converge.

• Formulate a novel branch-and-bound methodology for the combined UC-OPF

problem, which will not require rounding the integer variable and ensuring the

global optimal solution.

• Formulate an automated partitioning of the distribution networks based on the

geographical position or location of the voltage regulators.
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