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ABSTRACT

MD MUNIR HASAN. Ultra Low Power Techniques for Machine Learning on

the Edge. (Under the direction of DR. JEREMY HOLLEMAN)

Deep learning has become an integral part of machine learning. It has

radically transformed our lives in healthcare, automotive systems, human

computer interaction etc. Although, deep learning requires a tremendous amount

of compute power and resources, the success of deep learning in solving complex

tasks has generated a serious interest in deploying deep learning models in edge

sensors and IoT devices. However, that goal presents serious challenges. Typical

deep learning models require very powerful hardware with large memories and

high power consumption. However, sensor systems and IoT devices at the edge

are heavily resource constrained. They have a limited amount of compute power

and on-board memory. That is why many efforts are being actively pursued to

optimize the deep learning models so that they fit into the limited resources of

edge devices.

In this dissertation, I explore different techniques for achieving ultra low power

hardware for enabling machine learning at the edge. There have been numerous

advances in circuit design techniques such as subthreshold analog computing, in

memory computation, etc., for very low power applications. Emerging devices

and circuits to integrate those devices into low power applications have shown

promising results for custom hardware based edge devices. In this study, I explore

neuromorphic techniques that lower the power consumption of the computation

hardware without significantly degrading the performance. I draw inspiration

from biology to design low power circuits, specifically spiking neurons of the

biological nervous system. I explore biologically relevant neurons, circuits and
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learning rules to minimize computation and power consumption for machine

learning at the edge device and sensors.

I have proposed a modification to a sparse coding algorithm that decreases

the number of circuits for hardware implementation. I have proposed an analog

spiking neuron design which can display a variety of spiking behaviors. The circuit

is compact, low power, uses low supply voltage and has high power efficiency,

which improves the state of the art. Analog circuits suffer from the problem

of leakage current, which makes the design of synaptic circuits difficult. I have

proposed a leakage current mitigation technique in a synaptic circuit array and

provide simulation experiments to show its efficacy. Spiking neural network is

still an emerging branch of machine learning. Hence, there are a lack of necessary

tools for simulation. Although there are many hardware neuron circuits, there

are no spiking neural network simulators that can account for the hardware

non-idealities in the simulation. When it comes to the performance of robust

circuits and systems with predictable outcomes through simulation, the inclusion

of hardware non-idealities is a must. Given the complexity of spiking neural

network hardware, it is not an easy task. I propose phase-plane method for

easily extracting hardware non-idealities and using them in the existing simulator

to simulate spiking neural networks. The proposed method is computationally

inexpensive and easily integrates with spiking network simulators. I compare the

spice simulation and phase-plane simulation of spiking neural networks to show

that phase-plane can indeed account for hardware non-idealities.
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Chapter 1

Introduction

When it comes to designing low power, compact devices and systems, biological

systems offer exciting inspiration that the engineering community can benefit

from. Using biologically relevant devices, algorithms and models to solve machine

learning tasks is commonly known as neuromorphic engineering. Neuromorphic

computing has recently emerged as a promising alternative to von Neumann

systems. In von Neumann systems, memory and computation are separate. A

central processing unit is responsible for controlling the memory and computa-

tion. This architecture is based on a central clock, which executes instructions in a

serial manner. As Moore’s law is expected to come to an end, von Neumann-based

computing systems will eventually not be able to meet the computational demand

in the future. Tremendous amounts of data are being generated every day, which

needs to be processed using artificially intelligent machines. Processing such

vast amount data also means a greater demand on the power consuption and

computing power.

On the other hand, analog computing techniques offer better power ef-

ficiency [3] compared to digital computing techniques. As a result, many

neuromorphic systems [4, 5, 6] are based on analog computation techniques.

On top of that, neuromorphic systems are highly parallel in nature. They also

colocate memory and processing, which has the promise of overcoming the von
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Neumann bottleneck [7]. A large amount of power is required to move data in and

out of memory than it takes for actual computation, which is known as the von

Neumann bottleneck. Instead of separating memory from computation, memory

can be placed close to the computation in order to minimize data movement. This

memory colocation is inspired by biology. As a result, neuromorphic engineering

has become a common name in the field of machine learning.

Traditional artificial neural networks (ANN) use neurons that operate on

continuous values. On the other hand, operations in neuromophic computing

systems use spiking neurons where computation is based on spike events. Spiking

neural networks (SNN) have emerged as a promising candidate for the next

generation of neural networks [8]. Neurons in ANNs are rate-code-based models

where continuous valued inputs are weighted and summed, after which a nonlinear

function is applied to produce neuron output. However, in SNNs, spike events are

integrated over time and an output event spike is generated when the integrated

value crosses a threshold. A spiking neuron in an SNN is biologically plausible.

Moreover, because of the neurons’ event based nature, it is more energy efficient.

There are also significant differences between the learning methods of ANNs and

SNNs. Most SNNs are trained with biologically plausible learning rules such as

Hebbian learning [9], spike timing dependent plasticity (STDP) learning rule [10]

etc. whereas ANNs are trained using backpropagation rule [11].

1.1 Motivation

Recently, machine learning on the edge has become a very popular and practical

concept [12]. There are several reasons for this popularity.

• Machine learning at the edge enables processing the data in real time. For

offline processing, the data needs to be collected and then sent to the cloud
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servers or data processing stations. Directly processing data at the place of

data collection removes a significant overhead and processing time. Critical

technologies such as autonomous vehicles and medical devices can greatly

benefit from real time machine learning at the edge.

• Sending data from sensor devices to cloud servers potentially presents a

security risk. Cloud servers store sensitive personal user information, which

is subject to adversarial attacks. By performing machine learning locally

at the edge, the data storage and hence any security risk are eliminated.

There are several design considerations for machine learning on edge devices.

The computing power and memory resources of the edge device are extremely

limited. A typical edge sensor, for example an environmental sound detector or

cough detector for biomedical data acquisition, has to operate on very limited

power. These kinds of devices are typically run by coin cell batteries. If

the power cost of computation is high, then the battery would run out very

quickly. Furthermore, a wearable biomedical sensor has to be very compact in

size. This puts a limit on the computing devices, battery size, and also the

memory constraints available on board the device. Thus, edge machine learning

in application specific integrated circuits (ASIC) is a very challenging task. SNN

offers many desirable properties which edge machine learning can benefit from.

SNNs are inherently event based systems which can provide energy efficient and

robust decision making. Using the properties of biologically motivated spiking

neural networks, I can develop machine learning systems that are capable of

operating under strict energy and memory constraints.
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1.2 Proposed Contributions

To meet the challenges of machine learning on the edge, I study and explore the

following domains.

• Develop memory efficient approximate computing algorithms: Sparse cod-

ing is a biologically inspired unsupervised learning algorithm that poten-

tially explains the sparse activity of the biological brain. As an engineering

approach to reduce power consumption, sparse coding is gaining more and

more interest. Moreover, it can be used as a feature discovery layer [13]

of a convolutional neural network (CNN). Recently, a spiking version

of sparse coding called SAILNet [14] has been proposed. SAILNet is

particularly attractive because the learning rules are biologically plausible.

Hence, a sparse coding algorithm such as SAILNet might become an

important preprocessing step in spike based information processing systems.

A memory-efficient version of the SAILNet algorithm is required for

deployment in edge devices. I propose a modification [15] to the algorithm

which reduces the memory footprint of the coding algorithm.

• Design compact ultra low power neuron circuit for neuromorphic systems:

In order to pave the way for energy efficient intelligent edge devices based

on spiking neurons, ultra low power SNN components are needed. The

neuron is one key component in an SNN. For the neuron circuit an ultra

low power, compact analog spiking neuron [16] in 130nm CMOS technology

is presented in chapter 4.

• Mitigation of Leakage current in Synaptic Array: Analog circuits suffer

from the problem of leakage current. For synaptic circuits, this leakage

current presents a problem in the steady state response of the neuron.

A technique for mitigating the leakage current and synaptic circuit array
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design is presented [17] in chapter 5. The synaptic array is designed using

130nm CMOS technology.

• Develop simulation techniques to account for hardware nonidealities: For

custom analog circuit based SNN implementation, it is necessary to perform

spice simulation in order to verify the expected functionality and effect of

hardware non idealities. Simulation of SNNs is time consuming. Simulating

an SNN in a spice simulator is even more time consuming. Even a small-

sized SNN (e.g. two layer fully connected network with 100 and 10 neurons)

takes 8 hours of simulation time in Cadence spectre. As a result, it makes

more sense to simulate the network in an SNN simulator, adjust the network

parameters and then do the final spice simulation. However, existing

SNN simulators cannot take into account hardware non idealities. Analog

circuits are subject to noise and device mismatch. For custom analog

circuit implementation, it is necessary to incorporate device hardware

nonidealities into the machine learning model so that the model can mimic

performance when they are deployed in real hardware. In chapter 6, I

propose a method [18] to simulate SNN that can take into account hardware

non idealities and provide very close simulation output as the spice based

simulator.

1.3 Reprint Permissions of Previously Published Materials

This dissertation contains materials from articles that I published previously.

Reprint permission has been obtained from the corresponding publishers for the

copyrighted materials. Proper copyright notices have been given in the references

as directed by the publishers in entries [15, 16, 17, 18].
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Chapter 2

Fundamentals of Neuromorphic Engineering

The concept of brain-inspired machines has existed since the beginning of

computer engineering. Both von Neumann [19] and Turing [20] discussed

machines and the brain in the 1950’s. However, Dr. Carver Mead was the first

scientist who recognized the similarity between the silicon electronic circuits and

the biological nervous system [21]. He coined the term neuromorphic computing

in 1990. The physics of the operation of a biological neuron makes use of the

exponential function of the Boltzmann distribution. The Boltzmann distribution

is also utilized in the operation of a silicon transistor. The nervous system

operates under various constraints, such as limited energy, the presence of noise

etc. Silicon electronic systems also operate under such constraints. Dr. Mead

argued that it should be possible to emulate the architecture of nervous system

and computational principles in silicon electronic circuits and achieve robust

information processing power similar to the biological nervous system.

If we compare the processing power of a biological nervous system with digital

computing systems, we see that biological systems are more efficient by many

orders of magnitude. It is estimated that a human brain performs synaptic

computations on the order of 3.6×1015 operations per second [3] while consuming

only 12W of power. This is such an extreme computational efficiency that no
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supercomputer will be able to match. Below I provide an overview of biological

computing components and their neuromorphic models.

2.1 Biological Spiking Neuron

A typical neuron cell is shown in Fig. 2.1. The cell is functionally divided into

three sections. The dendrites, the cell body and the axon. The axon acts as

the output signal branch of the neuron. The dendrites act as the input signal

branch of the neuron where axons from other neurons connect. The structure of

the dendrites looks like tree branches with leaf-like structures called spines. The

overall structure of the neuron resembles the structure of a tree with branches,

roots and trunk. When a neuron wants to talk to other neuron it forms a

connection between axon of one neuron to the dendrite of other neuron. The

connection between an axon and a dendrite is called a synapse. The synapse

mostly forms between an axonal branch and the dendritic spine. Sometimes a

synapse can form between an axon and the cell body as well.

2.1.1 Neuron Operation

Neurons are essentially electrical devices. When communicating to other neurons,

the neuron sends a voltage spike called an action potential as an output down the

axon. The membrane potential of a neuron is always stated with respect to the

outside. At steady state the inside of the cell is more negative than the outside.

Typically, the membrane potential inside the cell is −70mV with respect to the

outside at steady state. This is called the resting potential. When the neuron

receives an input action potential at the dendrite, the membrane potential can

either become more negative (polarize) or more positive (depolarize) than the

resting potential. If the membrane potential becomes depolarized, the input
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Figure 2.1: General structure of a biological neuron. Bottom-right image:
microscopic image of a dendrite from which spines branch off. (Image courtesy:
Queensland Brain Institute, Alan Woodruff; De Roo et. al. [1] / CC BY-SA 3.0
via Commons)

action potential is said to be excitatory. Likewise, if the membrane potential

becomes polarized, the input action potential is said to be inhibitory. How much

the membrane potential will polarize or depolarize depends on the strength of

the synapse. As the input action potential comes in, the membrane potential

changes. When the membrane potential reaches a threshold voltage, typically

around −50mV , the membrane potential abruptly increases to a value around
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Figure 2.2: Generation of action potential in a biological neuron. Left:
qualitative depiction of action potential generation. Right: membrane voltage
trace recorded from an actual neuron in a mouse’s cortex. (Image courtesy:
Queensland Brain Institute)

+20mV and then immediately falls down below threshold as shown in Fig. 2.2.

This pulse of membrane potential is called an action potential which travels

down the axon. The action potential is also simply referred to as spike. The

spike typically has an amplitude of 100mV and a duration of 1ms. A chain of

action potentials from a neuron is called spike train. Spikes are the fundamental

units of communication between neurons.

The description above presents a qualitative description of how neurons

work. In reality, the operation of neuron involves complex interaction of

charge-carrying ions (Na+, K+, Cl−, Ca+) and neurotransmitters (dopamin,

glutamate, acetylcholin etc.). Fig. 2.3 shows a typical structure of a synapse.

The neuron sending the signal is called a presynaptic neuron, and the neuron

receiving the signal is called a postsynaptic neuron. When the spike reaches

the presynaptic terminal, it causes voltage-gated ion channels to open, releasing

the neurotransmitter in the synaptic cleft. The transmitters then bind to the

receptors on the dendrite of the postsynaptic neuron. Depending on the type

of neurotransmitter, the receptors cause positive or negative ion currents to flow
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Figure 2.3: Spike, causes neurotransmitters to be released across the synaptic
cleft, causing an electrical signal in the postsynaptic neuron. (Image courtesy:
Queensland Brain Institute)

across the cell membrane. This ion current is accumulated on the membrane,

which causes the membrane potential to increase or decrease.

When the membrane potential reaches the spiking threshold, a rush of Na+

influx current causes a rapid increase of the membrane potential as shown in

Fig. 2.4. Then immediately Na+ influx current stops and K+ current flows

out of the cell, thereby repolarizing the cell. This rapid rise and subsequent

fall is called a spike. When a neuron generates a spike, it cannot be stopped

by any inhibitory inputs. If the input current is insufficient to depolarize the

membrane potential to the threshold voltage, no spike will fire. After generating

a spike, the membrane potential goes below the resting potential to a voltage

called the reset potential. This phase is called hyperpolarization. From the reset

potential, the membrane potential reaches the resting potential again. It is very

difficult to make the neuron generate another spike in the time period between

the hyperpolarization and the resting state. This period is called the refractory

period of the neuron.
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Figure 2.4: Shape of an action potential. (Image courtesy: moleculardevices)

2.2 Spiking Neuron Models

The first mathematical model for a neuron was provided by Hodgekin and

Huxley [22] in 1952 which eventually led to the Nobel Prize in 1963. The neuron

model accounted for the detailed dynamics of ion channels. This is very useful

from the neuroscientific point of view but, at the same time, computationally

expensive, which does not provide any insight into the computational power of a

neuron. As a result, a simplified model of the neuron is needed, which captures

the behavior of the neuron without the detailed dynamics of the ion channels. For

engineering and computational purposes, the neural dynamics can be conceived

as an input current charging a capacitor combined with a mechanism that triggers

action potential above a critical voltage. Below, I describe two dominant classes

of neuron models in the literature.
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Figure 2.5: Modeling the neuron cell membrane by electrical circuit.

2.2.1 One dimensional Leaky Integrate and Fire Model

Neuron models where action potentials are described as events are called

Integrate-and-Fire models. The shape of an action potential is not important

because information is contained in the presence or absence of a spike. Integrate-

and-fire models have two separate components that are both necessary to define

their dynamics: first, an equation that describes the evolution of the membrane

potential; and second, a mechanism to generate spikes. Fig. 2.5 shows the

electrical equivalent circuit of the neuron cell membrane. The cell membrane acts

like a capacitor C which can accumulate charge. The resistor R provides a path

to leak the current out of the cell, which accounts for the imperfect insulator of

the cell membrane. The voltage source vrest allows the circuit to settle at resting

voltage at steady steady state. The membrane potential is represented by v(t).

The input current I(t) is split between the resistive current IR and capacitive

current IC branches. The mathematical description is shown in (2.1).
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I(t) = IR + IC (2.1a)

I(t) =
v(t)− vrest

R
+ C

dv(t)

dt
(2.1b)

τm
v(t)

dt
= −(v(t)− vrest) +RI(t) (2.1c)

Here, τm = RC is the time constant of the differential equation. From the

mathematical analysis of the electrical circuit, it can be seen that the neuron

membrane potential can essentially be described as a linear differential equation.

From the electrical engineering point of view, the model equation is a leaky

integrator. In addition, a criterion is required to generate the spike. Whenever,

the membrane potential v(t) reaches or exceeds a given threshold θ, a spike is

generated as a Dirac delta function as output of the neuron. The membrane

potential is subsequently reset to a reset potential vr. Whenever a spike is

generated as output, the neuron is said to have fired a spike. The firing time

is labeled as t(f). The firing mechanism is formally expressed as (2.2).

t(f) : v(t) ≥ θ (2.2a)

lim
δ→0;δ>0

v(t(f) + δ) = vr (2.2b)

After a neuron has fired a spike, the dynamics again follows (2.1). When a

neuron i fires multiple times, the spikes can be labeled as t
(f)
i where f = 1, 2, · · ·

denote the label of spikes. The spike trains can be expressed as a sum of Dirac

delta functions as in (2.3).

Si(t) =
∑
f

δ(t− t
(f)
i ) (2.3)
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2.2.2 Two or More Dimensional Model

There is another form of neuron model which integrates the mechanism of upward

stroke of spike generation into the model itself. One example of this type of model

is Izhikevich [23] model. In this type of model, the dynamics of the membrane

potential is tailored with functions to generate the spike. In addition to the

membrane potential, another variable is used called the recovery variable or slow

variable in order to balance the disturbance in the membrane potential caused

by the spike. The membrane potential is also termed as fast variable. The two-

dimensional model consisting of the fast and a slow variable is given by (2.4).

dv

dt
=

1

C
{k(v − vr)(v − vt)− u+ I} (2.4a)

du

dt
= a{b(v − vr)− u} (2.4b)

(v, u)← (c, u+ d) if v ≥ vpeak (2.4c)

Here, C is membrane capacitance, k, vr, vt, a, b, c, d, vpeak are modeling param-

eters, I is input current. When the membrane potential reaches a predefined

peak potential vpeak the time is recorded as firing time t(f) and the dynamics is

reset by setting the membrane potential v to a reset potential c and the recovery

variable u to u+ d.

2.3 Information Encoding

The actual mechanism of how information is encoded by a spiking neuron

and how computation is performed is still unknown. Experimental evidence

points to different forms of encoding mechanisms. In general, the hypothesis of

information encoding can be broadly categorized as neuron based and population
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based encoding. There is support for both kinds of hypothesis. However, the

universally accepted method of neural encoding is a subject of debate. There

are different coding mechanisms in these broad categories. A discussion of these

mechanisms is necessary from a neuromorphic perspective. Depending on the

hardware, algorithm, and application, one method of encoding may be preferable

over the other.

2.3.1 Neuron Based Encoding

In this encoding mechanism, each neuron is believed to encode a numerical value

or a representation in its spike. This idea of a single neuron representing a single

piece of information is hypothesized from the notion of grandmother cell [24]. The

idea is that there is a single neuron that becomes active when a person sees their

grandmother. In other words, a single neuron encapsulates the representation

of the person’s grandmother. This way different neurons in the nervous system

represent different ideas or concepts. The strength of the ideas or concepts could

be represented by spike rates or spike timings.

Rate Coding

Rate coding hypothesis assumes that the information is represented by the firing

rate or the number of spikes over a period of time of a neuron [25]. An example of

a rate code based neuron is the motor neuron in the peripheral nervous system.

A muscle’s contraction is controlled by the number of spikes coming onto the

muscle in a short time window. The greater the number of spikes, the greater

the contraction. In this regard, the spike rate can be thought of as representing

numerical values.
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Temporal Coding

In a given time window, a neuron can emit some spikes in quick succession and

be silent, whereas another neuron can emit the same number of spikes in that

window. In both cases, the spike rate is the same, but the neuron has all of

the spikes bunched together near the start of the window. In this case, the spike

timing is important. In temporal coding, the latency of the spike firing can encode

information. An example of temporal code is the early auditory system, where

spike timing is used to localize sound [26].

2.3.2 Population Based Encoding

Both rate codes and temporal codes describes encoding by individual neurons.

The information can be encoded by the collective activity of a group of neurons

as well. In this case, the representation is distributed across the activity of

a population of neurons. An example of this coding is in the touch sensitive

receptors on our skin. The more pressure is applied the more number of

neurons are activated. This process of engaging more neurons as needed is called

recruitment. Another form of population coding is to have individual neurons in

the population to represent a part of the input. This way all of the neurons in

the population can represent the whole input space. An example of this is the

direction sensitive cells in the visual cortex. In a given cluster of neurons each

neuron is tuned to respond to a particular direction of movement. This kind of

population coding is also known as sparse coding.

2.4 Learning in Spiking Models

The proper learning model and algorithm for training spiking neural networks

is a major open question in neuromorphic engineering. The learning algorithm
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varies considerably depending on the network, neuron and synapse types. There

is also the issue of whether to implement the training or learning on-chip or

off-chip. A more fundamental issue is the lack of efficient training algorithms.

Deep learning has enjoyed the use of backpropagation [11] in training neural

networks. It has largely been successful in training different kinds of networks,

such as feedforward and recurrent networks. Backpropagation uses gradient

descent in the cost function landscape to reach a minimum error. There are many

established and optimized tools available today that implement backpropagation

efficiently. Naturally, it makes sense to utilize these existing tools to train

spiking neural networks as well. However, backpropagation has not been equally

successful in the spiking neural network domain for several reasons. First,

backpropagation requires a continuous or piece-wise continuous differentiable

function in order to create a smooth cost function landscape for gradient descent

to work. Spiking neuron activation function is fundamentally discontinuous and

thus non-differentiable in nature. As a result, backpropagation is not directly

applied in the spiking domain. Second, backpropagation is not biologically

plausible. There seems to be no evidence of a backpropagation-like mechanism

happening in the brain. Learning in the brain is based on local synaptic activities.

However, learning in backpropagation is non-local, meaning it needs synaptic

activity from all the neurons in a layer in order to adjust the synaptic weight.

Backpropagation also suffers from a weight transport problem, which means that

the backward network needs access to the forward weight in order to calculate

the gradients. Although, research has shown that techniques such as feedback

alignment [27] have the potential to make backpropagation work using random

backward weights, it does not achieve competitive performance for large networks.

Despite problems with backpropagation, it is still the best tool available for

supervised training for spiking networks with some relaxation in the spiking
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activation function. Below I briefly describe the current methods available for

supervised and unsupervised training algorithms for spiking neural networks.

Supervised Learning

Backpropagation is the dominant method of supervised training in spiking neural

networks. There are two ways backpropagation is applied to spiking neural

networks. The first method is weight transfer method. In this method, first a

traditional artificial neural network is trained using backpropagation. Then the

artificial neural network is converted to a spiking neural network by replacing the

traditional artificial neurons with spiking neurons. This type of conversion does

not achieve comparable classification accuracy as the original network. Some

weight optimization is required in order to bridge the accuracy gap by balancing

weights and thresholds [28]. However, it still fails to reach comparable accuracy.

The second method is to directly apply backpropagation with some relaxation

in the spiking activation function. Since, the spiking activation is non-

differentiable, a differentiable approximation is used for training. After training

is complete, the actual non-differentiable activation is used for inference. This

technique is known as surrogate gradient [29, 30]. This technique also fails to

achieve comparable accuracy compared to the equivalent artificial neural network.

It requires a long inference time window to accumulate enough spikes for decision

making. Time-varying parameters such as batch normalization through time [31]

can be utilized to decrease the inference time window and accuracy gap.

Unsupervised Learning

Unlike its supervised counterpart, the spiking neural network enjoys biologically

plausible unsupervised learning techniques. One of the earliest methods is known

as Hopfield network. This type of network can memorize patterns in the network
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dynamics and can retrieve the pattern back in the presence of noise. This type of

network is often used to describe associative memory in the brain. Another type

of method is called Spike Timing Dependent Plasticity (STDP) or better known

as Hebbian Rule. In this rule, synaptic weight is increased if the postsynaptic

neuron fires immediately after the firing of presynaptic neurons, and synaptic

weight is decreased if the opposite happens. In popular terminology, it is known

as the neurons that fire together wire together. This type of simple rule is quite

powerful in finding underlying patterns and clusters in data [32].

2.5 Discussion

There is still a significant amount of work to be done within the field of learning

algorithms and low-power hardware for neuromorphic systems. In order to

fully realize the benefits of neuromorphic hardware, a fundamental change in

approach and underlying assumptions is necessary for the training method and

encoding system. Algorithms such as backpropagation and associated network

models were developed with the von Neumann architecture in mind. The spike

system is fundamentally different from the von Neumann system. Using surrogate

backpropagation with rate coding or temporal coding only tries to imitate the

working process of a traditional aritifial neural network. Rate coding encodes

numerical values for the input and output of the spiking neuron. A surrogate

gradient allows a differentiable activation function for backpropagation to work.

None of these methods utilize the underlying spiking hardware and biological

training method. As a result, at best, this imitation-based spiking system is

only capable of achieving similar performance as the corresponding traditional

artificial neural network while achieving increased power efficiency. From an

engineering perspective, this power efficiency is very attractive in edge computing

and edge machine learning.
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Chapter 3

Memory Efficient Sparse Coding

3.1 Introduction

The need for low power and energy efficient intelligent circuit has led electronic

circuit designers to draw inspiration from biology [21]. Advancements made by

neuroscience have helped shape machine learning techniques such as artificial

neural network [33] and reinforcement learning. After the seminal work by

Olhausen [34] on sparse coding, several algorithms hav been proposed [35, 36, 14]

which inspired a hardware implementation of sparse coding [37, 38]. SAILNet [14]

provides an algorithm that have local learning which is biologically plausible.

However, in SAILNet the neurons threshold voltage is a learnable parameter.

Different neurons in the same layer have different threshold voltages which

requires more memory hardware.

In this chapter, I show that SAILNet can be modified to have the same

threshold voltage across all the neurons and the feedback matrix can be collapsed

into a vector. The resulting network can still reproduce the receptive fields (RFs)

of V1 simple cells of visual cortex. The modified algorithm shows more sparsity

of neuronal activity and still reconstructs input that image with reliable accuracy.

The rest of the paper is organized as follows. First, I present our modification to

the algorithm. Second, I show how the modified algorithm sparsity compares with
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the original one. Third, I show how well the learned receptive fields represents the

input stimuli by comparing the classification accuracy of reconstructed images in

a convolutional neural network. Throughout the paper the modified algorithm is

referred to as new network for simplicity.

3.2 Sparse Coding Algorithm

Sparse coding is based on the idea that an image I(x, y) can be represented as a

linear superposition [34] of some basis functions ϕ(x, y) as in Eq. 3.1.

I(x, y) =
∑
i

niϕi(x, y) (3.1)

where ni is the coefficients corresponding to the basis ϕi(x, y). The basis functions

are not necessarily orthogonal to each other. The basis functions are also

overcomplete which means that number of basis functions are more than the

total number of elements in I(x, y). The goal of sparse coding is to find a set of

ni to represent I(x, y) such that most of the values of ni are zero. Which means

that the image is represented by the activities of a small set of bases from the

whole set of basis functions. In matrix form Eq. 3.1 can be expressed as I = ΦN ,

where Φ = [ϕ1 ϕ2 · · · ϕm] and N = [n1 n2 · · · nm]
T . Each column of Φ is the

flattened out from ϕi(x, y).

3.2.1 Network Design

Each basis function is represented by a spiking neuron. The activities of a neuron

(number of spikes in a given period) represents the coefficients of the basis that

the neuron represents. For sparse activity only a few neurons need to show

activity and most of the other neurons need to be inactive. Lateral inhibition is

a way to achieve this whereby the most active neuron prevents the other neurons
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Figure 3.1: (a) Feed-forward, feedback and pixel connection (b) Integrate and
fire neuron model.

from activating. Fig. 3.1 shows neuron connectivity. The input current for each

neuron comprises of stimuli from pixel intensity values and activities of other

neurons. The current in neuron i is as shown in Eq. 3.2.

ii(t) =
1

R
(
∑
p

ϕipIp −Wi

∑
i ̸=j

yj(t)) (3.2)

Here Ip is the image intensity value from pixel p, R is the membrane resistance.

yj(t) is neuron j output at time t. Ip and yj act like voltages. If neuron j spikes

at time t then yj(t) = 1, else yj(t) = 0. Wi is the lateral inhibitory connection

strength between neuron i and other neurons. The i ̸= j means the neuron

does not inhibit itself. Unlike SAILNet or LCA where each neuron has M − 1

inhibitory connections, here each neuron has one inhibitory connection that treats

all incoming spikes from other neurons by same strength. The current changes

the membrane potential vi of neuron i according to the leaky integrate model

given by the differential Eq. 3.3.

τ
dvi(t)

dt
= −vi(t) + ii(t)R (3.3)
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Here τ = RC is the time constant, R is the membrane resistance, C is the

membrane capacitance. When vi reaches a certain threshold θ, the neuron emits

an action potential or spike. The output of each neuron is taken as number

of spikes generated by the neuron, ni =
∑

t yi(t), inside a fixed period of time

following the stimulus presentation to the network. For simulation this period of

time is taken as 5τ similar to [14]. For simulations in this chapter the network

is taken as two times overcomplete. Input image size is chosen as 16× 16 = 256

pixels. Hence the number of neurons for two times overcomplete is 2×256 = 512.

Figure 3.2: 190 randomly selected RFs out of 512 RFs learned using the rules
in Eq. 3.6. Each of the RF is 16×16 size. Simulation settings: τ = 1 unit, θ = 2.
Learning rate used in learning these RFs: α = 0.1, β = 0.01.

3.2.2 Learning Rules

The learning rules are formed from the constrained optimization imposed on the

network. First of all, the network activity must be able to reconstruct the input

stimulus. From Eq. 3.1 the reconstructed pixel value is Īp =
∑

i niϕip. The mean

squared error between the input and the reconstruction,
∑

p(Ip −
∑

i niϕip)
2,

23



should be minimized. Secondly, the network activity has to be sparse i.e. only

few neurons should produce spikes. If neuron i is active then other neurons should

be ideally inactive if the input stimulus can be represented by only the activity

of neuron i. Hence, the product ni

∑
i ̸=j nj should be zero or close to zero. This

also helps to ensure that the activity minimizes L0 norm. Using the Lagrange

multiplier I can form the Lagrange function.

L =
1

2

∑
p

(Ip −
∑
i

niϕip)
2 −

∑
i

Wi(ni

∑
i ̸=j

nj) (3.4)

Here the inhibitory connection strength Wi for neuron i serves as the Lagrange

multiplier. To minimize L I perform gradient descent with respect to ϕip and Wi.

∆Wi = −α
∂L
∂Wi

= αni

∑
i ̸=j

nj (3.5a)

∆ϕip = −β
∂L
∂ϕip

= βni(Ip −
∑
j

njϕjp)

= β(niIp − n2
iϕip − ni

∑
i ̸=j

njϕjp) (3.5b)

Here α and β are learning rates. Learning rule from Eq. 3.5b is non local i.e.

neuron i needs to know neuron activities from neuron j in the last term. But

I notice that if network activity is sparse, only one neuron is active and others

are inactive. So on average the ni

∑
i ̸=j nj product should be zero. Hence, I can

ignore the last term of Eq. 3.5b and thus the rule becomes local. The rule from

Eq. 3.5a is local because Wi connects neuron i to other neurons and it needs

activities ni and
∑

i ̸=j nj which is local to Wi. The final learning rule as average
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of batch process can summarized as follows.

∆Wi = α⟨ni

∑
i ̸=j

nj⟩

∆ϕip = β⟨(niIp − n2
iϕip)⟩

= β(⟨niIp⟩ − ⟨n2
i ⟩ϕip)

(3.6)

The ϕ learning rule looks similar to SAILNet learning rule. But the assumptions

made to arrive at these rules are different from those imposed in SAILNet. The

threshold voltage is fixed for all the neurons here. For SAILNet the threshold

voltage is also a learnable parameter.

3.2.3 Learned RFs

Training images to learn the basis functions/RFs are taken from natural image

set of Olshausen and Field [34]. There are ten 512×512 images of natural scenes

available preprocessed by zero-phase lowpass filter described in [34]. W is set to

zero and Φ is set to random values before training as in [14]. Threshold voltage

θ is set to a value of 2. Batches of 100 images each of size 16 × 16 with zero

mean and unit standard deviation are selected randomly from the images in the

database and presented to the network. Number of spikes generated from the

neurons are counted over 5τ unit of time after the images are presented. With

those spike counts W and Φ are updated using the rules of Eq. 3.6. This process

is repeated until a stable solution is reached. Fig. 3.2 shows some of the RFs

obtained after training. The RFs are spatially localized, oriented and selective

to structures like edges. These are the properties of RFs of mammalian primary

visual cortex and looks similar to RFs recorded from V1 simple cells of macaque

monkey [39].
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Figure 3.3: Sparsity histogram: sparsity is indicated by a 16×16 image patch
being represented by small number of active neurons most of the time an image
patch is presented to the network.

3.3 Sparsity of Activities

Here I compare the sparsity of the learned network with the sparsity of SAILNet.

SAILNet was learned using the parameters provided in [14]. All ten images from

the database are fed to both of the networks. 16×16 image patches are taken from

the database images and number of spikes are counted in a 5τ unit time window.

Each image is 512×512, hence with 16×16 image patches there are 1024 patches

from one image and 10240 patches from all ten images. If I count the number of

neurons with non-zero spike counts after each image patch presentation and plot

them in a histogram I get a comparison of sparsity. Fig. 3.3 shows the result.

The new network learning rules produced only one active neuron most of the

time a 16×16 image patch is presented. Out of 10240 image patches around 4800

patches, almost 47% of the time, a 16×16 image patch is represented by only

one neuron activity. Compared to that SAILNet produces seven active neurons

most of the time a 16×16 image patch is presented. The new network is clearly
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(a) input image (b) SAILNet rms err:0.15

(c) this net rms err:0.17 (d) this net(0.1×W) rms err: 0.16

Figure 3.4: Reconstruction error comparison.

more sparse than SAILNet. This is because of the learning rule of Eq. 3.5a which

encourages one neuron to be active.
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3.4 Reconstruction Accuracy

There is a trade off between sparsity of activity and accurate reconstruction. For

accurate reconstruction of image from linear combination of basis functions, more

than one basis functions are needed to reproduce fine details of input image. Since

the new network has only one active neuron most of the time, the reconstruction

error is slightly higher than SAILNet. Fig. 3.4 shows a reconstructed image along

with rms errors for SAILNet and new network. The rms error is just slightly

higher than that of SAILNet. This is expected because in new network sparsity

is higher. If more accurate reconstruction is required, it can be achieved to some

degree by tuning the value of W . If I reduce the inhibitory connection strengths,

neurons will not have reduction of the membrane potential as much and more

neurons will fire. Thus the network activity will get less sparse i.e. more than

one neuron activity will represent the input stimulus most of the time. Fig. 3.4d

shows such a reconstruction with inhibitory weights set to ten percent of learned

inhibitory weights where network is less sparse and more details are visible. I am

trading off activity sparsity for more accurate reconstruction. Fig. 3.5a shows

how multiplying W with a factor less than one, changes sparsity for images in

the dataset. As the inhibitory connection gets less stronger more neurons are

active most of the time and the curve begins to look like SAILNet sparsity curve

as in Fig. 3.3. As the sparsity is reduced by reducing values of W , the rms error

also decreases as shown in Fig. 3.5b. These two figures clearly shows the trade

off between sparsity and reconstruction accuracy.

3.5 Quality of RFs and Reconstruction

Although reconstruction error is slightly higher for the new network, to a human

eye reconstructed images from SAILNet and new network looks similar as in
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(a) sparsity (b) rms error

Figure 3.5: Sparsity and reconstruction rms error tuning by tuning the values
of inhibitory connection strength.

Fig. 3.4. But would a computer vision program be able to tell if Fig. 3.4(b) and

Fig. 3.4(c) are same and they are similar to Fig. 3.4(a)? To answer that question

I devise an experiment. I feed reconstructed images to an image classifier and

compare the classification error with the classification error of original images.

If they are close then I can say that the reconstructed images have enough

information for a computer be able to tell the difference. For this I train a

convolutional neural network with flower dataset [40] which has 17 classes

of flowers of each class with 80 images. This dataset is chosen because it is

lightweight and has natural scene. Every image is resized to 512×512 pixels. For

convolutional neural network I choose ResNet-101 [33]. For training 80% and for

testing 20% of the images from each class is used. Three testing image sets are

made: first set with the original testing images, second set with the reconstructed

images of the first set using SAILNet, third set with the reconstructed images of

the first set using new algorithm. For reconstruction of the flowers, RFs learned in

section 3.2.3 are used instead of learning them again on the flower database. The

reason is that since those RFs are learned on natural images, they should be able

to reproduce any other natural scenes. The flower images are color images but
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Table 3.1: Classification Accuracy

testing set accuracy
original 91.3%

SAILNet reconstuction 86.2%
new network reconstuction 89.1%

the RFs are grayscale images. Hence, the reconstruction is done on R,G,B color

channel separately. A reconstruction is shown in Fig. 3.6. Interestingly, the rms

error for flower dataset turned out to be less than SAILNet while maintaining

more sparsity. Using the three sets of testing images classification accuracy is

measured. The result is shown in table 3.1. The classification accuracies for the

reconstructed images are not too far from accuracy of original images. This proves

that RFs can faithfully retain information for a convolutional neural network to

be able classify. The classification accuracy of the new network turned out to be

higher than SAILNet. I think this is because the details discarded by the new

sparse coding network was helpful for the convolutional neural network for this

dataset.

(a) original (b) SAILNet rms:0.08 (c) this network rms:0.06

Figure 3.6: Reconstruction images and rms error for one of the images from
flower datadset. W matrix is unaltered for reconstruction.
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3.6 Computation and Hardware Complexity

Since a neuron does not inhibit itself, in SAILNet or LCA each neuron needsM−1
feedback weights. ForM neurons the feedback needs anM×(M−1) vector matrix

multiplier. With N elements in each input, feed-forward computation needs an

N×M vector matrix multiplier. In SAILNet there are also M threshold voltages.

So total memory needed for SAILNet is NM + M(M − 1) + M = NM + M2.

But in the modified algorithm each neuron has one feedback weight and it does

not have different threshold for each neuron. Hence the memory requirement is

NM +M . This is a huge savings in memory and associated circuits for hardware

implementation. The vector matrix multiplication of M × (M − 1) elements is

reduced to M multiplication which can save power as well. In [38] SAILNet

was implemented in 65nm digital process. It takes significant fraction of the

total power for data movement from memory. In [37] LCA was implemented

using analog floating gate memory. It takes considerable amount of time to fix

the floating gate voltages to appropriate values. Reducing number of feedback

weights and removing neuron threshold as stored memory parameter can help

both digital and analog implementation of sparse coding to reduce computation

and speed up operation.

3.7 Conclusion

In this chapter, I present a modification of the sparse coding algorithm, SAILNet,

that reduces the number of learnable parameters without significantly affecting

the reconstruction error and still reproduce the RFs of V1. Our experiments

show that the modified algorithm is more sparse but can reproduce the input

signal with necessary information for it to be identified by a convolutional

neural network. Although there is a trade off between sparsity and rms error,
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this reduced memory algorithm can be useful for processes which can tolerate

inaccuracies in data to a certain level.
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Chapter 4

Compact Ultra Low Power Spiking Neuron Circuit

4.1 Introduction

Brain inspired neuromorphic systems use biologically plausible spiking neurons

to model intelligent systems like silicon retina, cochlea and machine learning

systems [41, 42, 43]. Simulation of large scale spiking neural networks in a

traditional von-Neumann type digital system is not suitable because of the

asynchronous nature of spiking neurons. Highly parallel nature of neuromorphic

hardware makes them faster, which has led to their recently increasing popular-

ity [44]. However, very large scale simulations of neural networks in hardware

become power hungry. Hence, efforts went into designing biologically plausible

spiking neuron circuits [45] with behaviors, such as adaptation and bursting while

restricting power consumption of individual neurons.

While many designs implement a broad range of spiking behaviours [46], the

circuits operate in strong inversion and consume high power. Other designs use

subthreshold circuits [43], but they require many transistors. In this chapter I

propose a leaky integrate and fire neuron that uses subthreshold device physics to

implement neuron functionality, which allows us to reduce number of transistors.

The circuit elements draw current only when the neuron is spiking and not at

other times. The power consumption at spike time is very small. The neuron is
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capable of showing complex behaviour like adaptation and bursting while using

only a handful of transistors. I have used a 130nm silicon CMOS process for

simulation in cadence spectre.

4.2 Neuron Circuit

The circuit is shown in Fig. 4.1. The circuit consists of five sub blocks. Block a

with Iin and Mk serves as input excitation to the membrane capacitor Cv. Block

b with M1−3 performs thresholding and spike generation. Block c with M4−5 acts

as the axon which generates a voltage pulse at each spike. Block d with M6−8

controls spike width, refractory period and resets the neuron after a spike. Block

e with M9−11 controls adaptation and bursting. The main firing and resetting

dynamics are governed by (4.1) and (4.2)

Cv
dv

dt
= Iin − Ik + Ipos − Ineg − Ia (4.1)

Cu
du

dt
= Iw − Ir (4.2)

The neuron has 12 transistors that operate in the subthreshold regime. The

body of all the nFETs are grounded, and the body of all the pFETs are connected

to the positive supply. The circuit has multiple levels of control over the neuron

operation. It can control spiking threshold, spike width, refractory period and

adaptation period.

4.3 Circuit operation

The circuit operation is described below as a step by step process.

Step 1: Input current Iin acts as excitatory current to the neuron. The leak

transistor Mk subtracts some current Ik from Iin using Vk. Hence, the total input
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Figure 4.1: Proposed neuron circuit (a) Input block, (b) M1−3 for thresholding
and spike generation, (c) M4−5 for axon, (d) M6−8 for reset and spike width,
refractory control, (e) M9−11 for adaptation and bursting control.

current going into the membrane capacitor Cv is Iin − Ik. By controlling Iin and

Vk input current to the neuron can be made excitatory or inhibitory. The net

excitatory input current charges up the membrane capacitor Cv, and membrane

voltage v increases.

Step 2: Membrane voltage v is applied to the gate of M1. Once the

gate voltage of M1 increases above the source voltage Vth which acts as spiking

threshold, M1 starts to conduct current. This current is copied using M2−3 and

fed back into membrane capacitor Cv thus implementing positive feedback current

Ipos. The current throughM1 can become very large if the top rail voltage is large.

Here, the top rail voltage is low which limits the maximum current through M1

and consequently limits the power consumption for a spike. Since M1 is operating

in the subthreshold regime, the current produced is exponentially related to the

gate voltage. When v exceeds threshold Vth, this exponential positive feedback

current raises v very quickly until v reaches the top voltage rail Vdd.
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Step 3: As long as v is higher than Vth, M1 conducts current and Vf drops

below Vdd. The axon block is essentially an inverter. Hence, Vs goes up and

reaches Vdd. The current through an inverter can be very high when both M4

and M5 are conducting. But in this case Vdd is low, which limits the current.

As Vs goes up, capacitor Cu charges through M6 and increases voltage u. The

speed of charging Cu can be controlled via Vw. Once u becomes high enough

to produce a current though M8 such that Ineg overpowers Ipos, Cv discharges,

axon output Vs goes to ground and the neuron resets. Using Vr in M7, Cu can

be discharged slowly so that voltage u can continue to produce high enough Ineg

that the input current cannot charge Cv. This implements the refractory period.

Once the refractory period is over the neuron starts the operation again if there is

still any input current. By controlling the charging time of Cu using Vw the spike

width can be controlled. Transistors attached to Cv implement the membrane

resistance.

Spike frequency adaptation is accomplished by reducing the input current

to membrane capacitor. With every spike axon output, Vs reaches Vdd which

charges capacitor Ca slowly using M9. The slight increase in voltage a causes

M11 to conduct current Ia and leak some input current. Vau and Vad controls the

charging and discharging of Ca. By selecting proper values of the control voltages

Vw, Vr, Vau, Vad, a wide range of spiking patterns can be achieved. The transistor

sizing and capacitor values are given in Table 4.1. Individual transistors are very

small in size except M4, which is slightly larger than the others because it has

to supply current to block d and e. The only large size capacitor is Ca, which

controls adaptation and bursting.

Table 4.1: Transistor size, capacitor and supply voltage values

M4 W/L Other FET W/L Cv Cu Ca Vdd

800nm/260nm 260nm/260nm 50 fF 30 fF 100 fF 300mV
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4.4 Spike patterns

A 130nm CMOS process is used for circuit simulation with single supply voltage

voltage Vdd = 300mV . Different spiking patterns are obtained by setting

appropriate control voltage values. Fig. 4.2 shows different spiking patterns for

a constant input current. The voltage values used to obtain spiking patterns are

given in the figure description. For a regular spiking (RS) pattern, adaptation

block does not charge capacitor Ca to high voltage, thereby stopping current

leakage through M11.

For regular spiking but with frequency adaptation (RS-FA) spiking patterns,

Ca is allowed to charge. Vau and Vad are set such that after a few spikes, voltage

a settles down to a fixed value, and the neuron continues to spike at a slow rate.

Chattering (CH) and intrinsically bursting (IB) spiking patterns for a constant

input current are obtained by manipulating the control voltages. A chattering

neuron generates a burst of high frequency spikes repetitively in response to

a constant input current. The magnitude of input current controls the period

between the burst. An intrinsically bursting neuron generates a burst of spikes at

the beginning of a constant input current and then switches to tonic spiking mode.

Pyramidal neurons found in cortical layers display these kinds of behaviors [47].

Another type of spiking pattern found in cortical layers is the fast spiking (FS)

pattern. This kind of pattern is created by periodic trains of spikes with high

frequency without adaptation. These are created by not allowing the membrane

potential to reach all the way to ground when it resets. All of these firing patterns

can be obtained in our circuit by adjusting the control voltages.

Fig. 4.3 shows a spiking pattern when threshold voltage and refractory period

is changed. Spiking threshold can be changed by changing Vth. Fig. 4.3(a), (b),

(c) show that spike frequency is reduced as the spiking threshold is increased

from 30mV to 70mV . From Fig. 4.3, it can be noticed that the onset of the
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Figure 4.2: Different spiking patterns from the Neuron. For all cases Vdd =
300mV , Vth = 50mV , Vk = 30mV (a) RS: Vw = 80mV , Vr = 120mV , Vau =
280mV , Vad = 3mV , (b) RS-FA: Vw = 80mV , Vr = 120mV , Vau = 120mV ,
Vad = 3mV , (c) CH: Vw = 70mV , Vr = 145mV , Vau = 120mV , Vad = 50mV , (d)
IB: Vw = 80mV , Vr = 130mV , Vau = 120mV , Vad = 3mV , (e) FS: Vw = 80mV ,
Vr = 135mV , Vau = 280mV , Vad = 3mV , (f) input current Iin

spike is around 150mV , although Vth is below that. This is because gate to

source voltage difference needs to be around 150mV to generate a strong positive

feedback current. So, the onset of the spike is effectively slightly higher than

the voltage set by Vth. Fig. 4.3(c) and (d) have the same spiking threshold, but
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the refractory period is increased in (d) by decreasing Vr. As a result the spiking

frequency decreases. Fig. 4.3(d) and (e) have same settings but in (e) spike width

is increased by increasing Vw. Decreasing spike width will decrease energy per

spike. However, in a network of neurons, a synapse might need longer spike width

to provide necessary current. Hence, it is necessary to provide varying levels of

control over the neuron operation.

4.5 Power Consumption

The transistors in the circuit conduct current only during the time of spike. At

other times currents through the transistors are only the leakage currents set by

the process technology, which are very very low. Fig. 4.4 shows a close up trace of

voltages and some currents of a spike from Fig. 4.3(a). The current traces show

that current draw spikes only during the time of membrane voltage spike. The

major currents are Ipos and Ineg. The limit of Ipos value is set by the gate voltage

of M1, which is Vdd at its maximum. Since Vdd is low, the current is also low.

Ineg is larger than Ipos because it has to overpower the positive feedback current

to reset the neuron. These currents themselves are very low, in this case under

3.5nA. Since there is current conduction only at the time of spike, the neuron

consumes power only during the spike time. By reducing spike width using Vw,

additional power savings can be achieved. Energy for each spike is calculated

by integrating instantaneous power supplied by Vdd over the simulation time and

dividing by the number of spikes produced. The resulting energy per spike is

found to be 22fJ. For this process the collective leakage current is around 7pA

when the neuron is not spiking. This means that the static power consumption

is 2.1pW for this process. The neuron consumes 15pW of power when spiking at

1kHz.
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Figure 4.3: Spiking pattern when spiking threshold, refractory period and spike
width changes (a) Vth = 30mV , Vw = 80mV , Vr = 80mV , (b) Vth = 50mV , Vw =
80mV , Vr = 80mV , (c) Vth = 70mV , Vw = 80mV , Vr = 80mV , (d) Vth = 70mV ,
Vw = 80mV , Vr = 30mV , (e) Vth = 70mV , Vw = 170mV , Vr = 30mV , (f) Input
current Iin

4.6 Comparison

Circuits as in [48] use an operational amplifier based comparator to implement

thresholding. However, a problem with operational amplifier based design is

that the tail current of the operational amplifier will consume power even when
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Figure 4.4: Close up view of voltage and drain current spike traces. Current
spikes at the time of membrane voltage spike

Table 4.2: Circuit comparison

Indiveri[43] Wijekoon[46] Arthur[45] our circuit
Vth ctrl. yes yes no yes

refractory ctrl. yes no yes yes
spike width ctrl. no no no yes
adapt. & burst. yes yes yes yes

# of FETs 22 14 15 12
power

@frequency
10-110µW
@100Hz

8-40µW
-

50-100nW
@100Hz

15pW
@1kHz

Energy/Spike 900pJ 8.5-9pJ - 22fJ
Area

Wµm× Lµm
83×31 70×40 - 15.5×11

Process 0.35µm 0.35µm 0.25µm 130nm
Vdd 3.3V 3.3V - 300mV

there is no excitation current. Hence, for comparison purpose I choose circuits

with similar basic working principles and spiking patterns. Table 4.2 compares

capability of this circuit with other works. The circuit in [43] is capable of

producing complex spike patterns like adaptation but it has no control over
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spike width and takes a large number of transistors. The circuit in [45] has

fewer transistors than [43], but the power consumption for a single neuron is

still prohibitively high for integration into a large scale network. The circuit

in [46] operates in above threshold mode and consumes a significant amount of

power. It should be noted that a 4fJ per spike neuron has been reported in

[49]. However, that neuron is much simpler and lacks the variety of spiking

patterns observed in biological neurons. The circuit that I propose here has

considerable levels of control over the neuron operation, and it is capable of

producing a variety of spiking patterns. By using low supply voltage and

operating the transistors in subthreshold mode significant power reduction is

achieved. Fig. 4.5 shows the layout of the circuit. It occupies 15.5µm×11µm
of silicon area which is significantly less than the other circuits. Most of the

area is taken by the capacitors. Ideally, the capacitors and transistors can be

made smaller than reported here, but smaller devices are susceptible to process

variation and mismatch. The neuron can be integrated into a system in a similar

fashion as described in [43].

4.7 Effect of device mismatch

In a network of neurons, all the neurons will be tied to the same global control

voltages. However, the process variation and mismatch will cause the devices

to conduct a different current than intended. If the mismatch is too large,

then neuron output will vary greatly from neuron to neuron. To see how the

process variation and device mismatch affects neuron output, a Monte Carlo

simulation is performed. For the same settings as Fig. 4.3(a), a few runs from the

Monte Carlo simulation are shown in Fig. 6.15. It can be seen that the spiking

process of membrane potential v reaching to Vdd is not affected. The process

of spike generation is robust to mismatch because of the feedback mechanism.
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Figure 4.5: Layout of the proposed neuron circuit. Most of the area is taken
by the capacitors

However, the spiking frequency is affected. This is not surprising because the

device mismatch is causing the leak transistor Mk to conduct a different current

than intended. Hence, the current charging Cv is different than expected. For

Monte Carlo simulation of Fig. 6.15 the mean firing rate was 1.2kHz with standard

deviation of 432Hz. In a chip where synapse weight can be set, this effect of device

mismatch can be mitigated by adjusting synapse weight properly.

4.8 Conclusion

In this chapter, I have presented an analog implementation of a spiking neuron

operating in the subthreshold regime. Exponential drain current to gate voltage

relationship is used to implement positive feedback that generates spike. Device

physics is used to implement the operation and reduce number of devices needed.
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Figure 4.6: Few runs from the Monte Carlo sampling simulation. Due to device
mismatch frequency of spike is affected

While being compact, the circuit can show a variety of spiking patterns. The

neuron circuit I have developed has the potential to reduce power consumption

and area of a large spiking neural network. Since the neuron has negligible power

consumption during idle time, any chip made out of this neuron can be operated

with stringent power restrictions.
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Chapter 5

Synapse Circuit and Leakage Compensation

5.1 Introduction

There has been significant interest in hardware implementations of neuromorphic

circuits in recent years. The parallel nature of computation in those implemen-

tations makes them ideal to implement spiking neural networks and event driven

systems [50]. They are also important to investigate neuromorphic algorithms

and hypotheses because of the difficulty of simulating large scale networks in

traditional von-Neumann platform. However, manufacturing process of the

neuromorphic computational platforms has lagged behind the latest advanced

CMOS process available at any given time. Neuromorphic hardware mostly used

older CMOS technology nodes. Neuromorphic circuit operations are dominated

by differential equations. Subthreshold current mode circuits [51, 45] make

it particularly easy to implement ordinary differential equations in transistor

circuits. By its nature, subthreshold current is very low, on the level of

pico-amperes to nano-amperes. This becomes a problem when implementing

subthreshold circuits in smaller technology nodes. As the fabrication process

down scales, the leakage currents of the transistors increase. As a result, the

leakage currents become comparable to the desired operating currents of the

circuit elements. For this reason, even though more advanced technology nodes
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Table 5.1: Synapse Packing Size in a Single Chip

BrainScales [54] Neurogrid [4] ROLLS [5]
Synapses per neuron 448 65k(shared) 128k

Process 180nm 180nm 180nm
Year 2010 2014 2015

are available, neuromorphic hardware uses older manufacturing processes as

shown in Table 5.1.

To take advantage of smaller technology nodes, one requires either switching

to digital circuit [44] or to use alternative circuit design techniques. One technique

is to use switched capacitor circuits [52] to circumvent leakage currents. However,

leaky switches still present many problems. Also, this technique takes away

the flexibility and ease of design of neuron and synapse circuits. Although

a subthreshold implementation of a neuron and a synapse circuit in 90nm

technology can be found in [53], it is only one neuron circuit and one synapse

circuit in two separate chips.

Integration of a large number of synapses from the leakage current point of

view is important because in a neural network, synapses are the most abundant

circuit elements. Several synapses are typically connected to a single neuron.

Hence, the effect of leakage current is most prominent when a large number of

synapses are connected together. A synapse injects a certain amount of current

into a post synaptic neuron depending on the weight of the synapse when it is

hit with a pre-synaptic spike. When the synapse is in inactive or off state, ideally

it does not inject any current. However, in a circuit implementation, a synapse

conducts leakage current at off state. This leakage current may be ignored when

there are only ten or fifteen synapses. However, for a useful neural network

hundreds of synapses are necessary. With this many synapses, leakage currents

become large enough to stop a neuron from operating properly.

46



In this chapter, I propose a technique to compensate the leakage current

problem in a 130nm CMOS process. I show that with a simple tweak in design

of a current mode circuit, leakage currents can be compensated when a large

number of synapses are connected together.

5.2 Method

In any current mode synapse circuit, the natural choice is to use a PMOS to

supply a current to increase membrane potential and use an NMOS to supply a

current to decrease membrane potential. Even when more complex circuits are

used to implement learning functionality such as spike timing dependent plasticity

(e.g. [43]), eventual current injection to the neuron is accomplished by PMOS and

NMOS devices. Hence, I use a synapse circuit with very simple arrangement of

NMOS and PMOS devices which can be replaced with complex synapse circuits

for which the compensation technique should still hold.

5.2.1 Initial Synapse Circuit

I first start with the initial design of the synapse. The circuit is shown in

Fig. 5.1(a). To make the synapse circuit compact, a single synapse designed

to supply both excitatory and inhibitory current. A minimum size transistor

does not act as a constant current source in saturation as shown in Fig. 5.1(b).

Hence, a transistor sizing of 260nm×260nm is chosen to avoid this problem and

at the same time maintain small size. A supply voltage of 300mV is used to

minimize power. It is assumed that the neuron also has a supply voltage of

300mV. It is not unusual for a neuron circuit to operate at such a low supply

voltage because an analog neuron operating at 200mV supply voltage has already

been demonstrated [49]. For an active synapse, a pre-synaptic spike is applied
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Figure 5.1: Synapse circuit and currents. All the transistors are of size
260nm×260nm. (a) synaptic current from a single synapse is Isyn = Ip − In, (b)
active synapse current at Vfg=100mV for both the proposed design and a synapse
using minimum-sized transistors, (c) inactive synapse current at Vfg=100mV.
Even though the synapse is inactive there is substantial current that acts as
inhibitory current. This current scales up as more synapses are added.

to the gate of M4 and an inverse spike is applied to the gate of M1. The voltage

Vfg controls the drain currents Ip of M2 and In of M3. The difference of the two
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currents, Isyn = Ip − In, is injected into the neuron membrane capacitor which

changes the membrane voltage v. By controlling Vfg, Isyn can be made either

excitatory or inhibitory. In practice Vfg will come from an analog memory device

such as a floating gate memory [55]. Fig. 5.1(b) shows excitatory synaptic current

as the membrane potential varies. The current is excitatory because Ip is larger

than In.

For an inactive synapse, without the presence of any spike, the gate of M2 is

pulled down to the ground and the gate of M1 is pulled up to the supply voltage.

As can be seen in Fig. 5.1(c), even when the synapse is inactive, Isyn is nonzero

and acts as inhibitory current because typically NMOS leakage current is more

than the leakage current for the same sized PMOS. There is about Isyn=2pA

of leakage current acting as inhibitory current for almost the entire range of

membrane potential. This much leakage current does not pose a problem if there

is another synapse which can supply much larger active synapse current, thus

overcoming the leakage current. However, when a large number of synapses are

tied together at node v, the leakage current linearly increases to such a value that

one active synapse is not able to overcome the leakage currents. For example, if

256 of synapses are tied together, the total leakage current becomes 512pA. Even

if an active synapse is able to supply more current than 512pA and raise the

membrane potential v, once the pre-synaptic spike is over, membrane potential

will very quickly go down because of the large leakage current. Thus it will be

almost impossible to get the membrane potential to cross the threshold voltage.

5.2.2 Leakage Current Compensating Circuit

To mitigate the leakage current problem, I propose a leakage current compen-

sation technique. The circuit is shown in Fig. 5.2. The circuit in Fig. 5.1(a)

is split at node v. Then, the NMOS current parts to a neuron are bundled
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Figure 5.2: Modified synapse circuit to compensate leakage currents.

together as InT . M5 supplies the demand of the leakage currents by setting an

appropriate gate voltage Vpleak . The resulting current is copied by M6 and M7

to produce Ipinj
which is injected into the neuron membrane at node v. In a

similar fashion, the PMOS current parts to a neuron are bundled together as IpT .

Leakage current demand is met with M8 by setting an appropriate gate voltage

Vnleak
. The resulting current is copied by M9 and M10 to produce Ininj

which is

injected into the neuron membrane. The difference of Ipinj
and Ininj

now acts as

total synaptic current and can be both excitatory and inhibitory.
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Different layers of a neural network will have different number of synapses

connected to a neuron. In that case Vpleak and Vnleak
has to be different for each

layer to compensate different level of total leakage current. These voltages can be

stored in floating gate memories just like the synapse weights are stored avoiding

the need for separate pins.

5.3 Experiment, Results and Discussion

5.3.1 Experimental Setup

To compare the effectiveness of the compensation technique, two test circuits are

simulated in a 130nm CMOS process. In one test circuit, 256 uncompensated

synapses as shown in Fig. 5.1(a) are connected to a neuron circuit. In the

other test circuit, 256 synapses with compensation technique applied as shown

in Fig. 5.2, are connected to another neuron circuit. Same set of 256 random

weights for the 256 synapses are set to both test circuits. The inputs to the 256

synapses are also same for both test circuits which are set by a randomly selected

MNIST [56] image. MNIST is a handwritten digit dataset which is popular for

machine learning. The image is resized to size 16×16. The pixel values from the

MNIST image serve as the input spike frequency in Hz. Then, the spike trains

are delivered to the synapses using VerilogA blocks with each spike having a 45µs

spike width. The maximum spike frequency from an input pixel is 255Hz.

The neuron used for the experiment is shown in Fig. 5.3(a). The operation of

the neuron circuit is presented briefly here. The neuron circuit is divided into four

blocks. Block a serves as input block. An input current Iin charges up membrane

capacitor Cv and increases membrane potential v. Block b implements positive

feedback to generate a spike. When the gate of M1 becomes larger than the

source voltage Vth which acts as spiking threshold voltage, M1 starts to conduct
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Figure 5.3: (a) The neuron circuit used in the experiment, (b) comparison
of neuron membrane potential with leakage compensated synapses vs
uncompensated synapses. With uncompensated synapses, the membrane
potential barely increased by a pre-synaptic spike. Weights and inputs are same
in both compensated and uncompensated cases.

current. In subthreshold regime, the drain current of M1 increases exponentially

with v which is copied using M2 and M3 to produce Ipos and injected into the

membrane capacitor. This implements positive feedback and rapidly increases v

to supply voltage thus generating a spike. Block c is an inverter which generates

a square pulse to indicate a spike for the next layer. Block d serves the function of

membrane voltage resetting, spike width and refractory period controller. Using

M6 and M7, a second capacitor Cw charging and discharging is controlled. When

voltage w increases substantially, M8 discharges the membrane capacitor Cv. Mk

compensates leakage current from M3 thus preventing the neuron from spiking

spontaneously when Iin is zero. The neuron circuit has a supply voltage of 300mV,

same as the synapses.
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Table 5.2: Overhead associated with compensation per neuron

Area Parameter Active Syn. Power
6 extra MOS 2 Vleak 2×

5.3.2 Results

The time evolution of membrane potential for both test circuits are shown in

Fig. 5.3(b). It clearly shows the effect of leakage currents in a large number

of synapses. For a 255Hz input, the first pre-synaptic spike occurs at 3.9ms.

For compensated synapse circuit, the neuron membrane potential changed in

expected ways. For large synaptic currents, the neuron spiked with just one

or two pre-synaptic spikes. For smaller synaptic currents, membrane voltage

increased fast but decreased slowly (around 6ms) because the leakage current is

low. However, for the uncompensated synapses, the membrane potential barely

increased. The same synaptic current which made the compensated circuit spike,

hardly made any impact in the uncompensated circuit. Moreover, as soon as the

membrane voltage increased, it also decreased very fast because of the combined

large inhibitory leakage current from the synapses. These results show that the

compensation technique can mitigate the leakage current problem in large scale

synapses for a technology node as small as 130nm. The same technique can

potentially work for smaller technology nodes as well.

5.3.3 Discussion

The number of synapses connected to a neuron is typically different for different

layers of a neural network. In a fully connected network, there are same number

of synapses connected to all the neurons in a given layer. Hence, total synapse

leakage current for every neuron is expected to be the same. Fig. 5.4 shows

the dependence an of inactive synapse leakage current on Vfg. For PMOS the
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Figure 5.4: Inactive synapse leakage current dependence on Vfg. The currents
are shown for v=150mV as Vfg is varied.

variation is low. For NMOS the variation is only about 1.5pA on its entire range

from ground to supply voltage. Hence, the leakage current can be considered

approximately independent of Vfg. Moreover, the distribution of weights in a

large number of synapses tends to average out the total leakage current to a

same value for each neuron. In that case, Vpleak and Vnleak
can be shared across

all the neurons in a given layer. Table. 5.2 shows the overhead associated with the

compensation technique on a per neuron basis. Active synapse power is twice the

uncompensated circuit because the currents that will flow in an active synapse

also have to flow in M7 and M10. However, a synapse is active only momentarily

hence the power overhead is not huge.

5.4 Chip Implementation

The neuron circuit and synapse design has been submitted for fabrication in

the first ever open source multi project wafer (MPW) funded by Google. The
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Figure 5.5: Layout of frew neuron circuits with measurement circuitry.

Skywater130 pdk has been used for the design wich is a hybrid 130nm-150nm

process node. Open source design frameworks such as ngspice, magic layout,

klayout and design flow from skywater project has been used to design the circuits

and embed the design into the chip. Fig. 5.5 shows the layout of few neuron

circuits along with the voltage measurement circuits. Analog multiplexers have

been used to send the outputs of the neurons to the chip pads. The right-bottom

circuits in the figure shows the multiplexers.

In order to test the behavior of the analog memory of the pdk a 4×4 SONOS

cell has also been implemented in the chip design wich is shown in Fig. 5.6.

SONOS stands for silicon-oxide-nitride-oxide-silicon. SONOS cells are basically
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Figure 5.6: A 4× 4 sonos cell array.

transistors which have additional layers of gate oxide and nitride materials to

trap electrical charges.

5.5 Conclusion

In this chapter, I have proposed a technique to compensate the leakage currents

from a large number of synapses. I have used simple synapse circuit to
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demonstrate the technique. This simple synapse circuit can be replaced with

complex synapses without affecting the compensation technique. I have shown

simulation results to demonstrate the viability of the proposed technique. It is

expected that the same techniques will also work for much smaller technology

nodes.
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Chapter 6

Hardware Model Based Simulation of Spiking Neural Network

6.1 Introduction

Spiking neural networks have been gaining significant interest in recent times

which has led to some interesting research endeavors such as machine learning

tasks using spiking neurons [32], event based systems [50], silicon retina [57]

etc. Since analog computation provides excellent energy efficiency, numerous

hardware implementations of large scale VLSI spiking neural networks have been

proposed [43, 58]. These chips are fabricated for deployment and testing of

different models of learning. These models of learning, however, are formulated

and refined using spiking network simulators which do not account for hardware

device nonidealities. Thus, the performance of a network designed in a spiking

network simulator is not generally representative of the performance of the same

network deployed in real custom hardware. There are techniques such as deep

modeling [59] which use deep learning frameworks to estimate circuit nonidealities

in scaling and bias error parameters. Some techniques [60] map neuronal models

onto hardware once the chip is fabricated. Mapping parameters are estimated

from fitting chip output with neuronal model. Then these mappings are used to

set biases on the chip. However, this requires fabrication of the chip first without

the knowledge of how nonidealities will affect the neuron behavior. Hence, for cost
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saving reasons it is necessary to incorporate circuit behaviour into the simulation

before manufacturing a chip.

There are many spiking network simulators [61, 62] available at this moment.

Some simulators allow custom description of neuron and synapse equations.

With these kind of simulators, ideally, hardware neuron and synapse models

can be described and simulated. However, one would require the parameters

of silicon process such as subthreshold slope factor, early voltage, body effect

coefficient, diffusion capacitance etc. to formulate current and voltage equations.

Many of these parameters do not have closed form representations. Also, it is

not straightforward to formulate current and voltage equations from foundry-

provided BSIM [63] models.

Neuron dynamics generally have the characteristics of a dynamical system

which makes it possible to use the phase plane to analyze a neuron [45, 64].

However, I can also use the phase plane to account for device nonidealities. In

this chapter, I describe a process of incorporating BSIM-model based device

nonidealities in the simulation of spiking neurons with an existing spiking neural

network simulator using phase plane. I first describe the process of using a phase

plane to obtain the solution of a neuron equation. Then, I present the simulation

of a hardware neuron using a spiking neural network simulator. With the aid of

hardware model based simulation, behaviour of neural networks can be observed

quantitatively in the presence of device nonidealities.

6.2 Overview of Phase Plane Analysis

6.2.1 Phase Plane

In this section I provide an overview of using phase plane to solve differential

equation. To demonstrate this, I choose a well known neuron model called
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Fitzhugh-Nagumo (FHN) model [65]. Later I will carry over the ideas developed

here to our neuron circuit. The FHN model is described by two first-order

Ordinary Differential Equations (ODE) given by (6.1).

dv

dt
= f(v, w) = v − 1

3
v3 − w + I (6.1a)

dw

dt
= g(v, w) = ϵ(v + a− bw) (6.1b)

Here v is membrane potential, w is recovery variable, I is input current to

the neuron and ϵ, a, b are constants. These differential equations describe a

dynamic system which can be analyzed using phase plane which is also known as

state space. A phase plane represents every possible state of a dynamic system

with each possible state representing a unique point in the space. Since FHN

system needs two first order differential equations in v and w, its phase plane is

two dimensional which is represented by v − w plane. Each point in the plane

represents a state (v(t), w(t)) at some point in time. After some time ∆t that

point will evolve and move to another point (v(t+∆t), w(t+∆t)). The direction

of the movement will be determined by the velocity of v and w which are given

by f(v, w) and g(v, w) respectively. Fig. 6.1 shows a velocity field for I = 0. By

following the arrows I can track the trajectory of a point as it evolves over time.

The points where velocity of v are zero are called v-nullcline and shown as v̇ = 0

line. The line is obtained from condition f(v, w) = 0. Similarly w-nullcline is

shown as ẇ = 0 line. The point where two nullclines meet is a fixed point. A

trajectory of a point P is shown in the figure which evolves along the direction

of the arrows.

I can use the phase plane to solve for the time domain solution of the

dynamical system. Any initial condition (v0, w0) will be a point on the phase

plane. Then I can simply follow the path along the velocity arrows to find the
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Figure 6.1: Phase plane and nullclines of FHN model for ϵ = 1.25, a = 0.9,
b = 1, I = 0. Velocities are scaled to unit value. The trajectory of point P moves
in the direction of arrows.

next time step values of (v(t), w(t)). When the phase plane is available I do not

have to calculate f(v, w) and g(v, w) at every time step because they are already

stored in the phase plane. This property will be very useful later when I will

consider hardware models.

6.2.2 Solving ODE Using Phase Plane

In a digital computing platform the phase plane is represented in the form of

a 2D meshgrid array. Using this meshgrid I can solve ODE using phase plane.

In this meshgrid, I define i as the row index and j as the column index. Then

choosing a state (v, w) is equivalent to selecting an element (i, j) from the 2D

meshgrid array. If I choose an initial condition (i0, j0) corresponding to (v0, w0),
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Figure 6.2: ODE solving using phase plane meshgrid. Dotted line shows jump
of initial point over time step dt.

the corresponding velocity is (v̇0, ẇ0). Then after time step dt, finding the next

state means moving a distance (dv, dw) = (v̇0dt, ẇ0dt) along the direction of the

velocity. This is shown in Fig. 6.2.

After moving a distance of (dv, dw) in the 2D array, I arrive at the next

state (vdt, wdt) and land on element (idt, jdt). For next time step I must use the

velocity that exists at index (idt, jdt). This way I continue finding the next state

and consequently the solution of the ODE. The process described here is just

numerical integration. However, instead of feeding (vdt, wdt) to Eq. 6.1 for next

time step to find the velocities, I use velocity values from 2D meshgrid array.
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Figure 6.3: (a) Trajectory of point P = (−2.7,−2.0) and (b) time domain
solution obtained by solving ODE using phase plane and Eq. 6.1. FHN model
parameters: ϵ = 0.08, a = 0.7, b = 0.8, I = 2. Meshgrid step size is 0.1 on both
axis.
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Figure 6.4: (a) Trajectory of a point P = (−2.7,−2.0) and (b) time domain
solution obtained by solving ODE using phase plane and Eq. 6.1. FHN model
parameters: ϵ = 0.08, a = 0.7, b = 0.8, I = 2. Meshgrid step size is 0.05 on both
axis.
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Figure 6.5: root mean squared error variation of phase plane solution with the
solution from equations as meshgrid step size varies.

Fig. 6.3 shows the trajectory and time evolution of a point found by both

Eq. 6.1 and phase plane method for a meshgrid created with a step size of 0.1

on both axes. On the trajectory plot we can see that solution using phase plane

follows a path very close to the actual solution. However, in time domain plot

the phase plane solution lags behind the actual solution as time moves forward.

This is because of the meshgrid is not dense enough. Just like the case that a

numerical integration produces error when the time step is large, phase plane

integration produces error if the meshgrid step size is large. If we create a denser

meshgird using a smaller step size and use that for solving ODE, then the error

between actual time domain solution and phase plane solution should go away.

Fig. 6.4(a), (b) shows the trajectory and time evolution of a point found by both

Eq. 6.1 and phase plane method for a meshgrid created with a step size of 0.05

on both axes.

This analysis shows that it is possible to get reasonable accuracy in ODE

solution using phase plane where velocities are stored in a meshgrid. An optimum
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size of the meshgrid can be found imperially by plotting the root mean squared

error between the phase plane solution and solution directly from equations as a

function of meshgrid step size as shown in Fig. 6.5. Depending on the speed of

simulation trade off can be made between error and step size. Next, I will use

this process to find the time domain solution of a spiking neuron implemented

with MOSFET transistors.

6.3 Silicon Circuit Using Phase Plane

6.3.1 Neuron Circuit

The neuron circuit [2] I have used in this work is shown in Fig. 6.6. In practice

any neuron circuit can be used. The circuit consists of four blocks. Block a serves

as input. Block b provides thresholding and positive feedback to generate spikes.

Block c is a simple inverter acting as axon. Block d controls reset, spike width

and refractory period. The operation of the circuit is explained below.

Block a

The input block consists of input current Iin to the neuron, a leak transistor

Mk and membrane capacitor Cv. The leak transistor Mk subtracts some current

Ik from Iin. The net current Iin − Ik charges Cv, and the membrane voltage v

increases.

Block b

Membrane voltage v is applied to the gate of M1. When v exceeds the source

voltage vth, M1 starts to conduct current. This current is copied using M2−3

and fed back into the membrane capacitor Cv. In subthreshold regime, the drain

current ofM1 is exponentially related to the gate to source voltage. Hence, as gate
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Figure 6.6: Silicon neuron circuit [2]. For M1−3,5−8 W/L = 260nm/260nm, For
M4 W/L = 800nm/260nm, Cv = 50fF, Cu = 30fF.

to source voltage of M1 increases, the exponential current Ipos further increases

v and thus implements positive feedback. The exponential positive feedback

current very quickly increases v to the top voltage rail Vdd, which generates the

spike. Since M1 is not active when v is below vth, vth acts as spiking threshold.

Block c

When a spike is generated because of the positive feedback, drain voltage Vf of

M1 goes down. This is applied to the inverter formed by M4−5. As a result the

inverter output Vs goes up. Vs goes up only when v spikes. Thus the inverter

acts like an axon.
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Block d

When Vs is at Vdd, capacitor Cw is charged by current conduction through M6,

and voltage w increases. Voltage w is connected to the gate of M8 which draws

current Ineg away from Cv. As w increases, Ineg overpowers Ipos, Cv is discharged

and the neuron resets. After the neuron is reset, Cw is discharged using M7 so

that the neuron can start its spiking operation again. The refractory period is

implemented by discharging Cw slowly using Vr. Vd controls the charging time of

Cw thereby controlling the spike width.

6.3.2 Mathematical Description

The dynamics of the neuron in Fig. 6.6 can be described by (6.2). The neuron

dynamics is described by two states v and w.

dv

dt
= f(v, w) =

1

Cv

(Iin − Ik + Ipos − Ineg) (6.2a)

dw

dt
= g(v, w) =

1

Cw

(Id − Ir) (6.2b)

To solve the ODE in Eq. 6.2 using phase plane, 2D meshgrids of f(v, w) and

g(v, w) need to be generated. Using Python scripting tools [66], the 2D meshgrids

of these functions are generated by DC parametric sweep of v and w in Cadence

spectre simulation and Ipos, Ineg, Ik, Id, Ir are recorded in a text file for a given

set of control voltages. The capacitance values used for creating the meshgrids

are slightly larger than Cv and Cw. This is because gates of M1 and M8 are

adding additional capacitance to Cv and Cw respectively. For this reason, an

estimate of the parasitic gate capacitance Cp is added to both Cv and Cw. The

currents Ipos, Ineg, Ik are functions of variable gate and drain voltages of their
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respective transistors, not a function of Iin. Hence, as shown in (6.3), a meshgrid

Fgrid created once, can be used for arbitrary value of Iin.

C ′
v = Cv + Cp (6.3a)

C ′
w = Cw + Cp (6.3b)

Fgrid(v, w) = Ipos(v, w)− Ineg(v, w)− Ik(v, w) (6.3c)

fgrid(v, w) =
1

C ′
v

(Fgrid(v, w) + Iin) (6.3d)

ggrid(v, w) =
1

C ′
w

(Id(v, w)− Ir(v, w)) (6.3e)

6.3.3 Solving Circuit ODE Using Phase Plane

Using the procedure as outlined in section 6.2.2, a solution of the membrane

voltage v of the circuit in Fig. 6.6 is shown in Fig. 6.7(a), (b). The resulting

time domain solution is in very good agreement with Cadence spectre solution.

Fig. 6.8 shows that for the same settings as in Fig. 6.7, phase plane solution and

Cadence spectre solution match well for a variety of Iin. To capture nonidealities I

would have needed to formulate equations of the transistor currents which requires

the values of some parameters of the silicon process. Many of these quantities

do not have simple closed from expression and require numerical methods to

solve in most modern silicon processes. Thus the expression of the currents of

the neuron circuit would have been very complex and intractable. In addition,

the phase plane solution can be obtained with already available spiking neural

network simulator Brian2 [62]. Brian2 has the functionality to accept user defined

functions. With this functionality I am able to feed the meshgrid values to the
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Figure 6.7: (a) Trajectory of point P = (0, 0) and (b) time domain solution
obtained by solving ODE using phase plane for Iin = 6pA and time domain
membrane voltage trace. Voltage settings: Vdd = 300mV, Vk = 10mV, Vth =
50mV, Vd = 80mV, Vr = 100mV and capacitor values: Cv = 50fF, Cw = 30fF,
Cp = 5fF.
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simulator. The only overhead is to generate the meshgrids, which is a simple

parametric sweep simulation. Using phase plane, the time domain solution

of the neuron circuit ODE can be obtained with realistic device nonidealities.
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Figure 6.9: Frequency vs input current curve of the neuron circuit.

The phase plane is obtained by DC parameter sweep which does not take into

account the transient effects of the transistors such as source to body, gate to

drain capacitive currents. These transient effects have negligible effect on the

operation of the neuron. Fig. 6.9 shows a Frequency vs Input current (F-I) curve

comparison of phase plane solution and Cadence Spectre transient solution where

the transient effects are manifested as a slight difference in output frequency at

higher input current. The difference in output frequency at higher current is

about 1-2% which can be safely ignored. Here, I have shown the solution process

of a two dimensional phase plane. The process can be generalized to more than

two dimensional system as well.
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6.3.4 Meshgrid Size and Memory Access Time

For accurate solution using phase plane, the meshgrid needs to be dense or

equivalently the step size of the grid needs to be small. This means that the

meshgrid or the array will be large. The ODE solver needs to access an element

from the array at each time step. The access time of an element from an array is

constant and independent of the size of the array. Hence, large meshgrid will not

slow down the ODE solving process. The Meshgrid used in Fig. 6.7 is generated

with a step size of 1mV on both axes which produced a 301× 301 element array.

This was dense enough to produce a solution that is in good agreement with

Cadence spectre.

6.4 Neural Network Simulation

With the aid of phase plane simulation, I can carry out simulation of a network

of spiking neurons. I have chosen the MNIST [56] handwritten digit dataset

to demonstrate that. To do that, I also need hardware realistic model of the

synapses. This is done in a similar manner as neuron meshgrid generation which

is described below.

6.4.1 Synapse Circuit

The synapse circuit I used, is shown in Fig. 6.10(a). Vfg comes from an analog

memory device such as floating gate memory [67, 55] which controls drain current

of M10 and M11. The difference of PMOS and NMOS current acts as synaptic

current which is injected to the membrane potential node v. A presynaptic spike

and its inverse are applied on the gates of M9 and M12 respectively. When there

is no spike, M9 and M12 are turned off and the synapse is inactive. When there

is an incoming spike, M9 and M12 are turned on and the synapse is active. This
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(a)

(b)

Figure 6.10: (a) Synapse circuit (b) Synapse bundle circuit to eliminate leakage
current. Every transistor has size W/L = 260nm/260nm.

circuit is simple and it takes relatively small area. However, in this form of the

circuit when a large number of synapses are tied together at node v, the leakage
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currents of the inactive synapses become so high that it acts as inhibitory current

which prevents the neuron from spiking. To eliminate this problem, the NMOS

current parts of all the synapses to a neuron are bundled together by tying the

drain nodes, then collected by M14 as shown in Fig. 6.10(b). CdnT represents

the total NMOS drain to body capacitance. When there are large number of

synapses the collective drain capacitances become large enough to affect the

neural dynamics. M13 supplies the demand of leakage currents by setting an

appropriate value of Vpleak . The resulting current is copied by M15 with the help

of injection voltage Vpinj
and injected into v node of the neuron. Similarly, the

PMOS current parts are bundled and collected by M17, leakage current demand is

met by M16 by setting Vnleak
, copied using M18 with the help of injection voltage

Vninj
and injected in node v of the neuron. CdpT represents the total PMOS drain

to body capacitance. Denoting the total drain current from M13 and M14 as IpB

and total drain drain current from M16 and M17 as InB, the dynamics of the

injection voltages are given by Eq. 6.4. Here, an estimation of 0.5fF per PMOS

and 1fF per NMOS has been used for individual drain capacitance of the synapse.

dVpinj

dt
=

1

CdnT

(IpB − InT ) (6.4a)

dVninj

dt
=

1

CdpT

(IpT − InB) (6.4b)

6.4.2 Synapse Model Extraction

In every time step of a simulation, individual NMOS synapse currents Ini are

determined for a given Vfg, summed to InT =
∑

Ini from which Vpinj
is determined

for a given Vpleak . Finally, Ipinj
is determined from the value of Vpinj

. Similar
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Figure 6.11: Circuits used for generating synapse meshgrids.

process is carried out for the PMOS synapse currents Ipi. The process of finding

these quantities are done using functions where I will plug in input values and

the function will return output value. In this case, the function takes the form of

meshgrids or array table. The necessary meshgirds needed for the synapse circuit

are given in Eq. 6.5 which are extracted using circuits in Fig. 6.11. First, the

meshgrid for a single synapse current is generated. There are two components of

a synapse current, Ipi and Ini. Moreover, each current will depend on whether the

neuron is active or not. Hence, each current will have two meshgrid, one for active

synapse and other for inactive synapse. For inactive synapse, there will be leakage

current which cannot be ignored. Hence, inactive synapse current meshgrid also

needs to be generated. The circuit used for meshgrid generation of Ipi and Ini is

shown in Fig. 6.11(a). For active synapse gate voltages of M9 and M12 are pulled

down and pulled up respectively and vice versa for inactive synapse. The synapse

currents depend of the gate voltage Vg and drain voltage Vd. Both the meshgrid

of Ipi and Ini are obtained by a single parametric sweep simulation of by sweeping
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Figure 6.12: Neural network topology

Vg and Vd. Meshgrids for IpB and InB are generated using circuit of Fig. 6.11(b).

Both meshgrids are obtained by a single parametric sweep simulation by sweeping

Vleak and Vinj. Similarly, using circuit in Fig. 6.11(c), meshgrids for Ipinj
and Ininj

are obtained by sweeping Vinj and v.

Ini active = Fgrid Ini active(Vfg, Vd) (6.5a)

Ipi active = Fgrid Ipi active(Vfg, Vd) (6.5b)

Ini inactive = Fgrid Ini inactive(Vfg, Vd) (6.5c)

Ipi inactive = Fgrid Ipi inactive(Vfg, Vd) (6.5d)

IpB = Fgrid IpB(Vleak, Vinj) (6.5e)

InB = Fgrid InB
(Vleak, Vinj) (6.5f)

Ipinj
= Fgrid Ipinj

(Vinj, v) (6.5g)

Ininj
= Fgrid Ininj

(Vinj, v) (6.5h)
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Figure 6.13: Classification results from phase plane simulation and Cadence
spectre transient simulation of the network. Three examples are shown. Spike
counts at the network output are closely reproduced in the phase plane simulation.
Variation of the spike count at the network output are also reproduced.

6.4.3 Network Simulation for classification

I have used the Brian2 [62] simulator to simulate the neural network for

a classification task shown in Fig. 6.12. The dataset for handwritten digit

recognition MNIST [56] is chosen for the classification task. The dataset has

60,000 images as training set and 10,000 images as testing set.The network has

one hidden layer before the output layer. Input images are resized to 16×16.
Input spikes are supplied as spike trains with pixel value as the spike rate in

Hz. Thus the maximum spike rate for a pixel is 255Hz. As in a deep neural

network, there are bias inputs which are set at a constant 255Hz. The weights

and biases are determined from a gradient descent based deep neural network

training of the same network. The weights are then converted to floating gate

voltages. With those weights and biases some of the inference results are shown
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Figure 6.14: Spike timing in classification from phase plane simulation and
Cadence spectre transient simulation of the network. Three examples are shown.
Spike timing and spike clusters are closely reproduced.

in Fig. 6.13 and Fig 6.14. Spike timing and spike count at the network output

from the phase plane simulation are compared with Cadence spectre transient

simulation. Spike timings are compared in a raster plot a point is drawn at

spike time for the corresponding neuron. Spike count is compared with a bar

plot. It can be seen that spike timings are closely reproduced in the phase

plane simulation. There are few spikes from Cadence spectre simulation that

are not present in phase plane simulation and vice versa. This is because of the

precision of the floating gate voltages in phase plane simulation. Floating gate

voltages in phase plane simulation comes from a meshgrid. Hence, if a value

falls in between the parametric sweep values, closest value is used. Also, there
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Table 6.1: Speed Comparison for a 50ms of Network Simulation

Phase Plane Cadence Spectre

3.25 minutes 8-11 hours

are some transient effects which contributes to the difference of spike counts.

Although the spike count is different at the output, the overall variation of the

spike count from neuron to neuron is captured by the phase plane simulation.

Hence, the classification result from the phase plane simulation can be taken

as representative of BSIM circuit model based simulation result. Moreover, the

phase plane simulation takes only a fraction of the time taken by a Cadence

transient simulation. As shown in Table 6.1, a typical Cadence spectre transient

simulation of the network shown in Fig. 6.12, takes around 8 to 11 hours to

simulate 50ms of inference duration on a Red Hat desktop with 8 core CPU

and 32GB of ram. Whereas, it takes only about three minutes to simulate the

same network for the same duration of inference time on the same desktop to

obtain similar spike counts. With the use of GPU, the simulation time can be

further reduced. Brian2 simulator team has recently introduced GPU enhanced

spiking neural network simulator [68] which is claimed to be 400 times faster

than single CPU simulation. However, at the time of this writing, the GPU

enhanced simulator does not support some features of Brian2 which have been

used in phase plane simulation. Hence, GPU enhanced simulation time could

not be reported. With the use of GPU, the simulation time can be reduced to

milliseconds which will make it possible to learn network weights in presence

of hardware nonidealities. Thus, those weights can be directly transferred to a

fabricated chip.

While the phase plane simulation does not replace the transistor level

simulation, it can speed up debugging process of the network and estimation of
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network classification accuracy. In a real hardware network, signal propagation

delay might significantly affect the classification accuracy. Brian2 simulator has

the capability to include signal delays into account. For a small network as in

Fig. 6.12, the spike propagation delay is negligible. Hence, it was not considered

here. The effect of process variation on a classification result can be estimated

by implementing a Monte-Carlo like simulation by randomly varying phase plane

currents. For comparison of Monte-Carlo simulation in phase plane with Cadence,

I consider the variation of spiking rate of the neuron circuit with a sample size

of 200. Fig. 6.15 displays the results. For this simulation I have first calculated

the standard deviation of a transistor current through Monte-Carlo simulation in

cadence. Then I applied the standard deviation in the phase plane Monte-Carlo

simulation. In order to verify the efficacy of the method, I have first included

variation of all the devices in the neuron. Then excluded a single device of the

neuron from applying variation. In every case the Monte-Carlo histogram closely

matched the result from the phase plane method. This analysis shows that the

phase plane method simulation can capture the process variation as well.

6.5 Conclusion

In this chapter, I have presented a method to incorporate hardware BSIM model

into simulation of a neuron circuit and neural network with synapse circuits. I

have used dynamical system phase plane analysis to aid us with solving circuit

differential equation and synapse differential equation. I have integrated the

process with an existing spiking neural network simulator. This makes it a

relatively easy process to integrate hardware non-idealities into account in analog

spiking neural network simulation. I have shown that the network output

simulated with the phase plane method, closely follows the output of the network

simulated in Cadence spectre. Moreover, phase plane simulation provides a large
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Figure 6.15: Comparison of Monte-Carlo simulation on neuron spiking
frequency. Histogram results are obtained by applying process variation to
devices as: (a) Including all devices (b) Excluding M8 (c) Excluding M6 (d)
Excluding M7.

time advantage, 160 times faster in our example, over the Cadence simulation

that can be used to speed up the spiking neural network design process.
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Chapter 7

Conclusion

Figure 7.1: A neuromorphic image sensor processing pipeline.

In conclusion, this dissertation has presented circuit design and algorithmic

techniques to minimize circuit components and power dissipation, which can be

applied to machine learning on the edge. Edge systems necessitate small-scale

systems with low power dissipation. Neuromorphic hardware has the promise

of providing low power, compact systems that can function in the presence of

noise. This dissertation has mainly focused on the hardware implementation of

a neuromorphic spiking neural system. Fig. 7.1 shows an example neuromorphic

image sensor with on board image processor. In this dissertation I have addressed

the energy and area efficiency of sparse coding processor, neuron and synapses

in the spiking neural network processor and simulation technique of the spiking

neural network processor. It is shown that hardware complexity can be decreased
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by optimizing learning algorithms such as sparse coding. A hardware designer

who wants to implement sparse coding on a chip will benefit from the increased

area efficiency of the proposed algorithm. A compact, low power spiking neuron

circuit is presented. A synaptic array circuit is also presented with the mitigation

of leakage current. A fully connected spiking neural network can be implemented

with the proposed neurons and synapses. In order to pave the way for circuit

simulation with spiking neural networks for custom circuits, a phase plane method

of simulation is presented which can reliably account for the hardware non-

idealities. More research and experiments are required both in algorithms and

hardware in order to make the neuromorphic edge machine learning competitive

with the digital edge machine learning. There is signal communication complexity

associated with implementing convolutional neural networks. The efficiency of

the digital hardware can be utilized for the communication of signals, whereas

the analog circuit can be utilized for computation to take advantage of energy

efficiency. Hence, an efficient neuromorphic processor typically consists of both

digital and analog circuits. The neurons and synapse circuits presented here

improve the energy efficiency of the analog compute domain.

As a closing thought, I would like to express my own point of view as a

researcher. As electrical engineers, we need to utilize the findings of neuroscience

and biological research. Biological systems have optimized themselves over the

course of millions of years. Their system is robust to noise. They consume a small

amount of energy to make intelligent decisions. The problems we want to solve as

engineers, the chances are very high that a biological system has already solved

them with far greater efficiency than we could. One example is the information

encoding system as binary number representation vs. population coding. The

binary number system is the foundation of modern digital computation. Using

an analog to digital converter, an analog value is converted to a binary number.
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Population coding can be treated as the equivalent of binary encoding. Larger

analog values require more bits to represent them. Similarly, larger analog inputs

recruit more neurons for representation. Biological systems are thought to make

internal models of the world based on the small amounts of information they

receive through vision, hearing or touch. It recreates the outside world in the

brain. Our electronic screens also recreate images based on the binary encoding.

Overall, biological systems do similar things but with different computational

approaches.

Biological systems are subject to stringent resource constraints. This can be

attributed to why the nervous system can solve problems efficiently. I think

when trying to solve a problem, biological systems resort to a fundamental

computational principle without which artificial intelligence cannot move forward.

This, I think, is the reason why the blackbox model of the neural network is

difficult to interpret. In A.6, I point out there may exist other techniques to

perform supervised learning where gradient descent fails. There are still dark

areas in the realm of intelligent computation where light needs to be shed. I

am hoping that these discoveries will eventually make neurmorphic systems as

ubiquitous as digital systems are today.
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Appendix A

Supervised Learning as Negative Feedback

A.1 Introduction

Gradient descent has long been the dominant method for optimizing weights in

neural networks. It is constructed purely from a mathematical point of view

with the goal to minimize a loss function. Many mathematical formulations

are modeled after a physical process. The most relevant example is the deep

neural network which is modeled after a biological process. Having a physical

process behind a mathematical model has the advantage that the behavior of the

physical process can provide intuition for the mathematical model. For example,

the convolutional neural network [69], which now forms the backbone of image

recognition, is inspired by the receptive field of the mammalian visual cortex [70]

. Gradient descent with momentum is developed by analogy with stabilizing

a heavy ball rolling down a hill. I believe that studying the physical process

which describes the optimization should help us design a better optimizer. Here

I present a negative feedback system as a physical analogy of optimization and

show a close relationship to gradient descent. This optimization method is based

on the ability of a negative feedback system to perform the inverse operation

of a function. This principle is well known in the analog circuits and systems
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(a) (b)

Figure A.1: (a) A generic negative feedback system (b) An Operational
amplifier with an exponential element in the feedback path realizes a logarithmic
input-output function. The transistor Q has exponential voltage to current
relationship. The feedback system implements inverse of the exponential i.e.
logarithmic function.

community and many useful analog circuits have been constructed [71] using this

principle.

A.2 Theoretical Background

For a negative feedback system as shown in Fig. A.1a, if I define the forward

function, backward function, and the error function with Eq.s (A.1), (A.2) and

(A.3) respectively, then the input output relationship is expressed by Eq. (A.4).

For a forward function of the form y = F (x) = Ax where A is the gain, the

inverse of the forward function is x = F−1(y) = y/A. If the gain A is large

then F−1 → 0. For error function of the form y = E(x) = ux where u is the

gain, E−1(F−1) → 0 for high forward gain A. Then the output of the feedback

system becomes inverse of the backward function as in Eq. (A.7). Effectively, the

negative feedback system is implementing the inverse of the function that is in

the backward path.
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xo = F (xe) (forward function) (A.1)

xf = B(xo) (backward function) (A.2)

xe = E(xi − xf ) (error function) (A.3)

F−1(xo) = E(xi −B(xo)) (A.4)

xi = E−1(F−1(xo)) +B(xo) (A.5)

xi ≈ B(xo) (for large A, E−1(F−1(xo))→ 0) (A.6)

xo = B−1(xi) (A.7)

This property is commonly used in analog circuits in order to perform inverse

operation of the transistor function [71, 72]. An example circuit is shown

in Fig. A.1b. In a transistor an input voltage creates an exponential output

current. However, the transistor is an uni-directional device which means that

pushing a current at the output of the transistor will not produce a voltage at

the input. In order to make that operation work, a negative feedback system

using an operational amplifier of gain A is used which implements that inverse

operation. This way an input current Iin into the feedback system produces the

corresponding transistor voltage Vout.

It should be noted that even if the backward function B is not completely

invertible (which is the case for an uni-directional transistor), the overall system

appears to be performing B−1. This is because the system is not using xi (the

range of B) as input to the function B−1 directly. Rather, as in Fig. A.1a, the

output of the system xo acts as the domain of B. The output of B is then

compared with the target range of B i.e. xi. When the difference of xi and xf is

zero, the overall system output xo is approximately the output of B−1.
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Figure A.2: A negative feedback system as optimizer for machine learning
system.

A.3 Method

A.3.1 System Setup

To frame optimization as a negative feedback problem, I express the a layer as

a function of the weights, with the inputs held constant. In a neural network, a

single layer can be expressed as a function of a linear combination of x with a

weight vector w = [w1, w2, . . . , wn]
T as shown in Eq. (A.8). There can be linear or

non-linear activation function σ inside the function f . A bias term can be easily

implemented by setting an element of the x vector to 1. The variables xi and y

are training samples which are known quantities for a problem. By implementing

the inverse operation of the function in Eq. (A.9) I can find the weights wi, which
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effectively implements an optimization operation.

y = f(w) = σ(
∑
i

wixi) (A.8)

w = f−1(y) (A.9)

To implement the inverse operation using negative feedback, the function f is

placed in the feedback path as shown in Fig. A.2, x training samples are used in

the backward function, weights are initialized randomly and y training samples

are set as input to the feedback system. An initial prediction of the weight vector

w is used by the backward function to produce y′. Using the difference y− y′ an

error e is generated. The process of generating a vector e with a scalar y − y′ is

described in the following subsection.

A.3.2 Stability Criteria

In order for a feedback system to be stable, the bandwidth of the system should

be limited, meaning that the output should change slowly (a low frequency

system). Hence, instead of changing the weight from the previous value to the

new value predicted by the forward function instantly (infinite bandwidth), a

small increment is made from the previous value toward the predicted value by

using a first order low pass filter as shown below.

w

w′ =
γ

sτ + 1
(Laplace transformed low pass filter transfer function)

τ
∂w

∂t
= −w + γw′

wt = wt−1 + (γw′ −wt−1)
∂t

τ
= wt−1 + (Aγe−wt−1)η (A.10)
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This is similar to using a small learning rate in gradient descent. The prediction

labeled w′ from the forward function goes into a low pass filter characterised

by a time constant τ and arbitrary constant γ which outputs slowly varying w.

This new value of w goes around the feedback loop again and with consecutive

iterations around the feedback loop, the output converges to the optimum value of

w. The weight update method because of the low pass filter is given in Eq. (A.10)

where the quantity η = ∂t/τ acts as the learning rate. The superscript t denotes

the weight at time t during iteration.

Another important criterion for stability is that the gain around the feedback

loop must be negative when the magnitude is greater than unity [73]. From

Fig. A.2, the forward gain is A and the backward gain is β = ∂y′/∂w. The loop

gain of the system is −1 × Aβ. Hence, I have to make sure that the product

of the forward and backward gain for each component of β is always positive.

The forward gain A is typically positive. If any component of β is negative for

a training sample then the corresponding element of the gain product becomes

negative. In general, if I use a forward gain of Aβ, then the element-wise product

of forward and backward gain is Aβ×β = Aβ2 which is guarantied to be positive.

With Aβ as the forward gain, the forward function can now take scalar error y−y′

and produce vector w′ as shown below.

w′ = Aβ × (y − y′) = A× β(y − y′) (A.11)

In (A.11), I can separate β from the forward gain and attach it to y − y′.

This way I can keep using a forward gain of A and use e = β(y − y′) as the new

error. The error is now a function of scalar y − y′ which is shown by an error

function block E in Fig. A.2. I also notice that the error function is of the form

e = E(x) = ux as assumed in section A.2. The error is calculated by multiplying

104



the difference y − y′ with backward gain β. Thus the gain of the error function

is u = β.

A.4 Application in Machine Learning

In the following sections, I apply this method starting with simpler regression

problems and then gradually develop methods for complex problems such as

deep neural networks.

A.4.1 Regression

In machine learning, the activation functions can be unity, ReLU, tanh etc. The

backward gain of the feedback system for any activation function is β = ∂y′/∂w =

σ′x where σ′ is the gain of the activation function. For a single training sample,

the error corresponding to ith weight is ewi
= ui(y − y′) = σ′

ixi(y − y′). With

many training samples the error is the sum of the errors from all the samples.

The error for all the weights can be expressed as matrix multiplication, as in

Eq. (A.12), where u
[k]
wi = σ′

i
[k]x

[k]
i is the error gain for ith weight and kth sample.

For all the training samples the error function gain becomes a matrix U.

e = E(y − y′) = U(y − y′)T =


u
[1]
w1 u

[2]
w1 . . . u

[m]
w1

u
[1]
w2 u

[2]
w2 . . . u

[m]
w2

...
...

. . .
...

u
[1]
wn u

[2]
wn . . . u

[m]
wn




y[1] − y′[1]

y[2] − y′[2]

...

y[m] − y′[m]

 =


ew1

ew2

...

ewn


(A.12)

A.4.2 Single Layer Classifier

The regression problem can be turned into a perceptron classifier by using softmax

or tanh as the activation function. Hence, Eq. (A.12) also represents the error
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Figure A.3: Backpropagating the difference vector to previous layers.

function for a single layer perceptorn. For a multi class classifier the error function

is simply the extension of Eq. (A.12). The single row of y−y′ becomes a matrix

with y − y′ of different classes stacked as rows.

A.4.3 Deep Network

To use this system in deep networks, a method for error backpropagation is

needed. A network is shown in Fig. A.3 with l denoting layer number. The low

pass filters haven been omitted in the figure for simplicity. The input from second

to last layer y′l−2 generates the final output y′l. I treat the output y′l as a result

of the input y′l−2 as in Eq. (A.13). For cth class output it can be expressed as

Eq. (A.14). The backward gain for a weight is given by Eq. (A.15). Multiplying

the difference dlc = (ylc − y′lc ) with the backward gain, I can write the error for
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ewl−1
ji

as Eq. (A.16).

y′l = σ(WTl
σ(WTl−1

y′l−2
)) (A.13)

ylc = σ(
∑
i

wl
ic(σ(

∑
j

wl−1
ji yl−2

j ))i) (A.14)

βwl−1
ji,c

= σ′lwl
icσ

′l−1yl−2
j (A.15)

ewl−1
ji

= σ′l−1yl−2
j

∑
c

σ′lwl
icd

l
c (A.16)

ewl−1
ji

= σ′l−1yl−2
j dl−1

i = ul−1
j dl−1

i (A.17)

The sum over c expresses the fact that every class output is influenced by wl−1
ji .

With dl−1
i =

∑
c σ

′lwl
icd

l
c in Eq. (A.17), dl−1

i can be thought of as the difference

error for layer l − 1. Also, ul−1
j represents the error function gain. The outcome

is shown in Fig. A.3. The difference vector of the last layer is multiplied with

σ′lWl which produces the difference vector for the previous layer. This way error

is backpropagated to all the previous layers.

A.5 Comparison with Gradient Descent

For a negative feedback system it is important that the forward and backward

gain product for each weight is positive. The gain of the error function as u = β

satisfies that condition. In fact I can use u = βn as the gain as well where n

is an odd positive integer. This way the negative feedback system represents an

infinite number of optimizers. The reason for odd positive n is that it preserves

the sign of β. When n = 1, the negative feedback system error implements the

error gradient of the gradient descent optimization method. The gradient descent

method minimizes a loss function, e.g. squared error as in Eq. (A.18). The weight

parameters are updated by going in the opposite direction of the gradient which is
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given by Eq. (A.19) for a weight wi. Using u = β in Eq. (A.12), the feedback error

for a weight wi is given by Eq. (A.20). I see that both expressions are same except

for a factor of 2/m. The relationship between the two is ewi
= (m/2)(−∇qwi

).

In gradient descent with a weight decay factor λ, the update rule is given by

wt = wt−1 − η(∇qwi
+ λwt−1). If I let η ← ηλ, γ ← 2/(Amλ) and substitute

ewi
= (m/2)(−∇qwi

) in Eq. (A.10) I get Eq. (A.21) which is exactly the same as

gradient descent update rule.

q =
1

m

∑
k

(y[k] − y′[k])2 (A.18)

−∇qwi
=

2

m

∑
k

(y[k] − y′[k]).σ′.xi (A.19)

ewi
=

∑
k

(y[k] − y′[k]).σ′.xi (A.20)

wt
i = wt−1

i − η(∇qwi
+ λwt−1

i ) (A.21)

At this stage I can see that with u = β which is the condition for squared

error minimization, the negative feedback system and gradient descent method

are equivalent. Also, by noticing Fig. A.3, one can easily realize that the error

propagation to previous layers is the same as the backpropagation technique in

gradient descent method [11]. I have derived it only using the properties of the

negative feedback system. Thus, the negative feedback system allows us to look

at and analyze the optimization problem from a different perspective. In gradient

descent the objective is to minimize a loss function. However, in negative feedback

system, the objective is inverse the backward function.
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Figure A.4: SAR ADC as supervised learning system.

A.6 Analog to Digital Converter as Supervised Learning System

At this point, it can be established that negative feedback is the computational

principle for supervised learning. From the mathematical analysis, it is also seen

that the gradient of the backward function is needed in order to establish the

error function. However, a counter example can be given where gradient of the

backward function is not required in order to establish the error function. The

Successive Approximation Register (SAR) Analog to Digital Converter (ADC) is

well known as a digital converter. However, when looked at closely, it is apparent

that it is a supervised learning system. Fig. A.4 shows a SAR ADC system. S/H

is the sample and hold block that samples the analog voltage. SAR is the control

logic block that generates the output digital binary bits. DAC is the digital to

analog converter block that generates analog voltage with the digital bits and a

reference voltage Vref as input. The comparator compares the input and feedback

voltage. The comparator outputs a binary error signal. Depending on the error

signal, the SAR block implements a binary search algorithm to generate a guess

of digital output. The DAC then converts the digital output back to an analog

value, which is compared with the original analog value. Once all the bits have

been generated, SAR outputs an End of Conversion (EOC) signal.
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M = DN−1x
N−1 +DN−1x

N−1 + · · ·+D2x
2 +D1x

1 +D0x
0 (A.22)

Overall, the entire system is a negative feedback system that tries to learn

the binary representation of the given input. DAC functions as the backward

function. SAR functions as the error function and high gain block. The

binary to decimal conversion is given by (A.22) where N is the number of bits,

x = 2 and M is the analog decimal. [xN−1, xN−2, · · · , x1, x0] is the input to

the backward function, M is the teacher signal and [DN−1, DN−2, · · · , D1, D0] is

the learned weights. What in interesting is that gradient descent fails to learn

the binary representation. The weights [DN−1, DN−2, · · · , D1, D0] are binary

which makes (A.22) non-differentiable. However, the SAR ADC can learn binary

representation by using binary search as the error function. This clearly shows

that there may exist error functions other than pure mathematical expressions as

given by (A.20) and still function as a negative feedback learning system. This

insight is not readily obtained purely from the gradient descent point of view.
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Appendix B

Codes Used in Simulation

B.1 Meshgrid Generation

Listing B.1: Neuron phase plane

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Nov 21 21:49:04 2019

5

6 @author: mhasan13

7 """

8

9

10 from skillbridge import Workspace

11 from skillbridge.client.translator import Symbol

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import utils

15 import pickle as pkl

16

17 ########### design variables ############

18 vdd = 300e-3

19 vk = 10e-3
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20 vr = 100e-3

21 vth = 50e-3

22 vw = 80e-3

23 vss = 0

24 ########## sweep variables ##############

25 step = 0.1e-3

26 extended_zone = 0.0

27 #########################################

28

29

30 # connect to server

31 ws = Workspace.open()

32

33 # set simulator

34 ws[’simulator ’]( Symbol(’spectre ’))

35 # set schematic

36 ws[’design ’](’/tmp/simulation/neuron_0p3/spectre/schematic/

netlist/netlist ’)

37 # results directory

38 ws[’resultsDir ’]( ’/tmp/simulation/neuron_0p3/spectre/schematic ’

)

39 # set model files

40 ws[’modelFile ’]( utils.model_files [0], utils.model_files [1], utils.

model_files [2],utils.model_files [3],utils.model_files [4],utils

.model_files [5],utils.model_files [6],utils.model_files [7],

utils.model_files [8], utils.model_files [9],

41 utils.model_files [10], utils.model_files [11],

utils.model_files [12], utils.model_files [13], utils.model_files

[14], utils.model_files [15], utils.model_files [16], utils.

model_files [17], utils.model_files [18], utils.model_files [19],
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42 utils.model_files [20], utils.model_files [21],

utils.model_files [22], utils.model_files [23], utils.model_files

[24], utils.model_files [25], utils.model_files [26], utils.

model_files [27], utils.model_files [28]

43 )

44 # dc analysis

45 ws[’analysis ’]( Symbol(’dc’),’?param’, ’v’, ’?start’, vss -

extended_zone ,’?stop’, vdd+extended_zone , ’?step’, step)

46

47 # set design variables

48 ws[’desVar ’]( "v", 0)

49 ws[’desVar ’]( "u", 0)

50 ws[’desVar ’]( "vdd", vdd )

51 ws[’desVar ’]( "vk", vk )

52 ws[’desVar ’]( "vr", vr )

53 ws[’desVar ’]( "vth", vth )

54 ws[’desVar ’]( "vw", vw )

55 # analysis order in case of multiple analysis

56 ws[’envOption ’]( Symbol(’analysisOrder ’), [’dc’])

57 # to be saved currents

58 ws[’save’]( Symbol(’i’), "/pos_feed/D", "/neg_feed/D", "/width_p/

D", "/refrac_n/D", "/Mk/D" )

59 # set temp

60 ws[’temp’](27)

61 # param sweep

62 dummy= ws[’paramAnalysis ’](’u’, start=vss -extended_zone , stop=vdd

+extended_zone , step=step) # values not string

63

64 # run

65 ws[’paramRun ’]()

66 # skillbridge cannot parse stdobj@0xhexnumber type data. but

assigning return value to a variable prevents error

67 dummy = ws[’selectResult ’]( Symbol(’dc’))
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68

69 waves = [ws.get.data(’/pos_feed/D’), ws.get.data(’/neg_feed/D’),

ws.get.data(’/width_p/D’), ws.get.data(’/refrac_n/D’), ws.get.

data(’/Mk/D’), ws.get.data(’/axon’)]

70 data = []

71 n_param = 2

72 for wave in waves:

73 mgrid = utils.n_param_wave_to_meshgrid(ws, wave , [None for _

in range(n_param)], n_param , n_param)

74 data.append(mgrid)

75

76 utils.meshgrid_to_pickle(data , n_param , ’neuron -dense.pickle ’)

77

78 ############ draw phase space #############

79 #with open (’neuron.pickle ’, ’rb ’) as fp:

80 # itemlist = pkl.load(fp)

81 #

82 #data = np.array(itemlist)

83 #u_range = data.shape [1]

84 #v_range = data.shape [2]

85 #Cv = 50e-15

86 #Cu = 30e-15

87 #u = data [0 ,::10 ,::10]

88 #v = data [1 ,::10 ,::10]

89 ## -ve sign has to be fixed for pmos currents now

90 ## as cadence introduced a -ve sign for outgoing current

91 #dvdt = (1/Cv)*(-data [2 ,::10 ,::10] - data [3 ,::10 ,::10])

92 #dudt = (1/Cu)*(-data [4 ,::10 ,::10] - data [5 ,::10 ,::10])

93 #

94 #r = np.sqrt(dvdt **2 + dudt **2)

95 #dvdt = dvdt / r

96 #dudt = dudt / r

97 #
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98 #fig = plt.figure ()

99 #ax = fig.gca()

100 #ax.quiver(v,u,dvdt ,dudt)

Listing B.2: Active/Inactive synapse current phase plane using Fig. 6.11(a)

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Nov 21 21:49:04 2019

5

6 @author: mhasan13

7 """

8

9

10 from skillbridge import Workspace

11 from skillbridge.client.translator import Symbol

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import utils

15 import pickle as pkl

16

17 ########### design variables ############

18 vdd = 300e-3

19 vss = 0

20 vfg = 100e-3

21 vref = 100e-3

22 v = 150e-3

23 spike_p = vss

24 spike_n = vdd

25 ########## sweep variables ##############

26 step = 100e-6

27 extended_zone = 0.0

28 #########################################
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29

30

31 # connect to server

32 ws = Workspace.open()

33

34 # set simulator

35 ws[’simulator ’]( Symbol(’spectre ’))

36 # set schematic

37 ws[’design ’](’/tmp/simulation/synapse_0p3/spectre/schematic/

netlist/netlist ’)

38 # results directory

39 ws[’resultsDir ’]( ’/tmp/simulation/synapse_0p3/spectre/schematic ’

)

40 # set model files

41 ws[’modelFile ’]( utils.model_files [0], utils.model_files [1], utils.

model_files [2],utils.model_files [3],utils.model_files [4],utils

.model_files [5],utils.model_files [6],utils.model_files [7],

utils.model_files [8], utils.model_files [9],

42 utils.model_files [10], utils.model_files [11],

utils.model_files [12], utils.model_files [13], utils.model_files

[14], utils.model_files [15], utils.model_files [16], utils.

model_files [17], utils.model_files [18], utils.model_files [19],

43 utils.model_files [20], utils.model_files [21],

utils.model_files [22], utils.model_files [23], utils.model_files

[24], utils.model_files [25], utils.model_files [26], utils.

model_files [27], utils.model_files [28]

44 )

45 # dc analysis

46 ws[’analysis ’]( Symbol(’dc’),’?param’, ’v’, ’?start’, vss -

extended_zone ,’?stop’, vdd+extended_zone , ’?step’, step)

47

48 # set design variables

49 ws[’desVar ’]( "v", 0)
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50 ws[’desVar ’]( "vfg", 0)

51 ws[’desVar ’]( "vdd", vdd )

52 ws[’desVar ’]( "vref", vref )

53 ws[’desVar ’]( "spike_p", spike_p )

54 ws[’desVar ’]( "spike_n", spike_n)

55 # analysis order in case of multiple analysis

56 ws[’envOption ’]( Symbol(’analysisOrder ’), [’dc’])

57 # to be saved currents

58 ws[’save’]( Symbol(’i’), "/syn_p_v3/D", "/syn_n_v3/D" )

59 # set temp

60 ws[’temp’](27)

61

62 dummy = ws[’paramAnalysis ’](’vfg’, Symbol(’?start ’), vss -

extended_zone , Symbol(’?stop’), vdd+extended_zone , Symbol(’?

step’), step) # values not string

63

64 # run

65 ws[’paramRun ’]()

66 # skillbridge cannot parse stdobj@0xhexnumber type data.

67 dummy = ws[’selectResult ’]( Symbol(’dc’))

68

69

70 waves = [ws.get.data(’/syn_p_v3/D’), ws.get.data(’/syn_n_v3/D’)]

71 data = []

72 n_param = 2

73 for wave in waves:

74 mgrid = utils.n_param_wave_to_meshgrid(ws, wave , [None for _

in range(n_param)], n_param , n_param)

75 data.append(mgrid)

76

77 utils.meshgrid_to_pickle(data , n_param , ’synapse -active.pickle ’)

78

79 ####################
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80 with open (’synapse -active.pickle ’, ’rb’) as fp:

81 itemlist_active = pkl.load(fp)

82

83

84 #

=============================================================================

85 # for non active synapse

86 #

=============================================================================

87

88 # non spike

89 spike_n = vss

90 # set design variable

91 ws[’desVar ’]( "spike_n", spike_n)

92

93 # run again

94 ws[’paramRun ’]()

95 # skillbridge cannot parse stdobj@0xhexnumber type data.

96 dummy = ws[’selectResult ’]( Symbol(’dc’))

97

98 waves = [ws.get.data(’/syn_p_v3/D’), ws.get.data(’/syn_n_v3/D’)]

99 data = []

100 n_param = 2

101 for wave in waves:

102 mgrid = utils.n_param_wave_to_meshgrid(ws, wave , [None for _

in range(n_param)], n_param , n_param)

103 data.append(mgrid)

104

105 utils.meshgrid_to_pickle(data , n_param , ’synapse -inactive.pickle ’

)

106
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107 ####################

108 with open (’synapse -inactive.pickle ’, ’rb’) as fp:

109 itemlist_nonactive = pkl.load(fp)

Listing B.3: Synapse leakage bypass phase plane using Fig. 6.11(b)

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Nov 21 21:49:04 2019

5

6 @author: mhasan13

7 """

8

9

10 from skillbridge import Workspace

11 from skillbridge.client.translator import Symbol

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import utils

15 import pickle as pkl

16

17 ########### design variables ############

18 vdd = 300e-3

19 vss = 0

20 v_leak = 100e-3

21 idc_max = 30e-9

22 idc = 1e-9

23 ########## sweep variables ##############

24 v_leak_step = 0.1e-3

25 v_inj_step = 100e-6

26 #########################################

27

28
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29 # connect to server

30 ws = Workspace.open()

31

32 # there is a bug in IC6.18

33 # https :// community.cadence.com/cadence_technology_forums/f/

custom -ic -skill /42502/ ocean -script -nested -parametric -analysis -

problem

34 # envSetVal (" spectre.envOpts" "controlMode" ’string "batch ")

35 # the above command has to be set to get paramRun () working

36 ws[’envSetVal ’](’spectre.envOpts ’, ’controlMode ’, Symbol(’string ’

), ’batch ’)

37

38 # set simulator

39 ws[’simulator ’]( Symbol(’spectre ’))

40 # set schematic

41 ws[’design ’](’/tmp/simulation/synapse_0p3_modified/spectre/

schematic/netlist/netlist ’)

42 # results directory

43 ws[’resultsDir ’]( ’/tmp/simulation/synapse_0p3_modified/spectre/

schematic ’ )

44 # set model files

45 ws[’modelFile ’]( utils.model_files [0], utils.model_files [1], utils.

model_files [2],utils.model_files [3],utils.model_files [4],utils

.model_files [5],utils.model_files [6],utils.model_files [7],

utils.model_files [8], utils.model_files [9],

46 utils.model_files [10], utils.model_files [11],

utils.model_files [12], utils.model_files [13], utils.model_files

[14], utils.model_files [15], utils.model_files [16], utils.

model_files [17], utils.model_files [18], utils.model_files [19],

47 utils.model_files [20], utils.model_files [21],

utils.model_files [22], utils.model_files [23], utils.model_files

[24], utils.model_files [25], utils.model_files [26], utils.

model_files [27], utils.model_files [28]
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48 )

49 # dc analysis

50 ws[’analysis ’]( Symbol(’dc’),’?param’, ’v_inj’, start=0, stop=vdd ,

step=v_inj_step)

51

52 # set design variables

53 ws[’desVar ’]( "vm", vdd /2)

54 ws[’desVar ’]( "v_inj", 0)

55 ws[’desVar ’]( "vdd", vdd )

56 ws[’desVar ’]( "v_leak", 0)

57 ws[’desVar ’]( "idc", idc )

58 # analysis order in case of multiple analysis

59 ws[’envOption ’]( Symbol(’analysisOrder ’), [’dc’])

60 # to be saved currents

61 ws[’save’]( Symbol(’i’), "/PM12/D", "/PM13/D", "/NM10/D", "/NM11/

D")

62 # set temp

63 ws[’temp’](27)

64

65 dummy = ws[’paramAnalysis ’](’v_leak ’, start=vss , stop=vdd , step=

v_leak_step) # values not string

66

67 # run

68 ws[’paramRun ’]()

69 # skillbridge cannot parse stdobj@0xhexnumber type data.

70 dummy = ws[’selectResult ’]( Symbol(’dc’))

71

72

73 waves = [ws.get.data(’/PM12/D’), ws.get.data(’/PM13/D’), ws.get.

data(’/NM10/D’), ws.get.data(’/NM11/D’)]

74 data = []

75 n_param = 2

76 for wave in waves:

121



77 mgrid = utils.n_param_wave_to_meshgrid(ws, wave , [None for _

in range(n_param)], n_param , n_param)

78 data.append(mgrid)

79

80 utils.meshgrid_to_pickle(data , n_param , ’synapse -bundle -current.

pickle ’)

81

82 ####################

83 with open (’synapse -bundle -current.pickle ’, ’rb’) as fp:

84 itemlist = pkl.load(fp)

Listing B.4: Synapse current mirror phase plane using Fig. 6.11(c)

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Nov 21 21:49:04 2019

5

6 @author: mhasan13

7 """

8

9

10 from skillbridge import Workspace

11 from skillbridge.client.translator import Symbol

12 import numpy as np

13 import matplotlib.pyplot as plt

14 import utils

15 import pickle as pkl

16

17 ########### design variables ############

18 vdd = 300e-3

19 vss = 0

20 v_leak = 100e-3

21 idc_max = 10e-9
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22 idc = 1e-9

23 ########## sweep variables ##############

24 vm_step = 0.5e-3

25 v_inj_step = 100e-6

26 #########################################

27

28

29 # connect to server

30 ws = Workspace.open()

31

32 # there is a bug in IC6.18

33 # https :// community.cadence.com/cadence_technology_forums/f/

custom -ic -skill /42502/ ocean -script -nested -parametric -analysis -

problem

34 # envSetVal (" spectre.envOpts" "controlMode" ’string "batch ")

35 # the above command has to be set to get paramRun () working

36 ws[’envSetVal ’](’spectre.envOpts ’, ’controlMode ’, Symbol(’string ’

), ’batch ’)

37

38 # set simulator

39 ws[’simulator ’]( Symbol(’spectre ’))

40 # set schematic

41 ws[’design ’](’/tmp/simulation/synapse_0p3_modified/spectre/

schematic/netlist/netlist ’)

42 # results directory

43 ws[’resultsDir ’]( ’/tmp/simulation/synapse_0p3_modified/spectre/

schematic ’ )

44 # set model files

45 ws[’modelFile ’]( utils.model_files [0], utils.model_files [1], utils.

model_files [2],utils.model_files [3],utils.model_files [4],utils

.model_files [5],utils.model_files [6],utils.model_files [7],

utils.model_files [8], utils.model_files [9],
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46 utils.model_files [10], utils.model_files [11],

utils.model_files [12], utils.model_files [13], utils.model_files

[14], utils.model_files [15], utils.model_files [16], utils.

model_files [17], utils.model_files [18], utils.model_files [19],

47 utils.model_files [20], utils.model_files [21],

utils.model_files [22], utils.model_files [23], utils.model_files

[24], utils.model_files [25], utils.model_files [26], utils.

model_files [27], utils.model_files [28]

48 )

49 # dc analysis

50 ws[’analysis ’]( Symbol(’dc’),’?param’, ’v_inj’, start=0, stop=vdd ,

step=v_inj_step)

51

52 # set design variables

53 ws[’desVar ’]( "vm", vdd /2)

54 ws[’desVar ’]( "v_inj", 0)

55 ws[’desVar ’]( "vdd", vdd )

56 ws[’desVar ’]( "v_leak", 0)

57 ws[’desVar ’]( "idc", idc )

58 # analysis order in case of multiple analysis

59 ws[’envOption ’]( Symbol(’analysisOrder ’), [’dc’])

60 # to be saved currents

61 ws[’save’]( Symbol(’i’), "/PM8/D", "/NM8/D" )

62 # set temp

63 ws[’temp’](27)

64

65 dummy = ws[’paramAnalysis ’](’vm’, start=vss , stop=vdd , step=

vm_step) # values not string

66

67 # run

68 ws[’paramRun ’]()

69 # skillbridge cannot parse stdobj@0xhexnumber type data.

70 dummy = ws[’selectResult ’]( Symbol(’dc’))
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71

72

73 waves = [ws.get.data(’/PM8/D’), ws.get.data(’/NM8/D’)]

74 data = []

75 n_param = 2

76 for wave in waves:

77 mgrid = utils.n_param_wave_to_meshgrid(ws, wave , [None for _

in range(n_param)], n_param , n_param)

78 data.append(mgrid)

79

80 utils.meshgrid_to_pickle(data , n_param , ’synapse -bundle -injection

.pickle ’)

81

82 ####################

83 with open (’synapse -bundle -injection.pickle ’, ’rb’) as fp:

84 itemlist = pkl.load(fp)

Listing B.5: Utlity functions

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Sat Nov 16 21:51:14 2019

5

6 @author: mhasan13

7 """

8

9 from skillbridge import Workspace

10 import numpy as np

11 import pickle as pkl

12

13 # eny values in ocean containing apostrophe like ’tran use Symbol

(’tran ’) in python
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14 # use Symbol(’tran ’) to set ’tran ; client.translator import

Symbol

15

16

17 model_files = [

18 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/design.scs", ""],

19 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108001_30.scs", "

bjt_typical"],

20 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108001_30.scs", "

diode_typical"],

21 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108001_30.scs", "

res_typical"],

22 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108001_30.scs", "

moscap_typical"],

23 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108001_30.scs", "

mimcap_typical"],

24 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108001_30.scs", "typical"],

25 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm142005 -3.scs", "typical"],

26 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm142005 -3.scs", "

diode_typical"],

27 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "Def"],

28 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "Typ_DNW"],
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29 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

Typical_1V2"],

30 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

Typical_LVT"],

31 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

Typical_HVT"],

32 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

Typical_2V5"],

33 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

Typical_3V3"],

34 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

diode_typical"],

35 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

NMOSVAR_Typical"],

36 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "Typ_PNVar"

],

37 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "Typ_RFESD"

],

38 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

MIM_Typical"],

39 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

SPI_OCT_Typical"],
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40 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "

SYM_Typical"],

41 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "CT_Typical

"],

42 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "X_Typical"

],

43 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "BALUN"],

44 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "RFBP_Typ"

],

45 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "CPW"],

46 ["/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/pdk/gf

-130/ chrt13rf_7LM/models/Spectre/sm108002_24.scs", "MSL"]

47 ]

48

49

50 def waveform_to_vector(ws , waveform):

51 y_wave = ws.dr.get_waveform_y_vec(waveform)

52 y_vec = []

53 for i in range(ws.dr.vector_length(y_wave)):

54 y_vec.append(ws.dr.get_elem(y_wave , i))

55

56 x_wave = ws.dr.get_waveform_x_vec(waveform)

57 x_vec = []

58 for i in range(ws.dr.vector_length(x_wave)):

59 x_vec.append(ws.dr.get_elem(x_wave , i))

60

61 return x_vec , y_vec
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62

63 def param_waveform_to_vector(ws , wave):

64 x_waveform = ws.dr.get_waveform_x_vec(wave) # contains the

value of param sweeps

65 y_waveform = ws.dr.get_waveform_y_vec(wave) # list of

waveforms each entry for param sweep

66

67 x_vector_list = []

68 for i in range(ws.dr.vector_length(x_waveform)):

69 x_vector_list.append(ws.dr.get_elem(x_waveform , i))

70

71 y_vector_list = []

72 for i in range(ws.dr.vector_length(y_waveform)):

73 y_vector_list.append(waveform_to_vector(ws, ws.dr.

get_elem(y_waveform , i)) )

74

75 return x_vector_list , y_vector_list

76 ####################

77 # y_vector_list data looks like this

78 # [...,[ ith sweep plot ],..]

79 # [...,[ [x vect], [yvect] ],..]

80

81 #

=============================================================================

82 # structure of cadence waveform

83 # (v1 ,(v2 ,(v3 ,y))))

84 #

=============================================================================

85 def param_waveform_to_meshgrid(ws , wave):

86 var_1_vector = ws.dr.get_waveform_x_vec(wave) # 1st parameter

sweep
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87 var_2_pack = ws.dr.get_waveform_y_vec(wave) # 2nd parameter

sweep+output content values=>waveform

88

89 var_1_list = []

90 var_2_list = []

91 content_list = []

92 for i in range(ws.dr.vector_length(var_1_vector)):

93 var_1 = ws.dr.get_elem(var_1_vector , i)

94 var_2_waveform = ws.dr.get_elem(var_2_pack , i)

95 var_2_vector = ws.dr.get_waveform_x_vec(var_2_waveform) #

2nd parameter sweep

96 content_vector = ws.dr.get_waveform_y_vec(var_2_waveform)

# output values

97

98 cnt_list = []

99 v1_list = []

100 v2_list = []

101 for j in range(ws.dr.vector_length(var_2_vector)):

102 var_2 = ws.dr.get_elem(var_2_vector , j)

103 content = ws.dr.get_elem(content_vector , j)

104 cnt_list.append(content)

105 v2_list.append(var_2)

106 v1_list.append(var_1)

107

108 content_list.append(cnt_list)

109 var_2_list.append(v2_list)

110 var_1_list.append(v1_list)

111

112 return np.array(var_1_list), np.array(var_2_list), np.array(

content_list)

113

114

115

130



116 # https :// stackoverflow.com/questions /7186518/ function -with -

varying -number -of -for -loops -python

117 def n_param_wave_to_meshgrid(ws , waveform , param_passing ,

ith_param , n_param):

118 ’’’

119 param_passing = [None for _ in range(n_param)] when called

120 ith_param = n_param when called

121 ’’’

122 # create empty list of size n_param

123 # https :// stackoverflow.com/questions /10617045/ how -to-create -

a-fix -size -list -in-python

124 n_param_storage = [ [] for _ in range(n_param +1)] # nparam +

content

125 x = ws.dr.get_waveform_x_vec(waveform)

126 y = ws.dr.get_waveform_y_vec(waveform)

127

128 for i in range(ws.dr.vector_length(x)):

129 x_var = ws.dr.get_elem(x, i)

130 y_var = ws.dr.get_elem(y, i)

131 if ith_param > 1:

132 param_passing[n_param -ith_param] = x_var

133 returned_n_param = n_param_wave_to_meshgrid(ws , y_var

, param_passing , ith_param -1, n_param)

134 for j in range(n_param +1):

135 n_param_storage[j]. append(returned_n_param[j])

136 else:

137 for j in range(n_param -1):

138 n_param_storage[j]. append(param_passing[j])

139 n_param_storage[j+1]. append(x_var)

140 n_param_storage[j+2]. append(y_var)

141

142 return n_param_storage

143
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144

145 def meshgrid_to_pickle(data , n_param , file_name):

146 ’’’

147 take the list returned by n_param_wave_to_meshgrid ()

148 remove redundant params and make on list

149 save them in pickle

150

151 the first dimension packs the last thing that was appened

152 hence the earliest things appened are accessed by highest

dimension

153 ’’’

154 params = data [0][0: n_param]

155 for content in data:

156 params.append(content[n_param ])

157

158 # https :// stackoverflow.com/questions /899103/ writing -a-list -to

-a-file -with -python

159 with open(file_name , ’wb’) as file:

160 pkl.dump(params , file)

161

162 def transient_waveform_to_vector(ws , waveforms):

163 vectors =[]

164 for wave in waveforms:

165 y_wave = ws.dr.get_waveform_y_vec(wave)

166 y_vec = []

167 for i in range(ws.dr.vector_length(y_wave)):

168 y_vec.append(ws.dr.get_elem(y_wave , i))

169 vectors.append(y_vec)

170

171 # x vector is same for all these y vector

172 x_wave = ws.dr.get_waveform_x_vec(wave)

173 x_vec = []

174 for i in range(ws.dr.vector_length(x_wave)):
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175 x_vec.append(ws.dr.get_elem(x_wave , i))

176

177 return vectors , x_vec

178

179

180 def transient_to_pickle(vectors , file_name):

181 with open(file_name , ’wb’) as file:

182 pkl.dump(vectors , file)

B.2 Spiking Neural Network Simulation

Listing B.6: SNN simulation

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue May 19 22:20:51 2020

5

6 @author: mhasan13

7 """

8 from ObjectClass import *

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import random

12 import cv2 as cv

13 import pickle as pkl

14 from scipy.interpolate import interp1d

15 import time

16 import brian2 as br

17

18 br.prefs.codegen.target = ’numpy’

19 br.start_scope ()

20 dt = br.defaultclock.dt = 1*br.us

21
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22

23 #

=============================================================================

24 # # mnist data preparation

25 #

=============================================================================

26 reduced_row = reduced_col = 16

27 mnist_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/mnist_test.csv’

28 mnist_data = np.loadtxt(mnist_file , delimiter=’,’)

29 images = mnist_data [:,1:]

30 labels = mnist_data [:,0]

31 # fetch a random digit

32 random_idx = random.choice(range(len(labels)))

33 image = images[random_idx ,:]. reshape ((28 ,28))

34 image = cv.resize(image ,( reduced_row ,reduced_row),cv.INTER_CUBIC)

35

36 #

=============================================================================

37 # # TF weights in transposed state => #rows=input , #cols=output

38 #

=============================================================================

39 weight_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs

/mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_0_weights

.csv’

40 weight_1 = np.loadtxt(weight_file , delimiter=’,’)

41 weight_1_max = np.max(np.abs(weight_1))
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42 weight_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs

/mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_1_weights

.csv’

43 weight_2 = np.loadtxt(weight_file , delimiter=’,’)

44 weight_2_max = np.max(np.abs(weight_2))

45

46 # biases

47 bias_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_0_biases.

csv’

48 bias_1 = np.loadtxt(bias_file , delimiter=’,’)

49 bias_1_max = np.max(np.abs(bias_1))

50 bias_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_1_biases.

csv’

51 bias_2 = np.loadtxt(bias_file , delimiter=’,’)

52 bias_2_max = np.max(np.abs(bias_2))

53

54 # normalize weights or not

55 weight_max = np.max([ weight_1_max , weight_2_max , bias_1_max ,

bias_2_max ])

56 weight_layer_1 = weight_1/weight_1_max

57 weight_layer_2 = weight_2/weight_2_max

58 bias_layer_1 = bias_1/bias_1_max

59 bias_layer_2 = bias_2/bias_2_max

60

61 # weight to floating gate voltage

62 synapse_meshgrid = SynapseMeshGrid(’../../ meshgrid -generation/v3/

synapse -active.pickle ’,

63 ’../../ meshgrid -generation/v3/

synapse -inactive.pickle ’)

64 vdp_at = 50*br.mV

65 vdn_at = 50*br.mV
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66 Ip_at = synapse_meshgrid.Ip_active [:, int(synapse_meshgrid.

j_per_vd*vdp_at)]

67 In_at = synapse_meshgrid.In_active [:, int(synapse_meshgrid.

j_per_vd*vdn_at)]

68 I_syn = In_at - Ip_at

69 vfg_syn = synapse_meshgrid.vfg[:, int(synapse_meshgrid.j_per_vd*

vdn_at)]

70 f_w_to_vfg = interp1d(I_syn , vfg_syn)

71 I_max = 500e-12

72 vfg_layer_1 = f_w_to_vfg(weight_layer_1*I_max)

73 vfg_layer_2 = f_w_to_vfg(weight_layer_2*I_max)

74 bias_vfg_layer_1 = f_w_to_vfg(bias_layer_1*I_max)

75 bias_vfg_layer_2 = f_w_to_vfg(bias_layer_2*I_max)

76 #

=============================================================================

77 # meshgrid data

78 #

=============================================================================

79 neuron_meshgrid = NeuronMeshGrid(’../../ meshgrid -generation/v3/

neuron.pickle ’)

80

81 @br.check_units(i=1, j=1, result =1)

82 def Cv_current(i:int , j:int) -> float:

83

84 return neuron_meshgrid.iCv[i,j]

85

86 @br.check_units(i=1, j=1, result =1)

87 def Cu_current(i:int , j:int) -> float:

88

89 return neuron_meshgrid.iCu[i,j]

90
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91 synapse_meshgrid = SynapseMeshGrid(’../../ meshgrid -generation/v3/

synapse -active.pickle ’,

92 ’../../ meshgrid -generation/v3/

synapse -inactive.pickle ’)

93

94 @br.check_units(i=1, j=1, result =1)

95 def syn_active_p(i:int , j:int) -> float:

96

97 return synapse_meshgrid.Ip_active[i,j]

98 @br.check_units(i=1, j=1, result =1)

99 def syn_active_n(i:int , j:int) -> float:

100

101 return synapse_meshgrid.In_active[i,j]

102

103 @br.check_units(i=1, j=1, result =1)

104 def syn_inactive_p(i:int , j:int) -> float:

105

106 return synapse_meshgrid.Ip_inactive[i,j]

107 @br.check_units(i=1, j=1, result =1)

108 def syn_inactive_n(i:int , j:int) -> float:

109

110 return synapse_meshgrid.In_inactive[i,j]

111

112 bundle_synapse_meshgrid = BundleSynapseMeshGrid(’../../ meshgrid -

generation/v3/synapse -bundle -current.pickle ’,

113 ’../../ meshgrid -

generation/v3/synapse -bundle -injection.pickle ’)

114

115 @br.check_units(i=1, j=1, result =1)

116 def ip_bundle(i:int , j:int) -> float:

117

118 return bundle_synapse_meshgrid.Ip_bundle[i,j]

119
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120 @br.check_units(i=1, j=1, result =1)

121 def in_bundle(i:int , j:int) -> float:

122

123 return bundle_synapse_meshgrid.In_bundle[i,j]

124

125 @br.check_units(i=1, jp=1 , jn=1, result =1)

126 def i_injection(i:int , jp:int , jn:int) -> float:

127

128 return bundle_synapse_meshgrid.Ip_injection[i,jp] -

bundle_synapse_meshgrid.In_injection[i,jn]

129

130 @br.check_units(Ip_bundle=br.amp , In_bundle=br.amp , Ip=br.amp , In

=br.amp , vp_inj=br.volt , vn_inj=br.volt , result =1)

131 def debug(Ip_bundle , In_bundle , Ip , In , vp_inj , vn_inj):

132 # print(Ip_bundle , In_bundle , Ip, In, vp_inj , vn_inj)

133 return 0

134 #

=============================================================================

135 # network preparation

136 #

=============================================================================

137 f_factor = 1

138 L0 = InputGroupBrian(reduced_row*reduced_col)

139 L0.L.pulse_width = 45e-6

140 L0.L.frequency = image.flatten ()*f_factor

141 L0_mon = br.StateMonitor(L0.L, (’s’), record=True)

142 L0_spk = br.SpikeMonitor(L0.L, record=True)

143 # next layer

144 L1 = NeuronGroupBrian(neuron_meshgrid , bundle_synapse_meshgrid ,

32)

145 L1.L.vp_leak = 68*br.mV
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146 L1.L.vn_leak = 170*br.mV

147 L1_mon = br.StateMonitor(L1.L, (’v’,’u’,’Isyn’,’IpT’,’InT’,’

vp_inj ’,’vn_inj ’), record=True)

148 L1_spk = br.SpikeMonitor(L1.L, record=True)

149 # next layer

150 L2 = NeuronGroupBrian(neuron_meshgrid , bundle_synapse_meshgrid ,

10)

151 L2.L.vp_leak = 130*br.mV

152 L2.L.vn_leak = 100*br.mV

153 L2_mon = br.StateMonitor(L2.L, (’v’,’u’,’Isyn’,’IpT’,’InT’,’

vp_inj ’,’vn_inj ’), record=True)

154 L2_spk = br.SpikeMonitor(L2.L, record=True)

155 # bias generator

156 B0 = InputGroupBrian (1)

157 B0.L.pulse_width = 45e-6

158 B0.L.frequency = 255* f_factor

159 B1 = InputGroupBrian (1)

160 B1.L.pulse_width = 45e-6

161 B1.L.frequency = 255* f_factor

162 #

=============================================================================

163 # synapse

164 #

=============================================================================

165 W1 = SynapseGroupBrian(synapse_meshgrid , L0 ,L1)

166 W1.S.vg_p = vfg_layer_1.flatten(order=’C’)*br.volt

167 W1.S.vg_n = vfg_layer_1.flatten(order=’C’)*br.volt

168 W1_b = SynapseGroupBrian(synapse_meshgrid , B0 ,L1)

169 W1_b.S.vg_p = bias_vfg_layer_1.flatten(order=’C’)*br.volt

170 W1_b.S.vg_n = bias_vfg_layer_1.flatten(order=’C’)*br.volt

171 # next layer
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172 W2 = SynapseGroupBrian(synapse_meshgrid , L1 ,L2)

173 W2.S.vg_p = vfg_layer_2.flatten(order=’C’)*br.volt

174 W2.S.vg_n = vfg_layer_2.flatten(order=’C’)*br.volt

175 W2_b = SynapseGroupBrian(synapse_meshgrid , B1 ,L2)

176 W2_b.S.vg_p = bias_vfg_layer_2.flatten(order=’C’)*br.volt

177 W2_b.S.vg_n = bias_vfg_layer_2.flatten(order=’C’)*br.volt

178 #

=============================================================================

179 # fix capacitor

180 #

=============================================================================

181 #L1.L.Cdp_bundle = 642e-15*br.farad

182 #L1.L.Cdn_bundle = 642e-15*br.farad

183 #L2.L.Cdp_bundle = 5.5e-15*br.farad

184 #L2.L.Cdn_bundle = 5.5e-15*br.farad

185 #

=============================================================================

186 # run and record

187 #

=============================================================================

188 start_time = time.time()

189 sim_time = 50*br.ms

190 net = br.Network ()

191 net.add(L0.L, L1.L, L2.L, B0.L, B1.L, W1.S, W2.S, W1_b.S,W2_b.S,

L0_mon , L1_mon , L2_mon , L0_spk , L1_spk , L2_spk) #W1_b.S,W2_b.S

,

192 net.run(sim_time)

193 stop_time = time.time()

194 print(’time to run() ’, stop_time -start_time)
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195 plt.subplot (121)

196 plt.imshow(image , cmap=’gray’)

197 plt.gca().xaxis.set_major_locator(plt.NullLocator ())

198 plt.gca().yaxis.set_major_locator(plt.NullLocator ())

199 plt.subplot (122)

200 plt.plot(L2_spk.t/br.ms ,L2_spk.i,marker=’.’,linestyle=’none’)

201 plt.xlabel(’time (ms)’), plt.ylabel(’neuron index’)

202 plt.gca().set_yticks(range (10))

203 plt.grid(True)

204 plt.gcf().set_size_inches (10,3)

205 plt.gcf().set_tight_layout(True)

206 plt.figure ()

207 plt.bar(range (10),L2_spk.count)

208

209 # save for later comparison with cadence

210 #with open(str(random_idx)+’.pickle ’ , ’wb ’) as file:

211 # itemlist = [list(L2_spk.i), list(L2_spk.t/br.second)]

212 # pkl.dump(itemlist , file)

213

214 #plt.plot(L1_mon.t/br.ms ,L1_mon.v[0])

215 #plt.figure ()

216 #plt.plot(L1_mon.t/br.ms ,L1_mon.Isyn [0])

217 plt.show()

Listing B.7: SNN simulation

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue May 19 22:20:51 2020

5

6 @author: mhasan13

7 """

8 from ObjectClass import *
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9 import numpy as np

10 import matplotlib.pyplot as plt

11 import random

12 import cv2 as cv

13 import pickle as pkl

14 from scipy.interpolate import interp1d

15 import time

16 import brian2 as br

17

18 br.prefs.codegen.target = ’numpy’

19 br.start_scope ()

20 dt = br.defaultclock.dt = 1*br.us

21

22

23 #

=============================================================================

24 # # mnist data preparation

25 #

=============================================================================

26 reduced_row = reduced_col = 16

27 mnist_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/mnist_test.csv’

28 mnist_data = np.loadtxt(mnist_file , delimiter=’,’)

29 images = mnist_data [:,1:]

30 labels = mnist_data [:,0]

31 # fetch a random digit

32 random_idx = random.choice(range(len(labels)))

33 image = images[random_idx ,:]. reshape ((28 ,28))

34 image = cv.resize(image ,( reduced_row ,reduced_row),cv.INTER_CUBIC)

35
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36 #

=============================================================================

37 # # TF weights in transposed state => #rows=input , #cols=output

38 #

=============================================================================

39 weight_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs

/mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_0_weights

.csv’

40 weight_1 = np.loadtxt(weight_file , delimiter=’,’)

41 weight_1_max = np.max(np.abs(weight_1))

42 weight_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs

/mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_1_weights

.csv’

43 weight_2 = np.loadtxt(weight_file , delimiter=’,’)

44 weight_2_max = np.max(np.abs(weight_2))

45

46 # biases

47 bias_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_0_biases.

csv’

48 bias_1 = np.loadtxt(bias_file , delimiter=’,’)

49 bias_1_max = np.max(np.abs(bias_1))

50 bias_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/hidden_layer_1_biases.

csv’

51 bias_2 = np.loadtxt(bias_file , delimiter=’,’)

52 bias_2_max = np.max(np.abs(bias_2))

53

54 # normalize weights or not

55 weight_max = np.max([ weight_1_max , weight_2_max , bias_1_max ,

bias_2_max ])
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56 weight_layer_1 = weight_1/weight_1_max

57 weight_layer_2 = weight_2/weight_2_max

58 bias_layer_1 = bias_1/bias_1_max

59 bias_layer_2 = bias_2/bias_2_max

60

61 # weight to floating gate voltage

62 synapse_meshgrid = SynapseMeshGrid(’../../ meshgrid -generation/v3/

synapse -active.pickle ’,

63 ’../../ meshgrid -generation/v3/

synapse -inactive.pickle ’)

64 vdp_at = 50*br.mV

65 vdn_at = 50*br.mV

66 Ip_at = synapse_meshgrid.Ip_active [:, int(synapse_meshgrid.

j_per_vd*vdp_at)]

67 In_at = synapse_meshgrid.In_active [:, int(synapse_meshgrid.

j_per_vd*vdn_at)]

68 I_syn = In_at - Ip_at

69 vfg_syn = synapse_meshgrid.vfg[:, int(synapse_meshgrid.j_per_vd*

vdn_at)]

70 f_w_to_vfg = interp1d(I_syn , vfg_syn)

71 I_max = 500e-12

72 vfg_layer_1 = f_w_to_vfg(weight_layer_1*I_max)

73 vfg_layer_2 = f_w_to_vfg(weight_layer_2*I_max)

74 bias_vfg_layer_1 = f_w_to_vfg(bias_layer_1*I_max)

75 bias_vfg_layer_2 = f_w_to_vfg(bias_layer_2*I_max)

76 #

=============================================================================

77 # meshgrid data

78 #

=============================================================================
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79 neuron_meshgrid = NeuronMeshGrid(’../../ meshgrid -generation/v3/

neuron.pickle ’)

80

81 @br.check_units(i=1, j=1, result =1)

82 def Cv_current(i:int , j:int) -> float:

83

84 return neuron_meshgrid.iCv[i,j]

85

86 @br.check_units(i=1, j=1, result =1)

87 def Cu_current(i:int , j:int) -> float:

88

89 return neuron_meshgrid.iCu[i,j]

90

91 synapse_meshgrid = SynapseMeshGrid(’../../ meshgrid -generation/v3/

synapse -active.pickle ’,

92 ’../../ meshgrid -generation/v3/

synapse -inactive.pickle ’)

93

94 @br.check_units(i=1, j=1, result =1)

95 def syn_active_p(i:int , j:int) -> float:

96

97 return synapse_meshgrid.Ip_active[i,j]

98 @br.check_units(i=1, j=1, result =1)

99 def syn_active_n(i:int , j:int) -> float:

100

101 return synapse_meshgrid.In_active[i,j]

102

103 @br.check_units(i=1, j=1, result =1)

104 def syn_inactive_p(i:int , j:int) -> float:

105

106 return synapse_meshgrid.Ip_inactive[i,j]

107 @br.check_units(i=1, j=1, result =1)

108 def syn_inactive_n(i:int , j:int) -> float:
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109

110 return synapse_meshgrid.In_inactive[i,j]

111

112 bundle_synapse_meshgrid = BundleSynapseMeshGrid(’../../ meshgrid -

generation/v3/synapse -bundle -current.pickle ’,

113 ’../../ meshgrid -

generation/v3/synapse -bundle -injection.pickle ’)

114

115 @br.check_units(i=1, j=1, result =1)

116 def ip_bundle(i:int , j:int) -> float:

117

118 return bundle_synapse_meshgrid.Ip_bundle[i,j]

119

120 @br.check_units(i=1, j=1, result =1)

121 def in_bundle(i:int , j:int) -> float:

122

123 return bundle_synapse_meshgrid.In_bundle[i,j]

124

125 @br.check_units(i=1, jp=1 , jn=1, result =1)

126 def i_injection(i:int , jp:int , jn:int) -> float:

127

128 return bundle_synapse_meshgrid.Ip_injection[i,jp] -

bundle_synapse_meshgrid.In_injection[i,jn]

129

130 @br.check_units(Ip_bundle=br.amp , In_bundle=br.amp , Ip=br.amp , In

=br.amp , vp_inj=br.volt , vn_inj=br.volt , result =1)

131 def debug(Ip_bundle , In_bundle , Ip , In , vp_inj , vn_inj):

132 # print(Ip_bundle , In_bundle , Ip, In, vp_inj , vn_inj)

133 return 0

134 #

=============================================================================

135 # network preparation
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136 #

=============================================================================

137 f_factor = 1

138 L0 = InputGroupBrian(reduced_row*reduced_col)

139 L0.L.pulse_width = 45e-6

140 L0.L.frequency = image.flatten ()*f_factor

141 L0_mon = br.StateMonitor(L0.L, (’s’), record=True)

142 L0_spk = br.SpikeMonitor(L0.L, record=True)

143 # next layer

144 L1 = NeuronGroupBrian(neuron_meshgrid , bundle_synapse_meshgrid ,

32)

145 L1.L.vp_leak = 68*br.mV

146 L1.L.vn_leak = 170*br.mV

147 L1_mon = br.StateMonitor(L1.L, (’v’,’u’,’Isyn’,’IpT’,’InT’,’

vp_inj ’,’vn_inj ’), record=True)

148 L1_spk = br.SpikeMonitor(L1.L, record=True)

149 # next layer

150 L2 = NeuronGroupBrian(neuron_meshgrid , bundle_synapse_meshgrid ,

10)

151 L2.L.vp_leak = 130*br.mV

152 L2.L.vn_leak = 100*br.mV

153 L2_mon = br.StateMonitor(L2.L, (’v’,’u’,’Isyn’,’IpT’,’InT’,’

vp_inj ’,’vn_inj ’), record=True)

154 L2_spk = br.SpikeMonitor(L2.L, record=True)

155 # bias generator

156 B0 = InputGroupBrian (1)

157 B0.L.pulse_width = 45e-6

158 B0.L.frequency = 255* f_factor

159 B1 = InputGroupBrian (1)

160 B1.L.pulse_width = 45e-6

161 B1.L.frequency = 255* f_factor
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162 #

=============================================================================

163 # synapse

164 #

=============================================================================

165 W1 = SynapseGroupBrian(synapse_meshgrid , L0 ,L1)

166 W1.S.vg_p = vfg_layer_1.flatten(order=’C’)*br.volt

167 W1.S.vg_n = vfg_layer_1.flatten(order=’C’)*br.volt

168 W1_b = SynapseGroupBrian(synapse_meshgrid , B0 ,L1)

169 W1_b.S.vg_p = bias_vfg_layer_1.flatten(order=’C’)*br.volt

170 W1_b.S.vg_n = bias_vfg_layer_1.flatten(order=’C’)*br.volt

171 # next layer

172 W2 = SynapseGroupBrian(synapse_meshgrid , L1 ,L2)

173 W2.S.vg_p = vfg_layer_2.flatten(order=’C’)*br.volt

174 W2.S.vg_n = vfg_layer_2.flatten(order=’C’)*br.volt

175 W2_b = SynapseGroupBrian(synapse_meshgrid , B1 ,L2)

176 W2_b.S.vg_p = bias_vfg_layer_2.flatten(order=’C’)*br.volt

177 W2_b.S.vg_n = bias_vfg_layer_2.flatten(order=’C’)*br.volt

178 #

=============================================================================

179 # fix capacitor

180 #

=============================================================================

181 #L1.L.Cdp_bundle = 642e-15*br.farad

182 #L1.L.Cdn_bundle = 642e-15*br.farad

183 #L2.L.Cdp_bundle = 5.5e-15*br.farad

184 #L2.L.Cdn_bundle = 5.5e-15*br.farad
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185 #

=============================================================================

186 # run and record

187 #

=============================================================================

188 start_time = time.time()

189 sim_time = 50*br.ms

190 net = br.Network ()

191 net.add(L0.L, L1.L, L2.L, B0.L, B1.L, W1.S, W2.S, W1_b.S,W2_b.S,

L0_mon , L1_mon , L2_mon , L0_spk , L1_spk , L2_spk) #W1_b.S,W2_b.S

,

192 net.run(sim_time)

193 stop_time = time.time()

194 print(’time to run() ’, stop_time -start_time)

195 plt.subplot (121)

196 plt.imshow(image , cmap=’gray’)

197 plt.gca().xaxis.set_major_locator(plt.NullLocator ())

198 plt.gca().yaxis.set_major_locator(plt.NullLocator ())

199 plt.subplot (122)

200 plt.plot(L2_spk.t/br.ms ,L2_spk.i,marker=’.’,linestyle=’none’)

201 plt.xlabel(’time (ms)’), plt.ylabel(’neuron index’)

202 plt.gca().set_yticks(range (10))

203 plt.grid(True)

204 plt.gcf().set_size_inches (10,3)

205 plt.gcf().set_tight_layout(True)

206 plt.figure ()

207 plt.bar(range (10),L2_spk.count)

208

209 # save for later comparison with cadence

210 #with open(str(random_idx)+’.pickle ’ , ’wb ’) as file:

211 # itemlist = [list(L2_spk.i), list(L2_spk.t/br.second)]
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212 # pkl.dump(itemlist , file)

213

214 #plt.plot(L1_mon.t/br.ms ,L1_mon.v[0])

215 #plt.figure ()

216 #plt.plot(L1_mon.t/br.ms ,L1_mon.Isyn [0])

217 plt.show()

Listing B.8: Spike count from Cadence simulation output

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Jun 11 20:52:55 2020

5

6 @author: mhasan13

7 """

8

9 import pandas as pd

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import pickle as pkl

13

14 digit = 8592

15

16

17 # 6947 is based on vfg at Imax =100pA, vref =130mV, vd=150mV,

global weight normalization

18 # 5513, 5763 is based on vfg at Imax =50pA, vref =130mV, vd = 100mV

, global weight normalization

19 file = pd.read_csv(str(digit)+’.csv’, header =0)

20 data = file.values

21

22 t = []

23 neuron = []
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24

25 n = data.shape [1]

26 for i in range(int(n/2)):

27 spikes = data [:,2*i+1]

28 time = data [:,2*i]

29 spikes[spikes >0.1] = 1

30 spikes[spikes <0.1] = 0

31 difference = np.diff(spikes)

32 idxs = np.where(difference ==1) [0] + 1

33 t.extend(time[idxs])

34 neuron.extend ([i]*len(idxs))

35

36 t = np.array(t)

37 neuron = np.array(neuron)

38 plt.plot( t/1e-3,neuron ,marker=’o’,markersize =6, fillstyle=’none’,

linestyle=’none’)

39

40 neuron_count = []

41 for i in range(int(n/2)):

42 neuron_count.append(np.sum(neuron ==i))

43

44 #plt.bar(range (10),neuron_count)

Listing B.9: Spike count from Cadence simulation output

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Jun 11 20:52:55 2020

5

6 @author: mhasan13

7 """

8

9 import pandas as pd
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10 import numpy as np

11 import matplotlib.pyplot as plt

12 import pickle as pkl

13 import cv2 as cv

14

15

16 # #########

17 # plt.rc(’text ’, usetex=True)

18 # plt.rc(’font ’, family=’Times ’)

19 # plt.rc(’font ’, size =16)

20 # #########

21

22 def find_spikes(data):

23

24 t = []

25 neuron = []

26

27 n = data.shape [1]

28 for i in range(int(n/2)):

29 spikes = data [:,2*i+1]

30 time = data [:,2*i]

31 spikes[spikes >0.1] = 1

32 spikes[spikes <0.1] = 0

33 difference = np.diff(spikes)

34 idxs = np.where(difference ==1) [0] + 1

35 t.extend(time[idxs])

36 neuron.extend ([i]*len(idxs))

37

38 return np.array(neuron), np.array(t)

39

40

152



41 #

=============================================================================

42 # # mnist data preparation

43 #

=============================================================================

44 reduced_row = reduced_col = 16

45 mnist_file = ’/nfs/users/mhasan13/linux/Desktop/iss -research_nfs/

mhasan13/fc-spiking -mnist/smaller/data/mnist_test.csv’

46 mnist_data = np.loadtxt(mnist_file , delimiter=’,’)

47 images = mnist_data [:,1:]

48 labels = mnist_data [:,0]

49 ###########################

50 digits = [8592, 6585, 8747]

51 #digits = [digits [0]]

52 # https :// stackoverflow.com/questions /34162443/ why -do-many -

examples -use -fig -ax -plt -subplots -in -matplotlib -pyplot -python

53 # https ://www.delftstack.com/howto/matplotlib/how -to-make -

different -subplot -sizes -in -matplotlib/

54 fig = plt.figure ()

55 axs = []

56 for i in range(len(digits)):

57 ax = []

58 for j in range (2):

59 ax.append(fig.add_subplot(len(digits),2,i*2+j+1))

60 axs.append(ax)

61

62 d = 0

63 width = 0.5

64 x_dig = np.array( [i*2 for i in range (10)] )

65 for digit in digits:

66 file = pd.read_csv(str(digit)+’.csv’, header =0)
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67 data = file.values

68

69 neuron , t = find_spikes(data)

70

71 neuron_count = []

72 for i in range (10):

73 neuron_count.append(np.sum(neuron ==i))

74

75

76 axs[d][1]. bar(x_dig - width/2, neuron_count , color=’g’, label

=’CADENCE tran.’)

77 ###########################################################

78 with open(str(digit)+’.pickle ’, ’rb’) as file:

79 itemlist = pkl.load(file)

80

81 br_neuron = np.array(itemlist [0])

82 br_t = np.array(itemlist [1])

83 br_neuron_count = []

84 for i in range (10):

85 br_neuron_count.append(np.sum(br_neuron ==i))

86

87 image = images[digit ,:]. reshape ((28 ,28))

88 image = cv.resize(image ,( reduced_row ,reduced_row),cv.

INTER_CUBIC)

89 axs[d][0]. imshow(image , cmap=’gray’)

90 axs[d][0]. set_xlabel(’input image’)

91 axs[d][0]. xaxis.set_major_locator(plt.NullLocator ())

92 axs[d][0]. yaxis.set_major_locator(plt.NullLocator ())

93

94 axs[d][1]. bar(x_dig + width/2, br_neuron_count , color=’r’,

label=’Phase Plane’)

95 axs[d][1]. set_xlabel(’neuron index’)

96 axs[d][1]. set_xticks( x_dig , [str(i) for i in range (10)] )
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97 axs[d][1]. set_ylabel(’spike count’)

98 axs[d][1]. legend(bbox_to_anchor =(1 ,0.6),fontsize =11)

99

100 d += 1

101

102

103

104

105 # #!/usr/bin/env python3

106 # # -*- coding: utf -8 -*-

107 # """

108 # Created on Thu Jun 11 20:52:55 2020

109

110 # @author: mhasan13

111 # """

112

113 # import pandas as pd

114 # import numpy as np

115 # import matplotlib.pyplot as plt

116 # import pickle as pkl

117 # import cv2 as cv

118

119

120 # #########

121 # plt.rc(’text ’, usetex=True)

122 # plt.rc(’font ’, family=’Times ’)

123 # plt.rc(’font ’, size =16)

124 # #########

125

126 # def find_spikes(data):

127

128 # t = []

129 # neuron = []
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130

131 # n = data.shape [1]

132 # for i in range(int(n/2)):

133 # spikes = data [:,2*i+1]

134 # time = data [:,2*i]

135 # spikes[spikes >0.1] = 1

136 # spikes[spikes <0.1] = 0

137 # difference = np.diff(spikes)

138 # idxs = np.where(difference ==1) [0] + 1

139 # t.extend(time[idxs])

140 # neuron.extend ([i]*len(idxs))

141

142 # return np.array(neuron), np.array(t)

143

144

145 # #

=============================================================================

146 # # # mnist data preparation

147 # #

=============================================================================

148 # reduced_row = reduced_col = 16

149 # mnist_file = ’/nfs/users/mhasan13/linux/Desktop/iss -

research_nfs/mhasan13/fc -spiking -mnist/smaller/data/mnist_test

.csv’

150 # mnist_data = np.loadtxt(mnist_file , delimiter=’,’)

151 # images = mnist_data [:,1:]

152 # labels = mnist_data [:,0]

153 # ###########################

154 # digits = [8592 , 6585, 8747]

155 # #digits = [digits [0]]
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156 # # https :// stackoverflow.com/questions /34162443/ why -do-many -

examples -use -fig -ax -plt -subplots -in -matplotlib -pyplot -python

157 # # https ://www.delftstack.com/howto/matplotlib/how -to-make -

different -subplot -sizes -in -matplotlib/

158 # fig = plt.figure ()

159 # axs = []

160 # for i in range(len(digits)):

161 # ax = []

162 # for j in range (3):

163 # ax.append(fig.add_subplot(len(digits) ,3,i*3+j+1))

164 # axs.append(ax)

165

166 # d = 0

167 # width = 0.5

168 # x_dig = np.array( [i*2 for i in range (10)] )

169 # for digit in digits:

170 # file = pd.read_csv(str(digit)+’.csv ’, header =0)

171 # data = file.values

172

173 # neuron , t = find_spikes(data)

174

175 # neuron_count = []

176 # for i in range (10):

177 # neuron_count.append(np.sum(neuron ==i))

178

179 # axs[d][1]. plot(t/1e-3,neuron , marker=’o’,markersize =6,

fillstyle=’none ’,linestyle=’none ’, color=’g’, label=’CADENCE

tran.’)

180 # axs[d][1]. set_yticks(range (10))

181 # axs[d][2]. bar(x_dig - width/2, neuron_count , color=’g’,

label=’CADENCE tran.’)

182 # ###########################################################

183 # with open(str(digit)+’.pickle ’, ’rb ’) as file:
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184 # itemlist = pkl.load(file)

185

186 # br_neuron = np.array(itemlist [0])

187 # br_t = np.array(itemlist [1])

188 # br_neuron_count = []

189 # for i in range (10):

190 # br_neuron_count.append(np.sum(br_neuron ==i))

191

192 # image = images[digit ,:]. reshape ((28 ,28))

193 # image = cv.resize(image ,( reduced_row ,reduced_row),cv.

INTER_CUBIC)

194 # axs[d][0]. imshow(image , cmap=’gray ’)

195 # axs[d][0]. set_xlabel(’input image ’)

196 # axs[d][0]. xaxis.set_major_locator(plt.NullLocator ())

197 # axs[d][0]. yaxis.set_major_locator(plt.NullLocator ())

198 # axs[d][1]. plot(br_t/1e-3, br_neuron , marker=’.’, linestyle

=’none ’, color=’r’, label=’Phase Plane ’)

199 # axs[d][1]. set_xlabel(’t (ms) ’)

200 # axs[d][1]. set_xticks(range (0 ,60 ,10))

201 # axs[d][1]. set_ylabel(’neuron index ’)

202 # axs[d][1]. legend(bbox_to_anchor =(0.5 ,1), fontsize =11)

203 # axs[d][1]. set_yticks(range (10))

204 # axs[d][1]. grid(True)

205 # axs[d][2]. bar(x_dig + width/2, br_neuron_count , color=’r’,

label=’Phase Plane ’)

206 # axs[d][2]. set_xlabel(’neuron index ’)

207 # axs[d][2]. set_xticks( x_dig , [str(i) for i in range (10)] )

208 # axs[d][2]. set_ylabel(’spike count ’)

209 # axs[d][2]. legend(bbox_to_anchor =(1 ,0.6),fontsize =11)

210

211 # d += 1

Listing B.10: Class definitions
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1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue Jun 2 03:23:55 2020

5

6 @author: mhasan13

7 """

8

9 import pickle as pkl

10 import numpy as np

11 import brian2 as br

12

13 class NeuronMeshGrid:

14 ’’’

15 Data on neuron phase plane

16 ’’’

17 def __init__(self , pickle_path:str) -> None:

18 with open(pickle_path , ’rb’) as fp:

19 itemlist = pkl.load(fp)

20

21 data = np.array(itemlist)

22 self.u = data [0,:,:]

23 self.v = data [1,:,:]

24 #

=============================================================================

25 # -ve sign has to be fixed for pmos currents now

26 # as cadence introduced a -ve sign for outgoing current

27 #

=============================================================================

28 self.iCv = -data [2,:,:] - data [3,:,:] - data [6,:,:] #

Ipos_feed - Ineg_feed - I_leak
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29 self.iCu = -data [4,:,:] - data [5,:,:] # Iw - Ir

30 self.axon = data [7,:,:] # axon output

31 #

=============================================================================

32 # i=>y axis index , j=>x axis index

33 #

=============================================================================

34 self.vmax , self.vmin = np.max(self.v), np.min(self.v)

35 self.umax , self.umin = np.max(self.u), np.min(self.u)

36 self.j_per_x = (self.v.shape [1] -1)/(self.vmax -self.vmin)

37 self.i_per_y = (self.u.shape [0] -1)/(self.umax -self.umin)

38

39 class SynapseMeshGrid:

40 ’’’

41 Data on synpase meshgrid

42 ’’’

43 def __init__(self , active_path:str , inactive_path:str) ->

None:

44 # active synapse

45 with open (active_path , ’rb’) as fp:

46 itemlist = pkl.load(fp)

47

48 data = np.array(itemlist)

49 self.vfg = data [0,:,:]

50 self.vd = data [1,:,:]

51 #

=============================================================================

52 # -ve sign has to be fixed for pmos currents now

53 # as cadence introduced a -ve sign for outgoing current
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54 #

=============================================================================

55 self.Ip_active = -data [2,:,:]

56 self.In_active = data [3,:,:]

57

58 with open (inactive_path , ’rb’) as fp:

59 itemlist = pkl.load(fp)

60

61 data = np.array(itemlist)

62 self.Ip_inactive = -data [2,:,:]

63 self.In_inactive = data [3,:,:]

64 #

=============================================================================

65 # i=>y axis index , j=>x axis index

66 #

=============================================================================

67 self.vfg_max , self.vfg_min = np.max(self.vfg), np.min(

self.vfg)

68 self.vd_max , self.vd_min = np.max(self.vd), np.min(self.

vd)

69 self.i_per_vfg = (self.vfg.shape [0] -1)/(self.vfg_max -self

.vfg_min)

70 self.j_per_vd = (self.vd.shape [1] -1)/(self.vd_max -self.

vd_min)

71

72 class BundleSynapseMeshGrid:

73 ’’’

74 Data on bundle synapse injection current

75 ’’’
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76 def __init__(self , i_bundle_path:str , i_inj_path:str) -> None

:

77 with open(i_bundle_path , ’rb’) as fp:

78 itemlist = pkl.load(fp)

79

80 data = np.array(itemlist)

81 self.v_leak = data [0,:,:]

82 self.vd = data [1,:,:]

83 #

=============================================================================

84 # -ve sign has to be fixed for pmos currents now

85 # as cadence introduced a -ve sign for outgoing current

86 #

=============================================================================

87 self.Ip_bundle = -(data [2,:,:]+ data [3,:,:])

88 self.In_bundle = data [4,:,:]+ data [5,:,:]

89 #

=============================================================================

90 # i=>y axis index , j=>x axis index

91 #

=============================================================================

92 self.v_leak_max , self.v_leak_min = np.max(self.v_leak),

np.min(self.v_leak)

93 self.vd_max , self.vd_min = np.max(self.vd), np.min(self.

vd)

94 self.i_per_v_leak = (self.v_leak.shape [0] -1)/(self.

v_leak_max -self.v_leak_min)

95 self.j_per_vd = (self.vd.shape [1] -1)/(self.vd_max -self.

vd_min)
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96

97 with open(i_inj_path , ’rb’) as fp:

98 itemlist = pkl.load(fp)

99

100 data = np.array(itemlist)

101 self.vm = data [0,:,:]

102 self.v_inj = data [1,:,:]

103 #

=============================================================================

104 # -ve sign has to be fixed for pmos currents now

105 # as cadence introduced a -ve sign for outgoing current

106 #

=============================================================================

107 self.Ip_injection = -data [2,:,:]

108 self.In_injection = data [3,:,:]

109 #

=============================================================================

110 # i=>y axis index , j=>x axis index

111 #

=============================================================================

112 self.v_inj_max , self.v_inj_min = np.max(self.v_inj), np.

min(self.v_inj)

113 self.vm_max , self.vm_min = np.max(self.vm), np.min(self.

vm)

114 self.i_per_vm = (self.vm.shape [0] -1)/(self.vm_max -self.

vm_min)

115 self.j_per_v_inj = (self.v_inj.shape [1] -1)/(self.

v_inj_max -self.v_inj_min)

116
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117 class InputGroupBrian:

118 ’’’

119 Input spike generation from frequency

120 ’’’

121 def __init__(self , n:int) -> None:

122 self.dt = br.defaultclock.dt

123

124 self.input_neuron_model=’’’

125 dx/dt = 1/ second : 1

126 s : 1

127 frequency : 1

128 t_period = 1/( frequency +1e-15) : 1

129 pulse_width : 1

130 ’’’

131 self.input_spike_event_action = ’’’

132 s += 1

133 ’’’

134 self.input_reset_event_action = ’’’

135 x = pulse_width

136 s = 0

137 ’’’

138 self.input_neuron_events ={

139 ’spike ’:’s==1’,

140 ’spike_event ’:’x>t_period ’,

141 ’resetting ’:’x>t_period+pulse_width ’,

142 ’reset_event ’:’x<t_period ’

143 } # threshold=’s==1’ also works

144

145 self.L = br.NeuronGroup(n,

146 model=self.input_neuron_model ,

147 events=self.input_neuron_events ,

148 dt=self.dt)

149
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150 self.L.run_on_event(’spike_event ’,self.

input_spike_event_action)

151 self.L.run_on_event(’resetting ’,self.

input_reset_event_action)

152

153 class NeuronGroupBrian:

154 ’’’

155 Pack all the components of brian NeuronGroup

156 ’’’

157 def __init__(self , neuron_meshgrid:NeuronMeshGrid ,

bundle_synapse_meshgrid:BundleSynapseMeshGrid , n:int) -> None:

158 self.dt = br.defaultclock.dt

159

160 self.model = ’’’

161 i_per_u : 1

162 j_per_v : 1

163 vmax : volt

164 vmin : volt

165 umax : volt

166 umin : volt

167 Cv : farad

168 Cu : farad

169 Cp : farad

170 Cdp_bundle : farad

171 Cdn_bundle : farad

172

173 vp_leak : volt

174 vn_leak : volt

175 i_per_v_leak : 1

176 j_per_vd : 1

177 i_per_vm : 1

178 j_per_v_inj : 1

179
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180 IpT : amp

181 InT : amp

182 IpB = ip_bundle( int(i_per_v_leak*vp_leak/

volt), int(j_per_vd*vp_inj/volt) )*amp : amp (constant over dt

)

183 InB = in_bundle( int(i_per_v_leak*vn_leak/

volt), int(j_per_vd*vn_inj/volt) )*amp : amp (constant over dt

)

184 dvp_inj/dt = (IpB - InT)/Cdn_bundle : volt

185 dvn_inj/dt = (IpT - InB)/Cdp_bundle : volt

186

187

188

189 Isyn = i_injection( int(i_per_vm*v/volt), int

(j_per_v_inj*vp_inj/volt), int(j_per_v_inj*vn_inj/volt) )*amp

: amp (constant over dt)

190 dv/dt = dvdt : volt

191 dvdt=( Cv_current(int(i_per_u*u/volt),int(

j_per_v*v/volt))*amp + Isyn )/(Cv+Cp) : amp/farad (constant

over dt)

192 du/dt = dudt : volt

193 dudt=Cu_current(int(i_per_u*u/volt),int(

j_per_v*v/volt))*amp/(Cu+Cp) : amp/farad (constant over dt)

194 s : 1

195 ’’’

196 self.spike_event_action = ’’’

197 s += 1

198 ’’’

199 self.reset_event_action = ’’’

200 s = 0

201 ’’’

202 self.neuron_events ={

203 ’vdd_rail ’:’v>vmax’,
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204 ’vss_rail ’:’v<vmin’,

205 ’udd_rail ’:’u>umax’,

206 ’uss_rail ’:’u<umin’,

207 ’vp_inj_rail_up ’:’vp_inj >vmax’,

208 ’vp_inj_rail_down ’:’vp_inj <vmin’,

209 ’vn_inj_rail_up ’:’vn_inj >vmax’,

210 ’vn_inj_rail_down ’:’vn_inj <vmin’,

211 ’t_step ’:’t>0* second ’,

212 ’spike’:’s==1’,

213 ’spike_event ’:’v >200*mV’,

214 ’reset_event ’:’v <200*mV’

215 }

216

217 self.L = br.NeuronGroup(n,

218 model=self.model ,

219 events=self.neuron_events ,

220 dt=self.dt

221 )

222

223 self.L.vmax = neuron_meshgrid.vmax*br.volt

224 self.L.vmin = neuron_meshgrid.vmin*br.volt

225 self.L.umax = neuron_meshgrid.umax*br.volt

226 self.L.umin = neuron_meshgrid.umin*br.volt

227 self.L.i_per_u = neuron_meshgrid.i_per_y

228 self.L.j_per_v = neuron_meshgrid.j_per_x

229 self.L.Cv = 50e-15*br.farad

230 self.L.Cu = 30e-15*br.farad

231 self.L.Cp = 5e-15*br.farad

232 self.L.Cdp_bundle = 2e-15*br.farad

233 self.L.Cdn_bundle = 2.5e-15*br.farad

234 self.L.i_per_v_leak = bundle_synapse_meshgrid.

i_per_v_leak

235 self.L.j_per_vd = bundle_synapse_meshgrid.j_per_vd
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236 self.L.i_per_vm = bundle_synapse_meshgrid.i_per_vm

237 self.L.j_per_v_inj = bundle_synapse_meshgrid.j_per_v_inj

238 self.L.vp_inj = 300*br.mV # set initial value

239 self.L.vn_inj = 0*br.mV # set initial value

240

241 self.L.run_on_event(’vdd_rail ’,’v=vmax’)

242 self.L.run_on_event(’vss_rail ’,’v=vmin’)

243 self.L.run_on_event(’udd_rail ’,’u=umax’)

244 self.L.run_on_event(’uss_rail ’,’u=umin’)

245 self.L.run_on_event(’vp_inj_rail_up ’,’vp_inj=vmax’)

246 self.L.run_on_event(’vp_inj_rail_down ’,’vp_inj=vmin’)

247 self.L.run_on_event(’vn_inj_rail_up ’,’vn_inj=vmax’)

248 self.L.run_on_event(’vn_inj_rail_down ’,’vn_inj=vmin’)

249 self.L.run_on_event(’spike_event ’,self.spike_event_action

)

250 self.L.run_on_event(’reset_event ’,self.reset_event_action

)

251

252

253 class SynapseGroupBrian:

254 ’’’

255 Pack all the components of synapse

256 ’’’

257 def __init__(self , synapse_meshgrid:SynapseMeshGrid ,

pre_group:NeuronGroupBrian , post_group:NeuronGroupBrian) ->

None:

258 self.syn_model = ’’’

259 i_per_vg_syn : 1

260 j_per_vd_syn : 1

261

262 vg_p : volt

263 vg_n : volt
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264 Isyn_active_p = syn_active_p( int(

i_per_vg_syn*vg_p/volt), int(j_per_vd_syn*vn_inj/volt) )*amp

: amp (constant over dt)

265 Isyn_active_n = syn_active_n( int(

i_per_vg_syn*vg_n/volt), int(j_per_vd_syn*vp_inj/volt) )*amp

: amp (constant over dt)

266 Isyn_inactive_p = syn_inactive_p( int(

i_per_vg_syn*vg_p/volt), int(j_per_vd_syn*vn_inj/volt) )*amp

: amp (constant over dt)

267 Isyn_inactive_n = syn_inactive_n( int(

i_per_vg_syn*vg_n/volt), int(j_per_vd_syn*vp_inj/volt) )*amp

: amp (constant over dt)

268 Ip_syn_previous_t_step : amp

269 In_syn_previous_t_step : amp

270 ’’’

271 #

=============================================================================

272 # I += Isyn will keep increasing I for the duration of spike. but

this is wrong.

273 # i need to keep I same as Isyn for the duration of spike.

274 # with I_syn_previous_t_step variable previous timestep current

can be subtracted

275 # from I before adding new timestep current and thus prevents I

from increasing

276 #

=============================================================================

277 self.syn_active_action = ’’’

278 IpT -= Ip_syn_previous_t_step

279 InT -= In_syn_previous_t_step

280 IpT += Isyn_active_p

281 InT += Isyn_active_n
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282 Ip_syn_previous_t_step =

Isyn_active_p

283 In_syn_previous_t_step =

Isyn_active_n

284 ’’’

285 self.syn_inactive_action = ’’’

286 IpT -= Ip_syn_previous_t_step

287 InT -= In_syn_previous_t_step

288 IpT += Isyn_inactive_p

289 InT += Isyn_inactive_n

290 Ip_syn_previous_t_step =

Isyn_inactive_p

291 In_syn_previous_t_step =

Isyn_inactive_n

292 ’’’

293 self.on_pre_action ={

294 ’syn_active_path ’:self.syn_active_action ,

295 ’syn_inactive_path ’:self.

syn_inactive_action ,

296 }

297 self.event_assignment ={

298 ’syn_active_path ’:’spike_event ’,

299 ’syn_inactive_path ’:’reset_event ’,

300 }

301 self.S = br.Synapses(pre_group.L, post_group.L,

302 self.syn_model ,

303 on_pre=self.on_pre_action ,

304 on_event=self.event_assignment

305 )

306 self.S.connect ()

307 self.S.i_per_vg_syn = synapse_meshgrid.i_per_vfg

308 self.S.j_per_vd_syn = synapse_meshgrid.j_per_vd

309 # set drain capacitance of the bundle synapse
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310 # += because bais synpase is added seperately

311 post_group.L.Cdp_bundle += 0.5e-15*br.farad*pre_group.L.N

312 post_group.L.Cdn_bundle += 1.05e-15*br.farad*pre_group.L.

N

313

314 class SimpleNeuronGroupBrian:

315 ’’’

316 Pack all the components of brian NeuronGroup

317 ’’’

318 def __init__(self , neuron_meshgrid:NeuronMeshGrid , n:int) ->

None:

319 self.dt = br.defaultclock.dt

320

321 self.model = ’’’

322 i_per_u : 1

323 j_per_v : 1

324 vmax : volt

325 vmin : volt

326 umax : volt

327 umin : volt

328 Cv : farad

329 Cu : farad

330 Cp : farad

331

332 I : amp

333 dv/dt = dvdt : volt

334 dvdt=( Cv_current(int(i_per_u*u/volt),int(

j_per_v*v/volt))*amp + I )/(Cv+Cp) : amp/farad (constant over

dt)

335 du/dt = dudt : volt

336 dudt=Cu_current(int(i_per_u*u/volt),int(

j_per_v*v/volt))*amp/(Cu+Cp/2) : amp/farad (constant over dt)

337 s : 1
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338 ’’’

339 self.spike_event_action = ’’’

340 s += 1

341 ’’’

342 self.reset_event_action = ’’’

343 s = 0

344 ’’’

345 self.neuron_events ={

346 ’vdd_rail ’:’v>vmax’,

347 ’vss_rail ’:’v<vmin’,

348 ’udd_rail ’:’u>umax’,

349 ’uss_rail ’:’u<umin’,

350 ’t_step ’:’t>0* second ’,

351 ’spike’:’s==1’,

352 ’spike_event ’:’v >200*mV’,

353 ’reset_event ’:’v <200*mV’

354 }

355

356 self.L = br.NeuronGroup(n,

357 model=self.model ,

358 events=self.neuron_events ,

359 dt=self.dt

360 )

361

362 self.L.vmax = neuron_meshgrid.vmax*br.volt

363 self.L.vmin = neuron_meshgrid.vmin*br.volt

364 self.L.umax = neuron_meshgrid.umax*br.volt

365 self.L.umin = neuron_meshgrid.umin*br.volt

366 self.L.i_per_u = neuron_meshgrid.i_per_y

367 self.L.j_per_v = neuron_meshgrid.j_per_x

368 self.L.Cv = 50e-15*br.farad

369 self.L.Cu = 30e-15*br.farad

370 self.L.Cp = 5e-15*br.farad
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371

372

373 self.L.run_on_event(’vdd_rail ’,’v=vmax’)

374 self.L.run_on_event(’vss_rail ’,’v=vmin’)

375 self.L.run_on_event(’udd_rail ’,’u=umax’)

376 self.L.run_on_event(’uss_rail ’,’u=umin’)

377 self.L.run_on_event(’spike_event ’,self.spike_event_action

)

378 self.L.run_on_event(’reset_event ’,self.reset_event_action

)
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