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ABSTRACT

AKINTONDE OLUKUNLE ABBAS. Realizing combined value streams from
customer-side resources. (Under the direction of DR. BADRUL CHOWDHURY)

The importance of flexible customer-side resources in transitioning to a clean en-

ergy future is becoming increasingly apparent. Flexible customer-side resources can

resolve most issues associated with intelligent and low carbon power grids and, in the

process, unlock new value streams for both resource owners and load-serving entities

(LSEs) with access to those resources. However, most LSEs with access to numerous

flexible customer-side resources often use them for single applications when these re-

sources can provide multiple value streams simultaneously. This dissertation focuses

on developing models and frameworks to help LSEs simultaneously capture multiple

value streams from customer-side resources within their jurisdiction.

Firstly, a stochastic equivalent battery model (EBM) that provides a simple yet

accurate representation of the overall power consumption flexibility associated with

a commercial building is proposed. The proposed stochastic EBM combines model-

based functional simulations and optimization techniques to quantify the overall flex-

ibility of a commercial building with flexible resources such as heating, ventilation,

and air-conditioning (HVAC), electric water heater (EWH), battery, and electric ve-

hicle charging stations. Illustrative case studies showcasing how the proposed model

fits into complex resource scheduling problems whose objectives either maximize or

minimize some value reflecting the LSE’s intended outcomes are also considered.

Secondly, a stochastic optimization framework is proposed to help an LSE cap-

ture value streams involving bulk power system support services from its residential

customer-side resources. The specific value streams of interest are energy arbitrage,

peak shaving, and market-based frequency regulation, while the customer-side re-

sources are residential HVACs, EWHs, and behind-the-meter (BTM) storage. A
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resource type-centric clustering method is employed. The proposed framework con-

tains two parts. The first part involves a day-ahead resource scheduling problem

that captures uncertainties in energy prices, regulation prices, and frequency regu-

lation signals. A voltage sensitivity matrix-based approach is proposed to capture

the impacts of resource control actions on system voltages. The second part includes

two real-time resource dispatch algorithms capable of eliciting fast responses from

the resources to frequency regulation signals from the market operator with minimal

voltage violations. The scheduling model and dispatch algorithms are evaluated using

a HELICS-based co-simulation platform and real-world market data from New York

Independent System Operator (NYISO).

Thirdly, a stochastic optimization framework is proposed to help an LSE capture

multiple value streams focused on distribution system operations from its residential

customer-side resources. The value streams of interest are peak shaving, energy arbi-

trage, ramp rate reduction, loss reduction, and voltage management. The framework

captures the impact of third-party aggregators on the LSE’s network and includes two

dispatch algorithms - decision rule-based dispatch and optimal real-time dispatch.

Finally, a framework to help LSEs compensate owners of customer-side resources

for multiple value streams is proposed. The compensation sharing approach classifies

the LSE’s realized value into three categories - additive, super-additive and sub-

additive. The appropriate compensation-sharing mechanism is then defined for each

value category. A special component of the compensation sharing mechanism that

provides additional social benefits, specifically credit rating improvement, for low and

medium-income flexible resource owners is also proposed.
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CHAPTER 1: INTRODUCTION

Flexible resources on the demand side of the grid can be described as the hidden

gems of the clean energy transition. However, these gems are no longer staying hid-

den. Multiple enabling policies and technological advancements, including improved

performance and reduced costs of computing, connectivity, and communication tech-

nologies, are unraveling the value hidden in these resources. For example, according

to a Microsoft report, the average cost of internet-of-things (IoT) sensors declined by

200% between 2008 and 2014 [1]. On the policy front, policies like FERC Orders 2222

and 841 are unlocking multiple value streams for flexible customer-side resources [2].

Also, these enabling policies, coupled with cost reductions driven by technological

advancements and increasing awareness of climate change and sustainability, encour-

age electricity consumers to invest in more flexible resources. As such, these flexible

resources can provide value to the resource owners, load-serving entities (LSEs), and

every other user connected to the power grid. Note that the LSE is any entity that is

able to supply electricity to a group of consumers. For the resource owner, the value

can be in energy cost reductions or additional incentives for participation in demand-

side management programs. For the LSE, the value can be reduced operating costs or

additional revenue streams. Reducing the LSE’s operating costs could lead to overall

energy bill reductions for other grid users.

According to the North American Electric Reliability Corporation, demand-side

management practices can be grouped into two broad classes - Demand Response and

Energy Efficiency [3]. While energy efficiency represents a static paradigm, demand

response is more dynamic. The United States Federal Electricity Regulatory Commis-

sion (FERC) defines demand response as “changes in electricity usage by demand-side
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resources from their normal consumption patterns in response to changes in the price

of electricity over time, or to incentive payments designed to induce lower electricity

use at times of high wholesale market prices or when system reliability is jeopardized

” [4]. Although FERC’s demand response definition tilts towards reducing electric-

ity consumption, flexible customer-side resources can also provide upward flexibility.

For example, the power consumption of a group of residential air-conditioners can be

increased for a short period to track frequency regulation signals [5].

Furthermore, customer-side resources can provide multiple value streams simulta-

neously, as shown in [6–8]. However, LSEs often only capture single value streams

from the flexible customer-side resources within their jurisdiction leading to an under-

utilization of these resources. As such, this dissertation provides tools to help LSEs

address typical problems on the journey toward making the most of flexible customer-

side resources within their jurisdictions.

The problems associated with capturing multiple value streams from flexible customer-

side resources can be grouped into four general categories - Resource Modeling, Plan-

ning and Operations, Compensations, and Policy Considerations. While each of these

categories is very important, this dissertation focuses on addressing some of the gaps

in the first three categories (i.e., Resource Modeling, Planning and Operations, Com-

pensations) with the assumption that favorable policies are in place. However, future

work can focus on exploring new policies that can augment existing ones to fully

unlock the potential value of flexible customer-side resources.

1.1 Resource Modeling

Accurate and simple models of the flexible customer-side resources are required

to capture multiple value streams from these resources. Due to their relatively small

sizes, flexible customer-side resources are often aggregated to provide significant value.

These aggregations can be classified as homogeneous or heterogeneous depending on

the nature of the multiple resources treated as one [9]. For example, an aggregation
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of residential HVAC resources is a homogeneous aggregation, while an aggregation

containing all flexible resources in a commercial building is heterogeneous. However,

modeling each resource separately could be impractical, especially when the LSE

considers multiple resources. As such, simple yet accurate aggregate models are

highly desirable.

Extensive work has been done on aggregate models for both homogeneous and het-

erogeneous resource aggregations. The authors in [10] proposed an aggregate model

for residential thermostatically controlled loads (TCLs). Also, the authors in [11–13]

discuss different variations of the equivalent battery model (EBM) concept for captur-

ing the overall flexibility associated with an aggregation of residential air conditioning

units. Both stochastic and deterministic EBM representations have been proposed for

aggregations of residential TCLs. EBM representations have also been proposed for

commercial HVAC systems [8]. However, before this study, no EBM representation

captured uncertainties associated with the operation of a commercial building and

captured its overall flexibility. The second chapter of this dissertation provides a de-

tailed discussion of the proposed stochastic EBM model for representing a commercial

building’s flexibility.

1.2 Planning and Operations

The planning process for an LSE covers different time scales. However, this disser-

tation focuses on planning from a day-ahead perspective. An exciting area of further

research is how using flexible customer-side resources for combined value streams fits

into an LSE’s long-term planning framework.

LSEs need to know how best to operate the available flexible customer-side re-

sources within their jurisdictions to capture the multiple value streams desired dur-

ing the next operating day. This planning requirement applies to LSEs in regulated

and deregulated electricity market environments. However, the planning details de-

pend on the nature of the value streams of interest. The third and fourth chapters
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provide novel day-ahead stochastic scheduling models that LSEs can use to plan for

value streams relating to the bulk power system and distribution system operations,

respectively.

In addition to planning, LSEs also need to know how to dispatch individual flexible

customer-side resources to achieve the multiple value streams planned for in real time.

This implies that the LSE requires a detailed understanding of different real-time

resource dispatch algorithms. The LSE also needs to clearly understand the pros and

cons of such resource dispatch algorithms. The third and fourth chapters also include

detailed discussions about different real-time dispatch algorithms that LSEs can use

to dispatch customer-side resources to capture multiple value streams focused on bulk

power system and distribution system operations.

1.3 Compensation

The LSE also requires fair mechanisms to compensate the flexible customer-side re-

sources for participating in their flexibility programs and providing multiple services.

Also, the LSE can introduce innovative compensation dimensions to incentivize par-

ticipation from a particular customer segment. The fifth chapter of this dissertation

focuses on a practical game theory-based compensation framework that can be eas-

ily adapted to different LSEs. A novel concept of social compensation dimensions,

specifically credit rating improvements, in addition to financial compensations for low

and medium-income (LMI) flexible resource owners, is also introduced.

1.4 Dissertation Format

This dissertation follows a three-paper format allowed by UNCC’s Graduate School.

In reality, four papers were prepared for publication. Short descriptions of the chap-

ters are provided below for context:

Chapter 1 is the introductory chapter and provides an overview and overall moti-

vation for the dissertation.



5

Chapter 2 deals with a simplified representation of the overall flexibility associated

with a commercial building considering uncertainties in the building’s operating pat-

tern. It is based on an article that has been prepared and will be submitted to the

Applied Energy journal.

Chapter 3 deals with how LSEs can use customer-side resources, specifically resi-

dential HVACs, EWHs, and BTM batteries, for combined self-service and bulk power

grid support applications. It is based on an article that has been published in the

IEEE Transactions on Smart Grid journal [14].

Chapter 4 deals with how LSEs can use the same set of customer-side resources

(i.e., residential HVACs, EWHs, and BTM batteries) for combined self-service and

distribution grid operational services. It is based on an article that has been submitted

to the IEEE Transactions on Smart Grid journal.

Chapter 5 deals with a compensation framework that LSEs can apply to compen-

sate customer-side resources providing multiple services. It is based on an article that

has also been submitted to the IEEE Transactions on Smart Grid journal.

Chapter 6 is the concluding chapter where the major contributions of the disserta-

tion are reiterated along with ideas for further research.
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CHAPTER 2: CAPTURING OVERALL FLEXIBILITY OF COMMERCIAL

BUILDINGS USING STOCHASTIC EQUIVALENT BATTERY MODELS

Typical flexible resources include heating, ventilation, and air conditioning (HVAC)

systems and electric water heaters. In addition, other resources, such as batteries and

electric vehicle charging stations, are becoming increasingly available in commercial

buildings. Also, uncertainties are often associated with the operations of each of these

resources. While an equivalent battery model (EBM) has proven to be a simple and

effective tool for representing the flexibility associated with the power consumption

of certain individually complex systems in commercial buildings, there is still a need

for a model that provides a simple yet accurate representation of the overall flexibil-

ity and uncertainties associated with the operation of a commercial building. This

chapter presents a stochastic equivalent battery model that meets the aforementioned

need. The proposed model combines both model-based functional simulations and op-

timization techniques to quantify a commercial building’s overall power consumption

flexibility in the face of dominant uncertainties associated with building operations.

We also present an illustrative case study demonstrating how the proposed model can

be applied to complex resource scheduling problems.



Nomenclature

Parameters

∆Plower,t,min/max Lower limits for building’s stochastic minimum and maximum flex-

ibility limits

∆Pupper,t,min/max Upper limits for building’s stochastic minimum and maximum flex-

ibility limits

ηch,b Battery charging efficiency

ηdis,b Battery discharging efficiency

λt Electricity price at time t

a0, a1, a2 Chiller model parameters

Abuilding,t,min/max Stochastic limits for building’s virtual discharge rate at time t

Abuilding,t Building’s virtual self-discharge rate at time t

C Water heater thermal capacitance

Ci/Ci,z Internal thermal capacitance for building zone z

ca Specific heat capacity of air

Ce Thermal capacitance for zone envelope

Cp Specific heat capacity of water

emin/max Slack variable limits
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Ha Ambient absolute humidity

Hs Chiller absolute humidity setpoint

k0, k1, k2 Fan model parameters

Pbuilding,t,min/max Building’s total power limits at time t

Pch,b,max Maximum battery charging rate

Pdis,b,max Maximum battery discharging rate

Pev,max,t Total EV worst case charging profile at time t

QD Total zonal solar and internal heat gains at time t

Qinfil Heating rate from air infiltration into a zone

Qrh,sp,tot,t Total base HVAC reheat rate at time t

Qrh,sp,z,t Base reheat rate for zone z at time t

Qsen,sp,tot,t Total base HVAC sensible cooling rate at time t

Qsen,sp,z,t Base sensible cooling rate for zone z at time t

R Water heater thermal resistance

Rea Thermal resistance between zonal envelope and internal air stream

Rie Thermal resistance between zone air and zone envelope

Rj Thermal resistance between neighboring zone j and the zone of interest

rhind HVAC reheat system type indicator

sw,1,t Uncertainty associated with base temperature profile for water heater

w at time t
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sw,2,t Uncertainty associated with base heating rate for water heater w at

time t

sz,1,t Uncertainty associated with base temperature profile of zone z at time

t

sz,2,t Uncertainty associated with base cooling and heating rate for zone z

at time t

Ta Ambient temperature

Ta,w Water heater location ambient temperature

Tin Hot water supply temperature

Ts Cooling air supply setpoint

Tw,sp,t Hot water base temperature at time t

Tz,sp,t Base temperature profile for zone z at time t

xb,max Maximum battery energy

xb,min Minimum battery energy

xbuilding,t,min/max Building’s total virtual energy limits at time t

xev,max EV charging budget

xev,util Minimum expected EV charging budget utilization

Variables

∆Pbuilding,t Building’s total flexibility at time t

chind,t Battery charging indicator at time t
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disind,t Battery discharging indicator at time t

et Slack variable at time t

mz Air mass flow rate for zone z

Pb,t Battery power at time t

Pbuilding,t Building’s total power consumption at time t

Pch,b,t Battery charging rate at time t

Pchiller,t Chiller power consumption at time t

Pdis,b,t Battery discharging rate at time t

Pev,t Total EV charging power at time t

Pfan,t Fan power consumption at time t

PHV AC,t Total HVAC power consumption at time t

Psubstation,t,s Substation power at time t for scenario s

Qc Cooling rate supplied to a zone

Qlat,chil,t Chiller latent cooling rate at time t

Qrh,tot,t Total HVAC reheat rate at time t

Qrh,z,t Reheat rate for zone z at time t

Qrh Reheat rate supplied to a zone

Qsen,chil,t Chiller sensible cooling rate at time t

Qsen,tot,t Total HVAC sensible cooling rate at time t

Qsen,z,t Sensible cooling rate for zone z at time t
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Qw,sp,t Hot water base heating rate at time t

Qw,t Hot water heating rate at time t

Ti/Tz Internal temperature for a zone

Tavg,t Average zonal temperature at time t

Te Envelope temperature for a zone

Tj Internal temperature in neighboring zone j

Tmix,t Mixed air temperature at time t

Trh Reheat temperature for a zone

Tw,t Hot water temperature at time t

xb,t Battery energy at time t

xbuilding,t Building’s total virtual energy at time t

xev,t Total EV charging budget utilization at time t

xHV AC,t Virtual HVAC energy variable at time t

xw,t Water heater virtual energy at time t

xz,t Virtual energy variable for zone z at time t

2.1 Introduction

2.1.1 Background and Motivation

Commercial buildings are major electricity consumers [1]. As such, any effective

and sustainable decarbonization pathway must capture how commercial buildings

consume electricity. Interestingly, electricity consumption patterns in most commer-

cial buildings are becoming more flexible due to dynamic operating schedules and



14

the advent of a new crop of flexible energy-consuming devices [2]. This flexibility

becomes very important under the smart grid paradigm, where demand could poten-

tially tracks electricity generation.

Due to their large sizes, commercial buildings often contain multiple energy-consuming

devices with various uses, operating patterns, flexibility, and complexity. Authors

in [3] provide a simulation-based assessment of the power flexibility associated with

cooling systems in commercial buildings across the United States. According to their

results, the power consumption of cooling systems in commercial buildings across the

United States can be increased by 46 GW and decreased by 40 GW during peak pe-

riods on peak summer days. A fraction of this flexibility can be harnessed to provide

additional value streams for building operators and by extension, load-serving enti-

ties (LSEs). For example, several works have shown how commercial HVAC systems

can provide frequency regulation services to support the bulk power grid. Authors

in [4–6] present different experimental studies showing how commercial HVAC sys-

tems can be used for frequency regulation. Also, authors in [7] show how another

resource, behind-the-meter (BTM) battery, can provide superlinear gains for building

operators when used for combined peak load reduction and frequency regulation.

However, it is very challenging to model commercial buildings in detail in appli-

cations that require modeling the building’s overall flexibility in addition to other

resources like the distribution network supplying electricity to the building and other

devices and loads connected to the network. For example, a Variable Air Volume

(VAV) with Reheat HVAC system serving four thermal zones could have over forty

variables for each time step. As such, a simple representation that quantifies the build-

ing’s overall flexibility, considering the uncertainties associated with its resources, is

required. Virtual or equivalent battery models (EBMs) are perfect candidates for the

job. In fact, EBMs have been used extensively to model flexibilities associated with

individual resources within a commercial building.
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The authors in [8–10] use the equivalent battery model method to represent flexibil-

ities associated with a group of residential thermostatically controlled loads (TCLs)

without considering uncertainty. The authors in [11] capture uncertainties related

to the operations of TCLs in their proposed variational autoencoder-based stochas-

tic virtual battery model. However, the work focuses on aggregations of residential

TCLs. The authors in [12] use equivalent battery models to quantify the regional

potential of different residential TCLs for various grid-supporting services.

Generally, existing works on the usage of EBMs to quantify the flexibility of re-

sources in commercial buildings have used either model-based functional simulations

or optimization techniques. From the model-based functional testing standpoint,

the authors in [13] present a technique for identifying virtual or equivalent battery

models for commercial HVAC systems. The proposed technique assumes that there

are known reference signals to which the HVAC system will be required to respond.

While the proposed technique is interesting and showed promising results for the

specific building examined, it has several limitations:

1. The technique focuses only on a single resource in the building (i.e., a com-

mercial HVAC system) and does not necessarily reflect the overall building

flexibility.

2. The technique assumes that the potential reference signals the commercial

HVAC system will be required to respond to are known. This assumption

makes the technique unsuitable for scheduling problems that seek to capture

the commercial HVAC models in generating optimal resource operating sched-

ules.

3. The flexibility limits are time-invariant, and the technique does not lend itself

well to varying system parameters such as ambient temperature, internal heat

gains, solar heat gains, etc. For example, the rate limits associated with the
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EBM are only identified at the first timestep, which may be too conservative or

outrightly infeasible at a later timestep.

4. The technique does not consider uncertainties associated with the HVAC oper-

ation.

From the optimization standpoint, the authors in [14] present a method for quan-

tifying the flexibility of commercial HVAC systems. The authors in [15] also use an

approach similar to that developed in [14] to explore the provision of ramping services

from grid-interactive buildings. The proposed technique addresses most of the lim-

itations of the model-based functional testing approach proposed in [13]. However,

some limitations still exist:

1. The EBM focuses on commercial HVAC systems.

2. The proposed method is based on a simplified model for commercial HVAC

systems, which may not be suitable for larger multi-zonal commercial buildings.

3. Uncertainties associated with the HVAC operation are not captured.

This work addresses all gaps mentioned above. Our main contributions are three-

fold.

1. Firstly, we propose a novel stochastic EBM that represents the overall flexibility

associated with the power consumption of a multi-zonal commercial building,

including HVAC, water heater, battery, and EV charging resources. The flex-

ibility limits in the proposed model are time-varying and are quantified using

a combination of model-based functional simulations and optimization tech-

niques. The model-based functional simulations are primarily used to describe

the impact of the dominant uncertainties associated with the building’s re-

sources. The procedure for generating the stochastic flexibility limits has also
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been implemented in a Python-based package. To the best of our knowledge,

this is the first work that provides such holistic perspectives.

2. Also, we show that the solution to a certain class of convex and feasible stochas-

tic optimization problems approaches the solution to its deterministic counter-

part if all uncertainties in the problem follow distributions with zero means.

This contribution forms the basis for the stochastic flexibility characterization

technique discussed in the paper.

3. Finally, we illustrate how the proposed stochastic EBM can be applied to com-

plex stochastic resource scheduling problems.

2.2 Stochastic Equivalent Battery Model

The stochastic equivalent battery model representing the overall flexibility in elec-

tricity consumption of a commercial building takes the form shown in (2.1a) to (2.1h).

xbuilding,t+1 = Abuilding,txbuilding,t + ∆Pbuilding,t∆t (2.1a)

Pbuilding,t = f(∆Pbuilding,t) (2.1b)

xbuilding,t,min ≤ xbuilding,t ≤ xbuilding,t,max (2.1c)

Pbuilding,t,min ≤ Pbuilding,t ≤ Pbuilding,t,max (2.1d)

∆Pbuilding,t,min ≤ ∆Pbuilding,t ≤ ∆Pbuilding,t,max (2.1e)

Abuilding,t,min ≤ Abuilding,t ≤ Abuilding,t,max (2.1f)

∆Pbuilding,t,min ε [∆Plower,t,min,∆Pupper,t,min] (2.1g)

∆Pbuilding,t,max ε [∆Plower,t,max,∆Pupper,t,max] (2.1h)

In (2.1a), xbuilding,t represents the building’s overall virtual energy variable which

captures occupant comfort limits and the state of charge associated with all flexible

resources in the building. ∆Pbuilding,t represents the direct flexibility associated with

the resources in the building with respect to predefined base profiles. For example,



18

∆Pbuilding,t for a multi-zonal commercial building with a central HVAC system in-

cludes the change in the actual cooling or heating rate supplied to the zones within

the building. However, the actual cooling or heating rate may or may not have a

direct relationship with the electricity consumption of the HVAC system. This is

because some components of the overall HVAC system could be non-electric, e.g., hot

water reheat systems powered by gas-fired boilers. Also, the actual consumption of

the HVAC system components powered by electricity depends on prevailing weather

conditions. As such, the total electricity consumption, Pbuilding,t, of the building,

which is the variable of interest, can be expressed as a function of the actual flexibil-

ity as shown in (2.1b). Constraints (2.1c) to (2.1e) represent the limits for the energy,

total electricity, and flexibility variables, respectively. While the limits in constraints

(2.1c) and (2.1d) are deterministic values, the limits in constraint (2.1e) are stochastic

values within confidence intervals shown in constraints (2.1g) and (2.1h). Constraint

(2.1f) represents the stochastic limits for the building’s virtual self-discharge rate.

In subsequent sections, each variable and parameter in model (2) will be examined

in detail.

2.3 Resource Models

As pointed out in previous sections, we assume that the commercial building con-

tains an HVAC system, water heating unit, electric vehicle charging stations, and

battery energy storage. As such, each of these resources will contribute to the build-

ing’s overall flexibility.

2.3.1 Commercial Building HVAC System

2.3.1.1 Commercial HVAC Model

Commercial buildings are often divided into multiple thermal zones, each represent-

ing a room or a group of rooms. The commercial HVAC systems’ modeling includes

modeling the building’s thermal zones and related equipment, including chillers, boil-
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ers, and fans. We assume the commercial HVAC system is a variable air volume

(VAV) with a reheat system.

As shown in our previous work [16], each thermal zone in a commercial building

can be satisfactorily modeled using a two-node RC network with additional terms to

reflect inter-zonal thermal interactions, air infiltration, and internal and solar heat

gains. Fig. 1 shows the two-node model for each zone, and (2.2a) - (2.2d) provides

its mathematical representation.

Ci
dTi
dt

=
1

Rie

(Ta − Ti) +Qc +Qrh +QD +Qinfil

+
J∑
j=1

1

Rj

(Tj − Ti) (2.2a)

Qc = camz(Ts − Ti) (2.2b)

Qrh = camz(Trh − Ts) (2.2c)

Ce
dTe
dt

=
1

Rie

(Ti − Te) +
1

Rea

(Ta − Te) (2.2d)

In the two-node model, two state variables describe the time evolution of tem-

perature within the zone, as shown in Fig. 2.1. The first state variable defines the

zone’s interior temperature Ti, and the other variable represents the temperature of

the zone’s envelope, Te. The parameter Rie reflects the thermal resistance between

the zone’s envelope and the air within the zone, while Rea captures the resistance

between the zone’s envelope and ambient air. Parameters Ci and Ce represent the

specific heat capacity of the air within the zone and the zone’s envelope material,

respectively. Ti depends on the ambient temperature, Ta, the cooling, and the reheat

supplied to the zone represented by Qc and Qrh respectively. Furthermore, the inter-

nal thermal gains due to occupancy, equipment operation, and solar irradiance, which

are lumped together as QD, also influence the temperature within the zone. Equation

(2.2b) indicates that Qc depends on the mass flow rate, mz, and the temperature of
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Figure 2.1: Two-node node model for a thermal zone

the conditioned air supplied to the zone, Ts. The zone’s temperature is also impacted

by thermal interactions with neighboring zones represented by the terms Rj and Tj.

In addition to zonal thermal characteristics, other equipment associated with com-

mercial HVAC systems are the chiller, the boiler, and the fan. The chiller model is

shown in (2.3a) - (2.3d).

Qsen,cool = c
n∑
z=1

mz(Tmix − Ts) (2.3a)

Qlat,cool = l
n∑
z=1

mz(Ha −Hs) (2.3b)

Qcool = Qsen,cool +Qlat,cool (2.3c)

Pchiller = a0Ta + a1Ha + a2Qcool (2.3d)

Equations (2.3a) - (2.3d) show that a single chiller can serve multiple zones as

indicated by mass flow rates for each zone mz. Also, Tmix represents the resultant

temperature of a mixture of return air from the zones and fresh external air that goes

into the chiller. The total cooling load is the sum of the latent and sensible cooling

loads, as shown in (2.3c). Given that the chiller’s efficiency depends on the ambient

conditions, the power consumption is modeled as shown in (2.3d), where ao, a1, and

a2 are model parameters. The boiler and chiller models are similar, excluding the

latent heat term [16].
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The fan’s consumption is modeled as shown in (4) [17].

Pfan = k2

n∑
z=1

(mz)
2 + k1

n∑
z=1

mz + k0 (2.4)

2.3.1.2 Deterministic EBM Representation

The EBM representation discussed in this section includes detailed models for the

associated HVAC equipment instead of simple flexibility limits.

The flexibility in the power consumption of any HVAC system serving a building

depends on the thermal comfort limits of the occupants of the building. As such,

each thermal zone within a building stores and releases thermal energy with respect

to some base temperature setpoint or profile. Let the variable xz,t represent the

thermal energy stored or released in thermal zone z at time t. xz,t can be defined

mathematically as shown in (2.5a) where Tz,t represents the temperature within the

zone, and Tz,sp represents the zone’s base temperature profile. Considering (2.2a) and

(2.5a), (2.2a) is re-written as (2.5b) to (2.5g).

xz,t = Ci,z(Tz,t − Tz,sp) (2.5a)
dxz,t
dt

= −azxz,t + ∆Qz,t (2.5b)

∆Qz,t = Qz,t −Qz,sp (2.5c)

az =
1

Ci,z
(

1

Rie,z

+
1

R1

+ ...+
1

RJ

) (2.5d)

Qz,t = Qsen,z,t +Qrh,z,t (2.5e)

Qz,sp,t = Qsen,sp,z,t +Qrh,sp,z,t (2.5f)

Qsen,sp,z,t = camz(Ts − Tz,sp) (2.5g)

In (2.5b), az, which depends on the zone’s thermal parameters, represents the self-

discharge rate of the zone’s virtual energy represented by xz,t. Qz,t represents the
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thermal inputs into the zone, which includes the heating/cooling supplied by the

HVAC system, and Qz,sp,t represents the zone’s heating/cooling rate associated with

the base temperature profile Tz,sp. An equivalent expression for Qz,sp,t can be obtained

by setting Ti to Tz,sp,t in (2.2a). QD and Qinfil are omitted from (2.5e) and (2.5f)

because these two terms are parameters that will cancel each other out in (2.5c).

From (2.5a), xz,t can have both positive and negative values. Positive xz,t values

can be due to the supply of heat (increased power consumption in winter seasons) or

reduction in the supply of cold air (reduced power consumption in summer seasons)

into the zone. On the other hand, negative xz,t values can be due to the supply of

additional cold air (increased power consumption in summer seasons) or reduction

in the supply of heat (reduced power consumption in winter season) into the zone.

Therefore, defining a charging convention that depends only on xz,t is pertinent. We

define charging as events that increase xz,t and discharging as events that reduce xz,t.

Equations (2.5b) - (2.5g) do not include the actual power consumption of the HVAC

system. The power consumption equations are discussed later.

Considering a commercial building with n thermal zones connected to a single

HVAC equipment, the battery representation for each zone can be combined to create

the battery representation for the HVAC system, as shown in (2.6) to (2.7e). In

(2.6) and (2.7), aHV AC is the average of the virtual self-discharge rates for all zones

connected to the HVAC equipment.

dxHV AC,t
dt

= −aHV ACxHV AC,t + ∆Qtot,t (2.6)

Rewriting (2.6) in discrete form,

xHV AC,t+1 = (1− aHV AC∆t)xHV AC,t + ∆Qtot,t∆t (2.7a)

xHV AC,t =
n∑
z=1

xz,t (2.7b)
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∆Qtot,t = Qtot,t −Qbase,tot,t (2.7c)

Qtot,t = Qsen,tot,t +Qrh,tot,t (2.7d)

Qbase,tot,t = Qsen,sp,tot,t +Qrh,sp,tot,t (2.7e)

Qsen,tot,t represents the total sensible cooling the HVAC system provides to the

zones. Qsen,tot,t can be approximated as shown in (2.8a). Also Qrh,tot,t can be approx-

imated as shown in (2.8b).

Qsen,tot,t = camz,tot,t(Ts − Tavg,t) (2.8a)

Qrh,tot,t = camz,tot,t(Trh,avg,t − Ts) (2.8b)

Qrh,tot,t represents the total heating supplied to the zones from the reheat coils,

which can be electric or hot water driven. If the reheat coils are hot water-driven, the

boiler provides the heat, and the contribution of the reheat power to the building’s

total electricity consumption depends on the boiler’s fuel (i.e., electricity or natural

gas-driven). However, most existing commercial buildings often use gas-fired boilers,

and we adopt that configuration. Electric boilers can also be well represented with

minimal adjustments.

Since the EBM representation will not explicitly include zonal temperatures, an

approximate expression for Tavg,t in terms of xz,t is generated from (2.5a) as shown

in (2.9) where Ci,z,avg is the average zonal capacitance.

Tavg,t =
1

n
(
xHV AC,t
Ci,z,avg

+
n∑
z=1

Tz,sp) (2.9)

As discussed earlier, the chiller cools down a stream of air, with a temperature

Tmix,t, consisting of fresh ambient air, and return air from the thermal zones to a

certain setpoint, Ts. Assuming that Tmix,t represents an equal proportion of fresh
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ambient air and return air from the thermal zones, Tmix,t can be expressed mathe-

matically as shown in (2.10).

Tmix,t =
Tavg + Ta

2
(2.10)

The sensible (Qsen,chil,t) and latent heat (Qlat,chil,t) terms of the chiller’s power

consumption are calculated as shown in (2.11a) and (11b) respectively. The chiller’s

power consumption, Pchiller,t, can then be expressed as a function of Qsen,chil,t, Qlat,chil,t

and ambient conditions represented by Ta and Ha as shown in (2.3). The fan’s power

consumption, Pfan,t, is also expressed as a function of mz,tot as shown in (2.4). The

summation of Pchiller,t, Pfan,t and the reheat term (if electric) represents the total

power consumption, PHV AC,t, of the HVAC system.

Qlat,chil,t = lmz,tot(Ha −Hs) (2.11a)

Qsen,chil,t = camz,tot(Tmix,t − Ts) (2.11b)

Pchiller,t = f(Qsen,chil,t, Qlat,chil,t, Ta, Ha) (2.11c)

Pfan,t = f(mz,tot) (2.11d)

PHV AC,t = Pchiller,t + Pfan,t + rhindQrh,tot,t (2.11e)

The final deterministic EBM representation for the commercial HVAC system is

given by equations (2.7a), (2.7c), (2.7d), and (2.8)-(2.11).

2.3.1.3 Stochastic EBM Representation

The EBM representation discussed in the previous section assumes that the HVAC’s

operating pattern and ambient conditions are known in a deterministic sense. How-

ever, this is not the case in reality. While several uncertainties are associated with

commercial building operations, the uncertainties can be treated as variations to the

sum of the QD and Qinfil parameters for each zone. These variations will, in turn,
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affect each zone’s base temperature profile Tz,sp,t and the cooling/heating rate Qz,sp,t

supplied by the HVAC system. Let us define two additional variables T ′
z,sp,t and Q

′
z,sp,t

to reflect the variations in the base profiles due to the uncertainties.

T
′

z,sp,t = Tz,sp,t − sz,1,t (2.12a)

Q
′

z,sp,t = Qz,sp,t − sz,2,t (2.12b)

Note that the signs in equations (2.12a) and (2.12b) are chosen arbitrarily and can

be defined in any way desired. sz,1,t and sz,2,t represent zero-mean normally distributed

uncertainties associated with the zone’s temperature and thermal energy (i.e., cooling

or heating) supply, respectively. However, if the zero mean assumption is not satisfied,

the actual distributions can be normalized to a standard normal distribution with a

zero mean value [18]. Also, the 95% confidence intervals are taken as the limits for

the uncertainties sz,1,t and sz,2,t based on the normal distribution assumption. Based

on the definitions in equations (2.12a) and (2.12b), a new representation of the zone’s

thermal energy that captures uncertainties can be expressed as shown in equation

(2.13).

x
′

z,t = Ci,z(Tz,t − T
′

z,sp,t) (2.13a)

x
′

z,t = Ci,z(Tz,t − Tz,sp,t + sz,1,t) (2.13b)

x
′

z,t = xz,t + Ci,zsz,1,t (2.13c)

Also, the cooling/heating rate supplied by the HVAC system to the zone can be

expressed with the associated uncertainties, as shown in (2.14).

∆Q
′

z,t = Qz,t −Q
′

z,sp,t (2.14a)

∆Q
′

z,t = ∆Qz,t + sz,2,t (2.14b)
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Writing a new battery model using the stochastic terms x′
z,t and ∆Q

′
z,t produces

(2.15).

dx
′
z,t

dt
= −azx

′

z,t + ∆Q
′

z,t (2.15)

Substituting (2.13a) and (2.14b) into (2.15),

d(xz,t + Ci,zsz,1,t)

dt
= −az(xz,t + Ci,zsz,1,t) + ∆Qz,t + sz,2,t (2.16)

Assuming dxz,t
dt

>> Ci,z
dsz,1,t
dt

, equation (2.16) can be re-written as follows.

dxz,t
dt

= a
′

z,txz,t + ∆Qz,t + sz,2,t (2.17a)

a
′

z,t = −az − azCi,z
sz,1,t
xz,t

(2.17b)

Rewriting (2.17) in discrete form,

xz,t+1 = Az,txz,t + (∆Qz,t + sz,2,t)∆t (2.18a)

Az,t = 1 + a
′

z,t∆t (2.18b)

From equation (2.18b), the parameter Az,t is also a stochastic term since it depends

on the sz,1,t which is stochastic. Taking the 95% confidence interval as the lower and

upper limits for sz,1,t, the limits on the parameter Az,t can also be estimated since

the limits on the variable xz,t are also known. The limits on the variable xz,t depend

on the thermal comfort limits allowable for the zone z and are calculated as shown

in (2.19).

xz,t,max = Ci,z(Tz,max − Tz,sp,t) (2.19a)

xz,t,min = Ci,z(Tz,min − Tz,sp,t) (2.19b)

The stochastic battery representation for a commercial HVAC system serving n
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zones can be obtained by summing the battery representations for the n zones, as

shown in (2.20). AHV AC,t is taken as the average of Az,t for all connected zones. As

such, the maximum and minimum limits forAHV AC,t (i.e., AHV AC,t,max andAHV AC,t,min)

correspond to the average maximum and minimum limits for all associated zones, re-

spectively.

xHV AC,t+1 = AHV AC,txHV AC,t + (∆Qtot,t + sHV AC,2,t)∆t (2.20a)

xHV AC,t =
n∑
z=1

xz,t (2.20b)

sHV AC,2,t =
n∑
z=1

sz,2,t (2.20c)

Equations (2.7c) to (2.11e) still apply to the stochastic representation. However, all

variables are now scenario dependent i.e. the variables depend on specific realizations

of sHV AC,1,t (i.e.
∑z

n=1 sz,1,t) and sHV AC,2,t. As such, any optimization problem based

on the stochastic EBM representation of the HVAC system is stochastic. This infer-

ence is important and forms the basis for obtaining the building’s flexibility limits

and the final stochastic EBM representation.

2.3.2 Water Heater

2.3.2.1 Deterministic EBM Representation

The water heater is modeled as a single node RC network as shown in (2.21) [19].

C
dTw
dt

=
1

R
(Ta,w − Tw)−mwCp(Tw − Tin) +Qw (2.21)

Let xw,t represent the water heater’s virtual energy variable at time t. The variable

xw,t can be defined mathematically as shown in (2.22), where Tw,sp,t represents the



28

base water temperature setpoint or profile.

xw,t = C(Tw,t − Tw,sp,t) (2.22)

Considering (2.22), (2.21) is re-written as a battery model in (2.23a) to (2.23c).

Qw,sp,t represents the water heater’s heating power consumption corresponding to the

base water temperature profile Tw,sp,t.

dxw,t
dt

= −awxw,t + ∆Qw,t (2.23a)

∆Qw,t = Qw,t −Qw,sp,t (2.23b)

aw =
1

RC
(2.23c)

Given that xw,t can have both positive and negative values, the same charging

convention used for the HVAC system is adopted for the water heater for consistency,

i.e., charging refers to events that increase xw,t and discharging refers to events that

reduce xw,t.

2.3.2.2 Stochastic EBM Representation

The main source of uncertainty associated with the water heater is the hot water

consumption rate. This uncertainty affects the base temperature profile, Tw,sp,t, and

the base power consumption, Qw,sp,t, of the water heater.

Defining new variables to capture uncertainties in the water heater’s base profiles,

T
′

w,sp,t = Tw,sp,t − sw,1,t (2.24a)

Q
′

w,sp,t = Qw,sp,t − sw,2,t (2.24b)

Note that the same normal distribution and zero mean assumptions applied to the

HVAC uncertainties also apply to sw,1,t and sw,2,t.
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A new battery model to reflect the water heater uncertainties is shown in (2.25)

where x′
w,t = xw,t + Csw,1,t and ∆Q

′
w,t = ∆Qw,t + sw,2,t.

dx
′
w,t

dt
= −awx

′

w,t + ∆Q
′

w,t (2.25)

Substituting the definitions of x′
w,t and ∆Q

′
w,t into (2.25) and assuming that dxw,t

dt

>> C dsw,1,t

dt
, (2.25) becomes (2.26).

dxw,t
dt

= a
′

w,txw,t + ∆Qw,t + sw,2,t (2.26a)

a
′

w,t = −aw −
sw,1,t
Rxw,t

(2.26b)

Rewriting (2.26) in discrete form,

xw,t+1 = Aw,txw,t + (∆Qw,t + sw,2,t)∆t (2.27a)

Aw,t = 1 + a
′

w,t∆t (2.27b)

Note that Aw,t is also stochastic and its limits (Aw,t,min and Aw,t,max) can be ob-

tained using the same procedure described for each thermal zone under section III.A.3.

2.3.3 Battery

The battery’s charge or discharge can be scheduled as needed. As such, the battery

is modeled as shown in (2.28) [20].

xb,t+1 = xb,t + Pb,t∆t (2.28a)

Pb,t = ηch,bPch,b,t −
1

ηdis,b
Pdis,b,t (2.28b)

xb,min ≤ xb,t ≤ xb,max (2.28c)

0 ≤ Pch,b,t ≤ chind,tPch,b,max (2.28d)

0 ≤ Pdis,b,t ≤ disind,tPdis,b,max (2.28e)
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chind,t + disind,t ≤ 1 (2.28f)

2.3.4 Electric Vehicle Charging

While commercial buildings can have EV charging and vehicle-to-grid discharge

capabilities, the focus is on EV charging. The charging patterns of EVs using the

EV charging infrastructure associated with commercial buildings constitute the ma-

jor sources of uncertainty. To take care of these charging pattern uncertainties, we

assume that each commercial building offers EV charging as a complimentary service

to the building’s occupants, i.e., the building operator does not require EV users to

pay for charging. Based on this assumption, each building has a daily EV charging

budget, xev,max, a minimum expected EV charging budget utilization, xev,until, and

a worst-case expected EV charging profile, Pev,max,t. The minimum expected EV

charging budget utilization can equal the daily EV charging budget. Also, the worst-

case charging profile can be obtained from historical charging data. The parameters

xev,max, xev,until, Pev,max,t provide the operating bounds which takes care of all EV

charging uncertainties.

The building’s total EV charging can be modeled using the set of equations in

(2.29). Embedding (2.29) as constraints within an optimization framework provides

the optimally managed EV charging profile that satisfies whatever objective being

considered. xev,t represents the portion of the EV charging energy budget used at

time t. Equation (2.29b) shows that the minimum expected EV charging budget

utilization would have been achieved at the end of the day.

xev,t+1 = xev,t + Pev,t∆t (2.29a)

xev,T ≥ xev,util (2.29b)

0 ≤ xev,t ≤ xev,max (2.29c)

0 ≤ Pev,t ≤ Pev,max,t (2.29d)
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2.4 Building’s Stochastic Flexibility Limits

The foundation for the building’s stochastic EBM representation with the flexibility

limits explained in (2.1) has been established in section III. Considering equation

(2.1a),

xbuilding,t = xHV AC,t + xw,t + xb,t + xev,t (2.30a)

Abuilding,t = mean(AHV AC,t, Aw,t,

Ab,t = 1, Aev,t = 1) (2.30b)

Abuilding,t,min = mean(AHV AC,t,min, Aw,t,min,

Ab,t,min = 1, Aev,t,min = 1) (2.30c)

Abuilding,t,max = mean(AHV AC,t,max, Aw,t,max,

Ab,t,max = 1, Aev,t,max = 1) (2.30d)

∆Pbuilding,t = ∆Pflex,t + sHV AC,2,t + sw,2,t (2.30e)

∆Pflex,t = ∆Qtot,t + ∆Qw,t + Pb,t + Pev,t (2.30f)

Pbuilding,t = PHV AC,t +Qw,t + Pb,t + Pev,t (2.30g)

Since the EV representation is in terms of energy budget utilization, there is no self-

discharge rate associated with EV charging. Therefore, Aev,t equals 1. The battery’s

self-discharge rate is assumed to be negligible, making Ab,t equal to 1. The stochastic

optimization problem (2.31) provides a basis for obtaining the flexibility limits for

variables xbuilding,t, Pbuilding,t and ∆Pbuilding,t shown in equations (2.1c) to (2.1f).

min/max
T∑
t=1

E[Pbuilding,t] or
T∑
t=1

E[xbuilding,t] (2.31a)

subject to:

Overall building constraints: (2.30a), (2.30f), (2.30g) for diff.
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realizations of sHV AC,1,t, sHV AC,2,t, sw,1,t, sw,2,t (2.31b)

HVAC constraints: (2.20a), (2.7c) − (2.11e) for different

realizations of sHV AC,1,t, sHV AC,2,t, sw,1,t, sw,2,t (2.31c)

Water heater constraints: (2.27a), (2.23b) for different

realizations of sHV AC,1,t, sHV AC,2,t, sw,1,t, sw,2,t (2.31d)

Battery constraints: (2.28a) − (2.28f) for different

realizations of sHV AC,1,t, sHV AC,2,t, sw,1,t, sw,2,t (2.31e)

EV charging constraints: (2.29a) − (2.29d) for different

realizations of sHV AC,1,t, sHV AC,2,t, sw,1,t, sw,2,t (2.31f)

The objective function (2.31a) either maximizes or minimizes the expected value of

Pbuilding,t or xbuilding,t depending on the limits of interest. The expectation operator in

the objective function indicates that the variables Pbuilding,t or xbuilding,t are scenario

dependent i.e. the outcomes depend on the realizations of the uncertainties sHV AC,1,t,

sHV AC,2,t, sw,1,t, sw,2,t. As such, the expected values of the limits are required. Since

the building’s total electricity consumption is often the variable of interest, maximiz-

ing or minimizing the expected value of Pbuilding,t also provides the needed limits for

∆Pflex,t.

Solving the four stochastic optimization problems represented by (2.31) could be

computationally challenging due to the need to create multiple scenarios based on the

uncertainties sHV AC,1,t, sHV AC,2,t, sw,1,t, and sw,2,t. However, under certain conditions,

the solutions to the stochastic optimization problems (2.31) approach the solutions

to the deterministic counterparts (i.e. with sHV AC,1,t = sHV AC,2,t = sw,1,t = sw,2,t =

0). These conditions are stated in Theorem 1.

Let us consider the stochastic optimization problem shown in (2.32). w(γ) and

x(γ) are scenario-dependent decision variables whose values depend on the specific
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realization of uncertainty γ, normally distributed with a zero mean. Parameters h,

W , A, K, and B are deterministic.

minimize E[w(γ)] (2.32a)

subject to:

K + γ + x(γ) +Ww(γ) = h (2.32b)

0 ≤ w(γ) ≤ A (2.32c)

0 ≤ x(γ) ≤ B (2.32d)

Problem (2.32) can be considered as a generic version of problem (2.31) with a

linearized version of the quadratic fan model and relaxed binary variables associated

with the battery. With these relaxations, each equality constraint in problem (2.31)

can be viewed as the summation of scenario-dependent variables and uncertain pa-

rameters (i.e. (2.32b)), while the physical equipment limits or comfort-related limits

are equivalent to the inequality constraints (i.e. (2.32c) to (2.32d)). Also, in reality,

as long as the building is in operation, the total power consumption will always be

greater than the minimum nameplate rating. Similarly, the total power consumption

will always be less than the building’s maximum power consumption rating. There-

fore, constraint (2.32c) will be non-binding i.e. the parameters h, W , A, K, and B

will be such that w(γ) will always be greater than its minimum physical limit but less

than its maximum physical limit. We can now state Theorem 1 relating to problem

(2.32) and the proof is provided in the Appendix.

Theorem 1: For a class of convex and feasible stochastic optimization problems

described in Problem (2.32), the optimal solution (i.e., the minimum expected value

of the scenario-dependent variable) approaches the optimal solution of the determin-

istic version of the problem (i.e., without the uncertainties) as the number of equally

probable scenarios of the uncertainties increases if each uncertainty in the stochastic
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optimization problem follows a distribution with a zero mean.

Based on Theorem 1, the solutions of the deterministic counterparts to problem

(2.32) provide the expected maximum and minimum flexibility limits for xbuilding,t,

Pbuilding,t and ∆Pflex,t. Note that the binary variables associated with the battery

operation could be relaxed to preserve convexity. However, the capability of modern

optimization solvers to solve problems with binary variables to optimality can be

leveraged. Furthermore, each building will typically have a single battery storage

system, so the number of binary variables remains manageable. Equation (2.30e)

shows that ∆Pbuilding,t is the summation of ∆Pflex,t and the uncertainties sHV AC,2,t

and sw,2,t . As such, the limits for ∆Pbuilding,t can be obtained as stochastic parameters

with lower and upper limits expressed as shown in (2.33).

∆Plower,t,min = ∆Pflex,t,min + sHV AC,2,t,min + sw,2,t,min (2.33a)

∆Pupper,t,min = ∆Pflex,t,min + sHV AC,2,t,max + sw,2,t,max (2.33b)

∆Plower,t,max = ∆Pflex,t,max + sHV AC,2,t,min + sw,2,t,min (2.33c)

∆Pupper,t,max = ∆Pflex,t,max + sHV AC,2,t,max + sw,2,t,max (2.33d)

The solutions of Pbuilding,t and ∆Pflex,t obtained by maximizing and minimizing

Pbuilding,t in the deterministic version of problem (2.31) are used to obtain the param-

eters of a simple regression model, K0 and K1, that relates Pbuilding,t and ∆Pbuilding,t

as shown in (2.1b). This is because the values of the ∆Pflex,t in the deterministic

problem are equivalent to the values of ∆Pbuilding,t since the uncertainties are set to

zero in the deterministic problem.

Pbuilding,t = K0 +K1∆Pbuilding,t + et (2.34a)

emin ≤ et ≤ emax (2.34b)
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The term et in (2.34) is a slack variable constrained by the maximum and minimum

residuals from the regression model fitting procedure.

Based on the preceding discussions, the procedure for generating a stochastic equiv-

alent battery model to capture the overall flexibility of a commercial building is de-

scribed as follows.

1. Generate interval forecasts for each zone’s total internal heat gains and hot

water consumption rates. Set the mean values of the predictions as the base

profiles.

2. Obtain the worst case charging profile for the EVs (Pev,max) from historical

data and set the daily EV energy budget (xev,max) and the minimum expected

charging budget utilization (xev,util) .

3. Run building energy simulations with the base profiles in step 1 to establish the

base profiles for the zonal temperatures (Tz,sp), hot water temperatures (Tw,sp),

heating/cooling rate for each thermal zone (Qz,sp) and the hot water heating

rate (Qw,sp).

4. Run multiple building energy simulations using parameters obtained by sam-

pling the intervals in step 1.

5. Combine the simulation results from steps 3 and 4 to obtain the time-dependent

mean and standard deviations of the uncertainties sz,1,t, sz,2,t, sw,1,t, and sw,2,t. If

the uncertainties have non-zero means, transform the uncertainties to standard

normally distributed values.

6. Obtain the limits for the building’s virtual energy self-discharge rate, Abuilding,t,

using equations (2.30c) and (2.30d)

7. Solve four deterministic optimization problems (i.e., deterministic versions of

(2.31)) to obtain the building’s flexibility limits. The objective functions of the
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four optimization problems aremaximize
∑T

t=1 Pbuilding,t,minimize
∑T

t=1 Pbuilding,t,

maximize
∑T

t=1 xbuilding,t, and minimize
∑T

t=1 xbuilding,t. Note that if a maxi-

mization problem is solved first, the minimization problem is constrained with

the optimal values from the maximization problem to ensure solution feasibility

and vice versa.

8. Set the solutions of the optimization problems solved in step 7 as the limits for

xbuilding,t and Pbuilding,t.

9. Obtain the limits for ∆Pbuilding,t using equations (2.33a) to (2.33d).

10. Obtain the relationship between ∆Pbuilding,t and Pbuilding,t using equation (2.34).

Note that, if necessary, the procedure described above can be applied multiple times

to update the parameters of the stochastic equivalent battery model. This could be

useful when the forecasts are unreliable. The main difference at every iteration will be

the forecasts (internal heat gains, hot water consumption, worst-case charging profile)

and input data (daily EV energy budget, minimum expected utilization) used.

2.5 Case Studies

2.5.1 Representative Buildings

We consider two commercial buildings to illustrate the proposed flexibility charac-

terization procedure. The buildings were adapted from the United States Department

of Energy Commercial Buildings database, and their characteristics are summarized

in Fig. 2.2 [21]. Ambient conditions for Chicago reflected in the typical meteoro-

logical year (TMY3) file are assumed [22]. Specifically, all simulations are based on

weather conditions for July 9 from the TMY3 weather file.

Also, the uncertainties associated with the internal heat gains and the hot water

consumption rate are assumed to be ± 15% of the expected values. The daily EV

charging budgets are assumed to be 196 kWh and 1402 kWh for buildings A and B,
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Figure 2.2: Building characteristics

respectively. For both buildings, the minimum EV charging budget utilization is zero.

This implies that, if needed, the building’s EV charging service can be unavailable to

reduce the building’s energy consumption to the barest minimum.

A Python-based commercial building simulation tool, previously benchmarked with

EnergyPlus, was used to run all building energy simulations with 10-minute time

steps [16]. Also, the flexibility limits characterization procedure, including the opti-

mization problems, have been implemented in the Python-based commercial building

simulation tool. The optimization problems were all solved using a Gurobi solver

interfaced with the Pyomo package [23].

2.5.2 Stochastic EBM Representation Use Case

We consider a simple case study involving a small load serving entity (e.g., a utility

cooperative) whose objective is to reduce the overall cost of the energy it purchases

on behalf of its members. The load-serving entity’s (LSE) network is assumed to be

a modified version of the IEEE 33-bus network, with buildings A and B located at

nodes 19 and 22, respectively. The LSE also operates a solar photovoltaic system on

behalf of its members, as shown in Fig. 2.3. The LSE solves a day-ahead scheduling

problem that determines the scheduled load profile for each member.

To simplify the illustration, we assume that the main uncertainties in the LSE’s

scheduling problem are those associated with the flexibilities of buildings A and B.
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Figure 2.3: Illustrative LSE’s network

Also, we assume that the LSE’s members will follow any load profile provided to

them by the LSE. Based on these assumptions, the LSE solves a stochastic day-ahead

scheduling problem (2.34).

min.
T∑
t=1

E[λtPsubstation,t,s] +
T∑
t=1

E[eA,t,s] +
T∑
t=1

E[eB,t,s] (2.35a)

subject to:

SOCP Power Flow Equations (includes Pbuilding,A(B),t,s) (2.35b)

Building A Stochastic EBM: (1a), (33), (1c) − (1h) for

different scenarios s (2.35c)

Pbuilding,A(B),t,s) (2.35d)

Building B Stochastic EBM: (1a), (33), (1c) − (1h) for

different scenarios s (2.35e)

Problem (2.34) minimizes the LSE’s total energy cost. The prices were obtained

from NYISO’s 2019 data repository [24]. The expected values of the slack variables

et associated with the stochastic EBM representations for the two buildings are also

minimized. Power flows on the LSE’s network are captured using the power flow

equations’ second-order conic relaxation (SOCP) [25]. Multiple scenarios as created
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for the parameters Abuilding,t, ∆Pbuilding,t,min and ∆Pbuilding,t,max. We assume that these

scenarios are equally probable. The expected values of the variables Pbuilding,A,t,s and

Pbuilding,B,t,s form the reference profiles which are provided for each building to follow.

A receding horizon controller is then used to dispatch the individual resources in the

building to track the provided reference signals in a co-simulation manner. Note that

the controller and the co-simulation procedure have also been implemented within

the Python-based commercial building simulation tool developed by the team.

Figure 2.4: Plots of sz,1,t for a zone in building A

(a) 12 noon (b) 3 pm

Figure 2.5: Distributions of sz,1,t at (a) 12 noon and (b) 3pm
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Figure 2.6: Plots of sz,2,t for a zone in building A

2.6 Results and Discussions

2.6.1 Uncertainties

Fig. 2.4 shows different time-dependent realizations of the uncertainty associated

with the base temperature profile (sz,1,t) for one of the zones in building A. These

realizations are the outcomes of multiple building energy simulation runs using dif-

ferent values of solar and internal heat gain profiles (i.e., ± 15% of the base values).

At first glance, we can infer that the uncertainties associated with the base tem-

perature profile are more pronounced during the day. This is tied to the increased

building occupancy levels during those periods. Fig. 2.5 provides a closer look at the

distribution of the uncertainties at 12 noon and 3 pm. The distribution of the uncer-

tainties at noon has a zero mean, while the distribution at 3 pm has a non-zero mean

(precisely -0.04). Consequently, -0.04 can be added to the zone’s base temperature

profile, Tz,sp, at 3 pm to account for the non-zero assumption violation when solving

the deterministic versions of the problem (2.31).

Fig. 2.6 shows the uncertainties associated with the base thermal heating/cooling

rate supplied to the same zone by the HVAC system (sz,2,t). As expected, there are

more variations during the day when the zone is more occupied. The same procedure

for correcting violations to the zero mean assumption is also applied to the values in

Fig. 2.6.
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(a) Pbuilding,A limits (b) ∆Pbuilding,A limits

Figure 2.7: (a) Pbuilding,A limits (b) ∆Pbuilding,A limits

2.6.2 Flexibility Limits

Figures 2.7(a) and 2.7(b) show the limits for Pbuilding,t and ∆Pbuilding,t for building

A respectively. The base heating and cooling setpoints for the thermal zones in

buildings A and B are 22.5oC and 24oC, respectively. For flexibility purposes, we

assume that the temperature ranges for buildings A and B are 22oC to 25oC and 21oC

to 25oC, respectively. The hot water temperature range is assumed to be 52oC to

59oC. The plots in Fig. 2.7(b) represent the upper and lower values of the maximum

and minimum limits for ∆Pbuilding,t. A major observation is the step increase in the

power limits at 10 am. This increase is due to the worst-case EV charging profile,

which assumes that a significant number of EVs will be plugged in for charging at

around 10 am. This charging assumption also impacted the virtual energy limits, as

shown in Fig. 2.8(b), where the maximum energy limit increases at around 10 am.

From Fig. 2.8(a), the variations in the virtual self-discharge rate are more pronounced

during the day when the building’s power consumption is generally more significant.

The values of K0 and K1 for building A are 16.23 and 1.20, respectively.

Figures 2.9(a) and 2.9(b) show the limits for Pbuilding,t and ∆Pbuilding,t for building

B respectively. Since building B is a warehouse, we assume that the worst-case EV
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(a) Abuilding,A limits (b) xbuilding,A limits

Figure 2.8: (a) Self-discharge limits (b) Virtual energy limits for building A

charging profile involves a significant charging activity in the early hours of the day,

representing the charging of delivery trucks or vans associated with the warehouse

facility. This assumption is reflected in Figures 2.9(a) and 2.9(b), with higher flexi-

bility limits in the early hours of the day. Fig. 2.10(b) also reflects this assumption

with a ramp in the maximum virtual energy limits in the early hours of the day.

However, the virtual discharge rate (Fig. 2.10(a)) appears mostly constant. This is

because of a number of reasons. Firstly, most of the zones in building B are window-

less or without glass sections. As such, most of the zones have no solar heat gains.

Secondly, due to ambient conditions and the relatively bigger size of the zones in

the building, the uncertainties in the internal heat gains did not produce significant

changes in base zone temperature across different scenarios. A combination of these

factors results in smaller values of sz,1,t which leads to near constant A values for the

building’s HVAC system (based on equation (2.17b)), which is the dominant term in

the overall Abuilding,t term. The values of K0 and K1 for building B are 154.57 and

0.87, respectively.
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(a) Pbuilding,B limits (b) ∆Pbuilding,B limits

Figure 2.9: (a) Pbuilding,B limits (b) ∆Pbuilding,B limits

(a) Abuilding,B limits (b) xbuilding,B limits

Figure 2.10: (a) Self-discharge limits (b) Virtual energy limits for building B

2.6.3 Use Case Results

The solutions to Problem (2.34) provide the reference signals that the LSE provides

for each building to follow. Since the scenarios considered are assumed to be equally

probable, the average values of Pbuilding,A,t,s and Pbuilding,B,t,s over all scenarios s are

taken as the reference signals for buildings A and B, respectively. Fig. 2.11 shows

the reference signals and the total power profile of buildings A and B using the

base internal and solar heat gain profiles. The normalized root-mean-square-error

(RMSE) metric is used to evaluate the control performance for each building. The
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(a) Building A (b) Building B

Figure 2.11: Control results for (a) building A (b) building B

average normalized RMSE over multiple internal and solar heat gain profile scenarios

is 10.5% for building A. For building B, the average normalized RMSE is 8.7%.

Fig. 2.12 shows that the temperatures in each zone of the two buildings are mostly

within the specified limits. The variations in temperature during the early hours of the

day for building A are due to the heating actions of the electric reheat coils, which are

also modulated to make the building’s electric power consumption track the reference

signals. In Fig. 2.12(b), zone 3 (office zone) is the only zone with windows which

explains why there is a significant increase in temperature as the solar irradiance

increases (between 11 am and 7 pm). Also, the hot water temperature limits are

generally satisfied in both buildings, as shown in Fig. 2.13. For EV charging, 36%

and 7% of the energy budgets are used in buildings A and B, respectively.

2.7 Conclusions and Future Work

This chapter discusses a stochastic EBM for representing the overall flexibility

in the power consumption of commercial buildings. The proposed stochastic EBM

addresses gaps identified in existing works with EBM representations for flexible re-

sources in commercial buildings. Different sources of uncertainties, including internal

heat gains, solar heat gains, hot water consumption rate, and EV charging profiles,
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(a) Building A (b) Building B

Figure 2.12: Zone temperatures for (a) building A (b) building B

(a) Building A (b) Building B

Figure 2.13: Hot water temperature for (a) building A (b) building B

are captured in the proposed EBM. As such, the proposed model can be applied to

stochastic resource scheduling problems where it will be very cumbersome to include

detailed models of the flexibility associated with commercial buildings. Also, the il-

lustrative use case shows that buildings can satisfactorily follow schedules generated

from stochastic scheduling problems that model commercial buildings using the pro-

posed stochastic EBM. For the two test buildings considered, we recorded an average

tracking performance of over 90% across different scenarios of the internal heat gains,

solar heat gains, and hot water consumption patterns. While the test buildings con-
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(a) Building A (b) Building B

Figure 2.14: EV charging power for (a) building A (b) building B

sidered were adapted from the commercial buildings database, the next step will be to

use the proposed stochastic EBM to quantify the flexibility of real-world commercial

buildings.

2.8 Appendix

Consider the generic convex stochastic optimization problem (2.36). w(γ) and x(γ)

are scenario-dependent variables whose values depend on the specific realization of un-

certainty γ, normally distributed with a zero mean. h, W , A, and B are deterministic

parameters.

minimize E[w(γ)] (2.36a)

subject to:

K + γ + x(γ) +Ww(γ) = h (2.36b)

−w(γ) ≤ 0 (2.36c)

w(γ)− A ≤ 0 (2.36d)

−x(γ) ≤ 0 (2.36e)

x(γ)−B ≤ 0 (2.36f)
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Considering the deterministic version, (2.36) becomes (2.37). v, u1, u2, u3, and u4

are the dual variables associated with the constraints.

minimize w (2.37a)

subject to:

K + x+Ww = h : v (2.37b)

−w ≤ 0 : u1 (2.37c)

w − A ≤ 0 : u2 (2.37d)

−x ≤ 0 : u3 (2.37e)

x−B ≤ 0 : u4 (2.37f)

Applying the Karush-Kuhn-Tucker (KKT) conditions to (2.36) yields a system of

equations which when solved simultaneously produces u1 = u2 = u3 = 0; u4 = 1
W
; v1

= - 1
W
; x = B; w = h−K−B

W
[26]. Note that the values of parameters h, K, B and W

are such that constraints (2.36c) and (2.36d) are non-binding.

Considering (2.36) under two equally probable scenarios of γ produces (2.38).

minimize E[w] =
w1 + w2

2
(2.38a)

subject to:

K + γ1 + x1 +Ww1 = h : v1 (2.38b)

K + γ2 + x2 +Ww2 = h : v2 (2.38c)

−w1 ≤ 0 : u1 (2.38d)

w1 − A ≤ 0 : u2 (2.38e)

−w2 ≤ 0 : u3 (2.38f)

w2 − A ≤ 0 : u4 (2.38g)

−x1 ≤ 0 : u5 (2.38h)
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x1 −B ≤ 0 : u6 (2.38i)

−x2 ≤ 0 : u7 (2.38j)

x2 −B ≤ 0 : u8 (2.38k)

Applying KKT conditions to (2.38) yields E[w] = h−K−B
W

- γ1+γ2
2W

. Since γ is nor-

mally distributed with a zero mean, the average value of γ1, γ2, .... , γn converges to

0 as n → ∞ based on the law of large numbers. Hence, the summation γ1 + γ2 + ....

+ γn also approaches 0 as n → ∞. As such, the additional term γ1+γ2
2W

approaches 0

as more scenarios are included. Therefore the solution to the stochastic optimization

problem approaches the solution to the deterministic problem as the number of sce-

narios increases. The same applies to the maximization problem. Thus, Theorem 1

is established.
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CHAPTER 3: A STOCHASTIC OPTIMIZATION FRAMEWORK FOR

REALIZING COMBINED VALUE STREAMS FROM CUSTOMER-SIDE

RESOURCES

Due to numerous supporting policies aimed at decarbonizing electricity infrastruc-

tures in different regions of the world, customer-side resources are becoming increas-

ingly valuable. Consequently, load-serving entities (LSEs) that typically have access

to these customer-side resources can use them for multiple services simultaneously.

This chapter discusses a stochastic optimization framework for using clusters of resi-

dential HVACs, electric water heaters (EWH), and behind-the-meter (BTM) batter-

ies, spread around the LSE’s distribution network, for energy arbitrage, peak shaving,

and market-based frequency regulation simultaneously. Our framework captures the

effects of controlling the consumption of the customer-side resources on the voltages

in the LSE’s distribution network. We also discuss two real-time dispatch algorithms

capable of eliciting a fast response from the resources to frequency regulation signals

from the market operator with minimal voltage violations. We evaluate the optimiza-

tion models and dispatch algorithms using a HELICS-based co-simulation platform

and real-world data from New York Independent System Operator (NYISO).
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Nomenclature

Parameters

b Index of BTM battery clusters

h Index of HVAC clusters

j Index of time windows for regulation capacity

k Index of observed node voltages

s Index of scenarios

t Index of time steps

u Index of inequality constraints

v Index of equality constraints

w Index of electric water heaters

y Index of buses with observed node voltages

A EWH total surface area

c, ρ Specific heat capacity and density of water

Eh,total Maximum energy consumption for HVAC cluster h

Eb,min/max Battery energy limits

Mt Regulation mileage

m Mass of water in electric water heater

N Time steps in each regulation capacity window

pc,t, pm,t Regulation capacity and movement price at time t
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Pbase,h,t HVAC cluster h base consumption

Pbase,w,t Electric water heater w base consumption

Pbase,b,t Battery cluster b base consumption

Pcluster,t BTM cluster total forecasted base demand at time t

Pmax Maximum demand limit

Ph,max Maximum power for HVAC cluster h

Pw,max Maximum power for water heater cluster w

Pch,b,max Battery charging power limits

Pdis,b,max Battery discharging power limits

Psol,t Solar heat gain at time t

Pref,t Total power reference at time t

pfh Aggregated power factor for HVAC cluster h

pkh, qkh Active & reactive power voltage sensitivity for node k & cluster h

rt,r̂t,J Historical and real-time frequency regulation signal

Re Water heater thermal resistance

St LSE’s total forecasted base demand at time t

SOCw,min/max Cluster w equivalent min/max state-of-charge

Ta, Tin Outdoor and indoor air temperature

Tcw EWH inlet water temperature

Ti,h,min/max HVAC cluster h equivalent minimum/maximum temperature
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Tsp,h,t HVAC thermostat setpoint for cluster h at time t

Tsp,w,t EWH thermostat setpoint for cluster w at time t

Tw,max Cluster w maximum hot water temperature

UL Voltage unbalance limits

Vh Total value (in $) of HVAC units in cluster h

Vbase,k,t Base voltage at node k at time t

Vmin/max Minimum and maximum voltage limits

VUP,t−1 Most recent maximum voltage measurement

VL,t−1 Most recent minimum voltage measurement

Wt Hot water consumption at time t

α Frequency regulation performance score

αb Battery cluster b self discharge rate

ηch/dis,b Battery charging/discharging efficiency

ηCOP,h HVAC cluster h COP

λm,t, λs,t Market, retail electricity price respectively

λTOU Time-of-Use rate

φh/w/b Cluster performance score

ρh/w/b,t Cluster participation factor at time t

Variables

battret,b Battery cluster b total savings from local arbitrage
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Eb,t Battery cluster b energy state at time t

Pb,t Battery cluster b power consumption at time t

Pb,β,t Battery cluster b updated baseline consumption

Pch,b,t Battery charging power for cluster b at time t

Pdis,b,t Battery discharging power for cluster b at time t

Ph,t HVAC cluster h total consumption at time t

Pw,t EWH cluster w power consumption at time t

Pw,β,t EWH cluster w updated baseline consumption

Pup,t Load increase at time t

Pshave,t Load reduction at time t

Preg,j Regulation capacity for time window j

Ti,h,t HVAC cluster h temperature at time t

SOCw,t EWH cluster w state-of-charge at time t

Vk,t Voltage at node k and time t

Vy,avg,t Average voltage at bus y at time t

∆vk,t Voltage change at node k and time t

∆P,∆Q Active and reactive power changes
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3.1 Introduction

3.1.1 Background and Motivation

The demand side of the grid, which has been traditionally dormant, is becoming

increasingly active. This increasing activity is definitely connected to grid modern-

ization and decarbonization trends that have catalyzed the proliferation of new and

existing clean energy technologies at the customer side of the grid. Declining costs of

sensory and computation devices have also made it cheaper to monitor customer-side

resources and gain insights into how they interact with the grid providing the nec-

essary framework for using these resources to support the overall grid. Furthermore,

favorable policies have also played significant roles in encouraging these trends. For

example, the New York Reforming the Energy Vision (NYREV) is a major initiative

that is strongly encouraging the usage of Non-Wires Alternatives (NWA) and electri-

fication of heating in New York state [1]. Also, FERC Order 841 and the more recent

Order 2222 are two policies that are removing the barriers to the participation of

energy storage and other distributed energy resources (DERs) in wholesale markets

including energy markets, ancillary service markets and capacity markets [2]. In fact,

a major stipulation of FERC Order 2222 is that a single DER or an aggregation of

DERs can provide multiple services [2]. These services can be both at the transmis-

sion and distribution levels. As such, we focus on such service combinations in this

work.

Extensive work has been done on the usage of different customer-side resources for

single grid-level services. A detailed overview of the existing works on this topic may

be found in [3]. For combined services, these can be considered from two broad per-

spectives. Firstly, a group of homogeneous resources can be used to provide multiple

services. For example, in [4], authors consider the usage of an aggregate of electric wa-

ter heaters (EWHs) for frequency regulation and voltage management in the presence

of a high penetration of renewables. Previous knowledge of the control band of the
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aggregation and regulation capacity requirements are assumed. However, this may

not necessarily be applicable in typical contexts where the aggregator needs to decide

its regulation capacity bids before submittal to the market operator for clearing or

otherwise. Also, stochasticity associated with electricity prices and regulation market

prices were not clearly captured in the aggregator’s day-ahead scheduling problem. In

another work, an aggregation of behind-the-meter (BTM) batteries is considered for

frequency regulation while the batteries are individually used for end-user services like

peak load reduction and PV curtailment simultaneously [5]. Also, stochasticity is not

considered. In [6], electric vehicles are considered for combined frequency regulation

and peak shaving.

The second broad perspective is the usage of a group of heterogeneous resources

for multiple services. This theme is particularly found in works that represent single

buildings as virtual power plants. In [7], the authors consider batteries and heating,

ventilation and air-conditioning (HVAC) systems in commercial buildings for energy

arbitrage, frequency regulation, and spinning reserve provision. However, since the

resources are collocated within a single building, grid voltage impacts were not con-

sidered. Also, a perfect knowledge of prices and other system parameters is assumed

without stochasticity. Furthermore, the work focuses on the day-ahead scheduling

phase and as such does not propose any real-time control algorithm for resource dis-

patch.

From the preceding paragraphs, it can be logically inferred that a combination of

both perspectives will be beneficial. The homogeneous resource standpoint allows for

a justified reliance on aggregate models since each device/resource in the aggregation

is essentially the same. On the other hand, the heterogeneous standpoint exploits

potential benefits from complementary interactions of different resources. Combining

both perspectives, a single resource aggregation can thus be seen as a heterogeneous

cluster of several homogeneous clusters scattered around the distribution system.
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This is particularly relevant in situations where a single load serving entity (LSE) also

serves as an aggregator of DERs capable of simultaneously participating in wholesale

markets and meeting local system needs as highlighted in the FERC Order 2222 [2].

Another implication of this perspective is that individual resource owners can elect

to have specific resources in their buildings instead of the entire building responding

to external signals, which will mostly be the case with residential customers.

This work, therefore, considers a heterogeneous resource aggregation made up of

homogeneous aggregations of residential HVACs, EWH and BTM batteries. We con-

sider frequency regulation, energy arbitrage and system peak load reduction (which

can also be seen as distribution capacity expansion deferral) as the service combina-

tion of interest. Furthermore, our work can be seen as closing the gaps and building

on the work presented in [4] and [7].

3.1.2 Contributions

Our major contributions are highlighted as follows.

1. We present a stochastic day-ahead scheduling model for an LSE with access

to aggregations of residential HVACs, EWH and BTM batteries for combined

market-based frequency regulation provision, energy arbitrage and peak shav-

ing. Our formulation captures stochasticity in energy and regulation market

prices and frequency regulation signals. Our formulation also captures the

potential impact of resource control actions on system voltages based on the

voltage sensitivity matrix approach.

2. Furthermore, our formulation captures the fact that individual BTM resources

must have had pre-intended applications. We focus on arbitrage and illustrate

how LSEs can estimate opportunity costs (i.e. value from local energy arbitrage)

for a group of BTM battery owners .

3. We present two real-time control algorithms capable of eliciting fast resource
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response given the requirements for frequency regulation with minimal viola-

tions of system voltage limits. It should be noted that our previous work, [8],

considers only a deterministic day-ahead problem involving the usage of resi-

dential HVACs and EWH for frequency regulation and peak shaving without

system voltage considerations. Also, real time control was not considered.

3.2 Resource Modeling

In this section, we discuss the modeling approaches considered for the customer-side

resources, i.e., groups of residential HVACs, EWH and BTM batteries.

3.2.1 Residential HVAC Aggregation Model

Residential HVAC units are often modeled using first-order or second-order equiv-

alent thermal parameter (ETP) models with binary variables capturing on/off status

of the units [9]. However, when considering a large number of single units within a

high-resolution multi-period optimization problem, it is clear that such an approach

can quickly become intractable. As such, we adopt a first order ETP equivalent

model which approximates the aggregated dynamics of a cluster of single units. This

aggregated model captures the total power consumption of the HVAC units and the

average temperature dynamics for all the HVAC units within the cluster. It is worth

mentioning that clusters are assumed to be formed at nodes of the primary distri-

bution network. However, multiple sub-clusters can be created for nodes that have

a significant number of units with varying characteristics. To achieve such cluster-

ing, popular clustering algorithms such as the K-means and Gaussian Mixture Model

(GMM) clustering algorithms can be applied [10].

The first-order aggregate model equation is shown in (3.1). The R and C param-

eters are obtained via a system identification procedure based on Pseudo Random

Binary Sequence (PRBS) signals. Specifically, the HVAC units within each cluster

are perturbed with the same setpoint offsets and total power consumption of the units
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and the average temperature across the cluster are measured. The CTSM software,

which is based on maximum likelihood estimation and Kalman filters, is then applied

to obtain the respective R and C values [11]. ηCOP is taken as the average of the

COP values for each unit within the cluster.

Ti,h,t+1 = Ti,h,t

(
1− ∆t

RhCh

)
+ Ta,t

(
∆t

RhCh

)
−

ηCOP,hPh,t

(
∆t
Ch

)
+ Psol, ,

(
∆t
Ch

) (3.1)

3.2.2 Residential EWH Aggregation Model

As with the residential HVACs, an aggregate model is also adopted for the residen-

tial EWH. This model is also based on a first-order ETP model (also known as the

single node model), which has been widely used in the existing literature [12]. The

model equations are as shown in (3.2a) to (3.2e). The interested reader is referred

to [12] and our previous work [8] for more details about the model.

SOCW =
Twavg

Twmax

(3.2a)

SOCw,t+1 = aw,tSOCw,t +
(btPw,t + ew,t)

Twmax

(3.2b)

aw,t = exp

(
− ∆t

RwCw

)
, bt = Rw (1− aw,t) (3.2c)

ew,t = (GRwTa +BRWTcw) (1− aw,t) (3.2d)

Rw =
1

G+B
,B = ρWtc,G =

A

Re

, Cw = mc (3.2e)

3.2.3 BTM Battery Aggregation Model

For the batteries, the well-established energy reservoir model is adopted, as shown

in (3.3a) - (3.3g) [13]. The self-discharging, charging, and discharging rates are taken
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as weighted averages of the batteries within the cluster.

Eb,t+1 = αbEb,t + ηch,bPch,b,t −
1

ηdis,b
Pdis, b,t (3.3a)

Pb,t = ηch,bPch,b,t −
1

ηdis,b
Pdis,b,t (3.3b)

Eb,min ≤ Eb,t ≤ Eb,max (3.3c)

0 ≤ Pch,b,t ≤ Pch,b,max (3.3d)

0 ≤ Pdis,b,t ≤ Pdis,b, max (3.3e)

P 2
b,t +Q2

b,t ≤ S2
b (3.3f)

chind,t + disind,t ≤ 1 (3.3g)

As previously highlighted, electricity consumers who have made investments in

BTM batteries must have done so to fulfill certain objectives. As such, the LSE or

aggregator needs to estimate the expected benefits for the BTM battery owners. The

value of the expected benefits will form the minimum compensation that these re-

source owners will be willing to accept and should be captured in the LSE’s scheduling

problem. The assumption is that the resource owners use their batteries primarily

for energy arbitrage. While we will show that local energy arbitrage can be an eco-

nomically viable application for BTM batteries for the case studies considered, other

applications can be considered depending on the conditions specific to the LSE.

3.3 Day-Ahead Scheduling Model

As earlier discussed, the LSE/aggregator uses the customer-side resources for market-

based frequency regulation, energy arbitrage, and peak load reduction. We assume

that the LSE participates in a competitive market environment, is a profit-making

entity, and is also a price taker whose actions do not significantly influence market

outcomes. We also assume that the LSE can forecast its overall day-ahead demand

and can estimate, on a day-ahead basis, the expected base consumption for each
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HVAC and EWH aggregation with acceptable accuracy levels. The possibility of eas-

ily getting fine-grain historical consumption data through increasingly reliable and

cost-effective advanced metering infrastructure makes these assumptions even more

valid. Furthermore, the day-ahead aggregated demand profile for each cluster of

buildings providing BTM batteries can also be forecasted. Also, it is assumed that

the LSE has access to historical market-based regulation signals, energy prices, and

regulation market prices. This market-based information is assumed to constitute the

stochasticity associated with the LSE’s day-ahead scheduling problem. This section

discusses the LSE’s day-ahead scheduling problem based on these assumptions.

3.3.1 BTM Battery Base Profile and Benefits Estimation

To obtain the base demand profile and the expected benefits for the BTM batter-

ies, the problem represented in (3.4) is solved. The expected benefits for the BTM

batteries are taken as the lower compensation limit for the BTM battery owners.

minimize Ybatt

Ybatt =
T∑
t=1

λTOU,t(Pcluster,t + Pb,t) (3.4a)

Subject to:

(3.3a) - (3.3g) (3.4b)

Pcluster,t + Pb,t ≥ 0 (3.4c)

E1 = ET (3.4d)

battret = (
T∑
t=1

λTOU,tPcluster,t)− Ybatt (3.4e)

In problem (3.4), the objective function (3.4a) minimizes the cost of electricity for

the BTM battery owners by taking advantage of time-of-use (TOU) rates represented

by λTOU,t. Constraint (3.4c) ensures that the net demand is non-negative implying
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that the buildings are not injecting electricity back to the grid and (3.4d) enforces

energy balance for the batteries. Equation (3.4e) gives the expected base benefits for

the aggregated BTM batteries. The expected base profile for the aggregated BTM

batteries, Pbase,b,t, equals Pb,t.

3.3.2 Service Combination Formulation

The LSE’s day-ahead scheduling problem is as shown in problem (3.5).

maximize YDA

YDA =
J∑
j=1

jN∑
t=1+(j−1)N

[(λs,t − λm,t) (St + Pt − rtPreg,j)]

+

 J∑
j=1

Preg,j

 jN∑
t=1+(j−1)N

(pc,t + α |Mt| pm,t − 1.1pc,t(1− α))


−

T∑
t=1

H∑
h=1

bh (Ti,h,t − Tsp,h,t)2

−
T∑
t=1

W∑
w=1

bw
(
Ti,w,t − Tsp,w,t

)2

−
T∑
t=1

B∑
b=1

bb (Pb,t − Pbase,b,t)−
B∑
b=1

battret,b

−
T∑
t=1

H∑
h=1

(
Vh

Eh,total

)
zh,t (3.5a)

Subject to:

(3.1), ∀h ∈ H (3.5b)

(3.2), ∀w ∈ W (3.5c)

(3.3), ∀b ∈ B (3.5d)

Pt − rt,jPreg,j =
H∑
h=1

(Ph,t − Pbase,h,t)

+
W∑
w=1

(Pw,t − Pbase,w,t) +
B∑
b=1

(Pb,t − Pbase,b,t) (3.5e)
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Pt = pup,t + pshave,t (3.5f)

zh,t = prate,h,t − ‖Pbase,h,t − Pbase,h,t−1‖ ,∀h ∈ H (3.5g)

prate,t = ‖Ph,t − Ph,t−1‖ ,∀h ∈ H (3.5h)
T∑
t=1

(Pt − rt,jPreg,j) = 0 (3.5i)

T∑
t=1

B∑
b=1

(Pb,t − Pbase,b,t) ≥ 0 (3.5j)

0 ≤ St + Pt − rt,jPreg,j ≤ Pmax (3.5k)

0 ≤ St + Pt ≤ Pmax (3.5l)

pup,t ≥ 0, pshave,t ≤ 0 (3.5m)

pshave,t ≥
H∑
h=1

(−Pbase,h,t) +
W∑
w=1

(−Pbase,w,t)

+
B∑
b=1

(Pdis,b,max − Pbase,b,t) (3.5n)

pup,t ≤
H∑
h=1

(Ph,max − Pbase,h,t)

+
W∑
w=1

(Pw,max − Pbase,w,t) +
B∑
b=1

(Pch,b,max − Pbase,b,t) (3.5o)

Ti,h,min ≤ Ti,h,t ≤ Ti,h,max,∀h ∈ H (3.5p)

SOCw,min ≤ SOCw,t ≤ SOCw,max,∀w ∈ W (3.5q)

0 ≤ Ph,t ≤ Ph,max,∀h ∈ H (3.5r)

0 ≤ Pw,t ≤ Pw,max,∀w ∈ W (3.5s)

prate,h,t ≥ Ph,t − Ph,t−1, prate,h,t ≥ −(Ph,t − Ph,t−1) (3.5t)

Since the LSE is a for-profit entity, the objective function (3.5a) maximizes the

LSE’s expected profit for the next operating day. The revenues include those from

the sales of electricity and from participation in regulation markets represented by

the first and second terms in (3.5a). The regulation market revenue term adopted
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in this work is based on NYISO’s operational information because the case studies

considered are based on historical market data from NYISO [14]. It is also worth

mentioning that energy arbitrage is implicitly captured in the first term in (3.5a).

The third, fourth and fifth terms in the objective function represent the LSE’s cost

terms for the HVAC, EWH and BTM battery clusters. For the HVACs and EWHs,

the cost is modeled as a quadratic function of the deviations of air and hot water tem-

peratures from the desired setpoints. This quadratic nature captures the fact both

upward and downward temperature deviations will impact the comfort of the resource

owners. For the batteries, a linear function with a degradation cost parameter and an

additional non-negativity constraint (3.5j) are considered. Constraint (3.5j) ensures

that the batteries’ resultant daily energy profile is at least equal to that obtained

from problem 3.4 (i.e., with each BTM resource owner using its battery for energy

arbitrage). However, the actual energy profile is dependent on the degradation cost

term bb which is obtained using a similar procedure presented in [15] and [16]. It is

worth mentioning that the degradation cost is a function of the charging and discharg-

ing efficiencies of the batteries as implied by equation (3.3b). To capture additional

degradation that can be induced on the HVAC units due to frequent switching result-

ing from fast changing frequency regulation signals, an additional degradation cost

term
∑T

t=1

∑H
h=1

(
Vh

Eh,total

)
zh,t with additional constraints (3.5g) and (3.5h) are added

to the model. Constraints (3.5g) and (3.5h) capture how changes in the new power

profile of the HVAC cluster differs from the changes in the base profile which must

have been previously established. A detailed discussion on the degradation cost term

for the HVAC units is presented in our previous work [8] and can be referred to for

further details. For convexity, (3.5h) is reformulated as (3.5t).

Constraints (3.5b) to (3.5d) represent the aggregated dynamics for the HVAC,

water heater and BTM battery clusters. Constraint (3.5e) can be considered as some

sort of power balance equation that ensures that total deviation of the HVAC, water
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heater and BTM battery clusters from their respective base profiles at each time index

is equal to the regulation requests and load changes to achieve peak load reduction

and energy arbitrage. Constraint (3.5i) ensures that the energy consumption of the

customer side resources are not increased excessively resulting in higher electricity bills

for the resource owners. (3.5k) and (3.5l) captures the peak shaving requirements for

the LSE under peak shaving only or when both peak shaving and frequency regulation

are being considered. The maximum demand parameter Pmax can defined based on

predetermined system capacity requirements which will be the case if the LSE is

considering capacity expansion deferral. Pmax can also be based on the need to

reduce market-based capacity charges, which is determined by varying mechanisms

across different market environments. The specific mechanisms for defining the value

of Pmax are outside the scope of this work. Constraints (3.5m) - (3.5o) represent the

limits on the changes in demand without the impact of the response to regulation

signals. Constraints (3.5p) - (3.5s) capture predefined air and hot water temperature

limits representing the comfort limits for the HVAC and EWH resource owners.

3.3.3 Voltage Constraints

Given that the LSE’s resource clusters can be distributed throughout its network,

there is a need to consider the effects of the LSE’s scheduling on system voltages.

In fact, as the penetration of BTM batteries increases and as the LSE gets access

to more flexible loads, the need for considering system voltages in the scheduling

problem will become more important. However, given the high resolution nature of

frequency regulation signals which are captured in the model formulation, the use

of typical distribution system power flow equations will quickly result in a computa-

tionally intensive model. As such, we adopt an approximate method based on the

voltage sensitivity matrix approach. It is worth mentioning that the voltage sen-

sitivity matrix approach would perform best when the penetration of controllable

customer-side resources is relatively low (i.e., load changes not too far away from
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linearization point, which is the case with most demand-side management programs)

with lesser accuracy as the penetration of the controllable customer-side resources

increases. However, since the overall model is stochastic, it can be assumed that the

overall effect of the stochasticities associated with the other parameters would have

a higher magnitude compared to the voltage errors. The voltage equations based on

the voltage sensitivity matrix are represented in (3.6).


∆v1

...

∆vn

 =


p11 · · · p1m

... . . . ...

pn1 · · · pnm




∆P1

...

∆Pm

+


q11 · · · q1m

... . . . ...

qn1 · · · qnm




∆Q1

...

∆Qm

 (3.6)

As shown in (3.6), the changes in voltage at the observed nodes (indexed 1 to n)

are dependent on changes in both active and reactive power consumption or injection

at the actor nodes (indexed 1 to m). For a selected observed node k, the sensitivities

are further defined explicitly in (3.7a) to (3.7e).

∆vk = ∆vpk + ∆vqk (3.7a)

∆vpk =
m∑
i=1

pki∆Pi (3.7b)

∆vqk =
m∑
i=1

qki∆Qi (3.7c)

pki =
δVk
δPi

(3.7d)

qki =
δVk
δQi

(3.7e)

The sensitivities pki and qki are obtained by changing the active and reactive power

consumption/injection (∆Pi, ∆Qi) at the actor node i and observing the associated

voltage changes at the observed node k. The resultant sensitivity is taken as the

average of the sensitivities for both consumption and injection related changes. For

the HVAC units being considered, reactive power consumption is associated with the
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motoring components within the units. Given that residential HVAC units are mostly

on/off units, the reactive power consumption is directly associated with the active

power consumption. Assuming that the power factor for each unit is known, the

aggregated power factor can be estimated and (3.7c) can be rewritten as (3.8b). The

overall voltage change equation for the HVAC clusters can be written as (3.8c).

∆Qh = ∆Phtan
(
cos−1pfh

)
(3.8a)

∆vqk =
H∑
h=1

qkh∆Phtan
(
cos−1pfh

)
(3.8b)

∆vk =
H∑
h=1

∆Ph
(
pkh + qkhtan

(
cos−1pfh

))
(3.8c)

For the EWH, it is assumed that the units are resistive. As such, there is no reactive

power consumption associated with the EWH. For the BTM batteries, although the

battery inverters can be used for reactive power support, we assume that this function

is not active in this context. In our subsequent work, which will capture voltage

management as a service on its own, reactive power support using BTM batteries

will be captured. Combining these three resource types, the resulting voltage change

equation for each node k for every time step t is as shown in (3.9). The voltage at

each node is as shown in (3.9b), where Vbase,k,t represents voltage values obtained from

system simulations using the LSE’s total day-ahead forecasted base load profile. In

addition, (3.9c) - (3.9d) capture additional constraints to keep the node voltages and

voltage unbalance at each bus within acceptable limits. To improve computational

efficiency, the voltage equations can be restricted to buses where the customer-side

resources are located and other weak buses that would have been identified during a

preliminary system analysis.

∆vk =
H∑
h=1

(Ph,t − Pbase,h,t)
(
pkh + qkhtan

(
cos−1pfh

))
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+
W∑
w=1

(Pw,t − Pbase,w,t)(pkw) +
B∑
b=1

(Pb,t − Pbase,b,t)(pkb) ∀k in K (3.9a)

Vk,t = Vbase,k,t + ∆vk,t (3.9b)
Vy,k,t − Vy,avg,t

Vy,avg,t
≤ UL (3.9c)

Vmin ≤ Vk,t ≤ Vmax (3.9d)

3.3.4 Stochastic Model Formulation

As discussed earlier, the stochasticities considered are associated with λm,t, rt, pc,t

and pm,t. As such, problem (3.5) including constraints (3.9a) - (3.9d) is reformulated

as a convex stochastic program with a general form shown in (3.10) [17]. The choice

of the stochastic optimization approach hinges on the premise that LSEs often have

access to a wealth of system data, and market operators also provide an enormous

amount of market data, making it possible for the LSE to generate realistic scenarios

for the uncertain parameters. Under such conditions, even though the LSE is typically

risk averse, the usage of robust optimization methods may produce solutions that

are unnecessarily conservative compared to results from a stochastic optimization

framework. Expression (3.10a) represents the expected value of (3.5a). Constraints

(3.10b) and (3.10c) represent the inequality and equality constraints in problem (3.5)

over different scenarios represented by set S. Also, x and q represent the decision

variables and the parameters under different scenarios respectively. U and V represent

the sets of inequality and equality constraints in problem (3.5) respectively.

minimize E[fo(x, q)] (3.10a)

Subject to:

fu,s(x, q) ≤ 0, ∀u in U,∀s in S (3.10b)

fv,s(x) ≤ 0, ∀v in V, ∀s in S (3.10c)
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To generate the needed scenarios for λm,t, rt, pc,t and pm,t, forecast models based

on historical data and other exogenous variables are used to generate interval fore-

casts for each of the parameters. These interval forecasts provide a representation

of the future distribution of these parameters which are then sampled randomly to

generate different scenarios. For the regulation signals rt, each historical daily profile

is taken as an individual scenario. For computational feasibility, a scenario tree with

a reduced set of scenarios is then constructed using the scenario tree construction

algorithm presented in [18] which is based on the backward reduction algorithm and

the Kantorovich distance metric [19].

3.4 Real Time Dispatch Algorithm

After solving the day-ahead problem, the LSE obtains its total expected net de-

mand profile (i.e., E[St + Pt,s − rt,j,sPreg,j,s]) which forms the basis for its demand

bids into the day-ahead energy market. Also, expected regulation capacity bids and

the expected net demand profile for the customer-side resources being controlled are

obtained. This expected net demand profile for the controlled resources forms the

consumption baseline, Pbaseline,t, which is submitted into the regulation market in

addition to the regulation capacity bids. Pbaseline,t is calculated as shown in (3.11).

It is worth mentioning that E[Pt,s] represents the expected value of Pt over different

scenarios s which is also obtained from the results of the day-ahead scheduling model.

Pbaseline,t =
H∑
h=1

Pbase,h,t +
W∑
w=1

Pbase,w,t +
B∑
b=1

Pbase,b,t + E[Pt,s] (3.11)

After the day-ahead phase, the LSE will need to respond to real time regulation

signals from the grid operator (which also often doubles as the market operator) while

ensuring that its peak shaving and voltage related constraints are not violated. Fig.

3.1 illustrates the interaction between the LSE’s day-ahead scheduling problem and

its real-time control actions. This figure shows that the LSE solves the scheduling
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Figure 3.1: Illustration of LSE’s day-ahead and real-time dispatch problems

problem in the day-ahead phase. This implies that the LSE will also generate the

relevant load profile, price forecasts, stochasticities and the reduced scenario sets asso-

ciated with the uncertainties in the day-ahead period. Furthermore, the base voltage

profile and relevant voltage sensitivities will be obtained in the day-ahead phase. The

outcomes of the LSE’s scheduling problem, specifically expected load profile and reg-

ulation market bid information, are then provided to the market operator which uses

that information to clear its energy and ancillary service markets. In the real time

phase, the market operator provides dispatch signals which the LSE combines with

other system variables to ensure that its peak load and voltage-related constraints

are not violated. At the same time, the comfort-related limits associated with the

resources being controlled must not be violated. To achieve this real time response,

a hierarchical framework as shown in Fig. 3.2 is required. This is because while the

grid operator assumes it is interacting with a single resource, the reality is that the

resource is made up of several other individual homogeneous resource clusters with

different characteristics. As such, the secondary level control divides the reference

power among the individual homogeneous resource clusters while the primary level

control deals with allocating response actions within each cluster.

To achieve an optimal division of the reference power among the resource clusters,

a traditional approach would be a model predictive control (MPC) based approach.

However, given the fast response requirements (e.g., 6 seconds for NYISO) for market-
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Figure 3.2: Hierarchical framework for real time resource dispatch.

based regulation products focused on fast responding resources like batteries and

flexible loads, the traditional MPC-based routine might be too slow especially when

several resource clusters and voltage constraints are being considered. This is because

it might take too long to solve the optimization problem within the MPC routine. On

the other hand, a dispatch algorithm could elicit faster responses at the expense of

optimality. As such, we develop two dispatch algorithms - an MPC-based algorithm

and a dynamic droop-based algorithm. These algorithms are further discussed in

subsequent sections. At the primary control level, the widely studied temperature

priority list (TPL) algorithm proposed in [9] is adopted for the HVAC and water

heater clusters. For the BTM battery clusters, we develop an adaption of the TPL

algorithm based on the state-of-charge (SOC) and size of each BTM battery within

the cluster.

3.4.1 MPC-Based Dispatch Algorithm

Whenever a regulation signal is received from the grid operator, the total power

reference for the resources is calculated using equation (3.12).

Pref,t = Pbaseline,t − ˆrt,jPreg,j (3.12)
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The MPC problem represented in (3.13) is then solved to obtain the power references

for each individual homogeneous resource cluster at every time step. Given the high

frequency nature of the regulation signals, the MPC is solved with a 1-hour horizon

(i.e., 600 time steps if the regulation signal is received every 6 seconds). The most

recent measurements of the required variables and parameters are used to initialize

every run of the MPC routine.

minimize (Prt,t − Pref,t)2 (3.13a)

Subject to:

(3.1), ∀h ∈ H (3.13b)

(3.2), ∀w ∈ W (3.13c)

(3.3), ∀b ∈ B (3.13d)

Prt,t =
H∑
h=1

Ph,t +
W∑
w=1

Pw,t +
B∑
b=1

Pb,t (3.13e)

0 ≤ St − Pbaseline,old,t + Prt,t ≤ Pmax (3.13f)

∆vk,t =
H∑
h=1

(
Ph,t − Pbaseh,t

) (
pkh + qkh tan

(
cos−1 pfh

))
+

W∑
w=1

(
Pw,t − Pbasew,t

)
(pkw)

+
B∑
b=1

(
Pb,t − Pbaseb,t

)
(pkb) ,∀k ∈ K (3.13g)

Vk,t = Vbase,k,t + ∆vk,t (3.13h)
Vy,k,t − Vy,avg,t

Vy,avg,t
≤ UL (3.13i)

Vmin ≤ Vk,t ≤ Vmax (3.13j)
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3.4.2 Dynamic Droop-Based Dispatch Algorithm

The dynamic-droop based dispatch algorithm dynamically allocates the power ref-

erence among the different homogeneous clusters based on the previous performances

of each cluster. Each cluster’s performance is measured by ϕh/w/b which is based on a

normalized cumulative root mean square error value as shown in (3.14a). Depending

on the availability of new measurements, ϕh/w/b can be updated at different time

intervals. However, faster updates will characterize an ideal situation. The partic-

ipation factor, ηh/w/b, for each homogeneous cluster is then calculated as shown in

(3.14b).

In (3.14b), the ratio E[Ph/w/b,t,s]

E[Ph,t,s]+E[Pw,t,s]+E[Pb,t,s]
represents the fraction of the expected

power consumption for each homogeneous resource cluster with respect to the total

expected power consumption of the resources. This ratio is also obtained from the

results of the day-ahead stochastic optimization model. Given that ρh/w/b changes

over time, we consider it as some sort of dynamic droop co-efficient.

ϕh/w/b = 1−

 1

Ph/w/b,max

√∑I
t=1

(
Ph/w/b,t − Pref,h/w/b,t

)2

I

 , ϕh/w/b/b ∈ [0, 1]

(3.14a)

ρh/w/b/b = ϕh/w/b,t
E[Ph/w/b,t,s]

E[Ph,t,s] + E[Pw,t,s] + E[Pb,t,s]
(3.14b)

After calculating the total power reference for the resources and the participation

factors using (3.12) and (3.14b) respectively, the allowable limits on changes in voltage

magnitude, with respect to predefined voltage limits (i.e.∆vup, ∆vdown), are obtained

using (3.15).

∆vup = Vmax −max(VU,t−1, Vbase,k,t) (3.15a)

∆vdown = Vmin −min(VL,t−1, Vbase,k,t) (3.15b)
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Equation (3.15) is hinged on the premise that there are no other factors, such as

high DER penetration levels, that could significantly alter voltage dynamics. More-

over, if such penetrations exists, they can be accounted for in the stochastic day-ahead

scheduling problem. Furthermore, the introduction of the most recent voltage mea-

surements (i.e., VU(L),t−1) ensures that the algorithm reacts quickly to current system

conditions by setting the appropriate voltage limits.

Afterward, the linear optimization problem (3.16) is solved to obtain the power

references for each homogeneous resource cluster. Problem (3.16) is a much simpler

problem and can be solved faster than (3.13). The objective function (3.16a) maxi-

mizes the weighted sum of the power consumption of the resources while the inequality

constraint (3.16b) tries to match the total power consumption of the resources to the

reference signal. Other constraints are similar to those described earlier. Also, (3.16)

is solved for a single timestep and does not require any horizon as is the case with

MPC. Furthermore, the parameters with index t - 1 in (3.15) refer to the most recent

measurements while E[Ph,t,s], E[Pw,t,s], E[Pdis,b,t,s] and E[Pch,b,t,s] are obtained from

the stochastic day-ahead scheduling problem.

maximize
H∑
h=1

ρh,tPh,t +
W∑
w=1

ρw,tPw,t +
B∑
b=1

ρb,tPb,t (3.16a)

Subject to:
H∑
h=1

Ph,t +
W∑
w=1

Pw,t +
B∑
b=1

Pb,t ≤ Pref,t (3.16b)

∆vU(L),t =
H∑
h=1

(Ph,t − Pbase,h,t)
(
pU(L)h + qU(L)h tan

(
cos−1 pfh

))
+

W∑
w=1

(Pw,t − Pbase,w,t)
(
pU(L)w

)
+

B∑
b=1

(Pb,t − Pbase,b,t)
(
pU(L)b

)
(3.16c)

∆vU,t ≤ ∆vup, ∆vL,t ≥ ∆vdown (3.16d)

0 ≤ Ph,t ≤ EPh,t,s, ∀h ∈ H (3.16e)
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0 ≤ Pw,t ≤ EPw,t,s, ∀w ∈ W (3.16f)

0 ≤ Pch,b,t ≤ EPch,b,t,s, ∀b ∈ B (3.16g)

0 ≤ Pdis,b,t ≤ EPdis,b,t,s, ∀b ∈ B (3.16h)

3.4.3 Primary Control Algorithm for BTM Battery Cluster

For the distribution of control actions within BTM battery clusters, an adaption of

the popular TPL algorithm often applied to thermostatically controlled load (TCLs)

is adopted. The algorithm is described in Fig. 3.3.

Figure 3.3: Battery dispatch algorithm

3.5 Case Studies

3.5.1 Simulation Data

The proposed framework was tested using the IEEE-37 bus test system [20]. It is

assumed that the LSE has four homogeneous resource clusters across its distribution

network as shown in Fig. 3.4. Residential units forming HVAC cluster 1 are connected

to phase A of bus 702, while HVAC cluster 2 is on phase B of bus 701. Water

Heater Cluster and BTM Battery Cluster are on phases C and B of buses 706 and

775 respectively. However, the resources are treated as a single resource by the

transmission network/market operator. Out of the four homogeneous clusters, two
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are HVAC clusters while the other two are the EWH and BTM battery clusters.

The parameters for the four clusters are shown in Table I. The energy market and

regulation market price data were obtained from NYISO’s 2019 data repository while

downsampled PJM RegD signals for 2019 were taken as the regulation signals [21].

A HELICS-based co-simulation testbed with GridLAB-D and Python federates, was

used to run the real-time dispatch simulations [22]. The distribution network, HVACs,

EWHs and batteries were simulated with GridLAB-D while the dispatch algorithms

were implemented with Python. A Gurobi solver, within the CVX optimization tool,

running on a 16-GB HP EliteOne 800 computer was used to solve the stochastic

day-ahead model and the battery base profile and benefits estimation model [23]. A

typical summer day is considered and the LSE’s forecasted base demand profile, the

BTM battery cluster’s forecasted base demand profile and the TOU rates are shown

in Fig. 3.5. The TOU rates are ConEdison’s residential TOU rates [24]. Also, Pmax

was set at 3,400 kW.

Table 3.1: Resource cluster parameters

HVAC Water Heater BTM Battery
(Cluster 1&2) (Cluster 3) Cluster (Cluster 4)

No. of units 42 42 30
Parameters Rh = 0.06oC/kW A = 96m2 αb = 1
Parameters Ch = 45.25kWh/oC Re = 16 ηch = 0.927
Parameters ηCOP = 4 Cw = 33× 106J/kg ηdis = 1.08
Total rating 180 kW 189 kW 150 kW / 405 kWh
Comfort/ Ti,min = 66.95oF SOCmin = 0.895 SOCmin = 0.2

Usage Limits Ti,max = 72.95oF SOCmax = 1 SOCmax = 1

3.5.2 BTM Battery Base Profile Estimation Results

Problem (3.5) is solved using the parameters specified in Table 3.1 and the data in

Fig. 3.5. From the results, battret equals $484 for summer weekdays days and $169

for all other the weekdays. Using the TOU rates and corresponding time schedules

in [24], the estimated total annual electricity cost savings from arbitrage is $72,290.
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Figure 3.4: Test system

Using the unit cost of a Tesla Powerwall, the total cost of the batteries is $277,500 [25].

This shows that if the BTM battery owners use their batteries only for arbitrage, the

cost price would have been recouped after four years which is much lesser than the

10-year warranty expiration period of the Powerwall [25]. For this scenario, energy

arbitrage is a viable service from the perspective of the BTM battery owners.

3.5.3 Day-Ahead Model Results

Due to the high time resolution of the regulation signals (6 seconds) and the mul-

tiple scenarios considered, the model was solved in 9008.3 seconds (i.e., 2.5 hours).

From the results, the LSE’s expected profit is $9,146.10 which is 4.4% higher than

the expected profits without any of the additional value streams (i.e., $8,744). Fur-

thermore, the LSE’s expected net demand profile is as shown in Fig. 3.6(a), while the

baseline profile provided to the market operator, Pbaseline,t, is shown in Fig. 3.6(b).
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Figure 3.5: (a) LSE’s total forecasted demand profile (b) TOU rates

The expected net demand profile reflects the effect of the anticipated response of the

customer-side resources to the fast regulation signals and the peak demand limit.

Also, the demand variations seem to be more pronounced during the late hours of

the day (i.e., from 4pm to 11pm). During this period, the customer-side resources

had a relatively higher base power consumption when compared with the early hours

of the day. Also, the peak demand constraints were not active during this period.

A combination of these factors implies increased flexibility which is demonstrated by

the resultant increase in regulation capacity bids as shown in Fig. 3.7. This increased

regulation capacity explains why more variations are noticed in the LSE’s expected

base demand during this period. Furthermore, the reduction in the expected reg-

ulation capacity during the peak demand period is chiefly because the same set of

resources are being used to satisfy the peak demand constraints. As such, the capac-

ity available for regulation is expected to reduce. For the early hours of the day, the

lower regulation capacity bids is tied to lower base consumption of the resources.
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Figure 3.6: (a) LSE’s expected net demand (b) Regulation market baseline

Figure 3.7: Expected regulation capacity bids

3.5.4 Real-Time Dispatch Results

The two dispatch algorithms discussed in Section IV are evaluated both qualita-

tively and quantitatively using three metrics - regulation performance score, voltage

limit violations and computation time. Other performance measures relating to the

thermal comfort limits are under the purview of the TPL-based algorithms used at

the primary control level. As such, we do not focus on these metrics. Moreover, the



82

thermal comfort and SOC limits were all satisfied by the TPL-based algorithms at

the primary control level. The regulation performance score is calculated using met-

rics defined in NYISO’s accounting and billing manual [25]. The interested reader

can refer to [25] for detailed discussions on the regulation performance metric. The

computation time is taken as the average value of the execution times for each run

of both algorithms. The hourly regulation performance scores for both the dynamic

droop and MPC-based dispatch algorithms are shown in Fig. 3.8. Clearly the MPC-

based algorithm outperforms the dynamic droop-based algorithm with respect to the

regulation performance metric as shown in Fig. 3.8. This is because the MPC-based

algorithm includes the aggregate models which represent the dynamics of the re-

sources. Also, the dynamic droop-based algorithm constrains the power consumption

of the resources with the expected schedule obtained from the day-ahead model to

avoid voltage violations thereby making the algorithm conservative.

Figure 3.8: Regulation performance scores

For the voltages, the major violations were observed at phase B of bus 775 which

is where the BTM batteries are connected. Subsequently, we refer to this node as

the ‘impact node’. In addition, phase B of the system is heavily loaded resulting in

increased susceptibility of the voltages at the impact node to voltage violations. The

base voltages (i.e., voltage without additional value streams) and the voltages under
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MPC-based and dynamic droop-based dispatch at the impact node are shown in Fig.

3.9. It should be noted that the lower voltage limit was set at 0.94 pu because the

base voltage at the impact node was already close to 0.94 pu.

Figure 3.9: Voltages at impact node - bus 775.

With respect to voltage violations, the dynamic droop-based algorithm outperforms

the MPC-based algorithm because the dynamic droop-based algorithm produces lesser

voltage violations. This is because, although the dynamic droop-based algorithm

does not explicitly capture the dynamics of the resources, it acts based on the worst

case voltages measured in the previous time steps as shown in (3.15a) and (3.15b).

However, the MPC-based algorithm, in its current form, is susceptible to model errors

and errors in the voltage sensitivity matrix which forms the basis for the voltage

constraints. Moreover, each voltage violation event in both cases is short-lived and

may not cause significant problems in the system.

For the computation time, each run of the MPC-based algorithm solves in 4 seconds

on average while each run of the dynamic droop-based algorithm solves in 0.1 seconds.

The computation times are based on simulations performed on a Dell Optiplex 980

computer with 8 GB RAM and an Intel Core I7 processor with 2.80 GHz processing

speed. Given that the regulation signals are received in 6-second intervals, the slower

computation time of the MPC-based algorithm might be of concern. However, using
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a much faster computer could alleviate these concerns at additional costs.

3.6 Conclusion

A stochastic framework for realizing combined value streams from different customer-

side resources, including residential HVACs, EWHs and BTM batteries, has been

rigorously discussed. Both day-ahead scheduling models and real-time dispatch algo-

rithms were considered in the framework. Not only does our day-ahead model capture

different value streams, it also includes stochasticities relating to energy and regu-

lation market prices and regulation signals. Furthermore, we considered a dynamic

droop-based and an MPC-based real-time dispatch algorithm. Our simulations show

that combining multiple value streams is profitable for the LSE. However, the choice

of real-time algorithms for dispatching the resources is also very important. Our

simulations show that a droop-based dispatch algorithm will generally have shorter

execution times when compared with an MPC-based dispatch algorithm at the ex-

pense of response accuracy and optimality. As such, the LSE might want to con-

sider a trade-off between execution speed and performance accuracy of its dispatch

algorithms depending on its exact system characteristics and operating market envi-

ronment. In any case, our models and algorithms can be adapted to suit the exact

system and market requirements.
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CHAPTER 4: STOCHASTIC OPTIMIZATION FRAMEWORK FOR REALIZING

COMBINED VALUE STREAMS FROM CUSTOMER-SIDE RESOURCES - SELF

SERVICE AND DISTRIBUTION SYSTEM OPERATIONS

Customer-side resources are becoming increasingly crucial in grid modernization

and transitioning to a sustainable energy future. Although most load-serving entities

(LSEs) typically consider customer-side resources for single applications, these re-

sources can be used for multiple applications simultaneously. This chapter proposes

a stochastic optimization framework to help LSEs capture multiple value streams from

customer-side resources within their network. Specifically, we consider self-service ap-

plications - peak shaving, energy arbitrage, ramp rate reduction - and distribution

system operational applications - loss reduction and voltage management. The frame-

work is also adapted to handle the impacts of the activities of third-party aggregators

on the LSE’s network. We also evaluate the performance of two algorithms - deci-

sion rule-based and optimal real-time dispatch - for dispatching the customer-side

resources in the face of different sources and levels of uncertainty. Simulations were

run using modified IEEE test systems within the OpenDSS simulation tool. The

results show the value of customer-side resources can be maximized when multiple

applications are simultaneously considered, and that value increases with increasing

levels of forecast uncertainties.
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Nomenclature

Parameters

αb Battery self discharge rate

∆Pagg,i,t Aggregator expected impact at node i at time t

∆t Time step

∆V Voltage step

ηch,b Battery charging efficiency

ηCOP HVAC system co-efficient of performance

ηdis,b Battery discharging efficiency

λcapacitor Capacitor switching price

λcap Capacity price

λramp,t Price of additional reserve capacity for handling ramping concerns

λreactive,t Reactive power price at time t

λreal,t Real power price at time t

λreg Regulator switching price

A Aggregated water heater total surface area

Eb,max Maximum battery SOC

Eb,min Minimum battery SOC

I2
ij,min, I

2
ij,max Line flow current rating

m Total mass of water in water heater
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Pabs,min, Pabs,max Ramp rate limits

Pch,b,max Maximum battery charging rate

Pdis,b,max Maximum battery discharging rate

Pder,base,t Predicted DER output for time t

Ph,max HVAC cluster power rating

PL,i,t Uncontrolled active power load at node i at time t

Precons,base,t LSE’s predicted reconstituted load profile

Psubstation Substation active power limit

Pw,max Water heater cluster power rating

Qc,t Capacitor reactive power

QL,i,t Uncontrolled reactive power load at node i at time t

Qsubstation Substation reactive power limit

Re Aggregated water heater thermal resistance

Rh HVAC thermal resistance

rki Line resistance between nodes k and i

Sder,max DER apparent power rating

Sij,max Maximum line flow limit

SOCw,min, SOCw,max Water heater cluster SOC limits

Ta Ambient temperature

Ti,h,min/max Interior temperature limits
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Tw,max Maximum hot water temperature for water heater cluster

V 2
min, V

2
max Voltage variable limits

xki Line reactance between nodes k and i

z1,t Uncertainty associated with LSE’s total demand (i.e. reconstituted

load profile)

z2,t Uncertainty associated with LSE’s DER at time t

zagg,t Uncertainty associated with LSE’s prediction of aggregator’s impact

Variables

Capc,t Capacitor status at time t

chind,t Battery charging indicator at time t

disind,t Battery discharging indicator at time t

Eb,t Battery SOC at time t

et Slack variable

Iki,t Line current flow between nodes k and i

Pb,t Battery power at time t

Pb0,t, Pb1,t, Pb2,t, Pb3,t Battery cluster decision rule parameters for time t

Pbought,bid,t Day-ahead active power bids at time t

Pbought,rt,t Real time total power at time t

Pbought,t Power consumption at substation

Pch,b,t Battery charging rate at time t
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Pder,control,t DER output control variable at time t

Pder,control0,t, Pder,control1,t DER control decision rule parameters for time t

Pder,control2,t, Pder,control3,t DER control decision rule parameters for time t

Pdis,b,t Battery discharging rate at time t

Ph,t HVAC cluster consumption at time t

Ph0,t, Ph1,t, Ph2,t, Ph3,t HVAC cluster decision rule parameters for time t

Pki,t Active power flow between nodes k and i at time t

Ploss,t Active power losses at time t

(Precons,rt,t LSE’s real-time reconstituted load profile

Psol,t Solar irradiation at time t

Pw,t Total power consumption for water heater cluster at time t

Pw0,t, Pw1,t, Pw2,t, Pw3,t Water heater cluster decision rule parameters for time t

Qb,t Battery reactive power

Qh,t HVAC cluster reactive at time t

Qloss,t Reactive power losses at time t

Regr,t Regulator status at time t

Sb Battery inverter total apparent power rating

SOCw,t State of charge variable for water heater cluster at time t

Ti,h,t Interior temperature for HVAC h at time t

Tw,avg Average hot water temperature for water heater cluster
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V 2
i,t Voltage squared variable at node i at time t

Vsub,t Substation squared voltage at time t

4.1 Introduction

4.1.1 Background and Motivation

The demand-side of the grid, which has been mostly passive, is becoming increas-

ingly active. Furthermore, it is becoming more apparent that customer-side resources

will play critical roles in grid modernization as well as a transition to a clean energy

future. As expected, more policies, such as the FERC Order 2222, are being estab-

lished to capture the full value of these customer-side resources [1]. However, most

load-serving entities (LSEs) with direct access to these resources are still underutiliz-

ing these resources. LSEs typically use customer-side resources for single applications

(mostly peak shaving) when multiple value streams can be simultaneously captured

from the same set of resources. LSEs in this work refer to distribution utilities that

provide electricity to end-users and operate the electricity distribution network.

In our previous work [2], we proposed a scenario-based stochastic optimization

framework for LSEs to use customer-side resources on their network for combined

self-service applications - peak shaving and energy arbitrage - and a transmission

grid supporting application - frequency regulation. The resources of interest include

clusters of residential heating, ventilation, and air-conditioning (HVAC) systems, wa-

ter heaters, and behind-the-meter (BTM) batteries. This work introduces a new

perspective to our previous work. Specifically, an additional self-service application

- ramp rate reduction - is introduced, and the focus on transmission grid supporting

applications is shifted to distribution system operational services. Loss reduction and

voltage management are the distribution system operational applications of interest.

Peak shaving and energy arbitrage are well-established, high-savings applications

that require no introduction. References [3–10] present different flavors of peak shav-
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ing and energy arbitrage. Ramp rate reduction, however, can be considered nascent.

This application is tied explicitly to increasing net-load variations, which is a conse-

quence of the increasing penetration of intermittent renewable energy resources on

the bulk power system. Authors in [11] studied an energy scheduling problem for

prosumers, focusing on minimizing the system’s overall peak ramp rate. Also, the

authors in [12] developed an incentive mechanism based on Nash Bargaining to en-

courage the usage of microgrids for minimizing system ramp rates. Ramping concerns

are motivating the creation of new flexibility products across deregulated electricity

market environments in the United States. For example, the California Independent

System Operator (CAISO) operates flexible ramping products designed to handle net-

load variations in the form of both forecasted ramping movements and uncertainty

movements [13]. These new products introduce additional system operating costs

passed on to the market participants, i.e., LSEs. Therefore, a reduction in the ramp

rate of each LSE’s overall net-load profile will reduce such additional costs. Other

deregulated electricity markets in the United States, such as the Midwest Indepen-

dent System Operator (MISO), the Southwest Power Pool (SPP), and the New York

Independent System Operator (NYISO), have similar market mechanisms or products

to address ramping issues [14]. As distributed energy resources (DERs) penetration

increases, the ramp rate reduction will become even more critical.

From the distribution system operations perspective, loss reduction and voltage

management are two of the most important applications that could yield significant

cost savings for LSEs [15]. In [16], the authors considered an optimal power scheduling

framework to reduce losses and keep system voltages within limits using controllable

loads. Although the controllable loads were not explicitly modeled and uncertainties

were ignored, the paper showed an additional loss reduction of 1.08% with the control-

lable loads. In [17], the authors considered using customer-side resources for peak load

reduction and loss minimization. The controllable loads are represented using neural
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network-based models, which are embedded in recursively-solved optimal power flow

problems. However, uncertainties were also not considered. Reference [18] proposes

a multi-objective stochastic optimization problem that minimizes system losses and

deviation of system voltages from nominal values by controlling the reactive power

outputs of distributed photovoltaic generators. This framework captures uncertain-

ties in the active power generation of the distributed solar PV resources and provides

local control rules for each distributed PV inverter using linear decision rules. The

latter provide a decentralized way of controlling the distributed solar PV inverters,

which could become useful, especially when communication with a central controller

is lost. The problem is reformulated to obtain the decision rules as an affinely ad-

justable robust optimization problem. This work considers uncertainties relating to

load profiles and the outputs of solar PV resources operated by an LSE. However,

the uncertainties are handled using a fusion of scenarios and affine decision rules.

This approach allows us to take advantage of the decentralized and straightforward

nature of the decision rules while avoiding excessive conservativeness in the results

that typically accompanies robust optimization methods [19].

While an existing LSE can take advantage of the customer-side resources on its

network for multiple applications, new policies are supporting the rise of aggregators

who can also use customer-side resources on the LSE’s network to provide services in

deregulated markets environments. In such situations, the LSE’s distribution system

operations will have to consider the actions of the aggregator. This perspective is

also considered in this work.

4.1.2 Contributions

In summary, the main contributions of this work are highlighted as follows.

1. We propose a novel stochastic optimization framework to help LSEs with so-

lar PV resources and access to groups of residential HVACs, water heaters,

and BTM batteries use these resources for combined self-service and distribu-
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tion system operation applications simultaneously. The applications include

peak shaving, energy arbitrage, ramp rate reduction, loss reduction, and volt-

age management. Also, the main sources of uncertainty are the solar PV output

variations and variations in forecasted total load. The total load refers to the

LSE’s reconstituted load profile, which is the actual load at the substation level,

excluding impacts of DERs and demand response. To the best of our knowledge,

no other work captures such holistic perspectives.

2. The framework is extended to capture the presence of third-party aggregators

using other customer-side resources on the LSE’s network for market-based

services. This contribution is significant given the rise of policies supporting

the co-existence of third-party aggregators and LSEs with resources within the

same power distribution network (e.g., FERC Order 2222).

3. Two algorithms based on linear decision rules and optimal real-time dispatch

are proposed to dispatch the LSE’s customer-side resources. A comparison of

both algorithms in terms of computation time, accuracy, losses, and voltage

limit violations using simulations in OpenDSS is also presented.

4. We also show that not only is it advantageous to use customer-side resources

for multiple applications instead of single applications, but the expected value

of customer-side resources also increases with an increasing level of uncertainty

in forecasts.

4.2 Framework Description

Fig. 4.1 illustrates the overall framework. The flowchart on the left represents

scenarios without the presence of a third-party aggregator on the LSE’s distribution

network. Under this scenario, the LSE solves a day-ahead stochastic optimization

problem. The solutions to the optimization problem determine the LSE’s demand bids

for the day-ahead market participation. Based on the optimization problem results,
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the LSE also generates rules to dispatch the customer-side resources in response to

current system conditions and uncertainty realizations. Using such predefined rules

for dispatching customer-side resources could be attractive compared to real-time

optimization methods due to computational complexities arising from solving such

large-scale optimization problems in real-time. A more detailed comparison between

both dispatch methods is presented in the results section.

Figure 4.1: Overall framework illustration

On the other hand, when a third-party aggregator is present, the LSE solves the

day-ahead optimization problem considering the aggregator’s possible dispatch sched-

ule as shown on the right of Fig. 4.1. The LSE can predict such schedules based

on historical data and quantify uncertainties associated with such predictions. After

market clearing, the market operator provides the cleared aggregator bids to the LSE.

This information sharing is essential because the aggregator’s dispatch profile will af-

fect how the LSE operates its distribution network. In fact, such information-sharing

considerations are captured in filings of major market operators in response to the re-

cent FERC order 2222 [20]. Also, since the information sharing happens after market

clearing, both entities can co-exist comfortably. After receiving the cleared aggre-
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gator schedule from the market operator, the LSE repeatedly solves the rules-based

optimization problem with the actual aggregator schedule to update its dispatch rules

for the customer-side resources. The details of the stochastic optimization model are

discussed subsequently.

4.3 Resource Modeling

This section presents the modeling approaches adopted for the customer-side re-

sources.

4.3.1 Residential HVAC Aggregation Model

Residential HVAC units are often modeled using first-order or second-order equiv-

alent thermal parameter (ETP) models with binary variables capturing the on/off

status of the units [21]. However, when considering a large number of single units

within a high-resolution multi-period optimization problem, it becomes clear that

such an approach can quickly become intractable. As such, we adopt a first-order

ETP equivalent model approximating the aggregated dynamics of a cluster of single

units. This aggregated model captures the total power consumption of the HVAC

units and the average temperature dynamics for all the HVAC units within the cluster.

It is worth mentioning that clusters are assumed to be formed at nodes of the pri-

mary distribution network. However, multiple sub-clusters can be created for nodes

with a significant number of units with varying characteristics. Popular clustering

algorithms such as the k-means and Gaussian Mixture Model (GMM) can be applied

to achieve such clustering [22].

The first-order aggregate model equation is shown in (4.1). The R and C param-

eters are obtained via a system identification procedure based on Pseudo-Random

Binary Sequence (PRBS) signals. Specifically, the HVAC units within each cluster

are perturbed with the same setpoint offsets, and the total power consumption of the

units and the average temperature across the cluster are measured. The CTSM soft-

ware, based on maximum likelihood estimation and Kalman filters, is then applied to
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obtain the respective R and C values [23]. ηCOP is taken as the average of the COP

values for each unit within the cluster.

Ti,h,t+1 = Ti,h,t

(
1− ∆t

RhCh

)
+ Ta,t

(
∆t

RhCh

)
−

ηCOP,hPh,t

(
∆t
Ch

)
+ Psol, ,

(
∆t
Ch

) (4.1)

4.3.2 Residential Water Heater Aggregation Model

As with the residential HVACs, an aggregate model is also adopted for the residen-

tial water heaters. This model is also based on a first-order ETP model (also known

as a single-node model), which has been widely used in the existing literature [24].

The model equations are shown in (4.2a) to (4.2e). The interested reader is referred

to [24] and our previous work [25] for more details about the model. The water

heaters are assumed to be electric.

SOCW =
Twavg

Twmax

(4.2a)

SOCw,t+1 = aw,tSOCw,t +
(btPw,t + ew,t)

Twmax

(4.2b)

aw,t = exp

(
− ∆t

RwCw

)
, bt = Rw (1− aw,t) (4.2c)

ew,t = (GRwTa +BRWTcw) (1− aw,t) (4.2d)

Rw =
1

G+B
,B = ρWtc,G =

A

Re

, Cw = mc (4.2e)

4.3.3 BTM Battery Aggregation Model

For the batteries, the well-established energy reservoir model is adopted, as shown

in (4.3a) - (4.3g) [26]. The self-discharging, charging, and discharging rates are taken

as weighted averages of the batteries within the cluster.

Eb,t+1 = αbEb,t + ηch,bPch,b,t −
1

ηdis,b
Pdis, b,t (4.3a)
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Pb,t = ηch,bPch,b,t −
1

ηdis,b
Pdis,b,t (4.3b)

Eb,min ≤ Eb,t ≤ Eb,max (4.3c)

0 ≤ Pch,b,t ≤ Pch,b,max (4.3d)

0 ≤ Pdis,b,t ≤ Pdis,b, max (4.3e)

P 2
b,t +Q2

b,t ≤ S2
b (4.3f)

chind,t + disind,t ≤ 1 (4.3g)

4.4 Stochastic Optimization Model

As discussed earlier, the LSE uses the customer-side resources for peak shaving,

energy arbitrage, ramp rate reduction, loss reduction, and voltage management. It is

assumed that the LSE participates in a competitive market environment. The LSE

can forecast its overall day-ahead demand and generation from its solar PV resources

along with the limits of uncertainties for both parameters. In scenarios with third-

party aggregators, the LSE can also predict resource dispatch schedules and associated

uncertainty limits from historical data. On a day-ahead basis, the expected base

consumption for each HVAC and water heater aggregation can be predicted with

acceptable accuracy levels. The availability of high-resolution historical consumption

data through increasingly reliable and cost-effective advanced metering infrastructure

validates these assumptions. Furthermore, the day-ahead aggregated demand profile

for each cluster of buildings providing BTM batteries can also be forecasted. This

section discusses the LSE’s day-ahead scheduling problem based on these assumptions.

The solutions to the LSE’s optimization problem provides day-ahead market bid-

ding and real-time dispatch decisions. Pbought,t andQbought,t are the variables of interest

for the day-ahead bids while Pder,control,t, Ph,t, Pb,t, Pw,t, Qb,t, Qder,t, Regr,t and Capc,t

are the variables of interest for real-time operation.

Problem (4.4) shows a deterministic version of the LSE’s optimization problem.
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Problem (4.4) is solved for multiple scenarios of uncertainties z1,t and z2,t. The

day-ahead demand bids are then taken as the corresponding average values for each

timestep across all scenarios.

minimize YDA

YDA = λcap max (Pbought,t) +
T∑
t=1

λreal,tPbought,t+

T∑
t=1

λreactive,Qbought,t +
T∑
t=1

λreal,tPloss,t +
T∑
t=1

λreactive,tQloss,t

+
T∑
t=1

λramp,tPabs,t +
C∑
c=1

T∑
t=1

λcapacitorXc,t +
R∑
r=1

T∑
t=1

λregXr,t (4.4a)

Subject to:

(1), ∀h ∈ H (4.4b)

(2), ∀w ∈ W (4.4c)

(3) ,∀b ∈ B (4.4d)

Pder,t = Pder,base,t − Pder, control,t (4.4e)

P 2
der,t +Q2

der,t ≤ S2
der,max (4.4f)

0 ≤ Pder,control,t ≤ Pder,base,t (4.4g)

Ploss =
∑
t

∑
i

∑
j

I2
ij,trij (4.4h)

Qloss =
∑
t

∑
i

∑
j

I2
ij,txij (4.4i)

Ph,t = Ph0,t + Ph1,tz1,t + Ph2,tz2,t + Ph3,tz1,tz2,t

∀h ∈ H (4.4j)

Pw,t = Pw0,t + Pw1,tz1,t + Pw2,tz2,t + Pw3,tz1,tz2,t

∀w ∈ W (4.4k)

Pb,t = Pb0,t + Pb1,tz1,t + Pb2,tz2,t + Pb3,tz1,tz2,t
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∀b ∈ B (4.4l)

Pder,control = Pder,control0,t + Pder,control1,tz1,t+

Pder,control2,tz2,t + Pder,control3,tz1,tz2,t (4.4m)∑
k∈pr(i)

(
Pki,t − rkiI2

ki,t

)
−
∑
j∈cr(i)

Pij,t = PL,i,t + Ph,i,t

+Pw,i,t + Pb,i,t + ∆Pagg,i,t − Pder,i,t ∀b, h, w ∈ i, ∀i ∈ N (4.4n)∑
k∈pr(i)

(
Qki,t − xkiI2

ki,t

)
−
∑
j∈cr(i)

Qij,t = QL,i,t +Qh,i,t

+Qb,i,t + Capc,t×Qc,t −Qder,i,t ∀b, h, c ∈ i,∀i ∈ N (4.4o)

V 2
i,t − V 2

j,t − 2 (rijPij,t + xijQij,t) +
(
r2
ij + x2

ij

)
I2
ij,t = 0

∀j ∈ cr(i) (4.4p)

P 2
ij,t +Q2

ij,t ≤ S2
ij,max (4.4q)

P 2
bought,t +Q2

bought,t ≤ S2
substation (4.4r)∥∥∥∥∥∥∥∥∥∥

2Pij,t

2Qij,t

I2
ij,t − V 2

i,t

∥∥∥∥∥∥∥∥∥∥
2

≤ I2
ij,t + V 2

i,t (4.4s)

Vsub,t = 1 + ∆V ×Regr,t (4.4t)

Pbought,t+1 − Pbought,t ≤ Pabs, t∀t ∈ T (4.4u)

Pbought,t+1 − Pbought,t ≥ −Pabs,t∀t ∈ T (4.4v)

Pabs,min ≤ Pabs,t ≤ Pabs,max ∀t ∈ T (4.4w)

Regr,t+1−Regr,t ≤ Xr,t ∀r ∈ R (4.4x)

Regr,t+1−Regr,t ≥ −Xr,t ∀r ∈ R (4.4y)

Xr,min ≤ Xr,t ≤ Xr,max ∀r ∈ R (4.4z)

Capc,t+1−Capc,t ≤ Xc,t ∀r ∈ R (4.4aa)

Capc,t+1−Capc,t ≥ −Xc,t ∀r ∈ R (4.4ab)
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Xc,min ≤ Xc,t ≤ Xc,max ∀r ∈ R (4.4ac)

Ti,h,min ≤ Ti,h,t ≤ Ti,h,max ∀h ∈ H (4.4ad)

SOCw,min ≤ SOCw,t ≤ SOCw,max ∀w ∈ W (4.4ae)

0 ≤ Ph,t ≤ Ph,max ∀h ∈ H (4.4af)

0 ≤ Pw,t ≤ Pw,max ∀w ∈ W (4.4ag)

0 ≤ Pbought,t ≤ Psubstation ∀t ∈ T (4.4ah)

0 ≤ Qbought,t ≤ Qsubstation ∀t ∈ T (4.4ai)

V 2
min ≤ V 2

i,t ≤ V 2
max ∀i, ∀t (4.4aj)

I2
ij,min ≤ I2

ij,t ≤ I2
ij,max ∀i, ∀j,∀t (4.4ak)

Problem (4.4) minimizes the LSE’s system operation costs. However, costs relat-

ing to compensations for the customer-side resources are excluded from the objective

function. This is because the difference between the optimal values for Problem

(4.4) with and without the customer-side resources will be used to indicate the max-

imum value of the resources. The first term in equation (4.4a) represents the peak

demand-related charge. This represents costs relating to capacity and transmission

infrastructure, which the LSE pays to meet its demand. These charges are often

associated with the maximum demand of the LSE, and as such, these costs are min-

imized in Problem (4.4). The second and third terms represent energy arbitrage,

while the fourth and fifth terms are loss terms. The sixth term and equations (4.4u)

- (4.4w) represent convex relaxations capturing the ramp rate reduction application.

The term λramp,t reflects additional unit costs incurred by the transmission system

operator (which also doubles as the market operator) in addressing ramping concerns

due to the high penetration of intermittent DERs. The seventh and eighth terms of

the objective function represent costs associated with operating typical voltage man-

agement devices. These costs are expressed in terms of the initial costs and switching
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operations over the lifetime of these devices [27]. To preserve convexity, the seventh

and eighth terms in the objective function, which represent absolute value terms, are

accompanied by equations (4.4x) - (4.4ac).

The output of the LSE’s solar PV system can be adjusted as required. Also, we

assume that the inverter associated with the LSE’s solar PV resources can produce

reactive power to support voltages in the distribution network. These possibilities

are captured in (4.4e) to (4.4g).

Equations (4.4j) - (4.4m) represent linear decision rules which will be used to dis-

patch clusters of customer-side resources in a decentralized fashion. z1,t represents the

uncertainties associated with the LSE’s forecasted total load (i.e. reconstituted load),

which can be obtained at the substation level, while z2,t represents the uncertainties

associated with the output of the LSE’s solar PV resource. Since both uncertainties

can also be related, an interaction term z1,t z2,t is introduced into the decision rules.

Equations (4.4n) to (4.4t) represent the power flow-related constraints. To pre-

serve convexity and capture loss terms, a second-order conic programming (SOCP)

relaxation of the power flow equations is adopted [28]. Constraints (4.4ad) to (4.4ak)

represent comfort limits and other variable limit constraints.

4.5 Real Time Dispatch Algorithms

As highlighted in previous sections, dispatch setpoints for the customer-side re-

source clusters can be obtained from the linear decision rules from the solution to

the LSE’s optimal scheduling problem. Alternatively, an optimal real-time dispatch

problem can be solved to obtain optimal dispatch setpoints for the resource clusters.

The resources within each cluster can then be dispatched using methods discussed in

our previous work [2].

4.5.1 Decision Rule-Based Dispatch Algorithm

Solving Problem (4.4) under multiple scenarios will produce different values of rule

parameters (e.g., Ph0,t, Pw0,t). This variation can be harnessed to provide an edge
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over typical robust optimization methods that essentially uses the same parameters

under all realizations of the uncertainties. Specifically, machine learning models pro-

viding the most appropriate rule parameters under different uncertainty realizations

are trained with the decision rule parameter values from different scenarios. Each

rule parameter is expressed as a function of z1,t, z2,t, and Pbought,rt,t. For each rule

parameter, linear regression, neural networks, and XGBoost machine learning models

are considered [29]. The performances of these models are also compared with sim-

ply taking the average and median values of the rule parameters across all scenarios.

After selecting the most suitable rule parameter value based on measured z1,t, z2,t,

and Pbought,rt,t values, equations (4.4j) - (4.4m) are used to calculate the setpoint for

each cluster. The states of the capacitors and regulators are determined based on the

most dominant states for each timestep across all scenarios.

Practically, the LSE’s reconstituted load profile can be obtained in real-time using

(4.5a). z1,t can then be estimated as the difference between the LSE’s real-time

reconstituted load profile and the predicted reconstituted load profile at time t as

shown in (5b). z2,t is simply the difference the PV output in real-time and the day-

ahead forecasted output at time t.

Precons,rt,t = Pbought,rt,t +
∑
i

Pder,i,t −
∑
i

∆Pagg,i,t (4.5a)

z1,t = Precons,rt,t − Precons,base,t (4.5b)

4.5.2 Real Time Optimal Dispatch Algorithm

The optimal real-time dispatch algorithm is similar to the day-ahead scheduling

problem (4.4). The main difference between the two problems is that the objective of

the real-time dispatch algorithm is to make the overall demand, as measured at the

substation, track the day-ahead market bids, as shown in (4.6a). The capacitor and

regulator states are set to the solutions from the day-ahead problem. Also, the term
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et and constraints (4.6b) and (4.6c) are included to guarantee model feasibility.

minimize
T∑
t=1

[(Pbought,bid,t − Pbought,rt,t)2 + et] (4.6a)

Problem (4.4) constraints excluding (4.4j) - (4.4`) (4.6b)

0 ≤ Pbought,rt,t ≤ Pbought,bid,t + et (4.6c)

4.6 Case Studies

4.6.1 Simulation Data

The proposed framework was tested using a modified version of the IEEE-33 bus

test system [30]. We assumed that the LSE has three homogeneous resource clusters

across each phase of its distribution network, as shown in Fig. 4.2. Residential units

forming the HVAC cluster are connected to Node 12. The water heater and BTM

battery clusters are on Node 7 and Node 3, respectively. The parameters for the

resource clusters are shown in Table 4.1. The LSE’s solar PV system is rated at 200

kVA per phase and connected to Node 18. The capacitors are rated at 50 kVAR per

phase and are connected to nodes 8, 13, 22, 23, and 27.

Figure 4.2: Test system description

The energy market prices and capacity cost data were obtained from NYISO’s

2019 data repository [31]. λramp,t was set at $25/MWh, based on the price at which

NYISO procures additional reserve capacity to handle additional system ramping
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concerns [32]. The operating costs for the capacitors (λcapacitor) and regulators (λreg)

are based on the analysis provided in [27]. The distribution network, HVAC cluster,

water heater cluster, and battery cluster were simulated with OpenDSS, while the

dispatch algorithms were implemented in Python. A Gurobi solver, within the CVX

optimization tool, running on a 32-GB HP ProDesk 600 computer was used to solve

the stochastic day-ahead model [33]. Also, the uncertainties z1,t and z2,t were assumed

to be uniformly distributed with the minimum and maximum values equal to different

percentages of the corresponding capacity. Psubstation was set at 1,500 kW per phase.

Table 4.1: Resource cluster parameters

HVAC Water Heater BTM Battery
Cluster Cluster Cluster

No. of units 42 42 30
Parameters Rh = 0.06oC/kW A = 96m2 αb = 1
Parameters Ch = 45.25kWh/oC Re = 16 ηch = 0.927
Parameters ηCOP = 4 Cw = 33× 106J/kg ηdis = 1.08
Total rating 180 kW 189 kW 150 kW / 405 kWh
Comfort/ Ti,min = 66.95oF SOCmin = 0.895 SOCmin = 0.2

Usage Limits Ti,max = 72.95oF SOCmax = 1 SOCmax = 1

4.6.2 Day Ahead Scheduling Results

Three simulation cases are considered to facilitate a thorough analysis of the pro-

posed framework. The cases are as follows.

1. Optimal system operation without controlling customer-side resources (Base

Case) - This case still involves solving Problem (4.4). However, the customer-

side resources are excluded. This case represents the operation of a LSE that

does not capture value from its customer-side resources

2. Peak shaving-focused system operation (Peak Shaving-Focused Case) - This

case captures the perspective of an LSE focused on using its customer-side

resources for peak shaving only. This case still involves solving Problem (4.4).

However, the arbitrage and peak shaving terms are the only terms included in
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the objective function.

3. Optimal system operation with customer-side resources (Combined Applica-

tions Case) - This case captures the usage of customer-side resources for multiple

applications simultaneously.

Table 4.2 shows the LSE’s system operation costs for the three simulation cases at

different uncertainty levels associated with the load and solar PV output forecasts.

Focusing on the results at the 5% uncertainty level, the usage of customer-side re-

sources for multiple services simultaneously reduced the system operating costs by

11.8% and 12.9% respectively, compared to when the customer-side resources are

ignored and when peak-shaving is the LSE’s focus. Note that for the case where

customer-side resources are ignored, the LSE still optimizes its operations considering

the five value streams mentioned. This explains why the case without customer-side

resources reflects lower operating costs compared to the peak-shaving-focused case.

Fig. 4.3(a) shows the LSE’s expected day-ahead demand profile (single-phase)

at a 5% uncertainty level with and without controlling customer-side resources. As

expected, controlling customer-side resources produces a smoother demand profile

with a reduced ramp rate. The average ramp rates for the demand profiles with and

without the control of customer-side resources are 11.42 kW/hr and 68.08 kW/hr

respectively. Also, Fig. 4.3(b), Fig. 4.4(a), and Fig. 4.4(b) show the average profiles

for the HVAC, water heater, and BTM battery clusters, respectively. The increased

power consumption of the HVAC cluster in the early hours of the day (3 to 6 am)

represents pre-cooling effects. This makes it possible to reduce the consumption of the

HVAC resources during the afternoon when electricity prices are expected to be more

significant. Also, the batteries in the BTM battery cluster are expected to receive an

additional charge in the early hours of the day when electricity is cheaper.
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(a) LSE’s expected load profile (b) HVAC cluster profile

Figure 4.3: (a) Expected total load profile (b) HVAC cluster profile

(a) Water heater cluster profile (b) Battery cluster profile

Figure 4.4: (a) Expected water heater cluster profile (b) Battery cluster profile

Table 4.2: LSE’s operating costs

Uncertainty Base Peak Comb. Resource Service
(%) ($) Focused ($) Apps. ($) Value ($) Value ($)
0.5 1287.90 1316.01 1147.42 140.48 168.59
1 1290.22 1316.18 1147.74 142.48 168.44
2 1295.46 1316.69 1148.20 147.26 168.49
5 1301.84 1317.84 1148.46 153.38 169.38
10 1323.39 1327.63 1160.11 163.18 167.52
20 1365.12 1365.56 1200.55 164.57 165.01
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4.6.3 Sensitivity Analysis

The column ‘Resource Value’ in Table 4.2 indicates the value of the customer-side

resources, which is equal to the difference between values in the ‘Base’ and ‘Comb.

Apps’ columns. On the other hand, the column ‘Service Value’ (equal to ‘Peak

Focused’ - ‘Comb. Apps’) provides an indication of the value of the additional appli-

cations ignored (i.e. ramp rate reduction, loss reduction and voltage management).

From a practical standpoint, the column ’Resource Value’ provides the maximum

compensation that can be allocated to all customer-side resources for the operating

day under consideration. If permitted by existing regulations, the LSE can take a

portion of the cost savings and pay the rest back to the owners of the customer-

side resources. Such compensation structures are similar to concepts around the

Performance-Based Regulation (PBR) framework being proposed in some regions of

the United States [34]. Our subsequent work will focus on sharing the total compen-

sation among individual customer-side resource clusters.

The values in the ‘Resource Value’ column increase with increasing levels of uncer-

tainty, implying that the expected value of customer-side resource increases as load

profiles and solar PV output becomes more uncertain. This observation is very logical

because the customer-side resources are flexible and, as such, can serve to help the

LSE minimize the impacts of forecast errors. Also, the rate of increase of the values

in the ‘Resource Value’ column shows that the additional value of the customer-side

eventually saturates. Again, this observation is logical, considering that there is so

much the resources can do because of their physical capacity constraints. On the

other hand, the ‘Service Value’ column appears to have an overall reduction trend.

However, increases at specific points (such as at 5% uncertainty level), though min-

imal, make it difficult to draw conclusions about the downward trend observation.

This implies that the expected added value of the other services (asides peak shaving

and energy arbitrage) depends on the specific uncertainty realizations.
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Table 4.3: ML model metrics for decision rule parameters

Linear XGBoost Neural Mean Median
Regression Network

Phvacn0 17.5% 16% 17.6% 11.8% 12.3%
Phvacn3 10.9% 6.9% 10.9% 10.2% 10.5%
Pwhn0 13.8% 13.5% 14.3% 9.2% 9.7%
Pwhn3 10.9% 6.9% 11.2% 10.2% 10.5%
Pbattn1 6.5% 36.8% 6.5% 7.2% 6.5%

Pder,control,0 5.2% 6.3% 5.3% 5.1% 5.2%
Pder,control,1 0.3% 0.3% 1.4% 0.5% 0.3%
Pder,control,2 5.2% 5.8% 5.3% 5.1% 5.2%
Pder,control,3 5.2% 4.6% 5.2% 4.9% 5.2%
Qbattn1 9.7% 9.9% 9.7% 9.2% 9.3%
Qder,0 23% 20.1% 23.5% 3.4% 3.5%

4.6.4 Real Time Dispatch with Decision Rules

As highlighted in previous sections, the day-ahead stochastic optimization prob-

lem’s outcomes generate different rule parameter values. The relationship between

these rule parameter values and the current uncertainty realizations and system con-

ditions can be established using ML models. Such ML model representations make

it easier to adapt the dispatch rules based on current system conditions.

Table 4.3 shows the error metric values for different ML models considered to pro-

vide a generalized representation of the rule parameters at the 5% uncertainty level.

The error metric is a normalized root mean squared error (RMSE) value calculated

by dividing RMSE by the maximum parameter value. The ML models were trained

and tested using a 70%-30% split on data from 20 uncertainty scenarios, each with

144 data points (10-minute intervals). The model with the lowest error metric was se-

lected for each rule parameter. Other parameters not included in the table either had

constant values or clear segmentation that could be represented with simple IF-ELSE

conditions.

Five uncertainty realizations (different from the 20 scenarios used to generate ML

training and testing data) were generated to test the dispatch rules. Figure 4.5(a)
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(a) Rule-based (b) Real-time optimal

Figure 4.5: (a), (b) Dispatch results - total power

shows the LSE’s power profile for a single-phase across the five uncertainty scenarios

using the generated decision rules. Figure 4.5(a) shows that while the decision-rules

dispatch results showed some deviations from the expected demand profile generated

by averaging the day-ahead scheduling results across 20 different uncertainty scenar-

ios, the outcomes were significantly better than the base profile. Using the mean

absolute percentage error (MAPE) as a metric to quantify the differences between

the dispatch rules and the day-ahead bids, the mean MAPE value across the five test

scenarios is 2.80%. The average reduction in energy costs across all five test scenarios

with respect to the base profile is 3.9% compared to the 3.1% expected reduction.

Also, the average decrease in capacity costs across all five test scenarios with respect

to the base profile is 5.4% compared to the 9.5% expected reduction. Figures 4.6(a),

4.7(a), and 4.8(a) show the dispatch profiles for the HVAC, water heater, and BTM

battery clusters, respectively. Figures 4.6(a) and 4.7(a) show that the cluster dispatch

across different scenarios have minimal variations and are also similar to the expected

profiles (Fig. 4.3 and Fig. 4.4) obtained from the day-ahead solutions.

Fig. 4.11(a) shows the system losses for the base case and the five test scenarios

under the rules-based dispatch. The losses were reduced by 4.3%. Also, the voltage

limits are satisfied across all five test scenarios.
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(a) Rule-based (b) Real-time optimal

Figure 4.6: (a), (b) Dispatch results - HVAC cluster

(a) Rule-based (b) Real-time optimal

Figure 4.7: (a), (b) Dispatch results - water heater cluster

(a) Rule-based (b) Real-time optimal

Figure 4.8: (a), (b) Dispatch results - battery cluster



114

(a) Rule-based (b) Real-time optimal

Figure 4.9: (a), (b) Dispatch results - losses

4.6.5 Optimal Real-Time Dispatch

The real-time optimal dispatch problem was solved using the same uncertainty

realizations for the rule-based dispatch case. Fig. 4.5(b) shows that the LSE’s total

load profiles under all five scenarios are close to the reference profile (i.e., expected

day-ahead demand profile). The average MAPE between the reference profile and

the actual profiles across all five scenarios is 1.94% which is about 0.86 percentage

points less than the corresponding value for the rule-based dispatch case. The energy

cost reduction is about 4.7% which represents a 0.8 percentage point improvement

compared to the rule-based case. The capacity cost reduction follows the same vein

with a 1.8 percentage point improvement over the rules-based case. However, the rule-

based method outperforms the optimal dispatch method in terms of loss reduction

by 0.8 percentage points. Figures 4.6(b), 4.7(b) and 4.8(b) show the dispatch profiles

of the HVAC, water heater, and BTM battery clusters, respectively. More variations

in the customer-side resource dispatch profiles indicate the overall dynamism of the

optimal real-time dispatch. However, this dynamism comes with an additional 3-

minute average computation time compared to the sub-second execution of the rules.

While this is not an issue in the case studies considered in this work, the computation
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times could be longer for distribution systems with numerous nodes.

Fig. 4.9(b) shows the system losses, which were reduced by 3.5% on average, with

respect to the losses in the base case (i.e., without resource control). The voltage

limits are also satisfied across all five test scenarios.

Table 4.4: Dispatch algorithm comparison

MAPE Energy Cost Capacity Loss Computation
Reduction Cost Reduction Reduction Time

Rule-based 2.8% 3.9% 5.4% 4.3% <1s
RT optimal 1.94% 4.7% 7.2% 3.5% 3 mins

4.6.6 Case with Third Party Aggregator

Under new policy scenarios, third-party aggregators can aggregate customer-side

resources on an LSE’s network for participation in wholesale markets. However, such

aggregations must be operated without adverse effects on the LSE’s network. To

preserve competitiveness and stifle market power effects, the market operator can

make the aggregator’s resource dispatch schedule available to the LSE only after

market clearing. The LSE can only predict the aggregator’s expected schedule while

solving its day-ahead scheduling problem. The uncertainty associated with the day-

ahead prediction of the aggregator’s dispatch schedule, zagg,t, provides another source

of uncertainty. Since zagg,t will be revealed after market clearing, there is no need

to capture zagg,t in the decision rules for real-time dispatch. However, the decision

rule parameters for the rule-based dispatch should be re-estimated considering the

revealed uncertainties post market clearing.

A third-party aggregator with a 20 kW flexibility capacity is assumed to be present

on node 23. Also, the uncertainties associated with the LSE’s prediction of the

aggregator’s actions are assumed to follow a uniform distribution with maximum and

minimum values pegged at ± 10% of the expected profile. Under these conditions,

using updated decision rules for dispatching the LSE’s flexible resources produced 0.04
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and 0.08 percentage point improvements in the MAPE metric and capacity charge

savings over the usage of non-updated rules.

4.7 Conclusions and Future Work

This chapter discusses a framework for LSEs with solar PV resources and ac-

cess to groups of residential HVACs, water heaters, and BTM batteries to capture

multiple value streams from their resources. Specifically, we considered self-service

applications for LSEs (peak shaving, energy arbitrage, and ramp rate reduction) and

distribution system operation applications (voltage management and loss reduction).

The framework captures uncertainties relating to load and solar PV output forecasts.

Our results clearly show that LSEs can capture more value by using the same group

of customer-side resources for multiple applications simultaneously. Specifically, the

usage of customer-side resources for the suite of services reduced the system operat-

ing costs by 12.8% on average compared to a peak-shaving only application which

is often the status quo. We also showed that the value of customer-side resources

increases as uncertainties in the LSE’s forecasts increases. For the cases considered,

the value of customer-side resources ranged from 10% to 12% at different levels of

forecast uncertainties.

Also, we compared and contrasted two real-time resource dispatch algorithms based

on decision rules and the solution of a real-time optimization problem. Our results

show that the real-time optimization-based algorithm performs better than the rule-

based method across several metrics. However, the performance gains come at addi-

tional computation costs and lower system loss reductions. The additional compu-

tation time could be significant for LSEs with vast distribution networks. As such,

appropriate trade-offs between both methods can be established based on specific

system configurations.

The proposed framework has also been adapted to help LSEs capture the impacts

of third-party aggregators on their distribution network. For decision rule-based dis-
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patch, we showed that LSEs could obtain performance gains by updating the decision

rules after additional information about the aggregator’s actions has been revealed

post market clearing. We believe that these perspectives and contributions provide

holistic tools and methods for LSEs to navigate new policy scenarios that will signif-

icantly unlock the value associated with the flexibility of customer-side resources. In

our subsequent work, we will consider how LSEs can compensate these customer-side

resources for the multiple services provided.
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CHAPTER 5: AN ALTERNATIVE COMPENSATION MECHANISM FOR

DEMAND-SIDE FLEXIBILITY CONSIDERING LOW AND MEDIUM INCOME

(LMI) PARTICIPANTS

Load serving entities (LSEs) can realize combined value streams from different

clusters of flexible customer-side resources on their networks. However, LSEs also

need to know how to compensate the resource owners financially for the multiple

services provided. At the same time, LSEs can introduce other compensation dimen-

sions to incentivize participation by a unique customer segment, such as the low and

medium-income (LMI) customer segment. Inspired by game-theoretic concepts, this

work proposes a two-level compensation framework that rewards participants in an

LSE’s flexibility program based on the nature of the collective value produced by the

resources. The proposed framework also includes a social compensation dimension

that improves the credit ratings of LMI participants. The framework is illustrated

using numerical simulations based on a modified IEEE 33-bus test system, electric-

ity market prices from the New York Independent System Operator, NYISO, and

simulated credit data.
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Nomenclature

Parameters

αb Battery self discharge rate

∆Pagg,i,t Aggregator expected impact at node i at time t

∆t Time step

∆V Voltage step

ηch,b Battery charging efficiency

ηCOP HVAC system co-efficient of performance

ηdis,b Battery discharging efficiency

λcapacitor Capacitor switching price

λcap Capacity price

λramp,t Price of additional reserve capacity for handling ramping concerns

λreactive,t Reactive power price at time t

λreal,t Real power price at time t

λreg Regulator switching price

A Aggregated water heater total surface area

CrLMI LMI participant’s credit improvement goal

Eb,max Maximum battery SOC

Eb,min Minimum battery SOC

I2
ij,min, I

2
ij,max Line flow current rating
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K1, K2 Regression model parameters

m Month index

mw Total mass of water in water heater

Pabs,min, Pabs,max Ramp rate limits

Pb,i,base,t Battery cluster base power consumption

Pch,b,max Maximum battery charging rate

Pdis,b,max Maximum battery discharging rate

Pfin,m Financial compensation for LMI participant at month m

Ph,i,base,t HVAC cluster base power consumption

Ph,max HVAC cluster power rating

PL,i,t Uncontrolled active power load at node i at time t

Psubstation Substation active power limit

Pw,i,base,t Water heater cluster base power consumption

Pw,max Water heater cluster power rating

Qc,t Capacitor reactive power

QL,i,t Uncontrolled reactive power load at node i at time t

Qsubstation Substation reactive power limit

Re Aggregated water heater thermal resistance

Rh HVAC thermal resistance

rki Line resistance between nodes k and i
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Sder,max DER apparent power rating

Sij,max Maximum line flow limit

SOCw,min, SOCw,max Water heater cluster SOC limits

Ta Ambient temperature

Ti,h,min/max Interior temperature limits

Tw,max Maximum hot water temperature for water heater cluster

u Credit model uncertainty

V 2
min, V

2
max Voltage variable limits

xki Line reactance between nodes k and i

Variables

Capc,t Capacitor status at time t

chind,t Battery charging indicator at time t

Crm LMI participant’s credit rating at month m

disind,t Battery discharging indicator at time t

e WCEM objective function variable

Eb,t Battery SOC at time t

Iki,t Line current flow between nodes k and i

Pm LMI participant’s credit building commitment for month m

Pb,t Battery power at time t

Pbought,t Power consumption at substation
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Pch,b,t Battery charging rate at time t

Pdis,b,t Battery discharging rate at time t

Ph,t HVAC cluster consumption at time t

Pki,t Active power flow between nodes k and i at time t

Ploss,t Active power losses at time t

Psol,t Solar irradiation at time t

Pw,t Total power consumption for water heater cluster at time t

Qb,t Battery reactive power

Qh,t HVAC cluster reactive at time t

Qloss,t Reactive power losses at time t

Regr,t Regulator status at time t

Sb Battery inverter total apparent power rating

SOCw,t State of charge variable for water heater cluster at time t

Ti,h,t Interior temperature for HVAC h at time t

Tw,avg Average hot water temperature for water heater cluster

V 2
i,t Voltage squared variable at node i at time t

Vsub,t Substation squared voltage at time t
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5.1 Introduction

5.1.1 Background and Motivation

The role of flexible customer-side resources in transitioning to a low-carbon energy

future cannot be overemphasized. These resources can handle multiple challenges

associated with smart and low-carbon grids. For example, flexible customer-side

resources can modify demand patterns such that the consumption of energy from

clean sources is maximized [1]. Flexible customer-side resources can also respond to

frequency control signals, thus maintaining the operational integrity of the grid [2]. As

such, flexible customer-side resources are already unlocking multiple value streams for

resource owners and load-serving entities (LSEs) with access to these resources. The

numerous value streams can be combined and captured simultaneously by a single

customer-side resource or an aggregation of homogeneous or heterogeneous resources.

In [3], behind-the-meter (BTM) batteries in commercial buildings are considered

for combined peak shaving and frequency regulation. The authors show that not

only does such a combination provide additional benefits for the BTM battery re-

source owner, but the benefits provided are also super-additive in nature. The super-

additivity implies that the total benefit produced by combined frequency regulation

and peak shaving is more than the summation of the individual benefits from fre-

quency regulation and peak shaving. Reference [4] also examines the usage of an

aggregation of residential water heaters for frequency regulation and voltage manage-

ment in the presence of high penetration of intermittent renewable energy resources.

In another work, an aggregation of behind-the-meter (BTM) batteries is considered

for frequency regulation [1]. At the same time, each battery simultaneously provides

end-user services like peak load reduction and PV curtailment. In [5], the authors

consider batteries and heating, ventilation, and air-conditioning (HVAC) systems in

commercial buildings for combined energy arbitrage, frequency regulation, and spin-

ning reserve provision. In our previous work [6], we demonstrate how an LSE can
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use aggregations of residential HVACs, BTM batteries, and residential water heaters

for combined energy arbitrage, peak shaving, and frequency regulation in the face of

multiple sources of uncertainty.

When an LSE or aggregator operates a demand-side flexibility program where many

customer-side resources provide multiple value streams, the need for compensation

allocation mechanisms becomes apparent. In such cases, the LSE can group similar

customer-side resources into clusters and treat each cluster as a single resource to

simplify complexities associated with modeling multiple resources in scheduling prob-

lems. Hence, the LSE’s compensation sharing becomes a two-level problem involving

cluster-level and sub-cluster level allocations. Since each resource cluster consists

of resources with similar characteristics, sub-cluster level allocations can be uniform.

However, cluster-level allocation depends on the nature of the collective value and the

specific contributions of each resource cluster. The authors in [7] provide a detailed

comparison of different value-sharing mechanisms for different types of energy commu-

nities. The mechanisms considered include equal sharing, production capacity-based

sharing, consumption-based value allocation, supply-demand ratio (SDR) based shar-

ing, marginal contribution-based sharing (also known as the Vickery-Clarke-Groves

mechanism [8]), Shapley allocation mechanism, and Worst Case Excess Minimization

mechanism. The Shapley allocation and Worst Case Excess Minimization mecha-

nisms are deeply rooted in cooperative game theory. In [9], the authors proposed a

cooperative game-based method for sharing profits and losses between an aggrega-

tion of spatially distributed wind farms bidding collectively into two-settlement energy

markets. These wind farms work together to reduce variations in their total output,

reducing penalties associated with bid quantity violations. Also, authors in [8] [10–12]

apply cooperative game concepts to different energy management problems involv-

ing different entities forming a coalition. Although references [8–12] depend on the

premise that each member of the coalition can realize some value on its own outside
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any coalition, the LSE can still apply similar value-sharing concepts even if resource

owners can only capture additional value by participating in the LSE’s demand-side

management program.

Furthermore, the compensation available to customer-side resources will affect the

level of participation in the LSE’s flexibility program. Hence, the LSE can introduce

additional compensation dimensions to augment direct financial compensations. Such

extra compensation dimensions can incentivize participation from a specific segment

of resource owners. An example of such a participant segment is Low and Medium-

Income (LMI) households. For example, a study on how different incentive mech-

anisms affect the participation of residential customers in traditional peak demand

reduction programs conducted by researchers at the University of California at Los

Angeles showed lower participation levels from low-income customers [13]. Although

several factors could be responsible for this outcome, the introduction of incentives

that are very relevant to low-income customers could improve their participation lev-

els.

While income is not typically included in credit scoring models, studies have shown

that there is at least a modest correlation between credit scores and income lev-

els [14, 15]. Hence, lower-income households are generally more likely to have lower

credit ratings. As such, an improvement to the credit ratings of an LMI household

can produce ripple effects that can substantially improve the economic outcomes

for such households. Therefore, a social compensation dimension that improves the

credit ratings of LMI households in addition to financial compensation could further

incentivize the participation of such households in the LSE’s flexibility program. The

LSE can improve the LMI household’s credit rating by using a fraction of the LMI

participant’s monthly compensation as repayments towards credit builder loans over

a certain period [16]. At the end of the period, the LMI participant gets back the

total value of the credit builder loan in addition to improved credit ratings. However,
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the LMI participants must be able to choose the maximum fraction of their monthly

compensation for credit building apriori. Also, the LMI participants should be able

to specify their credit improvement goals for a defined period. The LSE can then

combine the maximum monthly commitment and credit improvement goals to deter-

mine the specific monthly commitments for each LMI participant interested in credit

rating improvement. Generally, LMI households often share similar geographic loca-

tions making it feasible for the LSE to create aggregations of flexible customer-side

resources belonging to LMI households.

5.1.2 Contributions

In summary, our main contributions are two-fold and are highlighted as follows.

1. Firstly, we propose a two-level compensation framework to help LSEs allocate

compensations to multiple customer-side resource owners participating in the

LSE’s multi-value capturing flexibility program (referred to subsequently as

flexibility program). The compensation framework is based on the nature of

the collective value created by the resources. We posit that the collective value

produced by customer-side resources can be either strictly sub-additive, strictly

super-additive, or additive.

2. Secondly, we propose an additional social compensation dimension to incentivize

the participation of LMI participants in the LSE’s flexibility program. The

social compensation dimension improves an LMI participant’s credit ratings in

addition to financial rewards. We also propose an optimization model that

the LSE solves to give the LMI participants an estimation of their monthly

commitments to achieve specified credit rating improvements at the end of the

program cycle.
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5.2 Assumptions and Framework Overview

This section provides an overview of the proposed compensation allocation frame-

work. The major underlying assumptions are also outlined as follows.

1. The LSE has defined the main value streams of interest. Since the possible

value streams will depend on regulations and specific conditions applicable to

the LSE’s jurisdiction, we do not focus on the specifics of LSEâs value stream

definition procedure.

2. The LSE has defined resource clusters with similar flexible resources based on

features applicable to the LSE’s customers. Extensive work has been done

on clustering flexible customer-side resources [17–19]. The LSE can cluster

resources based on similar comfort requirements (e.g., thermostat deadband

range for residential HVACs), resource ratings, resource locations, credit ratings

of resource owners, etc.

3. More resource clusters will produce more value for the LSE. For example, if

V (x) represents the value produced by resource cluster x, then V (x) < V (x, y)

< V (x, y, z). Also, the value of each resource cluster is non-negative.

4. Like all other demand-side management programs operated by LSEs, each par-

ticipant’s monthly compensation over each program cycle is determined at the

beginning of the program cycle.

5. The LSE can estimate resource owners’ opportunity costs, where applicable. For

example, the resource owners could have purchased a group of BTM batteries for

local energy arbitrage. As such, the compensation provided to the BTM battery

owners for participating in the LSE’s flexibility program should be at least

equivalent to the benefits from local energy arbitrage. For a group of residential

HVACs, the net costs after participating in the LSE’s flexibility program must
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be at most equal to the total energy cost to maintain a certain level of thermal

comfort.

6. Individual flexible resources cannot capture the LSE’s combined value streams

in isolation. For example, a residential HVAC system cannot capture combined

peak shaving, energy arbitrage, ramp rate reduction, loss reduction, and voltage

management unless it participates in the LSE’s demand-side flexibility program.

7. The LSE has defined representative days for each operating season to estimate

the total monthly compensation for the flexible resources. Each representative

day has parameters such as expected load profile, expected resource profiles for

each resource cluster, expected energy market prices, and any other parameter

applicable to the LSE’s value streams of interest.

Based on the preceding assumptions, the main components of the compensation

allocation framework are defined as follows.

1. Estimation of the collective value of all resource clusters and the

marginal value of each resource cluster - The LSE solves an optimization

problem using parameters for each representative day to estimate the collective

value of the flexible resources and marginal value of each resource cluster.

2. Investigation of the nature of the collective resource value - The LSE

classifies the collective value of the flexible resources as either strictly sub-

additive, strictly super-additive, or additive. Based on this classification, the

most appropriate cluster-level compensation allocation mechanism is selected.

The applicable compensation allocation mechanisms for each classification are

discussed in detail in section 5.3.2.

3. Estimation of each participant’s monthly financial compensation - The

LSE allocates monthly compensations to the resource clusters based on the
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appropriate allocation mechanism selected after investigating the nature of the

collective resource value. Each cluster’s total allocation is then shared equally

among all participants since the participants have very similar characteristics.

4. Estimation of prospective LMI participants’ credit improvement com-

mitments - The LSE solves an optimization problem to estimate a prospective

LMI participant’s monthly commitment towards credit improvement to achieve

a certain credit rating at the end of the program cycle. This provides the

prospective LMI participant with additional information that could further in-

centivize participation in the LSE’s flexibility program.

The overall framework is illustrated in Fig. 5.1. The proposed framework is in-

tended for use at the design stage of the LSE’s flexibility program to give prospective

participants an indication of the benefits they stand to gain. Each component is

discussed further in the subsequent section.

Figure 5.1: Overall framework illustration
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5.3 Framework Details

5.3.1 Estimation of the Collective Value of All Resource Clusters and the

Marginal Value of Each Resource Cluster

Consider the generic model (5.1), where C(a, b, n) represents an LSE’s cost func-

tion reflecting multiple value streams captured from resource clusters a, b, and n.

Constraints (5.1b) to (5.1e) reflect the different characteristics of resource clusters a,

b, and n and the characteristics of the LSE’s network, if applicable.

minimize C(a, b, n) (5.1a)

subject to:

Cluster a constraints (5.1b)

Cluster b constraints (5.1c)

Cluster n constraints (5.1d)

Network constraints (5.1e)

Let C∗ and C∗base be the optimal values of model (5.1) with and without resource

clusters a, b, and n, respectively. Also, let C∗a , C∗b and C∗n be the optimal values

of model (5.1) with only cluster a, cluster b and cluster n, respectively. Hence, the

collective value of the resource clusters, each resource cluster’s marginal value, and

other possible combinations can be calculated as shown in (5.2), where V (s) denotes

the value of resource cluster s. Note that similar expressions can be obtained in the

case where the LSE maximizes some profit value.

V (a, b, n) = C∗base − C∗ (5.2a)

V (a) = C∗base − C∗a (5.2b)

V (b) = C∗base − C∗b (5.2c)
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V (c) = C∗base − C∗c (5.2d)

V (a, b) = C∗base − C∗a,b (5.2e)

V (a, c) = C∗base − C∗a,c (5.2f)

V (b, c) = C∗base − C∗b,c (5.2g)

Let us consider a specific application where the LSE’s flexible resources are clusters

of residential HVACs, water heaters, and BTM batteries. The HVAC, water heater,

and BTM battery clusters are represented by models (5.3), (5.4), and (5.5). The

interested reader is referred to our previous work [6] for a detailed explanation of the

models.

5.3.1.1 HVAC Model

The aggregated HVAC model is as shown in (5.3).

Ti,h,t+1 = Ti,h,t

(
1− ∆t

RhCh

)
+ Ta,t

(
∆t

RhCh

)
−

ηCOP,hPh,t

(
∆t
Ch

)
+ Psol, ,

(
∆t
Ch

) (5.3)

5.3.1.2 Water Heater Model

The aggregated water heater model is as shown in (5.4).

SOCW =
Tw,avg
Twmax

(5.4a)

SOCw,t+1 = aw,tSOCw,t +
(btPw,t + ew,t)

Twmax

(5.4b)

aw,t = exp

(
− ∆t

RwCw

)
, bt = Rw (1− aw,t) (5.4c)

ew,t = (GRwTa +BRWTcw) (1− aw,t) (5.4d)

Rw =
1

G+B
,B = ρWtc,G =

A

Re

, Cw = mc (5.4e)
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5.3.1.3 BTM Battery Model

The aggregated battery model is as shown in (5.5).

Eb,t+1 = αbEb,t + ηch,bPch,b,t −
1

ηdis,b
Pdis, b,t (5.5a)

Pb,t = ηch,bPch,b,t −
1

ηdis,b
Pdis,b,t (5.5b)

Eb,min ≤ Eb,t ≤ Eb,max (5.5c)

0 ≤ Pch,b,t ≤ Pch,b,max (5.5d)

0 ≤ Pdis,b,t ≤ Pdis,b, max (5.5e)

P 2
b,t +Q2

b,t ≤ S2
b (5.5f)

chind,t + disind,t ≤ 1 (5.5g)

Assuming the LSE combines peak shaving, energy arbitrage, ramp rate reduction,

voltage management, and loss reduction as value streams of interest, model (5.1)

becomes (5.6).

minimize C

C = λcap max (Pbought,t) +
T∑
t=1

λreal,tPbought,t+

T∑
t=1

λreactive,Qbought,t +
T∑
t=1

λreal,tPloss,t +
T∑
t=1

λreactive,tQloss,t

+
T∑
t=1

λramp,tPabs,t +
C∑
c=1

T∑
t=1

λcapacitorXc,t +
R∑
r=1

T∑
t=1

λregXr,t (5.6a)

Subject to:

(5.3), ∀h ∈ H (5.6b)

(5.4), ∀w ∈ W (5.6c)

(5.5) ,∀b ∈ B (5.6d)
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Ploss =
∑
t

∑
i

∑
j

I2
ij,trij (5.6e)

Qloss =
∑
t

∑
i

∑
j

I2
ij,txij (5.6f)

∑
k∈pr(i)

(
Pki,t − rkiI2

ki,t

)
−
∑
j∈cr(i)

Pij,t = PL,i,t + Ph,i,t

+Pw,i,t + Pb,i,t ∀b, h, w ∈ i, ∀i ∈ N (5.6g)∑
k∈pr(i)

(
Qki,t − xkiI2

ki,t

)
−
∑
j∈cr(i)

Qij,t = QL,i,t +Qh,i,t

+Qb,i,t + Capc,t×Qc,t ∀b, h, c ∈ i,∀i ∈ N (5.6h)

V 2
i,t − V 2

j,t − 2 (rijPij,t + xijQij,t) +
(
r2
ij + x2

ij

)
I2
ij,t = 0

∀j ∈ cr(i) (5.6i)

P 2
ij,t +Q2

ij,t ≤ S2
ij,max (5.6j)

P 2
bought,t +Q2

bought,t ≤ S2
substation (5.6k)∥∥∥∥∥∥∥∥∥∥

2Pij,t

2Qij,t

I2
ij,t − V 2

i,t

∥∥∥∥∥∥∥∥∥∥
2

≤ I2
ij,t + V 2

i,t (5.6l)

Vsub,t = 1 + ∆V ×Regr,t (5.6m)

Pbought,t+1 − Pbought,t ≤ Pabs, t∀t ∈ T (5.6n)

Pbought,t+1 − Pbought,t ≥ −Pabs,t∀t ∈ T (5.6o)

Pabs,min ≤ Pabs,t ≤ Pabs,max ∀t ∈ T (5.6p)

Regr,t+1−Regr,t ≤ Xr,t ∀r ∈ R (5.6q)

Regr,t+1−Regr,t ≥ −Xr,t ∀r ∈ R (5.6r)

Xr,min ≤ Xr,t ≤ Xr,max ∀r ∈ R (5.6s)

Capc,t+1−Capc,t ≤ Xc,t ∀r ∈ R (5.6t)

Capc,t+1−Capc,t ≥ −Xc,t ∀r ∈ R (5.6u)
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Xc,min ≤ Xc,t ≤ Xc,max ∀r ∈ R (5.6v)

Ti,h,min ≤ Ti,h,t ≤ Ti,h,max ∀h ∈ H (5.6w)

SOCw,min ≤ SOCw,t ≤ SOCw,max ∀w ∈ W (5.6x)

0 ≤ Ph,t ≤ Ph,max ∀h ∈ H (5.6y)

0 ≤ Pw,t ≤ Pw,max ∀w ∈ W (5.6z)

0 ≤ Pbought,t ≤ Psubstation ∀t ∈ T (5.6aa)

0 ≤ Qbought,t ≤ Qsubstation ∀t ∈ T (5.6ab)

V 2
min ≤ V 2

i,t ≤ V 2
max ∀i, ∀t (5.6ac)

I2
ij,min ≤ I2

ij,t ≤ I2
ij,max ∀i, ∀j,∀t (5.6ad)∑

t

(Ph,i,t) ≤
∑
t

(Ph,i,base,t) ∀i (5.6ae)

∑
t

(Pw,i,t) ≤
∑
t

(Pw,i,base,t) ∀i (5.6af)

∑
t

(Pb,i,t) ≤
∑
t

(Pb,i,base,t) ∀i (5.6ag)

The cost function in (5.6a) reflects all the costs associated with the LSE’s value

streams of interest. The first term represents capacity-related charges which can in-

clude capacity costs and transmission costs, while the second and third terms are

energy costs. The losses are captured in the fourth and fifth terms. The sixth term

and equations (5.6n) - (5.6p) represent convex relaxations capturing the ramp rate

application. The seventh and eighth terms of the objective function represent costs

associated with operating typical voltage management devices. These costs are ex-

pressed in terms of the initial costs and switching operations over the lifetime of

these devices [20]. To preserve convexity, the seventh and eighth terms in the objec-

tive function, which represent absolute value terms, are accompanied by equations

(5.6q) - (5.6v). Constraints (5.6g) to (5.6l) represent second-order conic relaxation-

based power flow equations [21]. Constraint (5.6m) approximates the impact of the
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voltage regulator located at the substation. Constraints (5.6ae) - (5.6ag) ensures

that the energy costs incurred by the participants in the LSE’s flexibility program

do not exceed the costs they would have incurred if they did not participate. These

constraints are tied to Assumption 5 and ensure that the participants are not worse

off for participating in the LSE’s program. Other constraints reflect comfort and

operational limits associated with the flexible resources and the LSE’s network.

Solving problem (5.6) with and without flexible resources provides the collective

and marginal resource values illustrated in (5.2). These values indicate the maximum

compensation allocated to each resource cluster. If existing regulations allow the LSE

to recover costs associated with setting up the flexibility program, the participants

will not get the maximum compensation allocation. Also, if regulations allow the LSE

to keep a portion of the collective value for itself (e.g., Performance Based Regulation

in Hawaii [22]), the participants will not get the maximum compensation allocation.

5.3.2 Investigation of the Nature of the Collective Resource Value

Using the results from (5.2), the LSE can investigate the nature of the collective

value of the resource clusters. Understanding the collective resource value provides a

basis for selecting the appropriate compensation allocation mechanism for the resource

clusters. The following theorems are established to guide collective resource value

investigation.

Theorem 1: The collective value of a group of flexible resource clusters capturing

multiple value streams for an LSE within the context of a flexibility program can be

either strictly super-additive or strictly sub-additive or additive.

Using definitions established in (5.2), Theorem 1 can be expressed mathematically

as shown in (5.7a) to (5.7c).

Strictly Sub-Additive: V (a) + V (b) + V (n) > V (a, b, n) (5.7a)
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Strictly Super-Additive: V (a) + V (b) + V (n) < V (a, b, n) (5.7b)

Additive: V (a) + V (b) + V (n) = V (a, b, n) (5.7c)

The nature of the collective resource value depends on the value streams captured,

resource characteristics, and applicable system constraints. Based on the three cat-

egories outlined in Theorem 1, Theorems 2 - 4 establish applicable compensation

allocation mechanisms.

Theorem 2: For a strictly sub-additive collective resource value, there is no com-

pletely fair compensation allocation mechanism that provides compensations equal to

or greater than the marginal value of each resource cluster. In other words, other

resource clusters suffer if a resource cluster is allocated its marginal value.

Theorem 2 can be proven using game-theoretic concepts of balance and convexity.

While the details of these concepts are not the focus of this work, we present the

following definitions to set the stage for subsequent discussions. The reader can

consult [9] and [12] for interesting discussions about these concepts.

Definition 1 (Balanced Map): A map γ : S → [0,1] is balanced if ∀s ∈ {a, b, n},∑
S⊂{a,b,n} γ(S)1 {s ∈ S} = 1, where 1{.} is an indicator function. This implies that

a balanced map assigns a weight to every resource cluster combination S such that the

summation of weights for every combination containing a particular resource cluster

is 1.

Definition 2 (Balanced Game): A game is balanced if for any balanced map γ,∑
S⊂{a,b,n} γ(S)V (S) ≤ V (a, b, n).

Definition 3 (Convex Game): A game is convex if it satisfies the condition:

V (S) + V (Υ) ≤ V (S ∪ Υ) + V (S ∩ Υ), ∀ S, Υ ⊂ {a, b, n}. This implies that the

marginal value of the resource clusters in a resource cluster combination increases as

the combination grows in size.
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Specifically, we can check for the balance and convexity of the game involving

the pseudo-coalition formed by the flexible resource clusters [12]. We use the term

’pseudo-coalition’ because, according to Assumption 6, the resources cannot capture

the value streams of interest in isolation. In other words, the resource clusters need

to participate in the LSE’s flexibility program to capture the value streams. The

LSE determines the value created by each resource in its flexibility program. If the

pseudo-coalition’s game is both unbalanced and non-convex, then Theorem 2 holds.

The proof is in the appendix.

Since there are no completely fair allocation mechanisms for sub-additive collective

resource value, the compensations are allocated based on ratios of the total marginal

value, as shown in (5.8). x(a), x(b), and x(n) are the maximum financial compensation

allocations for resource clusters a, b and n, respectively.

x(a) =
V (a)

V (a) + V (b) + V (n)
× V (a, b, n) (5.8a)

x(b) =
V (b)

V (a) + V (b) + V (n)
× V (a, b, n) (5.8b)

x(n) =
V (n)

V (a) + V (b) + V (n)
× V (a, b, n) (5.8c)

Theorem 3: For a strictly super-additive collective resource value, totally fair

compensation allocation mechanisms exist if the game involving the pseudo-coalition

formed by the resource clusters is either balanced or convex.

Again, Theorem 3 is based on game-theoretic concepts relating to the non-emptiness

of the core of a game if conditions of balance or convexity are satisfied. A non-empty

core implies the existence of a totally fair way of allocating the collective resource

value. The interested reader can refer to [9] and [12] for an interesting discussion of

these concepts. From Theorem 3, we can deduce that the applicable compensation

allocation mechanism depends on the outcomes of checks for balance and convex-
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ity. The applicable compensation mechanisms are selected based on the following

conditions.

1. If the game involving the pseudo-coalition formed by the resource clusters is

proven to be balanced and not convex, use the Worst-Case-Excess-Minimization

(WCEM) mechanism [9]. For the three-cluster illustration (equation sets 5.1 and

5.2), WCEM solves the optimization problem (5.9) to obtain the best compen-

sation allocations for each resource cluster.

minimize e (5.9a)

Subject to:

e+ x(a)− V (a) ≥ 0 (5.9b)

e+ x(b)− V (b) ≥ 0 (5.9c)

e+ x(n)− V (n) ≥ 0 (5.9d)

e+ x(a) + x(b)− V (a, b) ≥ 0 (5.9e)

e+ x(b) + x(n)− V (b, n) ≥ 0 (5.9f)

e+ x(a) + x(n)− V (a, n) ≥ 0 (5.9g)

x(a) + x(b) + x(n) = V (a, b, n) (5.9h)

x(a) ≥ V (a) (5.9i)

x(b) ≥ V (b) (5.9j)

x(n) ≥ V (n) (5.9k)

2. If the game involving the pseudo-coalition formed by the resource clusters is

proven to be convex and not balanced, use the Worst-Case-Excess-Minimization

(WCEM) mechanism or Shapley allocation mechanism [23]. The Shapley allo-

cation mechanism is based on calculating the well-known Shapley values [23].

Hence, the allocated compensation for each resource cluster in the three-cluster
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illustration equals its Shapley value, as shown in (5.10). However, if there are

multiple clusters, trade-offs between using efficient algorithms for estimating

the Shapley values (see [24]) and solving more complex optimization problems

resulting from WCEM will need to be considered. For example, ten resource

clusters will yield an optimization problem with at least 210 − 1 constraints.

x(s) =
∑

S⊂{a,b,n}\{s}

|S|!(3− |S| − 1)!

3!
[V (S ∪ {s})− V (S)]

∀s ∈ {a, b, n} (5.10)

3. If both balance and convexity conditions are satisfied, both WCEM and Shapley

allocation mechanisms are applicable. However, if none of the balance and

convexity conditions are satisfied (i.e., empty core), the allocation mechanism

for the sub-additive case can be applied.

Theorem 4: For an additive collective resource value, each resource cluster’s max-

imum compensation equals its marginal value.

From Theorem 4, the resource cluster compensations for the three-cluster illustra-

tion are shown in (5.11).

x(a) = V (a) (5.11a)

x(b) = V (b) (5.11b)

x(n) = V (n) (5.11c)

5.3.3 Estimation of Each Participant’s Monthly Financial Compensation

The collective resource value is shared among the different resource clusters using

the applicable compensation allocation mechanism. If the LSE defines multiple rep-

resentative days to capture seasonal variations in the collective value of the resources,
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the applicable compensation mechanism for each season is selected. Each cluster’s

allocated compensation is then shared uniformly among the individual resources in

the cluster. The uniform sub-cluster level allocation is based on Assumption 2, i.e.,

the resources in each cluster are very similar and connected to the same node on the

LSE’s network, if applicable.

5.3.4 Estimation of Prospective LMI Participants’ Credit Improvement

Commitments

Credit ratings are numerical indicators constructed to predict a borrower’s credit

risk. Generally, borrowers with higher credit scores have easier access to credit facili-

ties and more favorable loan terms. Hence, the credit score could significantly impact

a household’s financial well-being. While income is not directly captured in credit

scoring, studies have shown that there is at least a moderate correlation between

income and credit ratings [14,15]. This implies that, on average, LMI consumers are

more likely to have lower credit ratings. As such, tools or programs that increase the

credit ratings of LMI households could improve their overall financial well-being.

One of the widespread methods employed for credit rating improvement, especially

in the United States, is the concept of credit builder loans (CBLs) [16]. CBLs are

short-term installment contracts on small amounts in which the lender eliminates

its credit risk by inverting the sequence of origination and repayment [16]. In other

words, the loans are only released to the borrower after the loan’s value has been

fully paid over a defined period. In essence, CBLs operate more like savings instead

of loans. However, credit reporting treats CBLs as standard installment loans, per

industry agreements between CBL providers and the major credit bureaus [16].

In relation to the LSE’s flexibility program, a fraction of an LMI participant’s

monthly financial compensation can be set aside as monthly payments for a CBL

over the program cycle (e.g., 12 months). Under such conditions, the LSE can make

the payment directly to the CBL provider on behalf of the LMI participant. At
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the end of the program cycle, the LMI participant gets the total value of the CBL

and improved credit ratings. This mechanism hinges on the assumption that the

LSE can establish partnerships with third-party CBL providers, which is not far-

fetched. The partnership between Duke Energy and Ford to reduce monthly lease

payments made by Ford’s F-150 electric truck leasees participating in Duke Energy’s

pilot Vehicle-to-Grid (V2G) program is an example of such a third-party partnership

[25]. Duke Energy essentially makes payments to Ford on behalf of the V2G program

participants.

Since the proposed framework is applied at the program design stage, the prospec-

tive LMI participant specifies their current credit rating, Cr0, the maximum fraction

of their monthly compensation to commit to credit building, F , and their intended

credit improvement goals, CrLMI . The LSE uses this information as input into the

optimization problem (5.12) to decide the LMI participant’s monthly payments, Pm,

to commit to a CBL.

minimize (E[CrM,u]− CrLMI)
2 (5.12a)

subject to:

CrM,u = K1Cr0 +K2

M∑
m=1

Pm,u + u ∀ u in U (5.12b)

0 ≤ Pm,u ≤ F × Pfin,m ∀ u in U (5.12c)

The objective function (5.12a) tries to make the LMI participant’s expected credit

rating at the end of the program cycle M as close as possible to the specified goal.

The expectation operator (E[.]) indicates that there is some uncertainty associated

with the actual credit score improvements. This uncertainty (u), which is mainly due

to the participant’s credit behavior, is captured in the regression-based relationship

between the participant’s current credit score, monthly CBL payments, and credit
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score improvements (constraint (5.12b)). The exact nature of the uncertainty can

be characterized using anonymized customer credit data. Constraint (5.12c) ensures

that the monthly payments do not exceed the maximum fraction specified by the LMI

participant. Note that the credit improvement is based on the assumption that the

LMI participant does not default on other payment commitments different from the

CBL. This caveat could be captured in the terms and conditions of the program.

5.4 Case Studies

5.4.1 Simulation Data

We assumed that the LSE’s network is a modified version of the IEEE-33 bus test

system [26]. As shown in (5.6) and Fig. 5.2, the LSE has three homogeneous resource

clusters across each phase of its distribution network. Residential units forming the

HVAC cluster are connected to Node 12. The HVAC resources are assumed to belong

to the LMI households. The water heater and BTM battery clusters are on Node 7

and Node 3, respectively. The parameters for the resource clusters are shown in Table

5.1. The LSE also operates a solar PV system (rated at 200 kVA per phase) connected

to Node 18. The capacitors are rated at 50 kVAR per phase and are connected to

nodes 8, 13, 22, 23, and 27.

Figure 5.2: LSE’s network and resource clusters

The energy market prices and capacity cost data were obtained from NYISO’s

2019 data repository [27]. λramp,t was set at $25/MWh, based on the price at which
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NYISO procures additional reserve capacity to handle additional system ramping

concerns [28]. The operating costs for the capacitors (λcapacitor) and regulators (λreg)

are based on the analysis provided in [20]. All optimization problems were solved using

a Gurobi solver, within the CVX optimization tool, running on a Microsoft Surface

laptop [29]. The regression model parameters (K1 and K2) describing the relationship

between credit improvements and CBL payments were obtained using simulated credit

data from Credit Land [30]. Note that the LSE can obtain real anonymized credit

data from credit bureaus or CBL providers for real-world deployments.

Table 5.1: Resource cluster parameters

HVAC Water Heater BTM Battery
Cluster Cluster Cluster

No. of units 42 42 30
Parameters Rh = 0.06oC/kW A = 96m2 αb = 1

Parameters Ch = 45.25kWh/oC Re = 16 ηch = 0.927

Parameters ηCOP = 4 Cw = 33× 106J/kg ηdis = 1.08

Total rating 180 kW 189 kW 150 kW / 405 kWh
Comfort/ Ti,min = 66.95oF SOCmin = 0.895 SOCmin = 0.2

Usage Limits Ti,max = 72.95oF SOCmax = 1 SOCmax = 1

5.4.2 Compensation Allocation and Credit Rating Improvement Results

Two simulation cases are considered to illustrate variations in the nature of the

collective value of the flexible resources.

1. LSE controls flexible resources and also operates a solar PV system (Flexible

Resources and PV)

2. LSE controls flexible resources only (Flexible Resources Only)

5.4.2.1 Flexible Resources and PV

The collective resource value and the marginal value of the resource clusters in the

LSE’s flexibility program for a single summer representative data are shown in Table
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5.2.

Table 5.2: Collective and marginal resource value

Resource Flexible Resources Flexible Resources
Cluster and PV ($) Only ($)

V(HVAC) 67.06 69.38
V(WH) 10.33 5.36
V(Batt) 67.87 65.92

V(HVAC,WH) 76.69 76.13
V(HVAC,Batt) 132.2 138.9
V(Batt,WH) 75.12 72.95

V(HVAC,WH,Batt) 139.05 144.95

Table 5.2 shows that a combination of the three resource clusters produces the

highest value for the LSE, as expected. However, the collective value from the three

resource clusters is lower than the value for the Flexible Resources Only case. Again,

this observation is logical, considering the solar PV resource reduces the LSE’s energy

cost and could provide additional low-cost voltage support.

Also, from Table 5.2, the summation of V (HV AC), V (WH), and V (Batt) equals

$145.26, which is greater than the collective resource value, $139.05. Hence, the

collective value is sub-additive. Applying the allocation mechanism shown in (5.8),

the maximum financial compensation allocations for the HVAC, water heater, and

BTM battery clusters are $64.19, $9.89, and $64.97, respectively. As discussed earlier,

if the LSE is allowed by existing regulations to recover its program setup cost and

keep some of the value for itself, the resource cluster compensation will be less than

the maximum allocation.

For the HVAC cluster, which is also assumed to be the LMI participants’ clus-

ter, each participant’s estimated monthly financial compensation based on the single

representative day is $39.48 (assuming the resources are used 310 days in a year).

The initial credit ratings of the HVAC resource owners are assumed to follow a

normal distribution with a mean of 560 points, and a standard deviation of 65 points
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based on the survey conducted in [16]. Also, we assume that the credit improvement

goals have a mean of 700 points and a standard deviation of 10 points. The specified

maximum compensation percentage has a mean of 25% and a standard deviation of

5%. The expected credit rating improvements for the 42 participants in the LMI

resource cluster and the corresponding monthly commitment for CBLs are shown in

Fig. 5.3 and Fig. 5.4, respectively.

Figure 5.3: Illustrative credit ratings (Flexible Resources and PV)

Figure 5.4: Monthly CBL commitments (Flexible Resources and PV)

Fig. 5.3 and Fig. 5.4 show that most of the participants have their monthly CBL

commitments equal to their maximum limits, while their credit scores at the end of

the program cycle are still less than their improvement goals. The average points
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deficit across all 42 participants is 97.2 points. This implies that the participants

in this illustration will have to increase their maximum commitment limits to im-

prove the likelihood of achieving the set goals. Also, if the LSE uses the resources

for services with higher value (e.g., frequency regulation), the participants can re-

ceive higher financial compensation, which can also improve their final credit scores

through increased monthly CBL commitment capacity. For participants 10, 13, and

37 that exceeded their goals, their CBL commitments were negligible, implying that

they could meet their credit improvement goals by continuing their consistent credit-

building habits independent of taking advantage of the CBL. Also, participants 14

and 21 will be able to meet their goals with minimal CBL commitments.

5.4.2.2 Flexible Resources Only

For this case, the collective resource value and the marginal value of the resource

clusters are also shown in Table 5.2. The summation of V (HV AC), V (WH), V (Batt)

equals $140.66, which is less than the collective resource value, $144.95. Hence, the

collective value is super-additive. Checking for balance and convexity using defini-

tions 2 and 3, the pseudo-coalition is balanced but non-convex. As such, the WCEM

mechanism is applicable. The financial compensation allocations for the HVAC, wa-

ter heater, and BTM battery clusters are $70.77, $5.71, and $68.28, respectively,

using WCEM. For each LMI participant (i.e., HVAC cluster member), the estimated

monthly financial compensation based on the single representative day is $43.52 (as-

suming the resources are used for 310 days in a year).

The expected credit improvement outcomes and monthly CBL commitments for

this case are shown in Fig. 5.5 and Fig. 5.6, respectively. The patterns are similar

to the Flexible Resources and PV case outcomes. However, the average credit points

deficit was reduced to 96.3 points.



151

Figure 5.5: Illustrative credit ratings (Flexible Resources only)

Figure 5.6: Monthly CBL commitments (Flexible Resources only)

5.5 Conclusions

This paper discusses a two-level compensation allocation framework that can be

employed by an LSE using clusters of flexible customer-side resources on its network

for multiple value streams. We posit that the collective resource value produced by

flexible resources is either strictly sub-additive, strictly super-additive, or additive.

We discuss applicable compensation mechanisms based on game-theoretic concepts

depending on the classification. Also, we introduce the concept of social compensa-

tion mechanisms which the LSE can introduce to augment financial compensation

and incentivize a unique customer segment to participate in the flexibility program.
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Specifically, we propose improvements to credit ratings as an additional compensa-

tion dimension to encourage LMI customers to participate in the LSE’s flexibility

program. Illustrative case studies were also presented to show how the LSE can ap-

ply the proposed framework and compensation mechanisms. We focused on a single

representative day in order to critically examine the case study outcomes. In practice,

we expect that the LSE will estimate the resource value for different representative

days representing different seasons of the year. Furthermore, while the illustrative

credit score improvement outcomes are based on simulated credit data, the LSE can

obtain anonymized real-world CBL data from credit unions to obtain more realistic

outcomes for its LMI customers.

5.6 Appendix

The proof for Theorem 2 depends on the notion of balance and convexity of a game.

We can prove that a game involving a pseudo-coalition with a sub-additive collective

resource value is balanced or not by showing that there is at least a set of balanced

weights that violates the condition in Definition 2.

Considering the three cluster example, we can assign the weight 1
2
to each of the

combinations {a}, {b}, {n} and {a, b, n}. This mapping satisfies the balanced map

definition (Definition 1). Writing out the expression on the left side of Definition 2

produces (5.13)

V (a) + V (b) + V (n) + V (a, b, n)

2
>
V (a, b, n) + V (a, b, n)

2

(since V (a) + V (b) + V (n) > V (a, b, n)) (5.13)

Therefore,

V (a) + V (b) + V (n) + V (a, b, n)

2
> V (a, b, n) (5.14)
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Therefore, Definition 2 is violated, implying that the game involving the resource

clusters is not balanced. This result applies to pseudo-coalitions containing multiple

resource clusters.

For convexity to hold, V (a, b, n) - V (a, n) ≥ V (a, b) - V (a) or V (a, b) - V (a) ≥ V (b)

must be true. Note that the number of conditions for a set of resource clusters equals

n− 1, where n is the number of resource clusters. To disprove convexity, we need to

show that at least one of the following counter arguments holds.

Condition 1: V (a, b, n) - (V (a, n) + V (a, b) - V (a)) < 0

Condition 2: V (a, b) - (V (a) + V (b)) < 0

The validity of either Condition 1 or Condition 2 depends on the relationship

between V (a) + V (b) and V (a, b). Note that any two resource cluster combinations

can be selected. Also, a larger number of clusters will require considering more cluster

combinations.

If V (a) + V (b) > V (a, b) (or any other two cluster combination), Condition 2 can

be easily proven. It is clear that the left hand side (LHS) of Condition 2 is a negative

value if V (a) + V (b) > V (a, b).

If V (a) + V (b) ≤ V (a, b) (or any other two cluster combination), Condition 1 is

provable. A term greater than or equal the LHS of Condition 1 can be obtained as

shown in (5.15).

V (a, b, n)− (V (a, n) + V (a, b)− V (a))

≤ V (a, b, n)− (V (a) + V (n))− (V (a) + V (b)) + V (a) (5.15)

The RHS of (5.15) can be simplified further to obtain (5.16).

V (a, b, n)− (V (a, n) + V (a, b)− V (a))

≤ V (a, b, n)− (V (a) + V (b) + V (n)) (5.16)
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From Theorem 1, we know that under strict sub-additivity, V (a) + V (b) + V (n)

> V (a, b, n). Therefore the RHS of (5.16) is negative (i.e. less than 0). If the RHS of

(5.16) is negative, then a smaller or equivalent value V (a, b, n) - (V (a, n) + V (a, b) -

V (a)) is also negative. Thus, Condition 2 is satisfied.

Hence, a game involving a coalition of resource clusters yielding a sub-additive

resource value is both unbalanced and non-convex. As such, Theorem 2 holds.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

This dissertation presented various tools that LSEs can leverage to capture multi-

ple value streams from flexible customer-side resources within their jurisdictions. In

Chapter 2, a novel stochastic equivalent battery model (EBM) that provides a sim-

ple and effective representation of the overall flexibility associated with a commercial

building was discussed extensively. Also, an illustrative example of how the stochastic

EBM can be applied to resource scheduling problems was presented. Under situations

where the LSE has access to multiple commercial buildings, the proposed stochastic

EBM model provides a simple and effective way of modeling the flexibility associated

with each building. The stochastic nature of the model allows LSEs to model and ex-

amine how different uncertainties in building operating patterns can affect the overall

flexibility achievable from each commercial building.

Also, in Chapter 3, a detailed stochastic scheduling model to help LSEs capture

energy arbitrage, peak shaving, and market-based frequency regulation from homo-

geneous aggregations of residential heating, ventilation and air conditioning (HVAC)

resources, water heaters, and behind-the-meter batteries was presented. Uncertain-

ties relating to energy and regulation market signals and prices were considered. The

scheduling model also captures the all-important consideration that participants, es-

pecially owners of behind-the-meter batteries, would require compensations beyond

their opportunity costs to be incentivized to release their resources to the LSE. Al-

though the scheduling model included elements unique to the New York Independent

System Operator (NYISO) operating jurisdictions, it can be adapted to other elec-

tricity market environments. In addition to the scheduling model, a dynamic droop

and a model predictive control (MPC) based real-time dispatch algorithm capable of
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providing fast responses to high frequency regulation signals were also discussed and

compared. Depending on unique operating conditions and requirements, the LSE can

decide which of the two dispatch algorithms is more suitable.

Furthermore, Chapter 4 addresses day-ahead planning and operations for value

streams relating to distribution system operations. Specifically, a stochastic schedul-

ing model that captures energy arbitrage, peak shaving, ramp rate reduction, loss

reduction, and voltage management using homogeneous aggregations of residential

HVACs, water heaters, and behind-the-meter batteries was presented. Real-time dis-

patch algorithms based on linear decision rules (LDR) and model predictive control

were also discussed. A unique perspective involving the presence of third-party ag-

gregators on the LSEs network was also considered. In the near future, we expect

policy trends to encourage the rise of multiple third-party aggregators that will also

use resources on the LSE’s network for multiple applications. As such, LSEs can use

the proposed models and dispatch algorithms under such conditions.

Chapter 5 addresses issues relating to compensation for customer-side resources

offering their flexibility to the LSE. Specifically, a practical step-wise framework that

the LSE can employ to evaluate the financial compensations for each flexible resource

owner was presented. In addition to direct financial compensations, a novel social

compensation dimension was introduced as a tool for incentivizing flexibility from a

unique customer segment. Discussions relating to how LSEs can use credit rating

improvements as additional incentives to encourage flexibility from low and medium-

income customers were also presented.

6.1 Main Contributions

In summary, the main contributions of this dissertation are as follows.

1. A novel stochastic equivalent battery model that represents the overall flexibility

associated with the power consumption of a multi-zonal commercial building,

including HVAC, water heater, battery, and EV charging resources, was devel-
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oped. The flexibility limits in the model are time-varying and are quantified

using a combination of model-based functional simulations and optimization

techniques. The procedure for generating the stochastic flexibility limits has

also been implemented as a Python package. The model’s novelty stems from

the inclusion of both dominant uncertainties associated with the operating pat-

tern of the building and time-dependent flexibility limits.

2. A novel stochastic day-ahead resource scheduling model for a load-serving entity

with access to aggregations of residential HVACs, water heaters, and behind-

the-meter batteries for combined market-based frequency regulation provision,

energy arbitrage, and peak shaving was also developed. The scheduling model

captures stochasticity in energy and regulation market prices and frequency

regulation signals which was non-existent prior to this work. The scheduling

model also captures the potential impact of resource control actions on system

voltages based on the voltage sensitivity matrix approach.

3. A novel stochastic day-ahead scheduling model for a load-serving entity with

solar photovoltaic resources and access to groups of residential HVACs, wa-

ter heaters, and behind-the-meter batteries for combined peak shaving, energy

arbitrage, ramp rate reduction, loss reduction, and voltage management was

developed. Uncertainty sources, including solar PV output variations and vari-

ations in forecasted total load, were captured.

4. A two-level game theory-based compensation framework was developed to help

load serving entities allocate financial compensations to multiple customer-

side resource owners participating in multi-value capturing flexibility programs.

While the use of cooperative game theory for compensation allocation is not

novel, the unique application to the case where an LSE uses multiple customer-

side resources for multiple applications is novel.
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5. A novel social compensation dimension to incentivize the participation of low

and medium-income (LMI) customers in the flexibility programs is proposed.

The social compensation dimension improves LMI participants’ credit ratings in

addition to financial rewards for providing their flexible resources for multiple

value streams. Before this work, such compensation dimensions within the

context of demand-side management programs were non-existent.

6.2 Future Work

Although several tools to aid load-serving entities in realizing multiple value streams

from flexible customer-side resources within their jurisdictions have been proposed in

this dissertation, there are still open research questions to be addressed. The following

are some suggestions regarding areas for further research building on the concepts

presented in this dissertation.

1. Analysis of the impact of different flexible resource mixes and comfort

limits on the overall flexibility of commercial buildings in different climate

regions

This represents a logical extension of the stochastic equivalent battery model (EBM)

proposed in this dissertation. Different comfort limits, resource combinations, and

weather conditions will result in varying flexibility limits for commercial buildings.

Hence, examining how these different conditions affect the overall building flexibility

will be beneficial. Subsequently, a set of representative flexibility limits for commercial

buildings with different flexible resource mixes, comfort limits, and climate conditions

can be established. Such representative limits can provide benchmarks for other re-

gional or country-wide studies looking to fully capture the flexibility associated with

commercial buildings.

2. Long-term planning considerations

The planning models proposed in this study are for the day-ahead time horizon.

However, planning processes for LSEs cover multiple time scales. As such, there is a
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need to consider long-term planning perspectives.

Long-term planning for using flexible customer-side resources for multiple value

streams is multi-faceted. However, a major perspective relates to the LSE’s need to

understand how capturing multiple value streams from its customer-side resources will

affect its long-term plans. For example, regulated electric utilities in the United States

are often required to file integrated resource plans (IRP) that span multiple years. An

electric utility that intends to capture multiple value streams from its customer-side

resources must capture such perspectives in its IRP. Such electric utilities will benefit

from further research on the right approach for including the impacts of multi-value

flexibility programs in their IRPs.

3. Frameworks and metrics for quantifying maximum beneficial flexibil-

ity penetrations

As the popular saying goes, too much of anything is bad. While more demand-

side flexibility is advantageous, there will be penetration levels beyond which negative

effects overshadow the benefits. Therefore, LSEs will benefit from research that estab-

lishes clear frameworks and metrics to quantify maximum beneficial flexibility pene-

trations. Such frameworks and metrics will guide LSEs on what level of customer-side

flexibility penetration to pursue.

4. Pilot projects to test the proposed social compensation mechanism

While the building blocks of the proposed social compensation dimension have been

established in this dissertation, there is still a need for actual pilot studies to test how

LMI customers respond to such compensation strategies.
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