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ABSTRACT

MD MARUF HOSSAIN. Performance Models and Impact of Vector Architecture on Graph

Algorithms (Under the direction of DR. ERIK SAULE)

Representing modern data using graphs has become more prominent in recent years. The gradual

increasing size and complex structure of graphs made many classical algorithms slow. Meanwhile,

graphs like social and web networks evolve over time. Traditional graph analysis that expects a fixed

data set is not sufficient for these kinds of temporal graphs. It is necessary to take advantage of the

modern HPC architecture and customize the applications to enhance the performance and to keep the

runtime of the analysis low.

First, this dissertation analyzes modern vector architectures for graph analysis kernels. We evaluate

the performance achieved on two different architectures (Skylake and Cascade Lake) and show that

good hardware support for scatter instructions is necessary to fully leverage vector processing for graph

partitioning problems. Then we build a performance model that analyzes the performance of graph

applications for given computer architecture. We study sparse matrix-vector multiplication (SpMV) as

a representative application for performance models on distributed systems, since many applications

rely on basic sparse linear algebra operations from numerical solvers to graph analysis algorithms.

We proposed the first model of runtime for SpMV on distributed memory machines that accounts for

platform and graph structure.

Then we consider dynamically evolving graphs. In this work, we show the performance analysis

of pagerank on the temporal graphs. Many algorithms have been proposed to compute Pagerank on

evolving graphs; most of them focus on incremental ways to study temporal graphs. But the question

is “if the complete data is available at the beginning of the process, and we want to know the properties

of the graph over time, should we still use the streaming graph algorithm for temporal graph analysis?”

We call this type of temporal analyses Postmortem graph analysis. In Postmortem analysis, one per-

forms graph analysis on multiple subgraphs based on well-defined time-interval. In contrast, streaming

algorithms mainly focus on gradually updating properties based on events like edge addition or deletion

graph analysis. We show that Postmortem graph analysis can provide better pagerank performance on
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temporal graphs than a streaming analysis.
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CHAPTER 1

INTRODUCTION

Graphs are at the center of most modern applications today: city and road analysis [1], social media

analysis [2, 3, 4], biological data processing and medical research [5, 4], academic networks [6],

intelligence [7]. And with the advent of the big data era, graph size has grown exponentially in re-

cent years. Graphs structures are so complex that the same algorithms can generate a diverse range

of results of an application for different graphs. Although graph abstraction has been used for cen-

turies, there is a renewed interest in graph processing driven in large part by emerging applications

in social network analysis [8, 9, 10], science [11], and speech and image recognition [12, 13]. Lots

of effort and research are going on to find out the better algorithms, implementations, frameworks,

and hardware platforms for relevant graph processing applications.

In this dissertation, we will investigate how better implementation of applications can take ad-

vantage of the modern computer architecture to improve graph analysis. We believe this dissertation

will enable to choose the better hardware which will enhance the performance of the application.

Now, performance analysis could be done different ways like run time improvement, efficient mem-

ory usages, energy efficient etc. In this paper, we choose run time analysis as a performance analysis.

Then we question ourselves, we can provide performance gain by comparing run time against state-

of-art algorithms, but can we build a performance model that can predict run time of a application

for the specific CPU architecture? In this work, we proposed multiple mechanisms to answer the

questions and also discuss the difficulties to achieve the goal. We did not limited our research on

only static graph, we extend our analysis towards temporal graphs as well. This dissertation could

change the thought process of graph analysis for the offline temporal graph in good way.

Better hardware support is always useful to enhance the performance of any application. There

have been lots of effort to improve modern processors to cope with complex graph structures and

provide better support for different frameworks. Recent interest in fast graph algorithms was met

with a new look at how computer architectures can be leveraged. GPUs have been understandably

popular because of high flop rate, high memory bandwidth, and high power efficiency for graph
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problems [14]. CPU architectures have reacted by increasing core count but also by increasing

SIMD width in a move to catch up in terms of performance and energy efficiency. In particular,

Intel developed AVX-512 originally for their Xeon Phi line, and are in the process of porting the

instruction set in their regular CPU offering. In Chapter 3, we show that a good hardware imple-

mentation of scatter instructions is critical for efficiently vectorize graph partitioning problems.

In this work, we propose performance models for static and temporal graphs that enhance the

performance of the graph algorithms with the help of vector architecture. We aim to present a per-

formance model for graph applications that can predict the run time based on the size and structure

of the graphs and the system architecture. But it is not a straightforward task to build a model

for real-life graphs because of the complexity of the graph structure and the difficult pattern of the

random memory accesses. Especially, if we think about the distributed system. In this work, we

look for the performance model for the distributed system. Chapter 4 mainly focus on the perfor-

mance model for SpMV on distributed systems. Sparse matrix-vector multiplication (SpMV) is one

of the fundamental operations in sparse linear algebra. It is critical to solving linear systems and is

widely used in engineering and scientific applications [15, 16, 17]. In this work, we propose a linear

and polynomial Support Vector Regression(SVR) [18] model to predict and analyze the run time of

SpMV on distributed systems for different ways to execute the operation.

So far, we investigated hardware support, complex graph structure, and performance model

for graph applications. But, we need to consider the dynamic characteristics of the graph as well.

Almost all of the social graphs evolve over time and it is important to record the time-line of these

changes. These dynamic networks are called temporal graphs. The temporal graph changes through

different events, such as edge addition, deletion, vertex addition, etc. The interest in evolving graphs

is growing over time and problems like diameter change [19], the rank of web pages change [20]

on the web have been investigated. One of the most common graph analyses on the temporal graph

is PageRank on the dynamic networks. In this chapter 5, we propose a different graph analysis for

the temporal graph; we call it Postmortem Graph Analysis. When a temporal graph show offline

behavior it gives the opportunity to choose either streaming or non-streaming solutions. Now, if a

graph shows offline behavior and we need to perform a sequence of graph analysis for the sliding

window interval then call it postmortem graph analysis.
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CHAPTER 2

BACKGROUND

Each chapter of this work has its own concise introduction, background, analysis, experimental

setup, results and summary. But in this chapter, we are going to give basic background of all the

graph kernel and algorithms that we used for the work.

2.1 Notations of Graph

A graph is denoted by G = (V,E) where V and E represent the vertex and edge set respectively.

Edges are represented by (u, v) pair and are associated with an edge weight ω : E → R+. We use ζ

to represent the community set and communities are represented by distinct integers. We use N(u)

to represent the neighbor set of a vertex u ∈ V . The volume of a node and a community are defined

as vol(u) =
∑
{u,v}:v∈N(u) ω(u, v) + 2× ω(u, u) and vol(ζ) =

∑
u∈ζ vol(u) respectively.

2.2 Louvain Method

The Louvain Method, first proposed by Blondel et al. [21], is one of the most popular methods to

extract communities from a large network. It is a greedy multilevel algorithm that uses modularity

as the objective function [22]. The modularity is defined as the fraction of edges that fall within the

partitions minus the expected fraction that would be within the partition if the edges are distributed

randomly. If a vertex u moves from its community C to the neighboring community D, then the

modularity gain is defined by the following equation 2.1,

∆mod(u,C → D) =
ω(u,D/ {u})− ω(u,C/ {u})

ω(E)
+

(vol(C/ {u})− vol(D/ {u})) ∗ vol(u)

2 ∗ ω(E)2

(2.1)

where V and E represent the vertex and edge set of a graph G respectively. Edges are represented

by (u, v) pair and are associated with an edge weight ω : E → R+. We use N(u) to represent the

neighbor set of a vertex u ∈ V . The volume of a node and a community are defined as vol(u) =∑
{u,v}:v∈N(u) ω(u, v) + 2× ω(u, u) and vol(C) =

∑
u∈C vol(u) respectively.
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Based on the highest positive modularity gain, it moves to the neighbor community. The process

iteratively continue until there are no vertices that move to the neighbor community or it reach to

the user defined threshold limit. After each Moves Phase, a Coarsening Phase applied to the graph

to shrink the graph size. The above process continue until there are no scope of Move Phase.

2.3 Distance-1 Graph Coloring

The distance-1 graph coloring algorithm assigns colors to the vertices of the graph so that no ad-

jacent vertices have the same color. Minimize the number of colors is an NP-hard problem [23],

and that is why various heuristic algorithms have proposed for the problem. In particular, a greedy

algorithm can obtain near-optimal solutions [24]. The main focus of our work is to find out best and

optimal solution for a problem based on the execution time. That is why we looking for the parallel

version of the speculative distance-1 graph coloring [25, 26]. In these algorithm, initially it assigns

the color to the vertices and then another method find the conflicted vertices that have the same

color of their neighbors. The algorithm repeat the previous two methods on the conflicted vertices

until no conflicted vertices exist.

2.4 Representation formats

There are many representation formats designed to store sparse matrices. While some representation

format have been designed especially to optimze SpMV [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 45, 46], CSR and COO are generic storage format that are used in most

sparse linear algebra and graph processing.

All the encoding of sparse matrices essentially aim at avoiding to represent the zeros in matrices

and only represent the non-zero values in the matrix. We will assume the matrix A is of size n× n

and has nnz non-zero values.

2.4.1 Compressed Storage by Row (CSR)

The Compressed Storage by Row format represents a matrix with three arrays: rowA, colA, and

valA. Figure 2.1 shows an example matrix and its CSR representation.

The valA array contains all the values that are non zero in the matrix given in the order the
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1 2 3 0 0
0 0 4 5 6
0 2 0 0 0
1 0 0 0 3
0 0 3 4 0


(a) A matrix

rowA = [ 0, 3, 6, 7, 9, 11 ]
colA = [ 0, 1, 2, 2, 3, 4, 1, 0, 4, 2, 3 ]
valA = [ 1, 2, 3, 4, 5, 6, 2, 1, 3, 3, 4 ]

(b) CSR Representation

Figure 2.1: Matrix representation format

appear in the matrix. That array is of length nnz, the number of non zero in the matrix. The colA

also has nnz values and it indicates for each non zero, in which column of the matrix the non zero

is located.

The rowA array is slightly more complicated, it has n+ 1 values. rowA[r] indicates the first

index of the first non-zero of row r and the last value indicate the total number of non zero in the

matrix.

Computing y = Ax is done by computing each dimension of y independently. For a partic-

ular row r, the algorithm extracts the non-zeros with indices between rowA[r] and rowA[r + 1].

Each non-zero j is located in column colA[j] and is of value valA[j]. And the algorithm executes

y[r]+ = x[colA[j]] ∗ valA[j].

2.4.2 Coordinate (COO)

The COO format is a simpler format. The non zeros do not have to be listed in the order of the

matrix, but they rather can be listed in any order. As such, the non zeros of a row do not have to be

listed continously. To make this possible, the rowA array is not of size n+ 1 but is of size nnz.

2.5 Sparse Matrix-Vector Multiplication(SpMV) on Distributed System

To perform sparse matrix-vector multiplication(SpMV) on the distributed system, the most com-

mon mechanism is to split the matrix into multiple parts and perform SpMV on each part individ-

ually in the different processors. In this work, we explore two different type of graph partition-

ing(Randomize 2D-Uniform Partitioning and 1D-Row Partitioning) and perform different SpMV

algorithms based on the partition. A good partitioning can ensure better load balance and brings

more freedom to each MPI process to work more independently.
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2.6 Pagerank

Sometimes, it is important to generalize vertices of a graph based on the significance for a particular

analysis. The aim of pagerank algorithm to sort out valuable vertices or ranking them based on the

popularity on the graph. Pagerank is originaly used to sort the web search results [47]. Initially, all

vertices receive the same rank(usually 1
|V | , where |V | represents the number of vertices.). Over the

time, pagerank(PR) of every vertex v is updated using the following equation 2.2,

PR(v) =
1− d
|V |

+ d×
∑

u∈Nin(v)

PR(u)

|Nout(u)|
(2.2)

The update of the pagerank is continue until it can not update the scores more than user defined

threshold value.

2.7 Betweenness Centrality(BC)

There is another popular way to decide importance of a vertex is betweenness centrality. The algo-

rithm generates unweighted all possible shortest path δst among two vertices s and t of a graph G.

Now, if the δst(v) is the number of shortest path between s and t that pass through vertex v, then

the betweenness centrality(BC) for a vertex v is measured by the following equations 2.3,

BC(v) =
∑

s,t∈V,s 6=v 6=t

δst(v)

δst
(2.3)
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CHAPTER 3

IMPACT OF AVX-512 INSTRUCTIONS ON GRAPH PARTITIONING PROBLEMS

Graph analysis now percolates society with applications ranging from advertising and transportation

to medical research. The structure of graphs is becoming more complex every day while they are

getting larger. The increasing size of graph networks has made many of the classical algorithms

reasonably slow. Fortunately, CPU architectures have evolved to adjust to new and more complex

problems in terms of core-level parallelism and vector-level parallelism (SIMD-level).

In this chapter, we are exploring how the modern vector architecture of CPUs can help with com-

munity detection, partitioning, and coloring kernels by studying three representatives algorithms.

We consider the Intel SkylakeX and Cascade Lake architectures, which support gather and scatter

instructions on 512-bit vectors.

The existing vectorized graph algorithms of classic graph problems, such as BFS and PageRank,

do not apply well to community detection; we show the support of gather and scatter are necessary.

In particular for the implementation of the reduce-scatter patterns. We evaluate the performances

achieved on the two architectures and conclude that good hardware support for scatter instructions

is necessary to fully leverage the vector processing for graph partitioning problems.

3.1 Introduction

We are particularly interested here in partitioning algorithms at large:coloring [48, 24, 49], cluster-

ing [50], partitioning [51], community detection [21, 2]. Recent interest in fast graph algorithms

has met with a new look at how computer architectures can leverage. GPUs have been understand-

ably popular because of the high flop rate, high memory bandwidth, and high power efficiency for

graph problems [14]. CPU architectures have reacted by increasing core count but also by increas-

ing SIMD width in a move to catch up in terms of performance and energy efficiency. In particular,

modern Intel processors support AVX-512. These SIMD operations bring the expectation to provide

higher energy efficiency than increasing the number of cores.

In this work, we consider the use of these new instructions to solve graph problems in the class
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of partitioning. We pick three graph partitioning algorithms, namely a speculative parallel greedy

algorithm for graph coloring, and the Louvain method for modularity optimization and Clustering

using Label Propagation, as representative of graph partitioning algorithms. Section 3.2 describes

these three problems. And we will study their performance on two different processors architecture;

Intel Cascade Lake and SkylakeX.

With support for scatter operations, we designed, in Section 3.3, a strategy called ONPL, for One

Neighbor Per Lane. Scatter operations enable us to write to the color of groups of neighbors at once.

The operation in the Louvain Method adds some affinity values to the neighboring communities.

Because the same community may appear multiple times, we call this operation a reduce-scatter,

and we provide two implementations of this operation for different use cases.

Then, we show that the vectorization of these algorithms on x86-64 processors is impractical if

they do not support scatter operations. Indeed the only feasible strategy in such a case is to use the

different lanes of the vector to process different vertices at the same time. While this strategy applies

to classic problems like BFS or SpMV, it requires reordering the graph so that no two vertices in

a block of 16 vertices are neighbors for partitioning problems. This strategy only makes sense for

the Louvain Method. The derived algorithm, presented in Section 3.4, is OVPL for One Vertex Per

Lane.

A Part of this work [52] is published in scientific workshop. We extended our work by analysis

performance of the Louvain method and Label propagation on the RMAT synthesis graph in sec-

tion 3.6.3. It brings the perspective of what kind of graph structure well suited for the community

detection problems. Section 5.5 presents the experimental settings, the code base used as baselines,

and the set of graphs to be analyzed. Section 3.6 presents experimental results which show that

ONPL can outperform the scalar implementation for graph coloring and label propagation for some

networks. The Louvain Method is more computationally expensive. And using ONPL and OVPL in

NetworKit leads to performance improvement on both architectures.

3.2 Graph Partitioning Problems

Graph partitioning problems are seen here as a large class of graph algorithms that encompass graph

coloring algorithms [48, 24, 49], partitioning to minimize edge cuts [51], modularity optimizing
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community detection algorithms [21, 2], overlapping community detection algorithms [53], label

propagation, and certainly many others. All these algorithms have a similar structure in that each

vertex is associated with a group of vertices (or multiple groups), and when considering the neigh-

bors of a vertex, the group the neighbor belongs to is the key information rather than the neighbor

itself.

We picked three classical partitioning algorithms to represent this class, namely Greedy Graph

Coloring (for graph coloring), Louvain Method and Label Propagation (for non-overlapping com-

munity detection).

3.2.1 Speculative Parallel Greedy Graph Coloring

The distance-1 graph coloring algorithm assigns colors to the vertices of the graph so that no ad-

jacent vertices have the same color. Minimize the number of colors is an NP-hard problem [23],

and that is why various heuristic algorithms have proposed for the problem. In particular, a greedy

algorithm can obtain near-optimal solutions [24]. The classic parallel algorithm for graph coloring

is a speculative parallel greedy algorithm [25, 26] and presented in Algorithms 1, 2, 3.

Algorithm 1 Iterative Parallel Graph Coloring

Input: G = (V,E)

1: C(v) ← 0, for all v ∈ V
2: CONF← V
3: while CONF 6= 0 do
4: ASSIGNCOLORS(G,C, CONF)
5: CONF← DETECTCONFLICTS(G,C, CONF)
6: end while
7: return C

Algorithm 1 represents an iterative parallel graph coloring. It takes a graph G with vertex set V

and edge set E as an input. It first initializes the set of colors C for all vertices by 0 and a set of

conflicts CONF by all vertices. It will iteratively color the vertices in CONF using a speculative

greedy algorithm. And then check whether two neighboring vertices use the same color in which
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Algorithm 2 AssignColors

Input: G = (V,E), C, CONF

1: Allocate private FORBIDDEN with size max degree
2: for v ∈ CONF in parallel do
3: FORBIDDEN← false
4: FORBIDDEN(C(u))← true for u ∈ adj(v)
5: C(v) ← min{i > 0|FORBIDDEN(i) = false}
6: end for
7: return C

Algorithm 3 DetectConflicts

Input: G = (V,E), C, CONF

1: NEWCONF← 0
2: for v ∈CONF in parallel do
3: for u ∈ adj(v) do
4: if C(u) = C(v) and u < v then
5: ATOMIC NEWCONF← NEWCONF ∪ v
6: end if
7: end for
8: end for
9: return NEWCONF
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case they are in conflict and need to be colored again.

Algorithm 2 is the algorithm that will be vectorized and handles the assignment of the color to ver-

tices. It takes graph G, a set of color C and a set of conflicts CONF as input. It traverses all the

conflict vertices and finds out all the forbidden colors FORBIDDEN for the particular vertex. To

do that it iterates all its neighbors and track down their colors. Line 4 of Algorithm 2 represents this

operation. After collecting all the forbidden colors, it assigns to the vertex the first color that is not

in the FORBIDDEN set.

Algorithm 3 detects conflicts that could arise during parallel speculative coloring. It takes a graph

G, a set of color C, and a previous conflict set CONF as input. It defines a new empty conflict

set NEWCONF. It considers all the previous conflict set of vertices in parallel and for each visits

the neighbors to detect if the edge has both ends with the same color. In that case, one of the two

vertices is added to the new conflict set atomically.

3.2.2 Parallel Louvain Method

The modularity is defined as the fraction of edges that fall within the partitions minus the expected

fraction that would be within the partition if the edges are distributed randomly. This definition

enables to greedily optimize modularity by considering moving a vertex to one of its neighbor

community. Indeed, if a node u ∈ C moves to the neighboring community D, then the modularity

gain is ∆mod(u,C → D) = ω(u,D/ {u})−ω(u,C/ {u})
ω(E) + (vol(C/ {u})−vol(D/ {u}))∗vol(u)

2∗ω(E)2

The Louvain Method, first proposed by Blondel et al. [21], is one of the most popular methods to

extract communities from a large network. It is a greedy multilevel algorithm that uses modularity as

the objective function [22]. It alternates between two phases, the Move Phase, and the Coarsening

Phase. In the Move Phase, nodes are repeatedly moved to adjacent communities to maximize

modularity. This process repeats until the communities are stable. Then, the graph goes through a

Coarsening Phase where each community collapse into a single vertex. The coarsened graph is then

recursively processed with the same two phases. In that sense, the Louvain Method is representative

of multi-level partitioning algorithms, such as [51].

The Move Phase (Algorithm 4) considers all the vertices in the network. For each vertex u ∈

V , for each neighbor v ∈ N(u), it calculates the modularity difference between having u in its

current community and moving it to the community of v. The decision of highest modularity gain is
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Algorithm 4 Louvain Method: Move Phase

Input: graph G = (V,E, ω), communities ζ : V → N
Result: communities ζ : V → N

1: repeat
2: for u ∈ V do
3: δ ← maxv∈N(u){∆mod(u, ζ(u)→ ζ(v))}
4: if δ > 0 then
5: C ← ζ(arg maxv∈N(u){∆mod(u, ζ(u)→ ζ(v))})
6: ζ(u)← C
7: end if
8: end for
9: until ζ stable

10: return ζ

retained, and it is enacted if the modularity gain δ is positive. The algorithm repeats until no vertex

changes community.

For each vertex u, the move phase is split into two parts. First, calculate the affinity(measures

of similarity between pairs of vertices) of each neighboring community ζ(v) by adding edge weight

ω(u, v) of the each neighbor v of u. Second, assign the node to the community of highest affinity.

The affinity calculation of a vertex is the computationally expensive part of the algorithm. It is

the part that we vectorize in this chapter. We do not describe the Coarsening Phase since we will

not make any changes to it. In this work, we only investigate the performances of the Move Phase

of the Louvain method.

Many parallel methods exist to detect communities in massive networks. The most recent effort

is included in NetworKit [54], GRAPPOLO [55] and studied in [22, 56]. GRAPPOLO uses a dif-

ferent and more complex algorithm than NetworKit. For simplicity, we present the Parallel Louvain

Method (PLM), used by NetworKit.

PLM [22] is a shared-memory parallelization of the Louvain Method [21]. The algorithm per-

forms the move phase in parallel by giving each thread different vertices to compute the affinity and

their assignment to communities. It then coarsens the graph and recursively performs its optimiza-

tions. The runtime of PLM is mostly dictated by the first move phase; the process of converging the

communities on the original graph, before any coarsening in done [22]. Trying to move vertices in

parallel is not a race condition free process. Indeed, the algorithm may attempt to move two adjacent
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vertices simultaneously. PLM is optimistic and assumes that only a few benign race conditions will

happen in practice. However, race conditions may cause the process not to converge; PLM stops the

move phase after 25 iterations, whether communities have converged or not.

In practice, Parallel Community Detection codes have limited multi-core scalability [22]; in

particular because of the noted convergence issues. Since using multiple core reaps little benefit,

this chapter focuses on using each core more efficiently by leveraging vector SIMD operations. And

we consider improving multi-core scalability orthogonal to this work.

3.2.3 Parallel Label Propagation

Raghavan [2] et. al introduced a label propagation community detection method to extract commu-

nity of a graph by the labeling of the vertices. First, all vertices are labeled as unique number, that

means each node belong to their own singleton community. Then multiple iterations over the vertex

set are performed: In each iteration, every vertex adopts the most frequent label in its neighborhood

(breaking ties arbitrarily). Densely connected groups of vertices thus agree on a common label, and

eventually a globally stable consensus is reached, which usually corresponds to a good solution for

the network.

Algorithm 5 represents the label propagation method. From line 1 to 3, each vertex assign to

a singleton community which is the label of that vertex. At line 4, a variable updated is initialize

by the number of vertices n = |V |. The main purpose of the updated variable is to terminate

the method when the total number vertices that change their community is lower than the thresh-

old value θ. Active vertex set Vactive is initialized at line 5. Line 6 to 18 represent the repeative

section to update the community. At the beginning of each iterative process(line 7) updated vari-

able set to 0. From line 8 to 17, for each vertex u find the neighboring label l that maximize∑
v∈N(u):ζ(v)=l ω(u, v). If l 6= ζ(u) then label l assign to vertex u, and increment the variable

updated by 1 and mark all neighbors of u as active. The process terminates when updated ≤ θ

3.3 ONPL: One Neighbor Per Lane

The first strategy that we investigate, One Neighbor Per Lane (ONPL), uses the entire vector to

process different neighbors of the same vertex.
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Algorithm 5 Label Propagation

Input: graph G = (V,E)
Result: communities ζ : V → N

1: for u ∈ V do
2: ζ(u)← id(u)
3: end for
4: updated← n
5: Vactive ← V
6: repeat
7: updated← 0
8: for u ∈ Vactive and deg(u) > 0 do
9: l∗ ← arg maxl {

∑
v∈N(u):ζ(v)=l ω(u, v)}

10: if ζ(u) 6= l∗ then
11: zeta(u)← l∗

12: updated← updated+ 1
13: Vactive ← Vactive ∪N(u)
14: else
15: Vactive ← Vactiven{u}
16: end if
17: end for
18: until updated > θ
19: return ζ
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3.3.1 Speculative Greedy Graph Coloring

For graph coloring, the conflict detection method naturally vectorizes. Vectorization will be useful

when marking which colors can not be used for a vertex. One can vectorize the loop that considers

all the neighbors of a vertex. The operation boils done to loading 16 neighbors at a time with a

load instruction; load the colors of these neighbors using a gather instruction. Then marking

the used colors using scatter instruction. Identifying the first available color and identifying

conflicting coloring vectorize naturally.

3.3.2 Louvain Method

Vectorized affinity calculation is complex because if two neighbors in the same community appear

in the same vector, their contribution to the affinity of that community compounds. It will lead

to conflicts during affinity calculation that requires resolving. We present the One Neighbor Per

Lane(ONPL) vectorized Louvain method for community detection using intrinsic notations.

In AVX-512, the registers are 512 bits large so that it enables the ability to load 16 neighbors

of a vertex at a time to process. Computing the affinity values requires a sequence of load, gather,

addition, and scatter operations. Vectorized affinity will work well if all the vertices have their

neighbors in different communities. Otherwise, blindly scattering causes some of the updates to be

discarded, leading to incorrect affinity values. It requires summing the edge weights of every com-

munity before accessing the current affinity of adjacent communities. This operation is essentially

a reduce and scatter. Unfortunately, no instruction directly does this operation. But the AVX-512F

and AVX-512CD instruction sets enable two different ways to handle this. ONPL uses either one

of them, depending on circumstances and these two instruction sets are sufficient to implement the

algorithm.

Consider the extreme case where all the communities in the vector are different. It is typical at

the beginning of the execution of the community detection code. In such a case, the addition and

scattering can occur independently without requiring any reduction. If we know that all the lanes

are independent, then no two lanes will write to the same location. Fortunately, the AVX-512CD

instruction set provides mm512 conflict epi32 instruction that tests each 32-bit element of

an array A for equality with all other elements in A closer to the least significant bit. Each element’s
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(a) Conflict Detection.

(b) Code snippet to calculate mask M. pnt outEdges
represents the list of out edges, self loop mask is the
mask to prevent the self-loop and zeta represents the
list of community.

Figure 3.1: Perform reduce scatter using conflict detection. The neighbors (N) are in their Com-
munities (C). A mask (M) is derived from C to denote the entries that will be processed (in green).
Some neighbors will remain (RN) to be processed.

comparison forms a zero extended bit vector in dst. This instruction( mm512 conflict epi32

) is the basis of the conflict detection method for reduce and scatter as it enables the extraction of

different sets of communities and neighbors that can safely process at the same time. Figure 3.1a

represents the process. Here, N is the list of neighbors of a vertex, and C is the corresponding list

of communities. Instruction( mm512 conflict epi32 ) is applied on C to calculate the mask

M. Figure 3.1b shows the code snippet to calculate the mask M. There are two techniques to handle

the conflicted case: the first iteratively performs the vector operation on the non-conflicted sets and

performs as many iterations of vector operations as there are non-conflicted sets; the second one

applies vector operation on a non-conflicted set of neighbors only once and performs the remaining

entries using purely scalar operations. Indeed, in practice, this conflict detection method uses many

instructions. And it only useful if many communities can process at once. The vector will process

one entry at a time with expensive vector operations if adjacent vertices belong to the same commu-

nity. One can avoid the problem by performing vector operation only on the first set of independent

communities and use the scalar operations afterward in the conflict detection method.

Another extreme case comes when all the communities in the vector are identical. This case

arises when the process has mostly converged. In this case, an in-vector reduction is preferable.

This method (sketched in Figure 3.2a) masks out all the entries of the vector besides the one

mapping to a particular community. Figure 3.2b shows the code snippet to calculate the mask

M. Then the edge weight mapping to this community is reduced with a masked reduction instruc-

tion mm512 mask reduce add ps and is finally added back to the affinity of that community.
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(a) In-vector Reduction.

(b) Code snippet to calculate mask M. pnt outEdges
represents the list of out edges, self loop mask is the
mask to prevent the self-loop and zeta represents the
list of community.

Figure 3.2: Perform reduce scatter by compressing the communities. The neighbors (N) are in their
Communities (C). A mask (M) is derived from C to denote the entries that will be processed (in
green). Some neighbors(RN) and communities(RC) will remain to be processed.

In Figure 3.2a, RN represents the remaining vertices that are not processed yet, and RC is the list

of their corresponding communities. Similar to the conflict detection method, there are two ways to

proceed. Successive communities can use mask and reduce; however, this can lead to an issue for

vertices that sit at the border of many communities causing potentially a large vector overhead. In

practice, ONPL only processes vector operations for the first community of the vector and defaults

to scalar implementation for the remaining communities.

The calculation of modularity from the affinity and the assignment of vertices to the community

is done with simple vector processing and does not pose particular challenges.

3.3.3 ONLP: One Neighbor Per Lane Label Propagation

Nodes traverse in a parallel fashion, which brings the randomization on the node selection. For each

node, it loads 16 neighbors and gathers their corresponding labels at once. For each distinct label,

it sums the neighbor edge weight to create a vector with label weight. Each vector lane handles one

neighbor of the vertex. Then an Intrinsic instruction mm512 reduce max ps applied to find out

the heaviest neighbor label. A vertex participates in the next iteration if any of its neighbor labels

change.
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3.4 OVPL: One Vertex Per Lane

In the One Vertex Per Lane (OVPL) method, each SIMD lane processes different vertices. Initially,

vertices of the graph are group into multiple blocks where the size of blocks is the multiple of the

vector lanes. We have to restructure the network for the efficiency and convergence of the algorithm.

Because two vertices in a block will be processed simultaneously, OVPL requires two vertices

in the same block not to be neighbors. Reordering the graph to have that property requires solving a

graph coloring problem. Therefore it makes no sense to deploy OVPL for graph coloring. We only

consider OVPL for the community detection problem.

3.4.1 Preprocessing

Vertices that are part of the same block will always be processed simultaneously. This property

might induce race conditions that can prevent convergence. If the adjacent vertices are processed

simultaneously, the affinity calculation performs on the changing information. The simplest case

is a graph with two vertices that swaps their community infinitely, but the issue also appears on

numerous complex networks.

To prevent this from happening, we first solve a graph coloring problem: we allocate a color

to each vertex so that no two adjacent vertices have the same color. We then group the vertices

where each group holds vertices with the same color. That will make sure that no vertices are

adjacent in a group. While finding the coloring with a minimal number of colors is an NP-Complete

problem [23], we do not require such a high-quality solution. We use the speculative parallel greedy

graph coloring algorithm [25] we described in Section 3.2.1.

After grouping the vertices, we sort the vertices in each group by non-increasing degrees. Sort-

ing will help to minimize wasted computation during execution.

Finally, we split each group of non-adjacent vertices into small blocks of equal size equal to a

multiple of the number of lanes. We reformat the vertices of each block to enable vectorization by in-

terleaving the representation of the different vertices. That also reduces unaligned memory accesses.

The format is similar to sliced ELLPACK [57]. A contiguous memory of size max deg of block

× block size holds each block of vertices. The index from (i− 1) × block size to i × block size

will represent the ith neighbor of the vertices of each block. Edge weights also follow a similar
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representation.

Figure 3.3 shows a sample graph and its block structure. In the example, we assume the vector

length is 4 for readability (instead of 16). So, the initial block will hold vertices that are not adjacent

by selecting the same color. But in the second group, there are no four vertices with the same color;

that is why it contains vertices of different colors to fill the vector.

(a) Sample Graph.
(b) Abstract Memory Representation.

(c) Physical Memory Representation.

Figure 3.3: OVPL reorders the graph using a graph coloring methods and structure it in blocks of
vertices so that the neighbors of the vertices of a block can be loaded in a vector (sketched in green)
simultaneously.

3.4.2 Moving a Block of Vertices

Rather than moving a vertex to its most preferable community, OVPL moves a block of vertices at

once. It calculates the affinity of all the vertices of a block concurrently. Therefore OVPL has a much

higher memory utilization than PLM because it keeps block size affinity structures in memory.
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OVPL computes the affinity of each vertex of the block one neighbor at a time. OVPL first

loads the first neighbor of each vertex of the block at once and gathers the community of the first

neighbors. Then it gathers the affinity of the neighbor communities from the different affinity arrays.

OVPL adds the edge weights to the obtained affinity and scatters the updated values back to the

appropriate locations. Note that because of this, it was not possible to perform this vectorization on

x86 processors before scatter was introduced with AVX-512.

This process repeats until all the neighbors of all the vertices of the block are processed, i.e.,

until the maximum degree of the block. However, some vertices may have a lower degree, so OVPL

needs to check the existence of the neighbor. This check increases the number of instructions

and causes the algorithm to use masked vector instructions. OVPL does not perform that check

before the minimum degree of the block neighbors has been considered. The difference between

the maximum and minimum degree in each block leads to wasted SIMD lanes. Preprocessing sorted

the different color groups per degree to minimize the degree difference. Also representing the blocks

by interleaving the vertices, enables access to the graph to aligned loads.

The assignment of vertices to new communities is done without particular optimization using a

natural way of performing this task.

3.5 Experimental Settings

Hardware Platform and Operating System. We used two different machines for the two archi-

tectures we study in this chapter. We refer to the first machine as SkylakeX. It is a node with two

Intel Xeon Gold 6154 processors (SkylakeX architecture, 18 cores per processor, no hyperthread-

ing, 25MB L3 Cache) and 388 GB of DDR4 memory. The second machine is Cascade Lake,

which is equipped with two Intel Xeon Gold model 6248R (Cascade Lake architecture, 24 cores per

processor, no hyperthreading, 36MB L3 Cache) and 384GB GB of DDR4 memory. Both processors

support Intel AVX-512F and AVX-512CD instruction sets with among others. Both machines use

Linux 3.10.0.

Software Environment. All the codes are compiled by the Intel C++ compiler icpc version

16.0.0.109. Codes also compile with optimization flag -O3 and xCORE-AVX512 flags, so the

compiler generates a binary optimized for the architecture. We pick existing established code bases
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for both algorithms to confirm we start from implementations of reasonable good qualities.

We build graph coloring and community detection experiments on top of Kokkos [58] and Net-

worKit [54], respectively. We intended to compare to the original PLM implementation from [22].

During our experiments, we realized that PLM suffered from various memory management issues

like large buffers were allocated and deallocated for each vertex traversed. We created a Modi-

fied PLM implementation (MPLM) that preallocates memory per thread. And then reuse the same

buffer for the computation rather than deallocating and reallocating memory over and over. After

confirming that MPLM is an improvement on PLM (See section 3.6.4), we will perform all other

comparisons with MPLM.

Graphs. We perform our experiments on real-world data sets to avoid the bias introduced by

random graph generator. We select graphs from the Stanford Large Network Dataset Collection

(SNAP) [59] and DIMACS [60, 61] data sets that are well known for graph algorithm research.

Graphs are from different categories like Social networks, clustering instances, sparse matrices,

internet topology networks, citation networks. We expect that the coverage in the type of graphs

enables deriving conclusions that are more general and bias-free than picking all graphs from a

single category.

Table 3.1 presents the list of undirected graphs that we use in the experiments. The table also

includes basic statistics such as the number of nodes (V ), edges (E) of the graph, the maximum

degree of the graph (∆), and average degree (δ).

Collection of Result Sets. All the variants are run 25 times for each graph. The reported values of

time and modularity are average of the 25 runs. For runtime, we only measure the time taken by the

community detection(Move-Phase) and graph coloring algorithm itself, not the time spent reading

the graph from the file system. We computed the 95% confidence interval [62] for the results of all

the experiments. Once we realized the confidence intervals were very narrow and that the visible

differences in the plots were statistically significant, we choose not to report them to improve figures

readability.
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Table 3.1: List of graphs used in the experiment

Graph Nodes (V ) Edges (E) ∆ δ

333SP 3,712,815 11,108,633 28 5
AS365 3,799,275 11,368,076 14 5
M6 3,501,776 10,501,936 10 5
NACA0015 1,039,183 3,114,818 10 5
NLR 4,163,763 12,487,976 20 5
Oregon-2 11,806 32,730 2,432 5
asia 11,950,757 12,711,603 9 2
belgium 1,441,295 1,549,970 10 2
delaunay n24 16,777,216 50,331,601 26 5
europe 50,912,018 54,054,660 13 2
germany 11,548,845 12,369,181 13 2
in-2004 1,382,908 13,591,473 21,869 19
kkt power 2,063,494 6,482,320 95 6
loc-Gowalla 196,591 950,327 14,730 9
luxembourg 114,599 119,666 6 2
netherlands 2,216,688 2,441,238 7 2
nlpkkt200 16,240,000 215,992,816 27 26
roadNet-PA 1,088,092 1,541,898 9 2
uk-2002 18,520,486 261,787,258 194,955 28
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Figure 3.4: Microbenchmark performance on SkylakeX.

3.6 Performance Results

3.6.1 Microbenchmark

The microbenchmark simulates the affinity calculation of a single vertex in a fairly dense graph

(with 4096 neighbors per-vertex packed along the diagonal). The code does a sequence similar to

the operations of the algorithms we consider: load, gather, and scatter when running vectorially.

The benchmark is written to compare a scalar implementation and a vector implementation.

The results for the SkylakeX architectures (in Figure 3.4) highlight that there are little differ-
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Figure 3.5: Impact of vectorization of Graph Coloring on both architectures. Y-axis represents the
normalized version of the runtime comparison between scalar and vectorized. Scalar/Vectorized =
2.5 means vectorized version is 2 times faster than scalar.

ences in SkylakeX between the scalar and vectorized performance, with the vector implementation

being 20% faster than the scalar one.

This sets the expectation for our problems. The microbenchmark is essentially what graph

coloring does. For a graph with a large degree and the best diagonal layout, SkylakeX is only 20%

faster using vector instructions than scalar ones. The community detection problem could see higher

improvements because the problem is more computational.

3.6.2 Speculative Greedy Graph Coloring

The performance of the ONPL vectorization on graph coloring is displayed in Figure 3.5 for the

Cascade Lake and SkylakeX architectures. Vectorized speculative graph coloring on both proces-

sors shows moderate performance enhancement for some graphs over the scalar version. Vectorized

graph coloring on the Cascade Lake and SkylakeX outperform the scalar version by at most fac-

tors of 2 and 1.4. Speculative parallel graph coloring has two main parts. One is the assignment

of color, and another is conflict detection. We only apply vectorization on the color assignment

portion. Graph coloring has a limited opportunity for vectorization that is why it shows a moderate

performance for most of the graphs.
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3.6.3 Performance on R-MAT Graph

R-MAT Graph

R-MAT [63] is one of the most common synthesis graph generators which aims to maintain the

power law of the natural graph. To generate a graph using R-MAT, one usually 6 attributes. First

one is the scale which determine the number of nodes (2scale) in the graph. Next attribute is the

edge-factor which maintain the average degree of the graph. Then 4 parameters (a, b, c, d) to

maintain probability distribution of edges among nodes. Usually adjacency matrix divided into 4

quad and each edge choose one quad based on the probability of that quad. R-MAT graph useful

to describe results based on the structure of the graph. Here is the list of parameters we used to

generate R-MAT graphs and to make it fair we perform different version of Label Propagation and

Louvain method on the same graph. Table 3.2 represents parameters we used to generate R-MAT

graph.

Table 3.2: R-MAT Parameters

Scale Edge-factor Probability Distribution

17, 18, 19, 20, 21, 22, 23, 24 1, 2, 4, 8, 16, 32, 64, 128
a=33%, b=33%, c=33%, and d=1%
a=40%, b=30%, c=20%, and d=10%
a=57%, b=19%, c=19%, and d=5%

Label Propagation
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Figure 3.6: Performance gain of the ONPL Label propagation against scalar on the RMAT graph
with different edge-factor on Cascade Lake processor.

Figure 3.6 and 3.7 shows the performance of the Label propagation on R-MAT graph on the

Cascade Lake processor. We can see from Figure 3.6 that performance gain of the Label propagation

increased with higher edge-factor. Now, ONPL perform vectorization on one neighbor per lane that
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means higher edge-factor enable higher vectorization. We can also notice that performance of the

application higher for the lower scale graph. Which gives the insight of the overall graph size has

huge impact on the performance. Number of edges of a R-MAT calculated by 2scale × (2× edge−

factor). Now, bigger graph brings higher cache misses because of the limitation of the memory

size. So, if a graph shows higher average degree and size of the graph accommodate by the system

memory then vectorized ONPL Label propagation will show a tremendous performance compare

to scalar version. Figure 3.7 also provide similar evidence that smaller size (vertices) graph with

higher edge-factor provide huge spike in performance gain.
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Figure 3.7: Performance gain of the ONPL Label propagation against scalar on the RMAT graph
with different different number of vertices on Cascade Lake processor.

Louvain Method

Figure 3.8 and 3.9 show the performance of the Louvain method on the R-MAT graph. Louvain

method shows the similar nature but the performance gain lower than the Label Propagation. One of

the main reasons, the calculation of the Louvain method way much complex than Label Propagation.

Memory usages is also higher in Louvain method which led more cache misses. But experiments on

the R-MAT graph follow the main argument of the work that one should choose vectorized version

ONPL Label propagation and Louvain for graphs with higher averages edges. If a graph shows

lower average degree then scalar version is well suitable.

3.6.4 Louvain Method on NetworKit

Modified Parallel Louvain Method (MPLM)

We noticed some performance deficiencies in PLM, like threads reallocation of the memory needed

for the affinity computation for each vertex that it encounters. To be able to study the impact of vec-
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Figure 3.8: Performance gain of the ONPL Louvain Method against scalar on the RMAT graph with
different edge-factor on Cascade Lake processor.
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Figure 3.9: Performance gain of the ONPL Louvain Method against scalar on the RMAT graph with
different different number of vertices on Cascade Lake processor.

tor processing, we needed to make sure that the performance difference was rooted in vectorization

rather than in memory management. The Modified Parallel Louvain Method (MPLM) is the code

that contains various performance fixes for PLM.

(a) PLM vs MPLM speedup on the Cascade
Lake(48 threads).

(b) Modularity of MPLM, ONPL, and OVPL on
Cascade Lake(48 threads).

Figure 3.10: Performance and quality of the Modified PLM (MPLM) over PLM.

Figure 3.10a presents the improvement of MPLM compared to PLM for 48 threads on Cascade

Lake for all studied graphs. Similar results observe on SkylakeX (not shown for brevity). We will

use MPLM as the comparison point to see the impact of vector processing in community detection

codes.
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Figure 3.11: Speedup of ONPL and OVPL over MPLM on the Cascade Lake (48 threads)

Modularity

Since the algorithm has significant race conditions, any change of timings could affect the quality

of the communities detected. Modularity is one of the standard metrics to evaluate the quality of

the communities and is the metric optimized by MPLM. Figure 3.10b shows the modularity of the

implementations of MPLM, ONPL, and OVPL on the Cascade Lake architecture using 48 threads.

All methods achieve almost the same modularity which confirms the quality of the vectorized com-

munities has not been significantly impacted.

ONPL

is a vectorized algorithm with the same memory consumption as the scalar algorithm MPLM and

similar memory access patterns. Figure 3.11 shows the performance of ONPL compared to MPLM

on the Cascade Lake for 48 threads: ONPL shows performance improvement for most of the se-

lected graphs and at most a factor of 2.5 performance gain compared to MPLM. Figure 3.12 shows

the ONPL performance in the NetworKit on the SkylakeX architecture. ONPL performs better than

its scalar counterpart for almost all the graphs. The best performance of ONPL is recorded on the

SkylakeX processor is around a factor of 1.8 compared to MPLM.
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Figure 3.12: Speedup of ONPL and OVPL over MPLM on the SkyLakeX (36 threads)

OVPL

is an algorithm that consumes a lot more memory than the scalar algorithm due to having to store

community affinity information for an entire block of vertices. Figure 3.11 presents the results of

OVPL on the Cascade Lake architecture relative to the scalar implementation. For the graphs that

were completed (some graphs ran out of memory), the performance derived is much better than the

scalar implementation. Figure 3.12 shows the performance of OVPL on SkylakeX. We can see a

factor of 9.0 and 6.5 performance gain for OVPL on the Cascade Lake and SkylakeX processors

respectively compared to MPLM.

From the algorithm perspective, OVPL performs vectorization on a block of vertices, more

specifically proper vectorization applies on the iteration only the minimum degree of vertices from

the block. The rest of the iterations need more branching and also some lanes of the vectorization

always remain unused. Our experimental results also reflect the scenario. Figure 3.13 shows only

the performance of the selected graphs where most of the vertices have the same degree or very

small variations. It shows a great performance gain. Graphs like Delaunay(average Degree 5)

triangulations of random points or sparse matrix nlpkkt(average Degree 26) have most vertices

with degrees close to the average. Every vertex in OVPL’s block is in sorted order and properly

distributed by their degree, which also brings great load balancing.
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Figure 3.13: Speedup of OVPL over MPLM for the selected graphs where many vertices have
degrees close to the average on both architectures.
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Figure 3.14: Performance and quality of the Modified PLM (MPLM) over PLM.

Figure 3.14 shows the overall energy consumption of different Louvain methods. The energy

consumption by Louvain methods is calculated from RAPL (Running Average Power Limit) energy

usages. Figures 3.14a and 3.14b show the energy consumption of ONPL and OVPL over MPLM.

Any bar above 1 represents ONPL or OVPL consuming less energy than MPLM. Using SIMD

operations helps to reduce the number of instructions in the execution. So, the expectation is that it

can give better run time as well as better energy usage.

OVPL consumes more energy compared to ONPL and MPLM. Indeed, OVPL needs extra pre-

processing, so it is adds work to enable vectorization. Also, because the vectorization pads the graph
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representation to fit the vector lanes, there are cases where vector lanes are actively used to perform

no useful computation, which raises energy consumption. Since OVPL adds work and wastes vector

lane, it makes sense that it raises energy consumption.

ONPL shows decent energy efficiency for both architectures (Cascade Lake and Skylake). Most

graph tested have a better energy consumption with ONPL than with MPLM. If we compare Fig-

ures ?? and 3.14, we can see that some graphs see better energy gains than speedup. For instance,

uk-2002 see a slowdown from ONPL but a factor of 1.2 of gain in energy efficiency. That means

vectorization can help graph algorithms by not only making them faster but also energy efficient.

We conjecture that while vector instruction consume more power, they decrease the number of in-

struction that need to be decoded which can translate in energy gains.
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33
3S

P
AS

36
5

M
6

NA
CA

00
15 NL
R

Or
eg

on
-2

as
ia

be
lg

iu
m

de
la

un
ay

_n
24

eu
ro

pe
ge

rm
an

y
in

-2
00

4
kk

t_
po

we
r

lo
c-

Go
wa

lla
lu

xe
m

bo
ur

g
ne

th
er

la
nd

s
nl

pk
kt

20
0

ro
ad

Ne
t-P

A
uk

-2
00

20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

MPLP/ONLP

(b) On SkyLakeX Processor (36 threads).

Figure 3.15: [Label Propagation] Speedup of vectorized Label Propagation (ONLP) over the parallel
Label Propagation (MPLP).

Figure 3.15 shows the performance of label propagation(LP) on Cascade Lake and SkylakeX

processors. The parallel and vectorized one neighbor per-lane label propagations represent by

MPLP and ONLP. A couple of graphs get moderate performance gain for ONLP on Cascade

Lake 3.15a processor; the highest performance gain is reported around 2.0 times over MPLP. Graphs

on SkylakeX processor 3.15b also show moderate performance.

It is possible to vectorize the Label Propagation, but it has limited benefits. In the Louvain

method, we vectorize the affinity calculation and modularity calculation code sections. Both of

the code sections are required a good amount of instructions to assign vertices to their respective

community. So while gather and scatter provide limited performance benefits, they enable the rest

of the affinity and modularity calculation to be vectorized which improves performance. However,

the vectorization of the Label Propagation does not lead to many more instructions to be vectorized.
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3.7 Related Work

Label propagation is one of the most popular community detection algorithm proposed by Raghavan

et al. [2]. The algorithm iteratively refines labeling of vertices to communities by finding for each

vertex the label that most frequently appears in its neighborhood and migrating the vertex to that

label. PLM [22] is the shared-memory parallelization of the Louvain Method [21] we use as a

reference. Halappanavar et al. [56] presented community detection for static and dynamic networks

using Grappolo.

Cheong et al. [64] proposed a parallel Louvain method for GPUs using three levels of paral-

lelism for the single and multi-GPU architectures. Later, Naim and Manne et al. [65] proposed a

highly scalable GPU algorithm for the Louvain method, which parallelizes the access to individ-

ual edges. There are other recent works like Sanders et al. [66] proposed Louvain method for the

python; the main objective of their work is the simplicity to implement the algorithm in python lan-

guage. Gheibi et al. [67] proposed a cache efficient Louvain method for Intel Knight Landing(KNL)

and Haswell architecture.

Both GPUs and CPUs are SIMD systems, at least in spirit. Taking the analogy of a GPU warp as

a core and a thread inside a warp as a lane, algorithms for GPUs can be re-envisioned as vectorized

CPU algorithm. At a very high level, the distinction between vertex-based algorithms (such as

OVPL) and edge-based algorithms (such as ONPL) appears in GPUs. However, there are still many

differences between the architectures which cause engineering and algorithmic decisions for CPU

and GPU systems very different.

3.8 Conclusion

We considered the impact of AVX-512 instructions on graph partitioning problems. We investigated,

in particular, the Cascade Lake and the SkylakeX architectures and how to use them to perform

speculative greedy graph coloring, the Louvain method, and Label Propagation.

Using different SIMD lanes for different vertices only makes sense for the Louvain Method as

this vectorization requires a pre-processing overhead. The vectorization forces to process blocks of

vertices with the same number of neighbors, which induces some work overhead. It proved to be

particularly efficient for graphs with balanced degrees and high average degrees.
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The vectorization strategy that processes multiple neighbors of a single vertex at once also shows

performance improvement for many graphs. That strategy is only possible thanks to scatter instruc-

tions and other various new instructions in AVX-512 that are critical to partitioning problems. The

reduce and scatter pattern is critical in implementing these vectorizations.

Reduce-scatter as a concept can be implemented in multiple ways with vector instructions. We

implemented both in our software environment by using intrinsic operations. In future works, we

want to investigate compiler techniques to enable us to deploy these techniques on more graph

partitioning kernels without requiring low-level programming expert.
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CHAPTER 4

PERFORMANCE MODEL OF ITERATED SPMV FOR DISTRIBUTED SYSTEM.

Many applications rely on basic sparse linear algebra operations from numerical solvers to graph

analysis algorithms. Yet, the performance of these operations is still not well understood. Users and

practitioners rely on a rule of thumb understanding of what typically works best for some application

domain.

This chapter aims at providing an overall framework to think about the performance of sparse

applications for distributed systems. We use the sparse matrix-vector(SpMV) multiplication as the

representative of the experiments. We model the performance of multiple SpMV implementations

on the distributed system. As an end result, we represent a polynomial regression model for dis-

tributed systems that can provide the performance details of SpMV based on the structure of the

matrix and system architecture.

4.1 Introduction

Sparse matrix-vector multiplication (SpMV) plays an important role in solving linear system. Per-

formance of SpMV mainly depends on the size and structure of the matrices and the architecture

of the system. The size of the matrices can be very large for scientific research: in high energy

physics, the LHC project produces PBs of data; the climate science community relies upon access

to the CMIP5 archive, which is several PBs in size; the multi-modal imagers used in biosciences can

acquire 100GBs-TBs of data. That is why researchers like to go for parallel algorithms to perform

SpMV. As a result, algorithms for distributed system become more popular for SpMV. The next

important thing is the platform of the computer architectures.

To perform sparse matrix-vector multiplication (SpMV) on distributed systems, the most com-

mon mechanism is to partition the matrix into multiple parts and perform SpMV on each part indi-

vidually in the different processors. Good partitioning can ensure better load balance and reduces

the volume of communication between the underlying MPI process. Many partitioning algorithms

have been proposed to ensure good load balance and to minimize MPI communications [68, 69, 70].
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In this chapter, we explore two partitioning modes (Uniform 2D-Partitioning and 1D Row Par-

titioning) and the performance of the different SpMV representation based on these partitioning

mechanisms on distributed systems. We develop a linear and a polynomial support vector regression

(SVR) [18] performance models for SpMV operations on the distributed system for these different

techniques. The models are accurate enough to predict the best configuration to execute SpMV

given a matrix.

Performance modeling for any sparse matrix related algorithm is difficult. The structure of the

sparse matrix varies in wide range. We first attempt to provide a linear model based on the size of

the matrix. We find out if two matrices are same size in concept of rows then the performance of

the SpMV shows little bit linearity against number of non-zero per rows. But it is still quite difficult

to give accurate prediction. We build up a linear model that generate random matrices of different

number of rows. For each matrix with a specific rows we change the number of non-zeros per row in

the range 1, 2, 4, 8, 16, . . . , 132. Then build a linear regression model for particular row size matrix

against the non-zeros per row. Our aim is to find out two near similar generated matrix A and B for

given test matrix(M ) that way the number rows in A and B immediate lower and higher than M

respectively form the available matrices of the model. Then we predict the performance of the test

matrix M based on this two model matrices. We describe in details in the below section 4.5.1.

Support vector regression (SVR) [18] is widely popular for performance modeling. In this paper,

we present a polynomial SVR model to predict the performance of SpMV on distributed system.

One of the main difficulties of the SVR model is to find out the right features for the model. Our

proposed SVR model shows promising result that can be useful to model many other linear system

as well. In section Section 4.5.2, we provide details of the polynomial SVR model.

4.2 Related Work

There have been lots of previous work have done on the SpMV performance model for the CPU

and GPU architecture. In particular, Guo and Wang [71] et.al. have proposed a linear model for

general-purpose GPU that can predict the runtime of the SpMV based on the strides size and nonzero

per row. There are also some other SpMV models [72, 73] that exist for the GPU architectures. A

performance model for SpMV on the GPU architectures is more common than a single or distributed

34



system of CPU architectures. Consistent and parallelisms of the GPU performance is the main

reason behind all these models for the GPU.

4.3 Sparse Matrix Vector Multiplication (SpMV)

4.3.1 Distributed Memory Execution

To perform sparse matrix-vector multiplication (SpMV) on distributed systems, the most common

mechanism is to split the matrix into multiple parts and perform SpMV on each part individually

in the different processors. In this work, we explore two different type of graph partitioning and

perform different SpMV algorithms based on the partition. A good partitioning can ensure better

load balance and brings more freedom to each MPI process to work more independently.

Randomize 2D-Uniform Partitioning

In 2D-Uniform partitioning, matrices are partitioned into both row-wise and column-wise. So, there

is a choice to make the number of partitions for either way. In our experiments, we choose the same

number of partitions for both way and that makes the perfect square number of partitions for the

matrix. Each MPI process handles one of the portion of the matrix.

Now, load imbalance is one of the known issues for the scale-free graph partitioning. In par-

ticular, 2D-Uniform partitioning can balance the number of rows, but can have significant load

imbalance in the non-zeros. This imbalance also impact on the load balance of the SpMV. Boman

and Devine et al. mentioned in their graph partitioning work [74] that randomization can bring great

load balance for SpMV for the 2D-Uniform partitioning. Each row (and corresponding vector entry)

is assigned to a random process. Since the expected number of rows and non-zeros is uniform for

all processes, this method generally achieves good load balance.

1D-Row Partitioning

In our 1D-Row partitioning, matrices are only partitioned row-wise. So, it is like the row-wise K-

way graph partitioning. We can define the ID-Row(K-way) partitioning for a graph G = (V,E)

with |V | = n, partition V into k subsets, v1, v2, . . . , vk such that vi ∩ vj = φ for i 6= j, |vi| = n/k,

and ∪ivi = V , and the numberof edges of E whose incident vertices belong to different subsets
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is minimized. A K-way partition of V is commonly represented by a partition vector P of length

n, such that for every vertex v ∈ V , P [v] is an integer between 1 and k, indicating the partition at

which vertex v belongs.

A K-way partition of the graph or matrix can be used to assign k tasks to k processors. So,

we buildup our MPI performance model based on this partitioning, we choose METIS [69] K-way

partitioning method. METIS graph partitioning is well known for the proper load balance for the

sparse matrix [75].

4.4 Sparse Matrix-Vector Multiplication Algorithms

4.4.1 SpMV on the 2D-Uniform Partitioning

In here, we describe the mechanism to perform SpMV on the 2D-Uniform partitioning matrix. In

our experiments, we always used perfect square(4, 9, 16, 36, . . . , 225, 256 etc.) number of MPI

processes for the experiment. So, if p2 is the number of processor then a matrix need to row-wise

split into p parts and then column wise p parts. That means a matrix will split into in total p2 parti-

tion. Another important fact is that each processor will contains the same number
⌈matrix size

p

⌉
of rows and columns. If any partition contains less number of rows or column than

⌈matrix size
p

⌉
then we added extra dummy rows or columns with all zero elements to make it similar to the others.

Figure 4.1 represents the mechanism of the 2D-Uniform partitioning on a system of 9 processors

and 9 × 9 matrix. Then, the matrix splits row-wise
√

9 = 3 times and column-wise also 3 times.

Now, matrix has 9 rows and 9 columns that means each process will handle 3× 3 sub-matrix. Fig-

ure 4.1 shows 9 different region by 9 different colors. Processes that contains the same rows are

called same row rank processes and who contains the same columns are called same column rank

processes.

To perform the SpMV, every processor needs the corresponding vector elements. From the

Figure 4.1, we can see sub-matrices 1, 4, 7 require the same vector elements. In our experiment,

only diagonal sub-matrix will hold the corresponding column vector elements and beginning of the

process it will share the vector elements with all the column rank processors by using MPI collective

method MPI Bcast. After perform the multiplication, all row rank processors need to reduce their

values. The resulted reduce value is saved onto the corresponding diagonal sub-matrix by using
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Figure 4.1: 2D-Uniform partitioning a symmetric matrix for 9 distributed processors.

MPI collective MPI Reduce with MPI SUM operation.

4.4.2 SpMV on the 1D-Row Partitioning

In 1D-Row partitioning, matrices are splitted in row-wise only, so if you assign a single part of the

matrix to a MPI process then it can need any vector elements data to perform SpMV on the part

of the matrix. So, there is a choice to make, either a MPI process can hold full vector information

or only hold the vector portion corresponding to the rows. Based on this criteria, we perform two

different SpMV algorithms on the 1D-Row partition.

Global 1D-Row SpMV(G1DR-SpMV)

In this algorithm, all the MPI processes hold the entire vector information, they perform matrix

multiplication locally on the part of the matrix that belongs to them. After matrix multiplication,

an ALL Gatherv takes place to share the updated value of the vector. Because it performs the

all-to-all MPI collective operation, so this algorithm is bounded by the MPI communication.

Local 1D-Row SpMV(L1DR-SpMV)

In this algorithm, all the MPI processes only keep a portion of the vector corresponding to the

rows of their part of the matrix. Initially they perform local matrix multiplication on the non zero
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elements whose column belongs to the local vector. For the rest of the non zero elements whose

vector elements belongs to the other process, they request to the processes to send the information.

So, it requires MPI Send and MPI Recv to transfer data among the process. But the good thing

processes communicate independently each other and METIS K-way partition can give a better

partition which reduces the inter-process communication.

4.5 Performance Model

4.5.1 Linear Model

We applied the linear model only for 2D-Uniform partitioning SpMV, because it only suitable for

the model. In the model, we picked perfect square(p2) number of process. We know from the

2D-Uniform partition that each matrix splits into (p× p) parts that means each row of the partition

contain p parts and each part handle by each process. In our model, every process receives a matrix

with same size and same number of nonzero per row. But the distribution of the nonzero per row

follows random distribution. Column-wise processors broadcast vector information and row wise

processors reduce the results. Each process independently performs matrix-vector multiplication.

We record average time of these processors. Figure 4.2 shows the performance of the model. It

shows the linearity of the performance over nonzero per row for a particular matrix. It gives us

the idea to build up a regression model that can predict run time of SpMV based on the nonzero

per row. We train the model with different size random matrix. In the training data, we used 7

different variation of matrix(1, 2, 4, 8, 16, 32, 64 nonzero per row). In real data, the matrix size can

vary a wide range. So, it is not feasible to train all possible size matrix. Let assume the a subject

matrix with r average row per process and npr nonzero per row that we need to predict the SpMV

performance for the matrix. Now, it is not necessary that our system train with the matrix which has

the same size as ri. Our system will find out two row equation for row r1 and r2, where r1 < r < r2.

It is important to note that, r1 is the max row equation available in the model that is lower than r

and r2 is the minimum row equation that is greater than r.

y1 = m1 × x + c1 for r1 and x = npr

y2 = m2 × x + c2 for r2 and x = npr
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Now, according to our model we expect the the performance(y) of the subject matrix with row r is

between y1 and y2 (y1 ≤ y ≤ y2). Our system finally predict the execution run time of the subject

matrix using following equation,

y = y1 + (y2−y1)×(r−r1)
r2−r1

Figure 4.3 shows the example for the subject matrix with 250000 average row per process and 32
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Figure 4.2: Performance model corresponding nonzero per row for a particular partition row.

nonzero per row. Here, possible r1 and r2 equations are available for rows 200000 and 310000.

Figure reflect the prediction mechanism of our system.
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Figure 4.3: Predict SpMV Performance for a matrix that has avg nonzero per row 32 and avg row
per process 250000.

4.5.2 Polynomial Support Vector Regression (SVR) Model

Support vector regression (SVR) is a variation of support vector machines (SVM), which solves the

following problem for a given training vectors xi ∈ Rp, i = 1, . . . , n, and a target vector y ∈ Rn,

min
ω,bζ,ζ∗

1
2ω

Tω + C
n∑
i=1

(ζi + ζ∗i )

subject to yi − ωTφ(xi)− b ≤ ε+ ζi,

ωTφ(xi) + b− yi ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, . . . , n
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According to [76], the dual problem for ε − SV R under given regularization parameter C with

given kernel K is

min
α,α∗

1
2(α− α∗)TQ(α− α∗) + εeT (α+ α∗)− yT (α− α∗)

subject to eT (α− α∗) = 0

0 ≤ αi, α∗i ≤ C, i = 1, . . . , n

Where e is the vector with all ones and C > 0 is the upper bound. Q is and positive semi-definite

matrix, Qij = K(xi, xj) = φ(xi)
Tφ(xj) is the kernel. Here training vectors are implicitly mapped

into a higher (maybe infinite) dimensional space by the function φ.

The decision function is:
n∑
i=0

(αi, α
∗
i )K(xi, x) + ρ

We applied polynomial SVR model for all three algorithms 2D-Uniform partitioning SpMV,

G1DR-SpMV and L1DR-SpMV. One of the main task for the SVR model is to find out the appro-

priate attributes for the model and then find right values for the free parameters. The most common

technique is to find the proper values of the free variables is the Cross-Validation and Grid-Search.

Cross-Validation and Grid-Search

Initially we split the matrices into train and test data set that test data can not participate in the

training mechanism. Here, we choose polynomial(“poly”) kernel to perform all the machine learn-

ing regression. In this kernel, there are three variables that need to be selected (C, ε, γ). There

are no fixed value for these variables, based on the application criteria it can vary. The most

technique to choose the optimal value for these variables are to apply cross-validation in the grid-

search. In our experiment, we set γ as “auto”, so we only need to find the optimal C and ε. We

select 5 − fold cross-validation that means we split the training set into 5 different parts, and

among 5 parts we choose 4 as a training set and the remaining one as a test set. We pick dif-

ferent sets as a training and record the score. To do this experiment, we need to set the free

variable. In the grid search, one need to select a set of variables for the free variable(C, γ), like

C = {2−2, 2−1, . . . , 24, 25} and γ = {0.01, 0.02, . . . , 0.2, 0.3}. Now, for each pair of variable we

need to perform cross-validation and record the score. We need to select the pair that gives the best
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performance in cross-validation. The next step is to train the model using best variable on the whole

train set. So, our model is now ready to predict the performance. We test the performance on the

test data set.

Feature selection

We build up polynomial support vector regression (SVR) models for three different SpMV algo-

rithms on the two different graph formats (CSR, COO). The SVR model follows the same mecha-

nism for all multiplication algorithm. The model predicts the average run time for a particular test

matrix based on its attributes. So, attributes are the key to a good performance model. Although

the local multiplication is the same for every algorithm, the communications are different for the

different partitioning modes. The common attributes for all three algorithms are:

1. Average rows per process.

2. Average non zero per process.

3. Average non-zero per row.

4. Density of the matrix.

5. Standard deviation of the non zero per row.

But the communication among the MPI processes in the Local L1DR-SpMV (one-to-one) is

different than the other two (one-to-all or all-to-all). That is why based on the sparsity of the

matrices the communication can vary significantly. For that, we need the following extra attributes

for the L1DR-SpMV which can be extracted after partitioning.

1. Average local non-zero elements.

2. Average global non-zero elements.

3. Average inter-process call.

4. Average data transfer.
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4.5.3 SpMV Model from Micro-Benchmark

In this model, we predict the runtime of the SPMV based the performance of couple of micro-

benchmark of a selected computer architecture. Initially, SpMV on a distributed system can be

divided into two main parts,

• Core Calculation: performance of the matrix-vector calculation in a MPI node.

• MPI Communication: communication runtime among MPI ranks(processes).

Instruction Cost

We can represent the basic SpMV by y = y + V al ∗ x, which requires two floating point operation

(multiply and addition). So, we can say we need to calculate NNZ (number of non-zeros) times

FMA (fused multiply addition) to perform SpMV. But, first it needs to load the data and SpMV is

bound by the memory bandwidth rather than instruction. So, we separated the core calculation into,

• Run time for FMA: LFMA×NNZ, where LFMA is the latency of a single FMA and NNZ

is number of non-zeros.

• Memory access latency: LRW

Micro Benchmark for FMA The machines we will use are based on the SkylakeX architecture.

The throughput of SkylakeX is 2 instructions per cycle and the latency of FMA is 4 cycles. So there

is a potential of pipelining (2×4 = 8) to get the optimal results. Now, SkylakeX has 512-bit register

that can give the ability of the vectorization. For 64-bits floating point operation it can give vector

width 8 and for 32-bits it can give at max vector width 16. To find the peak performance of the FMA

and to avoid the read-write latency we need to setup the benchmark that datasets can be contained

in the register. Now, SkylakeX has 32 registers. We can populate the pipeline by using sufficient

amount of work. By varying the number of fused-multiply-addition calculation, we can find out the

performance limitation. From the information of the processors, we can say that 4 cycles required

for FMA and the throughput of the FMA is 2 instruction per cycle, that means we should at least

use 4× 2 = 8 instruction at a time to populate the pipeline.
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Skylake: Roofline model for bandwidth for FMA operation for vector width: 4
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Skylake: Roofline model for bandwidth for FMA operation for vector width: 8

(b) Vector Width: 8

Figure 4.4: Skylake: (MPI)Roofline model for bandwidth for FMA operation

Figure 4.4 shows the roofline model of the FMA on SkylakeX processor. We can estimate the

theoritical peak performance a single FMA by the following equation,

P = Base Clock Frequency × V ector Width× FLOPs

Instruction

The significance of the FMA latency is actually negligible compare to the memory access latency.

Memory Accesses Cost

Micro-Benchmark for Memory Access We use the STREAM [77] benchmark to find out the cost

the memory accesses for a selected architecture.
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(a) Single Precision.
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(b) Double Precision.

Figure 4.5: Single and double precision memory access bandwidth on Skylake processor.

Figure 4.5 shows the relation between data size and bandwidth of the SkylakeX processor. To

pick the right bandwidth for a matrix-vector multiplication, we first calculate the size of the data.

Based on the size of the data, we pick the average of the available immediate lower and higher point
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of the benchmark. Note that in STREAM, all memory accesses are sequential.

Cache Access Patterns In SpMV some of the arrays are traverse sequentially and some have

irregular pattern. Table 4.1 shows the memory access property for different matrix representation

format. We can see the access to the vector x is irregular for both CSR and COO format. But access

to the vector y is only irregular for the COO format.

One could model all irregular accesses as random accesses. However we know that most graphs

actually exhbit significant locality [78]. We model the memory accesses by computing a cache

friendliness metric which represent the fraction of access that are in cache and the fraction that are

in memory.

This cache friendliness is computed for a matrix as follows. We assume the matrix is traversed

sequentially and we model the access to the cache assuming the cache has the granularity of a cache

line and that the cache replacement policy is LRU. And we assume that the cache is of the size of the

L3 cache divided by the number of core on the processor. This model does not accurately capture

many properties of the memory subsystem (such as associativity of caches, or cache sharing across

multiple cores, the fact that there are multiple levels of caches, and concurrent processes); but it is a

simple to compute estimation of how irregular the memory access actually are.

All the sequential data accesses and hits of irregular accesses are treated as Sequential data

accesses. The cost of these data accesses is accounted based on the predicted bandwidth to the core

out of the STREAM benchmark. And all cache miss in irregular accesses are treated to Random

data accesses. The cost of these operations are accounted based on the latency of the memory access

by the cores. The cost of these sequential and random access are summed.

Note that this model does not capture all the complexity of a modern system: for instance, a mix

of latency bound and bandwidth bound memory operations can overlap especially when multiple

cores access memory at the same time. But while one could certainly craft an example where the

model is very inaccurate, we do not believe these extreme case would happen in practice.

Micro-Benchmark for MPI communication

MPI communications mostly depend on the size of the message and network topology. We build a

benchmark based on the OSU-MPI-Benchmark. Because of the dynamics of the network topology
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Table 4.1: Memory Access Property for 2D-Partitioning SpMV Model(RPP=rows per process,
NNZ=non-zero elements).

Array
#Accesses

Data Type
Access Type

CSR COO CSR COO
rowA 2×RPP NNZ Integer Sequential Sequential
colA NNZ NNZ Integer Sequential Sequential
valA NNZ NNZ Floating Sequential Sequential
x NNZ NNZ Floating Irregular Irregular
y RPP NNZ Floating Sequential Irregular

we build a polynomial model using an SVR based on the number of nodes, number of MPI ranks,

message size, and MPI communication type.

Putting it together

Figure 4.6 shows the overall structure of the SPMV model from micro-benchmark. The three com-

ponents, instructions, memory, and MPI communication are added together.
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Figure 4.6: Structure of the SpMV model from micro-benchmark.

4.6 Experimental Settings

4.6.1 Hardware Platform and Operating System

All the nodes of the computing cluster come with Intel Xeon Gold 6154 processors (SkylakeX

architecture) and 388GB of DDR4 memory. Each node has 36 cores in 2 sockets. Hyper-threading

is disabled. The base frequency of each processor is 3.00 GHz. Each processor has 25 MB of L3

Cache. The nodes are connected by EDR Infiniband. The machine uses Linux 3.10.0. To present
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concise results all experiments are performed on 144, 169, 225 and 256 MPI processes allocated on

4, 5, 7 and 8 nodes respectively. The system support a maximum of 256 MPI processes.

4.6.2 Matrices

All the matrices we use come from the SuiteSparse Matrix Collection (previously known as the

Florida Sparse Matrix collection) [79]. We used seven matrices for our tests. Their properties are

described in Table 4.2.

Because the linear and SVR models require to be trained based on timings from real runs, we

used an other 83 matrices in order to train these two models.

Table 4.2: Properties of the test matrices.

Name Rows Columns Nonzero Elements Avg Degree
333SP 3,712,815 3,712,815 22,217,266 6.0
AS365 3,799,275 3,799,275 22,736,152 6.0
M6 3,501,776 3,501,776 21,003,872 6.0
NLR 4,163,763 4,163,763 24,975,952 6.0
hugetrace-00010 12,057,441 12,057,441 36,164,358 3.0
road central 14,081,816 14,081,816 33,866,826 2.4
road usa 23,947,347 23,947,347 57,708,624 2.5

We also generated three larger matrices using the R-MAT model [63]. R-MAT can generate

graphs with power-law degree distributions and small-world characteristics. We generated the R-

MAT matrices using parameters a = 0.33, b = 0.33 and c = 0.33. In the name of the matrix the

first numerical value in the name represent the total number of edges and the second value represent

the number of rows.

4.6.3 Metrics

We will resent two types of results, runtimes on particular matrices and number of MPI processes

for a particular execution mode of SpMV. We will also present relative errors for models calculated

by:

error =
|actual time− predicted time|

actual time
× 100
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4.7 Experimental Results

4.7.1 Runtime of SpMV

Table 4.3 present the results of the different way of executing SpMV. At first, we want to look at

the different 1D partitioning results. We can see local 1D-row SpMV models perform better than

global 1D-row versions. In local 1D-row model, processes maintain local vector and communicate

with other processes independently. On the other hand, global 1D-row models maintain global

vector and use collective communications. So, global 1D-row models transfer same amount of

data in the communication for a specific matrix size, it does not mater how sparse it is. On the

other side, local-1D-row requests data when they require from other process; which depends on the

particular non-zero elements of the matrix. Other than that, matrices in the testing set are mostly

well partition-able. That means that once partitioned each node will not need many external values

of the x vector to perform the multiplication. Because of that, the local variant of 1D partitioning

which does custom messages is particularly effective because it minimizes the total amount of value

exchange communications.

While local 1D partitioning performs better than the global execution for all the matrices we

picked and are listed table 4.3, it is because the global communication of global 1D shares data that

is not used. Indeed the matrices of Table 4.3 are well partition-able. But we expect that matrices that

can not be well partitioned would not see such poor performance when using the global 1D method.

The performance of Global1D execution on R-MAT matrices, which can not be well partitioned,

(Table 4.4) is about the same as local 1D.

Similar reasons explains the performance of 2D partitioning methods. The performance of

SpMV on R-MAT is better on 2D uniform partitioning than using 1D partitioning. Indeed the

matrix is not well partitionable, so METIS partitioning can not minimize the communication of a

1D partitioning and suffers from load imbalance. On the other hand, 2D partitioning will balance

the load thanks to its random row and column permutation. And the 2D decomposition of the matrix

provides more efficient communication patterns.

On the matrices of Table 4.3, the random permutation of rows and columns breaks all locality

in the matrix and cause communications that were not necessary in the 1D local execution.
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4.7.2 Accuracy of performance models

Table 4.5 presents the relative error in prediction made by the different models. The linear model

performs erratically on most of the testing data set. And we only present the data for the 2D parti-

tioned methods, the model often exhibits an error higher than 15%. The linear model can not capture

the behavior of the methods based on 1D partitioning and is often predicts an order of magnitude

away from the actual runtime (error not shown).

The SVR model captures pretty well the performance of 2D partitioning methods with errors

of prediction below 15% on most instances and usually below 10%. 2D partitioning with uniform

permutation of rows and columns provides the regularity in the dataset that SVRs can easily capture.

The geometric mean error on 2D partitioning is below 5% on both matrix representation.

Though the SVR model has moderate accuracy on 1D partitioning model with a geometric mean

error of 9%. This stems from the fact that the features of the SVR model do not capture well the

quality of the partitioning and the complexity of the communication patterns.

The model based off micro benchmark overall performs the best. The method using 1D par-

titioning with custom messages, Local 1D, is fairly well modeled. All the instances are modeled

within a 15% of error and often within 10%. The geometric mean error are 5.3% and 3.7% on CSR

and COO matrix representations. The model is accurate because the execution of SpMV is carefully

modeled and the communication pattern are also known to the model.

The 2D partitioning execution are also well modeled with error usually below 10% and a geo-

metric mean error of 3% and 6%. The error on the Global 1D execution is much higher (geometric

mean of 9% and 22%). This is due to the micro benchmark based model to not accurately predict all

gather collective. This MPI collective operation is fairly hard to model accurately as the underlying

communication algorithms can configure very differently way depending on the system state [80].

The 2D partitioning also uses collective but in smaller communicators which makes them easier to

model.

The accuracy on R-MAT matrices are given in Table 4.6. The SVR model provides good accu-

racy in its prediction of the R-MAT SpMV performance with geometric means ranging from 3% to

9%. The accuracy of the microbenchmark based model does not perform as well, ranging from 9%

to 17% and reaching 50% on the COO L1DR.
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Table 4.3: Actual Run Time of All SpMV execution.

Matrices Nodes Prcs
Actual Time(s)

CSR 2DU COO 2DU CSR G1DR COO G1DR CSR L1DR COO L1DR

AS365

4 144 7.4E-03 5.5E-03 2.7E-02 3.3E-02 1.3E-03 1.4E-03
5 169 5.8E-03 4.3E-03 2.1E-02 2.7E-02 1.1E-03 1.2E-03
7 225 4.7E-03 3.6E-03 2.0E-02 2.5E-02 9.2E-04 9.3E-04
8 256 4.4E-03 3.6E-03 2.4E-02 2.8E-02 8.5E-04 8.4E-04

road central

4 144 2.5E-02 1.9E-02 9.6E-02 1.1E-01 2.6E-03 2.5E-03
5 169 2.2E-02 1.5E-02 7.1E-02 7.1E-02 2.4E-03 2.1E-03
7 225 1.9E-02 1.3E-02 7.4E-02 8.0E-02 1.9E-03 1.7E-03
8 256 1.5E-02 1.2E-02 8.6E-02 9.1E-02 1.8E-03 1.6E-03

NLR

4 144 8.2E-03 6.1E-03 2.9E-02 3.6E-02 1.4E-03 1.4E-03
5 169 6.5E-03 4.8E-03 2.2E-02 3.0E-02 1.3E-03 1.3E-03
7 225 5.4E-03 4.0E-03 2.1E-02 2.7E-02 9.9E-04 1.0E-03
8 256 4.8E-03 3.9E-03 2.6E-02 3.0E-02 9.5E-04 9.7E-04

hugetrace-00010

4 144 2.3E-02 1.7E-02 8.2E-02 9.3E-02 2.5E-03 2.6E-03
5 169 2.0E-02 1.3E-02 6.2E-02 6.7E-02 2.2E-03 2.2E-03
7 225 1.7E-02 1.1E-02 6.4E-02 7.0E-02 1.8E-03 1.8E-03
8 256 1.4E-02 1.0E-02 7.3E-02 7.9E-02 1.6E-03 1.6E-03

333SP

4 144 7.2E-03 5.4E-03 2.6E-02 3.3E-02 1.2E-03 1.2E-03
5 169 5.7E-03 4.2E-03 2.0E-02 2.7E-02 1.1E-03 1.1E-03
7 225 4.7E-03 3.5E-03 1.9E-02 2.4E-02 8.4E-04 8.9E-04
8 256 4.2E-03 3.4E-03 2.4E-02 2.7E-02 8.2E-04 8.4E-04

M6

4 144 6.8E-03 5.0E-03 2.5E-02 3.1E-02 1.3E-03 1.3E-03
5 169 5.3E-03 3.9E-03 1.9E-02 2.5E-02 1.1E-03 1.1E-03
7 225 4.4E-03 3.4E-03 1.8E-02 2.3E-02 8.7E-04 9.2E-04
8 256 4.0E-03 3.3E-03 2.2E-02 2.6E-02 8.3E-04 8.2E-04

road usa

4 144 3.6E-02 2.9E-02 1.6E-01 1.8E-01 4.1E-03 3.8E-03
5 169 3.6E-02 3.2E-02 9.9E-02 1.5E-01 3.4E-03 3.2E-03
7 225 3.1E-02 2.3E-02 9.8E-02 1.4E-01 2.8E-03 2.6E-03
8 256 2.7E-02 2.0E-02 1.5E-01 1.5E-01 2.6E-03 2.4E-03

The average error of the linear model for the R-MAT data is around 32%. The main reason

behind this error is the density of the matrices. As we can see All R-MAT matrices are highly dense

compare to the real-world test matrices. When the non-zero per row increases, the angle between

two candidate rows for the model is becoming very large. That leads to a higher error of the model,

which means the linear model is more suitable for the highly sparse matrices.

4.8 Discussion

The micro-benchmarking based model and the SVR model are accurate enough to predict the correct

configuration of the system for a particular matrix in most cases. When an error occurs, the loss of

performance for not picking the right model is usually under 10%.

We believe there is more potential in the fine modeling of performance of the micro-benchmark

based model over the SVR model. The SVR model is fairly expensive to train. It requires to build

a different model of the problem for each hardware configuration. The trained model is different
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Table 4.4: Actual Run Time of All SpMV execution on R-MAT graph.

Matrices Nodes Prcs
Actual Time(s)

CSR 2DU COO 2DU CSR G1DR COO G1DR CSR L1DR COO L1DR

rmat 620M2M

4 144 3.8E-02 4.9E-02 2.3E-01 6.3E-01 1.6E-01 5.4E-01
5 169 3.1E-02 4.5E-02 2.4E-01 5.3E-01 1.0E-01 5.6E-01
7 225 1.9E-02 2.8E-02 1.8E-01 2.6E-01 1.3E-01 6.6E-01
8 256 2.0E-02 1.6E-02 1.9E-01 2.4E-01 1.9E-01 8.3E-01

rmat 680M3M

4 144 5.8E-02 6.7E-02 2.0E-01 9.9E-01 2.0E-01 3.3E-01
5 169 4.2E-02 6.0E-02 2.0E-01 7.8E-01 1.3E-01 2.9E-01
7 225 3.3E-02 4.4E-02 1.5E-01 4.3E-01 1.3E-01 2.9E-01
8 256 3.0E-02 2.7E-02 1.5E-01 3.5E-01 1.5E-01 3.5E-01

rmat 690M2M

4 144 3.9E-02 4.7E-02 2.7E-01 6.3E-01 1.9E-01 6.0E-01
5 169 3.1E-02 4.3E-02 2.2E-01 4.3E-01 1.3E-01 6.7E-01
7 225 2.1E-02 3.2E-02 1.9E-01 2.9E-01 1.6E-01 6.6E-01
8 256 1.6E-02 1.9E-02 1.7E-01 2.1E-01 1.4E-01 7.0E-01

Table 4.5: All SpMV prediction model performance.

Matrices Nodes Prcs
Error

Benchmark Model SVR Model Linear Model
CSR 2DU COO 2DU CSR G1DR COO G1DR CSR L1DR COO L1DR CSR 2DU COO 2DU CSR G1DR COO G1DR CSR L1DR COO L1DR CSR 2DU COO 2DU

AS365

4 144 1.2% 4.0% 19.2% 34.4% 3.9% 1.2% 0.8% 5.9% 14.0% 8.0% 20.2% 19.1% 23.1% 13.4%
5 169 9.8% 19.7% 2.7% 26.1% 3.4% 1.9% 16.9% 9.3% 0.9% 1.0% 19.7% 17.7% 19.9% 17.1%
7 225 8.3% 13.6% 4.8% 24.3% 7.5% 1.0% 20.9% 6.4% 4.9% 6.7% 23.2% 20.0% 16.0% 2.7%
8 256 1.4% 0.1% 21.2% 31.0% 8.5% 1.1% 13.5% 1.9% 20.9% 16.8% 22.8% 18.1% 20.0% 4.0%

road central

4 144 7.4% 5.6% 20.2% 27.1% 10.5% 14.3% 8.9% 12.3% 14.8% 6.4% 3.0% 6.0% 11.9% 17.6%
5 169 3.5% 12.4% 0.6% 1.7% 9.0% 14.3% 1.4% 3.5% 4.5% 24.9% 1.9% 4.5% 3.8% 30.3%
7 225 9.4% 8.7% 10.3% 16.6% 6.6% 11.4% 5.8% 0.1% 11.8% 6.3% 9.2% 0.6% 17.8% 5.2%
8 256 2.4% 8.1% 23.4% 27.9% 6.0% 8.4% 4.6% 1.4% 26.3% 21.9% 11.0% 3.7% 4.0% 11.0%

NLR

4 144 0.1% 4.9% 19.1% 34.5% 2.2% 3.7% 2.0% 6.4% 14.0% 8.0% 18.2% 15.0% 14.0% 19.4%
5 169 11.4% 19.6% 2.3% 26.1% 5.4% 0.1% 15.5% 7.5% 1.3% 0.9% 21.2% 18.9% 18.4% 0.5%
7 225 5.6% 15.2% 4.1% 24.1% 6.0% 0.6% 14.7% 6.2% 4.3% 6.6% 22.1% 19.8% 14.0% 29.2%
8 256 3.9% 2.8% 21.3% 31.1% 10.4% 6.4% 13.0% 1.0% 21.3% 17.1% 24.6% 22.8% 14.4% 2.6%

hugetrace-00010

4 144 8.2% 4.2% 20.0% 28.6% 8.2% 9.0% 12.3% 13.3% 14.6% 6.8% 0.6% 3.1% 12.3% 24.4%
5 169 6.7% 13.7% 0.7% 7.6% 10.8% 11.6% 7.2% 2.0% 3.2% 15.3% 0.4% 2.4% 0.1% 13.8%
7 225 10.1% 9.5% 10.2% 18.3% 7.8% 9.1% 8.7% 1.5% 11.5% 6.8% 6.0% 6.3% 5.6% 5.7%
8 256 3.4% 9.2% 22.7% 28.2% 6.4% 7.0% 3.4% 0.4% 25.3% 21.0% 8.0% 7.7% 3.2% 7.8%

333SP

4 144 1.7% 3.7% 19.2% 34.4% 2.3% 2.9% 0.7% 5.8% 14.1% 8.0% 15.8% 15.5% 18.0% 2.3%
5 169 9.2% 19.6% 2.2% 26.0% 0.2% 0.4% 17.1% 9.7% 1.4% 1.0% 17.6% 18.7% 20.1% 10.9%
7 225 3.9% 15.5% 5.6% 23.9% 3.8% 1.8% 16.8% 8.7% 5.6% 6.1% 20.3% 20.9% 18.7% 0.8%
8 256 1.5% 4.3% 21.2% 30.9% 10.7% 6.2% 14.4% 2.8% 20.8% 16.5% 24.6% 22.6% 13.0% 3.8%

M6

4 144 2.8% 3.5% 19.2% 35.2% 4.9% 0.4% 0.0% 5.0% 14.1% 9.1% 20.7% 18.8% 19.9% 12.5%
5 169 9.3% 18.7% 3.2% 26.1% 2.9% 1.4% 19.5% 10.1% 0.3% 1.0% 19.0% 20.4% 19.9% 8.6%
7 225 4.7% 9.7% 4.5% 23.9% 8.8% 6.2% 19.9% 4.4% 4.5% 6.1% 23.9% 23.8% 19.4% 3.9%
8 256 0.3% 0.8% 21.1% 30.9% 12.0% 5.2% 15.3% 1.0% 20.4% 16.3% 25.1% 21.1% 12.0% 6.3%

road usa

4 144 9.0% 3.7% 19.3% 26.1% 1.3% 12.7% 7.4% 1.5% 14.6% 5.6% 3.9% 7.1% 6.1% 5.3%
5 169 0.1% 12.6% 23.8% 16.0% 6.1% 17.4% 1.8% 16.1% 27.8% 2.8% 5.8% 9.4% 24.9% 18.3%
7 225 3.1% 5.4% 16.5% 20.1% 6.8% 15.3% 0.0% 0.3% 13.7% 10.6% 3.3% 3.9% 13.4% 17.2%
8 256 1.7% 7.6% 23.0% 27.4% 9.7% 14.6% 2.8% 2.9% 26.7% 22.0% 4.2% 2.1% 8.7% 28.2%

Geometric Mean 3.1 6.4 9.2 22.8 5.3 3.7 4.5 3.1 8.5 7.1 9.6 9.7 10.8 7.7

Table 4.6: Performance of the SVR SpMV model on RMAT matrices.

Matrices Nodes Prcs
Error

Benchmark Model SVR Model Linear Model
CSR 2DU COO 2DU CSR G1DR COO G1DR CSR L1DR COO L1DR CSR 2DU COO 2DU CSR G1DR COO G1DR CSR L1DR COO L1DR CSR 2DU COO 2DU

rmat 620M2M

4 144 25.5% 5.4% 1.5% 19.1% 11.6% 5.9% 0.3% 10.0% 4.4% 0.0% 0.1% 8.0% 45.3% 19.9%
5 169 22.7% 3.5% 13.6% 23.2% 24.9% 13.2% 2.3% 2.6% 13.0% 14.9% 25.4% 8.3% 44.3% 35.7%
7 225 6.8% 12.1% 18.5% 17.0% 4.4% 47.6% 7.7% 0.9% 1.2% 5.4% 0.7% 7.2% 33.3% 31.5%
8 256 21.1% 35.1% 19.3% 24.1% 11.8% 44.3% 12.9% 24.5% 6.8% 6.6% 25.4% 13.6% 46.6% 3.5%

rmat 680M3M

4 144 27.4% 48.6% 22.2% 22.8% 2.6% 4.3% 5.6% 4.4% 7.3% 3.9% 0.0% 0.2% 45.6% 27.6%
5 169 27.2% 26.2% 8.2% 20.7% 7.0% 15.0% 6.7% 4.4% 7.5% 2.9% 4.5% 5.4% 36.1% 34.5%
7 225 15.7% 3.0% 27.9% 0.8% 6.5% 7.4% 0.8% 13.3% 4.8% 1.3% 7.2% 2.0% 46.6% 40.7%
8 256 31.5% 11.5% 32.0% 5.9% 10.9% 23.1% 1.6% 8.4% 2.1% 3.2% 9.9% 2.7% 49.4% 15.4%

rmat 690M2M

4 144 19.2% 21.0% 4.5% 8.9% 8.9% 17.7% 2.4% 25.9% 6.0% 8.3% 0.8% 5.5% 41.9% 12.0%
5 169 13.7% 11.7% 10.8% 8.1% 23.3% 13.2% 2.7% 12.2% 8.2% 10.1% 17.7% 5.0% 38.3% 25.0%
7 225 9.8% 6.5% 23.4% 14.7% 3.2% 38.6% 2.5% 3.5% 4.5% 13.2% 5.0% 16.0% 35.3% 34.6%
8 256 6.9% 32.8% 41.5% 48.9% 31.4% 24.2% 10.4% 18.6% 16.7% 12.1% 21.6% 31.7% 27.1% 10.1%

Geometric Mean 16.9 12.7 14.0 12.9 9.3 16.4 3.0 7.4 5.6 4.0 2.9 5.3 40.2 20.3
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or 256 MPI processes than it is 225 processes. That means each new hardware configuration needs

to reexecute SpMV for all the training matrices across all execution configurations. This is not a

scalable way to predict performance.

On the other hand, the micro-benchmark based model only requires to run classical benchmark

for the platform which are not specific to SpMV. In other words, the cost of this model does not

scale with the number of hardware configuration or execution algorithms for SpMV.

Also, the SVR based model is hard to interpret. Once the model is trained, even if it is accurate,

the only thing we get is a third degree polynomial. One can not easily pinpoint from the model why

the execution get the time it gets.

However, the finer model based on micro-benchmarks provides a direct explanation of the run-

time of the algorithm. One can easily understand from the model how the runtime is formed. This

can tell us for a particular matrix whether the bottleneck is in the memory subsystem, or in the MPI

communication. This type of model is easier to explain.

4.9 Conclusion

In this chapter, we provide three SpMV models to predict the run time of the SpMV on using two

matrix reprensentation and three distributed memory strategoes. Two of the performance models can

predict the run time accurately enough to identify the optimal strategy to compute SpMV. While

the SVR model provides usually better accuracy in the prediction of the runtime, its training is

computationally expensive and the model does not provide any insight of why the performance is

the way it is. On the other hand, the microbenchmark based model provdes explainable prediction,

that only require classic performance benchmark of the architecture.
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CHAPTER 5

POSTMORTEM GRAPH ANALYSIS ON THE TEMPORAL GRAPH

Temporal graphs capture changes in relational data over time and have been of increasing interest to

data analysts. Most research focuses on streaming algorithms that incrementally update an analysis

to account for the changes in the graph. However, one can also be interested in understanding the

nature of changes in the graph over time. In such a case, they perform a postmortem analysis on

different points in time where all the data known in advance

We study in this paper a postmortem analysis of Pagerank over-time on graphs that are defined

by temporal relational event databases. A relation between two entities at a particular point in time

will form an edge between these two entities and that will remain in the graph for a fixed period of

time.

While one can reuse a streaming algorithm for that purpose, leveraging the availability of all

the data from the beginning can be beneficial. Postmortem analysis enables encoding the temporal

graph with a more efficient graph representation. Also, it provides an additional level of parallelism

since one can not only parallelize within a particular timestamp but also across different timestamps.

We will show that depending on the properties of the temporal data, either parallelization can be

better, and in some cases, a combination of both approaches is preferable.

We experimentally show across 7 databases and across different temporal derivations of the

graph that postmortem analysis can be between 50 times and 880 times faster than streaming anal-

ysis.

5.1 Introduction

Graphs have been used to model various natural, social, and constructed objects and phenomena

such as the brain, friendship relations, and the physical road infrastructures. Such models help un-

derstanding more deeply the objects we study. They have been used to identify terrorists [81, 82,

83], understand the link between traffic and economic activity [84, 85, 86], or identify keywords in

text [87, 88]. There are numerous analyses conducted on these graphs for a different type of us-
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age, including Pagerank [89], betweenness and closeness centrality [90, 91], modularity-optimizing

community detection [92, 52], k-core decomposition [93, 94].

These graphs are often analyzed as static graphs, but fundamentally the objects they model

evolve over time: Roads are constructed and blocked off; Humans form new relations while others

fade away. A more accurate model would be to define a temporal graph [95] that has vertices

and edges that only exist for some periods of time. A common type of analysis on these temporal

graphs is streaming analysis where an analysis is performed on the most up-to-date version of the

graph. Obviously recomputing the analysis from scratch would be expensive and in many cases, it

is possible to perform an incremental update on the analysis by starting from the results of recent

analyses and accounting for only the latest changes in the graph. This has been done on many

analyses including streaming Pagerank [96, 97], streaming Closeness Centrality and Betweenness

Centrality [98, 99], streaming k-core [93, 94], and many others.

We are interested in this paper in a different form of analysis that sees the graph as a time series.

In this analysis, we assume that we know the entire temporal graph at the beginning of the analysis;

we refer to the analysis as being postmortem. (Some people may refer to that sort of analysis as

being offline; but we chose not to refer to it this way to avoid confusions.) This is in contrast with

a streaming analysis which discovers the graph during the analysis. Various problems on temporal

graph have been investigated, including diameter change [19], and rank of web pages change [20]

on the web.

We assume that the analysis is conducted at regular interval in time. Also the temporal graphs

are defined by edges that appear at a particular point in time and remain in the graph for a constant

amount of time. As such, the temporal graph can model edge addition and deletion, as well as vertex

addition and deletion.

We will also restrict our analysis to computing Pagerank [89]. It is a simple analysis that is

well understood, with known streaming algorithms [96, 97]. And it applies to a wide variety of

applications.

In this paper, we show how to perform a postmortem temporal analysis of a graph using Pager-

ank on a shared-memory parallel system. We show that postmortem analysis is much faster than an

equivalent streaming analysis and static (offline) analysis. In particular, we show that postmortem

analysis provides benefits over static and streaming execution model. The challenges and contribu-
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tions of this paper include:

Data Representation: Streaming and static have a fairly well set representation that have their

own pros and cons. But in a postmortem analysis, representing the temporal data offers tradeoff

between volume of memory and performance of the analysis. We present our data representation in

Section 5.4.1. We investigate and evaluate the tradeoffs.

Leveraging incremental methods: There are several methods to reduce the amount of work

when computing Pagerank in a streaming mode. Upon some update, the graph is still quite the

same as it was, the values of Pagerank are going to be related, and incremental methods have been

developed for Pagerank. Based on existing methods (described in Section 5.3.3), we develop an

incremental method appropriate for this particular use case in Section 5.4.2.

Different Level of Parallelization: In Postmortem analysis, one can compute Pagerank on

each graph simultaneously. Of course, the calculation of Pagerank on a particular graph is also

a fundamentally parallel computation. Questions of load balance, incompatibility with incremen-

tal optimization, and scheduling need to address to benefit the most from modern platforms. We

investigate these questions in Section 5.4.3.

SpMV-style vs SpMM-inspired Postmortem Pagerank: Pagerank is fundamentally similar

to a sparse matrix-vector multiplication (SpMV) operation. However, we know that sparse matrix-

matrix multiplication (SpMM) can obtain higher performance. We discuss how we take inspiration

from SpMM and rephrase the calculation of Pagerank on a temporal graph to obtain the benefits of

an SpMM formulation without compromising other optimizations in Section 5.4.4.

Demonstrate the efficiency of Postmortem analysis: It makes intuitive sense that postmortem

analysis offers more avenues for optimization than both offline and streaming analysis. But to

what extent is postmortem preferable. We evaluate experimentally the question in Section 5.6 and

show that in our benchmark postmortem analysis can be between 50 times to 400 times faster than

streaming analysis.
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Time
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Figure 5.1: Sliding Window Model

5.2 Problem Statement

5.2.1 Temporal Graph from Temporal Events

Temporal Edge Set: We assume our input is a set of edges of the formEvents = 〈u, v, t〉, where

u, v are vertices from some vertex set V (the elements of V known because of offline behavior),

and t is an integer timestamp. Without loss of generality, we can assume that entries are listed in

increasing timestamp order. We call the entire sequence of such triples a temporal edge set, and

each triple is an event.

Note that a streaming model assumes that the elements of the set are disclosed, monotonously

in time, over the execution of the application. But in a postmortem model, all the temporal edges

are known at the beginning of the application.

Sliding Window Model: We define G(Ts, Te) as the graph induced by the events that occured

between Ts and Te. That is to say, G(Ts, Te) = (V,E) where {e = (u, v) ∈ E|∃(u, v, t) ∈

Event, Ts ≤ t ≤ Te}.

In this paper, we are interested in analyzing the sequence of graph (G0 = G(T0, T0 + δ), G1 =

G(T1, T1 + δ), G2 = G(T2, T2 + δ), . . . , Gm = G(Tm, Tm + δ)) with Ti = Ti−1 + sw} and T0

is set by the beginning of the dataset. In other words, the temporal graph is defined by a sequence

of graphs generated by sliding a window over the time period. The window is of fixed size δ and

each window slide by a sliding offset of sw time-units compared to the previous one. This sliding

window model is illustrated in Figure 5.1.

Figure 5.2a presents an example of a list of temporal edges for a graph. The edges arrive
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Edges Edge Arrival Time Time Interval
v1 v2 T1 T2 T3
1 2 06/21/2021 X × ×
3 5 06/25/2021 X × ×
4 6 07/11/2021 X X ×
2 3 08/01/2021 X X X
2 4 08/11/2021 X X X
5 6 09/13/2021 X X X
2 7 10/02/2021 × X X
4 7 10/05/2021 × X X
5 7 10/06/2021 × X X
6 7 10/09/2021 × X X
1 2 11/05/2021 × × X
1 3 11/06/2021 × × X
2 5 11/09/2021 × × X
3 5 11/12/2021 × × X

(a) Temporal edge list[Time interval T1 = (6/1/2021-
9/15/2021), T2 = (7/1/2021-10/15/2021) and T3 =
(8/1/2021-1/15/2022)]

2
4

3 5

76

1

Active at Interval T1

Active at Interval T2

Active at Interval T3

(b) Temporal Graph

Figure 5.2: Edgelist and temporal graph.

between 06/21/2021 and 11/12/2021. Maybe the analyst is interested in analyzing phenomena that

take some time to unfold and select a window of size δ = 31
2 months. The first graph G0 includes

edges arriving after 6/1/2021 and until 9/15/2021. After that it will move forward the starting time

of the second graphG1 by sw = 1 month and the time interval forG1 will be 7/1/2021-10/15/2021).

Figure 5.2b shows the active edges for the first 3 graphs of the sequence of the temporal graph.

5.2.2 Postmortem Graph Analysis for Pagerank

Pagerank is a metric of the importance of vertices in a graph, originally used on webpages modeled

as a directed graph [89]. Let v be a vertex, Γ+(v) be the set of vertices v points to, and Γ−(v) be

the set of vertices that point to v. For a teleportation probability α, the Pagerank(PR) [89] equation

for v is recursively defined as:

PR(v) =
α

|V |
+ (1− α)

∑
u∈Γ−(v)

PR(u)

|Γ+(u)|
(5.1)

While Pagerank values for each node of the graph could be obtained by solving the system of

equations, it is more common to compute Pagerank iteratively. The Pagerank equation is evaluated

from previous values of Pagerank. This involves performing one Sparse Matrix-Vector multiplica-

57



Algorithm 6 Pagerank on Temporal Graph

Input: Events, sw, δ, T0,m

1: i← 0
2: while i ≤ m do
3: PAGERANKi ← PagerankAlgorithm(G(Ti, Ti + δ))
4: i← i+ 1
5: Ti ← Ti−1 + sw
6: end while

tion (SpMV). After some iterations, the values converge to the solution of the equation. Implemen-

tations usually numerically check for convergence after each iteration and execute a fixed number of

iterations at most. Beamer and Scott et al. [100] presented how to reduce Pagerank communication

via propagation blocking; and although this paper does not leverage that particular technique, we

believe it is compatible.

The problem we are trying to solve is to compute Pagerank on all graphs in the sequence.

Sequentially one could solve the problem with the simple method given in Algorithm 6. But one

does not have to compute the different Pagerank vectors in-order. They could compute in different

orders. Of course, applications will have a downstream analysis that will depend on these vectors.

5.3 Background and Related Works

5.3.1 Applications of the Sliding Window Model

The formulation of the temporal graph based on sliding windows from an event database is appro-

priate for many applications. Parameters delta and sw are application parameter. They enable the

analyst to explore a dataset at different time scales and resolutions.

For instance, consider the analysis of academic collaboration networks. One can define events

based on papers, if authors a1 and a2 co-wrote a paper on day d, you insert a tuple (a1, a2, d) in

Events.

Setting a larger value of δ = 10 years will enable the analyst to think of the important of authors

in a scientific era. Meanwhile, setting a smaller value of δ = 1 year will enable to study current

collaborator dynamic. Neither value for the parameter is inherently better, but they enable to study

different social phenomenon. The sw parameter is essentially a resolution parameter. It enables to
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provide fewer or more points in the generated time series.

The temporal graph constructed this way could be analyzed in various way. While we focus

on Pagerank in this paper, different analysis could be done using other kernels like closeness and

betweenness centrality, connecting component, k-core, etc.

5.3.2 Temporal Graph Analysis

We are not the first to analyze graphs temporally from event data. Hossain, Murshed et al. ana-

lyzed communication network dynamics during organizational crisis [101]. They showed that some

actors of an organization that are prominent or more active will become central during the organi-

zational crisis. Now, analyzing this kind of problem requires insight into periodic changes in the

dynamic communication graph. Time interval-wise analyses show the impact of actor’s changes on

the organization and one can find how the role of an actor evolves during a crisis and understand the

underlying cause.

Stolman and Matulef [102] proposed a HyperHeadTail streaming algorithm which can estimate

the degree distribution of a dynamic graphs. The dynamicity is represented as a multigraphs where

two identical vertices can hold multiple edges for different times. In their work, the divided the

multigraph into multiple window and perform degree distribution on different window graph. The

work is formulated under the streaming paradigm where a batch of edges will arrive the system and

gradually perform algorithm. Han and Sethu [103] have proposed an edge sampling algorithm for

triangle counting of dynamic graphs.

Chen and Lui proposed a unified framework [104] to estimate the graphlet (small connected

subgraph pattern) counts of the whole graph as well as the graphlet counts of individual nodes under

the streaming graph model. To understand the structure of graph, Gabert et al. provided postmortem

analysis to dense region in a dynamic graph using k-cores decomposition [105]. Previous streaming

algorithms for k-core were designed [93].

Many centrality metrics can be used to find the important vertices in the graph, and multiple

have been considered on dynamic graphs. Nathan and Bader [106] proposed a dynamic algorithm

for updating Katz centrality in graphs under the streaming model. Under a streaming model, incre-

mentally updating closeness centrality [107] and betweeness centrality [98] have also been studied.
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5.3.3 Execution Model

There are three main ways to compute the many Pagerank values in the temporal model.

Offline Pagerank Model

One can build independently a graph for each window and perform Pagerank. It requires recon-

structing a correct graph from the Event data many times. The cost of the application will be

driven by the cost of building the graphs, but the application becomes massively parallel since each

time window can be computed independently. As such, this is an execution model that is appropriate

for a massively distributed system such as a cloud platform.

Streaming Pagerank Model

In the streaming model, the application maintain only a single copy of the graph. The version of

the graph that is stored is meant to represent the graph as it is “now”. Updates to the graph come

as an edge stream. The streaming system needs to adjust the representation of the graph to account

for the new edges and recompute the analysis accordingly. Middlewares have been built to support

streaming graphs like STINGER [97] and ElGA [108]. These middlewares spend significant effort

in maintaining a valid representation of the graph upon updates made to the graph by using advanced

datastructures that minimize modification cost.

One of the benefit of streaming analysis is that when the calculation on the updated graph is

made, the system has access to the result of the analysis on the previous version of the graph. This

can lead to incremental algorithms which require less computation than recomputing the analysis

from scratch [106, 107, 98, 104, 93].

We present now one way to incrementally update Pagerank values. A directed graph G(V,E)

with vertex and edge set V and E can be represented by a sparse matrix A where an edge(i → j)

is represented by aij = 1. If we represent the out degree of the graph by a diagonal matrix D then,

Pagerank can be defined by the linear system [109, 110],

(I − αATD−1)x = (1− α)v (5.2)
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Where α is the “teleportation” constant, v is the initial Pagerank vector usually filled by 1/|v| and x

is the Pagerank vector. Jason presented [97] an approximation version of Pagerank for the streaming

graph,

∆xk+1 = αAT∆D
−1
∆ ∆Xk + α(AT∆D

−1
∆ −A

TD−1)x+ r (5.3)

where modifications of the streaming graph by edge addition or deletion are represented by ∆ and

k is represent the previous iteration. Here r is the residual error, r = (1− α)v − (I − αATD−1)x.

The streaming execution model reduces the graph building time from offline execution. But

they introduce more complex data structures to efficiently support insert and remove operations.

The streaming model also enables to leverage incremental algorithms to decrease the total amount

of computation. But it suffers from an inherent lack of parallelism. Since only one version of the

graph is stored, the only available parallelism comes from the Pagerank computation itself and the

graph updating procedure.

Postmortem Pagerank Model

We argue in this paper that in a postmortem model, we can produce analysis much faster than both

the offline and streaming execution model.

Both offline and streaming models have significant graph construction cost, even though they

are structured differently. In a postmortem model, we can build the graph representation in a single

operation in a way that enable to access all the time windows.

The offline model benefits from high parallelism as it supports parallelism across different

time-window and inside the kernel. The streaming model does not enable parallelism across time-

window. But the postmortem model can support both levels of parallelism.

The streaming model leverages incremental updates to the Pagerank computation. Even if a

postmortem execution leverages parallelism over different time-window, it can still arrange its cal-

culation to leverage knowledge from the previous time-window if that information is known.
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rowA = [ 0, 3, 9, 12, 16, 21, 24, 28]
colA = [ 2, 2, 3, 1, 1, 3, 4, 5, 7, 1, 2, 5, 5, 2, 6, 7, 2, 3, 3, 6, 7, 4, 5, 7, 2, 4, 5, 6 ]
timeA = [ 06/21/2021, 11/05/2021, 11/06/2021, 06/21/2021, 11/05/2021, 08/01/2021, 08/11/2021,
11/09/2021, 10/02/2021, 11/06/2021, 08/01/2021, 06/25/2021, 11/12/2021, 08/11/2021, 07/11/2021,
10/05/2021, 11/09/2021, 06/25/2021, 11/12/2021, 09/13/2021, 10/06/2021, 07/11/2021, 09/13/2021,
10/09/2021, 10/02/2021, 10/05/2021, 10/06/2021, 10/09/2021 ]

Figure 5.3: Temporal CSR Representation

5.4 Postmortem Graph Analysis

5.4.1 Data Representation

The performance of graph analyses vastly depends on the graph storage system. The offline and

streaming model of computing Pagerank on a temporal graph suffer from data representation prob-

lem that can be addressed in a postmortem case. The CSR storage format is widely popular for

the sparse matrices which is a fundamental attribute for Pagerank calculation using sparse-matrix

vector multiplication (SpMV). We use a format that is similar derived from the CSR format.

Figure 5.3 shows a temporal CSR format for the graph presented in Figure 5.2b. Usually CSR

requires two vectors, rowA and colA, to represent a graph. The colA vector is a concatenation of

the adjacency list of the graph, while rowA indicates where the adjacency of each vertex starts. In

other words, the first vertex neighbors are listed in colA between indices rowA[0] and rowA[1].

There are V + 1 entries in rowA and E entries in colA.

But for postmortem analysis we keep an additional vector which tracks timestamps for each

edge, timeA, which will have the same size as the colA vector. There are duplicate entries in

colA, because two vertices may appear multiple times in Events for different times. We store the

neighbors of a vertex sorted by neighbors, and then by timestamp.

In this representation, we can iterate through the neighbors of vertices of a particular graph.

For a particular vertex v of G0 (for instance), the edges are all stored between rowA[v] and

rowA[v+1], but some of them do not exist for graph G0. For a possible neighbor, the different

times at which an event occured are stored consecutively in the temporal CSR representation. So as

long as one of the edges has a timestamp between T0 and T0 + δ, then it exists in G0.

This basic representation requires one vector of size V + 1, and two vectors of size |Events|.

One iteration of a Pagerank calculation requires performing one SpMV. This involves traversing the
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neighbors of every vertex and has a complexity of Θ(|Events|).

When the span of time increases or when δ decreases, the total number of events is not related

to the total number of edges in one particular graph. Since |Events| could be arbitrarily larger than

the number of edges in any particular graph, the complexity of calculating a single SpMV can be

arbitrarily larger than it should be.

To remedy this, we partition the representation in many multi-window graphs. Each multi-

window graph represents a contiguous number of graphs and only stores the edges that are relevant

to these graphs. We distribute the graphs uniformly to the multi-window graphs. So if the analysis

involve X graphs and we represent the data with Y multi-window graph, each multi-window graph

will contain Y
X graphs.

A multi-window graphw has a vertex set Vw and an edge setEw. Note that for a particular multi-

window graph, Vw is typically smaller than the set of all vertices V since a vertex may not appear

in that multi-window. Also, note that some edges may appear in two (or more) multi-window graph

since an edge can appear in different consecutive graphs which could be in different multi-window

graphs. In other words, this representation consumes more memory since
∑

w |Ew| ≥ |Events|.

In this representation, performing SpMV for a graph only requires traversing the edges in the

multi-window graph that contain the graph. And therefore computing SpMV for a graph in multi-

window w has a complexity of Θ(|Ew|) which is closer to the number of edges in that graph than

Θ(|Events|) is.

The question of how many multi-window graph remains to be investigated. We propose that a

window graph should be accomodate by the system memory when computing Pagerank. The total

memory cost of the representation is encoding ∗ (
∑

w |Vw| + 2 ∗ |Ew|) where encoding accounts

for the size of the number encoding (we use 64-bit for all data). And we need to retain memory

available to store the intermediate data of Pagerank.

5.4.2 Partial Initialization

To calculate Pagerank, one needs to initialize the Pagerank values and the most common initial-

ization value is 1
|V | where |V | is the number of vertices in the graph. For us, the default would be

1
|V | .

Now, the postmortem analysis is a sliding window process and two consecutive graphs share
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most of their vertices and in many case they share most of their edges. So the Pagerank values

should be similar. And since Pagerank is a converging iterative process, having a better initial guess

for the values should decrease the number of iterations to converge.

We build on out previous work [111] and propose a partial initialization for graph Gi that is a

successor of window interval Gi−1. We denote by Vi all the vertices in graph Gi. We initialize the

Pagerank of a vertex Gi simply based on the Pagerank of its neighbors that were present in Gi−1

normalized to account for missing vertices. More specifically,:

PRi[u] =
|Vi ∩ Vi−1|
|Vi|

∗ PRi−1[u]∑
v∈Vi∩Vi−1

PRi−1[v]
(5.4)

Because the set of vertices encoded in a multi-window graph can be very different from the set

encoded in the next multi-window graph, computing the indexing can be tedious. So we do not

perform partial initialization across different multi-window graph. But since there are likely only

few multi-window graph, the loss will be small.

We will experimentally validate the impact of partial initialization on convergence time.

5.4.3 Different Level Parallelization on Pagerank

We can utilize parallel computing at two different levels. We can parallelize over different time-

window since they are all available in the postmortem representation, we call this window-level

parallelization. We can also use parallelism inside the application kernel, here Pagerank, and we

call this application-level parallelization. We can also leverage both at the same time which we call

nested parallelization.

Window-Level Parallelization

Window-level parallelization is good for a well balanced graph and large number of time-window.

If some graph are much larger than other ones, then window-level parallelization could lead to load

imbalance. Also, if we have a limited number of time-window graph then we will only have a small

amount of parallelism available.

Partial initialization may also be difficult to leverage in window-level parallelization. When
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starting to process graph Gi, one can only perform partial initialization if the Pagerank values of

Gi−1 are known by the thread. In practice, we implement the algorithm so if the same thread

processes Gi−1 and Gi, then partial initialization occurs.

Because of these two effects, a classic work scheduler is unlikely to be satisfactory. Think of

OpenMP’s classic dynamic scheduler. With a granularity of 1, it would likely allocate Gi and Gi−1

always to different threads. This would result in the benefits of partial initialization being negated. A

larger granularity would reduce the amount of parallelism available and takes the chance of having

a single chunk of work contain graphs that are significantly larger than the rest of the chunks. And

this would lead to load imbalance.

To remedy this problem, we opt for the work-stealing scheduler of Intel TBB. With a work-

stealing scheduler, the threads will be originally allocated a chunk of contiguous work. That con-

tiguous chunk will only be broken when the other threads are running out of work.

Application-Level Parallelization

In this model graphs are processed one at a time, in order from the first graph to the last graph. And

all the parallelism happens inside the call to Pagerank for that particular graph. In this case, the

parallelization is over the vertices of the graph.

In this model, we can use partial parallelization for every graph except first one of each multi-

window graph.

This model will perform well if the workload in each graph significant compared to the to-

tal amount of work. In other words, we recommend using application-level parallelization for an

instance with low number of graphs or where a few graphs carry most of the load of the analysis.

Nested Parallelization

Nested parallelism mixes both window-level and application-level parallelism. In other words, dif-

ferent graphs are performed in parallel and each Pagerank calculation is also performed in parallel.

This mode of operation offers the most parallelism and is likely to provide benefits of both modes

of operations.

This nested form of parallelism can be challenging for some parallel computing middleware. We

use TBB and its workstealing scheduler to orchestrate the execution. This model will perform better
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in a large temporal graph with moderate number of graphs or well balanced window-application

workload.

5.4.4 SpMM-inspired Postmortem Pagerank

When dealing with sparse matrices vector multiplication the primary bottleneck of executing the

algorithm tend to come from moving the matrix from DRAM to the core, and from accessing the

input vector in a random pattern. If the application supports it, it can be beneficial to execute multi-

ple SpMVs simultaneously on different vectors and on the same matrix. One can perform multiple

multiplication by reading the matrix only once. And interleaving the input vectors can transform

the access patterns from mostly random to mostly regular. This is a common optimization in linear

algebra: for instance LOBPCG tend to achieve higher performance than Lanczos to extract eigen-

vectors [112], and computing simultaneously multiple derivatives of radial basis functions [113].

Here, we have a similar structure. We compute Pagerank on multiple graphs but if the graphs

are in the same multi-window graph, then the representation of the two graphs in memory is actually

the same multi-window graph. By keeping in memory the intermediate value of multiple graphs’

Pagerank calculation, we can perform one iteration of many Pageranks by accessing the multi-

window graph only once. Also, since the graphs are likely sharing many common edges, the access

pattern to the Pagerank vectors become also more regular.

We will abuse the name and refer to this method as an SpMM method. Even though technically,

a different matrix is being used for the different Pageranks. We will also refer to the numbers of

Pagerank being computed simultaneously as vector length by analogy to vector processing which

plays a major role in SpMM implementation. Even though, the code may not actually use vector-

ization in practice.

Now, if we process consecutive graphs, sayG0, G1, . . . , G7, then we are going to lose partial ini-

tialization. Indeed, the result of G0 is needed to perform partial initialization on G1. So we divided

the multi-window graph into vector-length (e.g., 8) regions and picked first the graph from each

region. This will perform first for instance G0, G10, G20, ...G70. These 8 Pageranks will not benefit

from partial initialization. However, the next batch of graph processed will be G1, G11, G21, ...G71

which will all benefit from partial initialization.

We will investigate experimentally the impact of this SpMM-inspired optimization.
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Table 5.1: Graphs and Parameters

Name(Events) Sliding Offset Window Size
ca-cit-HepTh
(2,673,133)

12 hours, 1, 2 days 10, 15, 90,
180, 730,
1460 days

stackoverflow
(47,903,266) 12 hours, 1 day

10, 15, 90,
180, 730 days

askubuntu
(726,661)

90, 180 days

Youtube-Growth
(12,223,774) 60, 90 days

epinions-
user-ratings
(13,668,281)
ia-enron-email
(1,134,990)

12 hours, 2 days 2, 4 days

wiki-talk
(6,100,538)

12 hours, 1, 2, 4 days 10, 15, 90,
180 days

5.5 Experimental Settings

5.5.1 Execution environment

All the experiments are performed on a node which is equipped with two Intel Xeon Gold model

6248R (Cascade Lake architecture, 24 cores per processor, no hyperthreading, 36MB L3 Cache)

and 384GB GB of DDR4 memory. The operating system used in the machine is Linux 3.10.0.

All the codes are writen in C++ and compiled by the Intel C++ compiler icpc version 19.1.3.304.

Codes are compiled with optimization flag -O3 and xCORE-AVX512 flags, so the compiler gener-

ates a binary optimized for the architecture.

All the streaming version of Pagerank are performed on the STINGER [97] framework. STINGER

is a package designed to support streaming graph analytics by using in-memory parallel computa-

tion to accelerate the computation. STINGER supports Pagerank with an incremental algorithm.

The only modifications to STINGER that we performed are to the edge event injection logic so as

to updates in batches equivalent to the postmortem code. This makes the code bases produce the

same results and makes the comparison fair.
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5.5.2 Graphs

We perform our experiments on real-world data sets to avoid the bias introduced by random graph

generator. We select graphs from the Stanford Large Network Dataset Collection (SNAP) [59],

network repository, and DIMACS [60, 61] data sets that are frequently used in graph algorithm

research.

Table 5.1 presents the temporal graphs and provide details of the application parameters (win-

dow size, and window offset) that we set. We picked parameters that would look at the data at

different scale and resolution. Still we choose to have the time-windows overlap (all the graph share

some edges from its previous graph) since it seems likely analysis would always want that property.

We assume all the edges of the graphs are sorted in non-decreasing order of their arrival time.

5.6 Results

5.6.1 Edge Distribution of Temporal Graph

Figure 5.4 presents the edge distribution for all the graphs over time. We can see the patterns of

temporal edges are different for different graphs. This provides a diversity of instances to test our

methods.

Figure 5.4a shows the the email communication of the Enron Corpus where we can see some

big spike around 2001. These spikes represents the period of time when Enron scandal happened

which is the period of time mostly captured by the dataset. Figure 5.4b shows the user review

ratings collected by Epinions. Epinions was established in 1999 and peaked around 2001 and later

they acquired by eBay. It is a bipartite graph, an edge represents a user reviewing a product. We can

see around 2001 user reviews shows a huge spikes which is the reason the company was acquired.

Citation graph ca-cit-HepTh5.4c also shows an irregular distribution pattern of temporal edges.

On these networks, the Pagerank calculation bottleneck will be on a few graphs since few time-

window cover most the edges in the dataset. We will see that this distribution of work will make

application-level parallelism more efficient than window-level parallelization.

The temporal edge distribution for wiki-talk (Figure 5.4e), askubuntu (Figure 5.4g), and

stackoverflow (Figure 5.4f) show increasing amount of streaming edges over time. But the

number of edges that come in is relatively smooth. Graphs with balanced high-volume edges with
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Figure 5.4: Temporal graph edge distribution over the time period.

large number of windows are well suited for nested parallelism.

youtube-growth 5.4d shows a pattern that is both bursty by moment but steady in general.

5.6.2 Postmortem is usually faster than Offline and Streaming

We compare the performance of the three execution models: Offline, Streaming and Postmortem.

Postmortem here uses partial initialization and each temporal graph is partitioning into 6 multi-

window graphs. Postmortem uses only an application-level parallelism with a static scheduler. In

other words, this is a bare-bone postmortem computation where the execution parameters have not

been tuned.

Figure 5.5 shows the comparison among Naive, Streaming and Postmortem Pagerank for some

of the temporal graphs from four of our temporal datasets. The performance on enron-email is

reported in Figure 5.5a. The Streaming version is faster than the offline version. But Postmortem

outperforms both of them. Figure 5.5b shows the performance for the youtube dataset. On this

graph as well, streaming is faster than offline; and postmortem is faster than both. The postmortem

version outperforms Streaming by more than 3 times on that dataset.

Figure 5.5c shows the performance for the epinions dataset. On that dataset, streaming is much

slower than both offline and postmortem. Postmortem is faster than both and about more than 40

times faster than streaming. Figure 5.5d shows results on the wikitalk dataset. Here streaming
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Figure 5.5: Performance of Naive, Streaming and Postmortem Pagerank

is also slower than both other methods. Postmortem is slightly slower than offline on small window

size and better on larger ones.

5.6.3 Postmortem Detailed Results

Impact of Partial initialization

Figure 5.6 presents the impact of partial initialization on stackoverflow and wiki-talk tem-

poral graph. It shows a performance gain that correlates with the size of the window and ranging

from being 1.5 times faster to 3.5 times faster. It makes intuitive sense that the smart initializa-

tion improves the performance more on larger windows since the successive graphs become more

similar.

We found similar speedup for other experimental graphs also (not shown). And from now, we

will show results with partial initalization only rather than full initialization.
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Figure 5.6: Impact of partial initialization on postmortem graph analysis.
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Figure 5.7: Postmortem Pagerank comparison over streaming on wiki-talk graph (SpMM load
16 Pagerank vectors).

Partitioner and Granularity

We saw that there is imbalance in the distribution of edges over time. But we also know that social

graphs have power law edge distribution which makes the degree of the graph very unbalanced. As

a result the bottleneck of the application is often the time-window graph that has many more edges

than the other ones, and the block of vertices in the graph with extremely high degree.

In our experiment, we choose Intel’s Thread Building Block(TBB) mechanism to parallelize the

postmortem Pagerank to benefit from its scheduler. Now, TBB provide multiple partitioners

and support different granularity. The auto partitioner is the default workstealing scheduler

while simple partitioner is a variant of it. TBB also provides a static partitioner

which does not benefit from workstealing.

Choosing granularity requires experimental analysis. It depends on the partitioners, system

cache memory, problem size, etc. We perform our experiments using a variety of granularity sizes

to figure out the behavior of the results for certain attributes.

Figure 5.7 presents the performance of Pagerank on wiki-talk for different partitioner and
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Figure 5.8: Postmortem Pagerank performance using TBB auto partitioner for wiki-talk
network for different number of multi-window.

granularity size for a certain sliding window and window size. The window size of the graph is 256

that means we can split the window-level parallelization at maximum by 256 where each worker

thread will receive a single window. And we can see a performance drop after 128 for window-

level parallelization because it lacks of parallelism. Nested and Pagerank-level parallelization show

better result than window-level but they also lost some performance gain. The main reason also high

granularity size assign large number of windows to each worker thread and make it imbalanced.

Overall, the performance of the static partitioner seems worse than that of the other

two partitioners. And the auto and simple partitioner are fairly comparable in performance.

Impact of the number of Multi-Window Graphs

The number of multi-window is an important parameter. If the number is too low, there runtime

overhead due to traversing edges out of the graph the algorithm is considering will be high. If the

number is too high, the system wastes memory and the impact of partial initialization will be lower.

The results presented in Figure 5.8 show that one the number of multi-window is “large enough”,

the performance no longer varies.

Comparing SpMV to SpMM

The main difference between the SpMV and SpMM versions of postmortem Pagerank is that the

SpMM version computes multiple Pagerank vector at once in a multi-window graph and treat them

as a matrix. We choose a number of vector of either 8 or 16. Choosing a high number of vector in

SpMM will reduce benefit of the partial initalization because all the initial Pagerank vectors will do
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Figure 5.9: Postmortem Pagerank comparison over streaming on wiki-talk graph (SpMM load
16 Pagerank vectors).
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Figure 5.10: Postmortem Pagerank comparison over streaming on wiki-talk graph (SpMM load
16 Pagerank vectors).

full initialization.

Figure 5.7 shows postmortem Pagerank performance on wiki-talk, where we can see the

number of windows is 256. Our experimental results show that SpMM is usually much faster than

SpMV.

Which level of parallelization?

Figure 5.9 shows better performance for Pagerank-level and nested but shows lack performance of

the window-level parallelism. The main reason is the number of windows is only 6 where we have

48 available processors which stiffles the performance of window-level parallelism.

Figure 5.10 shows godd performance for window-level paralleization because of large number

of windows. On the other hand at Figure 5.7 show better performance for nested parallelization.

Application-level parallelization is well suited for the well balanced windows with large window

size graph. On the other hand window-level parallelization can out-perform other on the occasion

where number of windows is large but the number of window size is smaller. That means less work

in application level. Nested always show optimal or near optimal performance because it can adapt
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Figure 5.11: Best performance gain by postmortem Pagerank over streaming version.

to both form of available parallelism.

Best Mechanism and suggest parameters

Figure 5.11 shows the overall best performance by the postmortem Pagerank relatively to the stream-

ing model over the different configurations we tested. The Postmortem model proved to be between

50 and 800 times fater than the streaming model.

However, a user may not know how to set parameters. We provide a simple rules to set them

that should lead to decent performance. Our experiments show that SpMM is never a bad choice.

For partitioner, auto partitioner with granularity size under 4 usually provides good results.

To chose the type of parallelism, one need to look at the load balance in edges of different time

windows. Unless the workload is dominated by couple of windows or very small number of multi-

window, nested parallelization is the good fit for almost every graph.

We generated the performance of following this guidelines on wiki-talk across different

sliding offset and window size and reported the results in Figure 5.12. The configuration does not

report the best performance but reports very honorable performance at little tuning cost.

5.7 Conclusion

The study of performance of temporal graph analysis is often considered mostly in the streaming

model where one wants to maintain the analysis current with the most recent data. However an
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Figure 5.12: Postmortem performance with suggested parameter on wikitalk.

other common use case is to analyse a temporal data postmortem once all the data is known. We

showed in this paper how to perform Pagerank efficiently on modern parallel systems by leveraging

data representation, incremental algorithms, and different types of parallelism. When using these

techniques, a postmortem analysis can be conducted from 50 to 800 times faster than a streaming

analysis.

The methods we presented can still be refined: multiple questions remain. We partitioned the

temporal data in multi-windows with equal number of graphs, but this may not be the decomposition

that minimize memory and work overheads. We only considered Pagerank, but other analysis, like

centralities for instance, behave in less regular way when small changes impact the graph. Nowa-

days, much graph analysis is performed on GPU-enabled system or on distributed memory systems;

and extending our techniques to such systems would make temporal analysis more practical.
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CHAPTER 6

CONCLUSION

In this dissertation, we addressed how modern computer architecture and application-specific opti-

mization can bring greater performance gain for important graph analysis. Our work shows evidence

that graph partitioning and clustering kernel can take the advantage of modern AVX-512 instruc-

tion and outperform state-of-the-art algorithms. On the other hand, researchers and data scientists

want more than run-time enhancement of the application, they want to find the best configurations

and architecture for an application before running the application on the system. To support this

significant necessity, one needs to build a performance model that can predict the run time of an

application for specific computer architecture. Our dissertation can be done it accurately for itera-

tive sparse matrix-vector multiplication (SpMV). SpMV is one of the most frequently used kernel

in modern algebra. As an example, Pagerank calculation in the social web is mainly iterative SpMV

between vector and a stochastic matrix that holds the incoming links of vertices. Unlike chapter 3

where we discussed impact of AVX-512 instruction on shared memory architecture, we build SpMV

performance model for distributed systems. Predicting run time on the CPU architecture is difficult

and especially for the sparse kernel. We provided multiple models that can accurately predict run

time for different configurations.

Chapters 3 and 4 only handle static graphs for shared-memory and distributed systems. But

graphs like social networks are more likely to show temporal behavior. In chapter 5, we discussed

postmortem graph analysis for offline temporal graphs. In our works, we choose Pagerank as a

candidate application to show the effectiveness of the postmortem graph analysis. But, we showed

postmortem graph analysis can provide a performance boost for applications like Pagerank for the

offline temporal graphs compared to the state-of-art naive and streaming version. In particular, we

believe applications like betweenness and closeness centrality can also show the similar improve-

ment for postmortem graph analysis. Our works brought out a blueprint for modern graph analyses;

how to take advantage of computer architectures and improve the implementation of the applica-

tions. This dissertation provides insight to analyze a graph for a given HPC architecture and enhance
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its performance.
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[100] Scott Beamer, Krste Asanović, and David Patterson. “Reducing pagerank communication

via propagation blocking”. In: 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE. 2017, pp. 820–831.

[101] Liaquat Hossain, Shahriar Tanvir Murshed, and Shahadat Uddin. “Communication network

dynamics during organizational crisis”. In: Journal of Informetrics 7.1 (2013), pp. 16–35.

[102] Andrew Stolman and Kevin Matulef. “HyperHeadTail: a streaming algorithm for estimating

the degree distribution of dynamic multigraphs”. In: Proc. ASONAM. 2017, pp. 31–39.

[103] Guyue Han and Harish Sethu. “Edge sample and discard: A new algorithm for counting

triangles in large dynamic graphs”. In: Proc. ASONAM. IEEE. 2017, pp. 44–49.

[104] Xiaowei Chen and John CS Lui. “A unified framework to estimate global and local graphlet

counts for streaming graphs”. In: Proc. ASONAM. 2017, pp. 131–138.

[105] Kasimir Georg Gabert, Ali Pinar, and Umit Catalyurek. Finding Dense Areas of Massive

Changing Graphs. Tech. rep. Sandia National Lab.(SNL-NM), 2020.

[106] Eisha Nathan and David A Bader. “A dynamic algorithm for updating katz centrality in

graphs”. In: Proc. ASONAM. 2017, pp. 149–154.
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