
GENERALIZED COVERAGE USING MULTIPLE ROBOTS:
THEORY, ALGORITHMS, AND EXPERIMENTS

by

Saurav Agarwal

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2022

Approved by:

Dr. Srinivas Akella

Dr. Erik Saule

Dr. Min Shin

Dr. Andrew R. Willis

Dr. Artur Wolek

ii

©2022
Saurav Agarwal

ALL RIGHTS RESERVED

iii

ABSTRACT

SAURAV AGARWAL. Generalized Coverage Using Multiple Robots: Theory,
Algorithms, and Experiments. (Under the direction of DR. SRINIVAS AKELLA)

Recent technological advances have facilitated the use of mobile robots for a wide

range of coverage applications such as inspection and mapping of infrastructure, pre-

cision agriculture, and disaster management. With the proliferation of these tasks

comes an increasing need for autonomous systems to efficiently gather data for analyz-

ing the state of the environment. The dissertation answers the following fundamental

question: How should resource-constrained robots traverse the environment to collect

data from all the relevant features? These features of interest can be represented

as points, lines or curves, and areas. This dissertation unifies simultaneous coverage

of all three types of features into a novel generalized coverage framework, develops

algorithms for efficient coverage using multiple mobile robots, and validates them in

experiments.

The dissertation first comprehensively studies the line coverage problem, i.e., cover-

age of one-dimensional features with multiple resource-constrained robots. We model

the environment as a graph and formalize line coverage as an optimization problem

using integer linear programs (ILP). The problem is NP-hard, and therefore we design

approximation algorithms with provable guarantees and heuristic algorithms for large

graphs, validating them extensively in simulations and experiments. Extensions to

the formulation and algorithms address large-scale environments and nonholonomic

robots that cannot make point turns. These formulations of the line coverage problem

lay the foundation for generalized coverage. Next, we show that we can transform

the area coverage problem into a line coverage problem using computational geometry

techniques and then generate routes using line coverage algorithms. Existing meth-

ods have significant inefficiencies due to their use of monotone polygons. Using the

iv

line coverage transformation allows polygons with obstacles that are not monotone

while minimizing the number of turns for the robots. The transformation enables

algorithmic advances in line coverage to be directly applied to area coverage. Finally,

we formulate the generalized coverage problem and solve it by transforming both

point and area features into line features in a unified framework. The algorithms

demonstrate significantly improved performance over state-of-the-art solutions while

additionally incorporating battery life constraints, nonholonomic robots, and mul-

tiple home locations for large-scale environments. We evaluate the performance of

the algorithms on several real-world datasets in simulations and experiments. The

algorithms are very fast and generate high-quality solutions for robotics applications.

v

ACKNOWLEDGMENTS

The contributions made in this dissertation were possible because of the support

from many people. The research stands on the shoulder of giants and is cradled by

several with whom I have been fortunate to interact.

First of all, I would like to express my sincere gratitude to my advisor, Prof. Srini-

vas Akella, for introducing me to arc routing problems and suggesting developing

algorithms for robotics applications. This idea has been fundamental to the devel-

opment of the dissertation. I am indebted to him for bolstering and nurturing me

to become a researcher. He spent countless hours participating in intellectual discus-

sions, ensuring correctness, and fostering in-depth understanding, all of which have

been instrumental in writing research papers and the dissertation. He has been a

very supportive, patient, and caring advisor, which immensely helped me carry out

my research.

I am very grateful to have David Vutetakis, Huitan Mao, Kalvik Jakkala, Sayantan

Datta, and Sterling McLeod as my labmates. I thank them for their invaluable discus-

sions and for providing great companionship throughout my life at UNC Charlotte.

I would like to thank the committee members, Prof. Erik Saule, Prof. Min Shin,

Prof. Andrew R. Willis, and Prof. Artur Wolek, for reviewing the dissertation and

providing valuable feedback, which has helped improve the research. I thank the

Computer Science department and the University of North Carolina at Charlotte

for providing a supportive and caring environment. I have been very fortunate to

be supported by the National Science Foundation (NSF), the Defense Advanced Re-

search Projects Agency (DARPA), the UNC system, and the UNC Charlotte GASP

scholarship.

I also want to thank my previous advisors, Prof. Sandipan Bandyopadhyay and

Prof. Shibendu Shekhar Roy, for giving me opportunities and laying the foundations

for becoming a researcher.

vi

Finally, I thank my wife, Madhyama Thakur, for being an amazing partner and

providing unwavering support, love, and care. Also, I thank my son, Agastya, for

bringing boundless joy and happiness into my life, thereby making the journey easier.

vii

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1: INTRODUCTION 1

1.1. Coverage Problems 1

1.2. Addressing Practical Challenges in Robotics 5

1.3. Dissertation Overview 6

1.4. Publications 9

CHAPTER 2: SINGLE ROBOT LINE COVERAGE 10

2.1. Introduction 11

2.2. Related Work 15

2.3. Problem Statement 20

2.4. Approximation Algorithms 35

2.5. Simulations and Experiments 49

2.6. Summary 57

CHAPTER 3: LINE COVERAGE WITH MULTIPLE ROBOTS 62

3.1. Introduction 63

3.2. Related Work 67

3.3. Problem Statement 72

3.4. Heuristic Algorithms for Line Coverage 78

3.5. Simulations and Experiments 92

3.6. Summary 101

viii

CHAPTER 4: AREA COVERAGE 105

4.1. Introduction 106

4.2. Related Work 108

4.3. Solution Approach for the Area Coverage Problem 112

4.4. Simulations and Experiments 122

4.5. Summary 127

CHAPTER 5: GENERALIZED COVERAGE 130

5.1. Introduction 131

5.2. Problem Statement 135

5.3. Solution Approach 136

5.4. Simulations on University Campuses 139

5.5. Summary 140

CHAPTER 6: CONCLUSION 144

6.1. Contributions 146

6.2. Future Work 149

REFERENCES 151

ix

LIST OF TABLES

TABLE 2.1: Flow Model (FM) with arc costs and capacities 33

TABLE 2.2: Operating conditions, computed coverage tour costs, and actual
flight times for experiments with a quadrotor UAV 57

TABLE 3.1: The line coverage problem with its special cases 69

TABLE 3.2: Comparison of computed and actual flight times 99

TABLE 3.3: Data of flights for the UNC Charlotte Road Network 100

TABLE 4.1: Cumulative results for the 25 indoor environments dataset 124

TABLE 5.1: Dataset for evaluation of the generalized coverage formulation 139

TABLE 5.2: Results for generalized coverage of the five campus dataset 141

x

LIST OF FIGURES

FIGURE 1.1: Types of features and the corresponding coverage problems 2

FIGURE 1.2: Example scenario for the generalized coverage problem 3

FIGURE 1.3: An overview of coverage problems 4

FIGURE 2.1: Example road network for single robot line coverage 11

FIGURE 2.2: A hierarchy of arc routing problems with a single vehicle/robot 16

FIGURE 2.3: Example optimal coverage tour 25

FIGURE 2.4: Two stages of assigning flow variables 29

FIGURE 2.5: Example min-cost digraph 31

FIGURE 2.6: Flow digraph and optimal solution for an example 36

FIGURE 2.7: Flowchart illustrating different cases of the single robot line cov-
erage problem 38

FIGURE 2.8: Example digraph computed by the SRLC-2Approx algorithm 44

FIGURE 2.9: Example coverage tour 47

FIGURE 2.10: Four of the fifty sample road networks with routes computed
using ILP formulation and the approximation algorithm 53

FIGURE 2.11: Cost comparison of the approximation algorithm with ILP for-
mulation 54

FIGURE 2.12: Computation time comparison of various algorithms 54

FIGURE 2.13: Computation time and cost comparisons using generalized ATSP
as subroutine 55

FIGURE 2.14: A network of lanes on a set of parking lots 58

FIGURE 2.15: Line coverage of a portion of the UNC Charlotte road network 59

FIGURE 2.16: Line coverage of lanes specified on a set of parking lots 60

xi

FIGURE 3.1: Line coverage of the UNC Charlotte road network using a team
of resource-constrained UAVs 64

FIGURE 3.2: Representation of a route 80

FIGURE 3.3: Four of eight permutations to merge two routes 83

FIGURE 3.4: Visualization of smooth turns for adjacent required edges 89

FIGURE 3.5: Modeling of deadheading paths for nonholonomic robots 90

FIGURE 3.6: Four sample road networks with ILP and MEM routes 94

FIGURE 3.7: Comparison of solutions generated using MEM and ILP 95

FIGURE 3.8: Computation time for the MEM algorithm 96

FIGURE 3.9: Variation of cost with capacities 97

FIGURE 3.10: Line coverage of a portion of the UNC Charlotte road network
with two routes and a single depot 99

FIGURE 3.11: Line coverage of a network of lanes in a set of parking lots using
nonholonomic robots and multiple depots 101

FIGURE 4.1: Area coverage with a team of capacity-constrained robots 107

FIGURE 4.2: An environment with four obstacles 113

FIGURE 4.3: Incomplete coverage using boustrophedon pattern 117

FIGURE 4.4: Area coverage of a large indoor environment 123

FIGURE 4.5: Comparison of total travel time cost 125

FIGURE 4.6: Average computation times 126

FIGURE 4.7: Area coverage by autonomous aerial robots on a real-world envi-
ronment 128

FIGURE 4.8: Area coverage using nonholonomic aerial robots 129

FIGURE 5.1: Input environment for generalized coverage of the UNC Charlotte
campus 132

xii

FIGURE 5.2: Overall approach for computing routes for generalized coverage 137

FIGURE 5.3: Generalized coverage of the UNC Greensboro main campus 141

FIGURE 5.4: Routes for generalized coverage of the UNC Charlotte campus 142

CHAPTER 1: INTRODUCTION

In recent years there have been significant advances in the field of robotics, particu-

larly research related to mobile robots—commonly categorized into uncrewed ground

vehicles (UGVs) and uncrewed aerial vehicles (UAVs). The rapid development of

small mobile robots has been the result of three main factors: (i) miniaturization

of electronic components such as sensors, batteries, and micro-processors, (ii) reduc-

tion in costs, and (iii) advances in controllability (Floreano and Wood, 2015; Chung

et al., 2018). These rapid developments have facilitated the use of mobile robots for a

wide range of coverage applications such as inspection and mapping of infrastructure,

precision agriculture, and disaster management.

The capabilities of autonomous robots are enhanced when they work as a team.

Multi-robot systems offer flexibility, sensor coverage, and redundancy, making them

attractive for large-scale applications. Moreover, robots have constraints on the op-

eration time due to a limited battery capacity. Having a team of mobile robots is

essential for ensuring large-scale tasks are completed within a reasonable time. How-

ever, in order to exploit the benefits of multi-robot systems, we have to address issues

such as the assignment of tasks, coordination of robots, and navigation (Wagner and

Choset, 2015).

1.1 Coverage Problems

In a coverage application, the robots are required to visit specified features in

the environment. With the view of mobile robots as autonomous vehicles carrying

sensors, the dissertation answers the following fundamental question: How should

the robots traverse the environment to collect data from all the relevant features?

2

Figure 1.1: Three types of features and the corresponding coverage problems:
(a) Point coverage is the coverage of zero-dimensional point features and is com-
monly solved using node routing algorithms. (b) Line coverage is the coverage of
one-dimensional line features and belongs to the broad class of arc routing problems.
(c) Area coverage is the coverage of two-dimensional regions, often solved using com-
putational geometry techniques. The dissertation unifies the simultaneous coverage
of all three types of features in a novel generalized coverage framework.

Environments may have features of interest that can be represented as points, lines

or curves, and areas, resulting in three independent types of coverage problems as

depicted in Figure 1.1.

• Point Coverage: Given a set of point features in an environment, point cov-

erage is the task of efficiently visiting all the points. The environment is often

modeled as a graph data structure, where the vertices of the graph represent the

point features, and the edges with costs represent the traversal between vertices.

Point coverage on graphs can be solved using node routing problems such as

the traveling salesperson problem (TSP) and the vehicle routing problem (e.g.,

Macharet and Campos, 2018). Applications such as inspection of oil wells in an

oil field using aerial robots can be efficiently modeled as point coverage.

• Line Coverage: The task of visiting a set of line features in an environment

is known as line coverage. The problem can model inspection of linear infras-

tructure such as road networks, oil and gas pipelines, and power lines. Line

coverage is related to arc routing problems commonly studied in the operations

research community (see the monograph by Corberán and Laporte, 2014).

3

• Area Coverage: The coverage of two-dimensional regions is formulated as the

area coverage problem. It is a classical problem in robotics and has been studied

widely for various applications such as vacuuming, infrastructure inspection,

and precision agriculture (see, e.g., Choset, 2001; Galceran and Carreras, 2013).

Figure 1.2: Generalized coverage: simultaneous coverage of all three types of features.
The roundabouts and traffic signals form the point features, the segments of the road
network form the line features, and the parking lots are the area features. The robots
must cover, using their sensors, all the features in the environment efficiently while
respecting practical constraints such as a limited battery life.

The robotics community has been actively researching the point coverage and the

area coverage problems. However, line coverage, i.e., coverage of one-dimensional fea-

tures, has not received sufficient attention compared to the other two problems. More-

over, these problems are generally addressed individually. Consider the application

of traffic analysis during an event: we may be interested in inspecting roundabouts

and traffic signals, road networks, and parking lots, as illustrated in Figure 1.2. Such

a task requires considering all three types of features concurrently. The dissertation

develops the theory to unify simultaneous coverage of all three types of features into a

novel generalized coverage framework, develops algorithms for efficient coverage using

4

teams of multiple mobile robots, and validates them in experiments. Figure 1.3 gives

an overview of various coverage problems.

Point Coverage

Node Routing
Problems

Line Coverage

Arc Routing
Problems

Area Coverage

Cell Decomposition
+

Routing

General Routing Problem

Generalized Coverage

Figure 1.3: An overview of coverage problems: Point coverage and line coverage are
related to node and arc routing problems, respectively. The general routing problem
is aimed at solving node and arc routing problems simultaneously. The area coverage
problem is typically solved using a cell decomposition method and a routing algorithm,
with sometimes an intermediate step of service track generation. Generalized coverage
unifies the three types of coverage problems in a single framework.

The generalized coverage problem can be defined as follows: Given a set of features

in an environment, which may be points, lines, curves, and areas, find a set of routes

for a team of robots that efficiently covers all the features while respecting practical

constraints on the robots.

The dissertation comprehensively studies the line coverage problem, which lays the

foundation for the generalized coverage problem. We develop algorithms to transform

the point and area features into line features and use line coverage algorithms to solve

generalized coverage efficiently. The algorithms substantially improve the state of

the art for coverage problems while addressing several practical aspects pertinent to

coverage problems.

5

1.2 Addressing Practical Challenges in Robotics

There are several practical challenges in deploying robots to real-world environ-

ments. Several approaches significantly abstract the coverage problems to formulate

them as standard routing problems. These yield an approximation to the real-world

scenario, and inaccuracies are addressed by post-processing the solutions. This dis-

sertation addresses the following practical aspects pertinent to coverage problems

directly in the formulations so that the algorithms provide high-quality solutions for

real-world applications.

• Cost models: When a robot traverses the environment, it incurs a cost such

as travel time. The objective of a coverage problem is to minimize the total

cost of the routes for the robots while ensuring all the features are visited.

A solver that gives high-quality solutions in terms of total cost in reasonable

computation time is preferred. The formulations presented in the dissertation

can handle arbitrary non-negative cost models, thereby generalizing to a wide

range of optimization criteria.

• Resource constraints: Mobile robots can be severely limited in terms of the

resources available to them. Aerial robots, in particular, have a short opera-

tion time due to low battery capacity and high consumption of energy. It is,

therefore, important that route planning algorithms take resource constraints

into account to ensure the safe recovery of the robots. As robots traverse the

environment, they incur demands on the resources available to them, and the

total demand of traversing a planned route for a robot should be less than its

resource constraint. Such a limit on a resource is also referred to as the capacity

of a robot.

• Two travel modes: A unique characteristic of our formulation is that we allow

two modes to travel for the robots—servicing and deadheading. A robot is said

6

to be servicing an environment feature when it performs task-specific actions

such as collecting sensor data; otherwise, it is deadheading. Our formulation

models different cost functions and resource demands for the two modes of travel

for the robots. These modes enable the algorithms to optimize the operation

time, conserve energy, and reduce the amount of sensor data.

• Asymmetry in costs and demands: In many robotics applications, the cost

of travel and the resource demands are direction-dependent. For example, a

ground robot traveling uphill can take longer and consume more energy than

traveling downhill. Similarly, the costs and the resource demands of aerial

robots may depend on the direction of travel due to wind conditions. Hence, we

consider asymmetric cost and demand functions for servicing and deadheading.

Such asymmetric functions can also model one-way streets for ground robots.

• Turning costs and nonholonomic constraints: Sharp turns can be very

expensive for robots as they need to slow down, take the turn, and accelerate

again. Similarly, nonholonomic robots such as fixed-wing UAVs cannot make

point turns. It is imperative to account for the turning costs and nonholonomic

constraints to ensure efficient and feasible navigation of the robots.

• Multiple depots: A depot is a location in the environment from where the

robots start and end their routes. When the environment is vast, it may not

be possible to service all the features from a single depot location. In such

situations, it is imperative to have a multi-depot formulation where the robots

have the flexibility to start and end their routes from one of several depots to

optimize the routes.

1.3 Dissertation Overview

The dissertation next presents two chapters dedicated to the line coverage problem.

We study single robot line coverage in Chapter 2, and line coverage with multiple

7

robots in Chapter 3. These chapters form the foundation of generalized coverage.

Area coverage is considered in Chapter 4, and generalized coverage is studied in

Chapter 5.

Single Robot Line Coverage (Chapter 2): We first consider the coverage of

line features using a single robot. Given a set of line features, the single robot line

coverage problem is to find a route for a robot to service each of the features exactly

once. We pose line coverage as an optimization problem on graphs and formulate an

integer linear program (ILP), along with a proof of correctness. The ILP formulation

gives an optimal solution when such a solution exists. The problem is NP-hard, and

thus, we develop approximation algorithms that have a polynomial-time computation

complexity with guarantees on the quality of the solution. The main algorithm par-

titions the problem into three cases based on the structure of the required graph, i.e.,

the graph induced by the line features. The approximation algorithms are designed

for the three cases using a network-flow formulation.

Line Coverage with Multiple Robots (Chapter 3): We formulate the line cov-

erage with multiple resource-constrained robots. The task is to find a set of routes

for a team of robots to service a given set of line features while respecting the re-

source constraints of the robots. We extend the ILP formulation developed for single

robot line coverage to multiple resource-constrained robots. We develop a construc-

tive heuristic algorithm, Merge-Embed-Merge (MEM), that has a polynomial-time

computation complexity and gives high-quality solutions. We further formulate the

multi-depot version for large graphs where a route can start and end at any of the

depots. Modifications are made to the MEM algorithm to handle turning costs and

nonholonomic constraints.

Area Coverage (Chapter 4): The area coverage problem is to service a given

set of two-dimensional regions using a team of resource-constrained robots. We in-

corporate the sensor field-of-view of the robots in the problem. The formulation for

8

solving the area coverage problem consists primarily of three components: (1) Cell

decomposition of the environment, (2) Service track generation for individual cells,

and (3) Routing to traverse the service tracks. The central idea is to transform the

area coverage problem into a line coverage problem with multiple robots. The service

tracks form the line features that the robots must service, and algorithms for the line

coverage problem are used to generate routes for the team of robots. Our formulation

facilitates a significant generalization of the cell decomposition component to reduce

the number of turns the robots must take. In particular, the cells are no longer

required to be monotone polygons (Berg et al., 2008) with respect to the service di-

rection. Furthermore, allowing cells to be non-monotone polygons with holes enables

the additional merging of adjacent cells with the same service directions. Merging

adjacent cells reduces the number of service tracks by avoiding overlapping sensor

coverage regions at the common boundary of a pair of adjacent cells.

Generalized Coverage (Chapter 5): Finally, we unify the coverage of the three

different types of features in the generalized coverage framework. We elucidate the

transformation of point features to line features. With the transformation of point

and area features to line features, the generalized coverage problem is reduced to the

line coverage problem with multiple resource-constrained robots. The transformation

allows us to incorporate various practical aspects of robotics into the problem, such

as two travel modes, asymmetric costs and demands, turning costs and nonholonomic

constraints, and multiple depot locations.

A strong motivation for the coverage problems is the application to real-world

applications. Hence, we extensively evaluate the algorithms developed in the disser-

tation in simulations and experiments in real environments. A dataset1 of 50 road

networks from the most populous cities in the world was generated by extracting data
1The dataset is available at:

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-dataset

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-dataset

9

from OpenStreetMap2. The road networks represent environments with line features,

and they provide widely varying graph structures for a thorough evaluation of the

algorithms. We evaluate the algorithms for area coverage on two existing datasets

for inspection using aerial robots and vacuuming using ground robots. We perform

several experiments on the UNC Charlotte campus using commercial UAVs.

1.4 Publications

Peer-reviewed publications:

• (Agarwal and Akella, 2020). Line Coverage with Multiple Robots. IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 3284–3254,

Paris, France.

• (Agarwal and Akella, 2021). Approximation Algorithms for the Single Robot

Line Coverage Problem. In LaValle, S. M., Lin, M., Ojala, T., Shell, D., and

Yu, J., editors, Algorithmic Foundations of Robotics XIV, pages 534–550, Cham,

Germany. Springer International Publishing.

• (Agarwal and Akella, 2022b). Area CoverageWith Multiple Capacity-Constrained

Robots. IEEE Robotics and Automation Letters, 7(2):3734–3741. Selected for

presentation at the IEEE International Conference on Robotics and Automation

(ICRA), May 2022.

2https://www.openstreetmap.org/

https://doi.org/10.1109/ICRA40945.2020.9197292
https://doi.org/10.1109/LRA.2022.3146952
https://doi.org/10.1109/LRA.2022.3146952
https://www.openstreetmap.org/

CHAPTER 2: SINGLE ROBOT LINE COVERAGE

Line coverage is the task of servicing a set of one-dimensional features in an en-

vironment. It is important for the inspection of linear infrastructure such as road

networks, power lines, and oil and gas pipelines. This chapter addresses the single

robot line coverage problem for uncrewed aerial and ground vehicles by modeling it

as an optimization problem on a graph. We present an integer linear programming

formulation with proofs of correctness. Using the minimum cost flow problem, we

develop approximation algorithms with guarantees on the solution quality. The main

algorithm partitions the problem into three cases based on the structure of the required

graph, i.e., the graph induced by the features that require servicing. We present an

optimal algorithm for Eulerian required graphs and a 2-approximation algorithm for

connected required graphs. For the general case of a required graph with C connected

components, the approximation algorithm uses the asymmetric traveling salesperson

problem (ATSP). We give a 3-approximation algorithm when C ∈ O(log(n)), where

n is the number of vertices in the input graph. The approximation factor is α(C) + 2

in general, using an α(C)-approximation algorithm for ATSP on a graph with C ver-

tices. We evaluate our algorithms on road networks from the 50 most populous cities

in the world. The algorithms, augmented with improvement heuristics, run within

3 s and generate solutions that are within 10% of the optimum. We experimentally

demonstrate our algorithms with aerial robots on the UNC Charlotte campus road

network.

11

2.1 Introduction

(a) Input Road Network (b) Line Coverage Route (c) Orthomosaic

Figure 2.1: Line coverage of a road network by an autonomous UAV: (a) A region
of the UNC Charlotte campus road network; blue lines show required edges to be
serviced. Non-required edges, not shown, are straight lines between pairs of vertices.
The network data was extracted using OpenStreetMap. (b) An optimal coverage tour
to cover the road network is shown; dashed segments indicate deadheading travel.
(c) An orthomosaic map of the road network generated from photos taken by the
UAV along the required edges of the coverage tour.

Line coverage is the task of servicing linear environment features using sensors or

tools mounted on a robot. The features to be serviced are modeled as one-dimensional

segments (or curves); all points along the segments must be visited. Consider an

application scenario, occurring due to a natural disaster such as flooding, in which an

uncrewed aerial vehicle (UAV) with cameras is deployed for assessment of connectivity

of a road network for emergency services. The UAV must traverse the line segments

corresponding to the road network and use its cameras to capture images. It may

also travel at higher speeds from one point to another while not capturing images.

The following question then arises: How should a tour for the robot be planned such

that it traverses each road network segment and minimizes the flight time? Figure 2.1

depicts such a scenario with an optimal tour for a UAV and an orthomosaic generated

from the images collected during the flight. Power lines and oil and gas pipelines have

similar linear infrastructure that requires frequent inspection. Additional applications

arise in perimeter inspection and surveillance, traffic analysis of road networks, and

12

welding operations. Line coverage algorithms can also be used as a subroutine for

routing in area coverage problems where a 2D region is decomposed into line segments.

Line coverage is closely related to arc routing problems (ARPs) studied in the op-

erations research community (Corberán and Laporte, 2014). ARPs have been studied

for snow plowing, spraying salt, and cleaning road networks (Corberán et al., 2021).

ARPs and their algorithms are designed specifically for human-operated vehicles. The

above tasks can potentially be automated with uncrewed ground vehicles (UGVs).

However, line coverage has received limited attention in the robotics community. In

this chapter, we design algorithms for line coverage for autonomous systems, appli-

cable to both UAVs and UGVs.

The line coverage problem, modeled using a graph, has two defining attributes:

(1) The edges in the graph are classified as required and non-required, and (2) Robots

have two modes of travel—servicing and deadheading. Required edges correspond to

the linear features to be covered, and the non-required edges can be used by a robot to

travel from one vertex to another to reduce cost. The vertices in the graph represent

the endpoints of the edges. The robot is said to be servicing a required edge when

it performs task-specific actions such as collecting sensor data. Each required edge

needs to be serviced exactly once. The robot may also traverse an edge without

performing servicing tasks to optimize the travel time, conserve energy, or reduce the

amount of sensor data. This is known as deadheading, and both types of edges may

be used any number of times for this purpose.

There is a service cost and a deadhead cost (e.g., travel time) associated with each

required edge, and they are incurred each time an edge is serviced or deadheaded,

respectively. Only the deadhead cost is associated with the non-required edges. The

sum of the service and deadhead costs is to be minimized. As task-related actions

are performed only when servicing a required edge, and not while deadheading, the

service costs are considered to be more than or equal to the deadhead costs. For

13

example, with travel time as the cost model, a UAV servicing an edge by recording

images may travel slower than when deadheading to avoid motion blur. In contrast,

the service and deadhead costs are usually assumed to be identical for the required

edges in standard ARPs, and therefore, the line coverage problem generalizes the

standard problems.

In many robotics applications, the cost of travel is direction-dependent. For ex-

ample, for ground robots, the cost of traveling uphill can be significantly higher than

that of traveling downhill. Similarly, for UAVs, the cost of an edge may differ along

the two directions due to wind conditions. Hence, we consider the graph to have

asymmetric edge costs for both servicing and deadheading. Asymmetric edges can

also model one-way streets for ground robots.

The single robot line coverage problem is the problem of finding a coverage tour

that minimizes the total travel cost while ensuring that each required edge is serviced

exactly once. The practical benefits of our line coverage approach are: (1) The

algorithms ensure that the required edges are covered efficiently by optimizing the

total cost of the coverage tour, e.g., operation time. (2) In contrast to using area

coverage, only the relevant features are inspected, thus reducing the inspection time,

the amount of sensor data, and the time for data analysis. (3) Line coverage allows

distinct costs for servicing and deadheading, and permits asymmetric costs.

The single robot line coverage problem is a generalization of the rural postman

problem (RPP), introduced by Orloff (1974). The NP-hardness of the RPP, shown

by Lenstra and Kan (1976), implies the single robot line coverage problem is NP-hard.

This makes it imperative to develop approximation algorithms.

Contributions: In this chapter, we elucidate the single robot line coverage problem

and develop approximation algorithms. We analyze the problem in stages—going

from a simpler problem to the most general version. The problems are based on the

structure of the required graph, i.e., the graph induced by only the required edges.

14

The contributions of the chapter are:

1. We pose the single robot line coverage problem as an optimization problem

on graphs and develop an integer linear programming (ILP) formulation that

gives an optimal solution if a solution exists. We provide formal proofs for the

correctness of the formulation.

2. We develop a linear relaxation to the ILP formulation and model it using a

minimum cost flow problem. The model is used to design an optimal algorithm

for graphs with Eulerian required graphs. A 2-approximation algorithm is then

developed for connected required graphs.

3. An α(C) + 2 approximation algorithm is presented for the general case of a

required graph with multiple connected components, where C is the number of

connected components, and α(C) is the approximation factor for an algorithm

for the asymmetric traveling salesperson problem. Proofs for the approximation

guarantee are provided for all the algorithms.

4. We publish a dataset1 consisting of road networks of the 50 most populous

cities in the world and present simulation results showing that the algorithms

compute solutions within 10% of the optimum. The algorithms find solutions

to the instances within 3 s and are sufficiently fast for robotics applications.

Experimental validation of the algorithms is performed. We will also provide

an open-source implementation2 of our algorithms.

This chapter develops a thorough theoretical analysis of the formulations and the

algorithms, provides extensive simulation results, and validates the algorithms in

experiments with UAVs. In particular, formal proofs for the correctness of the ILP
1https://github.com/AgarwalSaurav/LineCoverage-dataset
2The source code is available at:

https://github.com/AgarwalSaurav/LineCoverage-library

https://github.com/AgarwalSaurav/LineCoverage-dataset
https://github.com/AgarwalSaurav/LineCoverage-library

15

formulation are provided. Detailed theoretical analysis of the problem, with a running

example, furnishes insights into the structure of the problem that has been instrumen-

tal in developing the algorithms. Further improvements to the algorithms are made

using heuristic subroutines. These lead to an efficient and fast implementation that

we demonstrate on a new dataset of road networks. We additionally demonstrate the

application of our algorithms through two experiments on a campus road network.

Organization: The rest of the chapter is organized as follows. The related work is

discussed in Section 2.2. The single robot line coverage problem is formally described

in Section 2.3. The section provides the ILP formulation and the linear relaxation

along with formal proofs. The approximation algorithms are developed in Section 2.4.

The simulations and experiments are discussed in Section 2.5. Section 2.6 summarizes

the chapter.

2.2 Related Work

The line coverage problem belongs to the broad class of arc routing problems

(ARPs). A hierarchy of standard arc routing problems and the single robot line

coverage problem is shown in Figure 2.2. The ARPs are usually applied to trans-

portation problems in which servicing is related to tasks such as delivery and pick up

of goods (Corberán and Laporte, 2014). Hence, the travel distances are used as costs

and often have the same value whether the edge is serviced or deadheaded. Separate

and asymmetric service costs are typically not considered.

Arc Routing Problems for a Single Vehicle: The Chinese postman prob-

lem (CPP) is to find an optimal tour such that every edge in a given undirected

and connected graph is traversed at least once. Edmonds and Johnson (1973) used

matching and network flows to solve the CPP on undirected, directed, and Eule-

rian mixed graphs. They also presented an approximation algorithm for the CPP

on mixed graphs that are not necessarily Eulerian. Frederickson (1979) presented a

5/3-approximation algorithm for the CPP on mixed graphs by using a combination

16

Single Robot Line Coverage

Asymmetric Rural
Postman Problem

Asymmetric
Postman Problem

Chinese
Postman Problem

Rural
Postman Problem

Figure 2.2: A hierarchy of arc routing problems with a single vehicle/robot. An
arrow from problem A to problem B indicates B is a special case of A. The single
robot line coverage problem generalizes all the other depicted arc routing problems.
Postman problems on asymmetric graphs are also termed windy, for example, the
windy postman problem (WPP) and the windy rural postman problem.

of two approximation algorithms. The approximation factor was later improved to

3/2 by Raghavachari and Veerasamy (1999a).

The asymmetric postman problem, also known as the windy postman problem

(WPP), is the CPP with asymmetric edge costs. This problem is NP-hard, as shown

by Guan (1984). Win (1989) solved the WPP for Eulerian graphs in polynomial time

by modeling it as a minimum cost flow problem. Win also designed a 2-approximation

algorithm for WPP on general graphs using matching (to make the graph Eulerian)

and minimum cost network flow. Raghavachari and Veerasamy (1999b) gave a 3/2-

approximation for the WPP. The CPP and the WPP do not allow non-required edges

in the graph.

When the edges to be serviced are a subset of the edges in the graph, we have the

rural postman problem (RPP). It was proved that the RPP is NP-hard by Lenstra and

Kan (1976). For the RPP, Frederickson (1979) gave a 3/2-approximation algorithm

similar to the algorithm by Christofides (1976) for the metric traveling salesperson

problem (TSP). The asymmetric RPP considers asymmetric travel costs. This prob-

lem is also referred to as the windy rural postman problem. Bevern et al. (2017)

17

showed that if the n-vertex asymmetric traveling salesperson problem (ATSP), sub-

ject to the triangle inequality, is α(n)-approximable in t(n) time, then n-vertex RPP

on an asymmetric and mixed graph is (α(C) + 3)-approximable in O(t(C) + n3 log n)

time, where C is the number of weakly connected components in the subgraph induced

by required arcs and edges. The single robot line coverage problem is closely related

to the asymmetric RPP. However, in the asymmetric RPP the costs of deadheading

and servicing a required edge are the same. Any instance of the asymmetric RPP can

be converted to that of the line coverage problem by setting the cost of deadheading

a required edge to the cost of the edge. The algorithms presented in this chapter are

applicable for the asymmetric RPP. The guarantee on the approximation factor for

our algorithms is an improvement over the previously best-known algorithms given

by Bevern et al. (2017) for the asymmetric RPP.

Exact and metaheuristic methods have been proposed for the ARPs, and they are

covered in the survey paper by Corberán and Prins (2010) and the monograph by

Corberán and Laporte (2014). Exact methods include branch-and-cut with specific

cutting plane procedures, branch-and-price, and column generation. One of the key

techniques for these algorithms is to incorporate additional constraints that tighten

the feasible space of the linear relaxation. Metaheuristic algorithms, such as scatter

search, tabu search, and variable neighborhood descent, have also been used to solve

the ARPs. However, these algorithms are not particularly suitable for robotics appli-

cations as they require significant computational resources. Moreover, they typically

require a good initial solution as an additional input in order to upper bound the

optimal cost of the instance. The algorithms presented in this chapter can be used

to provide such an initial solution with a guaranteed upper bound provided by the

approximation factor.

Asymmetric Traveling Salesperson Problem (ATSP): A dynamic program-

ming algorithm that runs in O(n22n) computation time, where n is the number of

18

vertices in the input graph, was given by Held and Karp (1962) and Bellman (1962).

The algorithm gives optimal solutions and can efficiently solve small instances. Svens-

son et al. (2018) were the first to present a constant-factor approximation algorithm

for the ATSP with the triangle inequality. Traub and Vygen (2020) improved the

approximation ratio to 22 + ε, ε > 0 for the ATSP. These results are relevant for the

theoretical guarantees on the approximation factor of our algorithms.

Line Coverage in Robotics: Line coverage has been used in robotics for the

inspection of road networks and object boundaries. Dille and Singh (2013) model the

problem of road network coverage through tessellation of the road network by circles

corresponding to the sensor footprint and finding a subset of the circular regions that

covers the entire road network. Algorithms for node routing problems, such as the

TSP and multiple TSP, are then used to find tours for the robots. A mixed integer

linear programming formulation and a heuristic algorithm have been proposed for

coverage of road networks by Oh et al. (2014) using Dubins curves with Euclidean

distances as costs. The nearest insertion heuristic method, originally designed for the

TSP, is used to find a sequence of edges to be visited while incorporating Dubins

curves. The sequence is thereafter split across a team of robots using an Auction

algorithm. Easton and Burdick (2005) proposed a constructive heuristic algorithm

for the RPP with k vehicles for coverage of 2D object boundaries. The algorithm

first groups the required edges into k clusters and computes a representative edge

for each cluster. Additional edges are added to each cluster to ensure connectivity.

Tours are computed for each of the clusters independently using the polynomial-time

CPP algorithm proposed by Edmonds and Johnson (1973). Williams and Burdick

(2006) developed algorithms for boundary inspection while considering revision to

the path plan for the robots to account for the changes in the environment and in

the robot team sizes. Xu and Stentz (2010) use CPP and RPP formulations for line

coverage and consider the case where the prior map information may be incomplete.

19

They propose heuristic algorithms that can regenerate solutions rapidly when new

map information is incorporated with the prior map. Xu and Stentz (2011) extended

this work to multiple robots using k-means clustering to decompose networks into

smaller components, similar to the algorithm presented by Easton and Burdick (2005).

Campbell et al. (2018) presented application of ARPs using a single UAV, where

they allow the UAV to service a required edge in parts. The UAV may service a

part of a required edge, move to some other edge, and come back later to service

the remaining parts of the required edge. They convert the problem into standard

ARPs by discretizing each required edge. The costs are considered to be Euclidean

distances. Our algorithms are directly applicable to the discretized version of this

problem.

These papers illustrate various applications of the line coverage problem. However,

they do not consider asymmetric edge costs or distinct service and deadhead costs.

Moreover, the heuristic algorithms do not provide theoretical guarantees on the qual-

ity of the solutions. The formulation and the algorithms presented in this chapter

address these shortcomings of the prior work.

Arc Routing Problems in Area Coverage: Arc routing problems have been

used in robotics primarily as a subroutine in area coverage problems to generate

efficient routes for a robot. Arkin et al. (2000) use an algorithm similar to the one

given by Edmonds and Johnson (1973) for the CPP to find routes for a robot for the

milling problem, a variant of the area coverage problem wherein the tool is constrained

within the workspace. Mannadiar and Rekleitis (2010) formulate the area to be

covered in terms of edges in a Reeb graph. Optimal solutions to the CPP were used

to compute an Euler tour for coverage of available free space while minimizing the path

length. Karapetyan et al. (2017) use the CPP formulation for k robots to find routes

for multiple robots on a Reeb graph. They used the CPP to compute a large Euler

tour and then break it into smaller tours using the algorithm given by Frederickson

20

et al. (1976). Our algorithms for the single robot line coverage problem are directly

applicable to the above techniques to generate routes for the area coverage problem.

2.3 Problem Statement

We now model the single robot line coverage problem as an optimization problem

on a graph. We are given a connected undirected graph G = (V,E,Er), where V is

the set of vertices, E is the set of edges, and Er ⊆ E is the set of required edges. The

set E can contain parallel edges between two vertices, i.e., we allow for G to be a

multigraph. The service and deadhead costs are given as inputs along with the graph.

The single robot line coverage problem is to find a coverage tour that minimizes the

total cost of travel on the graph, such that each of the required edges in Er is serviced

exactly once.

For each edge e in E we associate two directional arcs ae and āe that are opposite in

direction to one another. If a robot services a required edge e ∈ Er in the direction ae,

then a service cost cs(ae) is incurred; similarly for the direction āe. If a robot traverses

an edge without servicing it, the robot is said to be deadheading; for example, this

occurs when a robot is traveling from a vertex of an edge to that of another edge

using a non-required edge. Both required and non-required edges may be deadheaded.

Deadhead costs for an edge e are denoted by cd(ae) and cd(āe). We use cs(A) and

cd(A) to denote the corresponding sums of the service and deadhead costs for a set

of arcs A. We denote by Ā the set of arcs oppositely directed to the arcs in A.

We consider the edge costs, for both servicing and deadheading, to be direction

dependent, i.e., the graph is asymmetric. For example, cs(ae) may differ from cs(āe).

The service and deadhead costs can be arbitrary positive numbers, with the constraint

that the service cost of an edge is no less than the deadhead cost in the same direction.

The costs, such as travel time, appear in the objective function of the problem. Since

we allow edge costs to be asymmetric, the model allows both directed and mixed

graphs. This can be achieved by setting the cost in the direction opposite to an arc

21

to a very large constant. We also allow multiple copies of the edges and can model

repeated servicing of segments.

2.3.1 Preliminaries

Let G = (V,E,Er) be a connected undirected graph for the line coverage problem,

such that Er ⊆ E. The subgraph Gr = (Vr, Er) induced by the set of required edges

Er is called the required graph of G; Vr ⊆ V is the set of vertices that have at least one

edge in Er incident on them. The set of non-required edges is denoted by En = E\Er.

We define the set of all arcs to be A =
⋃
{ae, āe}, ∀e ∈ E. Similarly, Ar is defined

for the set of required edges. If an arc a represents the travel direction from vertex

u to vertex v, then the vertices u and v are called the tail t(a) and head h(a) of

a, respectively. We denote by H(A, v) all the arcs a ∈ A that have v as the head.

Similarly, T (A, v) is defined for the tail. The degree of a vertex v ∈ V is the number

of edges incident on v. A walk in a graph G is a non-empty alternating sequence

v1e1v2e2 . . . ekvk+1 of vertices in V and edges in E such that the tail of ei is vi and

head of ei is vi+1 for all 1 ≤ i ≤ k. A closed walk is a walk with the same start and

end vertex, i.e., v1 = vk+1. An Euler tour is a closed walk such that every edge in the

graph is traversed exactly once. A graph that has an Euler tour is called Eulerian.

It is well established that an undirected graph is Eulerian if and only if every vertex

has an even degree, see e.g., Papadimitriou and Steiglitz (1982).

Let D = (V,A) be a directed graph (digraph) with V as the set of vertices and A as

the set of (directed) arcs. The digraph is strongly connected if there exists a directed

path from any vertex in V to any other vertex in V . Analogous to the undirected

graph, T (A, v) and H(A, v) are defined for the arc set A and a vertex v ∈ V . The

indegree of a vertex v ∈ V , denoted by indeg(v), is the number of arcs entering

the vertex v. Similarly, the outdegree of a vertex v ∈ V , denoted by outdeg(v), is

the number of arcs going out of the vertex v. A digraph is Eulerian if and only if

the graph is strongly connected and balanced, i.e., indeg(v) = outdeg(v),∀v ∈ V .

22

Imbalance I(A, v) for the arc set A at a vertex v is given by outdeg(v)− indeg(v) =

|T (A, v)| − |H(A, v)|. Analogous to the undirected graph, a diwalk is a sequence

v1a1v2a2 . . . akvk+1 of vertices and arcs in a digraph D = (V,A) such that the tail

of ai is vi and head of ai is vi+1. A closed diwalk is a walk with the same start

and end vertices. An Eulerian tour on an Eulerian digraph is a closed diwalk such

that each arc is traversed exactly once. An Euler tour can be constructed from an

Eulerian graph (or digraph) in O(|A|) computational time, see e.g., Papadimitriou

and Steiglitz (1982).

Definition 2.3.1. Coverage Tour:

Given a connected graph G = (V,E,Er), a coverage tour is a closed walk in the

graph G such that each required edge e ∈ Er is serviced exactly once.

Note that in a coverage tour, a required or a non-required edge may be used multiple

times for deadheading. We define the following variables:

sae , sāe ∈ {0, 1}, and sae + sāe = 1 ∀e ∈ Er

dae , dāe ∈ N ∪ {0} ∀e ∈ E
(2.1)

The variables sae and sāe represent the two opposite directions of servicing the edge

e; exactly one of the two can be equal to 1 for a valid coverage tour. The variables dae

and dāe represent the number of times an edge is deadheaded in the corresponding

direction. The cost of a coverage tour τ is to be minimized and is given by:

c(τ) =
∑
e∈Er

[
cs(ae)sae + cs(āe)sāe

]
+
∑
e∈E

[
cd(ae)dae + cd(āe)dāe

]
(2.2)

For a valid coverage tour τ we can create an Eulerian digraph De = (V,Ae) from

these variables by adding each arc as many times as the value of its corresponding

variable. The digraph will have the same total cost as the coverage tour, i.e., c(τ) =

c(Ae). A closed diwalk can be obtained from De in O(|Ae|) time. We will often use

23

this equivalent Eulerian digraph representation of a coverage tour in the rest of the

chapter.

Definition 2.3.2. O-Notation: Cormen et al. (2009)

For a given function g(n), we denote by O(g(n)) the set of functions

O(g(n)) =
{
f(n) | there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0

}
.

Definition 2.3.3. Approximation Algorithm: Williamson and Shmoys (2011)

An α-approximation algorithm for an optimization problem is a polynomial-time

algorithm that for all instances of the problem produces a solution whose value is

within a factor of α of the value of an optimal solution.

In the following subsection, we present an integer linear programming (ILP) for-

mulation for the single robot line coverage problem. The ILP formulation allows us

to formally define the problem in the form of an objective and a set of constraints.

The ILP formulation provides an optimal solution, if one exists. In subsequent sub-

sections, we provide a linear programming (LP) relaxation of the ILP formulation

and relate the LP to a network flow model. The network flow model forms the basis

of our approximation algorithms in Section 2.4.

2.3.2 ILP Formulation

The standard ILP formulations for arc routing problems involve an exponential

number of constraints for ensuring connectivity (Corberán and Laporte, 2014) and

are usually difficult to incorporate into standard ILP solvers. Therefore, we adopt

the formulation presented by Gouveia et al. (2010) as later specialized by Agarwal

and Akella (2020).

SRLC-ILP (single robot line coverage ILP formulation)

24

Minimize:

c(τ) =
∑
e∈Er

[
cs(ae)sae + cs(āe)sāe

]
+
∑
e∈E

[
cd(ae)dae + cd(āe)dāe

]
(2.3)

subject to:

∑
a1∈H(Ar,v)

sa1 +
∑

b1∈H(A,v)

db1 −
∑

a2∈T (Ar,v)

sa2 −
∑

b2∈T (A,v)

db2 = 0, ∀v ∈ V (2.4)

sae + sāe = 1, ∀e ∈ Er (2.5)

∑
a∈H(A,v)

za −
∑

a∈T (A,v)

za =
∑

a∈H(Ar,v)

sa, ∀v ∈ V \ {v0} (2.6)

∑
a∈T (A,v0)

za =
∑
a∈Ar

sa = |Er| (2.7)

za ≤ |Er|(da + sa), ∀a ∈ Ar (2.8)

za ≤ |Er|da, ∀a ∈ A \ Ar (2.9)

sae , sāe ∈ {0, 1}, ∀e ∈ Er (2.10)

dae , dāe ∈ N ∪ {0}, ∀e ∈ E (2.11)

zae , zāe ∈ N ∪ {0}, ∀e ∈ E (2.12)

The objective function (2.3) minimizes the cost of a coverage tour. The balance (or

symmetry) constraints (2.4) state that for each vertex, the number of arc traversals

into a vertex should be equal to the number of arc traversals out of the vertex. This

ensures that the resulting digraph has an Euler tour. The servicing constraints (2.5)

ensure that each required edge is serviced exactly once and in only one direction.

Constraints (2.6)–(2.9) are connectivity constraints, with v0 an arbitrary vertex in

Vr. These are a type of generalized flow constraints. The vertex v0, also referred

to as the depot, is a source of a flow equal to the number of required edges |Er| as

25

given by constraints (2.7). Constraints (2.6) states that a flow of one unit is absorbed

each time a required edge is serviced. Building on the analysis by Gouveia et al.

(2010), we show that these constraints ensure that the solution digraph is connected

in Lemma 1. The variables za represent the flow across the edges and are illustrated

further in Theorem 2. The integrality constraints, (2.10)–(2.12) ensure integrality of

the variables. An input graph with its optimal tour is shown in Figure 2.3.

4 8
4

8

4 8

4

8

4 8

4

8 4

84

8 4

8

4 8 2 4

4

4

4

4

4 44 4

4
2

2

11

(a) Input graph G = (V,E,Er)
(b) Optimal coverage tour

represented as an Eulerian digraph

Figure 2.3: In the input graph (a), the blue solid lines and the green dashed lines
represent required and non-required edges, respectively. The service costs in the two
directions are shown in the input graph—the costs are closer to the head of the
corresponding arc. Deadhead costs for the required edges are here half of the service
costs in the respective directions. Non-required edges are set to have a unit cost in
both directions. Deadheading costs are not shown. In the optimal coverage tour (b),
the servicing arcs are shown as blue solid arcs, while the deadheadings are shown as
green dashed arcs. The numbers in Figure (b) indicate the costs of the arcs in the
final solution. The cost of the coverage tour is 42.

We now prove the correctness of the ILP formulation by showing that the formu-

lation gives an optimal coverage tour (Theorem 2). There are two components to

the proof: (1) The feasible solution space of the SRLC-ILP formulation consists of

Eulerian digraphs that correspond to feasible coverage tours (Lemma 1), and (2) Any

feasible coverage tour has an equivalent feasible solution to the ILP (part of Theo-

rem 2). Using the above two statements and the fact that the ILP formulation is

26

an optimization problem with the cost of the coverage tour as the objective func-

tion, it follows that the optimal solution to the formulation has an equivalent optimal

coverage tour.

Lemma 1. Given a connected graph G = (V,E,Er), a solution to the SRLC-ILP

formulation has an equivalent Eulerian digraph.

Proof. A digraph is Eulerian if (1) each vertex in the digraph is balanced, and (2)

the digraph is strongly connected. Given a solution to the SRLC-ILP formulation,

we create a digraph De = (V,Ae) with the same vertex set as the input graph and an

arc set A with da + sa copies of each arc a in Ar and da copies for each arc in A\Ar.

Note that the digraph De satisfies indeg = outdeg for each vertex because of balance

constraints (2.4).

It remains to show that the digraph De is strongly connected. In particular, we

will show that any arc a ∈ Ae with sa > 0 and/or da > 0 is connected to an arbitrary

vertex v0 ∈ Vr, where Vr is the vertex set corresponding to the required graph. The

vertex v0 must be traversed by a feasible solution of the SRLC-ILP formulation as

the vertex v0 is connected to at least one of the required edges in Er.

For our proof by contradiction, assume that De is not connected, i.e., it has more

than one connected component. This means that there is a subset of arcs, with

nonzero sa and/or da, forming a smaller closed walk that is not connected to the

vertex v0. We will assume that this closed walk contains at least one arc that is

being serviced, for otherwise, it is a closed walk of deadheading arcs only and can be

eliminated without an increase in cost. Let S ⊂ V be the set of vertices corresponding

to this closed walk such that v0 /∈ S. Define S̄ = V \ S. Note that v0 ∈ S̄.

Summing the constraints (2.6) over all the vertices in S gives the following equation:

∑
v∈S

 ∑
a∈H(A,v)

za −
∑

a∈T (A,v)

za

 =
∑
v∈S

 ∑
a∈H(Ar,v)

sa

 (2.13)

27

For the purposes of this proof define the following for any pair of sets F,G ⊆ V :

δ(F,G) = {a ∈ Ae | t(a) ∈ F, h(a) ∈ G}

R(F,G) =
∑

a∈δ(F,G)

sa, N(F,G) =
∑

a∈δ(F,G)

da

Z(F,G) =
∑

a∈δ(F,G)

za

(2.14)

Then (2.13) can be written as:

Z(S̄, S)− Z(S, S̄) = R(S, S) +R(S̄, S) (2.15)

Note that R(S, S) > 0 and R(S̄, S) = 0 from our assumption for contradiction. The

term Z(S, S̄) is non-negative. This implies that Z(S̄, S) is strictly positive.

Summing the constraints (2.8) and (2.9) over all arcs a ∈ δ(S̄, S) gives:

Z(S̄, S) ≤ |Er|
(
R(S̄, S) +N(S̄, S)

)
(2.16)

Since Z(S̄, S) > 0 and R(S̄, S) = 0, it must be that N(S̄, S) is strictly positive. Thus,

there is at least one arc with tail in S̄ and head in S that is being deadheaded. There

must also be a deadheading arc with tail in S and head in S̄ because of the balance

constraints (2.4). Hence, S and S̄ are connected, leading to a contradiction.

Thus, the digraph De = (V,Ae) is balanced and connected, i.e., the digraph is

Eulerian. A coverage tour can be obtained from the Eulerian digraph by computing

an Eulerian diwalk in O(|Ae|) computation time. The cost of an Eulerian diwalk, and

the corresponding coverage tour, on the digraph De is c(Ae) = c(τ), where c(τ) is

the value of the objective function for a solution to the SRLC-ILP formulation. Each

feasible solution of the SRLC-ILP formulation has a corresponding feasible coverage

tour.

28

Theorem 2. Given a connected graph G = (V,E,Er), the SRLC-ILP formulation

gives an optimal coverage tour, if a solution exists.

Proof. We first prove that any feasible coverage tour τ has a corresponding feasible so-

lution for the SRLC-ILP formulation with the same cost. In other words, the feasible

solution space of the SRLC-ILP formulation includes all the feasible coverage tours.

Represent the given coverage tour as a closed diwalk v1a1 . . . ai−1viai . . . vkakv1, along

with information on whether an arc in the closed walk is serviced or deadheaded. For

each variable sa,∀a ∈ Ar assign its value according to the direction in which the arc is

serviced, and for each variable da,∀a ∈ A assign its value equal to the number of times

the arc is deadheaded. Also, letDe = (V,Ae) be the corresponding digraph. Note that

c(τ) = c(Ae). Since in a connected closed diwalk indeg = outdeg, constraints (2.4)

are satisfied. The diwalk must service each edge exactly once, satisfying (2.5).

Assume, without loss of generality, that the first arc a1 in the diwalk corresponds

to a required edge; we can always rotate the diwalk to obtain an equivalent diwalk

satisfying the assumption. Set v0 = v1, i.e., the first vertex of the diwalk. Assume

that the coverage tour visits v0 only once; we will generalize this later. This implies

that there are exactly two arcs in Ae that are connected to v0, one leaving and one

entering. Set za = 0 for each arc in A. Set za1 = |Er|, satisfying constraint (2.7).

Now traverse the edges in the sequence and direction given by the diwalk. Following

the notation for a diwalk, arc ai leaves vertex vi. During the coverage tour traversal,

if a vertex vi is traversed for the first time then set zai to be zai−1
minus the number

of servicing arcs entering vi. If vi has already been traversed by an arc whose tail

is vi, then set zai = zai + zai−1
. The value of za remains zero for the arcs that were

not traversed by the closed walk. Thus, constraints (2.8) and (2.9) are satisfied for

all the arcs. The constraints (2.6) will be satisfied at each vertex, other than v0, by

construction.

Now we address the case when the coverage tour traverses the vertex v0 multiple

29

times. This will result in l loops at v0, which we index by j = 1, . . . , l. We first

perform the same procedure to assign the values of za as in the preceding paragraph.

Let the first arc (leaving v0) and last arc (entering v0) for a loop j be aj1 and ajk ,

respectively. Now for each loop j, reduce the value of z for all arcs in the loop j by

the value of za for the last arc in the loop a = ajk . Finally, increase the value of z for

all arcs in any one of the loops by |Er| −
∑

j∈{1,...,l} zaj1 , in order to satisfy (2.7). An

example is shown in Figure 2.4.

v0

10

9

8

8

7 6
4

3 2

1
1

1

1

v0

2

1

0

8

7 6
4

3 2

1
1

1

1

Figure 2.4: Two stages of assigning values of za to arcs from a given feasible coverage
tour, as discussed in the proof of Theorem 2. The service and deadhead arcs are
represented by solid and dashed lines, respectively. The arrows indicate the direction
of travel. There are two loops connected to the depot vertex v0. The numbers in the
figures indicate values of za in the two stages, with the bottom figure showing the
final values. The z values of the service arcs in the bottom triangle loop are reduced
by 8. Note that za = 0 for all other arcs not shown in the digraph.

Hence, we can compute a feasible solution to the SRLC-ILP formulation from a

feasible connected closed diwalk, with the same cost, i.e., the feasible solution space

has all the feasible closed diwalks (coverage tours). Combining with Lemma 1, any

feasible solution to the SRLC-ILP formulation gives a feasible connected closed diwalk

of the same cost. Thus, the feasible solution space of the ILP corresponds to exactly

the space of the feasible coverage tours—there is no feasible coverage tour that is

not part of the feasible solution space of the ILP, and there is no feasible solution

30

to the ILP that is not a coverage tour. As the objective function of the SRLC-ILP

formulation corresponds to the cost of a coverage tour, an optimal feasible solution to

the formulation will also be an optimal coverage tour for the single robot line coverage

problem.

2.3.3 Linear Relaxation of SRLC-ILP

We consider a linear relaxation of the SRLC-ILP formulation that is closely related

to the minimum cost flow problem. The relaxation, as we shall see later, gives insights

into the structure of the problem and enables development of the approximation

algorithms. The key idea is to first build a min-cost digraph, which is not necessarily

balanced, and then use an LP formulation, modeled as a minimum cost flow problem,

to reverse some of the service arcs in the digraph and add deadheading arcs such

that the resulting digraph is balanced. We will use the flow problem to develop

approximation algorithms for the different cases of the single robot line coverage

problem based on the structure of the required graph.

As before, let the input graph be G = (V,E,Er) with a required graph Gr =

(Vr, Er). Modify the SRLC-ILP formulation as follows:

1. Remove the connectivity constraints (2.6)–(2.9) from the SRLC-ILP formula-

tion. When the required graph Gr is connected, the ILP formulation is still

valid.

2. Generate a digraph Dm = (V,Am), using the algorithm MinCostDigraph,

which selects the arc with the minimum service cost for each required edge.

The min-cost digraph Dm for an input graph is shown in Figure 2.5.

3. Introduce a reverse variable ra for each arc a ∈ Am, to represent the reversal of

service direction of the arc a. The reverse variables ra take values from {0, 2};

ra = 0 when the service direction is not changed and ra = 2 when the direction

is reversed.

31

4. Relax the integrality constraints (2.11) so that the deadheading variables dae , dāe

and the new reverse variables ra are now continuous.

If an arc’s service direction is reversed from a to ā, ra = 2, the imbalance changes

by 2, and the total cost changes by cs(ā) − cs(a). We assign reversal cost cr(a) for

each arc a ∈ Am and set cr(a) to cs(ā)−cs(a)
2

.

Algorithm 1: MinCostDigraph
Input : Graph G = (V,E,Er)
Output : Minimum cost digraph Dm = (V,Am)
Am ← ∅ ;
for e ∈ Er do

if cs(ae) ≤ cs(āe) then
ae.service← True ;
Am.insert(ae) ;

else
āe.service← True ;
Am.insert(āe) ;

4

4

4

4

4 44 4

4 2

Figure 2.5: The min-cost digraph Dm = (V,Am) for the input graph given in Fig-
ure 2.3. Note that the graph is neither balanced nor connected.

We now state the linear relaxation of the SRLC-ILP formulation.

SRLC-LP (single robot line coverage linear programming formulation)

Minimize:

cs(Am) +
∑
a∈Am

cr(a)ra +
∑
e∈E

[
cd(ae)dae + cd(āe)dāe

]
(2.17)

32

subject to:

∑
a1∈H(Am,v)

−ra1 +
∑

b1∈H(A,v)

db1 +
∑

a2∈T (Am,v)

ra2 −
∑

b2∈T (A,v)

db2 = I(Am, v), ∀v ∈ V (2.18)

0 ≤ ra ≤ 2, ∀a ∈ Am (2.19)

dae , dāe ≥ 0, ∀e ∈ E (2.20)

Expression (2.17) is the modified objective function. The first term in the objective

function cs(Am) is the sum of the service costs of all the arcs in the digraph Dm and

is independent of the variables. The imbalance in the digraph Dm at a vertex v is

represented by I(Am, v). The conditions (2.18) ensure that the digraph corresponding

to a feasible solution will be balanced, i.e., the indegree will equal the outdegree at

every vertex. The constraints (2.19) state that the variable ra, corresponding to

reversal of service direction, is between 0 and 2; if ra = 0 then the direction of travel

is the same as that of the arc in Am, and if ra = 2 then the direction of the arc is

reversed, thereby reversing the service direction.

2.3.4 A Network Flow Graph Model

Arc routing problems are often solved by modeling them as network flow graphs and

finding a minimum cost flow. Using this approach, algorithms for the CPP and the

WPP were presented by Edmonds and Johnson (1973) and Win (1989), respectively.

Inspired by such techniques, we present a network flow graph model for solving the

linear programming formulation SRLC-LP and establish its equivalence. We will then

use the model to develop approximation algorithms in Section 2.4.

Let G = (V,E,Er) be the input graph. First, generate a min-cost digraph Dm =

(V,Am) using the algorithm MinCostDigraph(G). Now construct a network flow

graph Df = (V,Af), in O(|V |+ |E|) time (Algorithm 2), as follows:

1. For each service arc a ∈ Am, add three arcs a, ā, and a′ to Af with the costs

33

per unit flow cf (·) and capacities as given in Table 2.1, which defines the Flow

Model. The direction of arc a is same as that in Am, whereas the direction of

arcs ā and a′ are opposite to that of the corresponding arc in Am. In the flow

digraph Df , the arcs a and ā will represent deadheadings and the arc a′ will

represent service reversal.

2. Similarly, for each b ∈ An where An = A \ Ar, add two arcs b and b̄ to Af ,

with the costs per unit flow and capacities in Table 2.1. These two arcs, b and

b̄, represent deadheadings of a non-required edge in the two directions.

Table 2.1: Flow Model (FM): arc costs and capacities. Three arcs (a, ā, a′) are added
for each required edge and two arcs (b, b̄) for each non-required edge.

Arc Description Unit Flow Cost cf (·) Capacity

a Forward deadheading cd(a) ∞

ā Backward deadheading cd(ā) ∞

a′ Service reversal cr(a) =
(
cs(ā)− cs(a)

)
/2 2

b Non-required forward deadheading cd(b) ∞

b̄ Non-required reverse deadheading cd(b̄) ∞

3. For each vertex v ∈ V , assign the following node flow demand based on the

degree of v in Dm:

d(v) = outdeg(v)− indeg(v) = I(Am, v) (2.21)

4. Let fa be the flow along the arc a ∈ Af , and let the flow vector be f = [fa |

a ∈ Af]. The cost c(f) of a flow f is:

c(f) =
∑
a∈Af

cf (a)fa (2.22)

34

A flow digraph Df is shown in Figure 2.6 for the input graph of Figure 2.3 with the

min-cost digraph shown in Figure 2.5.

Algorithm 2: ConstructFlowDigraph
Input : Graph G = (V,E,Er),

Digraph Dm = (V,Am)
Output : Flow Digraph Df = (V,Af)
Af ← ∅ ;
for a ∈ Am do

Insert arcs a, ā and a′ into Af , with costs and capacities from to Table 2.1 ;

for e ∈ E \ Er do
Let be and b̄e be the arcs corresponding to e ;
Insert arcs be and b̄e into Af , with costs and capacities from Table 2.1 ;

for v ∈ V do
d(v)← I(Am, v) ;

We now formulate a minimum cost flow problem for the network flow graph Df =

(V,Af) and show that it models the linear relaxation SRLC-LP.

Definition 2.3.4. Minimum Cost Flow Problem

Let Df = (V,Af) be a given flow digraph, along with costs, capacities, and node

flow demands. Then the minimum cost flow problem is to find a feasible flow f such

that:

1. the cost of flow c(f) is minimized, and

2. demand d(v) is satisfied for all v ∈ V .

Theorem 3. Let G = (V,E,Er) be an input graph for the single robot line coverage

problem, with minimum cost digraph Dm = (V,Am) and flow digraph Df = (V,Af).

The minimum cost flow problem for network flow digraph Df models the linear re-

laxation SRLC-LP of the SRLC-ILP formulation for the single robot line coverage

problem.

Proof. Observe that any feasible solution to the minimum cost flow problem is a

feasible solution to the linear programming formulation SRLC-LP, and vice versa,

35

using the following relation between the variables:

fa = da, fa′ = ra, fā = dā, ∀a ∈ Am

fae = dae , fāe = dāe , ∀e ∈ E \ Er
(2.23)

As the capacity of the reversal arcs ra′ is set to 2, the flow fa′ across any such arc

will be no greater than 2, and the constraints (2.19) are satisfied. The flow problem

resolves the demand d(v) = I(Am, v) for each vertex v ∈ V , and thus, satisfies the

balance constraints (2.18). The objective of the minimum cost flow problem c(f)

summed with cs(Am) is then exactly the objective function (2.17) of SRLC-LP. Thus,

the theorem follows.

Remark. The minimum cost flow, for a graph G = (V,E), can be computed in time

O
(
(m log n)(m + n log n)

)
, as shown by Orlin (1993), where m = |E| and n = |V |.

Optimal solutions to the minimum cost flow algorithms are integers as the imbalance

at each vertex is also an integer (see e.g., Papadimitriou and Steiglitz (1982)), thus

fa′ ∈ {0, 1, 2}. When we set ra = fa′ we may have ra = 1. This in turn violates

the integrality constraints (2.10), and the corresponding service variables are half-

integral: sa = sā = 0.5. For any coverage tour there exists an equivalent network flow

digraph with a corresponding flow. However, not all solutions to the network flow

digraph have an equivalent coverage tour.

2.4 Approximation Algorithms

We now present approximation algorithms for the single robot line coverage prob-

lem by partitioning it into three different cases, as illustrated in Figure 2.7. The cases

are based on the structure of the required graph, i.e., the subgraph induced by only

the required edges:

1. Eulerian required graph: The algorithm LP-Solve, derived from the network

flow model, gives an optimal solution.

36

+1−1

(a) Flow digraph Df = (V,Af)
(b) Optimal solution to SRLC-LP
with ambiguous (undirected) edges

Figure 2.6: Flow digraph and an optimal solution to the SRLC-LP problem for the
input graph G in Figure 2.3 with the min-cost digraph shown in Figure 2.5. (a) The
red (darker) solid arcs correspond to service reversal arcs, and the red dashed arcs
correspond to the deadheading of required edges. The dashed green (lighter) arcs
are flow arcs corresponding to deadheading across non-required edges. The nonzero
imbalances for the vertices are shown. (b) The set of arcs corresponding to ambiguous
edges Au—those that remain undirected after solving the flow problem—is shown in
red (darker).

37

2. Connected required graph: The 2-approximation algorithm SRLC-2Approx

gives a solution with cost at most twice the optimal cost.

3. General required graph: The (α(C) + 2)-approximation algorithm, where C

is the number of connected components in the required graph, and α(C) is

the approximation factor for the ATSP on a graph with C vertices, gives a

solution with cost at most α(C) + 2 times the optimal cost. When the number

of connected components in the required graph is small, i.e., C ∈ O(log(n)), a

3-approximation solution is obtained.

We recast the theoretical results of the previous section in algorithmic form as

Algorithm 3, which computes a digraph by solving the linear relaxation to the single

robot line coverage problem and creates a balanced digraph Db = (V,Ab). Given a

graph G = (V,E,Er), we first compute the min-cost digraph Dm = (V,Am) (line 1)

and construct the flow digraph Df = (V,Af) from Dm (line 2). We then compute

the minimum cost flow f for the flow digraph (line 3). If the optimal flow across an

arc a is 0 or 2, we set the service direction of the corresponding edge to the direction

of a or ā, respectively, and add the corresponding arc to the arc set Ab (lines 6–

11). For some of the required edges, the optimal flow through the reversal arcs may

be 1, i.e., ra = 1. These arcs, denoted by Au, correspond to the edges whose service

direction remains ambiguous in the solution to the flow problem (lines 12–13). Finally,

we add deadheading arcs to the arc set Ab according to the corresponding optimal

flow through the deadheading arcs of the flow digraph (lines 14–20). The digraph

Db = (V,Ab) and the set of ambiguous arcs Au are the output of the algorithm. Note

that the digraph Db is balanced but may have multiple components, each of which is

Eulerian. An output of LP-Solve for the input graph given in Figure 2.3 is shown in

Figure 2.6(b). The arcs corresponding to the digraph Db are shown in blue, whereas

the ambiguous edge, corresponding to the edge set Au, is shown in dark red.

38

Input graph: G = (V,E,Er)
Required graph: Gr

(D1
b , Au) = LP-Solve

Gr

Eulerian?
Optimal
solution

Yes

Au = ∅ and
D1

b Eulerian?

No

Yes

D2
b = SRLC-2Approx

No

Gr or D2
b

connected?

2-approx.
solution

Yes

C ∈
O(log(n))?

No

ATSP DP

3-approx. solution

Yes

ATSP
α(C)-approx.
algorithm

(α(C) + 2)-approx.
solution

No

Figure 2.7: Flowchart illustrating the different cases of the single robot line coverage
problem based on the structure of the required graph Gr. The approximation factors
of the algorithms depend on the structure of Gr.

39

Algorithm 3: LP-Solve
Input : Graph G = (V,E,Er)
Output : Digraph Db = (V,Ab) and undirected arc set Au
Dm = (V,Am)← MinCostDigraph(G) ;
Df = (V,Af)← ConstructFlowDigraph(G,Dm) ;
Compute the minimum cost flow f for Df ;
/* Generate digraph Db */
Ab ← ∅ ;
for a ∈ Am do

if fa′ = 0 then
a.service← True ;
Ab.insert

(
a
)
;

else if fa′ = 2 then
ā.service← True ;
Ab.insert

(
ā
)
;

else if fa′ = 1 then
Au.insert(a) ;

Ab.insert(fa copies of a) ;
Ab.insert(fā copies of ā) ;

for e ∈ E \ Er do
Ab.insert(fae copies of ae) ;
Ab.insert(fāe copies of āe) ;

2.4.1 Eulerian Required Graph

We first consider the case where the required graph Gr = (Vr, Er), for the input

graph G = (V,E,Er), is Eulerian, i.e., the subgraph is connected and the degree of

each vertex in Vr is even. It should be noted that this special case is not the same as

the Eulerian graphs for the asymmetric/windy postman problem (WPP) considered

by Win (1989) and by Raghavachari and Veerasamy (1999b). This is because non-

required edges are permitted, and the deadheading costs for the required edges can

differ from their service costs. Thus, an Eulerian tour on the required graph does

not ensure a coverage tour with minimum cost. The following lemma shows that the

algorithm LP-Solve gives an optimal solution for this case in running time that is

polynomial in the number of edges and vertices.

Theorem 4. Let the input graph be G = (V,E,Er) such that the required graph Gr =

(Vr, Er) is Eulerian. Then algorithm LP-Solve gives an optimal feasible solution for

40

the single robot line coverage problem in polynomial time. In particular, ra = fa′ ∈

{0, 2} ∀a ∈ Am and dae = fae , dāe = fāe ∈ N ∪ {0} ∀e ∈ E.

Proof. Let the min-cost digraph be Dm = (V,Am) and the flow digraph be Df =

(V,Af), for the input graph G = (V,E,Er). Since the required graph Gr is Eulerian,

the number of edges incident at a vertex in Gr is even. The number of outgoing

arcs and incoming arcs, at a vertex in Dm, will both be even or will both be odd.

Therefore, the node flow demand for a vertex v ∈ V computed for the digraph Dm

will be even. The capacities defined in Table 2.1 are either 2 or ∞. Furthermore, the

minimum cost flow algorithm gives integral solutions. Hence, the optimal flow is also

even for each arc af ∈ Af and in particular ra = fa′ ∈ {0, 2}. This result can also be

derived by establishing total unimodularity of the constraint matrix obtained from

the balance constraints (2.18) by replacing each ra by 2r̃a, da by 2d̃a, and dā by 2d̃ā.

Note that the imbalance I(Am, v) is even for each vertex v ∈ V . Thus, we can divide

the entire equation by 2, and the constraints will still have integral coefficients and

constants.

∑
a1∈H(Am,v)

−r̃a1 +
∑

b1∈H(A,v)

d̃b1 +
∑

a2∈T (Am,v)

r̃a2 −
∑

b2∈T (A,v)

d̃b2 =
I(Am, v)

2
∀v ∈ V

The constraint matrix for the above equation corresponds to an incidence matrix with

integers, and thus is totally unimodular. The substituted variables will be integral,

and the original variables will all be even. As the required graph is connected, the

digraph Db obtained from the algorithm will also be connected, and thus will be

Eulerian.

Let m = |E| and n = |V |. The min-cost digraph and the flow digraph can be

constructed in O(n) and O(m+ n) time, respectively. Thus, the running time of the

algorithm is dependent on the algorithm for solving the minimum cost flow problem,

i.e., O
(
(m log n)(m+ n log n)

)
.

41

2.4.2 Connected Required Graph

We now consider the case where the required graph Gr = (Vr, Er), for the input

graph G = (V,E,Er), is connected but not necessarily Eulerian, i.e., the degree of

each vertex in Gr might not be even. The created flow digraph Df = (V,Af) may

have vertices with odd flow demands (2.21). As a result, the optimal flow values need

not be even. While it is not a problem if da or dā is odd for some arc a ∈ A, we need

to assign service directions to the edges for which the reverse variables ra is 1 for arcs

a ∈ Am and potentially add deadheading arcs to make the corresponding digraph

Eulerian.

Let Au be the set of arcs for which the flow for the arc corresponding to the reversal

of service direction is 1, i.e., Au = {a | ra = fa′ = 1, a ∈ Am}, as given by algorithm

LP-Solve, and let Eu be the corresponding edge set. We first check for cycles in the

graph (V,Eu). Such cycles will have a sequence of edges such that the total cost of

the edges if oriented in the clockwise direction is the same as the total cost of the

edges if oriented in the anti-clockwise direction since the flow obtained is optimal. We

can orient such cycles in either clockwise or anti-clockwise order without changing

the cost of the solution. Now, let us say we service the edge corresponding to some

a ∈ Au in the same direction as a. This creates an imbalance of +1 at the tail t(a)

and −1 at the head h(a). We can resolve this by adding a shortest path deadheading

from h(a) to t(a), the cost of which is denoted by cd(h(a), t(a)). The total cost due

to traversals of this edge will be the sum of the service cost of a and this deadheading

cost. Similarly, we can consider servicing in the direction of ā, and then consider

deadheading from h(ā) to t(ā). Of the two combinations, the one that has a lower

total cost is selected. This is done for each ambiguous edge corresponding to a ∈ Au.

This idea is described concretely in algorithm SRLC-2Approx, and we will show

that it is a 2-approximation algorithm.

Let the optimal flow be f , and the cost of the optimal tour be c∗. Then the optimal

42

Algorithm 4: SRLC-2Approx
Input : Graph G = (V,E,Er)
Output : Digraph Db = (V,Ab)
(DLP

b = (V,ALP
b), Au)← LP-Solve(G) ;

/* Let Eu be the edge set corresponding to Au */
Ab ← ALP

b ;
Find cycles in the graph (V,Eu) ;
Orient cycles in anti-clockwise orientation and add arcs to Ab ;
for a ∈ Au do

p← shortest deadheading path from h(a) to t(a) ;
p̄← shortest deadheading path from h(ā) to t(ā) ;
if cs(a) + cd(p) ≤ cs(ā) + cd(p̄) then

a.service← True ;
Ab.insert(a) ;
Ab.insert(p) ;

else
ā.service← True ;
Ab.insert(ā) ;
Ab.insert(p̄) ;

value of the linear relaxation z∗ of the formulation SRLC-LP is:

z∗ = cs(Am) + c(f) = cs(Am \ Au) + cs(Au) + c(f) ≤ c∗ (2.24)

Let Ad denote the set of arcs corresponding to the service direction and deadheading

decided unambiguously by the optimal flow. Then,

c(Ad) = cs(Am \ Au) + c(f)− cr(Au) (2.25)

Thus,

z∗ = c(Ad) + cs(Au) + cr(Au) (2.26)

Substituting the value of cr(Au) = cs(Āu)−cs(Au)
2

in (2.26) and using (2.24) we have,

2c(Ad) + cs(Au) + cs(Āu) ≤ 2c∗

or, c(Ad) + cs(Au) + cs(Āu) ≤ 2c∗ − c(Ad) (2.27)

43

Theorem 5. Let the input graph be G = (V,E,Er) such that the required graph

Gr = (Vr, Er) is connected. Then algorithm SRLC-2Approx generates a coverage

tour with cost at most twice the cost of the optimal coverage tour in polynomial time.

Proof. Let As be the set of arcs corresponding to Au with final service directions as

oriented by the algorithm SRLC-2Approx. The total cost of the solution digraph

Db = (V,Ab) generated by the algorithm is:

c(Ab) = c(Ad) + cs(As) +
∑
a∈As

cd(h(a), t(a))

≤ c(Ad) + cs(Au) + cd(Āu)

Note that the inequality is true because we selected the service and deadheading

directions to minimize the sum of the costs for individual arcs in Au.

Furthermore, cd(a) ≤ cs(a) for a ∈ Āu because the deadheading cost is assumed to

be no greater than the corresponding service cost. Hence,

c(Ab) ≤ c(Ad) + cs(Au) + cs(Āu) (2.28)

Combining (2.28) with (2.27):

c(Ab) ≤ 2c∗ − c(Ad) ≤ 2c∗

As the required graph Gr is connected, the solution digraph Db is also connected.

The digraph Db is also balanced, as discussed previously. Hence, a coverage tour can

be generated by computing an Eulerian diwalk on Db with the same cost as that of

Ab. Thus, we obtain a coverage tour of cost at most twice the cost of the optimal

tour.

44

The complexity of the algorithm is determined by the algorithm LP-Solve, which

can be solved in O
(
(m log n)(m + n log n)

)
time, where m = |E| and n = |V |. De-

pending on the structure of the instance, one may need to compute the shortest

deadheading paths between all pairs of vertices. This can be done using the Floyd-

Warshall algorithm in O(n3) computation time, see e.g., Dasgupta et al. (2006).

2.4.3 General Required Graph

We now consider input graphs for which the required graph Gr, induced by the

required edges, may have multiple connected components. For such graphs, algo-

rithm SRLC-2Approx may output a digraph that is disconnected even though the

individual connected components are Eulerian. For the graph given in Figure 2.3,

with the flow digraph given in Figure 2.6, the output of algorithm SRLC-2Approx

is shown in Figure 2.8. Note that the digraph has multiple connected components

even though the individual components are Eulerian.

Figure 2.8: Digraph computed by the algorithm SRLC-2Approx for the graph in
Figure 2.3 with the flow digraph shown in Figure 2.6. Note that the digraph has
multiple connected components, each of which is Eulerian.

Our approach is to generate a tour through the connected components by solving

the ATSP problem on an auxiliary graph whose vertices correspond to the compo-

nents. We combine the tour with the arcs generated in each of the components. We

develop an (α(C) + β)-approximation algorithm where C is the number of connected

45

components in Gr and β is the approximation factor for the single robot line coverage

problem on graphs with a connected required graph. The α approximation factor

depends on the approximation algorithm for the asymmetric traveling salesperson

problem (ATSP), and a β of 2 was discussed in the previous subsection using the

SRLC-2Approx algorithm. Constant factor approximation algorithms for ATSP

were recently given by Svensson et al. (2018) and by Traub and Vygen (2020).

The output digraph Db of the SRLC-2Approx algorithm is processed to find

strongly connected components. Note that the number of strongly connected com-

ponents in Db will be no greater than the number of connected components C of

the required graph Gr of G. We then create an auxiliary graph G0 = (V0, E0) with

V0 ⊆ Vr consisting of one arbitrary vertex from each of the connected components in

Db such that a vertex v ∈ V0 corresponds to a required edge. G0 is a complete graph

with E0 consisting of edges between all pairs of vertices in V0. Each edge in E0 has

two weights corresponding to the shortest deadhead cost paths in the two directions.

An ATSP algorithm is then used to find a tour connecting all the vertices in G0. The

arcs in the ATSP tour are then added to the disconnected diwalk generated from the

SRLC-2Approx algorithm to obtain a connected coverage tour. In the following

theorem, we prove the approximation factor for our algorithm for general graphs.

The key ideas for the proof of the theorem are motivated by Bevern et al. (2017).

Theorem 6. The single robot line coverage problem can be solved in polynomial time

with an approximation factor of α(C)+β, where α(C) is the approximation factor for

an algorithm for the asymmetric traveling salesperson problem with C vertices, and

β is the approximation factor for line coverage on graphs with a connected required

graph.

Proof. Let the optimal coverage tour be τ ∗ and digraph Db be the output of the

SRLC-2Approx algorithm. Note that Db may contain multiple strongly connected

components. However, the number of strongly connected components in the digraph

46

Db will be no more than the number of connected components C in the required

graph Gr. As the linear relaxation does not consider the connectivity constraints, the

solution Db is an approximation result to a relaxation of the original problem. Hence,

c(Db) ≤ β c(τ ∗), where β = 2 for the SRLC-2Approx algorithm.

Let V0 ⊆ Vr be a set of vertices with one arbitrary vertex from each of the connected

components in Db. Then |V0| ≤ C. Any coverage tour must visit each of the vertices

in V0 because each vertex in V0 lies on a required edge. For the graph G0, let T ∗ be

the optimal ATSP tour and T be the ATSP tour returned by the α(C)-approximation

algorithm. Then c(T) ≤ α(C) c(T ∗) ≤ α(C) c(τ ∗).

Let τ be the final coverage tour obtained by adding the arcs from T to the di-

graph Db and generating an Eulerian tour. Then c (τ) = c (Db) + c (T) ≤ β c(τ ∗) +

α(C) c(τ ∗) = (α(C) + β) c(τ ∗).

Corollary 7. Combining Theorem 5 and Theorem 6, and noting that the number

of connected components C is usually small in practice, as stated by Bevern et al.

(2017), we observe:

1. The single robot line coverage problem has an α(C) + 2 approximation factor.

This also improves the previously best-known approximation result of α(C) + 3

for the asymmetric rural postman problem given by Bevern et al. (2017).

2. If C ∈ O(log n), an O(C22C) dynamic programming algorithm gives the optimal

ATSP solution in polynomial time, giving a 3-approximation algorithm for the

single robot line coverage problem.

Remark. For the special case when we have two connected components, we do not

have an ATSP tour. In such a scenario, we can duplicate one of the vertices v ∈ V0

and add a zero cost edge from the duplicated vertex to v. The edge set E0 will then

be created on these three vertices.

47

The final coverage tour for the example graph, given in Figure 2.3, is shown in

Figure 2.9. For this example, the cost of the tour obtained using the approximation

algorithm is optimal.

4

4

4

4

4 44 4

4
2

2

1
1

Figure 2.9: The final coverage tour, in the form of an Eulerian digraph, obtained
for the input graph in Figure 2.3. The algorithm generates an ATSP tour on the
solution from SRLC-2Approx, shown in Figure 2.8. As there were two connected
components, the algorithm first creates an auxiliary vertex, by duplicating one of the
vertices corresponding to a connected component. The arbitrary vertices from each of
the components are shown as red unfilled circles. A different choice for these vertices
can result in a different coverage tour, potentially of a different cost. The total cost
of the coverage tour is 42, which is the same as the optimal cost.

2.4.4 Improvements and Extensions

We now provide two heuristics that improve the quality of the solutions generated

by the algorithms discussed in the chapter. We explore the use of the generalized

traveling salesperson problem (GTSP) instead of the ATSP. We discuss the practical

aspects of implementing the algorithms. Finally, we discuss the application of our

algorithm to the line coverage problem with multiple robots.

Short-circuiting: Our first heuristic is to improve the final coverage tour by

replacing a sequence of consecutive deadheading edges with the shortest path from

the first vertex of the sequence to the last vertex of the sequence.

2-opt heuristic: The quality of the solution can be further improved by employing

a simple 2-change local neighborhood search, also known as 2-opt, similar to that for

48

the TSP, see e.g., Roughgarden (2020). Since it is an anytime heuristic, i.e., it always

maintains a feasible solution, we can ensure that the total number of constant-time

local moves is restricted to n3 to maintain the O(n3) running time of the algorithm.

We discuss the computational costs and the improvement in the solutions on a dataset

of 50 road networks in Section 2.5.

GTSP based algorithm: In the algorithm for the case of general required graphs,

an arbitrary vertex was selected for each of the connected components to create an

auxiliary graph G0 required as input to the ATSP algorithm. Since the choice of

the vertices may affect the cost of the tour, an alternative technique is to formulate

the problem as a generalized traveling salesperson problem (GTSP). Each connected

component forms a cluster, and the vertices in the connected component form nodes

in the cluster. The cost between any pair of nodes corresponds to the shortest dead-

heading path between the nodes. The GTSP is then to compute a minimum cost

tour such that at least one of the nodes in each cluster is visited. A GTSP instance

can be solved by converting it to an instance of the ATSP with n vertices, where

n is the total number of nodes in the GTSP instance as given by Noon and Bean

(1993). Such a solution has an approximation factor of α(n) + 2, where α(n) is the

approximation factor of an algorithm for the ATSP on a graph with n vertices. In

principle, a GTSP based algroithm can provide better solutions as we no longer select

an arbitrary vertex from each connected component. However, in practice, the GTSP

based algorithm may require a longer computation time, and therefore is not always

suitable for robotics applications that require rapid computation of the coverage tours

for the robots.

Practical considerations: The (22 + ε)-approximation algorithm for the ATSP

given by Traub and Vygen (2020) is not very practical for robotics applications be-

cause of its running time and challenging implementation. However, it is very relevant

for providing a constant-factor approximation guarantee. As the number of connected

49

components is usually very small, the dynamic programming based algorithm of Held

and Karp (1962) works well in practice. The algorithm runs in O(n22n), where n is

the number of vertices. Techniques for bitwise operations by Knuth (2011) are used

to run through the 2n combinations. We also use a state-of-the-art solver for ATSP

from Helsgaun (2000) for instances with a larger number of connected components.

The results are discussed in Section 2.5.

Multiple robots: Our approximation algorithms have implications for the algo-

rithms for arc routing problems with multiple robots. In the capacitated arc routing

problem (CARP), the edges of the graph have a demand associated with them, and

the robots have a capacity Q, see e.g., Corberán and Laporte (2014). The task is to

find a set of tours for a team of k robots such that the total demand for any of the

robots does not exceed its capacity Q. The objective function is the total cost of all

the tours for the robots. One of the strategies for the CARP and its variants is to

first find a large tour ignoring the demand constraints by employing algorithms for

the single robot problem. Then the tour is split into smaller components that respect

the capacity constraints (Wøhlk, 2008). Thus, any improvements to the algorithms

for the single robot version improve the quality of the solution for the version with

multiple robots. A tour-splitting algorithm was given by Bevern et al. (2017) for the

CARP on mixed and windy graphs. The algorithm has an approximation factors of

8α(C + 1) + 27 in general, and an approximation factor of 35 when the number of

connected components C is small, i.e., C ∈ log(n). Our results immediately improve

these approximation factors to 8α(C + 1) + 19 and 27, respectively. We intend to

explore the tour-splitting strategy for the line coverage problem with multiple robots

using the results of this chapter.

2.5 Simulations and Experiments

We now establish the efficiency and efficacy of the presented algorithms for the

single robot line coverage problem through simulations and experiments.

50

The algorithms are implemented in C++ and executed on a desktop computer with

an Intel Core i9-7980XE processor. We take advantage of the advances in linear

programming solvers and use Gurobi Optimization (2021) to obtain solutions rapidly

for the minimum cost flow problem. Smaller instances of the ATSP are solved using

the dynamic programming algorithm given by Held and Karp (1962), while larger

instances are solved using the LKH solver by Helsgaun (2000). The GLKH solver

by Helsgaun (2015) is used to solve the GTSP instances. The algorithm for the

RPP on mixed and windy graphs by Bevern et al. (2017) is also adapted for the

single robot line coverage problem for comparison with the algorithms presented in

this chapter. The short-circuiting based tour improvement routine is applied to the

solutions generated from each algorithm as it replaces consecutive deadheadings with

the shortest deadheading paths. The SRLC-ILP formulation is solved using Gurobi

and run on a cluster node with 48 cores. The output from our algorithm is used to

provide an initial solution to the ILP formulation, which helps in upper bounding

the branch-and-bound algorithms and obtaining solutions faster. Solving an ILP to

obtain an optimal solution can take a long time; it took around 20 hours for one of

the instances with 635 vertices and 730 required edges.

2.5.1 Simulation Results on Road Networks

An important application of the single robot line coverage problem is the mapping,

inspection, and surveillance of road networks. We generated a dataset3 consisting

of road networks from the 50 most populous cities in the world. These road net-

works differ considerably in structure from one another, and thus allow testing of

the algorithms on a variety of graphs. The data was obtained from OpenStreetMap

contributors (2022) by selecting a bounding polygon of 0.5 to 2.0 km2 area using a

web-based tool. The dataset consists of road networks with 75 to 635 vertices and 93
3The dataset and a tool for extracting road network data are available at:

https://github.com/AgarwalSaurav/LineCoverage-dataset.

https://github.com/AgarwalSaurav/LineCoverage-dataset

51

to 730 required edges. As UAVs can fly from one location to another, non-required

edges are added between each pair of vertices, resulting in tens of thousands of non-

required edges. In the case of no-fly zones, the corresponding non-required edges

can be pruned in practice. The servicing and deadheading speeds are set to 7m·s−1

and 10m·s−1, respectively. A wind of 2m·s−1 is simulated from the south-west direc-

tion, i.e., π/4 radians from the horizontal axis. These parameters are set based on

real-world experiments discussed in the following subsection.

Denote the speed of the UAV by v and the wind speed by w. For traversal of an

edge from a tail vertex t to a head vertex h, let the travel vector t denote the vector

from t to h. Let φ be the angle between the wind vector and the travel vector t for

an edge. Then the effective speed of the UAV is given by:

veff = w cosφ+

√
v2 − w2 sin2 φ (2.29)

The cost function is defined as the time taken for the UAV to traverse an edge:

c(t, h) =
‖t‖2

veff
(2.30)

Here, ‖t‖2 is the Euclidean distance from t to h. The speed v of the UAV is set to

the servicing or deadheading speed according to its travel mode. Note that the cost

function is asymmetric due to wind.

We use the following notation for brevity:

1. β2-ATSP: Algorithm SRLC-2Approx along with the dynamic programming

algorithm for the ATSP.

2. β2-GTSP: Algorithm SRLC-2Approx along with the GLKH solver for the

generalized ATSP.

3. β2-ATSP-2opt: Algorithm SRLC-2Approx along with the dynamic program-

52

ming algorithm for the ATSP and 2-opt heuristic.

4. β3-ATSP: Algorithm given by Bevern et al. (2017) along with the dynamic

programming algorithm for the ATSP.

Figure 2.10 shows four of the fifty road networks in the dataset, along with the

coverage tours obtained from the ILP formulation and the β2-ATSP-2opt algorithm

presented in the chapter.

A cost comparison of the solutions obtained from β2-ATSP, β2-ATSP-2opt and

β3-ATSP is shown in Figure 2.11. The y-axis shows the percentage difference in

cost with respect to the optimal solution, i.e., c−c∗
c∗
× 100, where c is the cost of the

coverage tour given by the corresponding algorithm, and c∗ is the optimal solution

obtained using the ILP formulation. The solutions obtained by our final algorithm

β2-ATSP-2opt are within 10% of the optimal solution. Algorithm SRLC-2Approx

with the DP algorithm for ATSP, denoted by β2-ATSP, generally performs better

than the algorithm given by Bevern et al. (2017), denoted by β3-ATSP. There seems

to be no perceptible trend in cost difference percentage with the increase in the size

of the instance.

The computation times, shown in Figure 2.12, were obtained by averaging over

100 runs. The algorithm β2-ATSP is comparable in running time to β3-ATSP, while

providing better solutions, in general. For the β2-ATSP-2opt algorithm, additional

time is spent to run the 2-opt heuristic, which runs very fast for smaller instances and

takes up to an additional 2 s for some of the larger instances. All the 50 instances

were solved within 3 s with a mean time of 0.83 s and median time of 0.73 s, using the

β2-ATSP-2opt algorithm.

Figure 2.13 shows comparisons of costs and computation time for the β2-ATSP

and the β2-GTSP algorithms. The comparison is performed for the instances with

at least three connected components in the required graph. Using the GTSP gives

better solutions in general as the algorithm has the flexibility to select any vertex in

53

0

0.5

1

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

0

0.5

1

1.5

2

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

1.5

2

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

0

0.5

1

0 0.5 1

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

0 0.5 1

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

0

0.5

1

0 0.5 1 1.5 2

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

0 0.5 1 1.5 2

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

Figure 2.10: Four of the fifty sample road networks obtained from the most populous
cities: The first column is the map representing the input graph, the second column is
the optimal solution obtained using the SRLC-ILP formulation, and the third column
is the final result of the algorithm (β2-ATSP-2opt) presented in this chapter. The
road networks, from top to bottom, are from (a) New York, (b) Delhi, (c) Paris, and
(d) Beijing. Only the required edges representing the road network are shown in the
map. There is a non-required edge for each pair of vertices in the graph. For example,
the New York dataset has 379 vertices, 402 required edges, and 71, 631 non-required
edges. The solid blue lines represent servicing while the dashed green lines represent
deadheading travel.

54

100 200 300 400 500 600 700

0

20

40

60

Number of required edges

C
os
t
di
ffe

re
nc

e
pe

rc
en
ta
ge

β2-ATSP
β2-ATSP-2opt
β3-ATSP

Figure 2.11: Cost comparison of the algorithms for the 50 road network dataset:
The β2-ATSP algorithm, shown by red plus + markers, generally performs better
than the β3-ATSP algorithm given by Bevern et al. (2017), shown by green cross ×.
The solutions obtained by the β2-ATSP-2opt algorithm, shown by blue dots •, are
consistently within 10% of the optimal.

100 200 300 400 500 600 700

0

1

2

3

Number of required edges

C
om

pu
ta
ti
on

ti
m
e
(s
)

β2-ATSP
β2-ATSP-2opt
β3-ATSP

Figure 2.12: Computation time comparison of various algorithms in the chapter: The
β2-ATSP algorithm takes time comparable to the β3-ATSP algorithm. The 2-opt
heuristic improvement over the β2-ATSP algorithm takes very small additional time
for small instances and up to 2 s for larger instances. The running times are averaged
over 100 runs.

55

3 3 3 3 4 4 4 4 5 6 6 9

20

40

Number of connected components

C
os
t
di
ffe

re
nc

e
pe

rc
en
ta
ge β2-ATSP

β2-GTSP

3 3 3 3 4 4 4 4 5 6 6 9

0

2

4

6

Su
ra
t

B
ei
jin

g
H
on

g
K
on

g
Sã

o
P
au

lo
Ja

ka
rt
a

Su
zh
ou

W
uh

an
C
he
nn

ai
X
i’a

n
N
an

jin
g

A
hm

ed
ab

ad
G
ua

ng
zh
ou

Number of connected components

C
om

pu
ta
ti
on

ti
m
e
(s
) β2-ATSP

β2-GTSP

Figure 2.13: Computation time and cost comparisons for the β2-ATSP and the β2-
GTSP algorithms: The β2-GTSP algorithm gives better solutions, in general. How-
ever, the β2-ATSP algorithm is computationally much more efficient. The comparison
is performed for the instances with at least three connected components in the re-
quired graph.

each of the connected components. In contrast, an arbitrary vertex is selected for

each connected component for the β2-ATSP algorithm. In only one of the instances

(Ahmedabad), the final coverage tour obtained using the DP algorithm for the ATSP

resulted in slightly better results than that for using the GTSP, and this is because the

ATSP based solution was more favorable for the short-circuiting routine and resulted

in a better solution overall. The β2-ATSP algorithm is computationally much more

efficient.

The simulation results indicate that all the ATSP based algorithms are sufficiently

fast. With a small additional computational cost for the 2-opt heuristic, the β2-

ATSP-2opt algorithm computes high-quality solutions.

2.5.2 Experiments on a Campus Road Network

We performed line coverage on two different portions of the UNC Charlotte road

network using a DJI Phantom 4 quadrotor UAV. Figure 2.1 shows a portion of the

road network and Figure 2.14 shows a network of lanes on a set of parking lots.

The experiments were performed with two different sets of operating conditions. The

56

servicing and deadheading speeds, along with wind speeds and directions are specified

in Table 2.2. The cost functions are based on the time to traverse the respective edge;

the wind conditions make the costs asymmetric, as specified by Equations (2.29)

and (2.30). The computed line coverage tour costs using the SRLC-ILP formulation

and the β2-ATSP-2opt algorithm are provided in Table 2.2. The table also provides

the actual flight times. Figures 2.15 and 2.16 show the computed coverage tours using

the β2-ATSP-2opt algorithm, the actual flight paths, and orthomosaics for the two

datasets. We generated orthomosaics from the images collected during the flights.

The images are taken only during servicing (and not during deadheading) leading to

a smaller number of images, and thus reduced the time to compute the orthomosaic.

We have the following observations from our experiments.

1. The actual flight time differs from the computed flight time. Since we use a

commercial mobile application to fly the UAV autonomously along the coverage

tour, we do not have access to a model of the controller. As our formulation

allows arbitrary cost functions, a high fidelity model of the trajectory controller

and wind effects can be incorporated to get better results. Another aspect is that

we do not model turning costs, and UAVs need to slow down to take sharper

turns. This increases the actual flight time, and indicates the importance of

modeling the effect of turns in the objective function in the future.

2. Since we flew the UAV at a relatively high altitude (compared to the distance

between parallel required edges and the sensor field of view), the generated

orthomosaic provides an area coverage of the parking lots. Line coverage can

in fact be used as a subroutine for area coverage, and that is a direction we are

pursuing.

These experiments demonstrate the use of our line coverage formulation and the al-

gorithms to generate efficient coverage tours for linear infrastructure. The two modes

57

of travel—servicing and deadheading—can be conveniently modeled in the formula-

tion allowing lower operation times. Furthermore, allowing deadheading reduces the

amount of sensor data required for analysis.

Table 2.2: Operating conditions, computed coverage tour costs, and actual flight
times for experiments with a quadrotor UAV

Road network Parking lots

Service speed 7.00m·s−1 3.33m·s−1

Deadheading speed 10.00m·s−1 5.00m·s−1

Wind speed 2.00m·s−1 1.34m·s−1

Wind direction 45.00◦ 67.50◦

SRLC-ILP cost 485 s 1, 123 s

SRLC-ILP flight time 502 s 925 s

β2-ATSP-2opt cost 492 s 1, 172 s

β2-ATSP-2opt flight time 527 s 1, 023 s

2.6 Summary

Motivated by coverage applications for linear infrastructure such as road networks,

power lines, and oil and gas pipelines, we addressed the single robot line coverage

problem for autonomous aerial and ground robots. The linear features are modeled

as required edges in a graph that the robot must service. Additional non-required

edges, which do not require servicing, provide flexibility for a robot to select its

path. The two modes of travel—servicing and deadheading—permit better modeling

of real-world scenarios where a robot needs to perform task-specific actions such as

58

Figure 2.14: A network of lanes specified on a set of parking lots: The total length of
the lanes is 2,982m. There are 90 vertices, 104 required edges, and 4,005 non-required
edges. The required edges form four connected components.

taking images only along specified features. This reduces the workload of the robot,

permits further optimization of the travel cost, and decreases the amount of sensor

data that needs to be analyzed. Our formulation models asymmetric cost functions

and permits multiple copies of edges. This enables one-way streets and repeated

servicing of segments.

We formulated the single robot line coverage problem as an optimization prob-

lem and developed an ILP formulation that gives optimal solutions. Formal proofs

establish the correctness of the formulation. As the problem is NP-hard, we de-

veloped approximation algorithms that have a guarantee on the quality of the so-

lutions. Studying the structure of the required graph—the graph induced by the

linear features—provided us insights into the problem, which were used to develop

the approximation algorithms. The algorithms were developed in stages going from

a simple version of the problem to the most general one. First, an optimal algo-

59

400

500

600

700

800

900

1000

500 600 700 800 900 1000

Y
-a

xi
s

(m
)

X-axis (m)

(a) Coverage route (b) Actual flight path (c) Orthomosaic

Figure 2.15: Coverage of a portion of the UNC Charlotte road network: The required
graph has one connected component. The road network has a length of 2,658m with
48 vertices and 48 required edges. There are 1,128 non-required edges formed by each
pair of vertices. (a) Coverage tour generated using the β2-ATSP-2opt algorithm. The
cost of the solution is 492.48 s. The servicing travel is denoted by blue solid lines,
while green dashed lines denote the deadheading travel. The arrowheads indicate
the direction of travel. (b) The actual flight path of a UAV executing the coverage
tour autonomously. The blue marker denotes the home location for the UAV. (c)
Orthomosaic generated from the images collected during servicing travel along the
coverage tour. Collecting images only during servicing reduces the number of images
that need to be processed for mapping and analysis.

60

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

Y
-a

x
is

 (
m

)

X-axis (m)

(a) Coverage route (b) Actual flight path (c) Orthomosaic

Figure 2.16: Line coverage of lanes specified on a set of parking lots: The required
graph has four connected components. (a) Coverage tour generated using the β2-
ATSP-2opt algorithm. The cost of the solution is 1,172 s. The servicing travel is
denoted by blue solid lines, while green dashed lines denote the deadheading travel.
The arrowheads indicate the direction of travel. (b) The actual flight path of a
UAV executing the coverage tour autonomously. The blue marker denotes the home
location for the UAV. The actual flight took 1,023 s. (c) Orthomosaic computed from
images collected during the flight.

rithm, based on the minimum cost flow problem, was discussed for the case where

the required graph is Eulerian. For the case where the required graph is connected

but not necessarily Eulerian, a 2-approximation algorithm was developed. Finally,

an (α(C) + 2)-approximation algorithm was given for the general case of a required

graph with C components, where α(C) is the approximation factor for an algorithm

for the ATSP. Proofs for the approximation factor were provided for each of the al-

gorithms. Heuristics that improve the quality of the solutions were incorporated into

the algorithm, and a GTSP based alternative was discussed.

Simulation results on a road network dataset of the 50 most populous cities in

the world show that our main algorithm computes high-quality solutions that are

within 10% of the optimum in less than 3 s. The algorithms are sufficiently fast for

robotics applications. Experiments with a commercial aerial robot were performed

on a portion of the UNC Charlotte road network and on lanes of a set of parking lots.

61

As the images were collected only during servicing, and not while deadheading, a

smaller number of images of only the features of interest were collected. Orthomosaic

maps were generated using these images.

CHAPTER 3: LINE COVERAGE WITH MULTIPLE ROBOTS

The line coverage problem is to find efficient routes for coverage of linear envi-

ronment features by one or more resource-constrained robots. Linear features model

environments such as road networks, power lines, and oil and gas pipelines. We de-

fine two modes of travel for the robots: servicing and deadheading. A robot, such

as an uncrewed aerial vehicle (UAV), services a feature if it performs task-specific

actions, e.g., taking images, as it traverses the feature; otherwise it is deadheading.

Traversing the environment incurs costs (e.g., travel time) and demands on resources

(e.g., battery life). Servicing and deadheading can have different cost and demand

functions, and we further permit them to be asymmetric in the two directions of a

line feature. We model line coverage as an optimization problem on a graph using an

integer linear program (ILP); the task is to find a set of routes that minimizes the

total cost of travel such that all the features are serviced within the resource limit

for each robot. The problem is NP-hard, and hence we develop a fast and efficient

heuristic algorithm, Merge-Embed-Merge (MEM). The algorithm is versatile and can

be modified to incorporate robot constraints; we illustrate this for two variants of

the line coverage problem. We formulate the multi-depot version for large graphs

where a route can start and end at any of the depots. We then extend the MEM

algorithm to handle turning costs and nonholonomic constraints. We benchmark the

algorithm with the optimal ILP approach on a dataset of road networks from the 50

most populous cities in the world. We demonstrate the application of the algorithm

using commercial aerial robots on road networks.

63

3.1 Introduction

Line coverage is the task of servicing linear environment features using sensors or

tools mounted on robots. The features to be serviced are modeled as one-dimensional

segments (or curves), and all points along the segments must be visited. Consider a

natural disaster scenario such as flooding. A team of uncrewed aerial vehicles (UAVs)

is deployed to assess the accessibility of a road network for emergency services. The

UAVs must traverse the line segments corresponding to the road network and capture

images for analysis. This chapter seeks to answer the following question: How should

efficient routes for UAVs be planned so that each road network segment is serviced?

Mobile robots are often resource-constrained—they must come back to their depot or

launch location before they exhaust their resources, such as battery life. Figure 3.1

shows a large road network, routes for eight UAVs covering the entire road network,

and an orthomosaic generated from the images taken by the team of UAVs. Power

lines and gas pipelines have similar infrastructure that requires frequent inspection.

Additional applications arise in perimeter inspection and surveillance, traffic analysis

of road networks, and welding and 3D printing operations.

Line coverage is closely related to arc routing problems (ARPs) studied in the

operations research community (see monograph by Corberán and Laporte, 2014).

ARPs have been used to generate routes for snow plowing, spraying salt, and cleaning

road networks (Corberán et al., 2021). The ARPs and their algorithms are designed

specifically for human-operated vehicles. Although the above tasks can potentially

be automated with ground robots, line coverage has received limited attention in the

robotics community. In this chapter, we design algorithms for line coverage using

autonomous systems applicable to aerial, ground, and underwater robots.

The line coverage problem with multiple robots, modeled using a graph, has three

defining attributes: (1) The edges in the graph are classified as required and non-

required, (2) Robots have two modes of travel—servicing and deadheading, and

64

(a) Input Road Network

0

0.5

1

1.5

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

(b) Line Coverage Routes (c) Orthomosaic

Figure 3.1: Line coverage of the UNC Charlotte road network using a team of resource-
constrained UAVs. (a) The input road network of length 13 km, spanning an area of
1.5 km2. The road network is modeled as a graph comprising 842 vertices and 865
required edges representing the road segments. As the UAVs can fly from one vertex
to another, we add a non-required edge between each pair of vertices, resulting in
353,196 non-required edges in the graph. (b) Routes for eight UAVs, distinguished
by different colors, generated using the Merge-Embed-Merge (MEM) algorithm with
multiple depots developed in this chapter. The algorithm computes depot locations,
shown by black squares, from where the UAVs start and end their routes. The solid
lines represent servicing, while the dashed lines represent deadheading. The UAVs can
fly faster while deadheading, thereby optimizing total flight time. (c) An orthomosaic
of the road network generated from the images taken by the UAVs flown autonomously
along the computed routes.

(3) Robots have constraints on the resources available to them. Required edges in

the graph correspond to the line features to be covered, and a robot can use the

non-required edges to travel from one vertex to another to reduce cost. The vertices

in the graph represent the endpoints of the edges. A robot is said to be servicing a

required edge when it performs task-specific actions such as collecting sensor data.

Each required edge needs to be serviced exactly once by any robot. Robots may

also traverse an edge without performing servicing tasks to optimize the travel time,

conserve energy, or reduce the amount of sensor data. This mode of travel is known

as deadheading, and both types of edges may be used any number of times for this

purpose. The operation time of a robot is constrained by resources such as battery life

available to them. Hence, the routes should be planned such that the total demand

65

for the resources is within the resource limit.

A service cost and a deadhead cost (e.g., travel time) are associated with each

required edge, and they are incurred each time an edge is serviced or deadheaded,

respectively. Only the deadheading cost is associated with the non-required edges.

The total sum of the service and deadhead costs over all routes for the robots is to be

minimized. Moreover, traversing an edge results in the consumption of resources such

as battery life. These are modeled as demands on the edges, and the total demand of

a route should be less than the given capacity of the robots. The costs and demands

for servicing an edge are usually more than those for deadheading as task-related

actions are only performed while servicing. For example, a robot servicing an edge by

recording images may travel slower to avoid motion blur, resulting in a longer travel

time.

In many robotics applications, the cost of travel and the resource demands are

direction-dependent. For example, a ground robot traveling uphill can take longer

and consume more energy than when traveling downhill. Similarly, the costs and

demands of aerial robots may differ in two directions due to wind conditions. Hence,

we consider the graph to have asymmetric cost and demand functions for servicing

and deadheading. Such asymmetric functions can also model one-way streets for

ground robots.

When the network is vast, it may not be possible to service the entire network

from a single depot location. In such situations, it is imperative to have a multi-

depot formulation where the robots have the flexibility to start and end their routes

from one of several depots to optimize the routes. Another practical consideration is

taking sharp turns which can be very expensive as a robot has to slow down, take a

turn, and then accelerate. Similarly, nonholonomic robots such as fixed-wing UAVs

and underwater vehicles cannot make immediate turns. The algorithms presented in

this chapter account for both the multi-depot formulation and the turning costs for

66

nonholonomic robots.

The line coverage problem with multiple robots is the task of computing efficient

coverage routes for a set of line features such that the total cost of travel is minimized

while respecting the capacity constraints. The practical benefits of our line coverage

approach are: (1) The algorithms ensure that the required edges are covered efficiently

by optimizing the total cost of the coverage routes. (2) In contrast to using area

coverage, only the relevant line features are serviced, thus reducing the operation

time, the amount of sensor data, and the time for data analysis. (3) Distinct and

asymmetric costs and demands allow for further optimization of coverage routes.

The contributions of the chapter are:

1. We develop an integer linear programming (ILP) formulation for the multi-robot

line coverage problem.

2. The line coverage problem is NP-hard in general. Thus, we develop a fast

and efficient constructive heuristic algorithm, the Merge-Embed-Merge (MEM)

algorithm.

3. We develop a multi-depot formulation for instances with graphs spanning over

a large area. The MEM heuristic algorithm is extended to solve the multi-depot

line coverage problem efficiently.

4. Turns can be expensive for robots and incorporating their costs and demands for

routes is essential for ensuring efficient and safe routes. We present extensions of

the MEM algorithm to incorporate turning costs. Furthermore, we use Dubins

curves to model turns for nonholonomic robots and incorporate them into the

MEM algorithm. These show that, with little modification, we can incorporate

several practical aspects of deploying mobile robots for line coverage into the

versatile MEM algorithm.

67

5. We demonstrate the algorithm on a dataset1 consisting of road networks from

the 50 most populous cities in the world. Illustrative experiments with UAVs are

also presented. We provide an open-source implementation2 of our algorithms.

The rest of the chapter is organized as follows. The related work is discussed in Sec-

tion 3.2. The multi-robot line coverage problem is formally described in Section 3.3,

along with an ILP formulation. Section 3.4 develops the constructive heuristic algo-

rithm and extends it to two variants of the problem. The simulations and experiments

are discussed in Section 3.5. Section 3.6 summarizes the chapter.

3.2 Related Work

This section first discusses the related work on arc routing problems (ARPs). We

discuss the various relevant problems in ARPs, briefly describe solution methods,

and contrast our approach with existing ones. Next, we discuss work related to line

coverage and area coverage in robotics.

3.2.1 Arc Routing Problems

The line coverage problem belongs to the broad class of arc routing problems

(ARPs). The ARPs are usually applied to transportation problems in which servic-

ing is related to tasks such as delivery and pick-up of goods (Corberán and Laporte,

2014). In such problems, the costs are associated with the travel distances, and they

have the same value for servicing and deadheading. Furthermore, the demands are

associated with the load the vehicles can carry, e.g., the capacity of a garbage collec-

tion truck. Therefore, the deadheading of an edge does not affect the capacity. In

contrast, the capacity in the line coverage problem is associated with battery life, and

demands are incurred in both modes of travel.

The Chinese postman problem (CPP), the simplest of the ARPs, is to find an op-
1The dataset is available at:

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-dataset
2The source code is available at:

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-library

https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-dataset
https://github.com/UNCCharlotte-CS-Robotics/LineCoverage-library

68

timal tour such that every edge in an undirected and connected graph is traversed at

least once. Edmonds and Johnson (1973) used matching and network flow to solve the

CPP on undirected, directed, and Eulerian mixed graphs. In the rural postman prob-

lem (RPP), the task is to service a subset of edges in a graph. Frederickson (1979) gave

a 3/2-approximation algorithm, based on the algorithm given by Christofides (1976)

for the traveling salesperson problem (TSP). The asymmetric RPP, i.e., RPP on a

graph with asymmetric edge costs, is much harder than the symmetric counterpart.

The formulation for the single robot line coverage problem, presented in Chapter 2

and Agarwal and Akella (2021), can be used to solve asymmetric RPP. We developed

algorithms based on the structure of the required graph—the graph induced by the

set of required edges. A 2-approximation algorithm for the case of a connected re-

quired graph and a (α(C) + 2)-approximation algorithm for a required graph with C

connected components were developed. Here, α(C) is the approximation factor for

an algorithm for the TSP on asymmetric graphs with triangle inequality.

Easton and Burdick (2005) introduced kRPP, the RPP with k vehicles. They

modeled coverage of 2D object boundaries as a kRPP and presented a cluster first

and route-second heuristic. The kRPP does not consider the capacity of the robot

(vehicle). The capacitated arc routing problem (CARP), introduced by Golden and

Wong (1981), considers k vehicles of a given capacity Q. The required edges have

a demand associated with them, and the total demand of a route should be less

than the capacity. The CARP is a special case of the line coverage problem—there

are no deadheading demands, and all costs and demands are symmetric. Since the

problem is NP-hard (Golden and Wong, 1981), several heuristic algorithms have been

developed for the CARP (Corberán and Laporte, 2014). Wøhlk (2008) presented a

7/2-approximation algorithm for the problem. Several variants of the ARP partially

or individually consider a subset of the characteristics of the line coverage problem.

Gouveia et al. (2010) presented a lower bound approach for the CARP on mixed

69

graphs using a mixed integer linear program (MILP). The CARP-DD, introduced by

Kirlik and Sipahioglu (2012), considers deadheading demands for the CARP.

In the multi-depot capacitated arc routing problem (MDCARP), a set of depot

locations are given as input. The vehicles can start and end their route at any depot,

and usually, the requirement is to return to the start depot at the end of the route. The

MDCARP is especially relevant in large-scale applications where servicing a network

may not be optimal or even feasible from a single location. Given the low battery

life of robots, compared to fueled vehicles, the MDCARP becomes relevant even for

moderately sized graphs. One common technique is to cluster the input graph into

smaller subgraphs and assign a single depot for each subgraph. The algorithms for

the CARP are then used on each of the subgraphs independently. Such techniques

have also been described as districting by Muyldermans et al. (2003) and as sectoring

by Mourão et al. (2009). The line coverage problem is a generalization of all these

ARPs, as shown in Table 3.1.

Table 3.1: The line coverage problem with its special cases

Literature
Service Deadheading

Cost Demand Cost Demand

kRPP Easton and Burdick (2005) S − = −

CARP Golden and Wong (1981) S S = −

MDCARP Muyldermans et al. (2003) S S = −

CARP-DD Kirlik and Sipahioglu (2012) S S = S

Mixed-CARP Gouveia et al. (2010) A A A −

Line coverage problem A A A A

S: symmetric, A: asymmetric, and −: not considered.
=: The deadheading costs are equal to the service costs.

Several exact and metaheuristic algorithms have been proposed for the ARPs. They

70

are covered in the survey paper by Corberán and Prins (2010) and the monograph

by Corberán and Laporte (2014). Exact approaches include branch-and-bound with

cutting planes, branch-and-price, and column generation. The problem is NP-hard,

and these exponential-time algorithms are not suitable for large-scale robotics appli-

cations. Metaheuristic algorithms, such as scatter search, tabu search, and variable

neighborhood descent have been used for ARPs. Similar to the exact methods, these

can require significant computation resources. Moreover, they typically require a good

initial solution as an additional input to upper bound the optimal cost. The heuristic

algorithms presented in this chapter can provide such an initial solution and be used

as a fast sub-routine to generate intermediate solutions.

Algorithms based on minimum-cost perfect matching and minimum-cost flow prob-

lems are used widely to solve ARPs. They generate a set of Eulerian digraphs, and

a robot route can be generated by computing an Eulerian tour for each such di-

graph. Incorporating multiple depots, turning costs, and nonholonomic constraints is

not trivial using these approaches. In contrast, this chapter develops a constructive

heuristic algorithm, Merge-Embed-Merge (MEM), which maintains a set of routes

for the robots and constructively merges pair of routes to form larger routes. The

algorithm is very fast and gives solutions of high quality. Furthermore, the versatile

nature of the algorithm allows us to extend the algorithm to several variants of the

problem relevant to robotics.

3.2.2 Line Coverage in Robotics

There has been little work on using robots for line coverage tasks. Dille and Singh

(2013) presented algorithms to perform coverage of a road network using a single aerial

robot with kinematic constraints. They modeled the problem through the tessellation

of the road segments by circles of radius corresponding to the sensor footprint and

finding a subset of the circular regions covering the entire road network. Algorithms

for node routing problems, such as the TSP and the multiple TSP, are then used

71

to find the routes for the robots. Oh et al. (2014) proposed an MILP formulation

and a heuristic algorithm for the coverage of road networks. The nearest insertion

heuristic, originally designed for TSP, finds a sequence of edges to be visited while

incorporating Dubins curves for nonholonomic robots. The sequence is split across a

team of robots using an auction algorithm. Algorithms for kRPP were developed for

boundary inspection with multiple robots by Easton and Burdick (2005). Williams

and Burdick (2006) developed algorithms for boundary inspection while considering

revisions to the path plan for the robots to account for environmental changes. Xu

and Stentz (2010) use CPP and RPP formulations for environmental coverage and

consider the case of incomplete prior map information. They extended this work

to multiple robots (Xu and Stentz, 2011) using k-means clustering to decompose

the environment into smaller components, similar to the approach by Easton and

Burdick (2005). Campbell et al. (2018) presented an application of ARPs to cover

road networks using a single UAV. They discretize the required edges to allow the

UAV to service an edge in parts.

The above work illustrates the line coverage applications in robotics. However,

line coverage has not been studied as extensively as the area coverage problem or

node routing problems. Current work does not usually consider the battery life of

the robots and thus may not be suitable for large-scale applications. In contrast, we

model the battery life as capacity (resource) constraints and consider multiple depots,

enabling solutions for large networks. Furthermore, we allow demands on resources

while deadheading and asymmetric functions for costs and demands.

3.2.3 Arc Routing Problems in Area Coverage

ARPs have been used in area coverage problems as a subroutine to generate efficient

robot routes. Arkin et al. (2000) used the CPP to find a route for the milling prob-

lem, a variant of the area coverage problem wherein the tool is constrained within the

workspace. Mannadiar and Rekleitis (2010) performed a cell decomposition and com-

72

puted a Reeb graph. The edges of the graph correspond to the cells in the decompo-

sition. The problem of visiting the cells was then formulated as the CPP. Karapetyan

et al. (2017) used the CPP to compute a large Euler tour and then decomposed the

tour into smaller ones using an algorithm given by Frederickson et al. (1976). We

present a new approach in Chapter 4 for the area coverage problem by generating

service tracks in the environment after performing cell decomposition. These service

tracks were modeled as required edges for the line coverage problem, and the MEM al-

gorithm was used to generate efficient routes for multiple capacity-constrained robots.

Using the above technique, the algorithms presented in this chapter for multiple de-

pots and nonholonomic robots apply to the area coverage problem.

3.3 Problem Statement

We pose the line coverage problem as an optimization problem on a graph. The

environment comprises linear features (line segments or curves) that need to be ser-

viced by a homogeneous team of robots. It is modeled as an undirected and connected

graph G = (V,E,Er), where Er ⊆ E is the set of required edges representing the lin-

ear features. The graph may have edges that do not require servicing, and the robots

can use them to optimize their routes; these are the non-required edges given by

En = E \ Er. The set E can contain parallel edges between two vertices, i.e., we

allow for G to be a multigraph. The set of vertices V consists of edge endpoints,

edge intersections, and depot locations. The depots Vd ⊆ V are a subset of vertices

at which the robots start and end their routes.

For each edge e in E we associate two directional arcs ae and āe that are opposite

in direction to one another. There are two modes of travel for a robot—servicing and

deadheading. A robot is said to be servicing an edge when it performs task-specific

actions such as taking images along the edge. We associate two binary variables skae

and skāe with servicing an edge e ∈ Er by robot k: if a robot k services edge e in

the direction ae, then skae is 1 and 0 otherwise; similarly for the direction āe. Each

73

required edge is required to be serviced exactly once:

K∑
k=1

(
skae + skē

)
= 1, ∀e ∈ Er (3.1)

If a robot traverses an edge without servicing it, the robot is said to be deadheading,

e.g., this occurs when a robot travels from its depot to an edge to be serviced. We

associate two non-negative integer variables dkae and dkāe with deadheading an edge

e ∈ E by robot k. The edges can be deadheaded any number of times. The task is

to compute a set of routes Π = {π1, . . . , πK} for K robots.

Servicing an edge e ∈ Er in the direction ae incurs a service cost cs(ae); similarly

for the direction āe. Analogously, deadheading an edge e ∈ E incurs deadhead costs

cd(ae) and cd(āe). A robot may need to travel slower while performing task-specific

actions resulting in higher costs for servicing than deadheading. Thus, the two cost

functions can differ. The costs are associated with a minimization objective function

of the optimization problem, such as total travel time. The cost of a route πk ∈ Π is

given as:

c(πk) =
∑
e∈Er

[
cs(ae) s

k
ae + cs(āe) s

k
āe

]
+
∑
e∈E

[
cd(ae) d

k
ae + cd(āe) d

k
āe

]
(3.2)

Each robot is constrained by a resource such as operation time, total travel distance,

or battery life. Such a constraint is represented by a budget or capacity Q for each

robot. The consumption of resources is modeled by demand functions qs(ae) for

servicing and qd(ae) for deadheading an edge e ∈ E in the direction ae. The total

demand incurred by a robot for a route πk must be less than the capacity:

q(πk) =
∑
e∈Er

[
qs(ae) s

k
ae + qs(āe) s

k
āe

]
+
∑
e∈E

[
qd(ae) d

k
ae + qd(āe) d

k
āe

]
≤ Q (3.3)

We consider the edge costs and demands for both servicing and deadheading to

74

be direction-dependent, i.e., the graph is asymmetric. For example, cs(ae) can differ

from cs(āe). Asymmetry in graphs can occur when modeling wind for aerial robots

or terrain for ground robots. It also allows us to model one-way streets, directed

graphs, and mixed graphs in general. This can be achieved by setting the cost and

demand in the prohibited direction to be a large constant. The traversal of edges

can be modeled using any function such as constant velocity or cubic trajectories,

and travel time can be used as the cost function. Similarly, demands and capacity

can be specified in terms of battery life. Such functions can also incorporate wind

and terrain information (Yongguo Mei et al., 2006; Franco and Buttazzo, 2015). In

general, the costs and demands are allowed to be arbitrary non-negative constants.

If we also have point features Vf in the environment, we add an artificial edge (v, v)

for each point feature v ∈ Vf . The cost and the resource demand for servicing such

an artificial edge would be the same as that of servicing the point feature, and the

cost and demand for deadheading is set to zero. This transformation allows modeling

both the point and the line features in the same formulation.

Definition: Given an undirected and connected graph G = (V,E,Er), the line

coverage problem is to find a set of coverage routes Π for K robots that services each

required edge in Er exactly once and minimizes the total cost of the routes, while

respecting the resource constraints.

3.3.1 Integer Linear Programming Formulation

An integer linear program (ILP) is a formulation for optimization problems with

integer variables, a linear objective function, and a set of linear constraints. An ILP

formulation provides a concise mathematical description of the problem, and solving

the ILP gives an optimal solution to an instance of the problem if the instance has

feasible solutions.

75

3.3.1.1 Variables

We have the following variables for the ILP.

• Binary service variables skae , s
k
āe ∈ {0, 1} for each required edge e ∈ Er and each

robot k.

• Integer deadheading variables dkae , d
k
āe ∈ N ∪ {0} for each edge e ∈ E and each

robot k.

• Integer flow variables zkae , z
k
āe ∈ N ∪ {0} for each edge e ∈ E and each robot k.

The flow variables are used in connectivity constraints to ensure that routes are

connected to the depots.

For now, we assume that all the robots start and end their routes at the same

depot location v0 ∈ V . We will generalize the formulation to multiple depots in the

following subsection.

3.3.1.2 Routing Constraints

The routing constraints ensure connectivity of a robot route to the depot and

eliminate sub-tours. For ease of notation, we define the following sets:

A =
⋃
e∈E

{ae, āe}, Ar =
⋃
e∈Er

{ae, āe},

H(A, v) = arcs in A with v as the head, and

T (A, v) = arcs in A with v as the tail.

Here, A is the set of all arcs, and Ar is the set of arcs corresponding to required edges.

76

We have the following set of routing constraints for each robot k ∈ {1, . . . , K}:

∑
a∈T (A,vkd)

zka =
∑
a∈Ar

ska (3.4)

∑
a∈H(A,v)

zka −
∑

a∈T (A,v)

zka =
∑

a∈H(Ar,v)

ska, ∀v ∈ V \ {vkd} (3.5)

zka ≤
∑
a∈Ar

ska, ∀a ∈ A (3.6)

zka ≤ |E|dka, ∀a ∈ A \ Ar (3.7)

zka ≤ |E|(ska + dka), ∀a ∈ Ar (3.8)∑
a∈H(Ar,v)

ska +
∑

a∈H(A,v)

dka =
∑

a∈T (Ar,v)

ska +
∑

a∈T (A,v)

dka, ∀v ∈ V (3.9)

The constraints (3.4) to (3.8) are generalized flow constraints that together ensure

the connectivity of the route to the depot and prohibit any sub-tours. The variables

zka are flow variables for each edge direction. Constraint (3.4) define the amount of

flow being released from the depot vertex vkd = v0, which acts as a source of the

flow. For any vertex v (other than the depot vertex), a flow equal to the number of

servicing arcs, with v as the head, is absorbed by the vertex. This is expressed in

constraints (3.5). The amount of flow through an arc is limited by constraints (3.6)

to (3.8). An edge has a positive flow if and only if it is traversed. Finally, the vertex

symmetry constraints (3.9) ensure that the number of arcs entering a vertex is same

as the number of arcs leaving it.

ILP Formulation: The objective function of the line coverage problem is to minimize

the total cost of the routes. We can now pose the line coverage problem as an

optimization problem formulated as an ILP:

Minimize:

K∑
k=1

c(πk) =
K∑
k=1

[∑
a∈Ar

cs(a)ska +
∑
a∈A

cd(a)dka

]
(3.10)

77

subject to:

K∑
k=1

(
skae + skāe

)
= 1, ∀e ∈ Er (3.11)

q(πk) =
∑
a∈Ar

qs(a) ska +
∑
a∈A

qd(a) dka ≤ Q, ∀k (3.12)

Routing constraints (3.4) to (3.9) for each robot k (3.13)

ska ∈ {0, 1}, ∀a ∈ Ar ∀k (3.14)

dka, z
k
a ∈ N ∪ {0}, ∀a ∈ A, ∀k (3.15)

3.3.2 Multi-Depot Formulation

In graphs spanning over a large area, it may be inefficient or even infeasible to

service all the locations from a single location. Hence, we develop a multi-depot

formulation, wherein we are given a set of potential depot locations Vd ⊆ V , and a

route can be assigned to any of the depots to start and end the route. The problem

can be formulated by adding assignment constraints—each route needs to be assigned

exactly one depot location from Vd.

In general, the entire vertex set V could be the set of potential depot locations.

However, this would increase the complexity of the problem significantly. Instead, a

smaller subset of vertices, ideally of sizeK or less, can help in reducing the complexity

while also providing high-quality solutions. These locations can be selected from the

field of operation based on terrain data or by clustering the vertices or the edges.

∑
d∈Vd

xkd = 1, ∀k (3.16)

vkd =
∑
d∈Vd

vd x
k
d, ∀k (3.17)

xkd ∈ {0, 1}, ∀vd ∈ Vd, ∀k (3.18)

78

We introduce the binary variable xkd, which is 1 when the depot vd ∈ Vd is assigned

to route k, and 0 otherwise. Constraints (3.16) ensure that exactly one depot is

assigned to each route. The assignment of the depots to the routes in done by

constraints (3.17).

Routing constraints (3.4) and (3.5) depend on the assigned depot vkd . The con-

straint (3.4) is active only for the assigned depot, whereas constraints (3.5) are active

for all the vertices except the assigned depot. These can be resolved by multiplying

the variable xkd to both sides of the constraint (3.4), and the expression (1 − xkd) to

both sides of constraints (3.5).

However, this will result in a quadratic set of constraints, and the problem will

become non-linear. Although such quadratic constraints can be converted to linear

constraints by introducing additional binary variables and large constants, it would

significantly increase the size of the problem. As the motivation for the multi-depot

problem is to solve large instances, it is not beneficial to formulate the problem as an

ILP, which becomes harder to solve for instances with a large number of variables and

constraints. The difficulty of solving such variants of the problem further motivates

the development of versatile constructive heuristic algorithms that can efficiently solve

the problem for large instances.

3.4 Heuristic Algorithms for Line Coverage

The line coverage problem and its variants are NP-hard problems. Computing

optimal solutions, e.g., using an ILP formulation, is usually feasible only for small

instances. This motivates us to develop heuristic algorithms to compute high-quality

solutions for large instances. Moreover, the algorithm is constructive—it maintains

a set of feasible routes and iteratively merges pair of routes to form a new larger

route. The constructive nature allows algorithm modification for several variants

of the problem for robotics applications, such as incorporating turning costs and

nonholonomic constraints.

79

3.4.1 Merge-Embed-Merge: A Constructive Heuristic

This section develops a new algorithm, Merge-Embed-Merge (MEM), for the line

coverage problem. The underlying concept is to maintain a set of feasible routes;

initially, a route is created for each required edge. Subsequently, routes are merged

together greedily to form a smaller set of routes. This concept of merging was first pre-

sented by Clarke and Wright (1964) for the capacitated vehicle routing problem, and

later adopted in the Augment-Merge heuristic by Golden et al. (1983) for the CARP.

However, the Augment-Merge algorithm cannot handle the asymmetric costs and de-

mands and the deadheading demands of the line coverage problem. Furthermore, the

heuristic degrades rapidly with instance size, especially when the set of required edges

is much smaller than the entire edge set (Corberán and Laporte, 2014). We improve

this by including an embed step in our algorithm.

The MEM algorithm, given in Algorithm 5, comprises four components: (1) ini-

tialization of routes, (2) computation of savings, (3) merging two routes to form a

new route, and (4) embedding the newly merged route. A max-heap data structure is

used to greedily decide the two routes to be merged and embed new routes.

3.4.1.1 Representation of Routes

A route is represented by a sequence of required arcs that are to be serviced by the

robot traversing the route. As the costs and the demands can be direction-dependent,

arcs are used instead of the corresponding required edges. The robot starts at the

depot, travels to the starting vertex of the first required arc, services the sequence of

required arcs, and returns to the depot. Consider a route Rp, as shown in Figure 3.2:

the vertex i is the starting vertex of the first required arc as, and the vertex j is the

end vertex of the last required arc al in the sequence given by Rp. The robot will

deadhead from the depot v0 to vertex i, service the required arcs starting from i up to

the last required arc ending at vertex j, and then deadhead back to the depot v0. Note

80

that the paths v0 → i and j → v0 are the shortest paths and may contain several arcs,

all deadheaded. If two successive required arcs at and at+1 are not adjacent, the robot

deadheads along the shortest path from the ending vertex of at to the starting vertex

of at+1. Thus, the sequence i→ j may involve deadheading between the constituent

required arcs. The cost of the route Rp is given as:

c(Rp) = cd(v0, i) + cs(Rp) + cd(j, v0) + λ (3.19)

The shortest path gives the costs of deadheading from and to the depot. The cost of

servicing the sequence of required arcs in Rp is given by cs(Rp), which may include

deadheadings between non-adjacent required arcs. An additional constant cost λ

representing route setup cost is added to the route cost. The setup cost helps reduce

the number of routes during the merging process.

Rp

v0

i j

as

at at+1

al

Figure 3.2: Representation of a route Rp as a sequence of arcs corresponding to
required edges: The required arcs are shown as solid blue lines, and deadheadings
are shown as dashed green lines. The route internally includes deadheadings given
by shortest paths to and from the depot v0 (black square). The route may have
deadheadings between two non-adjacent required arcs.

81

Algorithm 5: Merge-Embed-Merge (MEM) algorithm
Input : G = (V,E,Er), costs, demands, capacity Q
Output : Coverage routes R, where each tour R ∈ R is a sequence of required edges
/* Initialization of routes */

1 R ← ∅; k ← 1;
2 for e ∈ Er do // ae and āe are arcs for e
3 i← tail(ae); j ← head(ae);
4 c← cd(v0, i) + cs(ae) + cd(j, v0) + λ;
5 c̄← cd(v0, j) + cs(āe) + cd(i, v0) + λ;
6 if c ≤ c̄ then Rk ← ae else Rk ← āe;
7 R.push(Rk); k ← k + 1;

/* Compute savings */
8 S ← ∅;
9 foreach pair of tours Rp, Rq do

10 Compute saving spq for Rp]Rq;
11 if spq ≥ 0 and demand(Rp]Rq) ≤ Q then
12 S.push

(
(p, q, spq)

)
;

13 make_heap(S); // max-heap
/* Repeated Merge and Embed */

14 while S 6= ∅ do
15 (p, q, s)← S. extract-max();
16 if Rp 6= ∅ and Rq 6= ∅ then

/* Merge */
17 Rk ← Rp]Rq;
18 R.push(Rk); k ← k + 1;
19 Rp ← ∅; Rq ← ∅;

/* Embed */
20 foreach tour Ri with i 6= k and Ri 6= ∅ do
21 Compute saving ski for Rk]Ri;
22 if ski ≥ 0 and demand(Rk]Ri) ≤ Q then
23 S. insert

(
(k, i, ski)

)
;

24 Remove empty routes from R;

82

3.4.1.2 Initialization of Routes

The MEM algorithm (Algorithm 5) constructs a route for each required edge in

the initialization step (lines 2–7). Each edge e ∈ Er has two arcs ae and āe associated

with it, representing the two travel directions. Let i and j denote the tail and the

head of the arc ae, respectively (line 3). Then the route for servicing ae comprises

the shortest path from the depot v0 to the tail vertex i, servicing of arc ae, and the

shortest path from the head vertex j to the depot. In the other direction, the route

comprises the shortest path from the depot to the head vertex, servicing of arc āe, and

the shortest path from the tail vertex to the depot. Since the costs are asymmetric,

of the two routes, the one with the lower cost is selected (line 6). It is assumed that

the demand for the initial routes is less than the capacity, for else, the instance does

not have a feasible solution. A constant route setup cost λ is added to the route

cost. The routes are stored in the list R, and there are m = |Er| routes initially.

The particular case where an edge can be serviced in only one direction can also be

handled appropriately in the initialization step.

3.4.1.3 Computation of Savings

Consider two routes Rp and Rq, with tail and head vertices given by tp, hp and

tq, hq, as potential candidates for merging. There are eight possible permutations to

merge the two routes, of which four are shown in Figure 3.3. The remaining four

ways consist of routes in the reverse directions. The first merged route Rpq and its

cost cost(Rpq) are:

Rpq :=Rp]Rq := v0 → tp
Rp−→ hp → tq

Rq−→ hq → v0 (3.20)

cost(Rpq) = cd(v0, tp) + cs(Rp) + cd(hp, tq) + cs(Rq) + cd(hq, v0) + λ (3.21)

Such a merge can have potential saving in cost since we no longer require hp → v0

and v0 → tq. There is also a cost-saving of a route setup cost λ as we have a single

83

route instead of two. Thus, the net saving in cost spq for merging routes Rp and Rq

is given by cost(Rp) + cost(Rq)− cost(Rpq). However, the cost savings are affected by

the direction of the edges due to asymmetry in the costs. Hence, we need to consider

all eight permutations for merging two routes. Some of these permutations might

not satisfy the capacity constraints, i.e., the total demand of the merged route may

be more than the capacity Q. We denote by Rp] Rq the merged route with the

maximum cost saving and satisfies the capacity constraint. If no such combination

exists, then Rp]Rq = ∅ and saving spq = −∞.

For each pair of routes that yield a feasible merged route, the maximum saving in

cost is computed and stored as a tuple (p, q, spq), where p and q correspond to the

routes considered and spq is the corresponding saving (lines 9–12). These m(m−1)/2

tuples are stored in a binary max-heap data structure S, which can be built in O(m2)

computation time (line 13).

v0

tp hp

hq tq

Rp

Rq

tp hp

hq tq

v0

Rp

Rq

tp hp

hq tq

v0

Rp

Rq

tp hp

hq tq

v0

Rp

Rq

Figure 3.3: The figure shows four of the eight permutations to merge two routes Rp

and Rq. The remaining four permutations consist of the shown permutations in the
reverse directions. The tail and the head vertices for Rp are tp and hp, respectively.
Similarly, tq and hq are defined for Rq. The first merged route is v0 → tp

Rp−→ hp →

tq
Rq−→ hq → v0 and its reverse direction route is v0 → hq

Rq−→ tq → hp
Rp−→ tp → v0.

The saving for merging two routes comes from potentially reduced deadheading to
and from the depot.

Next, the merge and embed steps are executed repeatedly until no further merges

are possible (lines 14–23).

84

3.4.1.4 Merge

The pair of routes with maximum cost savings is selected to form a new merged

route, thereby maximizing immediate savings. The maximum element from the max-

heap S is extracted (line 15), and the constituent routes are merged if neither is empty

(lines 16–17). The merged route Rk is added to the list of routes R (line 18). The

constituent routes are set to ∅ so that they are no longer considered for future merges

(line 19). The complexity of the merge step is O(log|S|), where |S| is the number of

elements in S.

3.4.1.5 Embed

We consider merging existing non-empty routes with the newly merged route Rk in

the embed step (lines 20–23). Potential cost savings are computed for the new route

Rk if merged with the other non-empty routes in the list R. New tuples (k, i, ski)

are generated and inserted into the max-heap S, if merging satisfies the capacity

constraint and the cost saving is non-negative (lines 22–23). As there are |R|−1 such

new tuples, the embed step has a computational complexity of O (|R| log (|S|+ |R|)).

The merge and embed components are executed until no further merges are possi-

ble, i.e., S = ∅. The maximum number of routes in the listR is upper bounded by 2m,

with at most m non-empty routes at any iteration. Here, m = |Er| is the number of

required edges. The maximum number of elements in the max-heap S is O(m2). Thus

the complexity of the repeated merge-embed component over all possible merges is

O(m2 logm), which is also the overall complexity of the algorithm. Depending on the

structure of the instance, one may need to compute the shortest deadheading paths

between all pairs of vertices. This can be done using the Floyd-Warshall algorithm

in O(|V |3) computation time (Dasgupta et al., 2006).

There are two essential characteristics of the algorithm that have practical benefits:

(1) The algorithm maintains a feasible set of routes. These routes can be extracted

85

at any point in the algorithm, giving it the anytime property. (2) The number of

routes generated by the algorithm does not depend on the number of robots, i.e., the

algorithm is agnostic to the number of robots available. It generates the number of

routes required to cover the entire environment completely. Thus if a small fleet of

robots is available, one can execute multiple routes for some of the robots by replacing

or recharging batteries.

3.4.2 Multi-Depot Line Coverage for Large Graphs

In the above MEM algorithm, we considered a single depot location, where all the

robots start and end their routes. However, it may not be efficient or feasible to

service the required edges representing the linear features from a single location for

environments spanning over a large area. Thus, we extend the MEM algorithm to

enable multiple depots for the line coverage problem. We are given as input a set

of depot locations Vd ⊆ V . These locations can be specified based on operator ease

and field constraints, e.g., an operator may prefer to launch aerial robots from high

vantage points. Alternatively, the locations can be determined using the k-medoids

clustering algorithm.

Two modifications need to be made to the MEM algorithm given in Algorithm 5

to solve the multi-depot line coverage problem: (1) The initialization of the routes,

and (2) The computation of savings for merging two routes.

3.4.2.1 Initialization of routes

The initialization process for the multi-depot line coverage problem is given in the

procedure Initialize-MD. For each required edge, we iterate over all the depot locations

and compute the cost of servicing the edge in the two directions. The number of such

computations is 2|Vd|. The one with the lowest cost is selected, provided the demand

is less than the capacity. It is assumed that a required edge can be serviced from at

least one of the depots in at least one direction. The complexity of the initialization

86

step changes from O(|Er|) to O(|Vd||Er|).

Procedure Initialize-MD
Input : G = (V,E,Er), depots Vd, costs, demands, capacity Q
Output : Initialized coverage routes R with assigned depots

1 R ← ∅; k ← 1;
2 for e ∈ Er do // ae and āe are arcs for e
3 Rk ← ∅; Rk. cost←∞;
4 for v ∈ Vd do // Iterate over depots
5 i← tail(ae); j ← head(ae);
6 c← cd(v, i) + cs(ae) + cd(j, v) + λ;
7 d← qd(v, i) + qs(ae) + qd(j, v);
8 if d ≤ Q and c < Rk. cost then
9 Rk ← ae; Rk.v0 ← v; // Form route with depot v0

10 c̄← cd(v, j) + cs(āe) + cd(i, v) + λ;
11 d̄← qd(v, j) + qs(āe) + qd(i, v);
12 if d̄ ≤ Q and c̄ < Rk. cost then
13 Rk ← āe; Rk.v0 ← v; // Form route with depot v0

14 R.push(Rk); k ← k + 1;

3.4.2.2 Computation of Savings

In the single depot version of the MEM algorithm, we considered eight permutations

for merging two routes, four of which are shown in Figure 3.3. The cost saving for

merging two routes Rp and Rq is given by cost(Rp) + cost(Rq) − cost(Rpq), where

Rpq is the merged route. In the multi-depot formulation, the cost and the demand of

the merged route depend on the depot v0—the merged route can be assigned any of

the depots, independent of the constituent routes. However, the choice of the depot

affects the saving in cost that can be achieved by merging two routes. Thus, we iterate

over all the depots for the multi-depot line coverage problem and check all the eight

merging permutations for each depot. This gives us 8|Vd| computations, and the one

with the maximum saving is selected provided it satisfies the capacity constraint.

The most expensive component of the MEM algorithm is the embed step. This

step involves computation of savings of a newly merged route with the others in the

current set of routes R (lines 20–23 in Algorithm 5). Thus, the overall complexity

87

of the algorithm changes to O(|Vd|m2 logm). As the computational cost depends on

the number of depot locations, keeping it as small as necessary is advantageous. In

practice, making the number of depots equal the number of robots available gives

good results.

A common approach for solving multi-depot problems is to cluster the required

edges and create subgraphs (Muyldermans et al., 2003; Mourão et al., 2009). Each

subgraph is then treated as an instance of the single-depot problem. However, there

are two issues with the process: (1) The final routes become dependent on the cluster-

ing algorithm, which is generally non-deterministic, and requires multiple runs of the

entire algorithm to get high-quality solutions on average. (2) As the generated clusters

are treated independently, sometimes multiple routes are generated for a cluster with

one serving only a small number of edges, i.e., the robots are not using their capacity

to the full potential. The algorithm does not have a choice to exchange or trans-

fer some of these edges to nearby clusters. This often leads to inefficient solutions.

These limitations are resolved in the multi-depot version of the MEM algorithm by

directly considering the depots in the routing process. Although the clustering may

be used for assigning depot locations, it is not used to cluster the required edges.

Furthermore, compared to the cost of running the whole algorithm for different seeds

of the clustering algorithm, the additional cost of iterating over the depots in the

initialization and the computation of savings is much lower, leading to an efficient

solver for the multi-depot line coverage problem.

3.4.3 Line Coverage with Turning Costs and Nonholonomic Constraints

Until now, we have considered the costs and the demands for traversing the edges

to be arbitrary non-negative constants. However, they do not model turning costs

and nonholonomic constraints. A smooth trajectory is desired in several robotics

applications. Even for differential drive robots, which can perform turns in place, a

sharp turn is undesirable as the robot will need to slow down, take a turn, and then

88

accelerate. Smooth paths are often computed as a post-processing step after path

planning (Ravankar et al., 2018). Such path smoothing techniques can be integrated

with the MEM algorithm so that the costs and the demands of routes are closer to

the actual values. This would require modification of the initialization procedure

and the computation of savings, similar to the previous section for the multi-depot

line coverage problem. However, path smoothing can be an expensive process, and

doing so 8|Vd| times for the embed step in each iteration may not be practical for

applications that require rapid solutions. This section illustrates constant-time pro-

cedures to generate routes with smooth turns and paths that respect nonholonomic

constraints, and integrates them with the MEM algorithm. Furthermore, the costs

and the demands for taking turns are incorporated into the MEM algorithm. We use

Dubins curves for nonholonomic robots, which assume instantaneous steering.

3.4.3.1 Smooth Turns and Turning Costs

We first consider generation of routes with smooth turns for holonomic robots. We

will later see that such smooth turns are useful for nonholonomic robots as well. For

a specified linear velocity when a robot is in motion, the minimum turning radius for

a robot is given by the ratio of its linear and angular velocities; if the turning radius

is small, the robot can take sharper turns. When two adjacent edges do not have a

sharp corner, the robot can take a smooth turn without deviating too much from the

edges, as shown by the green arc in Figure 3.4(a). The arc is tangential to the two

edges. A user-defined parameter δmax determines the maximum allowable deviation

from the edges, as shown by the red dashed circle. The parameter can be set based

on the sensor field-of-view to ensure coverage of every point on the corresponding

linear features. However, if the turn is sharp, the robot needs to slow down so that

the maximum deviation is within δmax, as shown by the red arc in Figure 3.4(b). This

requires the robot to decelerate to achieve the required turning radius by decreasing

the linear velocity. We enforce that the robot can start decelerating only after it has

89

reached the middle of the edge to modularize the computation of the turning costs

and to avoid a cascading effect in computing the cost and the demand for a route.

When a turn is very sharp, shown in Figure 3.4(c), the robot may not have enough

length available to decelerate to the required velocity for the red arc corresponding to

δmax. This requires solving a quadratic equation to determine a time-optimal turning

arc, which corresponds to the innermost blue arc in the figure. In the worst case of a

180 degree turn, the robot may need to come to a complete stop. As the accelerations

of the robots are usually high, and the lengths of the edges are comparatively large

in practical applications, we can assume that the robot can come to a complete stop

from its full speed within half the length of the edge; otherwise the robot may not

be able to take 180 degree turns. Note that the formulation does not restrict having

different speeds for servicing and deadheading. These three cases allow the modeling

of smooth turns between two adjacent edges in constant time.

(a) Wide turn

p1p2

p3

δmax

p1p2

p3

(b) Sharp turn

p1p2

p3

(c) Very sharp turn

Figure 3.4: Smooth turns for a robot traversing two adjacent edges from p1 to p3

through p2. The minimum turning radius is given by the ratio of its linear and
angular velocities, and the corresponding arc is shown in green. (a) When the corner
is wide, the robot can turn smoothly without changing its velocity and deviating too
much from the original path. (b) However, if the turn is sharp, the robot needs to
slow down so that the deviation is within the permitted limit δmax. The optimal
turning arc is shown in red. (c) If the turn is very sharp, the robot may not have
enough distance to decelerate to the required velocity for the red arc. In the worst
case of a turn of π radians, it may have to come to a complete stop. The innermost
blue arc shows the optimal turning arc based on the maximum deceleration and the
turning angle.

90

(a) No adjacent edges, Du-
bins curves

(b) Adjacent edges, Dubins curves (c) Adjacent edges, Dubins
curves and smooth turns

Figure 3.5: Modeling of deadheading paths for nonholonomic robots. (a) The graph
does not contain sharp turns and Dubins curves give optimal paths for deadheading.
(b) When we have adjacent edges, common in road networks, Dubins curves can
create several circular arcs to orient the robot along the edges. (c) We introduce
smooth turns with Dubins curves to generate efficient deadheading paths between
required edges.

3.4.3.2 Nonholonomic Robots

Several commonly used robots, such as car-like robots, fixed-wing UAVs, and un-

derwater robots, have nonholonomic constraints, i.e., the robots cannot take turns

in place. We use a unicycle model of the robots (Lynch and Park, 2017) and incor-

porate Dubins curves for the motion of the robots. Dubins curves are often used to

determine optimal paths from one pose of the robot to the other (LaValle, 2006),

where the pose comprises the position and the orientation of the robot. An exam-

ple of a coverage route using Dubins curves to determine optimal deadheadings is

given in Figure 3.5(a). A Reeds-Shepp model can also be used to determine turns for

nonholonomic robots.

The Dubins curves can be inefficient when we have adjacent required edges, as

shown in Figure 3.5(b), as we may have to take extra turns to align the heading of

the robot with the subsequent edge. Instead, we leverage the turning cost model,

described in the previous subsection, to allow the robots to deviate from their path

within a given limit δmax. This eliminates most of the extra turns generated by just

91

using Dubins curves. An example is shown in Figure 3.5(c). In the case of fixed-wing

UAVs that have a lower bound on the minimum speed, the algorithm can choose to

follow Dubins curves for very sharp turns.

Procedure Initialize-MD-Turns
Input : G = (V,E,Er), depots Vd, costs, demands, capacity Q
Output : Initialized coverage routes R with assigned depots

1 R ← ∅; k ← 1;
2 for e ∈ Er do // ae and āe are arcs for e
3 Rk ← ∅; Rk. cost←∞;
4 for v ∈ Vd do // Iterate over depots
5 c← cd(v, ae) + cs(ae) + cd(ae, v) + λ;
6 d← qd(v, ae) + qs(ae) + qd(ae, v);
7 if d ≤ Q and c < Rk. cost then
8 Rk ← ae; Rk.v0 ← v; // Form route with depot v0

9 c̄← cd(v, āe) + cs(āe) + cd(āe, v) + λ;
10 d̄← qd(v, āe) + qs(āe) + qd(āe, v);
11 if d̄ ≤ Q and c̄ < Rk. cost then
12 Rk ← āe; Rk.v0 ← v; // Form route with depot v0

13 R.push(Rk); k ← k + 1;

Given an initial and a final heading angle at the depots, we require three kinds

of cost functions for deadheading: (1) from a depot to any required arc c(v0, a),

(2) from one required arc to another c(a1, a2), and (3) from a required arc to a depot

c(a, v0). Here, v0 is a depot, and a, a1, a2 ∈ Ar are required arcs. For environments

with cost functions that satisfy the triangle inequality, these cost functions can be

computed in constant time using the above procedures for smooth turns and Dubins

curves. When the triangle inequality is not satisfied, we use the technique of line

graphs3 Winter (2002); Geisberger and Vetter (2011) to compute the shortest dead-

heading paths and cost functions, which can be computed in O(|E|3) time, where E

is the number of edges in the graph. The procedure Initialize-MD-Turns shows the

modified initialization using multiple depots and turning costs. Similarly, the cost

savings for merging can be modified to incorporate turning costs. The running time
3Winter (2002); Geisberger and Vetter (2011) refer to line graphs as dual graphs, which should

not be confused with dual graphs in graph theory.

92

of the MEM algorithm does not change and is given by O(|Vd|m2 logm).

3.5 Simulations and Experiments

We developed the Merge-Embed-Merge (MEM) heuristic algorithm for the line

coverage problem with multiple resource-constrained robots to obtain high-quality

solutions rapidly. We further developed algorithms for large-scale graphs using a

multi-depot formulation and for nonholonomic robots. This section empirically vali-

dates these assertions about the algorithm through simulations and experiments. We

analyze the performance of the MEM algorithm, in terms of computation time and

the solution quality, on a dataset of 50 road networks. We perform experiments with

aerial robots on the UNC Charlotte campus road network. Finally, we illustrate the

line coverage problem with nonholonomic robots.

We use the DJI Phantom 4 quadrotor in our experiments, with the following cost

model for traversing the edges. Denote the speed of the UAV by v and the wind speed

by w. Let the travel vector t denote the traversal of an edge from its tail vertex vt

to the head vertex vh. Let φ be the angle between the wind vector and the travel

vector t for an edge. Then the effective speed of the UAV is given by:

veff = w cosφ+

√
v2 − w2 sin2 φ

The cost function is defined as the time taken for the UAV to traverse an edge:

c(vt, vh) =
‖t‖2

veff

Here, ‖t‖2 is the Euclidean distance from vt to vh. We use different speeds for servicing

and deadheading, and the value of v is set accordingly based on the travel mode. Note

that the cost function is direction-dependent due to wind, and hence, the graph is

asymmetric.

93

For convenience, we use travel time defined by the cost function as the demand

function and specify the capacity in terms of the allowable flight time for the UAVs.

The cost and the demand functions need not be the same in practice, and functions

that model battery consumption can be used instead. Our open-source implementa-

tion allows for any cost and demand functions with a non-negative cost and demand

for the edges.

3.5.1 Simulation Analysis on a Dataset of 50 Road Networks

The analysis is performed on a dataset of 50 road networks from the most populous

cities around the world. The road networks are representative of environments with

linear features, and they provide widely varying graph structures for a thorough

evaluation of the algorithm. These networks are represented by line segments, which

form the set of required edges. The endpoints and the intersections of the road

segments form the vertex set in the graph. As UAVs that fly at high altitudes can

travel from one vertex to another, for each pair of vertices, we add a non-required

edge if a required edge does not exist between the vertices. The MEM algorithm is

implemented in C++ and executed on a standard laptop with an Intel Core i7-1195G7

processor on a single core. We compare the quality of the solutions computed using

the MEM algorithm with the solutions from solving the ILP formulation. The ILP

formulation is solved using Gurobi Optimization (2021), and the C++ API was used

to interface with the solver. The ILP formulation is executed on a cluster node with

an Intel Xeon Gold 6248R processor using 16 cores in parallel for each road network.

Additionally, the solutions obtained using the MEM algorithm are used to provide an

initial solution to the solver, which helps in upper bounding the branch-and-bound

algorithm used by ILP solvers. As the problem is NP-hard, the ILP formulation can

take a very long time to reduce the gap between the current best solution and the

lower bound, even though a powerful cluster node is used and an initial solution is

provided. Thus, we limit the execution time to 24 hours.

94

0

0.5

1

0 0.5 1 1.5 2

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

0 0.5 1 1.5 2

Y
-a

x
is

 (
x

10
3

m
)

X-axis (x 103 m)

0

0.5

1

1.5

2

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

1.5

2

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

0

0.5

1

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

0

0.5

1

0 0.5 1

Y
-a

xi
s

(x
 1

0
3

m
)

X-axis (x 103 m)

0

0.5

1

0 0.5 1

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

Figure 3.6: Four of the 50 sample road networks obtained for the most populous
cities: The first column is the map with the input graph, the second column is the
solution obtained using the ILP formulation, and the third column is the solution
obtained using the MEM algorithm. The road networks, from top to bottom, are
from (a) New York, (b) Delhi, (c) Paris, and (d) Beijing. Only the required edges are
shown in the input graph, and there is a required edge for each pair of vertices in the
graph. For example, the New York graph has 379 vertices, 402 required edges, and
71,361 non-required edges. The solid lines represent servicing travel mode, and the
dashed lines represent deadheading travel mode.

95

We set the servicing and the deadheading speeds to 7m·s−1 and 10m·s−1, respec-

tively. A wind of 2m·s−1 is simulated from the south-west direction, i.e., π/4 radians

from the horizontal axis. For the first set of experiments, we set the capacity of the

robot to 20 minutes (1,200 s). Figure 3.6 shows four of the fifty road networks, along

with the routes obtained using the ILP formulation and the MEM algorithm. We

consider a single depot location for these simulations, shown by a black square. The

depot is set to be the vertex closest to the mean of all the vertices in the graph.

The road networks provide a rich set of graph structures, as illustrated by the four

sample graphs. The solutions from the MEM algorithm look similar to that of the

ILP formulation, and the amount of deadheading is minimal.

100 200 300 400 500 600 700

0

2

4

6

8

Number of required edges

C
os
t
di
ffe

re
nc
e
pe

rc
en
ta
ge

Figure 3.7: Comparison of the solutions generated using the MEM algorithm with
the solutions from ILP formulation for the road network dataset. The cost difference
percentage is computed as 100 c−c

∗

c∗
. The MEM solutions are within 7% of the ILP

solutions. The number of required edges correspond to the number of linear segments
in the road networks.

Figure 3.7 shows the cost difference percentage, computed as 100 (c−c∗)
c∗

, where c and

c∗ are the costs of solutions computed using the MEM algorithm and the ILP for-

mulation, respectively. Note that the difference in cost does not deviate significantly

as the number of required edges increases. The performance of the ILP decreases

rapidly for large graphs as the number of variables increases, as the ILP is not able

96

to converge to an optimal solution within the computation time limit of 24 hours.

Furthermore, graphs with a large total network length require more routes, increas-

ing the number of variables in the ILP formulation. However, the MEM algorithm

generates high-quality solutions even for large graphs.

100 200 300 400 500 600 700

0

0.5

1

1.5

2

Number of required edges

C
om

pu
ta
ti
on

ti
m
e
(s
)

Figure 3.8: Computation time for the road network dataset using the MEM algorithm:
Each road network is placed in bins of size 100 according to the number of required
edges. The MEM algorithm is executed 100 times for each road network. The results
are shown as a boxplot: the red boxes represent the total computation time, while
the blue boxes represent the time taken by the MEM algorithm. Diamond markers
show the average, and the circles are outliers.

Figure 3.8 shows the computation time required to obtain solutions for the road

network dataset. Most of the computation is spent processing the road network and

creating the graph. The largest road network with 730 required edges is solved in

about 2 s, of which the MEM algorithm takes less than 0.5 s. For graphs with less

than 200 required edges, the solutions are generated within 0.1 s. The analysis of

computation time confirms our assertions that the algorithm is very fast for robotics

applications. It can also be used in real-time, where the graph structure and the

remaining battery life are updated as robots traverse the environment.

Next, we analyze the performance of the MEM algorithm with different robot

capacities. For each road network, the capacity is set as a fraction of the minimum

97

0.30 0.45 0.60 0.75 1.00

0

2

4

6

Capacity fraction

C
os
t
di
ffe

re
nc
e
pe

rc
en
ta
ge

Figure 3.9: Cost difference between the solutions generated using the MEM algorithm
and the ILP solution for different capacities. For each instance, the capacity is set
as a fraction of the route cost for a single robot with infinite capacity. The results
are shown as boxplots, circles show the outliers, and the diamond markers show the
average. The average difference in the cost between the solutions generated by the
MEM algorithm and the ILP formulation is 2.61%.

98

cost required to cover the entire network using a single robot. Figure 3.9 shows the

cost difference percentage between the solutions obtained using the ILP formulation

and the MEM algorithm with varying capacity fractions. The performance of the

ILP formulation worsens as the capacity decreases because more routes are required

to cover the entire road network. The performance of the MEM algorithm remains

consistent. The capacity does not have a significant effect on the running time, and

the algorithm requires fewer merges as the capacity decreases.

The simulations on the road network dataset show that the MEM algorithm gen-

erates solutions with costs comparable to that of the bounded-computation-time ILP

formulation, i.e, within 7%, and with a maximum computation time of around 2 s.

We modeled a fixed depot location, cost and demand functions, capacity constraints,

and wind conditions within the same framework. These results show that the al-

gorithm is suitable for deploying robots, in particular aerial robots, for coverage of

linear infrastructure.

3.5.2 Experiment on a Road Network with a Single Depot

We performed experiments with a UAV on a portion of the UNC Charlotte campus

road network, shown in Figure 3.10. The service and the deadhead speed were set to

3.33m·s−1 and 5m·s−1, and a wind speed of 0.89m·s−1 from the west was incorporated

based on the wind conditions on the day of the experiment. A conservative capacity of

600 s was selected. Coverage solutions were generated using both the ILP formulation

and the MEM algorithm. The ILP formulation gave the optimal solutions for the road

network. The computed and the actual flight times are shown in Table 3.2. The actual

flight times include take-off and landing and are close to the computed cost.

The experiment shows that the line coverage problem is well-suited to model cover-

age of linear infrastructure such as a road network. The problem models two different

modes of travel and incorporates wind conditions in the formulation. Furthermore,

activating the sensors only during servicing helps in reducing the amount of data

99

required that needs to be processed for analysis and creating orthomosaic maps.

(a) Input Road Network

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Y
-a

xi
s

(x
 1

02
m

)
X-axis (x 102 m)

(b) Line Coverage Routes (c) Orthomosaic

Figure 3.10: Line coverage of a portion of the UNC Charlotte road network with
two routes and a single depot. (a) The input road network has a length of 2,658m
with 48 vertices and 48 required edges (shown as red lines). There are 1,128 non-
required edges formed by pairs of vertices (not shown). (b) Two routes distinguished
by different colors are computed using the MEM algorithm. The algorithm computes
a depot location, shown by the black square, from where the UAVs start and end
their routes. The solid lines represent servicing, while the dashed lines represent
deadheading. (c) An orthomosaic generated from the images taken by the UAVs
flown autonomously along the computed routes. The lines show the actual flight
path, and the dots are the locations where the images were taken.

Table 3.2: Comparison of computed and actual flight times

Computed Cost (s) Actual Flight Time (s)

Route 1 Route 2 Route 1 Route 2

ILP 462 554 527 642

MEM 473 599 548 688

3.5.3 Experiment on a Large-Scale Road Network

We used the multi-depot MEM algorithm for the UNC campus road network span-

ning an area of 1.5 km2 and a length of 12 km, shown in Figure 3.1. The road net-

work consists of 842 vertices, 865 required edges, and 353,196 non-required edges.

k-medoids clustering was used to obtain eight depot locations, shown as black squares

100

in the figure. The depots are well distributed in the road network such that no road

segment is far away from all the depots. The multi-depot MEM algorithm computed

eight routes, and no two routes share the same depot. Note that the k-medoids algo-

rithm is only used to compute the depot locations, and we do not cluster the edges. A

service speed of 5m·s−1 and a deadhead speed of 8m·s−1 were set for the experiments.

The computed routes and the orthomosaic generated from the images collected during

flights are shown in Figure 3.1. Table 3.3 gives computed costs, actual flight times,

and the number of images collected for each route. For these experiments we did

not incorporate the wind conditions, which could be a reason for a higher deviation

between the computed cost and the actual flight time.

Table 3.3: Data of flights for the UNC Charlotte Road Network

Computed Cost (s) Flight time (s) Number of images

215 346 87
458 616 180
407 496 170
538 657 221
371 493 140
449 599 192
481 627 210
277 393 120

It can be observed from the routes that the individual routes primarily consist of

road segments that are close to each other and are connected, indicating that the

MEM algorithm can efficiently distribute the line features among routes. Further-

more, the routes are assigned to the closest depot, showing that the multiple depot

formulation of the MEM algorithm is well-suited for the line coverage problem with

large graphs.

3.5.4 Nonholonomic Robots

We combined the multi-depot formulation and the nonholonomic formulation for a

network of lanes on a set of parking lots as an illustrative example. The input network

101

and the planned routes are shown in Figure 3.11. The service and the deadhead speeds

were set to 3.33m·s−1 and 5.00m·s−1. A maximum angular velocity of π/4 rad·s−1

and maximum acceleration of 3.00m·s−2 were set. A deviation limit δmax of 4m was

selected to allow smooth turns for adjacent required edges. Note that the acceleration

is only used for generating smooth turns for adjacent edges with very sharp corners.

It is not required for generating Dubins curves. Two depots were obtained using

clustering. The routes were generated for a flight time of 600 s. The deadheadings

are composed of Dubins curves for non-adjacent required edges and smooth turns

for adjacent required edges. Note that the algorithm computed routes that cover

separated regions which reduces the amount of deadheading, thereby optimizing the

total cost of the routes.

(a) Input Road Network (b) Line Coverage Routes

Figure 3.11: Line coverage of a network of lanes in a set of parking lots: (a) The
total length of the lanes in the input graph is 2,982m. There are 90 vertices, 104
required edges, and 4,005 non-required edges. (b) Coverage routes using two depots
and nonholonomic robots. There are two routes distinguished by different colors. The
green lines show deadheadings composed of Dubins curves and smooth turns. The
arrows indicate the direction of travel. The inset shows an enlarged view of smooth
turns for adjacent required edges.

3.6 Summary

This chapter presented the line coverage problem with multiple resource-constrained

robots for coverage of linear features in an environment. The features can be line seg-

ments or any one-dimensional curves. The environment was modeled as a graph with

102

the linear features forming a set of required edges, and the vertices of the graph

comprising endpoints and intersections of the linear features. Additionally, the for-

mulation permits non-required edges in the graph that the robots need not cover but

can be used for faster travel between vertices. The edges have non-negative costs (e.g.,

travel time) and resource demands (e.g., battery life) associated with them. The for-

mulation minimizes the total costs of the routes under the constraint that each route’s

total demand is within the available resource capacity. A unique characteristic of our

formulation is that we allow two modes to travel for the robots—servicing and dead-

heading. The formulation models different cost functions and resource demands for

the two modes of travel for the robots. These modes enable the algorithms to op-

timize the operation time, conserve energy, and reduce the amount of sensor data.

Furthermore, the cost and the demand functions can be direction-dependent, i.e., the

graph is asymmetric. This facilitates the modeling of wind conditions, uneven terrain,

and one-way streets.

We posed line coverage as an optimization problem on graphs and formulated it as

an integer linear program (ILP). The ILP provides an optimal solution for instances

that have feasible solutions. However, the problem is NP-hard, and solving the ILP

even for moderate-sized graphs can be computationally expensive. We, therefore,

designed a heuristic algorithm, Merge-Embed-Merge (MEM), which has a polynomial-

time complexity of O(m2 logm), where m is the number of linear features in the

environment. The algorithm maintains a set of feasible routes and iteratively merges

pairs of routes to form new larger ones. Eight possible ways of merging two routes

dictate the savings in merging routes. The algorithm is constructive in the sense that

new routes are constructed as the algorithm progresses, in contrast to other graph

procedures where a digraph is used as a proxy to the routes. The constructive nature

of the algorithm allows us to extend the algorithm to several variants of the line

coverage problem.

103

When the environment is large, it may not be possible to cover the entire network

from a single depot location. Thus, we formulate the line coverage problem with mul-

tiple depots and extend the MEM algorithm to solve the problem. This is the first

fast and efficient algorithm for the line coverage problem with multiple depots and

applies to related arc routing problems commonly used for human-driven vehicles.

Taking turns can be very expensive for robots. Similarly, nonholonomic robots, such

as fixed-wing UAVs and car-like ground robots, cannot make point turns. A common

technique is to post-process the routes to obtain smooth trajectories. However, this

can violate the capacity constraints and may lead to inefficient routes. Our formula-

tion incorporates smooth turns and nonholonomic constraints into the algorithm by

including costs and demands on resources due to the turns. Therefore, the routes are

both efficient and safe with respect to resource constraints.

We evaluated the MEM algorithm on a dataset of 50 road networks from the

most populous cities around the world. The networks have varying graph structures

allowing a thorough assessment of the algorithm. The evaluation shows that the MEM

algorithm computes high-quality solutions with costs within 7% of the costs of the

ILP solutions. The MEM algorithm also performs similarly when the capacity of the

robots is varied. The evaluation of the computation times shows that the algorithm

is very fast as it solves the largest of graphs within 0.5 s, and the entire procedure,

including creating graphs, takes around 2 s. For graphs with less than 200 required

edges, the solutions are generated within 0.1 s.

We illustrated the algorithm in experiments on the UNC Charlotte road network.

For the first experiment, two routes from a single depot location were autonomously

executed by a commercial UAV to cover a portion of the road network. In the second

experiment, we used the formulation for the line coverage problem with multiple

depots to obtain eight depots and routes for the road network. These routes were

then executed autonomously using a UAV. Next, we illustrated the line coverage

104

algorithm with multiple depots and nonholonomic robots on lanes of a set of parking

lots. These experiments show that the algorithm models coverage of real-world linear

infrastructure well and can be conveniently used in commercial applications. The

algorithm is also very fast and can be used for computing routes online on the robots

for an environment with linear features that need to be updated.

CHAPTER 4: AREA COVERAGE

Area coverage is the task of efficiently servicing a given two-dimensional surface us-

ing sensors mounted on robots such as uncrewed aerial vehicles (UAVs) and uncrewed

ground vehicles (UGVs). We present a novel formulation for generating coverage

routes for multiple capacity-constrained robots, where capacity can be specified in

terms of battery life or flight time. Traversing the environment incurs demands on

the robot resources, which have capacity limits. The central aspect of our approach

is transforming the area coverage problem into a line coverage problem (i.e., coverage

of linear features), and then generating routes that minimize the total cost of travel

while respecting the capacity constraints. We define two modes of travel: (1) servicing

and (2) deadheading, which correspond to whether a robot is performing task-specific

actions or not. Our formulation allows separate and asymmetric travel costs and de-

mands for the two modes. Furthermore, the cells computed from cell decomposition,

aimed at minimizing the number of turns, are not required to be monotone poly-

gons. We develop new procedures for cell decomposition and generation of service

tracks that can handle non-monotone polygons with or without holes. We establish

the efficacy of our algorithm on a ground robot dataset with 25 indoor environments

and an aerial robot dataset with 300 outdoor environments. The algorithm generates

solutions whose costs are 10% lower on average than state-of-the-art methods. We

additionally demonstrate our algorithm in experiments with UAVs.

106

4.1 Introduction

This chapter addresses the area coverage problem—the task of efficiently servicing

a given planar surface. There are several applications of the area coverage problem;

these include mapping and inspection of large regions using a team of aerial robots

(i.e., UAVs), and vacuuming, lawn mowing and harvesting with ground robots (i.e.,

UGVs). The area coverage problem also applies to CNC-based machining operations,

as illustrated by Arkin et al. (2000). The problem is widely studied in the robotics

literature (see recent suverys by Galceran and Carreras, 2013; Cabreira et al., 2019).

However, relatively few approaches for the area coverage problem consider multiple

robots. Furthermore, practical constraints such as limited battery capacity and the

effect of wind or uneven terrain are usually not considered. The chapter presents

a method for area coverage that addresses these challenges. Even when these con-

straints are not modeled, the algorithms in this chapter, in comparison to recent work,

generate higher quality solutions.

We consider two modes of travel for a robot. A robot is said to be servicing

when it performs task-specific actions, such as taking images or vacuuming using its

sensors or tools. A robot may travel from one location to another at faster speeds

without performing task-specific actions—referred to as deadheading—to optimize the

mission time, conserve energy, or reduce the amount of sensor data for analysis. The

robots usually have a finite amount of resources, such as battery charge, which can

be specified in terms of energy or a time limit, referred to hereafter as capacity. The

robots must return to their home location before the resource consumed exceeds the

capacity. The goal is to find efficient routes for a team of robots such that the entire

environment is serviced while respecting the capacity constraints. Figure 4.1 shows

an example environment and routes generated for capacity-constrained robots.

Our formulation for solving the area coverage problem consists primarily of three

components: (1) Cell decomposition of the environment, (2) Service track generation

107

Figure 4.1: Area coverage of an environment with a team of capacity-constrained
robots. The grey regions represent obstacles in the environment. The black square
(near the center) represents the depot location—the robots start and end their routes
at the depot. The solution consists of two routes, shown in dark blue and light red.
The solid lines represent the service tracks. The dashed lines represent deadheading
travel—the robots can turn off the sensors and travel at faster speeds along these line
segments.

for individual cells, and (3) Routing to traverse the service tracks. The central aspect

is to transform the area coverage problem into a line coverage problem—the coverage

of linear features in an environment discussed in Chapter 3 and Agarwal and Akella

(2020). The service tracks form the linear features that the robots must service, and

an efficient algorithm for the line coverage problem is used to generate routes for the

team of robots. This allows us to model the cost of travel (e.g., time), the demands

on resources (e.g., battery), and asymmetric costs and demands for travel due to wind

or uneven terrain. Our formulation facilitates a significant generalization of the cell

decomposition component to reduce the number of turns that the robots must take. In

particular, the cells are no longer required to be monotone polygons (Berg et al., 2008)

with respect to the service direction. This generalization enables additional service

directions for the cells to minimize the number of turns. Furthermore, allowing cells to

be non-monotone polygons with holes enables the additional merging of adjacent cells

with the same service directions. Merging adjacent cells reduces the number of service

tracks by avoiding overlapping sensor coverage regions at the common boundary of

a pair of adjacent cells. Additionally, we observe that a simple back-and-forth (i.e.,

108

boustrophedon) pattern does not always guarantee complete coverage. We mitigate

this issue in the new service track generation algorithm.

The contributions of the chapter are:

1. A cell decomposition algorithm that allows non-monotone polygons and opti-

mizes the number of turns that the robots need to take.

2. A new service track generation algorithm capable of handling non-monotone

polygons with obstacles. The algorithm improves coverage of the environment

over the traditional boustrophedon pattern.

3. A new formulation to transform an instance of the area coverage problem into

that of the line coverage problem.

4. We minimize the total cost of coverage routes for multiple robots while respect-

ing their capacity constraints.

5. An open-source implementation1 of our algorithms.

This is the first method for cell decomposition and service track generation that

minimizes the number of turns while allowing non-monotone polygons with holes.

Furthermore, this is the first approach for the area coverage problem that allows two

modes of travel, capacity constraints, and asymmetric travel costs and demands.

4.2 Related Work

Area coverage has a large body of work that has been covered extensively in recent

survey papers by Galceran and Carreras (2013); Cabreira et al. (2019). The area

coverage problem is related to the lawn mowing problem, which was shown to be

NP-hard by Arkin et al. (2000). Consequently, several approximation and heuristic

algorithms have been proposed. The approaches for area coverage problems can be

broadly classified into approximate and exact methods.
1Source code available at:

https://github.com/UNCCharlotte-CS-Robotics/AreaCoverage-library.

https://github.com/UNCCharlotte-CS-Robotics/AreaCoverage-library

109

Grid-based approaches, which fall under approximate methods, were some of the

earliest techniques for solving the area coverage problem (Gabriely and Rimon, 2001).

These methods typically discretize the environment into small cells based on a given

resolution. Thus, the quality of the results depends on the resolution (Wei and Isler,

2018). Moreover, the computational complexity increases rapidly with environment

size. Vandermeulen et al. (2019) address coverage with multiple robots using turn

minimization as the objective for cell decomposition. The environment is contracted

into a rectilinear polygon with integer side lengths. This new polygon is then de-

composed into rectangles of unit width (called ranks) such that the sum of altitudes

is minimized. An m-TSP algorithm is used to find paths for the robots. While

the algorithm works well for rectilinear environments, it is not designed for complex

non-rectilinear environments.

There has been recent interest in learning-based strategies. However, they are not

yet generalizable to large complex environments. Usually, very small grid sizes are

used to benchmark the results—a 16x16 grid was used by Apuroop et al. (2021) and

a 7x7 grid by Theile et al. (2020). Retraining of the neural network was required

for each environment in the approach by Theile et al. (2020). Moreover, these do

not consider multiple robots. In contrast to the above grid-based approaches, our

formulation can handle environments with non-rectilinear boundaries and obstacles.

We also allow capacity constraints, asymmetric costs and demands, and two different

modes of travel.

In this chapter, we focus our attention on exact methods. These methods typically

use computational geometry and graph theory. A common approach is to decompose

the environment into cells, known as cell decomposition. Choset (2000) presented the

widely used boustrophedon cell decomposition (BCD), an efficient way to decompose

a given environment with obstacles. The key idea is to generate monotone poly-

gons (Berg et al., 2008) with respect to a given service direction using a sweep-line

110

based algorithm.

In most mobile robotics applications, it is desirable to have long paths with as few

turns as possible. Turns can be very expensive both in terms of time and battery

consumption, as the robot may need to slow down, take a turn, and then accelerate

again. Huang (2001) presented a minimum sum of altitudes (MSA) formulation.

The MSA corresponds to the number of turns required for a robot to service the

environment. For both convex and non-convex polygons, the service track orientation

that minimizes the number of turns is parallel to one of the polygon edges. A dynamic

programming algorithm with an exponential running time was presented to compute

an optimal decomposition. In contrast, the BCD is computationally very efficient but

does not consider the number of turns. Hence, several heuristic algorithms have been

developed that trade off optimizing the number of turns and computational efficiency.

A trapezoidal decomposition was used by Oksanen and Visala (2009) to obtain

an initial set of cells that are then merged to reduce the number of cells. Service

directions are determined by using a bisection search. A sweep-line based algorithm,

similar to BCD, was presented by Yu and Hung (2015) to obtain an initial decompo-

sition of the environment. A service direction is determined independently for each

cell. Adjacent cells that have the same service direction are merged if they remain

monotone even after merging. Nielsen et al. (2019) obtain an initial decomposition

of the environment by extending interior edges of concave vertices. An integer pro-

gramming formulation and a heuristic algorithm are proposed to obtain solutions

efficiently. An approach based on vehicle routing problems is used to route multiple

robots. All these techniques require a set of monotone polygons. In contrast, our

approach removes this requirement, enabling us to improve the cell decomposition

procedure.

In the approaches by Mannadiar and Rekleitis (2010) and Xu et al. (2014), a

Reeb graph is generated from the BCD, where the cells are represented by edges and

111

the connectivity of cells is represented using vertices. An algorithm for the Chinese

postman problem (CPP) finds a tour on the Reeb graph, which provides a sequence

of cells to be visited by the robot. A single service direction is assumed for the

entire environment, determined by simple heuristics such as longest edge or wind

direction. This work was extended by Karapetyan et al. (2017) to multiple robots

using clustering and the k-CPP algorithm for routing. These methods do not consider

the minimization of the number of turns. Furthermore, each cell is treated as a unit.

Assuming a fixed path for individual cells or treating each cell as a unit can be very

restrictive, especially for capacity-constrained robots. The robots might not be able to

cover multiple cells or even a single large cell, resulting in a large number of inefficient

routes.

Algorithms for the generalized traveling salesperson problem (GTSP) are often

used for computing routes. In the approach by Lewis et al. (2017), the BCD is used

to obtain a set of cells with the same service direction. A GTSP instance is generated

with two vertices for each service track for the two travel directions, forming a cluster.

A GTSP algorithm generates a tour such that a single vertex is traversed from each

cluster. In Bochkarev and Smith (2016), the cell decomposition starts with any

convex decomposition of the polygon and is improved by adding cuts at reflex vertices.

Finally, the GTSP is used to generate a tour on an auxiliary graph, similar to the

approach by Lewis et al. (2017). In a recent paper by Bähnemann et al. (2021), the

BCD is computed for each edge direction, and cells are assigned independent service

directions. The BCD that has the least MSA is selected. For each cell and edge

direction, four patterns for servicing are provided based on where the robot starts

and ends. Each pattern forms a vertex in the GTSP instance graph, and vertices

corresponding to the same cell are grouped in a cluster. A visibility graph is used to

form edges between vertices. A GTSP tour then traverses a vertex, representing a

pattern, from each cluster. In GTSP (Lewis et al., 2017; Bochkarev and Smith, 2016)

112

and m-TSP (Vandermeulen et al., 2019) based approaches, the cells are usually not

treated as a unit (except for Bähnemann et al., 2021) and thus, are more efficient.

These procedures do not consider capacity constraints and are designed for a single

robot. Algorithms for vehicle routing problems (VRP) allow capacity constraints and

multiple robots (Toth and Vigo, 2014). Although the costs of the edges in both VRP

and GTSP graphs can be asymmetric, the service tracks are represented as nodes,

which do not have costs or demands. Thus the nodes cannot model asymmetric costs

and demands of the service tracks. Our approach uses the line coverage problem to

closely model the area coverage problem, with the edges in the graph representing

the service tracks. This enables modeling of capacity constraints, asymmetric costs

and demands, and two modes of travel.

4.3 Solution Approach for the Area Coverage Problem

Given a region R ⊂ R2, the area coverage problem is to find a set of routes for a

team of robots such that the total cost of the routes is minimized, and all the points

in the region are serviced by the robots. Limited battery life is one of the most critical

restrictions on mobile robots, especially for aerial robots. Thus, in our formulation,

we incorporate an additional constraint that the total demand on resources for each

route should not exceed a given capacity for the robots. The capacity can be specified

in terms of energy, time limit, or travel length. We have two modes of travel for the

robots: (1) servicing and (2) deadheading. A robot is said to be servicing if it performs

task-specific actions, such as taking images, as it traverses a path. A robot may travel

from one location to another while not performing servicing tasks, such as returning

to the home/depot location. Such travel is known as deadheading. Functions for

service and deadhead costs and demands are given as input to the problem. Our

formulation can handle separate and asymmetric costs and demands.

We model the environment with a set of polygons. The environment may have

obstacles or sub-regions that are not required to be serviced. These sub-regions are

113

referred to as holes. Depending on the application, the robots may be permitted to

travel across the holes, e.g., an aerial robot flying at a high altitude may optimize its

path by flying over a hole representing a building. We treat the robots as point robots,

unless otherwise specified. For finite-sized robots, we compute the free workspace

using techniques for computing configuration space, such as the Minkowski sum (Berg

et al., 2008).

We now describe our approach to solve the area coverage problem with multiple

capacity-constrained robots. We break the problem into three components: (1) Cell

decomposition, (2) Service track generation, and (3) Routing.

(a) Initial cell decomposition (b) Final cell decomposition (c) Service tracks

Figure 4.2: An environment with four obstacles. The double head arrows indicate the
service directions. (a) In the initial decomposition with ten cells, the cell co has an
optimal service direction for which it is not monotone. (b) The final decomposition,
with eight cells, is obtained after the greedy improvement and then merging adjacent
cells with the same service direction. The cells in the final decomposition are also
not necessarily monotone polygons. (c) The service tracks are generated for each
cell independently, and overlapping segments are removed. Service tracks include
those belonging to the two scenarios described in Figure 4.3, e.g., the vertical purple
and green tracks on the left edge of cell c1 and some of the edges of the star-shaped
obstacle.

4.3.1 Cell Decomposition

The primary motivation for the cell decomposition component is to minimize the

number of turns that the robots need to take. This is done by decomposing the envi-

ronment into smaller polygons, referred to as cells, and computing a service direction

that minimizes the number of turns for each cell independently. Such an optimal di-

rection is related to the minimum sum of altitudes (MSA) of a polygon and is parallel

114

to one of the edges of the boundary or hole of the cell (Huang, 2001). The service

tracks are generated parallel to the corresponding service direction for a cell. Our

cell decomposition method is a culmination of experimentation with various exist-

ing methods. However, we deviate significantly in one crucial aspect—we allow the

cells to be non-monotone with respect to the direction perpendicular to the service

direction, i.e., the intersection of a cell (its interior) and a line parallel to the ser-

vice direction need not be a connected line segment. Allowing non-monotone cells

increases the feasible solution space, enabling cell decompositions that can potentially

reduce the number of turns.

Our cell decomposition method is composed of three steps (1) initial decomposition,

(2) greedy improvement, and (2) cell merging.

Initial Decomposition: We use an approach similar to that given by Bähnemann

et al. (2021) for the initial decomposition.

1. Obtain a set of directions corresponding to the edges of the environment, i.e.,

edges of the outer boundary and the holes. Parallel directions are ignored. Let

V denote the set of all such directions.

2. For each direction v ∈ V :

(a) Perform BCD with a line parallel to v and sweeping perpendicular to itself.

Let C denote the set of cells obtained from the BCD.

(b) For each cell c ∈ C: Compute the MSA ac and the corresponding service

direction uc, even if the cell c is non-monotone with respect to the direction

perpendicular to uc.

(c) Compute the total MSA for the direction v:

αv =
∑
c∈C

ac.

3. Select the decomposition that gives the minimum sum of altitudes, i.e., α∗ =

min
v∈V

αv.

115

Figure 4.2(a) shows an initial decomposition consisting of ten cells for an environ-

ment with four obstacles. The double arrows indicate the optimal service direction.

Note that the right cell marked co is non-monotone with respect to the direction

perpendicular to the optimal service direction. Such directions would have been elim-

inated in the approach by Bähnemann et al. (2021).

The running time for this step is O(n2 log n), where n is the number of vertices in

the environment, and it dictates the overall complexity for cell decomposition.

Greedy Improvement: Improvements to the decomposition have been shown by

further decomposition of the cells by splitting them along edges corresponding to a

non-convex vertex of a polygon (Huang, 2001; Bochkarev and Smith, 2016; Nielsen

et al., 2019). Thus, we apply a greedy strategy to split the cells in the initial de-

composition further. We identify the non-convex vertices for a cell and compute a

set of splitting lines Ls. There are two types of splitting lines: (1) The set of lines

corresponding to an edge adjacent to a non-convex vertex, and (2) The set of lines

parallel to an edge of the cell and passing through a non-convex vertex such that

both its adjacent edges lie on the same side of the line. We ensure that the splitting

lines are neither parallel nor anti-parallel to each other. For each line l ∈ Ls, we

split the cell polygon to obtain a new set of polygons Cl. Now obtain the total MSA

for Cl. If this total MSA is less than the MSA for the original cell, then the line l

is a valid candidate for splitting. Of all the splitting lines l ∈ Ls, we greedily select

the one that gives the least total MSA after splitting. The new polygons are then

recursively improved using the same procedure. The cell marked co in Figure 4.2(a)

has been split further by a vertical line of Type 2 to create three new cells, shown

in Figure 4.2(b). Note that the splitting line does not lie within the cone of bisection

described by Bochkarev and Smith (2016). As the objective is to reduce the number

of turns, the greedy improvement may split a non-monotone cell into monotone cells

if doing so reduces the number of turns. We used a greedy approach instead of a

116

dynamic programming approach to reduce computation costs.

Cell Merging: Adjacent cells that have the same (or similar) service directions

can be merged to reduce the total number of cells (Oksanen and Visala, 2009; Yu

and Hung, 2015). Merging adjacent cells reduces the overlapping regions of sensor

coverage. This decreases the number of service tracks and the number of turns. We

allow the merging of adjacent cells even when the resulting cell is non-monotone and

contains holes; this significantly reduces the number of cells. Figure 4.2(b) shows the

final decomposition with eight cells. The total length of the service tracks for the

initial decomposition is 2,146m. The greedy improvement reduces it to 2,103m, and

cell merging reduces it further to 2,003m, an improvement of 6.7% over the initial

decomposition. The most significant reduction comes from merging the cells around

the star-shaped obstacle into a non-monotone cell with a hole.

4.3.2 Service Track Generation

The next step is to generate the service tracks for each cell. Since the cells are not

required to be monotone polygons with respect to the service direction, we develop a

new algorithm to generate the service tracks. Existing approaches usually generate a

path, in the form of a boustrophedon or lawn mower pattern, within each cell that a

robot must follow. We identify two scenarios wherein a boustrophedon pattern does

not guarantee complete coverage, as shown in Figure 4.3. Assuming a square sensor

field-of-view, these can happen (1) when an edge is oriented at a very small angle

with the service direction, and (2) when an edge is inclined at an angle smaller than

π/4 with the service direction and intersects the service tracks. These scenarios can

be extended to other types of sensor field-of-view as well. The second scenario was

discussed for disc-shaped sensors by Vandermeulen et al. (2019).

We now discuss a new algorithm, based on the sweep-line algorithm (Berg et al.,

2008), for generating the service tracks for a cell obtained from the cell decomposition

step. The algorithm can handle non-monotone cells with holes and resolves the issues

117

Figure 4.3: Two scenarios, identified by the red arrows, for which a boustrophedon
pattern does not always guarantee a complete coverage even when the polygon is
monotone with respect to the service direction (horizontal here). The blue shaded
region represents coverage of the environment with a square sensor field-of-view.

shown in Figure 4.3. Without loss of generality, we assume the service direction is

parallel to the X-axis. The sweep line is parallel to the service direction and sweeps

vertically from the lowest to the highest vertex while keeping track of the edges it

encounters. The vertices of the edges correspond to the events in the sweep-line

algorithm. We assume a square sensor field-of-view for clarity.

Initialization:

• Represent a cell vertex u by its coordinates (ux, uy), and represent each cell

edge by a pair of vertices (u, v) such that uy ≤ vy, i.e., the lower vertex appears

first.

• Let E be a list of all the edges in the cell. Sort the edges in E in ascending

order by uy, the y-coordinate of the lower vertex u, for faster computation in

Step (2).

• Let Ec represent the set of current edges used for generating service tracks

parallel to the service direction.

• Let Es represent the set of special edges of the cell that correspond to scenario 1

shown in Figure 4.3.

• Let S represent the set of service tracks.

118

• Initially, the sets Ec, Es, and S are all empty.

• Let the sweep line L be the line parallel to the service direction (X-axis) and

passing through the lowest vertex ul = (ulx, u
l
y) of the first edge in the sorted

list E .

• Set the offset o = uly + f/2, where f is the lateral sensor field-of-view.

Iteration: while the edge list E is not empty

(1) Offset the line L to be at a distance o from the X-axis.

(2) For each edge e ∈ E with uy ≤ o, remove e from E :

• if vy ≤ o, add e to Es,

• else, add e to the set of current edges Ec. If the edge subtends an angle smaller

than π/4, add e to the list of service tracks S as well (scenario 2).

(3) Compute the intersections of the line L with the edges in Ec. Sort these inter-

section points in ascending order of the x-coordinate. Generate service tracks using

the intersection points such that the tracks do not overlap with the interior of the

obstacles. Add the service tracks to the set S.

(4) For each edge e ∈ Es, check if e lies within the field-of-view of any of the service

tracks generated in the current and the previous iterations. If not, add e to the set

of service tracks S. Remove all edges from Es.

(5) Offset the sweep line by f and let o = o+ f .

The set S gives the set of service tracks for a cell. We compute the service tracks

for each cell in the decomposition. Finally, overlapping components of any pair of

service tracks for the entire environment are iteratively removed. Figure 4.2(c) shows

the generated service tracks. The running time complexity is O(ncMSAc), where nc

and MSAc are the number of vertices and the MSA for a cell c, respectively.

119

4.3.3 Routing

Once the service tracks are computed, the problem can be transformed into the line

coverage problem—the coverage of linear features. Here the service tracks correspond

to the linear features in the environment. We addressed the line coverage problem

and presented an efficient algorithm for multiple capacitated robots in Chapter 3 and

Agarwal and Akella (2020). We use a graph as the underlying data structure for the

transformation.

Vertices V : The set of vertices V consists of:

• the endpoints of the service tracks;

• the vertices of the environment polygons;

• the depot: A special vertex in the graph from where the routes start and end.

For aerial robots, it corresponds to the home location for take off and landing.

Required Edges Er: A required edge is an edge that needs to be serviced exactly

once, and therefore the set of required edges Er is precisely the set of service tracks.

There is a cost and a demand associated with each of the required edges. Furthermore,

the edges are considered to have asymmetric costs and demands. Techniques given

by Yongguo Mei et al. (2006); Franco and Buttazzo (2015); Cabreira et al. (2018) can

be used to obtain demands on battery life. Demands can also be specified in terms

of time. Our algorithm can handle arbitrary non-negative input values for costs and

demands.

Non-required Edges En: We add a non-required edge between each pair of vertices

u, v ∈ V such that the line segment (u, v) does not pass through any of the obstacles

and remains within the interior of the outer boundary. We compute a visibility graph

to determine if a pair of vertices forms a valid edge for travel. In applications where

the robots may travel across the holes, such as aerial robots flying at high altitudes,

120

we do not need to check if the line segment crosses the holes. We may still need to

compute the visibility graph as the outer boundary may be non-convex. The robots

are not required to traverse the non-required edges. They may, however, use these

edges to travel quickly from one vertex to another. A robot is said to be deadheading

when traveling along a non-required edge. There is a cost and demand associated

with deadheading also. As task-specific actions such as taking images need not be

performed, the robots may travel faster than when servicing. Thus, the deadheading

costs and demands can differ from those for servicing. Energy-efficient operating

speeds for servicing and deadheading can be obtained through experiments (Franco

and Buttazzo, 2015); these show that as the speed increases, the power consumption

first decreases and then increases rapidly as the speed approaches the upper limit.

Capacity Q: A fixed capacity such as battery life or maximum flight time is specified

for the robots. The total demand on the resources accumulated from traversing

required and non-required edges along each route should not exceed the capacity Q.

This constraint is critical for safe operations, particularly for UAVs, as the battery

life can be very limited.

Let G = (V,E,Er) be the graph created from the area coverage problem, where

E = Er ∪ En is the set of all the edges. The line coverage problem is then to find a

set of routes such that the total cost of travel is minimized and each of the required

edges is serviced, while ensuring that the total demand for each route is less than the

capacity of the robots, as discussed in Chapter 3. We use the Merge-Embed-Merge

(MEM) algorithm to solve the line coverage problem as it is fast and efficient for

robotics applications.

The MEM algorithm is composed of four elements: (1) initialization of routes,

(2) computation of savings, (3) merging of two routes to form a new route, and

(4) embedding the new merged route. A route is initialized for each of the required

edges (i.e., service tracks) by deadheading from the depot to one of the vertices of the

121

edge, servicing the required edge, and then deadheading back to the depot via the

other vertex. Since the costs are asymmetric, the service direction that gives a lower

route cost is selected. Two routes can be merged to form a new route with potentially

lower cost than the sum of the costs of the two routes. The difference in the costs by

performing such a merge is called savings. There are eight possible ways of merging

two routes, and only the ones that satisfy the capacity constraint are considered. For

each pair of initial routes, the optimal savings that respects the capacity constraint is

inserted into a max-heap data structure. The routes with the maximum savings are

extracted from the max-heap and are merged to form a new route. The new route

is inserted into the set of routes, and the individual routes are set to invalid. This

new route is then embedded into the max-heap by computing savings with the other

valid routes. The merging and the embedding operations are performed iteratively

until no further valid merge is possible. Since the capacity constraints are checked

before creating a new route, the algorithm always maintains a set of feasible routes.

The running time of the algorithm is O(m2 logm), where m is the number of required

edges (i.e., service tracks).

Using the line coverage problem, instead of a node routing problem such as the

GTSP or the vehicle routing problem (Toth and Vigo, 2014), allows direct modeling

of the service tracks as graph edges. More importantly, asymmetric costs and demands

for the edges can be modeled in the line coverage problem, along with the capacity

constraints. The MEM algorithm for the line coverage problem rapidly computes

routes of high quality.

The service track generation and the routing components are independent modules.

The modular nature of these components allows making independent improvements.

Tracks can be generated by other decomposition methods, and a line coverage algo-

rithm can be used for routing.

122

4.4 Simulations and Experiments

The algorithms for the area coverage problem are implemented in C++. We use

the computational geometry algorithms library (CGAL) (The CGAL Project, 2021)

for precise numerical computations and geometry functionalities. The program is

executed on a desktop with an Intel 7thGen Core i9-7980XE processor.

4.4.1 Dataset with 25 Indoor Environments

Simulation results on a dataset2 with 25 large indoor environments for vacuuming

robots were presented in Vandermeulen et al. (2019). The environments are primarily

rectilinear in structure. The robots have a tool width of 0.1m. We use the path length

for both the cost and demand functions for direct comparison. We compute the free

workspace by taking a Minkowski sum of the obstacle polygons with the square robot

geometry (Berg et al., 2008). The robots must graze the boundaries to vacuum

thoroughly. Thus, the entire boundary of the free workspace is added to the set of

service tracks. Thereafter, we run the three components of our algorithm to obtain

the coverage routes for the robots.

The cumulative lengths and number of turns for the 25 environments are presented

in Table 4.1. Figure 4.4 shows our solution with 2 and 4 robots for the largest

environment.

4.4.2 Dataset with 300 Outdoor Environments

To benchmark our results for outdoor coverage with aerial robots, we use the

dataset (provided with the source code) given by Bähnemann et al. (2021) consisting

of 300 unique environments with 1 to 15 holes derived from buildings. The outer

boundary has an area of 10,000m2, and an aerial robot with a 3m sided square sensor

field-of-view is used. The trajectories of the robots are defined by a velocity ramp

model with a maximum acceleration amax and velocity vmax of 1m·s−2 and 3m·s−1,
2The datasets and our detailed results are available at:

https://github.com/UNCCharlotte-CS-Robotics/AreaCoverage-dataset.

https://github.com/UNCCharlotte-CS-Robotics/AreaCoverage-dataset

123

Figure 4.4: Coverage of a large indoor environment with 107m2 area and 151 vertices,
given in Vandermeulen et al. (2019). The left figure shows our solution for two robots
with a tool width of 0.1m and a capacity of 700m, with tour costs 616m and 620m.
The right figure shows our solution for four robots with a capacity of 320m, with tour
costs 312m, 313m, 318m, and 300m.

respectively. The travel time t is used as the cost and demand functions and is given

in terms of segment length d as:

t =


√

4d
amax

, if d < da

vmax

amax
+ d

vmax
, if d ≥ da

, where da =
v2

max

amax

We ran the simulations for two scenarios: (1) infinite capacity, representing coverage

with a single robot, and (2) capacity of the robots set to 20 minutes (1,200 s). The

comparison of the total cost of the routes is shown in Figure 4.5. Our algorithm

generates lower cost solutions than that of Bähnemann et al. (2021) for both single and

multiple robots and for all the instances, with an average improvement of 10% and a

standard deviation of 4%. The total cost for the multiple robot solutions is the sum of

the costs of the individual routes, and the solutions are better than Bähnemann et al.

(2021), even though a limited battery capacity reduces the feasible space considerably.

The computation time is shown in Figure 4.6, and is similar for both single and

124

Table 4.1: Cumulative results for the 25 indoor environments dataset

r Capacity Vandermeulen et al. (2019) This chapter Improvement (%)

l (m) η l (m) η l η

1 ∞ 15,195 11,377 14,781 10,183 2.72 10.49
2 0.75 15,303 11,380 14,793 10,191 3.33 10.45
3 0.50 15,461 11,533 14,823 10,211 4.13 11.46
4 0.30 15,564 11,586 14,939 10,274 4.02 11.32
5 0.25 15,715 11,663 15,030 10,308 4.36 11.62
The first column r indicates the number of robots. The length and the number of turns are denoted
by l and η, respectively. The capacity is set as a fraction of the route cost for a single robot. The
average computation time is 0.42 s, over all 25 environments and over 100 runs. The computation
time does not vary much with the number of robots.

multiple robots; the only difference is in the running time of the MEM algorithm,

which converges faster as the capacity decreases.

4.4.3 Outdoor Experiment with Aerial Robots

We selected a 19,000m2 area in the UNC Charlotte campus, shown in Figure 4.7, for

coverage with UAVs. An appropriate launch site was assigned as a depot. A subregion

corresponding to the footprint of a building was selected as a hole, consisting of 45

vertices, in the environment. As aerial robots can fly at high altitudes, we allow non-

required edges that cross the hole. The servicing and deadheading speeds were set to

3.33m·s−1 and 5m·s−1, respectively. A wind of 1.39m·s−1 at an angle of 225 degrees

(from NE), for the day of the experiment, was incorporated into the cost and demand

functions, making the edges asymmetric in the two directions of travel. The costs and

the demands are based on the edge travel times. A conservative capacity of 600 s was

set, and two routes, computed in 2.4 s, were obtained. A DJI Phantom 4 drone was

used to autonomously fly the two routes sequentially. The routes and the orthomosaic

obtained from the collected images are shown in Figure 4.7. The computed costs for

the routes, shown in blue and red in Figure 4.7, were 336 s and 394 s, and the flight

times were 317 s and 369 s.

Discussion: In our simulations and experiments, we considered three types of sce-

125

7 vertices 90 vertices

1.4

1.6

1.8

2

2.2

2.4

2.6

Instances

T
ot
al

tr
av
el

ti
m
e
(×

10
3
s)

GTSP Bähnemann et al. (2021)

Single robot (Q = ∞)

Multiple robots (Q = 1200 s)

Figure 4.5: Comparison of total travel time cost of routes computed by our algorithm
and the GTSP based algorithm given by Bähnemann et al. (2021). The instances
are arranged in increasing order of the number of vertices in the environments. We
compute the results for two cases: (1) Single robot with infinite capacity (red crosses),
and (2) Multiple robots with a capacity of 1,200 s (blue pluses). The sum of costs
for a single robot over all 300 instances is 577,218 s for Bähnemann et al. (2021) and
512,619 s for our method. Our algorithm consistently performs better with an average
cost reduction of 10%.

narios: (1) The ground robots of finite size cannot intersect with the obstacles, (2) The

aerial robots are not permitted to fly over obstacles, and (3) The aerial robots can fly

over obstacles. Using a visibility graph, we can address any combination of the above

scenarios by permitting non-required edges only over the obstacles that the robots can

traverse. We can also compute the Minkowski sum for the obstacles that a finite-sized

robot is not allowed to overlap. Furthermore, non-overlapping disconnected regions

of environments can also be addressed by performing cell decomposition and service

track generation for each such region individually and computing routes using the

MEM algorithm for the service tracks in a unified manner.

4.4.3.1 Area Coverage with Nonholonomic Robots

We now illustrate the use of the algorithms developed for the line coverage problem

to generate routes for area coverage with nonholonomic robots. The development of

algorithms for multiple depots and nonholonomic constraints for the line coverage

126

0 10 20 30 40 50 60 70 80 90
0

1

2

3

Number of vertices

C
om

pu
ta
ti
on

ti
m
e
(s
)

Routing (MEM)

Service Track

Cell Decomposition

Figure 4.6: Average computation times for the 300 outdoor environment dataset
from Bähnemann et al. (2021); the route costs are shown in Figure 4.5. Each en-
vironment is placed in bins of size five according to the number of vertices in the
environment. The time is averaged over 100 runs for all the environments in a bin.
The bars indicate the standard deviation of the computation time. The computation
time increases with the number of vertices in the environment. The cell decomposition
is the most time-consuming step of the algorithm, while the MEM routing algorithm
is very fast.

problem extends to area coverage using the transformation developed in this chapter.

We illustrate the use of the MEM algorithm with multiple depots and nonholonomic

robots in the same outdoor environment setting given in Figure 4.7. As UAVs can fly

at high altitudes, we allow non-required edges that cross the building. However, only

the region surrounding the building needs to be covered. Figure 4.8(a) shows the gen-

erated service tracks, taking the field-of-view of the sensor into account. These service

tracks form the linear features, i.e., the required edges, for the line coverage problem.

Two depot locations are computed using k-medoids clustering. Dubins curves are

used to deadhead between pairs of non-adjacent required edges, and smooth turns

are used to deadheadhead between adjacent required edges. Figure 4.8(b) shows the

two routes computed using the MEM algorithm with multiple depots and nonholo-

nomic constraints. The example illustrates the use of line coverage algorithms for area

coverage, and shows that the enhancements to algorithms for line coverage translate

127

directly to area coverage.

4.5 Summary

We presented a novel approach for solving the area coverage problem with multiple

capacity-constrained robots by transforming it into the line coverage problem. This

allowed us to generate routes that minimize the total cost of travel while respecting

the capacity constraints. The formulation enables two modes of travel—servicing

and deadheading—with distinct and asymmetric costs and demands that can have

arbitrary non-negative values. Travel time, travel length, or battery consumption

can be used to model costs and demands. A depot, from where the robots start and

end their routes, can be specified. These features were demonstrated in an outdoor

experiment using a commercial UAV.

The cell decomposition permits non-monotone polygons, thus increasing the feasi-

ble solution space for the service directions to further minimize the number of turns.

Allowing non-monotone polygons with holes enables further merging of adjacent cells.

A new service track generation algorithm generates tracks for non-monotone polygons

with or without holes. We benchmarked the approach on a ground robot dataset with

25 indoor environments and an aerial robot dataset with 300 environments, with an

average cost improvement of 10%.

Since we establish that the cells from cell decomposition are no longer required to

be monotone, our work raises the following questions: Is there a better strategy for

cell decomposition to minimize the number of turns? Is a polynomial-time optimal

algorithm possible, or is this cell decomposition problem NP-hard?

128

(a) Input environment with cells

-80

-60

-40

-20

0

20

40

60

80

-160 -140 -120 -100 -80 -60 -40 -20 0

Y
-a

xi
s

(m
)

X-axis (m)

(b) Computed routes

(c) Actual flight paths (d) Orthomosaic from images

Figure 4.7: Area coverage by autonomous aerial robots: (a) The region surrounding
a building is to be covered. The blue marker indicates the depot location for the
robots to take off and land. The cell decomposition is shown with double head arrows
indicating service directions. Note that the cells are non-monotone. (b) The generated
routes for the aerial robots, distinguished by color. The dashed lines correspond to
deadheading travel. Here deadheading is permitted over the building for efficiency.
(c) The actual paths taken by the aerial robots. (d) Orthomosaic generated from
images taken during the flights.

129

(a) Service tracks (b) Routes with nonholonomic robots

Figure 4.8: Area coverage using nonholonomic aerial robots for the environment given
in Figure 4.7: (a) Service tracks are generated for each cell independently. The tracks
are parallel to the service directions obtained from cell decomposition. These tracks
form the linear features for the line coverage problem. (b) Two routes computed by
the MEM algorithm for multiple depots and nonholonomic robots. The green lines
indicate deadheading and comprise of Dubins curves between non-adjacent tracks and
smooth turns between adjacent tracks.

CHAPTER 5: GENERALIZED COVERAGE

This chapter introduces the generalized coverage problem—the task of finding

routes to simultaneously cover point, line, and area features in an environment by a

team of resource-constrained robots. Current approaches for coverage problems focus

on only one type of feature at a time. However, several applications may require

inspection of multiple feature types in the environment. One such application arises

in the inspection of traffic, where traffic signal intersections, the road network, and

parking lots form the point, line, and area features, respectively. Similarly, the inspec-

tion of electricity poles along with power lines and power stations includes all three

types of features. We introduce, for the first time, the ability to cover all the three

types of environment features in an integrated manner. Since the coverage of any one

of these types of features is an NP-hard problem, the generalized coverage problem

is also NP-hard. Hence, we develop heuristic algorithms that generate high-quality

solutions and have a polynomial-time computational complexity. The central idea of

our approach is to transform point and area features into line features. The cover-

age of line features is formulated as the line coverage problem, which was addressed

in Chapter 3. We use the Merge-Embed-Merge algorithm to obtain efficient routes

for coverage of the transformed line features. The transformation allows translation

of the advances in the line coverage problem to the generalized coverage problem.

In particular, the ability to model the following aspects of the problem is achieved:

two modes of travel, direction-dependent costs and demands, resource constraints,

multiple depots, and nonholonomic robots. We illustrate generalized coverage of five

university campuses for traffic analysis.

131

5.1 Introduction

Generalized coverage is the task of servicing features in an environment using sen-

sors or tools mounted on robots. The features to be serviced can be modeled as

zero-dimensional points, one-dimensional lines or curves, and two-dimensional areas.

The environment itself may be planar or three-dimensional. Consider an application

scenario of traffic analysis during a social event. A team of uncrewed aerial vehicles

(UAVs) is deployed to gather information on bottlenecks in the traffic. We may be

interested in visiting the traffic signals and roundabouts, the road network, and the

parking lots, as shown in Figure 5.1. These three features can be modeled as points,

line segments, and areas. The routes for the UAVs must be planned such that the

different types of features are considered simultaneously. In contrast, most current

approaches consider one type of feature at a time. Similar scenarios arise in the

inspection of electricity poles together with power lines and power stations.

The central idea of our approach for solving the novel generalized coverage prob-

lem is to transform the point and area features into line features. Together, these

transformed features and the natural line features form a new set of global line fea-

tures. The environment is modeled as a graph with the global line features forming

the set of required edges. The vertices of the graph are formed by the endpoints of

the required edges. Additionally, the graph contains a set of non-required edges that

model traversal between vertices to connect the required edges. Using the graph, we

transform an instance of the generalized coverage to an instance of the line coverage

problem. Finally, we can use the algorithms developed for the line coverage problem

in Chapter 3, such as the Merge-Embed-Merge (MEM) algorithm, to obtain efficient

routes for the robots for the transformed generalized coverage problem.

The transformation allows us to incorporate several practical aspects of robotics

addressed by the line coverage problem.

1. Cost minimization: When a robot traverses the environment, it incurs a cost

132

Figure 5.1: Input environment for generalized coverage of the UNC Charlotte campus,
obtained from OpenStreetMap: The 20 traffic signals on the campus are shown as
red circles and form the point features. The road segments, shown as solid red lines,
form the line features. There are 1,160 road segments covering the entire primary
road network of the campus. The 44 parking lots in the campus, shown as red shaded
regions, form the area features.

133

such as travel time. The objective of a coverage problem is to minimize the total

cost of all the routes of the robots while ensuring all the features are visited.

2. Resource constraints: Mobile robots can be severely limited in terms of the

resources available to them. Aerial robots, in particular, have a short opera-

tion time due to low battery capacity and high consumption of energy. It is,

therefore, important that route planning algorithms take resource constraints

into account to ensure the safe recovery of the robots. As robots traverse the

environment, they incur demands on the resources available to them, and the

total demand of traversing a planned route for a robot should be less than its

available resources. Such a limit on a resource is also referred to as the capacity

of the robot.

3. Two travel modes: We allow two travel modes—servicing and deadheading.

A robot is said to be servicing an environment feature when it performs task-

specific actions such as collecting sensor data; otherwise, it is deadheading. Our

formulation models different cost functions and resource demands for the two

modes of travel for the robots. These modes enable the algorithms to optimize

the operation time, conserve energy, and reduce the amount of sensor data.

4. Asymmetry in costs and demands: In many robotics applications, the cost

of travel and the resource demands are direction-dependent. For example, a

ground robot traveling uphill can take longer and consume more energy than

traveling downhill. Similarly, the costs and demands of aerial robots may de-

pend on the direction of travel due to wind conditions. Hence, we consider

asymmetric cost and demand functions for servicing and deadheading. Such

asymmetric functions can also model one-way streets for ground robots.

5. Turning costs and nonholonomic constraints: Sharp turns can be very

expensive for robots as they need to slow down, take the turn, and accelerate

134

again. Similarly, nonholonomic robots such as fixed-wing UAVs cannot make

point turns. It is imperative to account for the turning costs and nonholonomic

constraints to ensure efficient and feasible navigation of the robots.

6. Multiple depots: A depot is a location in the environment from where the

robots start and end their routes. When the environment is vast, it may not

be possible to service all the features from a single depot location. In such

situations, it is imperative to have a multi-depot formulation where the robots

have the flexibility to start and end their routes from one of several depots to

optimize the routes.

Another practical aspect of deploying multiple robots simultaneously is collision

avoidance, i.e., ensuring that the distance between each pair of robots is greater than

a safe distance. Although we do not consider collision avoidance explicitly, existing

methods, such as those based on control barrier functions and reciprocal velocities,

can be conveniently used for locally changing the robot paths to avoid collisions.

We make the following contributions in this chapter:

1. We introduce a novel generalized coverage problem, which considers three differ-

ent types of features in the environment. Such a problem has not been addressed

before.

2. We develop procedures to transform point and area features into line features,

thereby transforming generalized coverage into line coverage.

3. We illustrate the application of generalized coverage to traffic analysis on five

university campuses.

We describe the problem formally in Section 5.2 and the solution approach in Sec-

tion 5.3. The simulation results for five university campuses are given in Section 5.4.

The chapter is summarized in Section 5.5.

135

5.2 Problem Statement

In this section, we formally define the generalized coverage problem. We provide

the following environment features as input to the problem:

1. Point features Vp: Each element v in the set of point features Vp corresponds

to a point in the environment that needs to be serviced by a robot.

2. Line features El: Each line feature e ∈ El is modeled by two points v1 and

v2 in the environment, and is denoted by e = (v1, v2). The robots must service

these line features by traversing along the edge. Curves can also be modeled as

line features.

3. Area features Ra: The two-dimensional features are given by the set Ra.

An area feature R ∈ Ra is modeled as a polygon-with-holes (PWH), where the

outer boundary of R is specified as a sequence of points in the counter-clockwise

direction. Subregions within the outer boundary that are not required to be

visited are specified as holes with a sequence of points in the clockwise direction.

We have the following cost and demand functions, along with the capacity of robots:

1. Cost functions: For each point feature v ∈ Vp, we are given a cost cs(v)

to service the particular vertex. The cost of servicing an edge between two

points v1 and v2, in the environment in the direction from v1 to v2, is given

by cs(v1, v2). Similar to service costs, we have deadhead costs, denoted by

cd(v1, v2), and cd(v2, v1) for deadheading between two points v1 and v2 in the two

directions. Functions such as Euclidean distance or travel time can conveniently

model these cost functions. Since we have distinct functions for servicing and

deadheading, different travel speeds can be selected for the two modes.

2. Demand functions: Traversing the environment incurs consumption of re-

sources such as battery life, modeled as demands. For each point feature v ∈ Vp,

136

we are given a demand on resources qs(v) for servicing the vertex v. The de-

mand on resources for servicing an edge between two points v1 and v2 in the

environment is denoted by qs(v1, v2). Similarly, we have demand on resources

for deadheading an edge between two points v1 and v2, denoted by qd(v1, v2).

The service and the deadheading demands are distinct and direction-dependent;

hence, qs(v1, v2), qs(v2, v1), qd(v1, v2), and qd(v2, v1) may all differ.

3. Capacity of the robots Q: The total demand on resources for each route

for a robot must be within the specified capacity Q of the robot. The capacity

models the resource constraint on the robots and may be specified in terms of

total battery life or maximum operation time.

Definition 5.2.1 (The Generalized Coverage Problem). Given a set of point features

Vp, a set of line features El, and a set of area features Ra, along with cost functions,

demand functions, and a capacity Q for the robots, the generalized coverage problem

is the task of finding a set of routes for a team of robots such that the robots service

all the three sets of required features. The objective of the problem is to minimize the

total cost of the routes under the constraint that the demand for each route should

be within the capacity Q of a robot.

5.3 Solution Approach

We now present our approach for transforming the point and area features into line

features. After the transformation, we formulate the generalized coverage problem as

a line coverage problem. The overall approach is illustrated in Figure 5.2.

5.3.1 Transformation of Point Features to Linear Features

The transformation of point features to line features is straightforward—for each

vertex v in the set of point features Vp, we create a new auxiliary line feature rep-

resented as an edge ev = (v, v). The cost and the demand of servicing such a new

edge correspond to that of the point feature. Since there is no deadheading for a

137

Point Features Vp Line Features El Area Features Ra

Algorithm 6 Algorithm 7

Line Coverage Problem

Line Features Ep Line Features Ea

Coverage Routes

Environment Features

Figure 5.2: Overall approach for computing routes for generalized coverage: The
point and area features are transformed to line features, and the coverage routes are
computed using the MEM algorithm for the line coverage problem.

point, we set the deadhead costs and demands to zero. The transformation is given

in Algorithm 6.

Algorithm 6: Transform point features
Input : Point features Vr
Output : Transformed line features Ep

1 Ep ← ∅;
2 for v ∈ Vr do // Iterate over point features
3 ev ← (v, v); // Create a new edge
4 cs(ev)← cs(v); cd(ev)← 0; // Assign service and deadhead costs
5 qs(ev)← qs(v); qd(ev)← 0; // Assign service and deadhead demands
6 Ep ← Ep ∪ ev; // Add new edge

5.3.2 Transformation of Area Features to Linear Features

The area features Ra are modeled as PWHs. For each required area R ∈ Ra, we

perform cell decomposition and service track generation, using the computational

geometry algorithms described in Chapter 4. The cell decomposition procedure splits

the regions into cells and finds the optimal service direction for each cell with the aim

of minimizing the total number of turns for the robots. The service track generation

procedure uses the sensor field of view to discretize each cell into a set of line segments,

138

using a sweep-line algorithm. These line segments are parallel to the service direction

computed for the cells in the cell decomposition procedure. The set of line segments

computed for each area feature forms the set of transformed line features Ea. The

transformation is given in Algorithm 7.

Algorithm 7: Transform area features
Input : Area features Ra
Output : Transformed line features Ea

1 Ea ← ∅;
2 for R ∈ Ra do // Iterate over area features
3 C ←Cell-decomposition(R); // Compute cells with service directions
4 for c ∈ C do // Iterate over cells
5 Ea ← Ea ∪ Service-tracks(c); // Generate service tracks

5.3.3 Formulation of the Line Coverage Problem

The line coverage problem with multiple resource-constrained robots requires a

graph as an input, as described in Chapter 3.

1. Required edges Er: The set of line features El, the transformed point features

Ep, and the transformed area features Ea form the set of required edges, i.e.,

Er = Ep ∪ El ∪ Ea.

2. Vertices V : The endpoints of the required edges form the set of vertices V . We

may also have potential depot locations as additional vertices.

3. Non-required edges En: The robots may travel from one vertex to another

without servicing. Any such travel between a pair of vertices forms a non-

required edge. We use a visibility graph to generate the set of non-required

edges when there are obstacles or no-fly zones in the environment. These edges

are essential to ensure that the graph is connected and the robots can reach

each feature in the environment.

4. Graph G = (V,E,Er): The input graph for the line coverage problem can now

139

be formed using the set of vertices V , the set of required edges Er, and the set

of non-required edges En. The edge set E is the union of the sets of required

and non-required edges, i.e., E = Er ∪ En.

With the graph G as the input, along with the cost and demand functions, we can

use the algorithms developed in Chapter 3 to solve the generalized coverage problem.

Since the environments are often large, we use the Merge-Embed-Merge algorithm

with multiple depot (MEM-MD) locations to solve the generalized coverage problem.

5.4 Simulations on University Campuses

We illustrate generalized coverage for traffic analysis on five university campuses

belonging to the University of North Carolina system. The traffic signals form the

point features, line segments representing the road network form the line features, and

the parking lots are the area features. The data was obtained from OpenStreetMap

contributors (2022). These features are transformed into line features, and a graph

for the line coverage problem is computed. As the UAVs can fly from one vertex to

another, we add a non-required edge between each pair of non-adjacent vertices. The

number of different types of features and the number of elements in the line coverage

graph for the five campuses are given in Table 5.1.

Table 5.1: Dataset for evaluation of the generalized coverage formulation

UNC Campus
Number of features Line coverage graph

Point Line Area |V | |Er| |En|

Greensboro 4 356 9 543 499 146,673

Asheville 0 266 72 780 647 303,183

Wilmington 2 598 35 1,097 891 600,276

Charlotte 20 1,160 44 1,817 1,600 1,648,273

Chapel Hill 14 1,204 70 2,153 1,926 2,314,791

We used k-medoids clustering to obtain depot locations for the environments. Al-

ternatively, these locations can be specified based on operation ease and constraints,

140

e.g., an operator may prefer to launch aerial robots from high vantage points. The

service and deadhead speeds were set to 5m·s−1 and 8m·s−1. The flight time for the

robots was limited to 1,200 s. The algorithms are implemented in C++ and executed

on a single core of a standard laptop with an Intel Core i7-1195G7 processor. The

k-medoids clustering, used for computing the depot locations, depends on a random

number generator. Hence, we compute the routes 10 times and select the solution

with the least number of routes, and ties are broken based on the lower cost.

Figure 5.3 shows the input graph and routes for a smaller campus (UNC Greens-

boro). Figure 5.4 shows the routes for the input graph in Figure 5.1 of the UNC

Charlotte campus. The routes show efficient traversal of service tracks generated for

the area features. It can be observed that the individual routes primarily consist of

line segments that are close to each other and are connected, indicating that the MEM

algorithm can efficiently distribute the line features among routes. Furthermore, the

routes are assigned to the closest depot, showing that the multiple depot formulation

of the MEM algorithm is well-suited for the generalized coverage problem with large

graphs. The details of the routes for all five campuses are shown in Table 5.2. The

algorithm generates routes for the largest graph within 6 minutes for 10 executions

with random seeds. The last column DH in the table is the percentage of deadhead

cost in the total cost of the routes. It indicates the amount of travel time spent in

traversal between the required edges of the graph to maintain connectivity and can

be viewed as a measure of efficacy of the solutions. Even though the features in the

environments span over large regions, the percentage of deadheading is low.

5.5 Summary

In this chapter, we proposed a novel generalized coverage problem—the coverage of

point, line, and area features in an environment using a team of resource-constrained

robots. This problem arises in applications in coverage problems where multiple types

of features require inspection. The central idea of our approach is to transform the

141

Table 5.2: Results for generalized coverage of the five campus dataset

UNC Campus
Length

(m)

Area

(km2)
Depots

Cost

(s)
Routes

Compute

time (s)

DH

(%)

Greensboro 12,501 1.12 3 2,953 4 5 15

Asheville 15,082 1.10 4 3,684 4 13 18

Wilmington 39,092 5.03 8 9,367 9 39 17

Charlotte 39,048 4.82 9 9,495 10 208 18

Chapel Hill 42,744 5.33 10 10,819 11 341 21

-0.5

0

0.5

0 0.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

Figure 5.3: Generalized coverage of the UNC Greensboro main campus. The campus
includes 4 traffic signals, 356 line segments for the road network, and 9 parking lots.
Three depot locations, shown by black squares, were computed using clustering. The
routes were computed using the MEM algorithm with multiple depots. Four routes
were obtained and are shown in different colors. The solid lines represent servicing
and the dashed lines represent deadheading.

142

-0.5

0

0.5

1

1.5

0 0.5 1 1.5

Y
-a

xi
s

(x
 1

03
m

)

X-axis (x 103 m)

Figure 5.4: Routes for generalized coverage of the UNC Charlotte campus: The final
line coverage graph has 1,817 vertices, 1,600 line features, and more than 1.6 million
non-required edges. Since the environment is very large, we compute 9 depot loca-
tions as shown by black squares. The MEM algorithm with multi-depot formulation
computed 10 routes to cover all the features. The routes are shown in different colors;
the solid lines represent servicing, and the dashed lines represent deadheading.

143

point and area features into line features. The point features were transformed by

creating auxiliary edges, and area features were transformed using cell decomposition

and service track generation. The transformation enables formulating the general-

ized coverage problem as a line coverage problem. We used the Merge-Embed-Merge

(MEM) algorithm with multiple depots to generate efficient routes for generalized

coverage. The formulation allowed the translation of the advances in the line cover-

age problem (described in Chapter 3) to the generalized coverage problem. The MEM

algorithm supports two modes of travel, direction-dependent costs and demands, re-

source constraints, multiple depots, and nonholonomic robots. Hence, these algorithm

features translate to the generalized coverage problem seamlessly.

We illustrated the coverage of road networks with traffic signals and parking lots on

five university campuses using UAVs. The MEM algorithm computed efficient routes

for the largest graph with more than 1,900 required edges within a few minutes.

The results indicate that the generalized coverage problem is well-suited for modeling

and solving coverage problems with different types of features in the environment.

Furthermore, our approach of transforming an instance of the generalized coverage

problem to an instance of the line coverage problem enables computation of efficient

routes while addressing practical aspects of robot deployment.

CHAPTER 6: CONCLUSION

This dissertation develops theory and algorithms for efficient coverage of an en-

vironment using a team of resource-constrained robots and validates them through

simulations and experiments. The research unifies coverage of point, line, and area

features into a novel generalized coverage framework, formalized as optimization prob-

lems on graphs. Most current approaches consider only one type of feature at a time.

However, this can be limiting when applications have two or more types of features.

One such application is traffic analysis, where the traffic signals, road network, and

parking lots form the point, line, and area features, respectively. A similar scenario

arises in the inspection of electric poles along with power lines and power stations.

In the generalized coverage problem, the task is to compute efficient routes for the

resource-constrained robots to cover all the features in the environment.

The research incorporates several practical aspects of robot deployment in the

generalized coverage framework. These aspects are essential for ensuring efficient and

safe routes for robots.

• Cost models: Functions, such as travel times, are used to define the cost model

and characterize the efficiency of the routes computed using the algorithm. We

formulated the objective of the coverage problems as minimization of the total

cost over all the routes.

• Resource constraints: Mobile robots can be severely limited in terms of

resources available to them. Aerial robots, in particular, have a short operation

time due to low battery capacity and high consumption of energy. Therefore,

we incorporated resource constraints in the route planning algorithms to ensure

145

the safe recovery of robots. The consumption of resources as robots traverse

the environment is modeled as demands. The algorithms ensure that the total

demand incurred in a route is within the specified resource limit of robots.

• Two modes of travel: A unique characteristic of our formulation is that we

allow two modes of travel for the robots—servicing and deadheading. A robot

is said to be servicing an environment feature when it performs task-specific

actions such as collecting sensor data; otherwise, it is deadheading. In our

formulation, we modeled different cost functions and resource demands for the

two modes of travel for the robots. These modes enabled the algorithms to

optimize the operation time, conserve energy, and reduce the amount of sensor

data.

• Asymmetry in costs and demands: The cost of travel and the demand on

resources can be direction dependent. For example, a ground robot traveling

uphill can take longer and consume more energy than when traveling downhill.

Similarly, the cost and the demand functions of aerial robots may depend on the

direction of travel due to wind conditions. We incorporated such asymmetries in

the formulation and modeled wind conditions in the cost and demand functions.

Asymmetric functions can also model one-way streets for ground robots.

• Turning costs and nonholonomic constraints: Sharp turns can be very

expensive for robots as they need to slow down, take the turn, and accelerate

again. Similarly, nonholonomic robots such as fixed-wing UAVs cannot make

point turns. Thus, the formulations and the algorithms account for the turning

costs and nonholonomic constraints to ensure efficient and feasible navigation

of the robots.

• Multiple depots: When the environment is vast, it may not be possible to

service all the features from a single depot location. Therefore, we developed

146

the multi-depot formulation, which can handle large-scale environments so that

robots have the flexibility to start and end their routes at one of several depots.

6.1 Contributions

The coverage problems are classified into three types based on the feature type.

The dissertation first comprehensively addressed the single robot line coverage prob-

lem, i.e., coverage of one-dimensional features using a single robot, in Chapter 2. This

problem has not been sufficiently studied in robotics. We modeled the environment

as a graph and posed line coverage as an optimization problem using an integer lin-

ear program (ILP). The formalization gave insights into the inherent structure of the

problem, using which we developed approximation algorithms with provable guaran-

tees on the quality of the solutions. The algorithms provide the best approximation

factor for the single robot line coverage problem and related arc routing problems

(ARPs). We evaluated the algorithms on a dataset of 50 road networks from the

most populous cities in the world. The results show that our algorithm computes

high-quality solutions that are within 10% of the optimum in less than 3 s. The algo-

rithms are sufficiently fast for robotics applications. Experiments with a commercial

aerial robot, DJI Phantom 4, were performed on a portion of the UNC Charlotte

road network and on lanes of a set of parking lots. As the images were collected

only during servicing and not while deadheading, a smaller number of images of only

the features of interest were collected. Orthomosaic maps were generated using these

images.

Next, we addressed the line coverage problem with multiple resource-constrained

robots in Chapter 3. The problem was formulated as an optimization problem on

graphs using ILP while incorporating the resource constraints on the robots. We de-

signed a heuristic algorithm, Merge-Embed-Merge (MEM), which has a polynomial-

time complexity of O(m2 logm), where m is the number of line features. The al-

gorithm maintains a set of feasible routes and iteratively merges pairs of routes to

147

form new larger ones. Eight possible ways of merging two routes dictate the savings

in merging routes. The algorithm is constructive in the sense that new routes are

constructed as the algorithm progresses, in contrast to other graph procedures where

a digraph is used as a proxy for the routes. The constructive nature of the algorithm

allows us to extend the algorithm to several variants of the line coverage problem. We

formulated the line coverage problem with multiple depots and extended the MEM al-

gorithm to solve the problem. MEM is the first fast and efficient algorithm for the line

coverage problem with multiple depots and applies to related arc routing problems

commonly used for human-driven vehicles. We further incorporated smooth turns

and nonholonomic constraints into the algorithm by including costs and demands

on resources due to the turns. We evaluated the MEM algorithm on the 50 road

network dataset, which indicates that the MEM algorithm computes high-quality so-

lutions with costs within 7% of the costs of ILP solutions. The MEM algorithm also

performs similarly when the capacity of the robots is varied. The evaluation of the

computation times shows that the algorithm is very fast as it solves the largest graph

within 0.5 s, and the entire procedure, including creating graphs, takes around 2 s.

For graphs with less than 200 required edges, the solutions are generated within 0.1 s.

We demonstrated the algorithm in experiments with a UAV on the UNC Charlotte

road network. For the first experiment, two routes from a single depot location were

autonomously executed by a commercial UAV to cover a portion of the road network.

In the second experiment, we used the formulation for the line coverage problem

with multiple depots to obtain eight depots and routes for the road network. These

routes were autonomously executed by a commercial UAV to collect images of the

road network. Next, we demonstrated the line coverage problem with multiple depots

and nonholonomic robots on lanes of a set of parking lots. These experiments show

that the algorithm models coverage of real-world linear infrastructure well and can

be conveniently used in commercial applications.

148

We presented a novel approach for coverage of area features with multiple capacity-

constrained robots in Chapter 4. The approach consists of three components: cell

decomposition, generation of service tracks, and routing. The central aspect of our

approach is transforming the area coverage problem into a line coverage problem us-

ing computational geometry techniques, and then generating routes that minimize

the total cost of travel while respecting the resource constraints. Existing methods

have a strong bias towards using monotone polygons for cell decomposition and ser-

vice track generation, which leads to significant inefficiencies. Using the line coverage

transformation allows us to handle non-monotone polygons with obstacles while min-

imizing the number of turns for the robots. Furthermore, several practical aspects of

coverage using robots that were addressed for the line coverage problem are translated

to the area coverage problem with the help of the transformation. We established

the efficacy of our algorithm on a ground robot dataset with 25 indoor environments

and an aerial robot dataset with 300 outdoor environments. The algorithm generates

solutions whose costs are 10% lower on average than state-of-the-art methods. We

additionally demonstrated our algorithm in experiments with aerial robots.

We proposed a novel problem, the generalized coverage problem, which consid-

ers the coverage of point, line, and area features in an environment using a team

of resource-constrained robots in Chapter 5. The central idea of our approach is

to transform the point and area features into line features. The point features were

transformed by creating auxiliary edges, and area features were transformed using cell

decomposition and service track generation. The transformation enables formulating

the generalized coverage problem as a line coverage problem. We used the MEM

algorithm with multiple depots to generate efficient routes for generalized coverage.

The MEM algorithm supports two modes of travel, direction-dependent costs and

demands, resource constraints, multiple depots, and nonholonomic robots. The for-

mulation allowed the seamless translation of the advances in the line coverage problem

149

to the generalized coverage problem. We illustrated the coverage of road networks

with traffic signals and parking lots on five university campuses using UAVs. The

MEM algorithm computed efficient routes for the largest graph with more than 1,900

required edges within six minutes.

6.2 Future Work

Several avenues for future work arise naturally from the advances in the line cov-

erage problem and the generalized coverage problem described in this dissertation.

Informative path planning (IPP): In the dissertation, we required the robots

to gather data from all the features in the environment while minimizing the total cost

of the routes. In contrast to coverage problems, the IPP problem does not require

visiting all the features in the environment, and the objective is to maximize the

amount of information gathered by the robots. Recently, we introduced the correlated

arc orienteering problem (CAOP), where the task is to maximize the information

collected by resource-constrained robots while exploiting the spatial correlations—

visiting a feature may provide data related to another correlated feature (Agarwal

and Akella, 2022a). The information is associated with environmental features that

can be one-dimensional or points. We formulated a mixed integer quadratic program

that formalizes the problem and gives optimal solutions. However, the problem is NP-

hard, and therefore we developed an efficient greedy constructive algorithm. One of

the future tasks is to develop algorithms that can efficiently handle stochastic models

of the information and the costs within the CAOP framework.

Heterogeneous team of robots: In our research, we assumed all the robots to

be identical. However, one may have a fleet of robots with a mixture of ground and

aerial robots. The cost and demand functions will be different for each type of robot.

Furthermore, in certain applications, features may require inspection using a diverse

set of sensors. Formulating coverage problems and developing heuristic algorithms

for heterogeneous teams of robots are important future directions.

150

Online decision-making: Recent advances in machine learning algorithms have

made it possible to analyze and interpret sensor data on the robot in real time for sev-

eral applications. An interesting future direction is to use such learning algorithms to

provide onboard decision-making capabilities to the robots. Consider the agricultural

application of detecting infestations occurring in plants using UAVs. If the UAVs fly

at high altitudes, they will have a large sensor field of view and gather more data.

However, as the altitude increases, the accuracy and the resolution of the data de-

crease. If we augment the UAVs with algorithms that can identify potential locations

with a high probability of infestation, then the UAVs can alter their planned paths

and altitudes to get additional high-resolution data. The fast algorithms presented

in the dissertation can potentially be used for computing routes online on the robots.

Such autonomous capabilities can significantly enhance the efficiency of the robots.

151

REFERENCES

Agarwal, S. and Akella, S. (2020). Line coverage with multiple robots. In IEEE

International Conference on Robotics and Automation (ICRA), pages 3248–3254,

Paris, France.

Agarwal, S. and Akella, S. (2021). Approximation algorithms for the single robot

line coverage problem. In LaValle, S. M., Lin, M., Ojala, T., Shell, D., and Yu, J.,

editors, Algorithmic Foundations of Robotics XIV, pages 534–550, Cham, Germany.

Springer International Publishing.

Agarwal, S. and Akella, S. (2022a). The correlated arc orienteering problem. In 15th

International Workshop on Algorithmic Foundations of Robotics, College Park, MD,

USA.

Agarwal, S. and Akella, S. (2022b). Area Coverage With Multiple Capacity-

Constrained Robots. IEEE Robotics and Automation Letters, 7(2):3734–3741.

Apuroop, K. G. S., Le, A. V., Elara, M. R., and Sheu, B. J. (2021). Reinforcement

learning-based complete area coverage path planning for a modified hTrihex robot.

Sensors, 21(4).

Arkin, E. M., Fekete, S. P., and Mitchell, J. S. (2000). Approximation algorithms for

lawn mowing and milling. Computational Geometry, 17(1):25–50.

Bähnemann, R., Lawrance, N., Chung, J. J., Pantic, M., Siegwart, R., and Nieto, J.

(2021). Revisiting boustrophedon coverage path planning as a generalized traveling

salesman problem. In Ishigami, G. and Yoshida, K., editors, Field and Service

Robotics, pages 277–290, Singapore. Springer Singapore.

Bellman, R. (1962). Dynamic programming treatment of the travelling salesman

problem. Journal of the ACM, 9(1):61–63.

https://doi.org/10.1109/ICRA40945.2020.9197292
https://ieeexplore.ieee.org/document/9697431/authors#authors
https://ieeexplore.ieee.org/document/9697431/authors#authors

152

Berg, M. d., Cheong, O., Kreveld, M. v., and Overmars, M. (2008). Computational

Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition.

Bevern, R. v., Komusiewicz, C., and Sorge, M. (2017). A parameterized approxima-

tion algorithm for the mixed and windy capacitated arc routing problem: Theory

and experiments. Networks, 70(3):262–278.

Bochkarev, S. and Smith, S. L. (2016). On minimizing turns in robot coverage path

planning. In IEEE International Conference on Automation Science and Engineer-

ing (CASE), pages 1237–1242, Fort Worth, TX, USA.

Cabreira, T. M., Brisolara, L. B., and Ferreira Jr., P. R. (2019). Survey on coverage

path planning with unmanned aerial vehicles. Drones, 3(1).

Cabreira, T. M., Franco, C. D., Ferreira, P. R., and Buttazzo, G. C. (2018). Energy-

aware spiral coverage path planning for UAV photogrammetric applications. IEEE

Robotics and Automation Letters, 3(4):3662–3668.

Campbell, J. F., Corberán, A., Plana, I., and Sanchis, J. M. (2018). Drone arc routing

problems. Networks, 72(4):543–559.

Choset, H. (2000). Coverage of known spaces: The boustrophedon cellular decompo-

sition. Autonomous Robots, 9(3):247–253.

Choset, H. (2001). Coverage for robotics – A survey of recent results. Annals of

Mathematics and Artificial Intelligence, 31(1):113–126.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling sales-

man problem. Technical Report 388, Graduate School of Industrial Administration,

Carnegie Mellon University, Pittsburgh, PA.

Chung, S., Paranjape, A. A., Dames, P., Shen, S., and Kumar, V. (2018). A survey

on aerial swarm robotics. IEEE Transactions on Robotics, 34(4):837–855.

153

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to

a number of delivery points. Operations Research, 12(4):568–581.

Corberán, A., Eglese, R., Hasle, G., Plana, I., and Sanchis, J. M. (2021). Arc routing

problems: A review of the past, present, and future. Networks, 77(1):88–115.

Corberán, A. and Laporte, G., editors (2014). Arc routing: problems, methods, and

applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA.

Corberán, A. and Prins, C. (2010). Recent results on arc routing problems: An

annotated bibliography. Networks, 56(1):50–69.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

Algorithms, Third Edition. The MIT Press, 3rd edition.

Dasgupta, S., Papadimitriou, C., and Vazirani, U. (2006). Algorithms. McGraw-Hill

Higher Education New York.

Dille, M. and Singh, S. (2013). Efficient aerial coverage search in road networks. In

AIAA Guidance, Navigation, and Control Conference, pages 5048–5067, Boston,

MA, USA.

Easton, K. and Burdick, J. (2005). A coverage algorithm for multi-robot boundary

inspection. In IEEE International Conference on Robotics and Automation, pages

727–734, Barcelona, Spain.

Edmonds, J. and Johnson, E. L. (1973). Matching, Euler tours and the Chinese

postman. Mathematical Programming, 5(1):88–124.

Floreano, D. and Wood, R. J. (2015). Science, technology and the future of small

autonomous drones. Nature, 521:460–466.

https://doi.org/10.1002/net.21965
https://doi.org/10.1002/net.21965
https://doi.org/10.1016/j.engappai.2018.09.015
https://doi.org/10.1016/j.engappai.2018.09.015

154

Franco, C. D. and Buttazzo, G. C. (2015). Energy-aware coverage path planning

of UAVs. In IEEE International Conference on Autonomous Robot Systems and

Competitions, pages 111–117, Vila Real, Portugal.

Frederickson, G. N. (1979). Approximation algorithms for some postman problems.

Journal of the ACM, 26(3):538–554.

Frederickson, G. N., Hecht, M. S., and Kim, C. E. (1976). Approximation algorithms

for some routing problems. In 17th Annual Symposium on Foundations of Computer

Science, pages 216–227, Houston, USA.

Gabriely, Y. and Rimon, E. (2001). Spanning-tree based coverage of continuous areas

by a mobile robot. In IEEE International Conference on Robotics and Automation

(ICRA), volume 2, pages 1927–1933, Seoul, South Korea.

Galceran, E. and Carreras, M. (2013). A survey on coverage path planning for

robotics. Robotics and Autonomous Systems, 61(12):1258–1276.

Geisberger, R. and Vetter, C. (2011). Efficient Routing in Road Networks with Turn

Costs. In Pardalos, P. M. and Rebennack, S., editors, Experimental Algorithms,

pages 100–111, Berlin, Heidelberg. Springer Berlin Heidelberg.

Golden, B. L., Dearmon, J. S., and Baker, E. K. (1983). Computational experiments

with algorithms for a class of routing problems. Computers & Operations Research,

10(1):47–59.

Golden, B. L. and Wong, R. T. (1981). Capacitated arc routing problems. Networks,

11(3):305–315.

Gouveia, L., Mourão, M. C., and Pinto, L. S. (2010). Lower bounds for the mixed

capacitated arc routing problem. Computers & Operations Research, 37(4):692–699.

https://doi.org/10.1007/978-3-642-20662-7_9
https://doi.org/10.1007/978-3-642-20662-7_9

155

Guan, M. (1984). On the windy postman problem. Discrete Applied Mathematics,

9(1):41–46.

Gurobi Optimization, L. (2021). Gurobi optimizer reference manual.

Held, M. and Karp, R. M. (1962). A dynamic programming approach to sequenc-

ing problems. Journal of the Society for Industrial and Applied Mathematics,

10(1):196–210.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling

salesman heuristic. European Journal of Operational Research, 126(1):106–130.

Helsgaun, K. (2015). Solving the equality generalized traveling salesman problem

using the Lin-Kernighan-Helsgaun algorithm. Mathematical Programming Compu-

tation, 7(3):269–287.

Huang, W. H. (2001). Optimal line-sweep-based decompositions for coverage algo-

rithms. In IEEE International Conference on Robotics and Automation (ICRA),

volume 1, pages 27–32, Seoul, South Korea.

Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., and Rekleitis, I. (2017).

Efficient multi-robot coverage of a known environment. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1846–1852, Vancou-

ver, Canada.

Kirlik, G. and Sipahioglu, A. (2012). Capacitated arc routing problem with dead-

heading demands. Computers & Operations Research, 39(10):2380–2394.

Knuth, D. E. (2011). The Art of Computer Programming, Volume 4A: Combinatorial

Algorithms, Part 1. Addison-Wesley.

LaValle, S. (2006). Planning Algorithms. Cambridge University Press.

156

Lenstra, J. K. and Kan, A. H. G. R. (1976). On general routing problems. Networks,

6(3):273–280.

Lewis, J. S., Edwards, W., Benson, K., Rekleitis, I., and O’Kane, J. M. (2017).

Semi-boustrophedon coverage with a Dubins vehicle. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 5630–5637.

Lynch, K. M. and Park, F. C. (2017). Modern Robotics: Mechanics, Planning, and

Control. Cambridge University Press, USA.

Macharet, D. G. and Campos, M. F. M. (2018). A survey on routing problems and

robotic systems. Robotica, 36(12):1781–1803.

Mannadiar, R. and Rekleitis, I. (2010). Optimal coverage of a known arbitrary envi-

ronment. In IEEE International Conference on Robotics and Automation (ICRA),

pages 5525–5530, Anchorage, USA.

Mourão, M. C., Nunes, A. C., and Prins, C. (2009). Heuristic methods for the sector-

ing arc routing problem. European Journal of Operational Research, 196(3):856–

868.

Muyldermans, L., Cattrysse, D., and Oudheusden, D. V. (2003). District design for

arc-routing applications. Journal of the Operational Research Society, 54(11):1209–

1221.

Nielsen, L. D., Sung, I., and Nielsen, P. (2019). Convex decomposition for a cover-

age path planning for autonomous vehicles: Interior extension of edges. Sensors,

19(19):4165.

Noon, C. E. and Bean, J. C. (1993). An efficient transformation of the general-

ized traveling salesman problem. INFOR: Information Systems and Operational

Research, 31(1):39–44.

https://www.sciencedirect.com/science/article/pii/S0377221708003834
https://www.sciencedirect.com/science/article/pii/S0377221708003834
https://doi.org/10.1057/palgrave.jors.2601626
https://doi.org/10.1057/palgrave.jors.2601626

157

Oh, H., Kim, S., Tsourdos, A., and White, B. (2014). Coordinated road-network

search route planning by a team of UAVs. International Journal of Systems Science,

45(5):825–840.

Oksanen, T. and Visala, A. (2009). Coverage path planning algorithms for agricultural

field machines. Journal of Field Robotics, 26(8):651–668.

OpenStreetMap contributors (2022). Planet dump retrieved from https://planet.

osm.org. Online: https://www.openstreetmap.org.

Orlin, J. B. (1993). A faster stronger polynomial minimum cost flow algorithm.

Operations Research, 41:338–350.

Orloff, C. S. (1974). A fundamental problem in vehicle routing. Networks, 4(1):35–64.

Papadimitriou, C. H. and Steiglitz, K. (1982). Combinatorial Optimization: Algo-

rithms and Complexity. Prentice-Hall, Inc., USA.

Raghavachari, B. and Veerasamy, J. (1999a). A 3/2-approximation algorithm for the

mixed postman problem. SIAM J. Discrete Math., 12:425–433.

Raghavachari, B. and Veerasamy, J. (1999b). Approximation algorithms for the asym-

metric postman problem. In Tenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 1999, pages 734–741, Baltimore, Maryland, USA.

Ravankar, A., Ravankar, A. A., Kobayashi, Y., Hoshino, Y., and Peng, C.-C. (2018).

Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and

Future Challenges. Sensors, 18(9).

Roughgarden, T. (2020). Algorithms Illuminated, Part 4: Algorithms for NP-Hard

Problems. Soundlikeyourself Publishing, LLC, New York, USA.

Svensson, O., Tarnawski, J., and Végh, L. A. (2018). A constant-factor approximation

algorithm for the asymmetric traveling salesman problem. In 50th Annual ACM

https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org
https://doi.org/10.3390/s18093170
https://doi.org/10.3390/s18093170

158

SIGACT Symposium on Theory of Computing, STOC 2018, pages 204–213, Los

Angeles, CA, USA.

The CGAL Project (2021). CGAL User and Reference Manual. CGAL Editorial

Board, 5.2.1 edition.

Theile, M., Bayerlein, H., Nai, R., Gesbert, D., and Caccamo, M. (2020). UAV

coverage path planning under varying power constraints using deep reinforcement

learning. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 1444–1449.

Toth, P. and Vigo, D. (2014). Vehicle Routing. Society for Industrial and Applied

Mathematics, Philadelphia, 2nd edition.

Traub, V. and Vygen, J. (2020). An improved approximation algorithm for ATSP.

In 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,

pages 1–13, Chicago, IL, USA.

Vandermeulen, I., Groß, R., and Kolling, A. (2019). Turn-minimizing multirobot

coverage. In IEEE International Conference on Robotics and Automation (ICRA),

pages 1014–1020, Montreal, QC, Canada.

Wagner, G. and Choset, H. (2015). Subdimensional expansion for multirobot path

planning. Artificial Intelligence, 219:1–24.

Wei, M. and Isler, V. (2018). Coverage path planning under the energy constraint. In

IEEE International Conference on Robotics and Automation (ICRA), pages 368–

373.

Williams, K. and Burdick, J. (2006). Multi-robot boundary coverage with plan revi-

sion. In IEEE International Conference on Robotics and Automation, pages 1716–

1723, Orlando, USA.

159

Williamson, D. P. and Shmoys, D. B. (2011). The Design of Approximation Algo-

rithms. Cambridge University Press, USA, 1st edition.

Win, Z. (1989). On the windy postman problem on Eulerian graphs. Mathematical

Programming, 44(1):97–112.

Winter, S. (2002). Modeling costs of turns in route planning. GeoInformatica,

6(4):345–361.

Wøhlk, S. (2008). An Approximation Algorithm for the Capacitated Arc Routing

Problem. The Open Operational Research Journal, 2(1):8–12.

Xu, A., Viriyasuthee, C., and Rekleitis, I. (2014). Efficient complete coverage of a

known arbitrary environment with applications to aerial operations. Autonomous

Robots, 36(4):365–381.

Xu, L. and Stentz, A. (2011). An efficient algorithm for environmental coverage with

multiple robots. In IEEE International Conference on Robotics and Automation

(ICRA), pages 4950–4955, Shanghai, China.

Xu, L. and Stentz, T. (2010). A fast traversal heuristic and optimal algorithm for

effective environmental coverage. In Proceedings of Robotics: Science and Systems,

pages 161–168, Zaragoza, Spain.

Yongguo Mei, Yung-Hsiang Lu, Hu, Y. C., and Lee, C. S. G. (2006). Deployment of

mobile robots with energy and timing constraints. IEEE Transactions on Robotics,

22(3):507–522.

Yu, X. and Hung, J. Y. (2015). Coverage path planning based on a multiple sweep line

decomposition. In IECON 2015 - 41st Annual Conference of the IEEE Industrial

Electronics Society, pages 4052–4058.

https://doi.org/10.1023/A:1020853410145
https://dx.doi.org/%2010.2174/1874243200802010008
https://dx.doi.org/%2010.2174/1874243200802010008

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Coverage Problems
	Addressing Practical Challenges in Robotics
	Dissertation Overview
	Publications

	SINGLE ROBOT LINE COVERAGE
	Introduction
	Related Work
	Problem Statement
	Approximation Algorithms
	Simulations and Experiments
	Summary

	LINE COVERAGE WITH MULTIPLE ROBOTS
	Introduction
	Related Work
	Problem Statement
	Heuristic Algorithms for Line Coverage
	Simulations and Experiments
	Summary

	AREA COVERAGE
	Introduction
	Related Work
	Solution Approach for the Area Coverage Problem
	Simulations and Experiments
	Summary

	GENERALIZED COVERAGE
	Introduction
	Problem Statement
	Solution Approach
	Simulations on University Campuses
	Summary

	CONCLUSION
	Contributions
	Future Work

	REFERENCES

