
TOWARD OPTIMISTIC VERSION CONTROL IN ARCHITECTURE: DIFFING,
PATCHING, AND THREE-WAY MERGING FOR OPENNURBS 3D MODELS

by

Nicholas Oren Rawlings

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Architecture
and the degree of Master of Science in

Information Technology

Charlotte

2022

Approved by:

Jefferson Ellinger

John Gero

Jonathan Dessi-Olive

ii

©2022
Nicholas Oren Rawlings
ALL RIGHTS RESERVED

iii

Abstract

NICHOLAS OREN RAWLINGS. Toward optimistic version control in
architecture: diffing, patching, and three-way merging for openNURBS 3D

models. (Under the direction of JEFFERSON ELLINGER)

The ability of architects to collaborate and work in parallel on digital assets

is limited by pessimistic strategies for managing shared files. The software

engineering community has worked around this problem by adopting optimistic

version control techniques, which rely on the ability to diff, patch, and merge

versions of the files they manage. Unfortunately, the diffing, patching, and

merging algorithms in existing version control systems are designed to work with

text, and not with the types of files, such as 3D models, most commonly used by

architects. This thesis describes a set of command line programs capable of

diffing, patching, and merging openNURBS models, an open-source 3D model

format that enjoys widespread use among architects and other design

professionals. Integration of these programs into an off-the-shelf version control

system is demonstrated, and an abstract domain model is presented which can be

used to apply their capabilities to other file formats as well.

iv

DEDICATION

For Nanny,

who taught me that sometimes one must let go

of worry and instead laugh at the absurdity of life,

and Poppy,

whose patience, humility, and intelligence

have been an inspiration to me for as long as I can remember.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Jefferson Ellinger, and

committee members John Gero and Jonathan Dessi-Olive for generously sharing

their time and wisdom over the past several months. I would also like to

recognize former advisor Dr. Dimitris Papanikolaou, who pushed me to greater

levels of academic rigor than I had dreamed possible, as well as Eric Sauda and

Dr. Mirsad Hadžikadić, who provided invaluable guidance during the earliest

stages of this thesis.

Additionally, I would like to thank the following current and former

members of the faculty and staff of the School of Architecture for their support

and mentorship over the past eighteen years:

Mona Azarbayjani Zhongjie Lin Deb Ryan

Blaine Brownell Ken Lambla Robbie Sachs

Alex Cabral Emily Makaš Eric Sauda

Kelly Carlson-Reddig Marc Manack Michael Swisher

Rachel Dickey Liz McCormick Greg Synder

Phil Gaddy Matt Parker David Thaddeus

Lee Gray Todd Payne Betsy West

Chris Grech Nicole Perri Peter Wong

Josie Holden Bulla Rich Preiss Chengde Wu

Lidia Klein James Reittinger Catty Zhang

vi

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND 6

2.1. Version Control Systems 6

2.2. Diffing, Patching, and Merging 10

2.3. Benefits of Optimistic Version Control in Architecture 14

2.4. Research into Version Control for Architecture and Related 16
Disciplines

CHAPTER 3: METHODS 20

3.1. OpenNURBS 20

3.2. Programming Languages 24

3.3. The Unix Philosophy 26

3.4. Delta Format 28

3.5. System Architecture 32

CHAPTER 4: IMPLEMENTATION 37

4.1. The Abstract Model 37

4.1.1. Stringables 38

4.1.2. Values 39

4.1.3. Deltas 40

4.1.4. Accesssors 41

4.1.5. Properties 43

vii

4.1.6. Property Maps 43

4.1.7. Tables 44

4.1.8. Types 45

4.1.9. Component Deltas 46

4.1.10. Model Deltas 47

4.1.11. Sessions 48

4.2. The Adapter Layer 49

4.3. Command Line Interface 52

4.3.1. 3dmdiff 54

4.3.2. 3dmpatch 56

4.3.3. 3dmdiff3 57

4.4. Git Integration 57

CHAPTER 5: DEMONSTRATION 61

5.1. Diffing and Patching 61

5.2. Merging via the Command Line 64

5.3. Merging via Sourcetree 67

CHAPTER 6: DISCUSSION 72

6.1. A Proof of Concept 72

6.2. Floating Point Numbers 76

6.3. Beyond UUIDs 78

6.4. Conflict Resolution 79

6.5. Optimism in the Real World 82

6.6. Conclusion 83

viii

REFERENCES 84

APPENDIX A: REPRINT PERMISSIONS 89

APPENDIX B: OPENNURBS GEOMETRY TYPES 90

APPENDIX C: OPEN SOURCE CONTRIBUTIONS 94

APPENDIX D: SUPPORTED COMPONENT TYPES AND PROPER- 97
TIES

APPENDIX E: SOURCE CODE 105

ix

LIST OF FIGURES

FIGURE 1.1: Resource locking in action 2

FIGURE 2.1: Branching and merging 8

FIGURE 2.2: Diffing and patching 11

FIGURE 2.3: Three-way merging 12

FIGURE 3.1: Example transformation matrices 33

FIGURE 3.2: The layered architecture of the 3dmdiff suite 35

FIGURE 4.1: A UML diagram of the Stringable, Value, and Delta in- 38
terfaces

FIGURE 4.2: A UML diagram of the remainder of the abstract model 42

FIGURE 5.1: The original Maison Dom-ino tracing 62

FIGURE 5.2: A modified version of the Dom-ino tracing 62

FIGURE 5.3: Another modified version of the Dom-ino tracing 66

FIGURE 5.4: The merged model 66

FIGURE 5.5: Authoring a commit 69

FIGURE 5.6: Creating a branch 69

FIGURE 5.7: After committing changes on alternate 70

FIGURE 5.8: After committing changes on master 70

FIGURE 5.9: After merging 71

FIGURE 6.1: Two approaches to point registration 74

FIGURE 6.2: A twisted cube 75

FIGURE 6.3: Examples of floating-point numbers 76

x

LIST OF ABBREVIATIONS

API Application Programming Interface

B-rep Boundary Representation

BIM Building Information Modeling

CAD Computer-Aided Design

DVCS Distributed Version Control System

GUI Graphical User Interface

IFC Industry Foundation Classes

JSON JavaScript Object Notation

NURBS Non-Uniform Rational Basis Spline

SDK Software Development Kit

UUID Universally Unique Identifier

VCS Version Control System

CHAPTER 1

INTRODUCTION

In the not-so-distant past, when architectural drawings were rendered

exclusively by hand, the constraints of physical space made it impractical for more

than one draftsman to work on the same drawing at the same time. Today,

computers have liberated architecture professionals from the physical constraints

of the drafting board, yet concurrent work on a single drawing or model remains

problematic, if not impossible. This persistent limitation restricts the ability of

design teams to collaborate, iterate, and explore alternative solutions where

digital assets are involved.

Most design software today employs some form of resource locking, which

actively prevents a second user from modifying a digital asset as long as the first

one is working in it. Often times, the digital asset is a shared file on a networked

storage device. Because a single file may represent significant portions of, if not an

entire design project, locking this file has the effect of shutting out any potential

real-time digital collaborators. Resource locks can also occur at finer levels of

granularity than an entire file: In database management systems, it is common for

locks to be applied only to a single table or record at a time, and in the case of

2

Figure 1.1. Resource locking in action. Revit displays an error message like this one when
a user attempts to modify a model element that has been locked by another user. When
confronted with this situation, the first user has no choice but to abort the task they were
attempting to complete and wait for the second user to release the lock.

Autodesk’s Revit software, elements within a workshared building information

model may be locked individually (Figure 1.1). However, greater granularity

does not solve the underlying problem of resource locking; it merely splinters it

into scores of smaller potential conflicts.

Resource locking exists to prevent data loss and corruption due to

conflicting edits; if only one user is allowed to modify a file at any given time, no

conflicts can occur. Although this is a straightforward and effective strategy for

handling conflicts over shared digital assets, it is fundamentally pessimistic

because it assumes that parallel edits to a file will invariably result in data

corruption. The wholesale embrace of this form of digital pessimism by

contemporary design software represents a significant obstacle to parallel work

within a design team (Aish 2000).

3

In the field of software engineering, parallel work on digital files is made

possible by the use of version control systems (VCSs) such as Git, Mercurial, and

Subversion. The nominal purpose of these systems is to track the changes made to

a codebase over time, but they also enable developers to work independently on

parallel versions of a project (known as branches) and to later integrate (or

merge) their contributions with those of their teammates with little or no extra

effort. Modern VCSs are said to be optimistic because they assume that conflicting

edits to the codebase are rare and that those that do occur can usually be resolved

automatically (Kung and Robinson 1981).

Optimistic version control relies on the ability to find the differences

between two versions of a file (a process known as diffing), to apply a list of

differences to a file to transform it from one version to another (patching), and to

combine lists of differences from divergent versions of a file to arrive at a single,

unified result (merging). Well-established and highly optimized algorithms exist

for performing these tasks on plain text files such as those used by developers to

store source code, which consist solely of sequences of characters grouped into

lines. The straightforward and predictable structure of plain text files allows this

relatively simple set of algorithms, which form the basis of contemporary VCSs, to

provide diffing, patching, and merging functionality for a wide variety of

programming languages and data formats.

Not all files, however, are composed of plain text. Images, CAD drawings,

and 3D models — the types of files most frequently used by architects — consist

of idiosyncratic representations of both textual and non-textual data. The diffing,

4

patching, and merging algorithms used by existing VCSs are unable to operate

meaningfully or efficiently on these so-called binary files because they cannot be

interpreted as a linear sequence of standard character codes. In fact, existing VCSs

will not even attempt to calculate diffs or perform merge operations on binary

files, and will instead fall back to older, more pessimistic methods of handling

them that do not allow for parallel modes of working (Chacon and Straub 2014;

Collins-Sussman, Fitzpatrick, and Pilato 2011). The difficulty in dealing with

binary files is that the structure and semantics of each binary format is essentially

unique. Just as each image format uses its own method of storing pixels and each

type of 3D model employs a different means of representing geometry, the

algorithms for diffing, patching, and merging these disparate data formats must

be similarly specialized. In order to bring parallel working and other benefits of

modern VCSs to the field of architecture, systems for diffing, patching, and

merging each of the various file formats used by architects must be designed and

implemented.

This thesis describes a set of programs that implement diffing, patching,

and merging algorithms for a 3D model format commonly used by architects,

namely the openNURBS format native to McNeel’s Rhinoceros 3D modeling

software. This format was chosen for its open-source status and its widespread

use during the early stages of design when collaboration and rapid exchange of

ideas is crucial. Although openNURBS is the focus of these programs, their

underlying data model is designed to be abstract enough to support diffing,

patching, and merging of other file formats as well.

5

This thesis also demonstrates how its diffing and merging programs can be

integrated into an off-the-shelf VCS, thereby enabling optimistic version control

for openNURBS models under its purview. In doing so, this thesis takes the first

steps toward bringing the kind of collaborative and concurrent work currently

enjoyed by software developers to the practice of architecture.

CHAPTER 2

BACKGROUND

2.1 Version Control Systems

A version control system (VCS) is a set of software tools that track and

manage the changes made to a collection of files over time. The collection of files

and their respective histories managed by a version control system is commonly

known as a repository. Although traditionally used for organizing the source code

of computer programs, version control systems are now being used by writers,

lawyers, journalists, musicians, graphic designers, and others.

The first software that can be recognized as a version control system was

developed at Bell Labs beginning in 1972. The Source Code Control System

(SCCS) was notable for its space-efficient storage system, which accumulated all

versions (both past and current) of a document into a single file (Rochkind 1975).

One downside to this approach was that the system would become progressively

slower with every new version stored. To work around this and other deficiencies

in SCCS, the Revision Control System1 (RCS) was developed around the concept

1. https://www.gnu.org/software/rcs/

https://www.gnu.org/software/rcs/

7

of reverse deltas. RCS stores the most recent version of a file along with a separate

reverse delta to describe each of its version transitions; it reconstructs previous

states of the file by applying those reverse deltas sequentially to “rewind” to the

target version. RCS is significant for introducing the concept of symbolic labels,

better known today as tags, that could be used to reference specific versions of a

file independently of its internal version number. It also included the ability to

create and merge branches — parallel histories by which a developer could

experiment in a file without interfering with the work of their teammates

(Figure 2.1). However, the significance of this feature was unappreciated at the

time and its use was generally avoided (Tichy 1982, 1985; Ruparelia 2010).

Both SCCS and RCS are limited to working with a single file and on a

single computer at a time. The first of the so-called second-generation VCSs,

known as Concurrent Versions System2 (CVS), was originally implemented as a

set of shell scripts that extended RCS to allow it to work with multiple files and

over a network. CVS places the version control repository on a central server from

which clients can check out an existing version of a file, work on a copy of that file

independently of other users, and then check in their changes once complete. It

also popularized branching and merging operations to enable the kind of parallel,

collaborative workflows that are the hallmark of optimistic version control (Grune

1986; Berliner 1990; Ruparelia 2010). The successor to CVS, named Subversion3,

2. https://www.nongnu.org/cvs/

3. https://subversion.apache.org/

https://subversion.apache.org
https://www.nongnu.org/cvs

8

A

Bbra
nch

branch
me
rge

me
rge

mergeE

Main Branch

First Student’s Branch

F

G

C

D

Figure 2.1. Branching and merging. Two students decide to create their own variations on
Le Corbusier’s iconic Modulor Man (A). The first sends him on vacation in Mexico (B)
while the second assigns him to duty aboard the USS Enterprise (C). Confident of her
changes, the second student merges them into the main branch (D). The first student
subsequently merges those changes into his own branch (E). Woefully deficient in his
knowledge of science fiction franchises, he then decides to equip the Modulor Man with a
lightsaber (F). The first student then merges his changes into the main branch as well (G).

9

was initially released in 2000 and focused on fixing flaws in CVS rather than new

innovations in version control design (Collins-Sussman, Fitzpatrick, and Pilato

2011). Its emphasis on power and usability has made it the preferred choice for

centralized version control.

In contrast to their predecessors, the third generation of VCSs are

inherently decentralized. These distributed version control systems (DVCS), which

include Git4, Mercurial5, and Bazaar6, maintain a full copy of the repository on

each machine where it is being used to eliminate the single point of failure

presented by a centralized server. Such systems are also more performant than

their centralized counterparts since most operations can be performed locally

without the need for network access to communicate with a central server

(Chacon and Straub 2014). DVCSs, and Git in particular, manage the majority of

version control repositories in use today.

The decentralized nature of DVCSs does not preclude the use of a central

server; in fact, most projects using a DVCS rely on a central repository to facilitate

coordination among team members and to act as a single source of truth for build

processes and public releases. This central repository often resides on a repository

4. https://git-scm.com/

5. https://www.mercurial-scm.org/

6. https://bazaar.canonical.com/

https://bazaar.canonical.com
https://www.mercurial-scm.org
https://git-scm.com

10

hosting service such as GitHub7, GitLab8, or Bitbucket9, which provide a

web-based graphical user interface (GUI) to the VCS and integration with tools

such as bug trackers, build systems, and wikis. These services have contributed to

the popularity of DVCSs, as well as to the adoption of VCSs in general outside the

software development community.

2.2 Diffing, Patching, and Merging

Diffing is the process of finding the differences between two versions of a

file. In the same way that coordinate geometry allows us to subtract two points to

produce a vector that translates between them, diffing can be thought of as the

subtraction of two files to produce a directed delta that contains the information

necessary to transform one of those files into the other. Patching is the process of

applying that delta to one version of a file to transform it into another version. If

diffing is comparable to subtracting two points in coordinate geometry, then

patching is analogous to adding a vector and a point to arrive at a new point

(Figure 2.2).

Algorithms for diffing and patching are among the most fundamental

components of any VCS. The term diff itself originated from a program developed

by James Hunt, Thomas Szymanski, and Douglas McIlroy at Bell Labs in the early

7. https://github.com/

8. https://about.gitlab.com/

9. https://bitbucket.org/

https://bitbucket.org
https://about.gitlab.com
https://github.com

11

− =

+ =

Figure 2.2. Diffing and patching. Some misguided soul has “improved” upon Le
Corbusier’s Maison Dom-ino by removing the staircase and adding a ladder, a weather
vane, and a human figure. Diffing the two versions of this iconic image is analogous to
subtracting the original version from the new one (top row). Patching is analogous to
adding that difference to the original version to recreate the new one (bottom row).

1970s. It relies upon a novel solution to the longest common subsequence (LCS)

problem to detect which groups of lines are shared between two text files, and

thus indirectly indicates which lines have changed (Hunt and McIlroy 1976). A

more efficient algorithm for solving the LCS problem discovered in the 1980s

forms the basis of all diffing operations carried out by modern version control

systems (Myers 1986).

Merging is the process of combining the sets of changes made in two

divergent versions of a file to arrive at a unified result (Figure 2.3). Users of VCSs

employ merging to reconcile the changes made by others with their own working

copy of a project, thereby bringing their copy up to date with the rest of the team.

Because of its role in eliminating the need for resource locks, it is not an

12

A

O M

∆A

∆B

∆A + ∆B

B

Figure 2.3. Three-way merging. A three-way merge requires that the two files being
merged (A and B) originate from a common ancestor (O). The operation compares each
of the two files with the common ancestor (ΔA and ΔB) to arrive at a more accurate result
(M) than was possible with older and less reliable two-way merging algorithms.

13

exaggeration to state that merging is what makes optimistic version control

possible (Mens 2002).

The merging algorithms used by nearly all contemporary VCSs are

designed to work with plain text, a data format consisting purely of

sequentially-arranged, human-readable characters (The Unicode Consortium

2021). Regardless of their content, all plain text files adhere to a common

structure consisting of sequences of characters grouped into lines. The power and

popularity of these algorithms arise from this consistency; because they are able

to ignore the syntactic and semantic content of the files they are given, these

algorithms can operate equally well on C source code as with the LaTeX files used

to typeset this thesis. Neither obscure nor yet-to-be-invented file formats pose any

challenges so long as their contents are textually encoded.

Not all files, however, are composed of plain text. Binary files such as

images, videos, and 3D models consist of domain-specific and

application-dependent encodings of both textual and non-textual data. Because

these files do not adhere to a consistent structure of characters and lines, the

merging algorithms embedded in most contemporary VCSs are unable to operate

effectively on them (MacKenzie, Eggert, and Stallman 2021a). The idiosyncratic

structure of binary files makes it likely that any attempt to merge them using

textual merging algorithms would result in syntactically invalid and possibly

semantically nonsensical output — images that won’t load, videos that won’t play,

and 3D models that crash their modeling programs.

14

Contemporary VCSs handle any modification to binary files, no matter

how small, by storing an entirely new version of the file in the repository. This

strategy precludes the benefits of change tracking and asynchronous, parallel

collaboration for such resources, making it the single largest technical hurdle to

the availability of optimistic VCSs for the architecture profession. A number of

structurally- and semantically-aware algorithms that could enable merging of

binary data have been proposed (Rönnau, Scheffczyk, and Borghoff 2005; Chen,

Wei, and Chang 2011), but none have gained widespread acceptance in version

control applications.

2.3 Benefits of Optimistic Version Control in Architecture

The vast majority of design professionals today handle the storage of

alternative and past versions of a project by manually copying and renaming files.

This highly idiosyncratic process is prone to errors and data loss and imposes an

unnecessary cognitive burden on the computer user (Ashtari 2018; Cristie and

Joyce 2021). VCSs offer a standardized, automated, and reliable method of

managing alternative and past versions of a design that scales to accommodate

design teams of varying sizes. They enhance the collaborative potential of design

teams by enabling their members to work in parallel. Beyond these more prosaic

benefits, adoption of version control techniques may actually help to augment an

architect’s creative potential as well.

15

Modern VCSs enable a non-linear view of history that encompasses not

only the depth of time but also the breadth of alternatives inherent in any design

project. The processes of differentiating and synthesizing alternatives are known

respectively as branching and merging within the parlance of version control

systems, and offer compelling parallels to the patterns of divergence and

convergence seen in the design processes (Cross 2006). Adopting version control

practices could heighten architects’ awareness of their place in the design process,

and thereby increase their capacity for reflective practice (Schön 1984; Cristie,

Ibrahim, and Joyce 2021).

Placing a project under version control creates a digitized memory of every

step (and misstep) of that project’s development. This memory can augment the

designer’s own thought processes and facilitate idea navigation during the design

process, and can afterward act as an archive not only of the final outcome of the

design process but also of the designer’s ideas and intent as well (Cristie, Ibrahim,

and Joyce 2021). Such an archive could be consulted by the designer or his

associates in the months and years after a project has concluded, or by

architectural historians decades later. It can also provide novice designers

valuable insight into the more decisive decision-making process of their expert

colleagues (Cross 2004).

Within the scope of architectural education, version control could also

facilitate a digital reincarnation of the open design atelier, which has suffered in

recent years due to the increasing prevalence of digital-only workflows as well as

physical distancing driven by the recent pandemic (Meagher et al. 2015).

16

Recognizing the need for tooling specifically designed to handle multiple

versions of a design, some architecture firms have begun to take advantage of

cloud-based document management systems such as Autodesk’s BIM 360. While

these products represent a huge step forward in terms of collaboration and data

integrity, they still suffer from the constraints of resource locking. Furthermore,

they are limited to a linear model of the project’s history, making them poorly

suited to handling multiple design alternatives in the early stages of a design

project. Only optimistic version control can enable the kind of unrestricted

parallel work currently enjoyed by software developers in the field of architecture

(Schneider 2011; Firmenich et al. 2005).

2.4 Research into Version Control for Architecture and Related Disciplines

The need for version control tools in architectural practice has been

recognized since at least 2000, when Robert Aish reported on the implementation

of “long transaction” and “change merge” features (which would be recognized

today as branching and merging, respectively) in Bentley’s since-discontinued

ProjectBank product (Aish 2000). However, the most promising work in the

development of diffing and merging algorithms for visual designers has instead

dealt with file formats used by digital animators and illustrators for 3D modeling.

Doboš and Steed (2012) proposed the first system for diffing and merging these

3D scene graphs. Their node-based method relies on matching the universally

unique identifiers (UUIDs) assigned to model components to determine which

17

ones have been added to and removed from the model. However, their approach

to change detection is insufficiently granular to support collaboration.

3D scene graphs typically use meshes, networks of planar, polygonal

surfaces, to approximate complex forms rather than attempting to model their

curvature directly. MeshGit is an algorithm for determining the edit distance

between two meshes as a means of implementing diffing and merging for that

style of geometry (Denning and Pellacini 2013). Its original implementation

suffered from a number of performance issues and was subsequently improved in

MeshHisto to be precise and scalable enough for real-time collaborative editing

(Salvati et al. 2015).

SceneGit likewise improves on MeshGit through the addition of

performance-enhancing heuristics. It defines a comprehensive set of data

structures and algorithms for diffing and merging not only the geometry of a 3D

scene graph, but also its materials, lighting, and camera configuration. Because it

focuses on interchange formats (namely OBJ and gITF) in which UUIDs are

frequently missing or unreliable, SceneGit also implements a novel method of

deriving unique but stable object identifiers across file versions. SceneGit

represents the state of the art in diffing and merging 3D models at this time

(Carra and Pellacini 2019).

Doboš et al. (2018) proposed an alternative method of detecting

differences between different versions of a 3D scene by comparing the pixels of

coordinated rendered views. The downside of this approach is that it is unable to

detect differences that are not visible in the rendered view, such as small changes

18

in the geometry of a large-scale model or modifications to non-visible attributes,

making it unsuitable for use in a VCS.

Daum and Borrmann (2016) present a system for diffing and merging

architectural models that employ the Industry Foundation Classes (IFC) schema,

an open standard for storing building information model (BIM) data. GeomDiff

includes a similar set of algorithms for geospatial data, notably describing

changes in geometry in terms of the movement of points rather than the

substitution of new values for old ones (Sveen 2020).

GHShot is a web-based VCS for Grasshopper scripts, a visual

programming language used by architects to develop parametric models in

Rhinoceros. In this system, a custom Grasshopper component communicates with

a server to record the editing history of a Grasshopper script. Unfortunately, this

approach lacks the necessary level of separation between the VCS and the content

under version control: In order for a Grasshopper script to be managed by

GHShot, it must itself contain the GHShot software in the form of the custom

component (Cristie and Joyce 2017; Cristie, Ibrahim, and Joyce 2021).

Sakai and Tsunoda (2015) created LMNArchitecture, a web application

that presents the evolution of simple architectural models as an interactive tree

diagram. The models are stored in a text-based format so that off-the-shelf diffing

and merging programs can be used.

Most existing VCSs take a state-based approach to merging that considers

only the differences between two versions of a file and not how those differences

arose. In contrast, Koch and Firmenich (2011) propose an operation-based

19

approach to collaboration within an architectural model whereby the actions

taken by one user are transmitted to another user’s computer and applied to that

user’s copy of the same model, in much the same way that online collaborative

editors such as Google Docs synchronize changes among users. Operation-based

merging tends to benefit from better conflict detection and resolution than

state-based approaches, but also requires deep integration with the software used

to edit the files in question.

CHAPTER 3

METHODS

3.1 OpenNURBS

Optimistic version control has the potential to confer a multitude of benefits

to the architecture community, including enhanced collaboration and parallel

working, but its adoption is currently stymied by a lack of three-way merging

algorithms that work with the binary file formats commonly used by architects.

This thesis demonstrates diffing, patching, and three-way merging algorithms for

one such file format, openNURBS, which was developed by Robert McNeel &

Associates for its Rhinoceros1 3D modeling software. Typically associated with

the .3dm file extension, openNURBS excels at representing complex curves and

surfaces using non-uniform rational basis splines (NURBS) but also supports

meshes, subdivision surfaces, Bézier splines, and elementary geometries such as

points, lines, and planes. McNeel has released openNURBS, as well as a software

development kit (SDK) for reading and writing files in that format, as open

source under an MIT-like license. This license allows anyone to integrate

1. https://www.rhino3d.com/

https://www.rhino3d.com

21

openNURBS into their own software, or to publish enhancements to openNURBS

itself, increasing the likelihood that openNURBS will become a widely-accepted

data exchange format in the future (Robert McNeel & Associates, n.d.).

The openNURBS SDK provides an object-oriented application

programming interface (API) for examining and manipulating 3D models in the

openNURBS format. Object-oriented programming (OOP) rose to prominence in

the 1980s and 90s with the emergence of graphical user interfaces (GUIs) and

languages such as C++ and Java and has remained the dominant programming

paradigm ever since. OOP centers on the concept of the object, “an individual,

identifiable item, either real or abstract, which contains data about itself and

descriptions of its manipulations of the data” (Armstrong 2006). The data storage

mechanisms of an object are variously referred to as its attributes, fields, or

properties, and the procedures it can perform are known as its methods. Objects are

typically derived from a class, which provides a template for the organization and

behavior of a set of related objects (known as instances of the class) and typically

represents some real-world concept or entity. Sets of classes are used in OOP to

model (in the conceptual sense) the problem domain of a software system.

OpenNURBS presents a 3D model as an instance of the ONX_Model class,

which provides access to the model’s components, settings, and metadata as well

as methods for reading and writing .3dm files. A component of a model is any of its

constituent parts, such as a layer, line type, or geometric entity. All components

are instances of the ON_ModelComponent class, and as such, share certain common

attributes and behaviors. Each is identified by a UUID, which is unique across all

22

possible openNURBS models, and an index, which defines its position in the .3dm

file relative to other components of the same type. Each component also has a

name attribute, by which it can be assigned a human-readable label, and a status

to indicate whether it is locked or hidden.

In OOP, inheritance refers to the ability of one class to incorporate and

extend the properties and behaviors of another. The relationship between a child

class and its parent is analogous to the relationship between a square and a

quadrilateral: The square inherits the characteristics of the quadrilateral (such as

having four sides) and builds upon them by defining new characteristics (such as

those four sides having equal length) of its own. OpenNURBS defines sixteen

child classes of ON_ModelComponent that play specific roles within a model while

inheriting the common characteristics described in the previous paragraph. They

are:

ON_Bitmap An embedded raster image.

ON_DimStyle A collection of settings, including arrowheads and number
formats, that can be applied to annotation objects such as dimension lines
and text notes.

ON_Group A collection of related geometric objects.

ON_HatchPattern A pattern of lines used to fill a hatched region.

ON_HistoryRecord A connection between a complex geometric object and
the simpler ones used to create it that permits modifications to the simpler
objects to be passed on to the more complex one.

ON_InstanceDefinition A reusable collection of geometric objects.
Unlike an ON_Group, multiple references to an instance definition can be
placed in a model and will remain linked so that modifications to one are
propagated to the others.

ON_Layer A category into which geometric objects can be sorted.

23

ON_Linetype A pattern of dashes and spaces that can be applied to a line
or other curve.

ON_Material A set of physical and optical properties that affect the
appearance of a rendered object.

ON_ModelGeometryComponent A geometric object such as a point, curve,
surface, or solid.

ON_TextStyle A collection of type-related settings, including font name
and weight, that can be applied to textual objects.

ON_TextureMapping A set of parameters that control how a texture is
projected onto a non-planar surface during rendering.

Most of these classes expose a fairly straightforward, if somewhat lengthy,

list of properties and methods pertaining to the aspects of the model they

represent. For example, the ON_Material class defines a m_shine property to

describe the shininess of the material it represents. The ON_Linetype class exposes

an AppendSegment method to add a new dash or space to a line pattern and a

DeleteSegment method to remove an existing one.

Instances of ON_ModelGeometryComponent, which comprise the bulk of a

typical openNURBS model, are organized somewhat differently in that their

characteristics are stored in a pair of objects nested within the geometry

component. One of these nested objects is an instance of

ON_3dmObjectAttributes and is responsible for holding non-geometric

information such as the component’s color, layer, and material. The other stores

the geometry itself and is an instance of one of the dozens of child classes of

ON_Geometry. Each child class represents a different type of geometrical object

with a distinct set of properties: An ON_Point represents a point and contains a

24

single coordinate triple, and an ON_LineCurve represents a line defined by a start

point and an end point. Appendix B provides a complete listing of the types of

geometry supported by openNURBS.

3.2 Programming Languages

OpenNURBS is written in C++2, a statically-typed compiled language

designed by Bjarne Stroustrup and first released to the public in 1985. C++ is

known for its speed and efficiency and is most commonly used today in

resource-constrained environments, such as microcontrollers, and

computationally intensive applications such as graphics. However, C++ also has

a reputation for being difficult to write, debug and comprehend, and lacks

features such as automatic memory management that are expected of a modern

programming language.

Bindings for openNURBS are also available in three other programming

languages through a collection of libraries known as rhino3dm3. The first of these

languages, Python4, is a dynamically-typed interpreted language created by

Guido van Rossum and first released in 1991. Its design philosophy, which

emphasizes simplicity, readability, and unambiguousness, has led Python to

2. https://isocpp.org/

3. https://github.com/mcneel/rhino3dm

4. https://www.python.org/

https://www.python.org
https://github.com/mcneel/rhino3dm
https://isocpp.org

25

become one of the most widely-used programming languages in contemporary

software development (Peters 2004; TIOBE 2022).

Rhino3dm also offers a library for JavaScript, a dynamically-typed

interpreted language most commonly used in web applications. JavaScript was

created by Brendan Eich at Netscape and was first introduced in that company’s

Navigator web browser in 1995. The language was subsequently adopted by

Microsoft for the Internet Explorer browser and later standardized as

ECMAScript5 in 1997.

C#6 is a statically-typed compiled language developed by Anders Hejlsberg

at Microsoft and first published in 2000. Although the C# language was

standardized by ECMA in 20027 and ISO/IEC in 20038, the Microsoft-produced

compiler and associated .NET libraries remained proprietary until the mid-2010s.

Even today, C# is typically associated with applications developed for Microsoft’s

Windows operating system. McNeel’s Rhinoceros 3D modeling software, which

originated on Windows, is written in C#, and many programs that read and write

openNURBS models rely on its C# bindings.

Of the four programming languages described above, only the original

C++ implementation of openNURBS offers complete access to all facets of an

openNURBS model. The C# library contains the vast majority of the functionality

5. https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

6. https://learn.microsoft.com/en-us/dotnet/csharp/

7. https://www.ecma-international.org/publications-and-standards/standards/ecma-334/

8. https://www.iso.org/standard/75178.html

https://www.iso.org/standard/75178.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-334
https://learn.microsoft.com/en-us/dotnet/csharp
https://www.ecma-international.org/publications-and-standards/standards/ecma-262

26

present in the C++ SDK, and the Python and JavaScript libraries are each subsets

of what is available through C#. Initial explorations for this thesis were conducted

in C++ in anticipation of a program that would eventually need access to

virtually all parts of an openNURBS model. However, it became apparent that the

idiosyncrasies of the C++ language posed an unacceptable impediment to rapid

prototype development. Therefore, development was switched to Python, a

language with broad support from the open source community and which would

support rapid iteration of prototype applications for diffing, patching, and

merging openNURBS models.

During the development of this thesis, the limitations of the Python

bindings to openNURBS necessitated contributions to the open-source rhino3dm

project. These contributions are detailed in Appendix C.

3.3 The Unix Philosophy

Previous investigations into the intersection of version control and design

have tended to suffer from an overly broad focus which has led to the

development of expansive platforms rather than purpose-specific tools. Several

have implemented entirely new geometry- or design-oriented version control

systems instead of developing discrete tools for diffing or the visualization of diffs

that could expand on the strengths of existing VCSs. Some have even

implemented their own 3D modeling environments (Sakai and Tsunoda 2015) or

added such extraneous features as real-time chat (Zhang 2021), essentially

27

“reinventing the wheel” by creating new implementations of already well-defined

applications.

In contrast, this thesis seeks to develop a set of programs that are

intentionally narrow in scope and are designed to work as components of a larger

system rather than as systems unto themselves. The three programs will focus on

the problems of diffing, patching, and three-way merging of openNURBS models,

respectively, and will ignore “superfluous” issues such as the visualization of diffs

or the creation of a graphical user interface (GUI) for merging openNURBS

models. Although such features may be desirable in the broader scope of

optimistic version control for architecture, they are not immediately relevant to

solving the problems of diffing, patching, and three-way merging of openNURBS

models.

In maintaining a narrow scope for its programmatic output, this thesis

abides by the Unix philosophy which, in the words of Douglas McIlroy, states that

developers should:

Write programs that do one thing and do it well. Write programs to work
together. Write programs that handle text streams, because that is a
universal interface. (Salus 1994, 52)

The Unix philosophy encourages the development of modular and

reusable tools from which solutions to larger problems can be composed. As an

example, let us consider the traditional Unix commands ls and wc. The ls

command lists the names of files and folders in a directory, printing each name on

a separate line of the output. The wc command, when used with the -l option,

28

counts the number of lines in a file. By piping the output of ls into wc -l, we

create a new command that counts the number of files and folders in a directory.

This combined command, ls | wc -l, accomplishes a more complex task that

neither of its simpler constituent commands can do alone.

The programs developed as part of this thesis are meant to be used in

combination with other programs as well. By combining them with an existing

VCS, end users can enjoy the full breadth of features provided by that VCS and

have those features extended to openNURBS models. This thesis will demonstrate

the integration of its programs into a Git repository so that common Git

operations such as commits and merges can be performed on openNURBS

models transparently and in a fully optimistic manner.

3.4 Delta Format

The Unix philosophy also encourages the use of plain text as a data

exchange format between programs. Text is a “universal interface” not only in the

sense that it can be read by multiple programs, but also because it can be

interpreted by humans as well. Plain text has the capacity to be self-describing by

including not only data, but also the context necessary to understand those data.

Storing information in self-describing plain text files greatly simplifies testing of

software that uses that information and allows for further processing and analysis

of that information by other applications (Hunt and Thomas 2000).

29

The output format of the diffing program described in this thesis (and,

consequentially, the input format of its patching program) is inspired by the plain

text “unified” format supported by the standard diff and patch commands and

favored by most modern VCSs (MacKenzie, Eggert, and Stallman 2021b). It is

hoped that by mimicking the unified diff format, the openNURBS delta format

described here may retain at least some compatibility with existing diff analysis

tools.

As in a unified diff, an openNURBS diff begins with a two-line preamble

that lists the names of the two files that were compared and the times at which

they were last modified. For example, the preamble

--- olderModel.3dm 2022-10-02 13:47:06.959975 -0400

+++ newerModel.3dm 2022-10-03 15:23:11.582114 -0400

corresponds to a diff between two files, olderModel.3dm and newerModel.3dm,

that were last modified roughly 25 hours and 36 minutes apart at the beginning of

October 2022.

Following the preamble, both a unified diff and an openNURBS delta

consist of a series of hunks, or groups of related changes. In the unified format, a

hunk describes a set of changes that occur within a few lines of one another.

Because openNURBS is a binary format that does not have lines, the hunks in an

openNURBS delta correspond to the sets of changes made within individual

model components.

Each hunk starts with a header line that indicates the type of component,

its UUID, and the operation performed on it and begins and ends with a pair of @

30

symbols. The operation is encoded in the first non-whitespace character after the

initial @ symbols: a plus sign indicates that the component was added to the

model, a minus sign indicates that the component was removed from the model,

and a tilde indicates that the component was modified. The component type,

which immediately follows the operation symbol, corresponds to the list of

component types presented in Section 3.1 unless the component is an instance of

ON_ModelGeometryComponent, in which case the name of its geometry type is used

instead. For example, the line

@@ ~Layer 6f9cb61e-f062-4751-aca1-5cc587ccd0ae @@

introduces the hunk for a modified layer identified by a UUID beginning with

6f9c, and the line

@@ +LineCurve f497799f-c237-4219-b456-80250c0ea593 @@

introduces the hunk for a newly created geometric component that contains a

LineCurve and is identified by a UUID beginning with f497.

The openNURBS delta format simplifies the openNURBS data model by

depicting components as having a flat set of properties that can be expressed as a

list of key-value pairs. Whereas the openNURBS SDK places the CastsShadows

property on an ON_ObjectRenderingAttributes object which is nested inside an

ON_3dmObjectAttributes object which is linked to the component, the

openNURBS delta format presents that property as belonging directly to the

component itself. In doing so, it presents a readily comprehensible data model to

31

end users who wish to inspect the output of a diff and streamlines the

reconciliation process during merges.

A list of colon-separated key-value pairs follows the header of each hunk.

For components that were added to the model, this list includes all of the

properties of the component whose values differ from their defaults, which

provides sufficient information to recreate the component in a future patch or

merge operation. For example, the hunk for the LineCurve mentioned above

might include the lines

StartPoint: (1, 0, 0)

EndPoint: (9, 0, 0)

Layer: 6f9cb61e-f062-4751-aca1-5cc587ccd0ae

which would indicate that the newly created line runs horizontally for eight units

and was placed on the layer identified by a UUID beginning with 6f9c. Note that

a LineCurve has many properties besides StartPoint, EndPoint, and Layer, but

they are not included in the hunk because they still have their default values. A

full listing of the properties supported by each component type is given in

Appendix D.

The names and values of the non-default properties of deleted components

are similarly enumerated in their respective hunks. Their inclusion makes the

delta bidirectional so that a patch operation can be applied in reverse to transform

a newer version of a model back into an older version.

For components that were modified, the list of key-value pairs enumerates

the properties whose values have changed along with a representation of how

32

their values have changed. Most changes will be represented as substitutions of

one value for another. For example, the hunk for the aforementioned modified

layer might include the lines

Name: "Layer 01" -> "Lines"

Color: (200, 0, 0, 255) -> (0, 255, 255, 255)

which would indicate that the layer was renamed from “Layer 01” to “Lines” and

that its color was changed from red to cyan.

Changes to certain geometric properties will be expressed as 4×4 matrices,

which are capable of representing a multitude of geometric transformations,

including translation, rotation, scaling, and shearing, in a singular and consistent

data structure (Figure 3.1). These matrices, which are common in 3D computer

graphics, can be used to transform any type of geometry in an openNURBS

model, and can be inverted, composed with other matrices, and decomposed into

sets of simpler transformations. In the openNURBS delta format, these matrices

will be expressed in row-major order, which lists the sixteen values in the matrix

from left to right beginning with the top row and proceeding to to the bottom.

The matrix shown in Figure 3.1b, for example, would be written as

transform(1 0 0 2; 0 1 0 3; 0 0 1 5; 0 0 0 1)

3.5 System Architecture

The goal of this thesis is to develop a suite of three command-line

programs that implement diffing, patching, and three-way merging for

x

y

z

A

A’

x

y

z

A

A’

x

y

z

60°

A

A’

x

y

z

A
A’

x

y

z

2
3

5

A

A’

x

y

z

A = A’

33

⎤⎡⎤⎡⎤⎡
11 0 0 0 1 0 0 2 0 0 0
2⎢⎢⎣

0 1 0 0
0 0 1 0

⎢⎢⎣
⎥⎥⎦

0 1 0 3
0 0 1 5

⎢⎢⎣
⎥⎥⎦

⎥⎥⎦

10 0 0
2

10 0 0
2

0 0 0 1 0 0 0 1 0 0 0 1

(a) The identity matrix (b) A translation 2 units in (c) Uniform scaling by
represents no change to the x direction, 3 units in one-half centered on the
the geometry. the y direction, and 5 units origin.

in the z direction.

√ ⎡⎤ √ ⎤ ⎡ √ √⎡ ⎢⎢⎣

1 3 1 3− 0 0 − 0 2 1 3 0 −2 − 3 3√ √
3 3 −

√2 2 √4 4⎢⎢⎣
⎢⎢⎣

⎥⎥⎦
⎥⎥⎦

−3 + 2 1 1 3 1 0 30 0 0 3
2 2 4 4 −101 0 0 20 0 1 0 0 0 5

2
0 0 0 1 0 0 0 1 0 0 0 1

(d) A 60 degree rotation
about the z axis.

(e) Transformations b, c,
and d combined into a sin-
gle matrix.

(f) The inverse of transfor-
mation e.

Figure 3.1. Example transformation matrices

⎤ ⎥⎥⎦

34

openNURBS models and to demonstrate their integration into a Git repository so

that common operations such as commits and merges can be performed on

openNURBS models transparently and in a fully optimistic manner. The

programs will be named 3dmdiff, 3dmpatch, and 3dmdiff3, respectively, after the

standard programs used to perform these operations on plain text files and the

.3dm file extension conventionally used to identify openNURBS models.

A significant amount of code will be shared among these three programs.

Key concepts such as components and properties remain the same regardless of

whether one is diffing, patching, or merging; they are simply used in different

ways depending on which operation is being performed. This situation lends

itself to a layered architecture, a software design pattern in which the application’s

responsibilities are divided among multiple levels, each of which relies on the

functionality of the one below it. Layered architectures are generally organized

such that the lowest level defines fundamental concepts (using classes) in as

generalized a manner as possible, and each level above it employs those concepts

in an increasingly specialized fashion. This arrangement promotes code reuse by

allowing new specializations to be constructed on top of existing layers as well as

by permitting one implementation of the set of concepts expressed by a layer to be

exchanged for another. A layered architecture can also advance the testability of

an application, help developers more easily comprehend its code, and simplify

dependency management (Buschmann et al. 1996; Fowler 2002).

The base of the layered architecture of the 3dmdiff suite (Figure 3.2) will

consist of an abstract model that defines the elemental concepts, such as

35

3dmdi� otherdi�

rhino3dm Other Library

3dmpatch

Abstract Model

Adapter Layer Other Adapter Layer

3dmdi�3 otherpatch otherdi�3

Figure 3.2. The layered architecture of the 3dmdiff suite

components, properties, values, and deltas, around which the programs are

based. The fundamental algorithms involved in diffing, patching, and three-way

merging will also be defined at this level of the application in a way that is

agnostic of openNURBS or the details of the rhino3dm library. This separation

will encourage a clearer expression of the ideas underpinning the application and

will allow the software to be more easily modified to use a different openNURBS

library, or even to work with a different file format entirely, at some point in the

future.

The next layer will consist of a collection of adapters that connect the

generalized classes of the abstract model to the particulars of the openNURBS

format as implemented in the rhino3dm library. Specific component types and

properties will be defined at this level, and peculiarities of the openNURBS

format, such as components being addressed both by UUID and by index, will be

dealt with.

The 3dmdiff, 3dmpatch, and 3dmdiff3 programs themselves form the third

and uppermost layer of the application. They will be responsible for collecting

36

user input, reading and writing files, and employing the functionality provided

by the adapter layer to accomplish their respective tasks.

CHAPTER 4

IMPLEMENTATION

4.1 The Abstract Model

The abstract model defines the fundamental concepts that underlie the

3dmdiff, 3dmpatch, and 3dmdiff3 programs in terms of a suite of classes and

interfaces. In object-oriented programming, an interface describes a set of

behaviors (in the form of methods) without specifying how those behaviors

should be carried out. Classes that implement an interface are free to choose the

most appropriate means of carrying out the actions it specifies. This ability of

different classes to respond to the same method call, or message, with their own

set of instructions is known as polymorphism and is one of the pillars of

object-oriented programming. (Armstrong 2006).

Polymorphism can also be achieved through abstract classes, which provide

implementations for some, but not all, of the methods they specify. Abstract

classes are generally used to define common routines that can be included in

multiple other classes through inheritance. However, unlike a normal parent

class, an abstract class forces its subclasses to provide implementations of any

methods for which it does not.

38

«interface»
Stringable

toString() : string
fromString(input: string) : object, string

«interface»
Value

equals(other : Value) : boolean
diff(other : Value) : Delta
deltaType() : class

«interface»
Delta

apply(value : Value, session: Session) : Value
reverse() : Delta

SubstitutionEnumeratedValue JSONEncodeableValueRegexParseableValue

StringValue

UUIDValue FloatValueBooleanValue

IntegerValue

Figure 4.1. A UML diagram depicting the relationships between the Stringable, Value,
and Delta interfaces and their concrete implementations in the abstract model.

The abstract model described here includes both interfaces and abstract

classes. Because the Python programming language does not support interfaces,

abstract classes are used in place of interfaces in the code for the 3dmdiff,

3dmpatch, and 3dmdiff3 programs.

4.1.1 Stringables

In computer science, a string is a sequence of textual characters. Because

3dmdiff outputs its deltas in a plain text format, and because 3dmpatch must be

able to read that plain text data, the ability to create, manipulate, and parse strings

is a crucial part of their operation.

39

In the abstract model, a Stringable object is one that can be converted to

and from a string. The Stringable interface is comprised of two methods:

toString () : string
produces a textual representation of the object it is called on. In the Python
code, this method is named __str__, which allows it to be automatically
called when a string representation of the object is required.

fromString (input : string) : object, string
is a class method, which means that it is invoked on a class rather than on
any particular instance of that class. It accepts a string and attempts to
parse a value from the beginning of that string. If successful, it returns an
instance of the class it was called on as well as the unparsed remainder of
the input string.

4.1.2 Values

A Value holds a piece of information retrieved from or that can be assigned

to a component property and wraps it in a consistent interface that provides

methods for common operations such as checking equality and computing deltas.

This consistent interface allows other objects to operate on Value instances

without needing to make special allowances for the varying types of their

enclosed values.

A Value is a Stringable object, which means that possesses toString and

fromString methods along with the following:

equals (other : Value) : boolean
returns true if the Value passed to it is equal to the one it was called on.

diff (other : Value) : Delta
returns an object that describes how the Value it was called on can be
changed into the one that was passed to it. The returned object is an
instance of the Delta class, which is described in Section 4.1.3.

40

deltaType () : class
is a class method that identifies which child class of Delta is returned by its
class’s diff method. It is used when parsing openNURBS deltas.

The abstract model defines a number of implementations of the Value

interface. A JSONEncodeableValue is one that uses Python’s built-in json package

to convert values to and from their textual representations. BooleanValue,

FloatValue, IntegerValue, and StringValue are subclasses of

JSONEncodeableValue that are used for booleans, floating-point numbers,

integers, and strings, respectively.

A RegexParseableValue is one that uses a regular expression to parse the

textual representation of its value. UUIDValue is a subclass of

RegexParseableValue meant for storing UUIDs.

Finally, the EnumeratedValue class serves as a base for value types that have

only a limited number of acceptable values. It stores those acceptable values in a

lookup table along with their textual representations for encoding and decoding.

4.1.3 Deltas

A Delta represents a change to the value of a component property. Like a

Value, a Delta encapsulates the details of that change so that other objects can

work with its instances without needing specific knowledge of the type of value

that was changed or how the change takes place. A Delta is a Stringable object,

which means that possesses toString and fromString methods along with the

following:

41

apply (value : Value, session : Session) : Value
produces a new Value by executing the change described in the object it
was invoked on with the value that was passed to it.

reverse () : Delta
returns a new Delta that performs the opposite change from the one it was
called on. This method is used during reverse patch operations.

The abstract model defines one implementation of the Delta interface,

named Substitution, which simply replaces an older value with a newer one.

4.1.4 Accesssors

An Accessor specifies the means by which values are retrieved from and

assigned to component properties. It encapsulates knowledge about how to

navigate specific parts of the rhino3dm API in a way that can be leveraged by the

rest of the abstract model. The Accessor interface exposes two methods:

get (component : object) : any
returns the value of the given component’s property.

set (component : object, value : any) : void
assigns the provided value to the given component’s property.

The abstract model defines two main implementations of the Accessor

interface. A FunctionalAccessor is constructed from two functions, one of which

retrieves values from a component property and the other of which assigns values

to a component property. A PathAccessor leverages Python’s introspective

capabilities, namely the getattr and setattr functions, to get and set properties

based on their names in the rhino3dm API.

42

ModelDelta

hasDifferences: boolean

apply(model, session)
compare(models)
merge(other)
read(stream)
reverse()
write(stream)

«interface»
Accessor

get(object)
set(object, value)

PathAccessor

FunctionalAccessor

Property

name: string
type: class<Value>

getValue(component)
setValue(component, value)

ComponentType

name: string

create()

PropertyMap

apply(component, session)
merge(other)
readline(line)
reverse()
write(output)

PropertyValueMap

fromNonDefaultValues(properties, component, default)

PropertyDeltaMap

fromDifferences(components, properties, session)

ComponentDelta

id: uuid

apply(model, session)
fromHeader(string)
merge(other)
readline(string)
reverse()
write(stream)

0..*

ComponentAddition ComponentDeletion ComponentModification

1..1

1..1

1..1

0..*

Type

getProperty(string)

«interface»
Table

addComponent(model, component)
allComponents(model)
deleteComponent(model, component)
getComponent(model, id)
intersect(olderModel, newerModel)

ModelType

ComponentTypeRegistry

findByName(string)
findByClass(cls)
fromInstance(instance)

Figure 4.2. A UML diagram depicting part of the abstract model.

43

4.1.5 Properties

A Property represents a property of a component. It associates an

Accessor instance and an implementation of Value with a textual label that is

unique within the scope of the property’s component. Each Property instance has

the following attributes and methods:

name : string
the property’s textual label.

type : class
the subclass of Value that is produced by the property’s getValue method
and expected by its setValue method.

getValue (component : object, model : object) : void
retrieves the value of the given component’s property.

setValue (component : object, value : Value, model : object) : void
assigns the provided value to the given component’s property.

Properties are hashable so that they can be used as keys in a Python

dictionary, such as in the PropertyMap classes described in Section 4.1.6. Instances

of Property are also considered equal to a string containing their name in order to

ease lookups.

4.1.6 Property Maps

A PropertyMap is a mapping (or dictionary, in Python terms) that

correlates one or more Property instances to an associated Value or Delta. A

PropertyMap has the following methods:

apply (component : Component, model : Model, session : Session) : void
applies the values or deltas listed in the PropertyMap to the given
component.

44

merge (other : PropertyMap, session : Session) : void
returns a new PropertyMap that combines the properties listed in other

with those listed in the one it was called on. The merge will not succeed if
the two PropertyMaps have different values or deltas assigned to the same
property.

readline (line : string, componentType : ComponentType) : void
parses a property and value or delta from the given string and adds them
to the PropertyMap.

reverse (other : PropertyMap) : PropertyMap
returns a new PropertyMap that has the opposite meaning of the one it was
called on.

write (output : Stream) : void
writes a textual representation of the PropertyMap to the given output
stream.

The abstract model defines two concrete implementations of PropertyMap.

A PropertyValueMap maps properties to Value instances and is used to describe

components that have been added to or deleted from a model. A

PropertyDeltaMap maps properties to Delta instances and is used to describe

components that have been modified, as well as certain modifications to the

model itself.

4.1.7 Tables

A Table specifies how to retrieve components from, add them to, and

delete them from a model. Its interface specifies the following methods:

allComponents (model : Model) : Iterable<Component>
retrieves the complete list of components in the table.

getComponent (model : Model, id : uuid) : Component
retrieves the component with the given ID.

addComponent (component : Component) : void
adds a component to the table.

45

deleteComponent (component : Component) : void
removes a component from the table.

intersect (older : Model, newer : Model) : Intersection
determines which components have been removed from the given older

model, which ones have been added to the given newer model, and which
ones appear in both.

4.1.8 Types

A Type enumerates the properties supported by a kind of object.

properties : Iterable<Property>
the properties supported by objects of this type.

getProperty (name : string) : Property
returns the property with the given name. Property names are
case-insensitive, so Color, color, COLOR, and CoLOr all resolve to the same
property.

The abstract model defines two concrete classes that inherit from Type. A

ComponentType describes a type of component by associating a table and a list of

properties with a unique name. It exposes the following properties and methods

in addition to the ones described above:

name : string
the name of the type.

create () : object
creates a new component of this type.

The set of component types supported by a model format are gathered in a

ComponentTypeRegistry which exposes the following methods:

findByName (name : string) : Property
returns the component type with the given name. Like properties,
component type names are case-insensitive.

findByClass (cls : class) : Property
returns the component type that corresponds to the given class.

46

fromInstance (instance : object) : Property
returns the component type that corresponds to the class of the given
object.

A ModelType also inherits from Type, and lists the tables, component types,

and properties associated with a model format. It exposes the following

properties in addition to those belonging to its parent class:

componentTypes : ComponentTypeRegistry
the set of component types supported by the model format.

tables : Iterable<Table>
the set of tables that store components in this model format.

4.1.9 Component Deltas

A ComponentDelta describes changes to a single model component, and

corresponds to a single hunk in the output of a diff operation. It provides the

following properties and methods:

id : uuid
the UUID of the component.

type : ComponentType
the type of the component.

properties : PropertyMap
the non-default properties of the component if was added or deleted, or if
the component was modified, its altered properties.

apply (model : Model, session : Session) : void
applies the changes described in the ComponentDelta to the given model.

fromHeader (header : string, types : ComponentTypeRegistry) : ComponentDelta
creates an empty ComponentDelta from a header line. The class of the
returned object depends on the first character of the header.

readline (line : string) : void
parses a property and value or delta from the given string and adds them
to the object’s PropertyMap.

47

reverse (other : ComponentDelta) : ComponentDelta
returns a new ComponentDelta that has the opposite meaning of the one it
was called on.

merge (other : ComponentDelta, session : Session) : void
returns a new ComponentDelta that includes both the changes listed in
other as well as those listed in the one it was called on. The merge will not
succeed if the two ComponentDeltas have different values or deltas
assigned to the same property.

write (output : Stream) : void
writes a textual representation of the ComponentDelta to the given output
stream.

The abstract model defines three concrete implementations of

ComponentDelta. The ComponentAddition and ComponentDeletion classes

represent components that have been added to and deleted from the model,

respectively. Each contains a reference to a PropertyValueMap that describes how

the component that was added or deleted differs from the default state of a

component of its type. The ComponentModification class represents a component

that has been modified between older and newer versions of a model. It contains a

reference to a PropertyDeltaMap that describes how the component was changed.

4.1.10 Model Deltas

A ModelDelta describes the result of diffing two models. It contains a

collection of ComponentDelta instances as well as a list of properties that have

changed on the model itself.

components : Iterable<ComponentDelta>
the list of model components that were added, removed, or modified.

hasDifferences : boolean
true when the ModelDelta describes at least one change.

48

properties : PropertyDeltaMap
the properties of the model that were changed.

apply (model : Model, session : Session) : void
applies the changes described in the ModelDelta to the given model.

compare (models : tuple<Model>, session : Session) : void
looks for and records differences between the given models.

merge (other : ModelDelta) : ModelDelta
returns a new ModelDelta that includes both the changes listed in other as
well as those listed in the one it was called on. The merge will not succeed
if the two ModelDeltas have different deltas assigned to the same property
or if any of the component deltas in the models are incompatible.

read (input : Stream) : void
reads a delta from the given input stream.

reverse () : ModelDelta
returns a new ModelDelta that has the opposite meaning of the one it was
called on.

write (output : Stream) : void
writes a textual representation of the ModelDelta to the given output
stream.

4.1.11 Sessions

A Session encapsulates procedures for communicating abnormal or

unexpected situations to the user in a way that does not require the abstract

model to be tied to a specific user interface paradigm. Its interface specifies the

following methods:

warn (message : string) : void
displays a warning message.

fatal (message : string) : void
displays an error message and exits the program.

setContext (componentType : string, componentID : string, property : string) : void
sets contextual information about the component and property currently

49

being processed that can be displayed in conjunction with an error or
warning message.

4.2 The Adapter Layer

Between the abstract model and the 3dmdiff, 3dmpatch, and 3dmdiff3

programs lies an adapter layer that connects the fundamental concepts and

algorithms laid out in the abstract model with the openNURBS component and

geometry classes provided by the rhino3dm library. Much of this layer consists of

relatively straightforward definitions of component types, value types, and

properties in terms of the classes and interfaces described in section 4.1. For

example, the Color property of a geometric object is defined by the expression

Property("Color", value_types.Color, "Attributes.ObjectColor")

where Property is the class described in section 4.1.5, "Color" is the name of the

property that will appear in deltas, values_types.Color is an implementation of

the Value interface (Section 4.1.2) that stores the red, green, blue, and alpha

values that comprise a color. The string "Attributes.ObjectColor" is converted

by the Property constructor into an instance of PathAccessor (Section 4.1.4) that

links the Property instance to the ObjectColor property of a component’s

Attributes object.

The adapter layer defines a number of Value implementations in addition

to Color, including Point3d for storing points in three-dimensional space,

Vector3d for storing three-dimensional vectors, and Interval for storing ranges

50

of numbers. It also defines an implementation of Delta called Transformation to

store and apply the 4×4 matrices described in Section 3.4.

The adapter layer also attends to a number of non-trivial challenges

involved in marrying the abstract model to the rhino3dm library. One such

challenge involves the dual identification scheme present in openNURBS models

in which components are identified both by a UUID and by an index. A

component’s UUID is stable, but its index may change if other components of the

same type are added to or removed from the model. The 3dmdiff and 3dmdiff3

programs therefore rely on component UUIDs alone in order to prevent changing

indexes from increasing the complexity deltas more than necessary. However,

certain properties that reference other components, such as the linetype of a layer

or the material of a geometric object, do so by storing the referenced component’s

index. The adapter layer works around these situations by providing a special

implementation of Accessor, called an IndexReferenceAccessor, that translates

between indexes and UUIDs. The Linetype property of a layer is therefore

defined by the expression

Property("Linetype", UUIDValue, IndexReferenceAccessor("

LinetypeIndex", tables.LINETYPE_TABLE))

where "LinetypeIndex" is the name of the attribute on the rhino3dm Layer object

that contains the index of the layer’s linetype and tables.LINETYPE_TABLE is the

table in which that index should be looked up to convert it to a UUID.

Another difficulty the adapter layer contends with involves differences in

how Python and C++ (the language in which openNURBS is written) handle the

51

movement of data into and out of functions. In C++, data can be passed by value,

which means it is copied from one scope (such as the code that calls a function) to

another (the code inside the function). It can also be passed by pointer or by

reference, in which case the location of the data in memory is shared so that

changes to that data that occur in one scope are automatically propagated to the

other. Python, on the other hand, uses a simpler system in which all values are

passed by reference. The Line property of the LineCurve class is one of a few

places in the rhino3dm API where these two systems collide, as seen in the

following example:

1 from rhino3d import LineCurve, Point3d

2

3 p0 = Point3d(3, 0, 0)

4 p1 = Point3d(0, 4, 0)

5 curve = LineCurve(p0, p1)

6 print(curve.Line.From) # outputs "3.0,0.0,0.0"

7

8 curve.Line.From = Point3d(10, 10, 0)

9 print(curve.Line.From) # still outputs "3.0,0.0,0.0"

Under Python’s standard pass-by-reference semantics, one would expect

the assignment on line 8 to have changed the start point of the LineCurve so that

print statement on line 9 would output 10.0,10.0,0.0. However, the underlying

C++ function that serves as the getter for LineCurve.Line returns its value by

reference. Line 8 therefore assigns a new start point to a copy of the line stored

within the LineCurve component rather than the original line. After line 8 has

finished executing, the copy is destroyed along with its new start point.

52

To change the start point of the line contained within the LineCurve

component, one must instead store a copy of that line in a variable, change the

start point of the copy, and then assign the copy back to the LineCurve’s Line

attribute as shown below.

10 line = curve.Line

11 line.From = Point3d(10, 10, 0)

12 curve.Line = line

The adapter layer provides an implementation of Accessor, called

ValueObjectAccessor, which performs this action automatically. The StartPoint

property of a LineCurve is therefore defined using the expression

Property("StartPoint", value_types.Point3d, ValueObjectAccessor

("Geometry.Line", "From"))

where the string "Geometry.Line" specifies the object that must be copied and

reassigned and "From" indicates the attribute of that property that contains the

property’s value.

4.3 Command Line Interface

One of the major contributions of this thesis is the development of three

programs, named 3dmdiff, 3dmpatch, and 3dmdiff3, that implement diffing,

patching, and three-way merging for openNURBS models. The command-line

interfaces of these programs are modeled after those provided by the GNU

53

Diffutils package1, which furnishes industry-standard open-source tools for

comparing and merging plain text files. It is hoped that the similarity of 3dmdiff,

3dmpatch, and 3dmdiff3 to the widely-used diff, patch, and diff3 programs will

foster a sense of familiarity among prospective users and allow the

openNURBS-specific tools described in this thesis to more easily integrate into

existing workflows.

Like their plain text counterparts, 3dmdiff and 3dmpatch make extensive

use of the standard streams, a set of three communications channels that provide a

way for computer programs to exchange information with their environments.

Standard input, also known as stdin, is used to pass information into a program,

and in a command line environment, is typically connected to the keyboard.

Standard output, abbreviated as stdout, is used to convey the results of a

program’s execution to the outside world. Data that is written to stdout is

typically printed in the command line console. Finally, the standard error (stderr)

stream is used for error messages and debugging information that is not part of a

program’s normal output.

The standard streams can be redirected so that they connect to a file or

another program instead of the keyboard or screen. One form of redirection,

called a pipe, has already been demonstrated in Section 3.3 with the command

ls | wc -l

1. https://www.gnu.org/software/diffutils/

https://www.gnu.org/software/diffutils

54

In that example, the | character plugs the standard output stream of ls (which

contains a listing of the files and folders in the current directory) into the standard

input stream of wc (which counts the number of lines in a file) to count the

number of files and folders in the current directory.

The standard output stream can be redirected to a file using the > operator.

Rather than being piped directly into wc as in the previous example, the output of

ls could have been written to a file called file_list.txt using the command

ls > file_list.txt

Similarly, the < operator connects a file to a program’s standard input stream. The

command

wc -l < file_list.txt

allows wc to read the contents file_list.txt as if they had been typed by the

user. Several other forms of stream redirection exist, but the basic patterns shown

here are sufficient to understand the operation of the 3dmdiff and 3dmpatch

programs.

4.3.1 3dmdiff

The 3dmdiff program finds differences between two openNURBS models.

and prints an account of those differences to standard output using the delta

format described in Section 3.4. Like GNU diff, it accepts two file system paths as

arguments. However, both arguments to 3dmdiff must reference normal files as

the program does not support diffing of directory structures. It is invoked as:

55

3dmdiff [options] fromfile tofile

where fromfile is a path to the openNURBS model that will serve as the origin of

the resulting delta and tofile is a path to the openNURBS model that will serve

as its destination. The following options are supported:

-q, --brief Causes 3dmdiff to report only whether the models differ,
and not what those differences are

-s, --report-identical-files Causes 3dmdiff to print a brief
statement when the two models given to it are identical. Normally, it
would output nothing in that case.

--label=LABEL Instructs 3dmdiff to use LABEL in place of fromfile in the
delta’s preamble. This option may be repeated to make a similar
substitution for tofile.

--git Tells 3dmdiff to expect a different set of arguments for easier
integration with Git. See Section 4.4 for more information.

-v, --version Instructs 3dmdiff to print its version information and
then exit.

-h, --help Instructs 3dmdiff to print a description of its usage and then
exit.

Users of 3dmdiff will frequently want to capture the outputted delta in a

file to use later with 3dmpatch. This can be accomplished by redirecting standard

output to a file as in the command

3dmdiff version01.3dm version02.3dm > my_delta.txt

which finds the differences between version01.3dm and version02.3dm and saves

the result in a file called my_delta.txt.

56

4.3.2 3dmpatch

The 3dmpatch program applies a delta to an openNURBS model. Typically,

3dmpatch reads the delta from standard input as follows:

3dmpatch [options] < patchfile

When invoked in this manner, 3dmpatch attempts to apply the changes in the delta

to the first file listed in the delta’s preamble. Alternatively, the model to which the

delta should be applied can be specified as an argument:

3dmpatch [options] originalfile < patchfile

The delta may also be specified as an argument instead of being read from

standard input:

3dmpatch [options] originalfile patchfile

All three of these invocation patterns are consistent with the way GNU patch

operates. Additionally, the following options are supported:

-o PATH, --output=PATH Instructs 3dmpatch to write the result of the
patch operation to PATH. If this option is not specified, the file is patched in
place.

-R, --reverse Causes 3dmpatch to apply the delta in reverse.

-v, --version Instructs 3dmpatch to print its version information and
then exit.

-h, --help Instructs 3dmpatch to print a description of its usage and
then exit.

57

4.3.3 3dmdiff3

The 3dmdiff3 program performs a three-way diff between two

openNURBS models that share a common ancestor and optionally applies the

resulting delta to the common ancestor to produce a merged model. Unlike GNU

diff3, 3dmdiff3 produces deltas that are meant to be applied to the common

ancestor rather than the first argument. It is invoked as

3dmdiff3 [options] myfile oldfile yourfile

where myfile and yourfile are the paths to the openNURBS models to be

merged and oldfile is the path to their common ancestor. The following options

are supported:

-m, --merge Instructs 3dmdiff3 to produce a merged model. Without
this option, 3dmdiff3 outputs a diff

-o PATH, --output=PATH Instructs 3dmdiff3 to write the result of a
merge operation to PATH. If this option is not specified, oldfile is patched
in place.

-v, --version Instructs 3dmdiff3 to print its version information and
then exit.

-h, --help Instructs 3dmdiff3 to print a description of its usage and then
exit.

4.4 Git Integration

Integrating the 3dmdiff and 3dmdiff3 programs into a Git repository

involves defining custom diff and merge drivers and then associating those drivers

58

with the .3dm file extension (Gitattributes Documentation, n.d.). Git does not

presently support integration with third-party patch programs such as 3dmpatch.

The custom diff and merge drivers may be defined in one of several

configuration files depending on their desired scope. If the drivers are needed for

only one repository, they may be defined in that repository’s .git/config file. If

they are required in all of a user’s repositories, they may be defined in a file called

.gitconfig in that user’s home folder. Finally, if the drivers are required in all

repositories belonging to all users of a computer, they may be defined in

$(prefix)/etc/gitconfig, where $(prefix) is the directory into which Git was

installed (Git-Config Documentation, n.d.).

Git configuration files follow a syntax similar to that of INI files, and

custom diff and merge drivers are defined as sections within that syntactical

framework. The section for a diff driver begins with a header that contains the

word diff followed by an arbitrary quoted name. It contains a single key,

command, that specifies the program to be used for the diff operation. This

program receives seven command-line arguments:

1. The path of the file being diffed within the repository.

2. A path from which the contents of the older file can be read.

3. The 40-hexdigit hash of the older file.

4. The octal representation of the older file’s mode.

5. A path from which the contents of the newer file can be read.

6. The 40-hexdigit hash of the newer file.

7. The octal representation of the newer file’s mode.

59

The --git option to 3dmdiff tells the program to expect those seven arguments in

place of the two arguments described in Section 4.3.1. A diff driver for

openNURBS models may therefore be defined as:

[diff "opennurbs-diff-driver"]

command = 3dmdiff --git

The section for a merge driver begins with a header that contains the word

merge followed by an arbitrary quoted name. It contains up two keys: name defines

a human-readable label for the merge driver and driver specifies the command to

be used for the merge operation. A third key, recursive, is also supported but is

not required for merging openNURBS models.

Git constructs the merge command by replacing special tokens in the text

of the driver setting with information relevant to the merge operation. The token

%A is replaced with a path from which the merge program can read the current

branch’s version of the file being merged, and %B is replaced with a path from

which it can read the other branch’s version. The %O token is replaced with a path

to the common ancestor and %P is replaced with the path to which the merged file

should be saved. Therefore, a merge driver for openNURBS models may be

defined as:

[merge "opennurbs-merge-driver"]

name = Merge driver for openNURBS models

driver = 3dmdiff -m -o %P %A %O %B

The final step of integrating 3dmdiff and 3dmdiff3 with Git is to associate

the diff and merge drivers defined above with the .3dm file extension by adding a

60

line similar to the one below to one of Git’s attribute files. Note that the names

opennurbs-diff-driver and opennurbs-merge-driver correspond to the names

assigned to the diff and merge drivers in their respective headers.

*.3dm diff=opennurbs-diff-driver merge=opennurbs-merge-driver

Like Git’s configuration files, there are several attributes files that may be

used depending on the desired scope of the directives shown above. If the

openNURBS diff and merge drivers are needed for only one repository, the line

may be added to a file named .gitattributes in the root of that repository or in

its .git/info/attributes file. If they are required in all repositories on a

machine, the line may added to $(prefix)/etc/gitattributes, where $(prefix)

is the directory into which Git was installed.

CHAPTER 5

DEMONSTRATION

5.1 Diffing and Patching

The operation of the 3dmdiff, 3dmpatch, and 3dmdiff3 programs, along

with their ability to work within the context of a Git repository, was demonstrated

during the defense of this thesis on December 8, 2022. This demonstration began

with an openNURBS model containing the tracing of Le Corbusier’s Maison

Dom-ino that was used to produce several illustrations in Chapter 2 (Figure 5.1).

A copy of that file was created and subsequently modified so that two of the

columns on the upper level were joined together to form a wall (Figure 5.2). The

3dmdiff utility was then used to reveal the differences between the two files with

the command

3dmdiff domino.3dm domino_copy.3dm

which produced the following output:

1 --- domino.3dm 2022-12-08 11:29:15.385805 -0500

2 +++ domino_copy.3dm 2022-12-08 11:40:49.943148 -0500

3 @@ ~LineCurve 18ff88dd-01a4-47ff-96d6-0eaf02ef9484 @@

4 Domain: [8.272019639391859, 8.606367521859378] ->

,→ [-2.6645352591003757e-15, 8.606367521859378]

62

Figure 5.1. The original tracing of Le Corbusier’s Maison Dom-ino.

Figure 5.2. The modified copy of the Dom-ino tracing.

63

5 Geometry: transform(25.74075698852539, 0.0, 0.0,

,→ -229.1952667236328, 0.0, 25.74075698852539, 0.0,

,→ -632.5133056640625, 0.0, 0.0, 25.74075698852539, 0.0,

,→ 0.0, 0.0, 0.0, 1.0)

6 StartPoint: (17.320573165521864, 28.592050881888326, 0.0) ->

,→ (17.32057316552188, 28.59205088188827, 0.0)

7 EndPoint: (9.263874233629338, 25.565639766035588, 0.0) ->

,→ (9.26387423362934, 25.56563976603544, 0.0)

8 @@ -LineCurve 5ebba82c-b909-4313-8247-6fdc5c634031 @@

9 Domain: [2.2551487856584056, 9.17534041976403]

10 StartPoint: (9.966767623614944, 24.781772236940483, 0.0)

11 EndPoint: (16.828909351701345, 23.887309741135965, 0.0)

12 @@ -LineCurve b07d85f3-efc1-4c07-be07-06211237b92e @@

13 Domain: [0.0, 0.39375629476038715]

14 StartPoint: (9.576868097848447, 25.68321249872336, 0.0)

15 EndPoint: (9.966767623614944, 25.628236326880554, 0.0)

16 @@ -LineCurve c4427803-1bc0-4067-9240-464e2f3525b7 @@

17 Domain: [2.7712785312946515, 10.277364432022416]

18 StartPoint: (16.82890935170135, 28.407362730576203, 0.0)

19 EndPoint: (16.82890935170135, 20.90127682984844, 0.0)

20 @@ -LineCurve 3b960de7-8cd5-4e90-a263-2be74deb736e @@

21 Domain: [0.0, 5.920871468485612]

22 StartPoint: (9.966767623614944, 25.628236326880554, 0.0)

23 EndPoint: (9.966767623614944, 19.707364858394943, 0.0)

24 @@ -LineCurve 3c8bf58c-820a-4989-854a-656862c9f028 @@

25 Domain: [4.7333498517256665, 10.777034288483303]

26 StartPoint: (9.576868097848447, 25.68321249872336, 0.0)

27 EndPoint: (9.576868097848447, 19.639528061965724, 0.0)

28 @@ -LineCurve 6d03ffd7-30e4-437d-9003-a608867ba401 @@

29 Domain: [0.0, 0.5252075961518584]

30 StartPoint: (17.32057316552188, 28.59205088188826, 0.0)

31 EndPoint: (16.82890935170135, 28.407362730576203, 0.0)

The hunk beginning on the third line of the output describes the line that

was extended to form the top of the wall. Its transformation matrix indicates that

the line in Figure 5.2 is roughly 25.74 times longer than its counterpart in Figure

5.1. The StartPoint and EndPoint properties on lines 6 and 7 were not expected

to be included in the delta since the transformation matrix fully describes the

64

changes that were made to the line’s geometry. Their appearance is due to

floating-point rounding errors, which will be discussed in Section 6.2.

The other hunks in the delta correspond to lines that were removed from

the model. Their domains and start and end points are listed in the delta so that

the lines can be recreated in the event of a reverse patch.

The demonstration continued by re-running the 3dmdiff command, this

time saving the output to a file:

3dmdiff domino.3dm domino_copy.3dm > domino_delta

Next, the modified copy of the Dom-ino tracing was deleted. It was then

re-created by applying the saved delta to the original file using 3dmpatch:

3dmpatch -o domino_patched.3dm domino.3dm domino_delta

It would also have been possible to delete and re-create the original file using a

reverse patch:

3dmpatch -R -o domino_revpatched.3dm domino_copy.3dm domino_delta

However, this functionality was not demonstrated during the defense.

5.2 Merging via the Command Line

After diffing and patching had been demonstrated, another copy of file

containing the Maison Dom-ino tracing was made. In this copy, the color of the

lines that formed one of the columns was changed (Figure 5.3). A three-way diff

65

between the two copies and the original file was then performed using the

command

3dmdiff3 domino_copy.3dm domino.3dm domino_copy2.3dm

which produced the following delta combined the contents of the diff from

Section 5.1 with the changes (lines 8–22 in the output below) necessary to

describe the recolored column seen in Figure 5.3:

1 --- domino.3dm 2022-12-08 11:29:15.385805 -0500

2 +++ domino_copy.3dm 2022-12-08 11:40:49.943148 -0500

3 @@ ~LineCurve 18ff88dd-01a4-47ff-96d6-0eaf02ef9484 @@

4 Domain: [8.272019639391859, 8.606367521859378] ->

,→ [-2.6645352591003757e-15, 8.606367521859378]

5 Geometry: transform(25.74075698852539, 0.0, 0.0,

,→ -229.1952667236328, 0.0, 25.74075698852539, 0.0,

,→ -632.5133056640625, 0.0, 0.0, 25.74075698852539, 0.0,

,→ 0.0, 0.0, 0.0, 1.0)

6 StartPoint: (17.320573165521864, 28.592050881888326, 0.0) ->

,→ (17.32057316552188, 28.59205088188827, 0.0)

7 EndPoint: (9.263874233629338, 25.565639766035588, 0.0) ->

,→ (9.26387423362934, 25.56563976603544, 0.0)

8 @@ ~LineCurve 18f77ee6-89ec-4ac1-a11f-7281c559f9c5 @@

9 Color: (0, 0, 0, 255) -> (255, 0, 0, 255)

10 ColorSource: layer -> object

11 @@ ~LineCurve f097dad3-3fd6-4cdd-8209-4ac81a89b923 @@

12 Color: (0, 0, 0, 255) -> (255, 0, 0, 255)

13 ColorSource: layer -> object

14 @@ ~LineCurve b67d7103-9ebc-4ab5-8fae-d7909747dfd8 @@

15 Color: (0, 0, 0, 255) -> (255, 0, 0, 255)

16 ColorSource: layer -> object

17 @@ ~LineCurve 22fb014a-85bd-4a56-a0cd-07321aadd52e @@

18 Color: (0, 0, 0, 255) -> (255, 0, 0, 255)

19 ColorSource: layer -> object

20 @@ ~LineCurve 4fdbb6d3-2513-45dc-94a9-c9875077de85 @@

21 Color: (0, 0, 0, 255) -> (255, 0, 0, 255)

22 ColorSource: layer -> object

23 @@ -LineCurve 5ebba82c-b909-4313-8247-6fdc5c634031 @@

24 Domain: [2.2551487856584056, 9.17534041976403]

25 StartPoint: (9.966767623614944, 24.781772236940483, 0.0)

26 EndPoint: (16.828909351701345, 23.887309741135965, 0.0)

66

Figure 5.3. The second modified copy of the Dom-ino tracing.

Figure 5.4. The merged model containing the changes from Figures 5.2 and 5.3.

67

27 @@ -LineCurve b07d85f3-efc1-4c07-be07-06211237b92e @@

28 Domain: [0.0, 0.39375629476038715]

29 StartPoint: (9.576868097848447, 25.68321249872336, 0.0)

30 EndPoint: (9.966767623614944, 25.628236326880554, 0.0)

31 @@ -LineCurve c4427803-1bc0-4067-9240-464e2f3525b7 @@

32 Domain: [2.7712785312946515, 10.277364432022416]

33 StartPoint: (16.82890935170135, 28.407362730576203, 0.0)

34 EndPoint: (16.82890935170135, 20.90127682984844, 0.0)

35 @@ -LineCurve 3b960de7-8cd5-4e90-a263-2be74deb736e @@

36 Domain: [0.0, 5.920871468485612]

37 StartPoint: (9.966767623614944, 25.628236326880554, 0.0)

38 EndPoint: (9.966767623614944, 19.707364858394943, 0.0)

39 @@ -LineCurve 3c8bf58c-820a-4989-854a-656862c9f028 @@

40 Domain: [4.7333498517256665, 10.777034288483303]

41 StartPoint: (9.576868097848447, 25.68321249872336, 0.0)

42 EndPoint: (9.576868097848447, 19.639528061965724, 0.0)

43 @@ -LineCurve 6d03ffd7-30e4-437d-9003-a608867ba401 @@

44 Domain: [0.0, 0.5252075961518584]

45 StartPoint: (17.32057316552188, 28.59205088188826, 0.0)

46 EndPoint: (16.82890935170135, 28.407362730576203, 0.0)

Next, a merged openNURBS model (Figure 5.4) was produced by

re-running the 3dmdiff command with the -m option:

3dmdiff3 -m -o delta_merged.3dm domino_copy.3dm domino.3dm

,→ domino_copy2.3dm

5.3 Merging via Sourcetree

Most computer users, and perhaps especially those accustomed to working

visually like architects, are unlikely to be willing to contend with the tedium of a

command line interface. Therefore, the final portion of the December 8

demonstration illustrated not only the integration of the openNURBS diff utilities

with a Git repository but also how branching and merging of openNURBS models

68

can be accomplished through a graphical user interface such as Atlassian’s

Sourcetree1.

First, the original tracing of the Maison Dom-ino was copied into a

repository that had already been set up according to the procedures described in

Section 4.4. That file was then committed to the repository (Figure 5.5). Next, a

new branch named alternate was created (Figure 5.6) and the version of the

model on that branch was modified in the same way as Figure 5.2 (Figure 5.7).

The repository was then switched back to the master branch, which restored the

model to its original state. The model was again modified to resemble Figure 5.3

and those changes were committed directly to the master branch (Figure 5.8).

Finally, the alternate branch was merged into the master branch to produce a

model similar to Figure 5.4 (Figure 5.9).

1. https://www.sourcetreeapp.com/

https://www.sourcetreeapp.com

69

Figure 5.5. Committing the Maison Dom-ino model to a Git repository in Sourcetree.

Figure 5.6. Creating a branch in Sourcetree.

70

Figure 5.7. The state of the repository after committing the first set of changes on the
alternate branch.

Figure 5.8. The state of the repository after committing the second set of changes on the
master branch.

71

Figure 5.9. The state of the repository after merging the alternate branch into the master

branch.

CHAPTER 6

DISCUSSION

6.1 A Proof of Concept

The 3dmdiff, 3dmpatch, and 3dmdiff3 programs developed for this thesis

and described in Chapter 4 have been successfully shown to accomplish each of

their respective intended tasks. Furthermore, the procedure described in Section

4.4 has been used to integrate these programs into a Git repository, and two

branches in that repository which contained separately modified versions of the

same openNURBS model were able to be merged. This thesis has therefore

successfully demonstrated the possibility of enabling optimistic version control

for openNURBS models and, by extension, other binary file formats used in the

architecture profession using an off-the-shelf version control system.

However, the 3dmdiff, 3dmpatch, and 3dmdiff3 programs as they exist

today are far too limited in their support for openNURBS component and

geometry types to be of practical use to architects. As of this writing, only

ON_Layer, ON_Linetype, ON_Group, and ON_Material components are able to be

diffed, patched, and merged, along with ON_ModelGeometryComponent instances

containing ON_Point, ON_ArcCurve, ON_LineCurve, and ON_TextDot geometries.

73

Even among these eight component types, not all properties are fully supported.

The 3dmpatch program, for example, is not yet able to change the stacking order of

layers, and 3dmdiff is unable to examine the textures assigned to a material.

In order to progress beyond the proof-of-concept stage, a significantly

broader set of component types and properties must be supported. This will

require developing algorithms to handle complex geometric shapes such as

polylines, Bézier splines, and NURBS curves and surfaces which are defined by a

variable number of control points. These algorithms must be able to detect the

addition and deletion of control points between versions of such geometric

components, and to do so, they must determine which control points in one

version of a shape correspond to the control points in another version of the same

shape. Unlike the components in an openNURBS model, control points do not

come with a unique ID that can be used to identify them across model versions.

They cannot be reliably identified by their position within the shape’s overall list

of control points because items may have been added to or removed from that list,

nor can they be compared by value because the shape itself may have been

moved, rotated, or transformed in some other way.

The most promising solution to this dilemma is to employ a registration

algorithm such as those used for aligning point cloud data collected by 3D

scanners as well as in computer vision applications. A point registration

algorithm would not only be able to identify correspondences between two sets of

control points, but would also produce a best-fit transformation matrix for

converting one version of a complex geometric shape into another. One potential

74

RMSE = 0.217 RMSE = 0.250

Figure 6.1. Two approaches to point registration. A square (left, in blue) is transformed
into a trapezoid (red) by moving its lower right corner inward. A typical point
registration algorithm might attempt to minimize the error rate between the old and new
sets of control points by producing a result similar to the center diagram. A better
alternative for diffing applications would match as many of the points exactly as possible.

difficulty is that these algorithms minimize the average error rate across all the

points in the data set, often resulting in a matrix that fails to transform any points

in the source data set to the exact location of its counterpart in the target data set.

A more desirable outcome for the purposes of diffing would be to arrive at a

matrix that produces an exact solution for as many points as possible and

distributes any error among the remaining points (Figure 6.1). Additionally,

existing registration algorithms are designed to work with data sets consisting of

millions of points; it remains to be seen how well they would perform in

situations where the number of points often does not exceed a few dozen.

In addition to singular geometric types such as points, curves, and surfaces,

openNURBS also supports composite geometries such as ON_PolyCurve and

ON_Brep which are made up of simpler shapes linked together to form a complex

whole. The naïve approach to comparing these geometric constructs would be to

examine each of their constituent parts independently of the parent geometry.

75

Figure 6.2. A twisted cube. Should a delta describing the differences between these two
shapes record only the rotation of the top face, or should it also explicitly include the
deformation of the faces that adjoin it?

However, this strategy ignores the efficiencies that could be gained by recognizing

that those parts share vertices and edges, and that movement of one edge or face

of a composite geometry may be the result of a change to one of its neighbors. The

changes to a cube, for example, that has had one of its faces twisted could be

documented in a delta that records only the rotation of that one face. The naïve

approach, however, would result in a more complex delta that also records

changes to the four adjacent faces that were deformed as a result of the rotation.

The procedures and algorithms necessary for efficiently handling these types of

situations and producing minimal deltas will need to be examined in future work.

76

25, 400, 000 = 254 × 105

25, 400 = 254 × 102

25.4 = 254 × 10−1

0.0254 = 254 × 10−4

0.0000254 = 254 × 10−7

Figure 6.3. Examples of floating-point numbers

6.2 Floating Point Numbers

Storing integers in a computing system is a relatively simple matter of

converting the integer to a base two representation and writing the binary digits

to an appropriately-sized section of computer memory. Non-integral real

numbers, however, are not so straightforward to deal with. Most computer

programs use a floating-point representation for such numbers, which breaks them

into two integers called a significand and an exponent. The significand stores the

significant digits of the number, while the exponent controls the position of the

radix point, which separates the integer part of the number from its fractional

part. Increasing or decreasing the exponent causes the radix point to “float” to the

right or left, respectively, relative to the number’s significant digits. Figure 6.3

shows several examples of floating-point numbers in base ten; floating-point

figures in a computer program would, of course, use base two (“IEEE Standard

for Binary Floating-Point Arithmetic” 1985).

Floating-point representation allows for space-efficient storage and fast

computation of a wide range of numerical values. Unfortunately, limits on the

77

precision of floating-point numbers due to a finite number of bits being allocated

to store the significand and exponent in computer memory can cause them to

suffer from round-off errors. In the same way that certain fractions cannot be

represented exactly in a limited number of decimal digits (0.333, for example, is

close but not precisely equal to 1
3), other numerical values cannot be represented

exactly in base two floating point. The rounding errors that result from

approximating such numbers can accumulate during mathematical operations,

leading to surprising or unexpected results such as the ones below.

print(0.1 + 0.2 == 0.3) # outputs False

print(0.1 + 0.2) # outputs 0.30000000000000004

The equality operator (==) in Python and most other languages performs a

bit-for-bit comparison of floating-point numbers, ignoring the potential for

round-off errors and leading to situations where two numbers that should be

considered equal are reported as not being so. A better approach to comparing

floating-point numbers involves the use of a tolerance: if the absolute value of the

difference between the two numbers is less than the tolerance, then they are

considered equal. OpenNURBS itself uses this method frequently, and 3dmdiff

should adopt it as well in order to produce more meaningful deltas. The

openNURBS format stores tolerances for distances and angles within each model

that would be ideally suited for this purpose. Alternatively, a command line

option could be added to 3dmdiff and 3dmdiff3 to explicitly set a tolerance to be

used for comparing floating-point values.

78

6.3 Beyond UUIDs

The 3dmdiff, 3dmpatch, and 3dmdiff3 programs rely on UUIDs to quickly

and unambiguously find correspondences between the components of

openNURBS models. This reliance is not without its drawbacks, however, as it

leaves the programs unable to detect semantic relationships between objects in

different versions of a model. If two editors, for example, were each to add an

object of roughly the same size and shape to the same place in their respective

versions of a model, a human mind would recognize that these objects are likely

to represent the same thought or entity and attempt to reconcile their differences

to arrive at a more complete understanding of that thought or entity. On the other

hand, 3mddiff would treat the two objects as completely unrelated because they

do not share a common UUID, and after merging the two versions with 3mddiff3,

the model would be left with two of what should have been recognized as the

same object overlapping one another in three-dimensional space.

Temporal and evolutionary relationships are also lost through a singular

reliance on UUIDs. When a component in an openNURBS model is duplicated, it

receives a new UUID that is unrelated to that of its predecessor. Ideally, 3dmdiff

would be able to detect the relationship between the predecessor and the copy

and use that information to construct a more meaningful delta, but its current

dependence on UUIDs to detect object correspondences makes this impossible.

The utility of 3dmdiff, 3dmpatch, and 3dmdiff3 would be greatly enhanced

by incorporating some heuristic to check for object correspondences based on

79

attributes other than the component’s UUID. Unlike the future work discussed in

the previous two sections, detection of semantic relationships is a non-trivial

problem and a subject of active research with respect to many different fields and

types of data. Carra and Pellacini (2019) developed a set of heuristics for matching

scene objects, shape data, textures, and animation frames in SceneGit which may

be adaptable for the types of components present in openNURBS models. Future

work must also evaluate other potential strategies for object correspondence

detection, including point cloud registration and machine learning techniques.

6.4 Conflict Resolution

The current behavior of 3dmpatch and 3dmdiff3 is to abort a patch or

merge operation when conflicting edits are detected. Such a reaction is

unacceptable for most real-world scenarios, so future work must include the

ability to handle conflicts in a more intelligent fashion. One option would be to set

aside the conflicting edits for manual inspection and proceed to apply the

non-conflicting edits to the patch or merge as usual. This is the approach taken by

GNU patch, which writes a description of each conflict to a reject file.

Alternatively, 3dmpatch and 3dmdiff3 could ask the user to choose between

predefined methods of resolving a conflict. Git provides a precedent for such

behavior: During a merge, a user can use the command git checkout --ours to

select the version of a conflicted file from the current branch, and the command

git checkout --theirs to select the version from the branch being imported. A

80

conflict found during an openNURBS patch operation would need to present

three options:

1. To apply the conflicting update, if possible, and proceed with the
remainder of the patch.

2. To skip the conflicting update and proceed with the remainder of the
patch.

3. To abort the entire patch operation.

A conflict found during a merge, on the other hand, would need to present

four alternatives:

1. To use the value of the conflicting property from “my” version of the
model.

2. To use the value of the conflicting property from “your” version of the
model.

3. To keep the original value of the conflicting property and discard the
changes made in “my” and “your” versions of the model.

4. To abort the entire merge operation.

Asking the user to choose between options such as these would be a simple

method of implementing interactive conflict resolution, at least from the

programmer’s standpoint. Unfortunately, this strategy ignores the possibility that

the most appropriate resolution to a conflict may be a novel creation of the user

rather than a preexisting choice. Furthermore, text prompts in a command-line

application do a poor job of explaining where in a model a conflict has been

detected or what the various alternatives look like. Git and GNU diff3 handles

these problems by inserting conflict markers around problematic sections of a file

that prevented it from being automatically merged. For example, suppose two

programmers both decide to augment a rather simplistic function:

81

A function that divides one number by another

def divide(numerator, denominator):

return numerator / denominator

One adds a new parameter that, when set to False, prevents the function from

raising an exception when the denominator is zero:

A function that divides one number by another

def divide(numerator, denominator, shouldRaise=True):

if not shouldRaise and denominator == 0:

return None

return numerator / denominator

The other adds a parameter that specifies an alternative value to return in the

same situation:

A function that divides one number by another

def divide(numerator, denominator, whenDividingByZero=math.nan):

if denominator == 0:

return whenDividingByZero

return numerator / denominator

The changes made by these two programmers conflict with one another, and

would result in conflict markers being added to the source file during a merge:

A function that divides one number by another

<<<<<<< HEAD

def divide(numerator, denominator, shouldRaise=True):

if not shouldRaise and denominator == 0:

return None

=======

def divide(numerator, denominator, whenDividingByZero=math.nan):

if denominator == 0:

return whenDividingByZero

>>>>>>> other-branch

return numerator / denominator

82

The programmer in charge of resolving the conflict would then have the option

choosing what aspects of each version to discard or retain before completing the

merge, perhaps resulting in a hybrid version such as:

A function that divides one number by another

def divide(numerator, denominator,

shouldRaise=True, whenDividingByZero=math.nan):

if not shouldRaise and denominator == 0:

return whenDividingByZero

return numerator / denominator

The insertion of conflict markers is an acceptable means of highlighting

merge conflicts in plain text files, but is unsuitable for handling conflicts in

openNURBS models because the openNURBS file format has no provision for

storing or displaying alternative or conflicting information about a component.

Furthermore, resolving conflicts in 3D geometric data demands the ability to

visualize the conflict graphically and in three dimensions, a facility that

line-based solutions such as conflict markers cannot provide. Future work should

therefore devise a way to visualize and resolve conflicts from within an

openNURBS modeling application, possibly through a plugin for McNeel’s

Rhinoceros software.

6.5 Optimism in the Real World

Finally, the efficacy of optimistic version control techniques within an

architectural workflow must be validated under real-life conditions. Although

this thesis has shown that it is possible to diff, patch, and merge openNURBS

83

models in a version control repository, it remains to be seen how architectural

professionals would react to this promising yet unfamiliar workflow and whether

its adoption would result in quantifiable benefits to the industry. Furthermore, it

remains possible (although unlikely, in the opinion of this researcher) that the

potential for edit conflicts during concurrent editing of a file as complex as a 3D

model is simply too great for optimistic version control to be a viable method of

enhancing collaboration in architectural practice.

6.6 Conclusion

This thesis has demonstrated the possibility of enabling optimistic version

control for openNURBS models by implementing a suite of programs that

provide facilities for diffing, patching, and three-way merging of files in that

format and describing how those programs can be integrated into a Git

repository. Furthermore, it has delineated an abstract model through which the

capabilities of those programs can be expanded, and support for diffing, patching,

and three-way merging of other file formats may be realized. By pursuing and

building upon the techniques presented in this thesis, the architecture community

can gain the benefits of concurrent work, enhanced collaboration, and rapid

exploration of design alternatives that optimistic version control has to offer.

84

REFERENCES

Aish, Robert. 2000. “Collaborative Design Using Long Transactions and ”Change
Merge”.” In Promise and Reality: State of the Art versus State of Practice in
Computing for the Design and Planning Process, 107–111. 18th eCAADe
Conference. Weimar, Germany, June. isbn: 0-9523687-6-5.

“IEEE Standard for Binary Floating-Point Arithmetic.” 1985. ANSI/IEEE Std
754-1985 (October 12, 1985). https://doi.org/10.1109/IEEESTD.1985.82928.

Armstrong, Deborah J. 2006. “The Quarks of Object-Oriented Development.”
Communications of the ACM 49 (2): 123–128.
https://doi.org/10.1145/1113034.1113040.

Ashtari, Narges. 2018. “Interacting with Design Alternatives: Towards New Tasks
and Tools.” Thesis, Simon Fraser University, November 28, 2018. Accessed
December 23, 2021. https://summit.sfu.ca/item/18716.

Berliner, Brian. 1990. “CVS II: Parallelizing Software Development,” 341–352.
Winter 1990 USENIX Conference. January 22–16, 1990.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerland, and
Michael Stal. 1996. “Layers.” In Pattern-Oriented Software Architecture: A
System of Patterns, 1:31–51. New York: John Wiley & Sons. isbn:
978-0-471-95869-7.

Carra, Edoardo, and Fabio Pellacini. 2019. “SceneGit: A Practical System for
Diffing and Merging 3D Environments.” ACM Transactions on Graphics 38,
no. 6 (November 8, 2019): 159:1–159:15. issn: 0730-0301.
https://doi.org/10.1145/3355089.3356550.

Chacon, Scott, and Ben Straub. 2014. Pro Git. 2nd ed. Apress. isbn:
978-1-4842-0077-3. https://git-scm.com/book/en/v2.

Chen, Hsiang-Ting, Li-Yi Wei, and Chun-Fa Chang. 2011. “Nonlinear Revision
Control for Images.” ACM Transactions on Graphics 30, no. 4 (July 25, 2011):
105:1–105:10. issn: 0730-0301. https://doi.org/10.1145/2010324.1965000.

Collins-Sussman, Ben, Brian W. Fitzpatrick, and C. Michael Pilato. 2011. Version
Control with Subversion. https://svnbook.red-bean.com/.

Cristie, Verina, Nazim Ibrahim, and Sam Conrad Joyce. 2021. “Capturing and
Evaluating Parametric Design Exploration in a Collaborative Environment

https://svnbook.red-bean.com
https://doi.org/10.1145/2010324.1965000
https://git-scm.com/book/en/v2
https://doi.org/10.1145/3355089.3356550
https://summit.sfu.ca/item/18716
https://doi.org/10.1145/1113034.1113040
https://doi.org/10.1109/IEEESTD.1985.82928

85

- A Study Case of Versioning for Parametric Design.” In PROJECTIONS -
Proceedings of the 26th CAADRIA Conference, edited by A. Globa,
J. van Ameijde, A. Fingrut, N. Kim, and T.T.S. Lo, 2:131–140. 26th
CAADRIA Conference. The Chinese University of Hong Kong and Online,
Hong Kong, March 29–April 1, 2021.

Cristie, Verina, and Sam Conrad Joyce. 2017. “Capturing And Visualising
Parametric Design Flow Through Interactive Web Versioning Snapshots.”
Proceedings of IASS Annual Symposia 2017, no. 5 (September 28, 2017): 1–8.

. 2021. “Versioning for Parametric Design Exploration Process.” Automation
in Construction 129 (September). issn: 0926-5805.
https://doi.org/10.1016/j.autcon.2021.103802.

Cross, Nigel. 2004. “Expertise in Design: An Overview.” Design Studies
25:427–441. https://doi.org/10.1016/j.destud.2004.06.002.

. 2006. Designerly Ways of Knowing. London: Springer. isbn: 1-84628-300-0.

Daum, Simon, and André Borrmann. 2016. “Enhanced Differencing and Merging
of IFC Data by Processing Spatial, Semantic and Relational Model
Aspects.” In Proc. of the 23rd International Workshop of the European Group for
Intelligent Computing in Engineering.

Denning, Jonathan D., and Fabio Pellacini. 2013. “MeshGit: Diffing and Merging
Meshes for Polygonal Modeling.” ACM Transactions on Graphics 32, no. 4
(July 21, 2013): 35:1–35:10. issn: 0730-0301.
https://doi.org/10.1145/2461912.2461942.

Doboš, Jozef, Carmen Fan, Sebastian Friston, and Charence Wong. 2018. “Screen
Space 3D Diff: A Fast and Reliable Method for Real-Time 3D Differencing
on the Web.” In Proceedings of the 23rd International ACM Conference on 3D
Web Technology, 1–9. Web3D ’18. New York, NY, USA: Association for
Computing Machinery, June 20, 2018. isbn: 978-1-4503-5800-2.
https://doi.org/10.1145/3208806.3208809.

Doboš, Jozef, and Anthony Steed. 2012. “3D Diff: An Interactive Approach to
Mesh Differencing and Conflict Resolution.” In SIGGRAPH Asia 2012
Technical Briefs, 1–4. SA ’12. New York, NY, USA: Association for
Computing Machinery, November 28, 2012. isbn: 978-1-4503-1915-7.
https://doi.org/10.1145/2407746.2407766.

Firmenich, B, C Koch, T Richter, and D G Beer. 2005. “Versioning Structured
Object Sets Using Text Based Version Control Systems.” In Proceedings of the

https://doi.org/10.1145/2407746.2407766
https://doi.org/10.1145/3208806.3208809
https://doi.org/10.1145/2461912.2461942
https://doi.org/10.1016/j.destud.2004.06.002
https://doi.org/10.1016/j.autcon.2021.103802

86

22nd CIB-W78 Conference on Information Technology in Construction, Institute
of Construction Informatics, 8. Dresden.

Fowler, Martin. 2002. “Layering.” In Patterns of Enterprise Application Architecture,
in collaboration with David Rice, Matthew Foemmel, Edward Hieatt,
Robert Mee, and Randy Stafford, 17–24. New York: Addison Wesley. isbn:
978-0-321-12742-6.

Grune, Dick. 1986. Concurrent Versions Systems, a Method for Independent
Cooperation. Technical Report IR 113. Amsterdam: Vrije Universiteit.

Hunt, Andrew, and David Thomas. 2000. “The Power of Plain Text.” In The
Pragmatic Programmer: From Journeyman to Master, 73–77. New York:
Addison-Wesley. isbn: 0-201-61622-X.

Hunt, James Wayne, and M Douglas McIlroy. 1976. An Algorithm for Differential
File Comparison. Computing Science Technical Report 41. Bell Telephone
Laboratories, July. https://www.cs.dartmouth.%20edu/~doug/diff.pdf.

Koch, Christian, and Berthold Firmenich. 2011. “An Approach to Distributed
Building Modeling on the Basis of Versions and Changes.” Advanced
Engineering Informatics, Information Mining and Retrieval in Design, 25, no.
2 (April 1, 2011): 297–310. issn: 1474-0346.
https://doi.org/10.1016/j.aei.2010.12.001.

Kung, H. T., and John T. Robinson. 1981. “On Optimistic Methods for
Concurrency Control.” ACM Transactions on Database Systems 6, no. 2
(June 1, 1981): 213–226. issn: 0362-5915.
https://doi.org/10.1145/319566.319567.

MacKenzie, David, Paul Eggert, and Richard Stallman. 2021a. Comparing and
Merging Files. Free Software Foundation, January 2, 2021.
https://www.gnu.org/software/diffutils/manual/.

. 2021b. “Detailed Description of Unified Format.” In Comparing and
Merging Files. Free Software Foundation, January 2, 2021. https://www.
gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html.

Meagher, Mark, Jeffrey Huang, Nathaniel Zuelzke, Trevor Patt,
Guillaume Labelle, and Julien Nembrini. 2015. “Code and Its Image: The
Functions of Text and Visualisation in a Code-Based Design Studio.”

https://gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
https://www
https://www.gnu.org/software/diffutils/manual
https://doi.org/10.1145/319566.319567
https://doi.org/10.1016/j.aei.2010.12.001
https://www.cs.dartmouth.%20edu/~doug/diff.pdf

87

Digital Creativity 26, no. 2 (April 3, 2015): 92–109. issn: 1462-6268.
https://doi.org/10.1080/14626268.2015.1045620.

Mens, Tom. 2002. “A State-of-the-Art Survey on Software Merging.” IEEE
Transactions on Software Engineering (New York, United States) 28, no. 5
(May): 449–462. issn: 00985589. https://doi.org/10.1109/tse.2002.1000449.

Myers, Eugene W. 1986. “An O(ND) Difference Algorithm and Its Variations.”
Algorithmica 1 (1-4): 251–266. https://doi.org/10.1007/BF01840446.

Peters, Tim. 2004. “PEP 20 – The Zen of Python,” August 19, 2004.
https://peps.python.org/pep-0020/.

Robert McNeel & Associates. n.d. “The openNURBS Initiative.”
https://www.rhino3d.com/opennurbs/.

Rochkind, Marc J. 1975. “The Source Code Control System.” IEEE Transactions on
Software Engineering SE-1, no. 4 (December): 364–370.
https://doi.org/10.1109/TSE.1975.6312866.

Rönnau, Sebastian, Jan Scheffczyk, and Uwe M. Borghoff. 2005. “Towards XML
Version Control of Office Documents.” In Proceedings of the 2005 ACM
Symposium on Document Engineering, 10–19. DocEng ’05. New York, NY,
USA: Association for Computing Machinery, November 2, 2005. isbn:
978-1-59593-240-2. https://doi.org/10.1145/1096601.1096606.

Ruparelia, Nayan B. 2010. “The History of Version Control.” ACM SIGSOFT
Software Engineering Notes 35 (1): 5–9.
https://doi.org/10.1145/1668862.1668876.

Sakai, Yasushi, and Daisuke Tsunoda. 2015. “Implementation of Decentralized
Version Control in Collective Design Modelling.” In Modelling Behaviour:
Design Modelling Symposium 2015, edited by Mette Ramsgaard Thomsen,
Martin Tamke, Christoph Gengnagel, Billie Faircloth, and Fabian Scheurer,
383–395. Cham: Springer International Publishing. isbn: 978-3-319-24208-8.
https://doi.org/10.1007/978-3-319-24208-8_32.

Salus, Peter H. 1994. A Quarter Century of UNIX. New York: Addison-Wesley.

Salvati, Gabriele, Christian Santoni, Valentina Tibaldo, and Fabio Pellacini. 2015.
“MeshHisto: Collaborative Modeling by Sharing and Retargeting Editing
Histories.” ACM Transactions on Graphics 34, no. 6 (October 26, 2015):
205:1–205:10. issn: 0730-0301. https://doi.org/10.1145/2816795.2818110.

https://doi.org/10.1145/2816795.2818110
https://doi.org/10.1007/978-3-319-24208-8_32
https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1145/1096601.1096606
https://doi.org/10.1109/TSE.1975.6312866
https://www.rhino3d.com/opennurbs
https://peps.python.org/pep-0020
https://doi.org/10.1007/BF01840446
https://doi.org/10.1109/tse.2002.1000449
https://doi.org/10.1080/14626268.2015.1045620

88

Schneider, Sven; Braunes Joerg. 2011. “Design Versioning – Problems and
Possible Solutions for the Automatic Management of Distributed Design
Processes.” In Computer Aided Architectural Design Futures 2011 [Proceedings
of the 14th International Conference on Computer Aided Architectural Design
Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, Pp. 669-681.
669–681. Liege, Belgium, July 4–8, 2011. isbn: 978-2-87456-142-9.

Schön, Donald A. 1984. “The Architectural Studio as an Exemplar of Education
for Reflection-in-Action.” Journal of Architectural Education 38, no. 1
(October 1, 1984): 2–9. issn: 1046-4883. https://doi.org/10/gnxg3v.

Sveen, Atle Frenvik. 2020. “GeomDiff — an Algorithm for Differential Geospatial
Vector Data Comparison.” Open Geospatial Data, Software and Standards 5,
no. 1 (July 10, 2020): 3. issn: 2363-7501.
https://doi.org/10.1186/s40965-020-00076-4.

The Unicode Consortium. 2021. The Unicode Standard. 14.0.0. Mountain View, CA:
The Unicode Consortium. isbn: 978-1-936213-29-0.
https://www.unicode.org/versions/Unicode14.0.0/.

Tichy, Walter F. 1982. “Design, Implementation, and Evaluation of a Revision
Control System.” In Proceedings of the 6th International Conference on Software
Engineering. Tokyo: IEEE, September.

. 1985. “RCS — A System for Version Control.” Software: Practice and
Experience 15 (7): 637–654. issn: 1097-024X.
https://doi.org/10.1002/spe.4380150703.

TIOBE. 2022. “TIOBE Index.” TIOBE, December. Accessed December 10, 2022.
https://www.tiobe.com/tiobe-index/.

Zhang, Qiao. 2021. “ShapeHub: An Online Collaboration Platform Implementing
Version Control for Collaborative Design.” Thesis, Carnegie Mellon
University, May 24, 2021.

https://www.tiobe.com/tiobe-index
https://doi.org/10.1002/spe.4380150703
https://www.unicode.org/versions/Unicode14.0.0
https://doi.org/10.1186/s40965-020-00076-4
https://doi.org/10/gnxg3v

89

APPENDIX A: REPRINT PERMISSIONS

Portions of this thesis are currently being considered for publication in the

International Journal of Architectural Computing, published by SAGE Journals. As of

this writing, SAGE’s Green Open Access1 policy states that original manuscripts

may be reused “in your dissertation or thesis, including where the dissertation or

thesis will be posted in any electronic Institutional Repository or database.”

1. https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use

https://us.sagepub.com/en-us/nam/journal-author-archiving-policies-and-re-use

90

APPENDIX B: OPENNURBS GEOMETRY TYPES

This appendix outlines the breadth of geometric constructs supported by

the openNURBS file format by enumerating the subclasses of ON_Geometry.

ON_Annotation extends ON_Geometry

The base class for annotation objects.

ON_ArcCurve extends ON_Curve

An arc or circle.

ON_Brep extends ON_Geometry

A boundary representation, or B-rep. In computer graphics, boundary
representations are a method of defining three-dimensional shapes in
terms of the surfaces that enclose them.

ON_BrepEdge extends ON_CurveProxy

An edge between two faces in a B-rep.

ON_BrepFace extends ON_SurfaceProxy

A face in a B-rep.

ON_BrepLoop extends ON_Geometry

The set of curves that define the edges of a single face in a B-rep.

ON_BrepTrim extends ON_CurveProxy

A curve that trims a face in a B-rep.

ON_Centermark extends ON_Dimension

An annotation that marks the center of a circle or arc.

ON_ClippingPlaneSurface extends ON_PlaneSurface

A planar surface that is used as a clipping plane in one or more viewports.

ON_Curve extends ON_Geometry

The base class for curves. In openNURBS, all one-dimensional geometric
objects are considered to be curves even if they do not “curve” in the
conventional sense.

ON_CurveOnSurface extends ON_Curve

A curve that lies on a surface.

91

ON_CurveProxy extends ON_Curve

A curve-like structure that is stored as part of another type of geometry.
Proxy objects are not saved in an openNURBS file and only exist at runtime.

ON_DetailView extends ON_Geometry

A viewport bounded by a closed planar curve.

ON_DimAngular extends ON_Dimension

An annotation that shows the angle between two curves or surfaces.

ON_Dimension extends ON_Annotation

The base class for dimension annotations.

ON_DimLinear extends ON_Dimension

An annotation that shows the distance between two points.

ON_DimOrdinate extends ON_Dimension

An annotation that shows the distance from the model’s origin point.

ON_DimRadial extends ON_Dimension

An annotation that shows the radius or diameter of a circle or arc.

ON_Extrusion extends ON_Surface

A surface created by extruding a curve along a linear path.

ON_Hatch extends ON_Geometry

A planar region filled with a hatch pattern.

ON_HLDCurve extends ON_CurveProxy

A curve that is the result of projecting a three-dimensional object into a
two-dimensional hidden line drawing.

ON_InstanceRef extends ON_Geometry

A copy of an ON_InstanceDefinition that has been placed in the model.

ON_Leader extends ON_Annotation

A line that points from an annotation toward the model entity it describes.

ON_Light extends ON_Geometry

A source of light used when rendering a model.

ON_LineCurve extends ON_Curve

A straight line between two points.

ON_Mesh extends ON_Geometry

A polygonal mesh. In computer graphics, meshes are a method of

92

approximating a complex shapes through a network of planar, polygonal
surfaces.

ON_MeshComponentRef extends ON_Geometry

A face, edge, or vertex within a mesh.

ON_MorphControl extends ON_Geometry

An object that controls the morphing behavior of another object.

ON_NurbsCage extends ON_Geometry

A network of control points that defines the shape of a NURBS surface.

ON_NurbsCurve extends ON_Curve

A non-uniform rational basis spline (NURBS) curve. All other types of
curve are representable as and can be converted to a NURBS curve.

ON_NurbsSurface extends ON_Surface

A non-uniform rational basis spline (NURBS) surface. All other types of
surface are representable as and can be converted to a NURBS surface.

ON_OffsetSurface extends ON_SurfaceProxy

A surface that is offset from another according to some algorithm.

ON_PlaneSurface extends ON_Surface

A planar surface.

ON_Point extends ON_Geometry

A point in three-dimensional space.

ON_PointCloud extends ON_Geometry

A collection of points such as those acquired by a 3D scanner.

ON_PointGrid extends ON_Geometry

A set of regularly-spaced points.

ON_PolyCurve extends ON_Curve

A curve that consists of other, simpler curves laid end-to-end.

ON_PolyEdgeCurve extends ON_PolyCurve

A multi-part edge of a face in a B-rep.

ON_PolyEdgeSegment extends ON_CurveProxy

A piece of a ON_PolyEdgeCurve.

ON_PolylineCurve extends ON_Curve

A curve that consists of one or more linear segments.

93

ON_RevSurface extends ON_Surface

A surface created by rotating a curve about an axis.

ON_SubD extends ON_Geometry

A subdivision surface. In computer graphics, subdivision surfaces are a
method of defining complex shapes through a network of control points
and a set of algorithms that interpolate the surfaces between those control
points.

ON_SubDComponentRef extends ON_Geometry

A face, edge, or vertex within a subdivision surface.

ON_SumSurface extends ON_Surface

A surface created by extruding a curve along a curved path.

ON_Surface extends ON_Geometry

The base class for surfaces.

ON_SurfaceProxy extends ON_Surface

A surface-like structure that is stored as part of another type of geometry.
Proxy objects are not saved in an openNURBS file and only exist at runtime.

ON_Text extends ON_Annotation

A textual annotation.

ON_TextContent extends ON_Geometry

A textual label that is part of an annotation component.

ON_TextDot extends ON_Geometry

A small textual label that keeps itself aligned with the viewing plane so it is
always legible.

ON_Viewport extends ON_Geometry

The field of view of a virtual camera.

94

APPENDIX C: OPEN SOURCE CONTRIBUTIONS

The rhino3dm package provides bindings for the openNURBS library for

the Python programming language. Unfortunately, those bindings are incomplete;

a number of functions and data types defined in the openNURBS C++ library are

not available in Python. During the course of this thesis, seven pull requests

containing enhancements and corrections were submitted to the rhino3dm Github

repository1. As of this writing, four of those pull requests have been accepted by

Robert McNeel & Associates and merged into the rhino3dm source.

Linetype Bindings

Pull request #477 seeks to enable inspection and manipulation of line types by

adding the Linetype and File3dmLinetypeTable classes. It has not yet been

accepted.

Editorconfig File

Pull request #478 added an .editorconfig file2 to the repository to help ensure

the project’s coding conventions. It was accepted on September 5, 2022.

1. https://github.com/mcneel/rhino3dm

2. https://editorconfig.org/

https://editorconfig.org
https://github.com/mcneel/rhino3dm

95

Equality Operators

Pull request #479 added support for the equality (==) and inequality (!=)

operators on the Interval, Point2d, Point2f, Point3d, Point3f, Point4d,

Vector2d, Vector3d, and Vector3f data types. It was accepted on September 8,

2022.

Arc Plane Property

Pull request #480 added a Plane property to the Arc class. It was accepted on

September 18, 2022. An earlier version of this pull request also included a Normal

property for the Arc class and added a setter to the Arc property of the ArcCurve

class. Those changes were rejected because they lacked precedent in the

RhinoCommon API3 after which rhino3dm is modeled.

Spelling Corrections

Pull request #481 fixed a few spelling mistakes that were present in the rhino3dm

code. It was accepted on October 31, 2022.

3. https://developer.rhino3d.com/guides/rhinocommon/

https://developer.rhino3d.com/guides/rhinocommon

96

Group Deletion

Pull request #482 seeks to add a Delete method to the File3dmGroupTable class.

It has not yet been accepted.

Transform Properties and Methods

Pull request #483 seeks to add the following properties and methods to the

Transform class:

IsAffine : boolean
Indicates whether the Transform is affine.

IsLinear : boolean
Indicates whether the Transform is linear.

IsRotation : boolean
Indicates whether the Transform is a proper rotation.

RigidType : TransformRigidType
Indicates whether the Transform is rigid.

SimilarityType : TransformSimilarityType
Indicates whether the Transform is an orientation-preserving or
orientation-reversing similarity.

Rotation (startDirection : Vector3d, endDirection : Vector3d, center : Point3d) : Transform
Creates a Transform that rotates from the direction specified by one vector
to the direction specified by another.

PlaneToPlane (fromPlane : Plane, toPlane : Plane) : Transform
Creates a Transform that moves and re-orients objects in one plane to
another.

Shear (plane : Plane, x : Vector3d, y : Vector3d, z : Vector3d) : Transform
Creates a shear transformation.

This pull request has not yet been accepted.

97

APPENDIX D: SUPPORTED COMPONENT TYPES AND PROPERTIES

The 3dmdiff, 3dmpatch, and 3dmdiff3 programs described in this thesis currently

support the eight component types listed below. The supported properties of each

of these component types are enumerated in the sections that follow.

ArcCurve

An arc or circle. Corresponds to an ON_ModelGeometryComponent

containing an instance of ON_ArcCurve.

Group

A named collection of geometric objects. Corresponds to an instance of
ON_Group.

Layer

A category into which geometric objects can be organized. Corresponds to
an instance of ON_Layer.

LineCurve

A straight line between two points. Corresponds to an
ON_ModelGeometryComponent containing an instance of ON_LineCurve.

Linetype

A pattern of dashes and spaces that can be applied to a curve. Corresponds
to an instance of ON_Linetype.

Material

A set of physical and optical properties that affect the appearance of a
rendered object. Corresponds to an instance of ON_Material.

Point

A point in three-dimensional space. Corresponds to an
ON_ModelGeometryComponent containing an instance of ON_Point.

TextDot

An arc or circle. Corresponds to an ON_ModelGeometryComponent
containing an instance of ON_TextDot.

98

Common Properties

The following properties are supported on all component types:

Name : string
A human-readable label describing the component.

Parent : uuid
The ID of the component’s parent object.

Common Geometric Properties

The following properties are supported on all geometric component types,
including Point, ArcCurve LineCurve, and TextDot.

CastsShadows : boolean
Whether or not the object casts shadows during rendering.

Color : color
The color of the object when displayed on screen.

ColorSource : keyword
The source of the object’s display color. Possible values are:

layer The object takes on the color of its layer.
material The object takes on the color of its material.
object The object is displayed using the color set in its Color

property.
parent The object takes on the color of its parent.

Decoration : keyword
Indicates whether decorative marks such as arrowheads are applied to the
ends of the object.

none The object has no decorations.
both Decorations are applied to both ends of the object.
start Decoration is applied to the beginning of the object only.
end Decoration is applied to the end of the object only.

99

DisplayOrder : integer
Controls the order in which objects are drawn. Objects with a lower
display order appear beneath those with a higher one.

Groups : set<uuid>
The UUIDs of the groups that the object belongs to.

Layer : uuid
The ID of the layer the object belongs to.

Linetype : uuid
The UUID of the object’s linetype.

LinetypeSource : keyword
The source of the object’s plot color. Possible values are:

layer The object takes on the linetype of its layer.
object The object uses the linetype referenced in its Linetype

property.
parent The object takes on the linetype of its parent.

Material : uuid
The UUID of the object’s material.

MaterialSource : keyword
The source of the object’s material. Possible values are:

layer The object takes on the material of its layer.
object The object uses the material referenced in its Material

property.
parent The object takes on the material of its parent.

PlotColor : color
The color of the object when printed.

PlotColorSource : keyword
The source of the object’s plot color. Possible values are:

display The object is printed using the color set in the Color property.
layer The object takes on the color of its layer.
object The object is printed using the color set in its PlotColor

property.
parent The object takes on the color of its parent.

PlotWeight : float
The line weight of the object when printed.

100

PlotWeightSource : keyword
The source of the object’s plot weight. Possible values are:

layer The object takes on the line weight of its layer.
object The object is printed using the weight set in its PlotWeight

property.
parent The object takes on the line weight of its parent.

ReceivesShadows : boolean
Whether or not the object receives shadows during rendering.

Space : keyword
The space the object belongs to. Possible values are:

none The object does not belong to any space.
model The object exists in model space.
page The object exists in to page space.

Viewport : uuid
Restricts the object to a specific view.

WireDensity : integer
The density of isocurves used to display the object’s surfaces.

Mode : keyword
The status of the object. Possible values are:

hidden The object is hidden.
instanceDefinition The object is part of an ON_InstanceDefinition.
locked The object is visible but cannot be edited.
normal The object is visible and can be edited.

URL : string
The object’s URL.

Common Curve Properties

The following properties are supported on all curve types, including ArcCurve

and LineCurve.

Degree : integer
The algebraic degree of the curve. The degree of a LineCurve is always 1

101

and for an ArcCurve it is always 2, but other types of curves may have
higher degrees.

Domain : interval
The minimum and maximum values of the parameterization of the curve.

Properties of ArcCurve Components

ArcCurve components support the following in addition to the common
properties listed in the first three sections of this appendix.

Angle : interval
The angles, in radians, of the start and end points of the arc relative to its
center. Circles have an Angle value of [0, 2π].

Center : point3d
The location of the center of the arc.

Normal : vector3d
The normal vector of the plane in which the arc lies.

Radius : float
The radius of the arc.

Properties of Group Components

Group components do not have any properties beyond the common ones listed in

the first section of this appendix.

Properties of Layer Components

Layer components support the following properties in addition to the common
ones listed in the first section of this appendix.

102

Color : color
The layer’s color.

IgesLevel : integer
The level assigned to the layer during IGES export.

Linetype : uuid
The UUID of the layer’s linetype.

Material : uuid
The UUID of the layer’s material.

PlotColor : color
The layer’s plot color.

PlotWeight : float
The layer’s plot weight.

Properties of LineCurve Components

LineCurve components support the following in addition to the common
properties listed in the first three sections of this appendix.

EndPoint : point
The location at which the line ends.

StartPoint : point
The location at which the line begins.

Properties of Linetype Components

Linetype components support the following property in addition to the common
ones listed in the first section of this appendix.

Segments : list
The lengths of the dashes and spaces that make up the linetype.

103

Properties of Material Components

Material components support the following properties in addition to the
common ones listed in the first section of this appendix.

AmbientColor : color
The material’s ambient color.

DiffuseColor : color
The material’s diffuse color.

DisableLighting : boolean
Disables lighting for the material.

EmissionColor : color
The material’s emission color.

FresnelIndexOfRefraction : float
The Fresnel index of refraction of the material.

FresnelReflections : boolean
Whether Fresnel reflections are used.

IndexOfRefraction : float
The index of refraction of the material.

PreviewColor : color
The color used for previewing the material in non-rendered contexts.

ReflectionColor : color
The material’s reflection color.

ReflectionGlossiness : float
The layer’s plot weight.

Reflectivity : float
The level of reflectivity of the material. A value of 0.0 indicates that the
material is not reflective at all and a value of 1.0 indicates that it reflects all
of the light that strikes it.

RenderPlugIn : uuid
The UUID of the rendering plug-in responsible for the material.

Shine : float
The shine factor of the material.

104

SpecularColor : color
The material’s specular color.

Transparency : float
The level of transparency of the material. A value of 0.0 indicates that the
material is fully opaque and a value of 1.0 indicates that it is fully
transparent.

TransparentColor : color
The material’s transparent color.

Properties of Point Components

Point components support the following in addition to the common properties
listed in the first two sections of this appendix.

Point : point3d
The location of the point.

Properties of TextDot Components

TextDot components support the following in addition to the common properties
listed in the first two sections of this appendix.

Point : point3d
The location of the text dot.

PrimaryText : string
The primary content of the text dot.

SecondaryText : string
The secondary content of the text dot.

FontFace : string
The font face used to render the text dot.

Height : integer
The size of the text dot.

105

APPENDIX E: SOURCE CODE

The complete source code for the abstract model and command-line tools

developed for this thesis has been published on GitHub under the MIT license.

https://github.com/coditect/opennurbs-diffutils

https://github.com/coditect/opennurbs-diffutils

	Structure
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Abbreviations
	Chapter 1: Introduction
	Chapter 2: Background
	Version Control Systems
	Diffing, Patching, and Merging
	Benefits of Optimistic Version Control in Architecture
	Research into Version Control for Architecture and Related Disciplines

	Chapter 3: Methods
	OpenNURBS
	Programming Languages
	The Unix Philosophy
	Delta Format
	System Architecture

	Chapter 4: Implementation
	The Abstract Model
	Stringables
	Values
	Deltas
	Accessors
	Properties
	Property Maps
	Tables
	Types
	Component Deltas
	Model Deltas
	Sessions

	The Adapter Layer
	Command Line Interface
	3dmdiff
	3dmpatch
	3dmdiff3

	Git Integration

	Chapter 5: Demonstration
	Diffing and Patching
	Merging via the Command Line
	Merging via Sourcetree

	Chapter 6: Discussion
	A Proof of Concept
	Floating Point Numbers
	Beyond UUIDs
	Conflict Resolution
	Optimism in the Real World
	Conclusion

	References
	Appendix A: Reprint Permissions
	Appendix B: OpenNURBS Geometry Types
	Appendix C: Open Source Contributions
	Linetype Bindings
	Editorconfig File
	Equality Operators
	Arc Plane Property
	Spelling Corrections
	Group Deletion
	Transform Properties and Methods

	Appendix D: Supported Component Types and Properties
	Common Properties
	Common Geometric Properties
	Common Curve Properties
	Properties of ArcCurve Components
	Properties of Group Components
	Properties of Layer Components
	Properties of LineCurve Components
	Properties of Linetype Components
	Properties of Point Components
	Properties of Material Components
	Properties of TextDot Components

	Appendix E: Source Code

