

BRIDGE SCOUR DETECTION USING TERRESTRIAL LIDAR AND ADVANCED

QUANTIFICATION TECHNIQUES

by

Navanit Sri Shanmugam

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Infrastructure and Environmental Systems

Charlotte

2022

 Approved by:

Dr. Shen-En Chen

Dr. Janos Gergely

Dr. Rajaram Janardhanam

Dr. Wenwu Tang

Dr. John Diemer

ii

©2022

Navanit Sri Shanmugam

ALL RIGHTS RESERVED

iii

ABSTRACT

NAVANIT SRI SHANMUGAM. Bridge Scour Detection Using Terrestrial LiDAR and

Advanced Quantification Techniques

(Under the direction of Dr. Shen-En Chen)

Scour is an important factor affecting the hydraulic structures of a bridge. Remote sensing

techniques such as terrestrial LiDAR (Light Detection And Ranging) can help speed up the

inspection process and provide high-resolution records of the extent of scour. With LiDAR point

cloud data, a temporal record of scour can be established. However, there are limitations to LiDAR

scans. For example, a scan would contain not just the scour but surfaces surrounding the scour as

well. Thus, there is a need to identify and separate scour points from the rest. Moreover, laser light

does not bend and can be obstructed by objects along the light path resulting in missing geometric

information behind the obstacles thereby creating a void in the point cloud data. To address this

data void issue and to ‘reconstruct’ likely scour void, innovative analytical processes are being

explored in this dissertation.

1. To automate scour detection and classification, 3D Point Capsule Network (3D

PCN) for processing LiDAR point clouds captured from bridge hydraulic structure scans

is presented. Scan results were first processed to cut portions that contain scour points.

Synthetic data resembling a scour were then generated and 3D PCN, powered by a dynamic

routing algorithm, was used to label the points of a given scour point cloud into scour and

non-scour points. If scour is identified, it is segmented (cut) out from the point cloud for

documentation.

2. To ‘fill in’ the missing data, spatial interpolation of 3D LiDAR point cloud data

using Ordinary Kriging (OK) method is suggested and actual field data from scanning a

iv

scoured bridge pier is presented to demonstrate the application. Kriging is a geostatistical

interpolation technique and OK assumes that the spatial variation of the phenomenon or

object being considered is random and intrinsically stationary with a constant mean. Here,

the complete scour envelope is reconstructed using kriging.

3. Interpolation of the point cloud data can result in either extremes of data density,

very dense or very sparse. A method to find an ‘optimum’ point-to-point distance after

interpolation using processing times, surface area and volume calculations is presented.

Scanned point cloud from the Phillips Road Bridge of the Toby Creek, Charlotte, North

Carolina, has been used for the study. The different processes (OK and 3D PCN) are then applied

to the point cloud data set separately.

The results from the distinct methodologies are summarized as follows:

• The 3D PCN was trained to detect scour using 1,000 sets of synthetic scour data,

using a split of 750-150-100 for training, evaluation, and testing.

• The resulting model had an accuracy of 63% in identifying scour points from the

input scour and non-scour point cloud.

• The network performed well on a real-world point cloud from the Phillips Road

Bridge pier scour.

• Data voids were identified on the same real-world scour and OK process was used

to fill in those voids.

• Post-kriging spatial resolution of the points was much higher (i.e., point-to-point

distances were much lower) than the original, which had varying point density in

different portions of the cloud.

v

• Scour depth was measured, and surface areas and volumes were calculated for

scenarios consisting of nine different spatial resolutions. A point-to-point distance

of 20mm was found to be the optimal spatial resolution considering total processing

times and comparison of the scour parameters with the actual values.

vi

ACKNOWLEDGEMENTS

I would like to sincerely thank my PhD advisor and mentor Dr. Shen-En Chen. Without

his help, advice, expertise, patience, and guidance, this research and dissertation would not have

happened. I would also like to thank my committee member and mentor Dr. Rajaram Janardhanam

for his guidance and encouragement. I would like to thank my other committee members: Dr. Janos

Gergely, Dr. Wenwu Tang and Dr. John Diemer for their brilliant questions, insight,

encouragement, and suggestions to improve my journal articles and dissertation.

I would like to thank Dr. Wenwu Tang for giving me the opportunity to work on the

DeepHyd project. I would also like to thank Dr. Craig Allan, who is very much a part of the

DeepHyd journey. I would like to thank the North Carolina Department of Transportation

(NCDOT) for the funding support during my PhD program. I also want to acknowledge the support

of NCDOT Steering and Implementation committee: John W. Kirby, Matthew Lauffer, Tom

Langan, Gary Thompson, Paul Jordan, Mark Swartz, Mark Ward, Derek Bradner, Brian Radakovic

and Kevin Fischer.

I would like to thank my fellow student researchers from the DeepHyd project: Vidya

Subhash Chavan, Tianyang Chen, Tarini Shukla, and Zachery Slocum.

Many others have helped and supported me, I’m sincerely grateful to them – Dr. Jy Wu,

Dr. Erika Weber, Dr. David Boyajian, Dr. Richard Yang, Vincent Lee, Karl Lin, Sofia Lin,

Christof Boyajian, Jasmin Boyajian, Sonu Mathew.

I would like to thank my family – my father (Shanmugam S.) and mother (Kavitha K.N.)

for their sacrifice, continued support and understanding during my PhD program. A special word

vii

of thanks to my aunt (Agilandeswari N.) and uncle (Natrajan P.) for being there with me during

this journey.

viii

DEDICATION

To my family, teachers, and friends.

ix

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES ... xvi

LIST OF ABBREVIATIONS ... xvii

1 INTRODUCTION .. 1

1.1 Motivation and Background ... 1

1.2 Research Objectives ... 4

1.3 Methodology .. 5

1.4 Scope .. 8

1.5 Dissertation Outline.. 9

2 USING 3D POINT CAPSULE NETWORK FOR POINT CLOUD SCOUR DETECTION ..

 ... 10

2.1 Abstract .. 10

2.2 Introduction .. 10

2.3 Point Clouds in Deep Neural Networks ... 14

2.4 3D Point Capsule Network ... 14

2.5 LiDAR Point Cloud Training Using 3D PCN .. 18

2.6 Case Study .. 20

2.7 Discussion .. 23

2.8 Conclusions .. 25

x

2.9 References .. 26

3 SPATIAL INTERPOLATION OF BRIDGE SCOUR POINT CLOUD DATA USING

ORDINARY KRIGING.. 30

3.1 Abstract .. 30

3.2 Introduction .. 30

3.3 Spatial Interpolation and Kriging ... 34

3.4 The Phillips Road Bridge Case Study .. 37

3.5 Scour Scan and OK Analysis ... 39

3.6 Results and Discussions ... 44

3.7 Conclusions .. 47

3.8 References .. 48

4 SPATIAL DENSITY ANALYSIS OF BRIDGE SCOUR POINT CLOUD USING

ORDINARY KRIGING.. 50

4.1 Abstract .. 50

4.2 Introduction .. 50

4.3 Spatial Interpolation of point Cloud Using Ordinary Kriging 54

4.4 Captured Scour Point Cloud and Spatial Density Analysis ... 58

4.5 Results and Discussions ... 61

4.6 Scour Change Over Time ... 66

4.7 Conclusions .. 69

xi

4.8 References .. 71

5 OVERALL CONCLUSIONS ... 74

6 SCOPE FOR FUTURE RESEARCH ... 76

REFERENCES ... 78

APPENDICES .. 80

Appendix A. Phillips Road Bridge North Bank Photos .. 80

Appendix B. Phillips Road Bridge North Bank Pier No. 2 Scour Over Time 82

Appendix C. Phillips Road Bridge North Bank Pier No. 3 Results ... 87

Appendix D. MATLAB Scripts .. 92

Appendix E. Python 3.6 Scripts ... 98

xii

LIST OF FIGURES

Figure 1-1 A basic methodology schematic for Chapter 2 ... 6

Figure 1-2 A basic methodology schematic for Chapter 3 ... 6

Figure 1-3 A basic methodology schematic for Chapter 4 ... 7

Figure 1-4 Overall algorithm for this research ... 7

Figure 2-1 Mechanism of scour at a circular pier (Chavan et al. 2022) 11

Figure 2-2 A Point Cloud of a Bridge with Missing Data, Vegetation and Noise Marked 12

Figure 2-3 3D-PointCapsNetwork (3D PCN) Architecture (Zhao et al., 2019) 17

Figure 2-4 Scour Point Clouds. a) Two sets of manually labelled input b) Output result showing

incorrectly labelled points ... 19

Figure 2-5 Result Comparison a) Manually labeled point cloud b) AI labeled point cloud 19

Figure 2-6 Scour surrounding piers on the north bank of Toby Creek ... 21

Figure 2-7 LiDAR scan of the scour around one of the north bank piers of Philipps Road Bridge

... 21

Figure 2-8 Average Training Loss ... 24

Figure 2-9 Phillips Road Bridge point cloud a) original point cloud showing scour around pier b)

3DPCN output of the scour point cloud – pier was removed before input 25

Figure 3-1 Mechanism of Scour at a Circular Pier ... 33

Figure 3-2 Spatial Variation in One Dimension (s) .. 36

Figure 3-3 Snapshots of Phillips Road Bridge (on 03/30/2019) ... 38

Figure 3-4 The Scoured Pier of the Phillips Road Bridge: a) Scoured Pier on the North bank and

b) Bridge Laser Scan ... 41

xiii

Figure 3-5 Sample Scour Point Cloud with a) Data voids marked, b) Sample reference plane with

plane perpendiculars going towards the scour data .. 42

Figure 3-6 Semi-Variance Graph for the Selected Point Cloud .. 43

Figure 3-7 Ordinary Kriging Interpolation Results – Legend Shows the Scour Depth Range (in

Meters) .. 45

Figure 3-8 Original Point Cloud (1,000 Points, Left) with voids marked in circles and Point

Cloud (1.86 million Points, Right) after Kriging Interpolation .. 46

Figure 4-1 Study bridge: Phillips Road Bridge in Charlotte, NC (Photos were taken on

03/30/2019; Photo credit: Shen-En Chen) .. 53

Figure 4-2 Scoured pier of the study bridge: a) scour hole with pebbles and b) LiDAR scan of the

scour and pier (Photo credit: Shen-En Chen). .. 54

Figure 4-3 Example Kriging predictions with original scanned data (a and b) and post-Kriging

results (c and d). .. 56

Figure 4-4 Full LiDAR scan with laser scanner position and the location of the studied scour

(number of points: 24,248,705). ... 57

Figure 4-5 Extracted image of the scoured area showing data voids (circled area). 59

Figure 4-6 Sample scour points with voids marked (in red circles). .. 59

Figure 4-7 Semi-variance graph (semivariogram) for the selected point cloud (γ: semivariance).

... 62

Figure 4-8 Ordinary Kriging results a) raster plot (OK: Ordinary Kriging); b) point cloud view.

... 62

Figure 4-9 Point cloud and interpolated points with point-to-point distance of 500 mm a) XY

view b) 3D view. ... 63

xiv

Figure 4-10 Point cloud and interpolated points with point-to-point distance of 200 mm a) XY

view b) 3D view. ... 64

Figure 4-11 Point cloud and interpolated points with point-to-point distance of 100 mm a) XY

view b) 3D view .. 65

Figure 4-12 Point cloud and interpolated points with point-to-point distance of 20 mm a) XY

view b) 3D view .. 65

Figure 4-13 Percentage difference in surface area and volume with decreasing point-to-point

distances. ... 66

Figure 4-14 Processing times increase with decreasing point distances 66

Figure 4-15 Phillips Road bridge scour point cloud as on Aug 17, 2019. Data voids are marked in

red circles. ... 68

Figure 4-16 Raster plot of OK results (Aug 2019 scour). ... 69

Figure 6-1 Potential future research .. 77

Figure A-1 North Bank Pier No. 2 (June 9, 2020) .. 80

Figure A-2 North Bank Pier No.3 (June 9, 2020) ... 80

Figure A-3 North Bank Pier No.4 (June 9, 2020) ... 80

Figure A-4 LiDAR scan in progress (June 9, 2020) ... 81

Figure A-5 Sample Phillips Road Bridge LiDAR point cloud visualized using CloudCompare . 81

Figure B-1 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on Feb 11,

2019... 82

Figure B-2 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on Aug 17,

2019... 83

xv

Figure B-3 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on June 9,

2020... 84

Figure B-4 Pier No. 2 scour point cloud comparison a) Feb 11, 2019; b) Aug 17, 2019; c) June 9,

2020... 85

Figure C-1 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on Aug 17,

2019... 87

Figure C-2 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on Jan 24,

2020... 88

Figure C-3 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on June 6,

2020... 89

Figure C-4 Pier No. 3 scour point cloud comparison; a) Aug 17, 2019; b) Jan 24, 2020; c) June 9,

2020... 90

xvi

LIST OF TABLES

Table 4-1 Results of the experiment used in this study. ... 61

Table B-1 Pier No. 2 scour parameters over time ... 86

Table C-1 Pier No. 3 scour parameters over time ... 91

xvii

LIST OF ABBREVIATIONS

2D Two Dimension

3D Three Dimension

AI Artificial Intelligence

ASCE American Society of Civil Engineers

CN Capsule Network

FHWA Federal Highway Administration

GB Giga Bytes

IDW Inverse Distance Weighted

LiDAR Light Detection and Ranging

LOS Line of Sight

m Meters

MATLAB Matrix Laboratory

MB Mega Bytes

MLP Multi-Layer Perceptron

NBI National Bridge Inventory

NCHRP National Cooperative Highway Research Program

nm Nano meters

OK Ordinary Kriging

PCN Point Capsule Network

RK Residual Kriging

SK Simple Kriging

UAS Unmanned Aerial Systems

xviii

UK Universal Kriging

1

1 INTRODUCTION

1.1 Motivation and Background

Scour is the primary cause of bridge failures in the United States and is responsible for

almost 60% of the bridge failures (Melville & Coleman, 2000). About 83% of the structures listed

in the National Bridge Inventory (NBI) cross waterways and are exposed to the threats of flooding

and scour. During the last 30 years, 600 bridges have failed due to scour problems (Shirole & Holt,

1991).

Scour can compromise the structural integrity of a bridge structure by removing soil and

sand surrounding a bridge component (Lagasse et al., 2012). It is caused primarily by fast moving

water. The most concerning fact about scour failures of bridges is that they can occur without any

warning. So, monitoring scour surrounding a bridge structure is necessary and the monitoring

techniques must be effective. River flow hydrodynamic characteristics like water velocity and the

integrity of the surrounding geomaterial of a bridge pier dictate the scour process and define the

extent of scouring problem.

To monitor scour conditions, several measurement techniques have been suggested and can

be distinguished into static and dynamic measurement techniques (Prendergast & Gavin, 2014).

Terrestrial LiDAR is a popular condition monitoring technique – Based on the detection of

returned laser beams, the technique has been used for bridge monitoring needs such as detection

of condition changes (Liu et al., 2012; Liu & Chen, 2013). In this research, LiDAR scanning of

bridge hydraulic structures is proposed as a scour monitoring technique. LiDAR facilitates the

collection high-resolution point cloud data of a bridge hydraulic structure. This data can then be

used to quantify material losses. Laser scans taken over a period of time can generate periodic data

2

and thus, periodic quantification of scours can be done. This would help determine the rate of

removal or addition of streambed or bank material surrounding the bridge foundation.

The severity of a scour is typically determined using scour depth; however, area and volume

can also be established as scour parameters. Since a bridge environment (i.e., bridge hydraulic

structure geometry, bank surface) is highly irregular, it is difficult to automate the scour

identification process. This study focuses on scour detection and quantification using deep learning

algorithm, specifically the 3D Point Capsule Network (PCN) approach (Zhao et al., 2019). The

scour detection is identified as a classification problem for scour and non-scour areas for given a

rough set of points of scour and its surroundings. To find the scour volume, the points in the point

cloud is first classified either as a scour or a non-scour using 3D PCN, then, the points are analyzed

to calculate the scour parameters. Contrast to conventional neural networks that uses scalar values

for feature representation, 3D PCN uses capsulated vectors to represent features, which enables

better feature recognition capabilities. 3D PCN has been used successfully for applied to spatial

problem types including local part extraction, 3D-feature reconstruction, and object classification.

An advantage of using 3D Point Capsule Network is that it is not affected by translation, rotation,

or the scale of point cloud data, which is advantageous if real world data is used.

However, there are limitations on LiDAR scans: Since LiDAR uses light, which does not

bend, may be obstructed by an object along the light path and resulting in interference (Munoz

Rodriguez, 2012). As a result, obstacles make the surfaces behind the obstacle ‘invisible’ to the

LiDAR device and create a void in the point cloud data. A typical solution is to scan the structure

at multiple angles and stitch the images to generate the full image. Due to the complexity and size

of the scoured area, sometimes, even multiple scans will not be able to fully describe the full

scoured void.

3

To address the issue of voided data due to obstacles, this study suggests the use of spatial

interpolation: Spatial interpolation is the process to estimate values of locations that were not

surveyed using the data from the network of known points (Hohn, 1991). There are several spatial

interpolation techniques including both deterministic and statistical methods (Cressie, 1993). In

particular, Kriging is useful for the population of voided data (Meng et al., 2013). In the case of

complex and under-sampled problems, co-Kriging using auxiliary variables can be useful to

populate the voided data (Knotters et al., 1995).

In this study, ordinary kriging (OK) will be used to populate missing scour geometry due to

LiDAR scan unable to reach areas beyond the line-of-sight. Data from an actual bridge is used for

the study - The Phillips Road Bridge at UNC Charlotte is recognized to have scouring issue.

LiDAR scans were performed around the bridge piers experiencing soil mass losses (scour) over

the span of three years.

4

1.2 Research Objectives

The objectives of this research, therefore, are:

1. To scan local scour on a case study bridge using terrestrial LiDAR.

2. To demonstrate application of AI in scour detection by using 3D Point Capsule Network

to detect scour in a LiDAR point cloud.

3. To evaluate LiDAR scan on bridge scour problem, in particular the issue of point cloud

missing data points by spatially interpolating the point cloud data using kriging.

4. To analyze the effects of spatial point density from the interpolated results.

5

1.3 Methodology

This dissertation will be presented as the summary of three journal papers. The

methodology for this research is summarized in the figures in this section. Scanned point cloud

from the Phillips Road Bridge of the Toby Creek, Charlotte, North Carolina, has been used for the

study. The different processes (OK and 3D PCN) are then applied to the point cloud data set

separately.

Synthetic data was created to train the AI in Chapter 2. Terrestrial LiDAR was used to scan

the case study bridge. It was processed and then input into the network to evaluate its performance.

Spatial interpolation using OK was used on the same scour point cloud to fill in the missing data

voids in Chapter 3. Interpolated results at various point densities were analyzed to get an

‘optimum’ resolution for the point cloud in Chapter 4. Figure 1-1 to Figure 1-3 show the

methodology schematics for Chapters 2-4 respectively. The overall methodology to automatically

get scour parameters with a given ‘near scour’ point cloud as input is shown in Figure 1-4.

6

Use LiDAR to take
scan of scour

Segment out near
scour point cloud

Manually label scour
and non-scour

points

Compare and
validate resutls

Labelled scour point cloud outpot

Create artificial
scour data

Train network

FARO Focus
S350 device

Point cloud processing Validation

Figure 1-1 A basic methodology schematic for Chapter 2

Use LiDAR to take
scans of scour from
multiple positions

From a single scan,
segment out scour

points

Stitch all scans to
get complete point

cloud

Segment out
 complete scour

points

Interpolate points
where voids exist

1. Define reference
plane

2. remove recurring
points

3. Calculate volume
4. Compare results

FARO Focus
S350 device

Point cloud processing Quantification
and verification

Figure 1-2 A basic methodology schematic for Chapter 3

7

Figure 1-3 A basic methodology schematic for Chapter 4

Figure 1-4 Overall algorithm for this research

8

1.4 Scope

The scope of this research is limited to point cloud scour detection, interpolation, and the

analysis of resulting spatial point density from the scanned scour image of the Phillips Road

Bridge. In this study, we have explored two different advanced point cloud processing techniques

namely Ordinary Kriging and the 3D Point Capsule Network. It is appreciated that scour problem

for a bridge can vary significantly, hence, current study is not all encompassing. Furthermore, this

study focuses on the pier-on-bank type of bridge, which can behave differently from pier in the

river channel. The following are a summary of the specific scope conducted in current study:

1. Point cloud scour detection

a. Use of 3D Point Capsule Network deep learning algorithm with 2048 points.

b. Use a real-world scour to check results – Case from Phillips Road Bridge.

2. Spatial Interpolation of bridge pier scour point cloud data

a. Use of Ordinary Kriging

b. Local scour found in LiDAR data from Phillips Road Bridge.

3. Analysis of point density after scour point cloud spatial interpolation

a. Scour depth, surface area and volume calculations

9

1.5 Dissertation Outline

Following this introduction, the dissertation includes chapters and appendices. Chapters

consist of to-be-published peer-reviewed journal articles. Chapter 2 discusses the use of a novel

artificial intelligence (AI) approach to label scour and non-scour points in a point cloud. As

there could be voids present in a point cloud, Chapter 3 is an article presenting a spatial

interpolation method to fill in the spatial data voids in a scour point cloud. Chapter 4 describes

a more in-depth investigation of the relations between OK interpolated spatial density and the

filling in of selected data voids. Overall conclusions from this research work and scope for

future research are given in Chapter 5 and Chapter 6 respectively. Appendices include select

photos of bridge pier, scour parameter results over time and computer codes.

10

2 USING 3D POINT CAPSULE NETWORK FOR POINT CLOUD SCOUR DETECTION

2.1 Abstract

Scour is an important factor affecting the hydraulic structures of a bridge. Remote sensing

techniques such as terrestrial LiDAR (Light Detection And Ranging) can help speed up the

inspection process and provide high-resolution records of the extent of scour. To automate scour

detection and classification, this paper introduces the 3D Point Capsule Network (3D PCN) for

processing LiDAR point clouds captured from bridge hydraulic structure scans. Scan results were

first processed to cut portions that contain scour points. Synthetic data resembling a scour were

then generated and 3D PCN, powered by a dynamic routing algorithm, was used to label the points

of a given scour point cloud into scour and non-scour points. If scour is identified, it is segmented

(cut) out from the point cloud for documentation. The existing method to achieve this requires

manually opening the point cloud file and labeling the points as scour and non-scour. The work in

this paper is a novel application for automated classification and segmentation of a scour point

cloud, which significantly reduces the time taken for such processing.

Keywords: Bridge Scour Identification, LiDAR Point Cloud, 3D Point Capsule Network

2.2 Introduction

Scour, caused by swiftly moving water, can remove sand and soil, creating holes surrounding

a bridge component and compromising the integrity of a structure. Scour has been identified as the

primary cause of bridge failures in the United States responsible for almost 60% of the bridge

failures (Melville and Coleman 2000). About 83% of the structures listed in the National Bridge

Inventory (NBI) span waterways and are exposed to the threats of flooding and scour (ASCE

2017). The danger of bridge scour failures lies in the fact that they can occur without warning

(Shirole and Holt 1991). Thus, there is a need for effective monitoring techniques for scour

11

problems surrounding bridge structures. Figure 2-1 shows the mechanisms of scouring

surrounding a bridge pier. The hydrodynamic characteristics of the river flow and the integrity of

the surrounding geomaterial of a bridge pier dictate the scouring process and define the extent of

the scour problem.

The scour shown in Figure 2-1 is typically considered as a ‘local’ scour which occurs around

individual bridge piers and is caused by an acceleration of flow and resulting vortices induced by

obstructions to the flow. Scouring removes the soil support around the bridge pier, thus reducing

the soil bearing capacity. Scour alters static and dynamic characteristics of the bridge structure and

may lead to excessive structural settlement and may result in load redistribution in structural

members ultimately leading to failure of the bridge structure.

Figure 2-1 Mechanism of scour at a circular pier (Chavan et al. 2022)

12

Figure 2-2 A Point Cloud of a Bridge with Missing Data, Vegetation and Noise Marked

Bridge scour is combatted in many ways, including through hydraulic and structural

countermeasures (NCHRP, 2009). However, these have limitations and uncertainties. In addition,

usually they can be implemented only on new structures during the design stage of a bridge. A

more effective and economically viable method for existing structures is to monitor scour

evolution over time (Briaud et al., 2011) and implement the required remediation works.

To monitor scour conditions, terrestrial LiDAR is suggested as a technique to quantify the mass

loss due to bridge hydraulic condition changes (Chavan et al. 2022). LiDAR (Light Detection And

Ranging) is a surveying technique that uses reflected pulsed laser light to make 3D representations

of the target (Liu et al. 2012). The representations are in the form of a 3D point cloud, a set of

digital points (XYZ coordinates). A LiDAR consists of a laser emitter, which emits a concentrated

beam of light. The emitted laser then gets reflected back to the LiDAR device after hitting an

13

object. Using the time difference between the emission and detection, the distance between the

device and the object can be calculated. Based on the detection of returned laser beams, the

technique has been used for bridge monitoring needs such as the detection of scour formation

(Chavan et al. 2022) and condition changes (Liu et al. 2012, 2013). Rapid and repeated laser scans

can generate periodic quantification of scours and help define the process of erosion and determine

the rate of removal of streambed or bank material surrounding the bridge foundation. The severity

of a scour is typically quantified using scour depth, however, scour area and volume can also be

established as scour parameters.

Since lasers cannot penetrate solid objects, the area around the scour of interest should always

be cleared along the line-of-sight (LOS). Furthermore, a data void or a ‘shadow’ is unavoidable

for any single scan as the light cannot reach the regions behind the object. It is also inevitable to

capture some obstacles (such as trees, shrubs, etc.) in the point cloud, which are collectively

identified as noise, and noise removal must be performed. Figure 2-2 shows a point cloud with

marked noise and missing data. The point cloud has a total of about 70 million points.

We have adopted a deep learning algorithm for the detection of bridge hydraulic structures

(Tang et al. 2022) and this paper focuses on scour detection and quantification using a deep

learning algorithm, specifically the 3D Point Capsule Network (PCN) approach (Zhao et al. 2019).

Since a bridge environment (i.e., bridge hydraulic structure geometry, bank surface) is highly

irregular, it is difficult to automate the scour identification process. Currently, there are no known

published works with the objective of classifying point clouds of any local scour surface. The scour

detection is recognized as a classification problem between scour and non-scour areas for an

unedited LiDAR scan of bridge pier scour and its surroundings. To find the scour volume, the

points in the point cloud are first classified either as a scour or a non-scour using 3D PCN. Then,

14

the points are analyzed to calculate the scour parameters such as the scoured area.

To summarize, the contributions of the authors in this work are as follows:

• Application of 3D PCN as an artificial intelligence approach to label bridge pier local

scour points in a point cloud

• Generation of a synthetic dataset consisting of 1000 scour-like point clouds.

• Evaluating 3D PCN on real data to demonstrate the generalization of the approach.

2.3 Point Clouds in Deep Neural Networks

Point clouds are preferred for many 3D applications due to their capabilities in explaining 3D

data without assuming one modality (Zhao et al., 2019). Point cloud-specific architecture

algorithms must be invariant to permutations of the input set, invariant to rigid transformations

and should capture the interaction between points. PointNet (Qi et al., 2017), PointNet++ (Qi et

al., 2017), and others (Li et al., 2018; Liu et al., 2018; Lei et al., 2018; Hermosilla et al., 2018),

have exploited these properties. It is also possible to process point sets by taking projections to

reduce the operation to two dimensions.

2.4 3D Point Capsule Network

Capsulated network is a modification of the classical deep learning techniques using neurons

to obtain the vector representations of desired entities. Capsule Networks (CNs) have found many

uses in 2D deep learning including object segment, classification and 2D image generation

(LaLonde and Bagci, 2018; Durage et al., 2018; Jaiswal et al., 2018; Saqur et al., 2018; Upadhay

et al., 2018). In contrast to conventional neural networks that use scalar values for feature

representation, 3D PCN uses capsulated vectors to represent features, which enables better feature

15

recognition capabilities. 3D PCN is used successfully for applications to spatial problems

including local part extraction, 3D-feature reconstruction, and object classification (Xiang et al

2018; Ma et al. 2020). An advantage of using 3D Point Capsule Network is that it is not affected

by translation, rotation, or the scale of point cloud data, which is critical if real world data are used

(Xiang et al. 2018).

Several modified capsulated networks have been proposed for enhancing image processing

capabilities (Xiang et al. 2018; Deng et al. 2018; Zhu et al. 2019). However, for LiDAR point

cloud data processing, the 3D PCN remains the standardized approach (Park et al. 2020).

Developed by Zhao et al. (2019), the 3D PCN can be summarized as a set of capsule-encoder and

decoder couples that enable deep mapping through dynamic routing. Instead of point-

representation, the capsule representation allows high-level feature vectorization and rapid

convolution operations. The dynamic routing suggests that cascading evaluation of capsule-

representations can be performed at higher levels (latent capsule mapping). Sabour et al. (2017)

described the dynamic routing algorithm as the evaluation of different capsules with different

coupling coefficients. In our study, the 3D-PointCapsNetwork (Zhao et al. 2019) is used for

processing the LiDAR point cloud captured from a bridge pier for scour detection and

classification.

Figure 2-3 summarizes the 3D-PointCapsNetwork architecture and the components of the

network are described as follows:

Encoder: PointNet-like (Qi et al. 2017) layers are used in the 3D PCN, where the network input

is a 2048x3 point cloud. A point-wise Multi-Layer Perceptron (MLP) (3-64-128-1024) is

then used to extract local feature maps. These feature maps are then fed into multiple

independent convolutional layers with different weights, each with a distinct summary of

16

the input shape with diversified geometries. The responses are max pooled in order to

obtain a global latent representation. These descriptors are concatenated into a set of

vectors named primary point capsules. Dynamic routing is then used to embed the primary

point capsules into higher-level latent capsules. Each capsule is independent and is

considered as a cluster centroid of the primary point capsules. The total size of the latent

capsules is fixed as 64x64.

Decoder: The decoder treats the latent capsules as a feature map and uses the MLP (64-64-32-

16-3) to reconstruct a patch of points. The entire capsule is replicated several times and a

synthesized grid is appended specifying a local area (similar to the FoldingNet, Yang et al.

2018). These patches are then glued together.

Loss function: The Discrete Chamfer metric (Zhao et al., 2019) is used to approximate the

training loss over predicted and ground truth point cloud.

Optimizer: A first order gradient based stochastic objective function optimizer algorithm called

Adam (Kingma and Ba, 2014) with a learning rate of 0.01 for the first 30 epochs, 0.001 for

epochs less than 50, and 0.0001 for epochs beyond 50.

One hot encoding (Harris and Harris, 2012): This step is done so that point cloud labels do

not affect the network with their values. Non-scour and scour points are represented by the

numeric ‘1’ and ‘2’, respectively. Although the number 2 is greater than 1, one-hot

encoding makes the labels ‘scour’ not ranked higher or lower than ‘non-scour’.

17

Figure 2-3 3D-PointCapsNetwork (3D PCN) Architecture (Zhao et al., 2019)

18

2.5 LiDAR Point Cloud Training Using 3D PCN

To verify and validate the 3D PCN algorithm for detecting scour, synthetic data resembling a

scour were created using MATLAB. A 1,000 x 1,000 point matrix was created and five Gaussian

depressions/peaks with random amplitudes were introduced. Each depression had a maximum

amplitude of 50 units. This resulting point cloud was randomly sampled to obtain 2,048 points (to

match the 3D PointCapsNet). Then, the points were classified into scour/non-scour based on their

height metric. The XY plane was set as the ground plane. Thus, the Z coordinate determines if a

point is scour or non-scour. The XYZ coordinates and the scour classification were then saved into

a different data file (required by PointCapsNet). One thousand different randomly generated point

clouds were used in this study.

Out of this dataset, 750 point clouds were used to train the 3D PCN. While testing, the network

did not detect scour – all the test points were identified as non-scour. An analysis of the results

indicated that the scour depth was not large enough for the capsules to differentiate between scour

and non-scour cases. Figure 2-4 shows the results from the two sets of artificial data. The one on

the left with clearly marked scour and non-scour in the original data.

19

Figure 2-4 Scour Point Clouds. a) Two sets of manually labelled input b) Output result showing

incorrectly labelled points

Figure 2-5 Result Comparison a) Manually labeled point cloud b) AI labeled point cloud

Another 1,000 artificial sets of data were then generated and used to train the model, this time

with a maximum peak depth of 200 units for each depression/peak. The network performed better

with a detection accuracy of about 63%. Figure 2-5 shows the two sets of data (original and scour

20

detected point clouds). This shows that the scour points are used to construct some of the non-

scour points and some non-scour points are used to construct scour points.

2.6 Case Study

The 3D PCN was applied to a scoured bridge pier that belongs to the Phillips Road Bridge over

Toby Creek (35°18'28.2"N 80°44'16.6"W) in northern Charlotte, North Carolina, USA. The newly

constructed Phillips Road bridge was opened on March 12, 2016. The bridge consists of three

spans supported on prestressed concrete girders and drilled pier foundations (Chavan et al. 2022).

Each pier consists of a reinforced concrete column supported on a concrete drilled pier foundation

driven through four layers of different types of soil and fill material. Figure 2-6 shows the scoured

bridge pier and Figure 2-7 depicts the LiDAR scan of the scoured bridge pier.

To detect the scour, a FARO Focus S 350 scanning laser was used. The FARO scanner uses a

near infrared laser of 1,550 nm wavelength and has a shooting range of 350 m. After the point

cloud was captured, the data must be processed before the determination of the scour. There are

several steps needed to process the raw point cloud data including data stitching, which may be

required when multiple scans are performed at a site. In cases where multiple scans were performed

at a site to capture the object from different angles, the multiple point clouds were combined

(stitched) together into a single point cloud with a single global coordinate system for all scans.

21

Figure 2-6 Scour surrounding piers on the north bank of Toby Creek

Figure 2-7 LiDAR scan of the scour around one of the north bank piers of Philipps Road Bridge

22

The stitched point cloud is then segmented to reduce the size of the data file and also to isolate

the scoured areas. The processed data can then be used for scour detection. The procedure of the

point cloud analysis can be summarized as follows:

1. Identify scour surrounding the pier and scan the scour.

2. Transfer data and segment the point cloud to include only the points containing scour

and its surrounding region.

3. Export the point cloud and use the 3DPCN algorithm to label scour.

23

2.7 Discussion

While training, the weights for the neural network were adjusted with the aim of minimizing

an objective function. An epoch is when the entire training dataset passes through the neural

network once. Training loss is the value of the objective function to be minimized. A whole point

cloud dataset could not pass through the network all at once, rather the dataset was split into

batches and thus, the value of the objective function was updated multiple times in a single epoch.

Figure 2-8 shows the average training loss with respect to number of epochs. The average training

loss stabilized at around 0.001222 corresponding to the 86th epoch. The training was stopped at

epoch 97 after 10 additional epochs resulted in very small variations in the training loss.

The next step in this study would be to increase the number of scour points in the dataset.

Currently, there is a huge difference in the distance between the scour points and the distance

between non-scour points. Effects of changing the network parameters, like decreasing the number

of latent capsules, would be interesting to see. This network was originally trained and tested on

the Shapenet-Part dataset, consisting of 50 different parts (Chang et al., 2015). However, for the

present scour case, only two conditions, scour or non-scour are considered.

There are many challenges associated with scour. The first is that scour is not always close to

the structure. Second, a well-defined geometry is often not present. Scour can result in many shapes

and sizes. It also important to note that the existence of scour does not necessarily mean structural

instability. The Phillips Road bridge is an example of such a case, as scour is present but at present

the structure is not unstable (Chavan et al. 2022). Another challenge is that scour can vary over

time. Depending on the weather and flow conditions, over time more material can be washed away

from, or material can be deposited, at least temporally filling an existing scour.

24

Figure 2-8 Average Training Loss

There are also technical challenges associated with the analysis of point clouds generated from

LiDAR scans. One real-world LiDAR scan can generate millions of points, resulting in more than

700MB of data in compressed file format. For example, a single Phillips Road Bridge scan consists

of 26.7 million points. Converting the scans to obtain XYZ point data format - which is used in

PCN - would result in more than 6GB of data. Processing them would take considerable

time/resources. A system with at least 64GB of RAM, CPU with 8 physical cores and a solid-state

drive is recommended for processing a LiDAR point cloud project. Data voids in scans are another

challenge. Currently, it is difficult for a machine to tell if the void is due to a defect or due to an

object blocking the laser.

25

2.8 Conclusions

In this paper, 3D PCN method has been used to reconstruct scour shape from a LiDAR point

cloud. To train the network, 750 synthetic data using Gaussian depression/compression sets of

random amplitudes were generated. 150 sets of synthetic data were used to evaluate the training

model. While training, the loss function rapidly decreased from 0.157 to 0.006 in just 2 epochs.

However, it took 86 epochs to reduce to 0.001 (Figure 2-8). One hundred datasets were used for

testing the final network model. The results of identifying scour and non-scour points averaged at

63% accuracy. This trained network was also applied to a real-world point cloud – the case study

scours from Phillips Road Bridge and showed favorable results (Figure 2-9).

Figure 2-9 Phillips Road Bridge point cloud a) original point cloud showing scour around pier b)

3DPCN output of the scour point cloud – pier was removed before input

26

2.9 References

ASCE, (2017), Infrastructure Report Card, https://www.infrastructurereportcard.org/cat-

item/bridges/.

Briaud, J. L., Hurlebaus, S., Chang, K. A., Yao, C., Sharma, H., Yu, O. Y., Darby, C., Hunt, B.E.,

and Price, G. R. (2011). Realtime monitoring of bridge scour using remote monitoring

technology (No. Report 0-6060-1). Texas Transportation Institute,

http://tti.tamu.edu/documents/0-6060-1.pdf

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,

M., Song, S., Su, H., Xiao, J., Yi, L. and Yu, F. (2015) “Shapenet: An Information-Rich 3D

Model Repository,” arXiv:1512.03012.

Chavan, V.S., Chen, S.E., Shanmugam, N.S., Tang, W., Diemer, J., Allan, C., Braxtan, N., Shukla,

T., Chen, T. and Slocum, Z., (2022a) “An Analysis of Local and Combined (Global) Scours

on bridge Piers-on-Bank,” CivilEng, 3, doi.org/10.3390/civileng301001.

Deng, F., Pu, S., Chen, X., Shi, Y., Yuan, T. and Pu, S. (2018) “Hyperspectral Image Classification

with Capsule Network Using Limited Training Samples,” Sensors, 18, 3153.

Harris, D.M. and Harris, S.L. (2012). “Digital design and computer architecture (2nd ed.),”.

Morgan Kaufmann. p. 129.

Hermosilla, P., Ritschel, T., Vazquez, P.P., Vinacua, A. and Popinski, T. (2018) “Monte Carlo

Convolution for Learning on Non-Uniformly Sampled Point Clouds.” Proceeding, Conference

SIGGRAPH Asia, ACM, 235.

Jaiswal, A., AbdAlmageed, W., Wu, Y. and Natarajan, P., (2018) “Capsulegan: Generative

Adversarial Capsule Network.” European Conference on Computer Vision, 526–535. Springer.

Kingma, D. P., & Ba, J. (2014). “Adam: A Method for Stochastic Optimization.” arXiv:1412.6980.

https://www.infrastructurereportcard.org/cat-item/bridges/
https://www.infrastructurereportcard.org/cat-item/bridges/
http://tti.tamu.edu/documents/0-6060-1.pdf

27

LaLonde, R. and Bagci, U. (2018) “Capsules for Object Segmentation.” arXiv:1804.04241.

Lei, H., Akhtar, N., and Mian. A. (2018) “Spherical Convolutional Neural Network for 3d Point

Clouds.” arXiv: 1805.07872.

Li, J., Chen, B.M. and Lee, G.H. (2018) “So-Net: Self Organizing Network for Point Cloud

Analysis,” Proceeding, IEEE Conference on Computer Vision and Pattern Recognition, 9397–

9406.

Liu, W.Q., S.E. Chen and E. Hauser (2012). “Bridge Clearance Evaluation Based on Terrestrial

LiDAR Scan,” ASCE Journal of Performance of Constructed Facilities, 26(4), 469-477.

Liu, W.Q. and S. Chen, (2013) “Reliability Analysis of Bridge Evaluations based on 3D LiDAR

Data,” Structural Control and Health Monitoring, 20(12), 1397-1409.

Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M., Wang, Y., Sun. Y. (2018) “Dynamic Graph

CNN for Learning on Point Clouds.” arXiv:1801.07829.

Ma, L., Li, Y., Li, J., Yu, Y., Marcato Junior, J., Gonçalves, W.N. and Chapman, M.A. (2020)

“Capsule-based Networks for Road Marking Extraction and Classification from Mobile

LiDAR Point Clouds,” IEEE Transactions on Intelligent Transportation Systems,

Melville, B.W. and S.E. Coleman, (2000) Bridge Scour. Water Resources Publications, Highlands

Ranch, CO.

NCHRP (2009), “Monitoring Scour Critical Bridges – A Synthesis of Highway Practice”, Traffic

Safety, National Cooperative Highway Research Program (NCHRP), Washington DC.

Park, G., Im, D., Han, D., Yoo, H.J., (2020) “1.15 TOPS/W Energy-Efficient Capsule Network

Accelerator for Real-Time 3D Point Cloud Segmentation in Mobile Environment,” IEEE

Transactions on Circuits and Systems - II: Express Briefs, 67(9), 1594-1598.

28

Qi, C.R., Su, H., Mo, K. and Guibas, L.J. (2017) “Pointnet: Deep Learning on Point Sets for 3D

Classification and Segmentation.” Proceedings, IEEE Conference on Computer Vision and

Pattern Recognition, 652–660.

Qi, C.R., Yi, L., Su, H., and Guibas, L.J., (2017) “Pointnet++: Deep Hierarchical Feature Learning

on Point Sets in a Metric Space.” Proceedings, Conference Neural Inference Processing

Systems (NIPS).

Sabour, S., Frosst, N. and Hinton. G.E. (2017) “Dynamic Routing between Capsules,”

Proceedings, Conference Neural Inference Processing Systems (NIPS), 3856-3866.

Saqur, R. and Capsgan, S.V. (2018) “Using Dynamic Routing for Generative Adversarial

Networks.” arXiv preprint arXiv:1806.03968.

Shirole A.M. and R.C. Holt, (1991) “Planning for a Comprehensive Bridge Safety Assurance

Program.” Transport Research Record, Transport Research Board, 137e42.

Tang, W., Chen, S.E., Diemer, J., Allan, C., Chen, T., Slocum, Z., Shukla, T., Chavan, V.S. and

Shanmugam, N.S. (2022) DeepHyd: A Deep Learning-based Artificial Intelligence Approach

for the Automated Classification of Hydraulic Structures from LiDAR and Sonar Data, Final

Report, North Carolina Department of Transportation, FHWA/NC/2019-03.

Upadhyay, Y. and Schrater, P. (2018) “Generative Adversarial Network Architectures for Image

Synthesis Using Capsule Networks,” arXiv preprint arXiv:1806.03796.

Xiang, C., Zhang, L., Tang, Y., Zou, W. and Xu, C. (2018) “MS-CapsNet: A Novel Multi-Scale

Capsule Network,” IEEE Signal Processing Letters, 25(12), 1850-1854.

Yang, Y, Feng, C., Shen, Y. and Tian, D. (2018) “Foldingnet: Point Cloud Auto-Encoder via Deep

Grid Deformation.” Proceedings, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

29

Zhao, Y., Birdal, T., Deng, H., Tombari, F., (2019) “3D Point Capsule Networks,” Proceedings,

IEEE/CVF Conf. Compu. Vis. Pattern Recognition (CVPR), Long Beach, CA, USA, 1009-

1018.

Zhu, K., Chen, Y., Ghamisi, P., Jia, X. and Benediktsson, J.A. (2019) “Deep Convolutional Capsule

Network for Hyperspectral Image Spectral and Spectral-Spatial Classification,” Remote

Sensing, 11,223.

30

3 SPATIAL INTERPOLATION OF BRIDGE SCOUR POINT CLOUD DATA USING

ORDINARY KRIGING

3.1 Abstract

Scour is a critical condition change for a bridge hydraulic system and terrestrial LiDAR scans have

been suggested as a way to quantify the scour conditions. With LiDAR point cloud data, a temporal

record of scour can be established. However, there are limitations to LiDAR scans, for example

laser light does not bend and can be obstructed by objects along the light path resulting in missing

geometric information behind the obstacles thereby creating a void in the point cloud data. To ‘fill

in’ the missing data, spatial interpolation of 3D LiDAR point cloud data using Ordinary Kriging

(OK) method is suggested and actual field data from scanning a scoured bridge pier are presented

to demonstrate the application. Kriging is a geostatistical interpolation technique and OK assumes

that the spatial variation of the phenomenon or object being considered is random and intrinsically

stationary with a constant mean. Here, the complete scour envelope is reconstructed using kriging

and is shown to have excellent results.

Keywords: Bridge Scour, LiDAR Scan, Data Void, Kriging

3.2 Introduction

Scour is the primary cause of bridge failures in the United States and is responsible for almost

60% of bridge failures (Melville and Coleman 2000). During the last 30 years, 600 bridges have

failed due to scour problems (Shirole and Holt 1991). Scour, caused by swiftly moving water, can

remove sand and soil, create holes surrounding a bridge component and compromise the integrity

of a structure (FHWA 2012). The danger of bridge scour failures lies in the fact that they can occur

without prior warning. Thus, there is a need for effective monitoring techniques for the assessment

of scour problems surrounding a bridge structure.

31

Figure 3-1 shows the mechanisms of scouring surrounding a bridge pier. The hydrodynamic

characteristics of the river flow and the integrity of the surrounding geomaterial of a bridge pier

dictate the scour process and define the extent of the scouring problem. The scour shown in Figure

3-1 would typically be considered as ‘localized’ scour which occurs around individual bridge piers

and abutments and is caused by an acceleration of flow and resulting vortices induced by

obstructions to the flow. Once scouring removes the soil support around the bridge pier, the soil

bearing capacity can be reduced significantly and may lead to excessive structural settlement

resulting in load redistribution amongst structural members ultimately leading to the failure of a

bridge structure.

Bathymetric surveys of bridges, stream channels, and wetlands are pivotal to spatially explicit

modeling of flood, drainage, and scours (Prendergast et al. 2014). Remote sensing techniques are

especially useful for bathymetric surveys. In particular, terrestrial LiDAR has been gaining

popularity as a condition monitoring technique for highway bridge systems; based on the detection

of returned laser beams, the technique has been used for bridge monitoring needs such as detection

of condition changes (Liu et al. 2012, 2013). For scour detection, LiDAR scanning of bridge

hydraulic structures has been proposed as a scour monitoring technique, where high-resolution

point cloud data of a bridge hydraulic structure can be used to quantify material mass losses (Suro

et al. 2020). Rapid and repeated laser scans can generate periodic quantification of scours and help

define the process of erosion and determine the rate of removal of streambed or bank material

surrounding the bridge foundation. For large riverine scans, Lewis et al. (2020) suggested the

combined LiDAR-UAS (Unmanned Aerial Systems) technique for bank erosion studies.

However, there are limitations to the LiDAR scans: Since traditional LiDAR uses infrared

light, it gets absorbed by water resulting in the inability to scan underwater surfaces. For the same

32

reason, they cannot be used in rainy or foggy weather. Light does not bend, so it can be obstructed

by an object along the light path, resulting in interference (Rodriguez 2012). As a result, obstacles

make the surfaces behind the obstacle ‘invisible’ to the LiDAR and thereby create a void in the

point cloud data. A typical solution is to scan the surface from multiple locations and stitch the

point clouds together to generate the full image. However, due to the complexity and size of the

scoured area, sometimes, even multiple scans will not be able to fully describe the scoured void.

In experiments utilizing circular holes with different surface finishes, Bian et al. (2017)

demonstrated that the backscattering of light within circular holes can result in complicated light

scattering effects on point cloud data.

33

Figure 3-1 Mechanism of Scour at a Circular Pier

To address the issue of voided data, this paper proposes the use of spatial interpolation, which

is the process of estimating values of locations that are not surveyed, using data from the network

of known points, to help fill-in the voided point cloud data. There are several spatial interpolation

techniques including both deterministic and statistical methods (Isaaks et al. 1989; Cressie 1993).

In particular, Kriging is useful for populating areas of voided data (Meng et al. 2013). Kriging is a

spatial prediction technique based on the assumption of random processes and the use of spatial

covariance estimations. Kriging methods may be classified into Ordinary Kriging (OK), Simple

Kriging (SK), Universal Kriging (UK), Residual Kriging (RK), and Co-Kriging (Knotters et al.

34

1995; Montero et al. 2015). In the case of complex and under-sampled problems, Co-Kriging using

auxiliary variables has been used to populate the area of voided data (Knotters et al. 1995).

In this study, we explore the spatial interpolation of a 3D LiDAR point cloud of a bridge scour

using OK method and test the interpolated results using a separate point cloud scan of the missing

area (with additional scans). LiDAR scan data from the Phillips Road Bridge at UNC Charlotte,

Charlotte, North Carolina, USA, were used in the current study (Chavan et al. 2022). LiDAR scans

were performed around the piers of the Phillips Road bridge which experienced soil mass losses

(scour) and the point cloud data were generated for the current study. The complete scour envelope

is reconstructed using the OK method and is shown to have excellent results in filling the voided

point cloud data.

3.3 Spatial Interpolation and Kriging

The inherent assumptions for spatial interpolation approaches include the autocorrelation of

spatial data and that the values are continuous over space (Oliver and Webster 2015). There are

several different types of spatial interpolation methodologies including the Inverse Distance

Weighted (IDW), different variations of Kriging, and local polynomial interpolations, to name a

few (Montero et al. 2015). In particular, Kriging is a geostatistical interpolation technique used to

predict the unknown value of a function at a given point by computing a weighted average of

known values of the function in the neighborhood of the point. In this study, the OK method, which

relies on the spatial autocorrelation of the data to determine the weighted values that can be used

to predict the unsampled point and suggests an unknown mean value (m), is used:

Z(s) = m + e(s) (1)

where Z(s) = predicted value and e(s) = a random quantity with a mean value of zero and

covariance c(h):

35

c(h) = E[e(s)-e(s+h)] (2)

and h is the separation between samples, s, and E is the expectation.

Under the assumption of intrinsic stationarity, the expected differences are zero.

E[Z(s) – Z(s+h)] = 0 (3)

Covariance can be replaced by half of the variance of differences (semivariance).

γ(h) = ½ var[Z(s) – Z(s+h)] = ½ E[{Z(s) – Z(s+h)}2] (4)

The semivariance depends only on h, and the function γ can be used to construct the variogram.

The variogram function is a measure of the spatial autocorrelation. When the distance increases

away from the sample points, the autocorrelation (similarity) between the sample points tends to

decrease and, when their variances begin to flatten out, the sample values are no longer related to

one another. The value at which the sample values are no longer associated (completely spatially

independent) is indicated as a ‘sill’.

Figure 3-2 shows the general idea of Kriging where one-dimensional randomly distributed

points are used (Figure 3-2a). The Kriging estimator usually relies on a weighted function that may

be a function of the covariance of the sampled points (measured values). As shown in Figure 3-2b,

two clusters of missing data can be filled by Kriging estimator (Figure 3-2c and Figure 3-2d). The

resulting data may have different M and ê(s) values:

Z(s) = M + ê(s) (5)

The OK predictor is a linear combination of the data values. It is unbiased because it attempts

to keep the mean residual to zero and tries to minimize the residual variance. OK is also statistically

called the ‘best linear unbiased estimator’ (Schabenberger and Gotway 2005).

36

Figure 3-2 Spatial Variation in One Dimension (s)

Identifying a scoured pier is non-trivial as the scour depression around the pier may be

obscured by vegetation, blocking the line-of-sight of the LiDAR. Due to the size of a bridge pier

and the geometric shape of a scour, a full scan of the scour cannot be made from a single scan

position. Hence, to completely capture a scoured area, LiDAR must be shot from multiple positions

(while at the same time keeping track of the scanning angles and the heights of the laser head

above the ground surface). The multiple scans can then be stitched together to generate a more

complete point cloud dataset. However, this may not always be feasible at a bridge site. For

example, obstacles such as constricted site space can prevent a full-circle scan of the bridge pier.

Due to the scanning mechanism of a laser head, there is a 60o cone underneath the laser that

cannot be scanned. As a result, it is usually not feasible to place the laser directly above a scoured

37

area and additional space is required between the laser position and the scour. Furthermore, a

stitched point cloud takes more time to process.

3.4 The Phillips Road Bridge Case Study

The scoured pier considered in this study belongs to the six-year-old Phillips Road Bridge over

Toby Creek (35°18'28.2"N 80°44'16.6"W) located at the University of North Carolina at Charlotte

(Figure 3-3). Phillips Road Bridge is a three-span continuous prestressed concrete girder bridge

with span lengths of 14, 25, and 14 m, respectively. The bridge has a clear roadway width of 9.75

m and supports two traffic lanes of 4.88 m each. The overall width of the bridge deck is 15.54 m.

The cast-in-situ concrete slab has a uniform thickness of 20.96 cm and is supported by seven

prestressed concrete girders at each span.

The bridge has semi-integral abutments with expansion joints at the abutments and end bents.

At the intermediate bents, the bridge girders are resting on fixed elastomeric bearings above the

piers. Figure 3-3 shows different views of the bridge. Bents 1 and 2 are supported on drilled pier

foundations. The end bent abutments include cast-in-place stem walls with wings turning back

parallel to the roadway. The End Bent 1 wall has exposed heights up to approximately 5.18 m and

End Bent 2 wall has exposed heights up to approximately 5.48 m. A strip footing connecting the

piles are a minimum of 0.61 m below the existing ground and founded on a pile supported strip

footing. The scours surrounding the piers on the north bank were observed on 4 of the 6 piers and

were scanned on June 9, 2020.

38

Figure 3-3 Snapshots of Phillips Road Bridge (on 03/30/2019)

39

3.5 Scour Scan and OK Analysis

Figure 3-4 shows the studied pier and a full LiDAR scan of the Phillips Road Bridge. The

scanning was performed using a FARO Focus S 350 LiDAR. The FARO LiDAR uses a mono-

dyne laser with a wavelength of 1,550 nm. Multiple scans were conducted on the bridge over a

three-year span (2018-2020). A point cloud processing program (CloudCompare, v. 2.6.1, 2015)

was used to open the proprietary FARO file format (.fls) and to segment out all the points excluding

the scoured points. The point cloud of the scoured area contains the x, y, and z coordinates. Figure

3-5a) shows the point cloud of the scour surrounding the selected pier of the Phillips Road Bridge.

Figure 3-5a) also indicates a voided area (there are multiple voided areas).

To quantify the scour, a reference plane is first defined and projections of points to the reference

plane are then determined. Figure 3-5b shows the defined reference plane and the projections. The

projections are the perpendicular distances from the reference plane to the data points in the point

cloud. This is used to calculate the perpendicular distances of points to the plane and remove

recurring points. The recurring points must be removed so that the data have only one depression

(z value) at a particular point on the x-y plane. These data are then interpolated to fill the missing

data between the points. To assess the interpolation results, a stitched point cloud, derived from a

combined point cloud from multiple scans of the selected scour area, are compared with the

interpolation results.

The reference plane was used with a criterion that the number of data points should be

minimized allowing only a single normal vector passing through the reference plane. Where

multiple points passing through the same plane (recurring projections from the same normal vector

to the reference plane) occurred, the additional data points were removed. Three points were

40

selected, and their coordinates were used to define the reference plane. One of the points chosen

comprised the origin and the entire dataset was translated and rotated to simplify the analysis.

If s1, s2, s3 are the coordinates of the three selected points, and s1 is chosen to be the origin, the

equation of the plane is:

(s-s1).n = 0 (6)

where s is an arbitrary vector and n is the normal vector to the plane defined by

n =(s2-s1) x (s3-s1)

This normal vector is rotated such that it is oriented towards the z axis and makes the plane

parallel to the xy plane. Thus, the z coordinates of the points will be the distance of that point from

the reference plane. This can be achieved by rotating the normal vector by an angle of rangle about

raxis, which are given by:

rangle = cos−1(
n

‖n‖
. [0 0 − 1]) (7)

raxis =
n

‖n‖
 x [0 0 1] (8)

where ||n|| is the norm of n and [0 0 1] is the z axis vector.

Finally, the transformation matrix T is given as:

T = [
t ∗ u1 ∗ u1 + C t ∗ u1 ∗ u2 − S ∗ u3 t ∗ u1 ∗ u3 + S ∗ u2

t ∗ u1 ∗ u2 + S ∗ u3 t ∗ u2 ∗ u2 + C t ∗ u2 ∗ u3 − S ∗ u1
t ∗ u1 ∗ u3 − S ∗ u2 t ∗ u2 ∗ u3 + S ∗ u1 t ∗ u3 ∗ u3 + C

] (9)

where C = cos(rangle)

S=sin(rangle)

t=1-C

41

Figure 3-4 The Scoured Pier of the Phillips Road Bridge: a) Scoured Pier on the North bank and

b) Bridge Laser Scan

42

Figure 3-5 Sample Scour Point Cloud with a) Data voids marked, b) Sample reference plane with

plane perpendiculars going towards the scour data

and [u1 u2 u3] is the unit vector for the axis of rotation, raxis. Transforming the data by this matrix,

the data coordinate will become (x,y,z) – where (x,y) is the coordinate of the perpendicular

projection of a point on the reference plane and z is the distance of the point from the reference

plane. If a point was found to have repeated projections, the one that was furthest away from the

reference plane was removed. The data now have the position (x,y) and a single z (scour depth)

value at each position. The algorithm was programmed in MATLAB and ArcGIS Pro software.

A semivariogram plot was constructed for the spatial data and to evaluate multiple fits for the

semivariogram, a Stable curve fit with a parameter of 1.871 was found to be the most suitable. A

Stable parameter of 1 corresponds to the Exponential model and 2 corresponds to the Gaussian

43

model. Using the fit, the range of the data, the sill and the nugget effect were calculated. The term

‘range’ refers to the distance at which the model falls off and there is no more spatial relation in

the data; this is a representation of the data correlation. ‘Sill’ is the value at which the model is out

of range and is an indication of the data variance. Finally, ‘nugget’ is the value at which the

semivariogram intercepts the y axis (distance = 0). Figure 3-6 shows the semi-variance curve for

the Kriging model, where OK was performed to spatially interpolate the data using these

parameters.

For this study, a stitched point cloud was used to test the interpolated results. The stitched point

cloud was then segmented where the data void existed to define the scour boundary for the Kriging

analysis.

Figure 3-6 Semi-Variance Graph for the Selected Point Cloud

44

3.6 Results and Discussions

The semivariogram range and sill were calculated to be 2.16 m and 0.05, respectively. The

voided scour hole scan has a total of 1,000 data points (segmented out from the original stitched

point cloud with a void). The average interpolation error calculated using the x and y coordinates

was approximately 0.02 m. This was calculated by comparing the interpolated point cloud with

the stitched point cloud. The transformation matrix, T, for the sample problem was calculated to

be

T = [
0.9996 0.0292 0.0007
0.0292 −0.9985 −0.0466

−0.0007 0.0466 −0.9989
]

Moreover, the cos(rangle) value was equal to 0.9985 (a value = 1 would indicate that the

reference plane and the original coordinate plane perfectly overlay each other).

Figure 3-7 below shows the interpolation data of the final scour hole. The numbers in the

legend are the depth range of scour at various locations. As the raxis was defined by multiplying [0

0 1] (unit vector in the z direction) in Equation 8, the depths of the scour were presented in negative

values. The maximum depth region lies near the center of the data region, and it decreases as the

processing moves outwards, which matches with the actual field data. The cut-out section in the

scour boundary is due to a portion of the square bridge pier and the rest of the boundaries are

selected to capture only the scoured area. A comparison between the original point cloud and the

interpolated cloud is shown in Figure 3-8. The Kriging result is shown to be significantly denser

than the original point cloud.

45

Figure 3-7 Ordinary Kriging Interpolation Results – Legend Shows the Scour Depth Range (in

Meters)

It is important to recognize that segmenting out the point cloud for scour points is time-

consuming and dependent on the size of the original point cloud. Also, the point density in a single

scan point cloud decreases with distance from the scanner, i.e., points are closer to each other when

the location of the scanned surface is close to the LiDAR device. It is possible to sample down the

point cloud by reducing the number of spatial data points in the point cloud to reduce computation

46

time. However, this should only be performed when the whole scoured area and voided volume

should not be compromised. For example, when the scour location is not close to the scanner.

Finally, the current scour case studied did not have any data points removed as there were no

redundancies in the original point cloud. The post-Kriging point cloud shown in Figure 3-8 has a

spatial resolution of 2 mm resulting in a 3D point cloud of 1.86 million data points. As shown in

Figure 3-8, the post-Kriging data density is extremely high as a result of the analysis trying to

match the smallest distance between the points. Since the original point cloud has variable data

spacing, the fine scale post-Kriging eliminated any likely data voids.

Figure 3-8 Original Point Cloud (1,000 Points, Left) with voids marked in circles and Point

Cloud (1.86 million Points, Right) after Kriging Interpolation

The OK method utilized in our analysis generated an extremely dense point cloud, which can

make further analysis time consuming. Future studies should investigate approaches to reduce the

spatial density of the data (i.e., reduce the number of data points).

47

3.7 Conclusions

In this study, a LiDAR scan of a scoured hole from a pier of the Phillips Road Bridge was

identified with data voids generated to investigate the possible obstruction of the LiDAR scan from

vegetation surrounding the pier or physical site constraints which might limit the viewscape of a

scan. The point cloud of the scour was segmented using CloudCompare and an OK process was

performed on the data to populate the data voids that were generated. A reference plane was

manually selected by choosing three points and the dataset was transformed in its orientation to

Cartesian (xyz) coordinates with z as the scour depth. Furthermore, the distances of the points from

the selected reference plane were determined. The accuracy of the kriging results is reported in a

semivariogram along with the sill, range, and nugget effect values. The results show that the OK

procedure generated data points that can accurately fill the spatial voids of the scanned scour hole.

This study represents a first attempt in using OK to populate voided scour LiDAR scans, which

can be developed into an effective scour monitoring technique. Currently, bridge inspections

typically only report scour depth. LiDAR scans with the suggested Kriging data interpolation

technique can be used to quantify scour parameters such as the scoured surface area and the

scoured volume. The data can also be used to define a reference surface for the scour point data,

allowing bridge engineers to quantify the actual volume and area of the mass/volume losses during

the hydrodynamic processes of scouring over time.

48

3.8 References

Bian, H., Chen, S.E., and Liu, W. (2017) “Error Sources in Processing LiDAR-Based Bridge

Inspection,” ISPRS-International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 455-459.

Chavan, V.S., Chen, S.E., Shanmugam, N.S., Tang, W., Diemer, J., Allan, C., Braxtan, N., Shukla,

T., and Chen, T. (2022) “Analysis of Local and Combined (Global) Scours on Bridge Piers-on-

Bank,” CivilEng, 3, doi.org/10.3390/civileng301001.

CloudCompare (2015) User’s Manuel, version 2.6.1, http://cloudcompare.org/, last accessed:

9/1/2020.

Cressie, N.A.C. (1993) Statistics for Spatial Data, John Wiley and Sons, New York, NY.

FHWA (2012) Evaluating Scour at Bridges, Hydraulic Engineering Circular (HEC) No. 18, 5th

edition, Federal Highway Administration, US Department of Transportation, Washington, D.C.

FHWA (2012) Stream Stability at Highway Structures, Fourth Edition, FHWA-HIF-12-004,

Hydraulic Engineering Circular (HEC) No. 20, Federal Highway Administration, US

Department of Transportation, Washington, D.C.

Isaaks, E.H., and Srivastava, R.M. (1989) An Introduction to Applied Geostatistics, Oxford

University Press, New York, NY.

Knotters, M., Brus, D.J., and Oude Voshaar, J.H. (1995) “A Comparison of Kriging, Co-Kriging

and Kriging Combined with Regression for Spatial Interpolation of Horizon Depth with

Censored Observations,” Geoderma, 67, 227-246.

Lewis, Q.W., Edmonds, D.A., and Yanites, B.J. (2020) “Integrated UAS and LIDAR Reveals the

Importance of Land Cover and Flood Magnitude on the Formation of Incipient Chute Holes

and Chute Cutoff Development,” Earth Surface Processes and Landforms, 45(6), 1441-1455.

http://cloudcompare.org/

49

Liu, W.Q., and Chen, S.E. (2013) “Reliability Analysis of Bridge Evaluations based on 3D LiDAR

Data,” Structural Control and Health Monitoring, 20(12), 1397-1409.

Liu, W.Q., Chen, S.E., and Hauser, E. (2012). “Bridge Clearance Evaluation Based on Terrestrial

LiDAR Scan,” ASCE Journal of Performance of Constructed Facilities, 26(4), 469-477.

Melville B.W., and Coleman, S.E. (2000) Bridge Scour. Water Resources Publications, Highlands

Ranch, CO.

Meng, Q., Liu, Z., and Borders, B.E. (2013) “Assessment of Regression Kriging for Spatial

Interpolation – Comparisons of Seven GIS Interpolation Methods,” Cartography and

Geographic Information Science, 40(1), 28-39.

Montero, J.M., Fernandez-Avilés, G., and Mateu, J. (2015) Spatial and Spatio-Temporal

Geostatistical Modeling and Kriging, John Wiley and Sons, West Sussex, UK.

Oliver, M.A., and Webster, R. (2015) Basic Steps in Geostatistics: The Variogram and Kriging,

Springer, London, UK.

Prendergast, L.J., and Gavin, K. (2014) “A Review of Bridge Scour Monitoring Techniques,”

Journal of Rock Mechanics and Geotechnical Engineering, 6(2), 138-149.

Rodriguez, A.M. (2012) Laser Scanner Technology, Intech Pub., Rijeka, Croatia.

Schabenberger, O., and Gotway, C.A. (2005) Statistical Methods for Spatial Data Analysis.

Chapman & Hall/CRC.

Suro, T.P., Huizinga, R.J., Fosness, R.L., and Dudunake, T.J. (2020) “Assessment of Bridge Scour

Countermeasures at Selected Bridges in the United States, 2014-18,” Scientific Investigation

Report 2019-5080, U.S. Geological Survey, Reston, VA.

50

4 SPATIAL DENSITY ANALYSIS OF BRIDGE SCOUR POINT CLOUD USING

ORDINARY KRIGING

4.1 Abstract

In this study, we propose using terrestrial LiDAR to capture bridge pier scour hole point clouds

and use Ordinary Kriging (OK) as a spatial interpolation method to normalize the point cloud

density and establish the scour hole signatures (volume and area). Scour hole signatures are

important to establish the extent of hydraulic erosion surrounding a bridge pier. Failure of

managing scour surrounding bridge piers can lead to bridge failures. However, LiDAR point cloud

data for bridge scours often display uneven spatial distributions resulting in data voids that can be

critical to the quantification of scour hole area and volume. To ‘fill in’ the missing data, OK

method has been used to spatially interpolate 3D LiDAR point cloud data. In this study, different

spatial data densities have been generated with a goal to determine what is the ‘optimal’ data

resolution that can help minimize later computational efforts. Actual field data from scanning a

scoured bridge pier are used in the sensitivity analysis. Two scans from different time periods were

also compared.

Keywords: Bridge Scour, LiDAR Scan, Data Void, Kriging

4.2 Introduction

Scour is one of the primary causes of bridge failures worldwide and is responsible for almost

60% of bridge failures in the United States (Melville and Coleman 2000). Scour can be defined as

the erosion of soil and sand surrounding a bridge component caused by swiftly moving water. This

compromises the integrity of a bridge structure (Arneson et al. 2012; Lagasse et al. 2012). Scour

failures can occur without prior warning and thus is very dangerous. So, there is a need for effective

monitoring techniques for assessing scour potential surrounding bridge structures.

51

Remote sensing techniques have been identified as a transformative technology for both

terrestrial and bathymetric surveys (Lewis et al. 2020). Terrestrial LiDAR, in particular, has been

found to be useful as a condition assessment technique for highway bridges including bridge

displacement and as-built condition assessments (Dai et al. 2014; Fuchs et al. 2004; Watson et al.

2013). More recently, LiDAR has been used for monitoring bridge construction processes, which

generates a temporal record of the building process and is useful for geometric confirmation of

design drawings (Lin et al. 2021).

Scour is a unique bridge problem interfacing three disciplines: structural engineering,

geotechnical engineering, and hydraulic engineering. Terrestrial lasers have been used to capture

the physical conditions of the bridge hydraulic structures and to generate high-resolution point

clouds of the bridge to quantify surficial damage (Chavan et al. 2021; Suro et al. 2020). The most

significant benefit of scour detection using LiDAR scans is the potential of quantifying mass

losses, which can reflect on both the hydrodynamic history and bridge stability. However, there

are obvious limitations to the LiDAR scans including the obstruction of laser beam pathways by

unintended objects resulting in imaging interferences. As a result, it is hard to construct a complete

image of the targeted area without conducting laser scans from multiple locations.

Due to the roughness of the ground surface, each scanned area can be impeded by voided areas

similar to the shadows of pebbles or rocks within a scour. This presents a different issue to the

LiDAR scan applications to bridge scour monitoring and can remain even when scans from

multiple locations are performed. The stitched point cloud may cover the full scour surfaces, but

some data voids could remain within the stitched point cloud due to subtle covered areas created

by, for example, pebbles. Furthermore, the surface textures can also have effects on the laser

energy returned to the transceiver. By experimenting on circular holes with different surface

52

finishes, Bian et al. (Bian et al. 2017) demonstrated that the back-scattering of light within the

circular holes can result in a complicated light energy scattering effect on point cloud data.

To address the above-mentioned voided point cloud data issue, this paper proposes the use of

spatial interpolation using Ordinary Kriging (OK) technique. To help fill-in the voided point cloud

data, Kriging, which is a process to estimate values of locations by interpolation, can help generate

additional data points that are not surveyed by using the data from a network of known points

(Cressie 1993; Isaaks and Srivastava 1989; Krige 1951; Meng et al. 2013). In this study, the most

common OK technique is used for spatial interpolation of 3D LiDAR point cloud data from the

scanning of an existing bridge scour.

The case study bridge site is located in Charlotte, North Carolina (Figure 4-1). Figure 4-2

shows a scanned image of the scour near the bridge (Phillips Road Bridge) at one of the piers:

Figure 4-2a) shows the actual pier scour and Figure 4-2b) shows the point cloud data generated

from a laser scan that is used in this study.

OK technique is capable of generating different spatial densities from the same scanned point

cloud dataset. To determine the sensitivity of the OK technique to the filling of original data voids

and the associated data density, the same scanned point cloud is evaluated at different spatial

densities. Since a high spatial density corresponds to long computational time for post-processing

of data (such as the calculation of the scour hole soil mass loss rate), there is a significant

implication to the computational budget. Hence, the objective of this study is to determine the

‘optimal’ spatial density to minimize subsequent computation time associated with a massive

number of data points. At the same time, we also attempt to understand the effect of normalized

data spacing on the aforementioned data voids.

53

Figure 4-1 Study bridge: Phillips Road Bridge in Charlotte, NC (Photos were taken on

03/30/2019; Photo credit: Shen-En Chen)

54

Figure 4-2 Scoured pier of the study bridge: a) scour hole with pebbles and b) LiDAR scan of the

scour and pier (Photo credit: Shen-En Chen).

4.3 Spatial Interpolation of Point Cloud Using Ordinary Kriging

There are different types of spatial interpolation techniques including the Inverse Distance

Weighted (IDW), different variations of Kriging, and local polynomial interpolations (Montero et

al. 2015; Oliver and Webster 2015). Of these, the Ordinary Kriging (OK) is probably one of the

most used geostatistical interpolation techniques. In this study, OK is used to predict the unknown

value of a variable at a given point by computing a weighted average of known values of the

variable at the neighborhood of the point:

𝑍(𝑠) = 𝑚 + 𝑒(𝑠) (1)

where Z(s) is a predicted value, m is the mean value and e(s) is a random quantity with a mean

value of zero and an associated covariance c(h):

c(h) = E[e(s)e(s+h)] (2)

and h is the separation between samples, s, and E is the expectation.

Under the assumption of intrinsic stationarity, the expected differences are zero:

55

E[Z(s) – Z(s+h)] = 0 (3)

And the covariance can be replaced by half of the variance of differences (semivariance):

γ(h) = ½ var[Z(s) – Z(s+h)] = ½ E[{Z(s) – Z(s+h)}2] (4)

The semivariance depends only on h, and the function γ can be used to construct the variogram.

Some Kriging terms need to be explained: The term ‘range’ refers to the distance at which the

model falls off and where there is no more spatial relation in the data and is a representation of the

data autocorrelation. ‘Sill’ is the value at which the model is out of range and is an indication of

the data variance. Finally, the ‘nugget effect’ is the value at which the semivariogram intercepts

the y axis (distance = 0). The variogram function is a measure of the spatial autocorrelation. As

the distance increases away from the sample points, there is no longer a relationship between the

sample points and their variances begin to flatten out and the sample values are no longer related

to one another

 The missing data to be filled by the Kriging estimator may have different M and ê(s) values:

𝑍(𝑠) = ℳ + �̂�(𝑠) (5)

Figure 4-3a) and Figure 4-3b) show pre-Kriging results with Z(s) and M and e(S), whereas

Figure 4-3c) and d) show post-Kriging results with Z(s) and M and ê(s).

The OK predictor is a linear combination of the data values. It is unbiased because it attempts

to keep the mean residual to zero and tries to minimize the residual variance. OK is also statistically

called the ‘best linear unbiased estimator’ (Schabenberger and Gotway 2017).

Kriging has been used for laser point cloud processing and for different data improvement

applications. For example, Hui et al. (Hui et al. 2016) suggested a multi-level kriging interpolation

for filtering airborne LiDAR point clouds with the challenges of managing ground versus non-

ground spatial points. Large spatial region interpolations are typically complicated by land covers

56

such as vegetation and man-made structures. Scour detection is more akin to the construction of

microtopography such as the establishment of wetland boundaries (Stovall et al. 2019) and

vegetated sites(Nouwakpo et al. 2016; Zhang et al. 2021). In this case, Kriging can be useful in

filling in the voided areas. Da Costa et al. (Da Costa et al. 2018) compared different interpolation

techniques including Kriging, spline, and machine learning, for spatial data points and noted that

Kriging and spline models are similar in some cases.

Figure 4-3 Example Kriging predictions with original scanned data (a and b) and post-Kriging

results (c and d).

57

Figure 4-4 Full LiDAR scan with laser scanner position and the location of the studied scour

(number of points: 24,248,705).

58

4.4 Captured Scour Point Cloud and Spatial Density Analysis

To evaluate the effect of Kriging data interpolation on scour quantitative measures (i.e. scour

volume and scoured area), a scour hole on a pier of the Phillip’s Road Bridge (Chavan et al. 2021)

is used in this study. The Phillips Road Bridge over Toby Creek (35°18'28.2"N 80°44'16.6"W)

consists of three spans supported on prestressed concrete girders and drilled pier foundations. To

detect the scour hole, a FARO Focus S 350 scanning laser was used. The FARO scanner uses a

near infrared laser of 1,550 nm wavelength and has a maximum shooting range of 350 m. It is

recognized that the bridge piles of the Phillips Road bridge are round, but the bridge piers are

square in shape. As a result, the laser scanned scour images have a relatively sharp cornered shape

shown partially in Figure 4-2b.

For this study, a scanned point cloud was processed by removing everything except the scoured

area. It is possible to detect the scours automatically using artificial intelligence (AI), but that is

beyond the scope of this paper, which focuses on the scanned data quality with different OK

interpolations. Figure 4-4 shows the original unprocessed scan indicating the bridge piers and the

data scattered from the surrounding vegetation. The scanner and the scour positions are also

identified from the image. For this study, the area surrounding the scour of interest is extracted

from Figure 4-4 and is shown in Figure 4-5. As described earlier, the square bridge pier also needs

to be extracted from the point cloud before analysis. Finally, a point cloud sample that contains

1,000 spatial points (i.e., control points; see Figure 4-6) is considered for Kriging. The figure also

shows the voids present in the point cloud.

59

Figure 4-5 Extracted image of the scoured area showing data voids (circled area).

Figure 4-6 Sample scour points with voids marked (in red circles).

60

The input point cloud and the interpolated points are aligned in such a way that the Z-

coordinate is considered the scour depth. The resulting points appear in a uniform grid format with

their projections displaced on the XY (spatial) plane. We designed a sensitivity analysis

experiment with nine scenarios in terms of point resolution (inter-point distance of interpolated

points). Using the Kriging model, nine different point-to-point (inter-point) distances – 500 mm,

200 mm, 100 mm, 50 mm, 20 mm, 10 mm, 5 mm, 2 mm, and 1 mm – are used in this study. The

processing was done on a workstation with Intel i7-11800H processor and a RAM of 32GB.

Multiple software packages including CloudCompare, MATLAB, and ArcGIS were used in this

study.

61

4.5 Results and Discussions

Figure 4-7 shows the semivariance plot with its range, sill and nugget effect marked. The

Kriging results are shown in Figure 4-8. Table 4-1 summarizes the results of this study, where the

time reported in the table includes the time taken for scour identification, segmentation, sampling,

boundary drawing, interpolation, and quantification processes.

The first scenario, using a point resolution of 500 mm, generated 31 new points. From visual

inspection (Figure 4-9), these points did not fully fill the voids in the input cloud. The projected

2D area of the point cloud on the XY plane was 7.47 m2. This value was used in calculating the

point density of the generated point clouds.

Table 4-1 Results of the experiment used in this study.

Scenario

No.

Point to Point

distance

No. of

points generated

Point

density

Processing

time

Surface

area Volume

 mm

points/m
2 second m

2 m
3

1 500 31 4.15 306 4.49 2.56

2 200 185 24.76 307 6.37 3.25

3 100 743 99.43 307 7.20 3.59

4 50 2,991 400.25 307 7.68 3.76

5 20 18,680 2,499.70 310 7.95 3.86

6 10 74,731 10,000.29 330 8.07 3.89

7 5 298,861 39,992.74 367 8.17 3.91

8 2 1,867,735 249,935.03 596 8.33 3.92

9 1 7,471,074 999,758.06 1,890 8.46 3.92

62

Figure 4-7 Semi-variance graph (semivariogram) for the selected point cloud (γ: semivariance).

Figure 4-8 Ordinary Kriging results a) raster plot (OK: Ordinary Kriging); b) point cloud view.

63

Figure 4-9 Point cloud and interpolated points with point-to-point distance of 500 mm a) XY

view b) 3D view.

Figure 4-10 shows the results for scenario 2, with decreased point-to-point distance of 200 mm.

It had a point density approximately 6 times greater than the 500 mm scenario. The processing

time increased marginally, and the data voids were still visible. When the data density increased

further such as in scenario 3 (Figure 4-11), there were no visible voids. The time taken for the

processing was about the same as in the previous scenarios. The scour depth, the surface area and

volume are parameters that are important for scour monitoring and assessing the health of a bridge

structure. From the figures, there is very little change in the maximum depths observed using

different resolutions of data interpolation. However, the differences are clearly observed in both

surface area and volume. The surface area and volume for the scenario 3 point cloud were 7.20 m2

and 3.59 m3, respectively, and these are different from the actual values of the Kriged surface

(scenario 1) by 18% and 8.6%, respectively. Further decreasing the point distance resulted in an

increased number of points generated whilst creating a decrease in the differences in quantification

values. Figure 4-13 shows this observation clearly, where the x-axis is presented in natural

logarithm of the spatial resolution. As the number of points increased, the differences in

64

quantification parameters decreased. Naturally, more interpolation points would correspond to a

better-defined surface. Thus, the decrease was faster when the initial number of points were on the

lower side. Consequently, processing times increased by just a few milliseconds to hundreds of

seconds. Figure 4-14 shows the increase in processing time with respect to decrease in inter-point

distances.

One of the critical questions that inspired the current study is “What is the optimal interpolation

density?” Based on the nine scenarios generated, the ‘optimal’ point cloud density is identified

with point distances about 20 mm, which has less than 10% difference in surface area (when

compared to the original point cloud) and the corresponding volume difference is lower than 2%.

To demonstrate the effect of temporal changes in scouring, we delve into more detailed

discussion by comparing the scour scans at two different times in the following section.

Figure 4-10 Point cloud and interpolated points with point-to-point distance of 200 mm a) XY

view b) 3D view.

65

Figure 4-11 Point cloud and interpolated points with point-to-point distance of 100 mm a) XY

view b) 3D view

Figure 4-12 Point cloud and interpolated points with point-to-point distance of 20 mm a) XY

view b) 3D view

66

Figure 4-13 Percentage difference in surface area and volume with decreasing point-to-point

distances.

Figure 4-14 Processing times increase with decreasing point distances

4.6 Scour Change Over Time

In order to study the development of scour over time, the Phillips Road bridge scour was

scanned multiple times over a period of several months. The scour described in the previous section

67

was scanned on June 9, 2020. A prior scan was taken on August 17, 2019, and is used here to

describe how it had changed over the course of ten months. The LiDAR point clouds from 2019

and 2020 are referred to as PointCloud1 (PC1) and PointCloud2 (PC2), respectively. The LiDAR

was positioned approximately at the same location for both scans.

Visually inspecting the two point clouds indicates that the PC1 scour had a greater number of

small loose rocks when compared to PC2. This means that some of the rocks were washed away

during the scouring process, thus PC2 has a smoother surface than PC1. The positions of the rocks

were also different, indicating that flooding over the ten-month period had caused the rocks to

move. As a result, many of the locations of the voids in the scans were not identical. However, the

nature of the voids closest to the scanner location was similar in both PC1 and PC2, both due to

the sudden change in ground elevation due to scour depth. However, PC1 had a more gradual

change, and thus smaller voids. Figure 4-15 shows the segmented point cloud of the study scour

in PC1. Voids were noted in the point cloud and OK was used to interpolate the data using the

same procedure. The raster plot of the interpolated point cloud is shown in Figure 4-16.

Comparing the interpolated data from PC1 and PC2, it is clear that the scour shape had also

changed over the months. The change in scour parameters also reflects this observation. The

maximum scour depth increased from 0.833 m in PC1 to 0.845 m in PC2. This increase can also

be noticed visually from the location of the pier cap - While the pier cap was partially visible on

both the scans, the pier cap from PC2 was more apparent because of deeper scour. The volumes

of the scour remained approximately equal for both PC1 and PC2 scans and is about 3.91 m3.

However, surface areas decreased from 8.94 m2 to 8.46 m2, which may be due to different scanning

angles.

68

Last, it should be recognized that this study focuses on the scouring process of a pier-on-bank

scenario – The pier is situated on the riverbank, which allows the scanning of a ‘dry’ scour hole,

thus, the laser energy returned is not affected by water at the bottom of the scour hole. In contrast,

a scour that occurs to a pier in the riverbed would not be visible to the terrestrial LiDAR. In such

cases, a different frequency LiDAR (e.g., bathymetric LiDAR) can be used. Unfortunately, the

scan data alone cannot explain the scouring history of the Phillip’s Road bridge and additional data

from the hydraulic and hydrological processes of the Toby Creek will be needed.

Figure 4-15 Phillips Road bridge scour point cloud as on Aug 17, 2019. Data voids are marked in

red circles.

69

Figure 4-16 Raster plot of OK results (Aug 2019 scour).

4.7 Conclusions

In this study, a LiDAR scan of a scoured hole from a pier of the Phillips Road Bridge was

identified with data voids generated to investigate the possible obstruction of the LiDAR scan from

vegetation surrounding the pier or physical site constraints which might limit the viewscape of a

LiDAR device. OK was performed on the segmented data to fill in the voids. The results show that

the OK procedure generated data points that can accurately fill the spatial voids of the scanned

scour hole. The Kriging result was used to generate point clouds with varying point density. It was

observed that a spatial resolution of 20 mm performed well in terms of accuracy of scour surface

area, volume, and processing time and can be considered the ‘optimal’ resolution for interpolated

scour point cloud. A different scan performed at the same location with a gap of ten months

between them was used to compare the scour parameters. From the results, scour depth had

increased, surface area had decreased, and the volume had remained the same at the end of the ten-

month period.

70

LiDAR scans with the suggested Kriging data interpolation technique can be used to reliably

quantify scour parameters such as the scoured surface area and the scoured volume. The data can

also be used to define a reference surface for the scour point data, allowing bridge engineers to

quantify the actual volume and area of the mass/volume losses during the hydrodynamic processes

of scouring over time.

However, it is acknowledged that the natural scour process is not straightforward – as the

comparison of the two scans of the same scour indicated. Future studies should include scans

before and after each significant storm over an extended period. Current scour effect rating is only

based on scour depth measurements, which is insufficient to establish the stability analysis of a

bridge due to scouring. The continued use of LiDAR scans can potentially help devise more robust

scour quantifiers for assessing the overall stability of a bridge.

71

4.8 References

Arneson, L., Zevenbergen, L., Lagasse, P., and Clopper, P. (2012). "Evaluating scour at bridges."

National Highway Institute (US).

Bian, H., Chen, S. E., and Liu, W. (2017). "Error sources in proccessing lidar based bridge

inspection."

Chavan, V. S., Chen, S.-E., Shanmugam, N. S., Tang, W., Diemer, J., Allan, C., Braxtan, N.,

Shukla, T., Chen, T., and Slocum, Z. (2021). "An Analysis of Local and Combined (Global)

Scours on Piers-on-Bank Bridges." CivilEng, 3(1), 1-20.

Cressie, N. A. C. (1993). Statistics for Spatial Data.

Da Costa, J. J., Chainet, F., Celse, B., Lacoue-Nègre, M., Ruckebusch, C., and Espinat, D. (2018).

"Comparing Kriging, Spline, and MLR in Product Properties Modelization: Application to

Cloud Point Prediction." Energy & Fuels, 32(4), 5623-5634.

Dai, K., Boyajian, D., Liu, W., Chen, S.-E., Scott, J., and Schmieder, M. (2014). "Laser-based

field measurement for a bridge finite-element model validation." Journal of Performance

of Constructed Facilities, 28(5), 04014024.

Fuchs, P., Washer, G., Chase, S., and Moore, M. (2004). "Laser-based instrumentation for bridge

load testing." Journal of Performance of constructed facilities, 18(4), 213-219.

Hui, Z., Hu, Y., Yevenyo, Y. Z., and Yu, X. (2016). "An improved morphological algorithm for

filtering airborne LiDAR point cloud based on multi-level kriging interpolation." Remote

Sensing, 8(1), 35.

Isaaks, E. H., and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, Oxford

University Press, New York.

72

Krige, D. G. (1951). "A Statistical Approach to Some Basic Mine Valuation Problems on the

Witwatersrand." Journal of the Chemistry, Metallurgy and Mining Society of South

Africa(51(6)), 119-139.

Lagasse, P. F., Zevenbergen, L., Spitz, W., and Arneson, L. (2012). "Stream stability at highway

structures." United States. Federal Highway Administration. Office of Bridge Technology.

Lewis, Q. W., Edmonds, D. A., and Yanites, B. J. (2020). "Integrated UAS and LiDAR reveals the

importance of land cover and flood magnitude on the formation of incipient chute holes

and chute cutoff development." Earth Surface Processes and Landforms, 45(6), 1441-

1455.

Lin, Y.-C., Liu, J., Cheng, Y.-T., Hasheminasab, S. M., Wells, T., Bullock, D., and Habib, A.

(2021). "Processing Strategy and Comparative Performance of Different Mobile LiDAR

System Grades for Bridge Monitoring: A Case Study." Sensors, 21(22), 7550.

Melville, B. W., and Coleman, S. E. (2000). Bridge scour, Water Resources Publication.

Meng, Q., Liu, Z., and Borders, B. E. (2013). "Assessment of regression kriging for spatial

interpolation–comparisons of seven GIS interpolation methods." Cartography and

geographic information science, 40(1), 28-39.

Montero, J.-M., Fernández-Avilés, G., and Mateu, J. (2015). Spatial and spatio-temporal

geostatistical modeling and kriging, John Wiley & Sons.

Nouwakpo, S. K., Weltz, M. A., and McGwire, K. (2016). "Assessing the performance of

structure‐from‐motion photogrammetry and terrestrial LiDAR for reconstructing soil

surface microtopography of naturally vegetated plots." Earth Surface Processes and

Landforms, 41(3), 308-322.

73

Oliver, M. A., and Webster, R. (2015). Basic steps in geostatistics: the variogram and kriging,

Springer.

Schabenberger, O., and Gotway, C. A. (2017). Statistical methods for spatial data analysis: Texts

in statistical science, Chapman and Hall/CRC.

Stovall, A. E., Diamond, J. S., Slesak, R. A., McLaughlin, D. L., and Shugart, H. (2019).

"Quantifying wetland microtopography with terrestrial laser scanning." Remote Sensing of

Environment, 232, 111271.

Suro, T. P., Huizinga, R. J., Fosness, R. L., and Dudunake, T. (2020). "Assessment of bridge scour

countermeasures at selected bridges in the United States, 2014–18." US Geological Survey.

Watson, C., Chen, S.-E., Bian, H., and Hauser, E. (2013). "LiDAR scan for blasting impact

evaluation on a culvert structure." Journal of performance of constructed facilities, 27(4),

460-467.

Zhang, X., Meng, X., Li, C., Shang, N., Wang, J., Xu, Y., Wu, T., and Mugnier, C. (2021). "Micro-

Topography Mapping through Terrestrial LiDAR in Densely Vegetated Coastal

Environments." ISPRS International Journal of Geo-Information, 10(10), 665.

74

5 OVERALL CONCLUSIONS

To address the issue of bridge scour monitoring, this dissertation explored effective

approaches to identify and quantify local scour on pier-on-bank bridges addressing specifically the

issues of LiDAR point cloud data processing pertaining to the data void infilling and automated

volumetric and surface area quantification. As scour is the most critical and hidden risk for a

bridge, the contributions from this research are many folds:

1. It establishes the potential of LiDAR scans as a viable technology for scour detection.

2. It suggests automation for scour detection in a massive point cloud data, and

3. It explores the more theoretical issues of quantifying scour hole dimensions.

The conclusions from this research are summarized as follows.

1. Bridge failures caused by scour account for most of the bridge failures in the US, resulting

in a substantial repair and replacement costs.

2. Scour depth, surface and volume are parameters that can be used to estimate the severity

of a scour.

3. LiDAR technology is a more effective monitoring technique for scour investigations. It has

the advantages of being more accurate, consistent, faster, lower cost, light independent,

and ground control point independent over other surveying techniques.

4. The Phillips Road Bridge over Toby Creek (35°18'28.2"N 80°44'16.6"W) located at the

University of North Carolina at Charlotte was known to have local scour and was used as

a case study.

5. No previous research was found on the use of AI to detect scour. 3D PCN method was used

to reconstruct scour shape from LiDAR point cloud. One thousand sets of synthetic data

were used to train this network and it was applied on a real-world scour point cloud.

75

6. Discrete chamfer metric was used as the loss function governing the network training. It

stabilized at 0.000122 at the 86th epoch.

7. This network currently has an average accuracy of 63% in labelling the points as scour and

non-scour.

8. OK process was performed on a terrestrial LiDAR scour point cloud data to populate the

data voids that were present. A reference plane was manually selected by choosing three

points and the dataset was transformed in its orientation to Cartesian (xyz) coordinates such

that z was the scour depth. The cos(rangle) value was 0.9985 for the case study scour point

cloud, meaning that the reference plane chosen was almost overlapping the ground plane.

9. Kriging can result in varying point densities, with processing times increasing with larger

number of points.

10. Kriging results with a wide range of point densities were studied, varying from just 31 new

points at 500 mm distance to millions of points at 1 mm distance.

11. Voids were filled with a resolution of 100 mm. However, the surface area and volume for

this point cloud were 7.20m2 and 3.59m3 respectively, but those were off by 18% and 8.6%

from the actual values of the Kriged surface.

12. As the number of points increased, the differences in surface area and volume decreased.

The decrease was faster when the density was low.

13. Processing times increased by just few milliseconds to hundreds of seconds as the number

of points increased.

14. This method is applicable for any scour point cloud, not just from a terrestrial LiDAR. The

results from this can be used to make an informed decision on the health of a bridge

structure.

76

6 SCOPE FOR FUTURE RESEARCH

This study revealed a very interesting subject on scour quantification, which currently still

limited to scour depth determination during bridge evaluation (Melville et al. 2000).

The use of LiDAR scan to establish the volumetric and area information of a scour can be

significant in determining the actual criticality of the changed condition of a bridge support

structure. This modern-day tool has already seen a dramatic increase in its applications for the past

ten years. What current study is contributing is the potential integration of automatable numeric

techniques that can significantly improve the workflow of a hydraulic engineer.

Considering the vast advanced analytical techniques that can be used for point cloud data

manipulation, current study is only scratching the surface of study. Figure 6-1 shows the potential

evolution of this subject as part of the workflow of scour evaluation. As shown, there are several

other techniques that can be experimented for the current subject.

77

Figure 6-1 Potential future research

Bridge Evaluation Point Cloud Capture
Point Cloud

Processing

Automated Scour

Hole Detection and

Quantification

AI Assisted

Automation

Kriging

Multi-variate

Analysis

Supervised

quantification

Current

Study

Current

Study

Classical

Interpolation

methods

78

REFERENCES

Melville, B.W. and S.E. Coleman, Bridge scour. 2000: Water Resources Publication.

Shirole, A. and R. Holt, Planning for a comprehensive bridge safety assurance program.

Transportation Research Record, 1991. 1290(3950): p. 290-005.

Lagasse, P.F., et al., Stream stability at highway structures. 2012, United States. Federal Highway

Administration. Office of Bridge Technology.

Prendergast, L.J. and K. Gavin, A review of bridge scour monitoring techniques. Journal of Rock

Mechanics and Geotechnical Engineering, 2014. 6(2): p. 138-149.

Liu, W. and S.E. Chen, Reliability analysis of bridge evaluations based on 3D light detection and

ranging data. Structural Control and Health Monitoring, 2013. 20(12): p. 1397-1409.

Liu, W., S.-e. Chen, and E. Hasuer, Bridge clearance evaluation based on terrestrial LIDAR scan.

Journal of Performance of Constructed Facilities, 2012. 26(4): p. 469-477.

Munoz Rodriguez, J.A., Laser Scanner Technology. 2012.

Hohn, M.E., An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan

Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-

19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US). Computers & Geosciences, 1991.

17(3): p. 471-473.

Cressie, N.A., Statistics for spatial data. John Willy and Sons. Inc., New York, 1993.

Meng, Q., Z. Liu, and B.E. Borders, Assessment of regression kriging for spatial interpolation–

comparisons of seven GIS interpolation methods. Cartography and geographic information

science, 2013. 40(1): p. 28-39.

79

Knotters, M., D. Brus, and J.O. Voshaar, A comparison of kriging, co-kriging and kriging

combined with regression for spatial interpolation of horizon depth with censored

observations. Geoderma, 1995. 67(3-4): p. 227-246.

Zhao, Y., Birdal, T., Deng, H., Tombari, F., (2019) “3D Point Capsule Networks,” Proceedings,

IEEE/CVF Conf. Compu. Vis. Pattern Recognition (CVPR), Long Beach, CA, USA, 1009-

1018.

80

APPENDICES

Appendix A. Phillips Road Bridge North Bank Photos

Figure A-1 North Bank Pier No. 2 (June 9, 2020)

Figure A-2 North Bank Pier No.3 (June 9, 2020)

Figure A-3 North Bank Pier No.4 (June 9, 2020)

81

Figure A-4 LiDAR scan in progress (June 9, 2020)

Figure A-5 Sample Phillips Road Bridge LiDAR point cloud visualized using CloudCompare

82

Appendix B. Phillips Road Bridge North Bank Pier No. 2 Scour Over Time

Figure B-1 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on Feb 11,

2019

83

Figure B-2 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on Aug 17,

2019

84

Figure B-3 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on June 9,

2020

85

Figure B-4 Pier No. 2 scour point cloud comparison a) Feb 11, 2019; b) Aug 17, 2019; c) June 9,

2020

86

Table B-1 Pier No. 2 scour parameters over time

Date Pier No. Scour Depth (m) Surface Area (m2) Volume (m3)

2019-02-11 2 0.26 2.05 0.15

2019-08-17 2 0.43 5.72 0.77

2020-06-09 2 0.38 5.48 0.99

87

Appendix C. Phillips Road Bridge North Bank Pier No. 3 Scour Over Time

Figure C-1 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on Aug 17,

2019

88

Figure C-2 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on Jan 24,

2020

89

Figure C-3 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on June 6,

2020

90

Figure C-4 Pier No. 3 scour point cloud comparison; a) Aug 17, 2019; b) Jan 24, 2020; c) June 9,

2020

91

Table C-1 Pier No. 3 scour parameters over time

Date Pier No. Scour Depth (m) Surface Area (m2) Volume (m3)

2019-08-17 3 0.83 8.94 3.91

2020-01-24 3 0.58 12.7 2.37

2020-06-09 3 0.85 8.46 3.91

92

Appendix D. MATLAB Scripts

Generate Gaussian curve – Initial attempt

j=1000; % number of point clouds

ne=1000;

np=2048; % number of points to be sampled

wor_dir=pwd;

dest_pt=[wor_dir '\points\'];

dest_seg=[wor_dir '\segs\'];

for j=1:nj

z = zeros(ne,ne); % initialize z matrix

n = 5; % number of bumps

sigma = 100; % std width of bell curve

max_ht = 50; % maximum height

[x,y] = meshgrid(1:size(z,1),1:size(z,2));

% vol_calc=0; % initialize for volume using formula

for i=1:n

 % random location of bumps

 xc = randi([size(z,1)/4 3*size(z,1)/4]);

 yc = randi([size(z,2)/4 3*size(z,2)/4]);

 x_c(i)=xc;

 y_c(i)=yc;

 % bell curve

 exponent = ((x-xc).^2 + (y-yc).^2)./(2*sigma^2);

 amplitude(i) = rand()*max_ht;

 z = z + amplitude(i)*exp(-exponent);

z1=reshape(z,ne*ne,1);

x1=reshape(x,ne*ne,1);

y1=reshape(y,ne*ne,1);

z2=[x1 y1 z1];

93

m1=randsample(size(z2,1),np);

z3=z2(m1,:);

writematrix(z3,[dest_pt 'ptfile_' num2str(j) '.txt'], 'Delimiter', ' ');

z4=[z3 ones(size(z3,1),1)]; %annotate all points as 1

z4(z4(:,3)>4,4)=2; %change annotation of scour points as 2

writematrix(z4(:,4),[dest_seg 'segfile_' num2str(j) '.txt']);

94

Generate Gaussian curve – Increased amplitude

nj=1000; % number of point clouds

ne=1000;

np=2048; % number of points to be sampled

wor_dir=pwd;

dest_pt=[wor_dir '\points\'];

dest_seg=[wor_dir '\segs\'];

for j=1:nj

z = zeros(ne,ne); % initialize z matrix

n = 5; % number of bumps

sigma = 100; % std width of bell curve

max_ht = 200; % maximum height

[x,y] = meshgrid(1:size(z,1),1:size(z,2));

for i=1:n

 % random location of bumps

 xc = randi([size(z,1)/4 3*size(z,1)/4]);

 yc = randi([size(z,2)/4 3*size(z,2)/4]);

 x_c(i)=xc;

 y_c(i)=yc;

 % bell curve

 exponent = ((x-xc).^2 + (y-yc).^2)./(2*sigma^2);

 amplitude(i) = rand()*max_ht;

 z = z + amplitude(i)*exp(-exponent);

end

z1=reshape(z,ne*ne,1);

x1=reshape(x,ne*ne,1);

y1=reshape(y,ne*ne,1);

z2=[x1 y1 z1];

m1=randsample(size(z2,1),np);

95

z3=z2(m1,:);

writematrix(z3,[dest_pt 'ptfile_' num2str(j) '.txt'], 'Delimiter', ' ');

z4=[z3 ones(size(z3,1),1)]; %annotate all points as 1

z4(z4(:,3)>10,4)=2; %change annotattion of scour points as 2

writematrix(z4(:,4),[dest_seg 'ptfile_' num2str(j) '.txt']);

96

Subsample Point Cloud Data

function orient_subsamp(scour_file)

%read data

a = readmatrix(scour_file);

%get xyz data

b = a(:,1:3);

%get reference plane

[s1, s2, s3] = get_refpl(a);

%Translate and rotate data along with the reference plane

b_t=b-s1;

s1_t=s1-s1;

s2_t=s2-s1;

s3_t=s3-s1;

p1=cross(s2_t,s3_t);

p1_n=p1./norm(p1);

r_axis=cross(p1_n,[0 0 1]);

r_a_n=r_axis./norm(r_axis);

r_angle=acos(dot(p1_n,[0 0 -1]));

C=cos(r_angle);

S=sin(r_angle);

t=1-C;

u1=r_a_n(1);

u2=r_a_n(2);

u3=r_a_n(3);

T=[t*u1*u1+C t*u1*u2-S*u3 t*u1*u3+S*u2;

 t*u1*u2+S*u3 t*u2*u2+C t*u2*u3-S*u1;

 t*u1*u3-S*u2 t*u2*u3+S*u1 t*u3*u3+C];

b_new=b_t*T;

%ignore data if it has recurring points

97

[c,ia,~]=unique(b_new(:,1:2),'rows','stable');

b_new2=[c b_new(ia,3)];

%random sample data

random1k=randsample([1:size(b_new2,1)],1000);

random10k=randsample([1:size(b_new2,1)],10000);

b_rand1k=b_new2(random1k,:);

b_rand10k=b_new2(random10k,:);

%write data to text file

[~,file_name,~] = fileparts(scour_file);

writematrix(b_new2, ['point_output_' file_name '.txt']);

writematrix(b_rand1k,['point_output_' file_name '_1k.txt']);

writematrix(b_rand10k,['point_output_' file_name '_10k.txt']);

end

98

Appendix E. Python 3.6 Scripts

Tensorflow logger

Code referenced from

https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514

import tensorflow as tf

import numpy as np

import scipy.misc

try:

 from StringIO import StringIO # Python 2.7

except ImportError:

 from io import BytesIO # Python 3.x

class Logger(object):

 def __init__(self, log_dir):

 """Create a summary writer logging to log_dir."""

 self.writer = tf.summary.FileWriter(log_dir)

 def scalar_summary(self, tag, value, step):

 """Log a scalar variable."""

 summary = tf.Summary(value=[tf.Summary.Value(tag=tag,

simple_value=value)])

 self.writer.add_summary(summary, step)

 def image_summary(self, tag, images, step):

 """Log a list of images."""

 img_summaries = []

 for i, img in enumerate(images):

 # Write the image to a string

 try:

 s = StringIO()

 except:

 s = BytesIO()

 scipy.misc.toimage(img).save(s, format="png")

99

 # Create an Image object

 img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),

 height=img.shape[0],

 width=img.shape[1])

 # Create a Summary value

 img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i),

image=img_sum))

 # Create and write Summary

 summary = tf.Summary(value=img_summaries)

 self.writer.add_summary(summary, step)

 def histo_summary(self, tag, values, step, bins=1000):

 """Log a histogram of the tensor of values."""

 # Create a histogram using numpy

 counts, bin_edges = np.histogram(values, bins=bins)

 # Fill the fields of the histogram proto

 hist = tf.HistogramProto()

 hist.min = float(np.min(values))

 hist.max = float(np.max(values))

 hist.num = int(np.prod(values.shape))

 hist.sum = float(np.sum(values))

 hist.sum_squares = float(np.sum(values**2))

 # Drop the start of the first bin

 bin_edges = bin_edges[1:]

 # Add bin edges and counts

 for edge in bin_edges:

 hist.bucket_limit.append(edge)

 for c in counts:

 hist.bucket.append(c)

 # Create and write Summary

 summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])

100

 self.writer.add_summary(summary, step)

 self.writer.flush()

101

Auto-Encoder Testing

#Code referenced from https://github.com/yongheng1991/3D-point-capsule-

networks

import argparse

import torch

import torch.nn.parallel

from torch.autograd import Variable

import torch.optim as optim

import sys

import os

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models')))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders')))

import shapenet_part_loader

import shapenet_core13_loader

import shapenet_core55_loader

from pointcapsnet_ae import PointCapsNet

def main():

 USE_CUDA = True

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size,

opt.latent_caps_size, opt.latent_caps_size, opt.num_points)

 if opt.model != '':

 capsule_net.load_state_dict(torch.load(opt.model))

 else:

 print ('pls set the model path')

 if USE_CUDA:

 print("Let's use", torch.cuda.device_count(), "GPUs!")

 capsule_net = torch.nn.DataParallel(capsule_net)

102

 capsule_net.to(device)

 if opt.dataset=='shapenet_part':

 test_dataset = shapenet_part_loader.PartDataset(classification=True,

npoints=opt.num_points, split='test')

 test_dataloader = torch.utils.data.DataLoader(test_dataset,

batch_size=opt.batch_size, shuffle=True, num_workers=4)

 elif opt.dataset=='shapenet_core13':

 test_dataset = shapenet_core13_loader.ShapeNet(normal=False,

npoints=opt.num_points, train=False)

 test_dataloader = torch.utils.data.DataLoader(test_dataset,

batch_size=opt.batch_size, shuffle=True, num_workers=4)

 elif opt.dataset=='shapenet_core55':

 test_dataset =

shapenet_core55_loader.Shapnet55Dataset(batch_size=opt.batch_size,npoints=op

t.num_points, shuffle=True, train=False)

test process for 'shapenet_part' or 'shapenet_core13'

 capsule_net.eval()

 if 'test_dataloader' in locals().keys() :

 test_loss_sum = 0

 for batch_id, data in enumerate(test_dataloader):

 points, _= data

 if(points.size(0)<opt.batch_size):

 break

 points = Variable(points)

 points = points.transpose(2, 1)

 if USE_CUDA:

 points = points.cuda()

 latent_caps, reconstructions= capsule_net(points)

 test_loss = capsule_net.module.loss(points, reconstructions)

 test_loss_sum += test_loss.item()

 print('accumalate of batch %d loss is : %f' % (batch_id, test_loss.item()))

 test_loss_sum = test_loss_sum / float(len(test_dataloader))

103

 print('test loss is : %f' % (test_loss_sum))

test process for 'shapenet_core55'

 else:

 test_loss_sum = 0

 while test_dataset.has_next_batch():

 batch_id, points_= test_dataset.next_batch()

 points = torch.from_numpy(points_)

 if(points.size(0)<opt.batch_size):

 break

 points = Variable(points)

 points = points.transpose(2, 1)

 if USE_CUDA:

 points = points.cuda()

 latent_caps, reconstructions= capsule_net(points)

 test_loss = capsule_net.module.loss(points, reconstructions)

 test_loss_sum += test_loss.item()

 print('accumalate of batch %d loss is : %f' % (batch_id, test_loss.item()))

 test_loss_sum = test_loss_sum / float(len(test_dataloader))

 print('test loss is : %f' % (test_loss_sum))

 if __name__ == "__main__":

 parser = argparse.ArgumentParser()

 parser.add_argument('--batch_size', type=int, default=2, help='input batch size')

 parser.add_argument('--n_epochs', type=int, default=300, help='number of

epochs to train for')

 parser.add_argument('--prim_caps_size', type=int, default=1024, help='number

of primary point caps')

 parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of

primary point caps')

104

 parser.add_argument('--latent_caps_size', type=int, default=64, help='number

of latent caps')

 parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of

latent caps')

 parser.add_argument('--num_points', type=int, default=2048, help='input point

set size')

 parser.add_argument('--model', type=str,

default='tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth',

help='model path')

 parser.add_argument('--dataset', type=str, default='shapenet_part',

help='dataset: shapenet_part, shapenet_core13, shapenet_core55')

 opt = parser.parse_args()

 print(opt)

 main()

105

Auto-Encoder Training

import argparse

import torch

import torch.nn.parallel

from torch.autograd import Variable

import torch.optim as optim

import sys

import os

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models')))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders')))

import shapenet_part_loader

import shapenet_core13_loader

import shapenet_core55_loader

from logger import Logger

from pointcapsnet_ae import PointCapsNet

def main():

 USE_CUDA = True

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size,

opt.latent_caps_size, opt.latent_caps_size, opt.num_points)

 if opt.model != '':

 capsule_net.load_state_dict(torch.load(opt.model))

 if USE_CUDA:

 print("Let's use", torch.cuda.device_count(), "GPUs!")

 capsule_net = torch.nn.DataParallel(capsule_net)

 capsule_net.to(device)

 #create folder to save logs

106

log_dir='./logs'+'/'+opt.dataset+'_dataset_'+str(opt.latent_caps_size)+'caps_'+str(o

pt.latent_vec_size)+'vec'+'_batch_size_'+str(opt.batch_size)

 if not os.path.exists(log_dir):

 os.makedirs(log_dir);

 logger = Logger(log_dir)

 #create folder to save trained models

 if not os.path.exists(opt.outf):

 os.makedirs(opt.outf);

 if opt.dataset=='shapenet_part':

 train_dataset = shapenet_part_loader.PartDataset(classification=True,

npoints=opt.num_points, split='train')

 train_dataloader = torch.utils.data.DataLoader(train_dataset,

batch_size=opt.batch_size, shuffle=True, num_workers=4)

 elif opt.dataset=='shapenet_core13':

 train_dataset = shapenet_core13_loader.ShapeNet(normal=False,

npoints=opt.num_points, train=True)

 train_dataloader = torch.utils.data.DataLoader(train_dataset,

batch_size=opt.batch_size, shuffle=True, num_workers=4)

 elif opt.dataset=='shapenet_core55':

 train_dataset =

shapenet_core55_loader.Shapnet55Dataset(batch_size=opt.batch_size,

npoints=opt.num_points, shuffle=True, train=True)

training process for 'shapenet_part' or 'shapenet_core13'

 capsule_net.train()

 if 'train_dataloader' in locals().keys() :

 for epoch in range(opt.n_epochs):

 if epoch < 50:

 optimizer = optim.Adam(capsule_net.parameters(), lr=0.0001)

 elif epoch<150:

 optimizer = optim.Adam(capsule_net.parameters(), lr=0.00001)

 else:

 optimizer = optim.Adam(capsule_net.parameters(), lr=0.000001)

107

 train_loss_sum = 0

 for batch_id, data in enumerate(train_dataloader):

 points, _= data

 if(points.size(0)<opt.batch_size):

 break

 points = Variable(points)

 points = points.transpose(2, 1)

 if USE_CUDA:

 points = points.cuda()

 optimizer.zero_grad()

 latent_caps, reconstructions= capsule_net(points)

 train_loss = capsule_net.module.loss(points, reconstructions)

 train_loss.backward()

 optimizer.step()

 train_loss_sum += train_loss.item()

 info = {'train_loss': train_loss.item()}

 for tag, value in info.items():

 logger.scalar_summary(

 tag, value, (len(train_dataloader) * epoch) + batch_id + 1)

 if batch_id % 50 == 0:

 print('bactch_no:%d/%d, train_loss: %f ' % (batch_id,

len(train_dataloader), train_loss.item()))

 print('Average train loss of epoch %d : %f' %

 (epoch, (train_loss_sum / len(train_dataloader))))

 if epoch% 5 == 0:

 dict_name=opt.outf+'/'+opt.dataset+'_dataset_'+

'_'+str(opt.latent_caps_size)+'caps_'+str(opt.latent_caps_size)+'vec_'+str(epoch)+'

.pth'

 torch.save(capsule_net.module.state_dict(), dict_name)

108

training process for 'shapenet_core55'

 else:

 for epoch in range(opt.n_epochs):

 if epoch < 20:

 optimizer = optim.Adam(capsule_net.parameters(), lr=0.001)

 elif epoch<50:

 optimizer = optim.Adam(capsule_net.parameters(), lr=0.0001)

 else:

 optimizer = optim.Adam(capsule_net.parameters(), lr=0.00001)

 train_loss_sum = 0

 while train_dataset.has_next_batch():

 batch_id, points_= train_dataset.next_batch()

 points = torch.from_numpy(points_)

 if(points.size(0)<opt.batch_size):

 break

 points = Variable(points)

 points = points.transpose(2, 1)

 if USE_CUDA:

 points = points.cuda()

 optimizer.zero_grad()

 latent_caps, reconstructions= capsule_net(points)

 train_loss = capsule_net.module.loss(points, reconstructions)

 train_loss.backward()

 optimizer.step()

 train_loss_sum += train_loss.item()

 info = {'train_loss': train_loss.item()}

 for tag, value in info.items():

 logger.scalar_summary(

 tag, value, (int(750/opt.batch_size) * epoch) + batch_id + 1)

 nfo = {'train_loss': train_loss.item()}

109

 for tag, value in info.items():

 logger.scalar_summary(

 tag, value, (int(750/opt.batch_size) * epoch) + batch_id + 1)

 if batch_id % 50 == 0:

 print('bactch_no:%d/%d at epoch %d train_loss: %f ' % (batch_id,

int(750/opt.batch_size),epoch,train_loss.item())) # the dataset size is 57448

 print('Average train loss of epoch %d : %f' % (epoch, (train_loss_sum /

int(750/opt.batch_size))))

 train_dataset.reset()

 if epoch% 5 == 0:

 dict_name=opt.outf+'/'+opt.dataset+'_dataset_'+

'_'+str(opt.latent_caps_size)+'caps_'+str(opt.latent_caps_size)+'vec_'+str(epoch)+'

.pth'

 torch.save(capsule_net.module.state_dict(), dict_name)

if __name__ == "__main__":

 parser = argparse.ArgumentParser()

 parser.add_argument('--batch_size', type=int, default=2, help='input batch size')

 parser.add_argument('--n_epochs', type=int, default=2000, help='number of

epochs to train for')

 parser.add_argument('--prim_caps_size', type=int, default=1024, help='number

of primary point caps')

 parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of

primary point caps')

 parser.add_argument('--latent_caps_size', type=int, default=64, help='number

of latent caps')

 parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of

latent caps')

 parser.add_argument('--num_points', type=int, default=2048, help='input point

set size')

 parser.add_argument('--outf', type=str, default='tmp_checkpoints', help='output

folder')

 parser.add_argument('--model', type=str, default='', help='model path')

 parser.add_argument('--dataset', type=str, default='shapenet_part',

help='dataset: shapenet_part, shapenet_core13, shapenet_core55')

110

 opt = parser.parse_args()

 print(opt)

 main()

111

Visualize Capsule Reconstruction

from open3d import *

import argparse

import torch

import torch.nn.parallel

from torch.autograd import Variable

import torch.optim as optim

import sys

import os

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models')))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders')))

import shapenet_part_loader

import shapenet_core13_loader

import shapenet_core55_loader

from pointcapsnet_ae import PointCapsNet

def main():

 #create pcd object list to save the reconstructed patch per capsule

 pcd_list=[]

 for i in range(opt.latent_caps_size):

 pcd_ = open3d.geometry.PointCloud()

 pcd_list.append(pcd_)

 colors = plt.cm.tab20((np.arange(20)).astype(int))

 #random selected viz capsules

 hight_light_caps=[np.random.randint(0, opt.latent_caps_size) for r in

range(10)]

 USE_CUDA = True

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size,

opt.latent_caps_size, opt.latent_caps_size, opt.num_points)

112

 if opt.model != '':

 capsule_net.load_state_dict(torch.load(opt.model))

 else:

 print ('pls set the model path')

 if USE_CUDA:

 print("Let's use", torch.cuda.device_count(), "GPUs!")

 capsule_net = torch.nn.DataParallel(capsule_net)

 capsule_net.to(device)

 if opt.dataset=='shapenet_part':

 test_dataset = shapenet_part_loader.PartDataset(classification=True,

npoints=opt.num_points, split='test')

 test_dataloader = torch.utils.data.DataLoader(test_dataset,

batch_size=opt.batch_size, shuffle=True, num_workers=4)

 elif opt.dataset=='shapenet_core13':

 test_dataset = shapenet_core13_loader.ShapeNet(normal=False,

npoints=opt.num_points, train=False)

 test_dataloader = torch.utils.data.DataLoader(test_dataset,

batch_size=opt.batch_size, shuffle=True, num_workers=4)

 elif opt.dataset=='shapenet_core55':

 test_dataset =

shapenet_core55_loader.Shapnet55Dataset(batch_size=opt.batch_size,npoints=op

t.num_points, shuffle=True, train=False)

 capsule_net.eval()

 if 'test_dataloader' in locals().keys() :

 test_loss_sum = 0

 for batch_id, data in enumerate(test_dataloader):

 points, _= data

 if(points.size(0)<opt.batch_size):

 break

 points = Variable(points)

 points = points.transpose(2, 1)

113

 if USE_CUDA:

 points = points.cuda()

 latent_caps, reconstructions= capsule_net(points)

 for pointset_id in range(opt.batch_size):

 prc_r_all=reconstructions[pointset_id].transpose(1,

0).contiguous().data.cpu()

 prc_r_all_point=open3d.geometry.PointCloud()

 prc_r_all_point.points = open3d.utility.Vector3dVector(prc_r_all)

 colored_re_pointcloud= open3d.geometry.PointCloud()

 jc=0

 for j in range(opt.latent_caps_size):

current_patch=torch.zeros(int(opt.num_points/opt.latent_caps_size),3)

 for m in range(int(opt.num_points/opt.latent_caps_size)):

 current_patch[m,]=prc_r_all[opt.latent_caps_size*m+j,] # the

reconstructed patch of the capsule m is not saved continuesly in the output

reconstruction.

 pcd_list[j].points = open3d.utility.Vector3dVector(current_patch)

 if (j in hight_light_caps):

 pcd_list[j].paint_uniform_color([colors[jc,0], colors[jc,1],

colors[jc,2]])

 jc+=1

 else:

 pcd_list[j].paint_uniform_color([0.8,0.8,0.8])

 colored_re_pointcloud+=pcd_list[j]

 open3d.visualization.draw_geometries([colored_re_pointcloud])

 # test process for 'shapenet_core55'

 else:

 test_loss_sum = 0

 while test_dataset.has_next_batch():

 batch_id, points_= test_dataset.next_batch()

114

 points = torch.from_numpy(points_)

 if(points.size(0)<opt.batch_size):

 break

 points = Variable(points)

 points = points.transpose(2, 1)

 if USE_CUDA:

 points = points.cuda()

 latent_caps, reconstructions= capsule_net(points)

 for pointset_id in range(opt.batch_size):

 prc_r_all=reconstructions[pointset_id].transpose(1,

0).contiguous().data.cpu()

 prc_r_all_point=open3d.geometry.PointCloud()

 prc_r_all_point.points = Vector3dVector(prc_r_all)

 colored_re_pointcloud= open3d.geometry.PointCloud()

 jc=0

 for j in range(opt.latent_caps_size):

current_patch=torch.zeros(int(opt.num_points/opt.latent_caps_size),3)

 for m in range(int(opt.num_points/opt.latent_caps_size)):

 current_patch[m,]=prc_r_all[opt.latent_caps_size*m+j,] # the

reconstructed patch of the capsule m is not saved continuesly in the output

reconstruction.

 pcd_list[j].points = Vector3dVector(current_patch)

 if (j in hight_light_caps):

 pcd_list[j].paint_uniform_color([colors[jc,0], colors[jc,1],

colors[jc,2]])

 jc+=1

 else:

 pcd_list[j].paint_uniform_color([0.8,0.8,0.8])

 colored_re_pointcloud+=pcd_list[j]

115

 draw_geometries([colored_re_pointcloud])

if __name__ == "__main__":

 from open3d import *

 import matplotlib.pyplot as plt

 import numpy as np

 parser = argparse.ArgumentParser()

 parser.add_argument('--batch_size', type=int, default=2, help='input batch size')

 parser.add_argument('--n_epochs', type=int, default=100, help='number of

epochs to train for')

 parser.add_argument('--prim_caps_size', type=int, default=1024, help='number

of primary point caps')

 parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of

primary point caps')

 parser.add_argument('--latent_caps_size', type=int, default=64, help='number

of latent caps')

 parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of

latent caps')

 parser.add_argument('--num_points', type=int, default=2048, help='input point

set size')

 parser.add_argument('--model', type=str,

default='tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth',

help='model path')

 parser.add_argument('--dataset', type=str, default='shapenet_part',

help='dataset: shapenet_part, shapenet_core13, shapenet_core55')

 opt = parser.parse_args()

 print(opt)

 main()

116

Evaluate Segmentation

from open3d import *

import argparse

import torch

import torch.nn.parallel

from torch.autograd import Variable

import torch.optim as optim

import torch.nn.functional as F

import sys

import os

import numpy as np

import statistics

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models')))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders')))

import shapenet_part_loader

import matplotlib.pyplot as plt

from pointcapsnet_ae import PointCapsNet

from capsule_seg_net import CapsSegNet

#import h5py

from sklearn.svm import LinearSVC

import json

def main():

 blue = lambda x:'\033[94m' + x + '\033[0m'

 cat_no={'Scour':0}

 #generate part label one-hot correspondence from the catagory:

 dataset_main_path=os.path.abspath(os.path.join(BASE_DIR, '../../dataset'))

 oid2cpid_file_name=os.path.join(dataset_main_path,

opt.dataset,'shapenetcore_partanno_segmentation_benchmark_v0/shapenet_part_

overallid_to_catid_partid.json')

117

 oid2cpid = json.load(open(oid2cpid_file_name, 'r'))

 object2setofoid = {}

 for idx in range(len(oid2cpid)):

 objid, pid = oid2cpid[idx]

 if not objid in object2setofoid.keys():

 object2setofoid[objid] = []

 object2setofoid[objid].append(idx)

 all_obj_cat_file = os.path.join(dataset_main_path, opt.dataset,

'shapenetcore_partanno_segmentation_benchmark_v0/synsetoffset2category.txt')

 fin = open(all_obj_cat_file, 'r')

 lines = [line.rstrip() for line in fin.readlines()]

 objcats = [line.split()[1] for line in lines]

objnames = [line.split()[0] for line in lines]

on2oid = {objcats[i]:i for i in range(len(objcats))}

 fin.close()

 colors = plt.cm.tab10((np.arange(10)).astype(int))

 blue = lambda x:'\033[94m' + x + '\033[0m'

load the model for point cpas auto encoder

 capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size,

opt.latent_caps_size, opt.latent_vec_size, opt.num_points,)

 if opt.model != '':

 capsule_net.load_state_dict(torch.load(opt.model))

 if USE_CUDA:

 capsule_net = torch.nn.DataParallel(capsule_net).cuda()

 capsule_net=capsule_net.eval()

 # load the model for capsule wised part segmentation

 caps_seg_net = CapsSegNet(latent_caps_size=opt.latent_caps_size,

latent_vec_size=opt.latent_vec_size , num_classes=opt.n_classes)

 if opt.part_model != '':

 caps_seg_net.load_state_dict(torch.load(opt.part_model))

 if USE_CUDA:

118

 caps_seg_net = caps_seg_net.cuda()

 caps_seg_net = caps_seg_net.eval()

 train_dataset = shapenet_part_loader.PartDataset(classification=False,

class_choice=opt.class_choice, npoints=opt.num_points, split='test')

 train_dataloader = torch.utils.data.DataLoader(train_dataset,

batch_size=opt.batch_size, shuffle=False, num_workers=4)

 pcd_colored = open3d.geometry.PointCloud()

 pcd_ori_colored = open3d.geometry.PointCloud()

 rotation_angle=-np.pi/4

 cosval = np.cos(rotation_angle)

 sinval = np.sin(rotation_angle)

 flip_transforms = [[cosval, 0, sinval,-1],[0, 1, 0,0],[-sinval, 0, cosval,0],[0, 0, 0,

1]]

 flip_transformt = [[cosval, 0, sinval,1],[0, 1, 0,0],[-sinval, 0, cosval,0],[0, 0, 0,

1]]

 correct_sum=0

 for batch_id, data in enumerate(train_dataloader):

 points, part_label, cls_label= data

 if not (opt.class_choice==None):

 cls_label[:]= cat_no[opt.class_choice]

 if(points.size(0)<opt.batch_size):

 break

 # use the pre-trained AE to encode the point cloud into latent

capsules

 points_ = Variable(points)

 points_ = points_.transpose(2, 1)

 if USE_CUDA:

 points_ = points_.cuda()

 latent_caps, reconstructions= capsule_net(points_)

 reconstructions=reconstructions.transpose(1,2).data.cpu()

 #concatanete the latent caps with one-hot part label

119

 cur_label_one_hot = np.zeros((opt.batch_size, 16), dtype=np.float32)

 for i in range(opt.batch_size):

 cur_label_one_hot[i, cls_label[i]] = 1

 iou_oids = object2setofoid[objcats[cls_label[i]]]

 for j in range(opt.num_points):

 part_label[i,j]=iou_oids[part_label[i,j]]

 cur_label_one_hot=torch.from_numpy(cur_label_one_hot).float()

 expand =cur_label_one_hot.unsqueeze(2).expand(opt.batch_size, 16,

opt.latent_caps_size).transpose(1,2)

 expand,latent_caps=Variable(expand),Variable(latent_caps)

 expand,latent_caps=expand.cuda(),latent_caps.cuda()

 latent_caps=torch.cat((latent_caps,expand),2)

 # predict the part class per capsule

 latent_caps=latent_caps.transpose(2, 1)

 output=caps_seg_net(latent_caps)

 for i in range (opt.batch_size):

 iou_oids = object2setofoid[objcats[cls_label[i]]]

 non_cat_labels = list(set(np.arange(2)).difference(set(iou_oids))) #

 mini = torch.min(output[i,:,:])

 output[i,:, non_cat_labels] = mini - 1000

 pred_choice = output.data.cpu().max(2)[1]

 # assign predicted the capsule part label to its reconstructed point patch

reconstructions_part_label=torch.zeros([opt.batch_size,opt.num_points],dtype=tor

ch.int64)

 for i in range(opt.batch_size):

 for j in range(opt.latent_caps_size):

 for m in range(int(opt.num_points/opt.latent_caps_size)):

reconstructions_part_label[i,opt.latent_caps_size*m+j]=pred_choice[i,j]

120

 # assign the part label from the reconstructed point cloud to the input

point set with NN

 pcd=pcd = open3d.geometry.PointCloud()

pred_ori_pointcloud_part_label=torch.zeros([opt.batch_size,opt.num_points],dtyp

e=torch.int64)

 for point_set_no in range (opt.batch_size):

 pcd.points =

open3d.utility.Vector3dVector(reconstructions[point_set_no,])

 pcd_tree = open3d.geometry.KDTreeFlann(pcd)

 for point_id in range (opt.num_points):

 [k, idx, _] =

pcd_tree.search_knn_vector_3d(points[point_set_no,point_id,:], 10)

 local_patch_labels=reconstructions_part_label[point_set_no,idx]

pred_ori_pointcloud_part_label[point_set_no,point_id]=statistics.median(local_p

atch_labels)

 # calculate the accuracy with the GT

 correct =

pred_ori_pointcloud_part_label.eq(part_label.data.cpu()).cpu().sum()

 correct_sum=correct_sum+correct.item()

 print(' accuracy is: %f'

%(correct_sum/float(opt.batch_size*(batch_id+1)*opt.num_points)))

 # viz the part segmentation

 point_color=torch.zeros([opt.batch_size,opt.num_points,3])

 point_ori_color=torch.zeros([opt.batch_size,opt.num_points,3])

 for point_set_no in range (opt.batch_size):

 iou_oids = object2setofoid[objcats[cls_label[point_set_no]]]

 for point_id in range (opt.num_points):

 part_no=pred_ori_pointcloud_part_label[point_set_no,point_id]-

iou_oids[0]

 point_color[point_set_no,point_id,0]=colors[part_no,0]

121

 point_color[point_set_no,point_id,1]=colors[part_no,1]

 point_color[point_set_no,point_id,2]=colors[part_no,2]

 pcd_colored.points=open3d.utility.Vector3dVector(points[point_set_no,])

pcd_colored.colors=open3d.utility.Vector3dVector(point_color[point_set_no,])

 for point_id in range (opt.num_points):

 part_no=part_label[point_set_no,point_id]-iou_oids[0]

 point_ori_color[point_set_no,point_id,0]=colors[part_no,0]

 point_ori_color[point_set_no,point_id,1]=colors[part_no,1]

 point_ori_color[point_set_no,point_id,2]=colors[part_no,2]

pcd_ori_colored.points=open3d.utility.Vector3dVector(points[point_set_no,])

pcd_ori_colored.colors=open3d.utility.Vector3dVector(point_ori_color[point_set

_no,])

 pcd_ori_colored.transform(flip_transforms)# tansform the pcd in

order to viz both point cloud

 pcd_colored.transform(flip_transformt)

 open3d.visualization.draw_geometries([pcd_ori_colored, pcd_colored])

 if __name__ == "__main__":

 parser = argparse.ArgumentParser()

 parser.add_argument('--batch_size', type=int, default=2, help='input batch size')

 parser.add_argument('--prim_caps_size', type=int, default=1024, help='number

of primary point caps')

 parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of

primary point caps')

 parser.add_argument('--latent_caps_size', type=int, default=64, help='number

of latent caps')

 parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of

latent caps')

122

 parser.add_argument('--num_points', type=int, default=2048, help='input point

set size')

 parser.add_argument('--part_model', type=str,

default='./tmp_checkpoints/64caps_64vec_100%

of_training_data_at_epoch100.pth', help='model path for the pre-trained part

segmentation network')

 parser.add_argument('--model', type=str,

default='../AE/tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth',

help='model path')

 parser.add_argument('--dataset', type=str, default='shapenet_part',

help='dataset: shapenet_part, shapenet_core13, shapenet_core55, modelent40')

 parser.add_argument('--n_classes', type=int, default=2, help='part classes in all

the catagories')

 parser.add_argument('--class_choice', type=str, default='Scour', help='choose

the class to eva')

 opt = parser.parse_args()

 print(opt)

 USE_CUDA = True

 main()

123

Save Results

from open3d import *

import argparse

import torch

import torch.nn.parallel

from torch.autograd import Variable

import torch.optim as optim

import sys

import os

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models')))

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders')))

import shapenet_part_loader

from pointcapsnet_ae import PointCapsNet

def main():

 USE_CUDA = True

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size,

opt.latent_caps_size, opt.latent_caps_size, opt.num_points)

 if opt.model != '':

 capsule_net.load_state_dict(torch.load(opt.model))

 if USE_CUDA:

 print("Let's use", torch.cuda.device_count(), "GPUs!")

 capsule_net = torch.nn.DataParallel(capsule_net)

 capsule_net.to(device)

 if opt.dataset=='shapenet_part':

 if opt.save_training:

 split='train'

 else :

 split='test'

124

 dataset = shapenet_part_loader.PartDataset(classification=False,

npoints=opt.num_points, split=split)

 dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size,

shuffle=True, num_workers=4)

 # init saving process

 pcd = open3d.geometry.PointCloud()

 data_size=0

 dataset_main_path=os.path.abspath(os.path.join(BASE_DIR, '../../dataset'))

 out_file_path=os.path.join(dataset_main_path, opt.dataset,'latent_caps')

 if not os.path.exists(out_file_path):

 os.makedirs(out_file_path);

 if opt.save_training:

 out_file_name=out_file_path+"/saved_train_with_part_label.h5"

 else:

 out_file_name=out_file_path+"/saved_test_with_part_label.h5"

 if os.path.exists(out_file_name):

 os.remove(out_file_name)

 fw = h5py.File(out_file_name, 'w', libver='latest')

 dset = fw.create_dataset("data",

(1,opt.latent_caps_size,opt.latent_vec_size,),maxshape=(None,opt.latent_caps_siz

e,opt.latent_vec_size), dtype='<f4')

 dset_s =

fw.create_dataset("part_label",(1,opt.latent_caps_size,),maxshape=(None,opt.late

nt_caps_size,),dtype='uint8')

 dset_c = fw.create_dataset("cls_label",(1,),maxshape=(None,),dtype='uint8')

 fw.swmr_mode = True

process for 'shapenet_part' or 'shapenet_core13'

 capsule_net.eval()

 for batch_id, data in enumerate(dataloader):

 #print(list(enumerate(dataloader)))

 points, part_label, cls_label= data

 if(points.size(0)<opt.batch_size):

125

 break

 points = Variable(points)

 points = points.transpose(2, 1)

 if USE_CUDA:

 points = points.cuda()

 latent_caps, reconstructions= capsule_net(points)

 # For each resonstructed point, find the nearest point in the input

pointset,

 # use their part label to annotate the resonstructed point,

 # Then after checking which capsule reconstructed this point, use the part

label to annotate this capsule

 reconstructions=reconstructions.transpose(1,2).data.cpu()

 points=points.transpose(1,2).data.cpu()

 cap_part_count=torch.zeros([opt.batch_size, opt.latent_caps_size,

opt.n_classes],dtype=torch.int64)

 for batch_no in range (points.size(0)):

 pcd.points = open3d.utility.Vector3dVector(points[batch_no,])

 pcd_tree = open3d.geometry.KDTreeFlann(pcd)

 for point_id in range (opt.num_points):

 [k, idx, _] =

pcd_tree.search_knn_vector_3d(reconstructions[batch_no,point_id,:], 1)

 point_part_label=part_label[batch_no, idx]

 caps_no=point_id % opt.latent_caps_size

 #print(batch_no)

 #print(caps_no)

 #print(point_part_label.numpy())

 cap_part_count[batch_no,caps_no,point_part_label]+=1

 _,cap_part_label=torch.max(cap_part_count,2) # if the reconstucted points

have multiple part labels, use the majority as the capsule part label

 # write the output latent caps and cls into file

 data_size=data_size+points.size(0)

126

 new_shape = (data_size,opt.latent_caps_size,opt.latent_vec_size,)

 dset.resize(new_shape)

 dset_s.resize((data_size,opt.latent_caps_size,))

 dset_c.resize((data_size,))

 latent_caps_=latent_caps.cpu().detach().numpy()

 target_=cap_part_label.numpy()

 dset[data_size-points.size(0):data_size,:,:] = latent_caps_

 dset_s[data_size-points.size(0):data_size] = target_

 dset_c[data_size-points.size(0):data_size] = cls_label.squeeze().numpy()

 dset.flush()

 dset_s.flush()

 dset_c.flush()

 print('accumalate of batch %d, and datasize is %d ' % ((batch_id),

(dset.shape[0])))

 fw.close()

 if __name__ == "__main__":

 import h5py

 parser = argparse.ArgumentParser()

 parser.add_argument('--batch_size', type=int, default=2, help='input batch size')

 parser.add_argument('--n_epochs', type=int, default=100, help='number of

epochs to train for')

 parser.add_argument('--prim_caps_size', type=int, default=1024, help='number

of primary point caps')

 parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of

primary point caps')

 parser.add_argument('--latent_caps_size', type=int, default=64, help='number

of latent caps')

 parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of

latent caps')

 parser.add_argument('--num_points', type=int, default=2048, help='input point

set size')

127

 parser.add_argument('--model', type=str,

default='../AE/tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth',

help='model path')

 parser.add_argument('--dataset', type=str, default='shapenet_part', help='It has

to be shapenet part')

parser.add_argument('--save_training', type=bool, default=True, help='save

the output latent caps of training data or test data')

 parser.add_argument('--save_training', help='save the output latent caps of

training data or test data', action='store_true')

 parser.add_argument('--n_classes', type=int, default=2, help='catagories of

current dataset')

 opt = parser.parse_args()

 print(opt)

 main()

128

ShapeNet Loader

#from __future__ import print_function

import torch.utils.data as data

import os

import os.path

import torch

import json

import numpy as np

import sys

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

dataset_path=os.path.abspath(os.path.join(BASE_DIR,

'../dataset/shapenet_part/shapenetcore_partanno_segmentation_benchmark_v0/'))

class PartDataset(data.Dataset):

 def __init__(self, root=dataset_path, npoints=2048, classification=False,

class_choice=None, split='train', normalize=True):

 self.npoints = npoints

 self.root = root

 self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')

 self.cat = {}

 self.classification = classification

 self.normalize = normalize

 with open(self.catfile, 'r') as f:

 for line in f:

 ls = line.strip().split()

 self.cat[ls[0]] = ls[1]

 # print(self.cat)

 if not class_choice is None:

 self.cat = {k: v for k, v in self.cat.items() if k in class_choice}

 print(self.cat)

129

 self.meta = {}

 with open(os.path.join(self.root, 'train_test_split',

'shuffled_train_file_list.json'), 'r') as f:

 train_ids = set([str(d.split('/')[2]) for d in json.load(f)])

 with open(os.path.join(self.root, 'train_test_split',

'shuffled_val_file_list.json'), 'r') as f:

 val_ids = set([str(d.split('/')[2]) for d in json.load(f)])

 with open(os.path.join(self.root, 'train_test_split',

'shuffled_test_file_list.json'), 'r') as f:

 test_ids = set([str(d.split('/')[2]) for d in json.load(f)])

 for item in self.cat:

 # print('category', item)

 self.meta[item] = []

 dir_point = os.path.join(self.root, self.cat[item], 'points')

 dir_seg = os.path.join(self.root, self.cat[item], 'points_label')

 # print(dir_point, dir_seg)

 fns = sorted(os.listdir(dir_point))

 if split == 'trainval':

 fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]

 elif split == 'train':

 fns = [fn for fn in fns if fn[0:-4] in train_ids]

 elif split == 'val':

 fns = [fn for fn in fns if fn[0:-4] in val_ids]

 elif split == 'test':

 fns = [fn for fn in fns if fn[0:-4] in test_ids]

 else:

 print('Unknown split: %s. Exiting..' % (split))

 exit(-1)

 for fn in fns:

 token = (os.path.splitext(os.path.basename(fn))[0])

130

 self.meta[item].append((os.path.join(dir_point, token + '.txt'),

os.path.join(dir_seg, token + '.txt'),self.cat[item], token))

 self.datapath = []

 for item in self.cat:

 for fn in self.meta[item]:

 self.datapath.append((item, fn[0], fn[1], fn[2], fn[3]))

 self.classes = dict(zip(sorted(self.cat), range(len(self.cat))))

 print(self.classes)

 self.num_seg_classes = 0

 if not self.classification:

 for i in range(len(self.datapath)//50):

 l = len(np.unique(np.loadtxt(self.datapath[i][2]).astype(np.uint8)))

 if l > self.num_seg_classes:

 self.num_seg_classes = l

 # print(self.num_seg_classes)

 self.cache = {} # from index to (point_set, cls, seg) tuple

 self.cache_size = 18000

 def __getitem__(self, index):

 if index in self.cache:

point_set, seg, cls= self.cache[index]

 point_set, seg, cls, foldername, filename = self.cache[index]

 else:

 fn = self.datapath[index]

 cls = self.classes[self.datapath[index][0]]

cls = np.array([cls]).astype(np.int32)

 point_set = np.loadtxt(fn[1]).astype(np.float32)

 if self.normalize:

 point_set = self.pc_normalize(point_set)

 seg = np.loadtxt(fn[2]).astype(np.int64) - 1

 foldername = fn[3]

131

 filename = fn[4]

 if len(self.cache) < self.cache_size:

 self.cache[index] = (point_set, seg, cls, foldername, filename)

 #print(point_set.shape, seg.shape)

 choice = np.random.choice(len(seg), self.npoints, replace=True)

 # resample

 point_set = point_set[choice, :]

 seg = seg[choice]

 # To Pytorch

 point_set = torch.from_numpy(point_set)

 seg = torch.from_numpy(seg)

 cls = torch.from_numpy(np.array([cls]).astype(np.int64))

 if self.classification:

 return point_set, cls

 else:

 return point_set, seg , cls

 def __len__(self):

 return len(self.datapath)

 def pc_normalize(self, pc):

 """ pc: NxC, return NxC """

 l = pc.shape[0]

 centroid = np.mean(pc, axis=0)

 pc = pc - centroid

 m = np.max(np.sqrt(np.sum(pc**2, axis=1)))

 pc = pc / m

 return pc

if __name__ == '__main__':

 print('test')

132

 d = PartDataset(

root='../dataset/shapenetcore_partanno_segmentation_benchmark_v0/',classificati

on=True, class_choice='Scour', npoints=2048, split='test')

 ps, cls = d[0]

 print(ps.size(), ps.type(), cls.size(), cls.type())

