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ABSTRACT

ROSHANAK ASHRAFI. A Contactless Non-Intrusive Approach for Machine
Learning-Based Personalized Thermal Comfort Prediction. (Under the direction of DR.

MONA AZARBAYJANI, DR. HAMED TABKHI)

Indoor thermal environmental conditions play a significant role in protecting occu-

pants’ well-being. In this regard, schedule-based and predefined environmental con-

trol is one of the main reasons for the current discomfort and dissatisfaction with the

thermal environment. These general standards make it impossible to consider people’s

differences in thermal sensation and personal preference. Recent research is attempting

to leverage occupants’ demand in the control loop of the buildings to consider the well-

being of each individual based on their own physiological properties. These thermal

comfort models are called "personalized comfort models". In this regard, studies are try-

ing to utilize skin temperature recorded by infrared thermal cameras for developing per-

sonal comfort models through machine learning prediction algorithms. However, there

are some critical gaps in the current methods that have limited the application of this

platform in real buildings. Some of the main shortcomings of the current approaches

are the limited distance from the camera, the absence of automated and accurate de-

tection of facial areas, and the limitation on the detectable facial positions. To capitalize

on the potential and address the existing constraints, new solutions are required that

take a more holistic approach to non-intrusive thermal scanning by integrating the ben-

efits of sensor fusion, image processing, and machine learning. The contribution of this

dissertation is in the three main aspects of literature review, data collection, and model

development. This study presents a comprehensive and systematic review of the cur-

rent machine learning-based personalized thermal comfort studies. In addition, we in-

troduce "Charlotte-ThermalFace", our recently developed dataset, and how it addresses

some of the existing gaps in the subject. Charlotte-ThermalFace contains more than

10,000 infrared thermal images in varying thermal conditions, several distances from
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the camera, and at different head positions. The data is fully annotated with the facial

landmarks, ambient temperature, relative humidity, air velocity, distance to the cam-

era, and subject thermal sensation at the time of capturing each image. By using this

dataset, we have developed a personalized comfort model for subjects at a farther dis-

tance in a completely non-intrusive method. We have accomplished this by incorporat-

ing both visual and thermal images to create a multi-modal sensing platform. Through

this interconnected system, we use visual images and the deep learning based HR-net

algorithm for localizing facial landmarks, and thermal images to measure the tempera-

ture values of the detected areas. This research implements an automated approach to

register simultaneous thermal and visual frames and read the facial temperature accu-

rately for subjects at a distance from the camera. Through this method, we could extract

facial skin temperature at a distance and in several head positions. For creating ma-

chine learning-based personalized thermal comfort models, we have implemented two

powerful classification algorithms: Random Forest and K-Nearest Neighbor. The pre-

diction results indicate an average accuracy of 86% for the Random Forest and 74% for

the K-Nearest Neighbor algorithm. This study presents promising findings for the cre-

ation of automated thermal comfort prediction platforms from a distance through the

utilization of thermal cameras.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

In our current society, people spend more than 90% of their time indoors, which

causes indoor environmental qualities to have a significant influence on their health

conditions. Although the building sector consumes approximately 40% of the globally

produced energy, the majority of which is used in heating, ventilation, and air condition-

ing (HVAC) systems, people are generally dissatisfied with their environmental comfort

conditions. In this regard, a recent large-scale survey reports that approximately 40%

of building occupants are dissatisfied with the thermal conditions in their indoor envi-

ronment. This global survey, which is the result of a 20-year study, focuses mostly on

office environments, which account for 77% of the research investigated buildings [1].

Another study on 52,980 occupants in 351 predominately North American office build-

ings has indicated that only 2% of the studied buildings are providing thermal comfort

for 80% of their occupants [2]. This wide range of dissatisfaction with thermal condi-

tions urges the need to improve the indoor environment to prevent the health problems

resulting from discomfort caused by poor indoor thermal conditions. Sick Building Syn-

drome (SBS) is a recent concept about the influence of the built environment on hu-

man health conditions and has attracted the attention of researchers in this area. It has

been proven that temperature and humidity conditions are significant contributors to

the SBS symptoms, which include fatigue, headache, susceptibility to cold and flu, and

disruption of sleep patterns [3]. The thermal state is one of the primary factors of In-

door Environmental Qualities (IEQ) that can impact occupants’ well-being. One of the

main causes of these poor environmental conditions is relying on explicit, predefined

models of thermal comfort, which do not correspond to the actual preferences of dif-
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ferent occupants in the environment [4]. Depending on general standards, it is nearly

impossible to accommodate varying degrees of people’s thermal preferences. [5]. Re-

cent research in human-centered design is attempting to leverage occupants’ demand

in the control loop of the buildings to consider the well-being of each individual based

on their own physiological properties. This approach to thermal comfort modeling is

also referred to as personalized comfort. Personalized comfort is a recent approach in

the area of human-centered building that focuses on providing comfortable conditions

for each occupant based on their own preferences. To create a comfort model for each

user, we need a real-time feedback system to provide data about occupants’ physiolog-

ical or psychological conditions. The developed model can then be used for controlling

the associated HVAC system. The innovations in environmental data gathering have

provided a unique opportunity to collect large amounts of information from the build-

ings’ occupants, which can be studied to develop a personalized environmental control

system. In this regard, the emergence of thermal imaging technology has made con-

tactless skin temperature data collection possible without interfering with occupants’

activities. The collected physiological data can then be utilized for predicting and con-

trolling each occupant’s thermal conditions in the built environment through personal-

ized comfort models. In addition to environmental monitoring, facial thermography is

one of the most widely studied areas of infrared thermography due to its proven prac-

tical applications. Facial thermal imagery has been successfully studied as an indica-

tor of human presence [6, 7, 8], identity[9, 10], and emotions[11, 12, 13] in several re-

search. The current pandemic has also highlighted the facial thermography potential

in the non-intrusive evaluation of human conditions more than before [14, 15]. The

promising results of non-contact thermal comfort modeling make it an excellent com-

ponent for smart buildings. Smart buildings are known for their capabilities in using

Artificial Intelligence (AI) and data processing to provide energy savings, enhanced oc-

cupant comfort, improved safety, and better maintenance. The "learning ability" was
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added to this definition after the increasing use of AI to design smart buildings that can

learn their performance from the occupants and environment [16]. Therefore, the learn-

ing approach is another key factor that influences the reliability and efficiency of the

proposed personal comfort models. Machine Learning (ML) methods, as a subset of AI,

have great potential for creating thermal comfort models [17]. Several machine learning

algorithms have been used lately to compare the prediction accuracy of different mod-

els in both lab and field environments. The promising results of the initial studies in

the area of facial thermography have attracted researchers’ attention to utilizing facial

skin temperature as an input for machine learning algorithms to create thermal comfort

models [18]. While there is currently an increasing interest in utilizing infrared ther-

mal cameras in public buildings because of their non-invasive quality, state-of-the-art

methods need additional modifications to become more reliable and holistic. There are

some critical gaps in the current methods that have limited the application of this plat-

form in real buildings. Firstly, although the machine learning-based thermal comfort

models and personalized comfort models seem promising, the methods used for data

collection, model construction, and control strategy vary greatly, which has resulted in

different outcomes. A comprehensive review of pertinent technology and methods to

better understand state of the art is missing in the sector. Secondly, there are several

constraints in current personalized comfort models that limit the application of these

approaches in the actual world setting. The restricted distance between the subjects

and the thermal camera, the limited head positions, and the lack of automation in some

aspects of model development are some of the addressable issues. Thirdly, while facial

thermography has gained lots of recent attention, this is still a new research area that

needs to be evaluated and studied in different domains. The lack of facial thermogra-

phy public datasets is a significant obstacle to research improvement in this area. The

limitations in current facial thermography datasets include low resolution[19], limited

head position, restricted distance from the camera, and lack of related radiometry data,
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which can provide the temperature for each pixel [20]. To capitalize on the potential

and address the existing limitations, this dissertation takes a more holistic view of non-

intrusive thermal monitoring for personal thermal comfort prediction. In this study, we

present a comprehensive and systematic review of the current machine learning-based

personalized thermal comfort models. In addition, we will look into collecting facial

thermal images from subjects at a farther distance from the camera. We will also cre-

ate a platform for thermal comfort prediction from facial skin temperature through a

completely non-intrusive automated method. The dissertation is unique because it cre-

ates an automated approach for utilizing both thermal and visual images to detect facial

landmarks in several different head positions.

1.2 Research Background

Thermal comfort models are an approach for quantifying the subjective evaluations

of a human’s thermal state, which enables a shared understanding of thermal satisfac-

tion. Thermal comfort evaluation is a difficult task due to many influential variables

such as air temperature, air velocity, relative humidity, solar radiation, and the subjects’

age, gender, clothing level, and activity level. For over thirty years, scientists have stud-

ied and applied many human thermal comfort models based on physiological and psy-

chological responses[21]. The Predicted Mean Vote (PMV) is a frequently used model

for assessing thermal comfort. Although PMV is currently the most widely used thermal

comfort model, it has performed poorly in recent research [22]. The second conven-

tional thermal comfort model is the adaptive model, which works based on the concept

that an individual’s thermal acceptance is under the influence of outdoor conditions

during different times of the year [23]. The majority of today’s building control systems

rely on these two explicit predefined models, which do not accurately reflect the ac-

tual comfort of various occupants in the environment [22]. As a space may be used for

various purposes or duties over time, the occupants and their thermal comfort pref-

erences may change. Additionally, the thermal comfort level would be influenced by
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human attributions such as age, gender, and metabolic rate. Along with physiological

qualities, psychological factors such as emotional state (happiness or anger), and level

of stress can significantly influence a person’s subjective thermal sensations[22]. This

makes it impossible to analyze individuals’ thermal preferences and the relative value

of each contributing component based on general standards [5]. Personalized comfort

is a recent concept in the building design area that focuses on providing a comfortable

condition for the occupants based on their preferences. This results from zonal con-

ditioning, instead of the central air conditioning system, and the ability of occupants

to change their thermal environment [24, 25]. Personalized models are based on the

Human-in-the-Loop (HITL) concept, which has redefined the relationship between hu-

mans and their surroundings. Based on this concept, to achieve a high-performance

building throughout the operation phase, it is necessary to embrace subjective human

aspects in the control loop. Personal thermal comfort models are created based on be-

havioral or physiological variables associated with an individual’s thermal comfort. This

research deploys the three basic methodologies of voting, behavior, and physiological

sensing as direct feedback from the occupants to regulate their thermal condition[26].

1.2.1 Non-Contact Personalized Thermal Comfort

In an attempt to reduce or eliminate the need for occupants to interact with the en-

vironment through voting or other processes, some studies have aimed to discover per-

sonalized feedback from human bio-signals. Physiological data is a group of bio-signals

that have been proven to have acceptable prediction accuracy for creating data-driven

thermal comfort models. Thermal comfort is a cognitive inference that relies on phys-

ical, physiological, and other human-related contextual elements and is attained when

physiological efforts for thermoregulation are minimal, and the core body temperature

is maintained within a narrow range. As a part of this process, the blood flow to the

skin’s surface is regulated by vasodilation in higher temperature conditions and vaso-

constriction in lower ones. Through the operations of vasoconstriction and vasodila-
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tion using subcutaneous heat receptors, skin temperature plays an important role in

the thermoregulation process. The emergence of thermal imaging techniques provides

a great opportunity for contactless skin temperature data gathering with no interrup-

tion in occupant conditions and activities. Infrared cameras have the ability to assess

the temperature of targeted areas, making them an excellent tool for measuring skin

temperature from a distance. Thermal cameras have been proven to be a reliable, non-

invasive way to predict the need to change thermal conditions with a 94–95% level of

accuracy, while Fanger’s PMV method had a prediction accuracy of less than 65% [27].

Researchers have also developed a real-time feedback system using the FlirA35 thermal

camera and a depth sensor to analyze both the face temperature and the body pose of

the occupants [28]. Further research has revealed the possibility of replacing the pre-

vious cameras with a less expensive and smaller infrared camera capable of predicting

skin temperature with an acceptable accuracy of 85% [29]. This study has further in-

vestigated the possibility of developing a smart thermostat based on the developed pre-

diction algorithms [30]. Thermal cameras have also been integrated with visual RGB

cameras for landmark detection and higher accuracy, [31]. Moreover, studies have as-

sessed the effectiveness of several facial feature detection algorithms in identifying ar-

eas of interest (ROIs) [32]. In this regard, research has compared the accuracy of three

distinct sensor types, including air temperature sensors, wristband-based skin tempera-

ture monitoring, and thermal imaging-based facial temperature monitoring. This devel-

opment proves the marginal improvement in accuracy when physiological sensors are

combined with environmental sensors and casts doubt on the efficacy of physiological

sensors as a consequence of this marginal improvement in accuracy (3% to 4% )[33] . Li

et al. proved successful in monitoring and recording the skin temperature of two sub-

jects concurrently utilizing two thermal camera nodes, each camera catching sections

of the subjects’ faces [34]. Although facial skin temperature is used as the primary phys-

iological factor for thermal comfort prediction, other studies have considered several
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other body parts, including hands, shoulders, and torso [35, 36, 37]. Thermal cameras

have also been shown to be a promising tool for the non-invasive prediction of elderly

thermal comfort in nursing homes [37].

1.3 Problem Statement

The presented review shows that although the initial results are promising, the plat-

form’s application in actual buildings has been limited by a number of major shortcom-

ings. Firstly, the greatest subject-to-camera distance in the present investigations is two

meters, making the platform appropriate for relatively small spaces. In addition, it has

been proven that one of the major factors that influence Thermal Infrared Reading (TIR)

is the shooting distance, which is defined as the distance between the object and the

thermal camera. This measure becomes more important in remote thermal readings,

where the shooting distance is well over one meter. Although there is awareness of this

factor’s influence on thermal readings, there has been very little research conducted on

this area until recently. Most of the previous researchers had performed their studies at

equal distances from the camera to avoid this inconsistency. One main study on the in-

fluence of distance on TIR of living organisms was performed in 2016, which studied the

shooting distance range from 0.3 to 80 meters. The study showed the powerful influence

of the measuring distance on the first 20 meters of the subject [38]. This non-linear de-

crease can result in an underestimation of the surface temperature. Other studies on the

influence of distance on human facial (inner-canthi of the eye) TIR have shown a mea-

surement error in distances larger than 80 cm from the camera [39]. This field applica-

tion of thermography has shown the strong influence of spot size and shooting distance

on the surface temperature of both calibrated temperature sources and wild birds. The

decrease in temperature can be as high as 6°C at a 10 meters distance from the subject

[40]. Secondly, required Regions of Interest (ROIs) for thermal measurements are often

selected manually or with insufficient detection precision. Therefore, in the majority

of the current studies, participants are instructed to keep a frontal face posture or have
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minimal head position movements due to the limitations of their landmark identifica-

tion approach. Any change in the human head position will result in a change in the

degree between the camera and the facial area. Research has shown that the influence

of object position on the camera alters the TIR by affecting the apparent emissivity[40].

This effect may result in errors as high as 8 °C, depending on the target area’s emissiv-

ity. Additional research has also studied the influence of the angle of the camera on the

inner-canthi of the eye temperature, which also aligns with the previous findings. The

mean temperature of the inner canthi of the eye has decreased by 0.5 °C at 75 degrees

to the camera [39]. Thirdly, the current publicly available facial thermography datasets

have several limitations, which make them ineffective for environmental monitoring ap-

plications. Due to the lower quality of older thermal cameras, several current thermal

datasets are of low resolution[19]. Most of the existing public datasets are not in the

original raw format and are converted frames, which results in the loss of important

information [20]. In addition, the current public datasets lack diversity in several as-

pects, such as face resolution and environmental properties. The available datasets are

appropriate for facial recognition purposes with no variation in environmental proper-

ties such as air temperature and relative humidity. None of the current public datasets

include data on controlled thermal variations, which is one of our top objectives in col-

lecting this dataset. While some of the current datasets were recorded in uncontrolled

thermal circumstances, resulting in temperature fluctuation, yet there is no information

about the ambient temperature at the time of thermography recordings. There are cur-

rently no publicly available datasets with varying distances from the camera[41], while

several studies have indicated the importance of distance in the infrared thermography

readings [40, 38, 39].

1.4 Research Contribution and Objectives

The ultimate goal of this dissertation study is to create a personalized thermal com-

fort model based on each individual’s physiological data that can be further used in the
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building’s controlling system. To that end, we are focusing on physiological data that can

provide information on the individual’s thermal comfort. We are examining the possi-

bility of utilizing infrared cameras to gather occupants’ skin temperature data from a

distance. The project is significant because it creates an automated approach for utiliz-

ing both thermal and visual images to detect facial landmarks in several different head

positions. The contributions of this dissertation are as follows:

• Firstly, we have developed and published a facial thermography dataset with more

than 10,000 infrared thermal images at several distances from the camera and

changing head positions. We have also controlled the air temperature to change

from 20.5 °C (69°F) to 26.5 °C(80°F). Images are available in at least four different

temperatures, ten different relative distances from the camera ranging from 1m

(3.3 ft) to 6.6m (21.6 ft), and 25 different head positions.The dataset is annotated

with the environmental properties, including air temperature, relative humidity,

air speed, distance from the camera, facial landmarks, and subjective thermal sen-

sation of each person at the time.

• Secondly, to address the limitation of a subject’s distance from the camera and

their position, we implement deep learning-based algorithms for image segmen-

tation and facial landmark detection. By utilizing the powerful HRnet algorithm

[42, 43], we have successfully investigated the subjects at a maximum distance of

6.6 meters from the camera and at 25 different head positions. In addition, to re-

solve the lack of accuracy, we have utilized an automated mapping approach for

registering thermal and visual images that can detect the specific ROIs in images

of any resolution and head position.

• Thirdly, to increase the accuracy of thermal comfort prediction, we have included

the distance from the camera and head position as inputs to the prediction algo-

rithms. Our results have indicated that including the distance and head position
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in the prediction process can increase prediction accuracy in general.

• Finally, we conducted a comprehensive search of the most current personalized

thermal comfort research that has utilized machine learning approaches to create

their comfort models. The purpose of this contribution is to emphasize the use of

machine learning to personalize thermal comfort studies. In addition, we high-

light and compare their associated methodologies and performances in several

aspects.

Our research deliverable will address the following hypotheses: By using integrated ther-

mal and visual cameras and including physical conditions as input variables, we can cre-

ate an accurate personal thermal comfort model for subjects at different distances from

the camera In this research, we will answer two fundamental questions:

1. Can we perform automated facial skin temperature readings at farther distances

from the camera by adding visual cameras to the platform?

2. Can we develop a non-contact personalized thermal comfort model for subjects

in the distance?

The objectives of this project are in three key areas:

1. Integrating visual and thermal cameras for a higher resolution reading of facial

temperature.

2. Developing a comprehensive facial thermography dataset that includes images in

different thermal conditions, in addition to several distances from the camera and

different head positions.

3. Creating a personalized thermal comfort model for controlling the building’s in-

door temperature and comparing the prediction accuracy of different supervised

learning algorithms.
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1.5 Dissertation Outline

The rest of this dissertation has four main sections. Chapter 2 presents a comprehen-

sive and systematic review of the current machine learning-based personalized ther-

mal comfort studies. Chapter 3 presents our recently developed dataset, which we call

the Charlotte-ThermalFace dataset. In this chapter, we look into the applications of fa-

cial thermography in different domains. Then we study and compare the existing pub-

licly available thermal datasets with a brief description of each. Moreover, we introduce

our developed dataset and how we address some of the existing gaps by publishing our

dataset. Finally, we provide a preliminary analysis of the dataset to show its applicability

for future projects. Chapter 4 presents a detailed explanation of the model develop-

ment and evaluation. In this chapter, we explain the data collection process, followed

by data extraction and analysis. In addition, we present the influence of room tempera-

ture, distance from the camera, and head positions on the skin temperature and infrared

thermal readings. The results of the two selected prediction algorithms are discussed in

detail. Include a final review of the highlights of this dissertation and the achievements

of our study in Chapter 5. We also present a future outlook in the continuation of this

work.



CHAPTER 2: A Review of Machine Learning Applications in Smart Buildings to Provide

Personalized Thermal Comfort

2.1 Introduction

Thermal comfort models are an approach for quantification of human subjective eval-

uation and their thermal state to provide a common understanding of thermal satisfac-

tion. Thermal comfort evaluation is a difficult task due to many influential variables

such as air temperature, air velocity, relative humidity, solar radiation, and the subjects’

age, gender, clothing level, and activity level. Scientists have been studying and using

several human thermal comfort models for over 30 years based on both physiologi-

cal and psychological responses [44]. Although the building sector consumes approx-

imately 40% of the globally produced energy, the majority of which is used in heating,

ventilation, and air conditioning (HVAC) systems, people are generally dissatisfied with

their environmental comfort conditions [1]. Schedule-based and predefined environ-

mental control is one of the main reasons for the current discomfort and dissatisfaction

with the indoor thermal environment. These general standards make it impossible to

consider people’s differences in thermal comfort levels. Recent research is attempting

to leverage occupants’ demand in the control loop of the buildings to consider the ther-

mal satisfaction of each individual based on their own physiological properties, which

is called personalized comfort models. Personalized comfort is a recent concept in the

building design area that focuses on providing a comfortable environment for the oc-

cupants based on their preferences. Personal comfort models are developed based on

each individual’s physiological or behavioral data that are linked to their thermal pref-

erences. The promising results of personalized thermal comfort modeling make it an

excellent component for smart buildings. The Internet of Things is one of the recent
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technologies that have made this approach easier by providing a connection network

among several devices and occupants in a building. A real-time monitoring system is

used in buildings equipped with IoT to provide the needed infrastructure and make this

a feasible task. IoT-based systems, in combination with HITL approaches, warrant in-

tercommunication between various devices and also facilitate the communication of

information that is used for sensing, actuation, and control. The information collected

by IoT sensors from the users regarding their behaviors and preferences has been used

to modify and regulate building systems such as heating, ventilation, and air condition-

ing. Smart buildings are known for their capabilities in using Artificial Intelligence (AI)

and data processing to provide energy savings, enhanced occupant comfort, improved

safety, and better maintenance. The term "learning ability" was added to this definition

after the increasing use of AI to design smart buildings that can learn their performance

from the occupants and environment [16]. Therefore, the learning approach is another

key factor that influences the reliability and efficiency of the proposed personal com-

fort model. Machine Learning (ML) methods as a subset of AI have great potential for

creating thermal comfort models [17]. Several machine learning algorithms have been

used lately to compare the prediction accuracy of different models in both lab and field

environments. The purpose of this work is to emphasize the use of machine learning

to personalize thermal comfort studies. In this review, we conducted a comprehensive

search of the most current personalized thermal comfort research that has utilized ma-

chine learning approaches to create their comfort models. In addition, we highlight and

compare their associated methodologies and performances in several aspects.

2.1.1 The necessity of a literature review

While machine learning and personalized thermal comfort are relatively new subjects

in the area, there has been increasing attention to both of these topics in recent years.

Nevertheless, despite the considerable advancements in the field, a detailed and critical

review of the subject is still missing. There are currently several review studies on the
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related research areas, especially since 2020. Qolomany et al. have surveyed the area

of smart building with a special focus on the role of techniques from machine learning

and big data analytics [45]. Researchers have also provided a comprehensive overview

of different data-driven approaches and processes for predicting personal thermal com-

fort in a building environment [46]. In their study, through a classification procedure

and a comparison of their prediction accuracy, a particular focus was made on mod-

eling methodologies throughout the chosen research. Intelligent buildings in general,

were also the subject of review articles with regard to both thermal comfort and energy

saving. Qavidel et al. have reviewed the application of machine learning in thermal

comfort studies and highlighted the latest methods, findings, performance, and chal-

lenges [17]. Moreover, Ref.[47] offers a complete and in-depth systematic analysis of

AI-based approaches utilized for building control systems by evaluating the findings of

these approaches, their applications in the studied works, and their ability to increase

energy-efficiency while retaining thermal comfort. Another survey in the area has in-

vestigated the experimental approaches in the design and implementation of thermal

comfort monitoring technologies [48]. The work provides insights into the inputs that

influence personal thermal comfort, smart technologies and methods used for sensing

and detection, and approaches for processing collected data. Another recent study also

performed a review to summarize recent occupant-centric thermal comfort practices

in three main areas of sensing, predicting, and controlling [49]. In regards to personal

thermal comfort modes, Martins et al. have presented a comprehensive review by ex-

amining several aspects, including data collection approach, dataset size, participants

involved, climate, seasons, building type, model variables, modeling algorithm, perfor-

mance indicators, and final application [50]. These recent and thorough studies show

how important smart buildings, personalized comfort, and data-driven research meth-

ods are in this field. However, none of the previous reviews have investigated the current

research with a particular focus on the implementation of machine learning algorithms
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for developing personalized thermal comfort models. We believe that this review would

be helpful in identifying the similarities and differences between the specifics of the

study data collection process and the predictive modeling involved. Future fieldwork

studies will be facilitated and guided in several research aspects through this methodi-

cal review.

2.2 Structured literature review methodology

To conduct a comprehensive search of the publications in this area, we have iden-

tified three sets of keywords to create a logic grid for the paper selection process. As

Table 2.1 shows, the keywords were selected from our three main focus areas, which

are "machine learning", "personal", and "thermal comfort". There are several litera-

ture databases and search engines available. Scopus and Google Scholar were chosen

because they are believed to be among the most complete databases of abstracts and

citations of peer-reviewed literature, and their search engines are easy to use and easy

to access. Machine learning-based personal thermal comfort modeling research has

only grown in recent years. Since there were few systematic modeling studies before

2015, publications published since 2015 were chosen for investigation. After reading

their abstracts, unrelated articles were eliminated. In addition, references and citing

articles of the first-stage papers were thoroughly searched to add more related publica-

tions. Through this process, 50 peer-reviewed publications, including journal articles

and conference manuscripts, were selected to be reviewed. Figure 2.1 presents the re-

viewed aspects of the collected studies in this survey.
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Table 2.1: Logic grid for the keywords

Machine Learning" AND "Personal" AND "Thermal Comfort

machine learning" OR "personal" OR "thermal comfort" OR

supervised learning" OR "personalized" OR "thermal " OR

unsupervised learning" OR "user-centered" OR "temperature" OR

reinforcement learning" OR "individual" OR "HVAC" OR

"Smart" OR "occupant-centered" "air condition" OR

"IOT" OR "comfort" OR

"Artificial Intelligence" " satisfaction"

Figure 2.1: Feedback Collection Systems
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2.3 review results

We have investigated the selected publications based on three main aspects: their

application; data collection method; and model creation strategy. As Figure 2.1 dis-

plays, each of the mentioned aspects includes additional review categories, which are

explained in the following sections.

2.3.1 Feedback Collection System

For accounting human comfort and preferences in the building system, it is crucial to

find the acceptability of the control settings based on the current occupants’ feedback.

The gap between the conditions that are delivered and those that are desired by the oc-

cupants may be narrowed by incorporating the thermal preferences of users into the

decision-making processes that are carried out by control systems. In order to achieve

this goal, the Human-in-the-loop (HITL) approach has reconsidered the link that exists

between people and the indoor environment. In order to maintain a high level of perfor-

mance throughout the operating phase of a building, it is necessary to take into account

a variety of human factors within the control loop. Building management performance

may be improved using HITL strategies to make the most of the input provided by users

and to obtain an adaptive model after each cycle of the process, Jung et al. [26]. As our

investigations indicate, the feedback system structure is one of the main characteristics

of a personalized HITL system. The feedback type and collection method can categorize

the reviewed research into two main groups: behavioral data collection and physiolog-

ical data collection. As Figure 2.2 displays, the reviewed personalized comfort devices

can be further categorized into four main groups, which are explained in this section.
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Figure 2.2: Feedback Collection Systems

2.3.1.1 Behavioral

Some of the current personalized thermal comfort research uses behavioral feedback

to provide information about the occupants’ conditions or preferences to the control

loop. A group of these platforms monitors the influencing variables in subjects’ ther-

mal state, such as the occupancy status, clothing level, metabolic rate and activity, and

discomfort or comfort-related postures. This research utilizes a visual camera or occu-

pancy and motion-related sensors to gather the information without the need for oc-

cupants’ interaction with the system. Another type of behavioral feedback is the inter-

action that users have with the environmental control platform, which can be through

voting applications or interaction with personal comfort systems.

Monitoring: Based on the reviewed studies, we have categorized behavioral-based mon-
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itoring thermal comfort models into four main groups: occupancy, metabolic rate, cloth-

ing level, and posture estimation. Peng et al. [51] have proposed thermal comfort pre-

diction models using occupancy data in addition to environmental temperature infor-

mation in personal office spaces. Using digital data from motion sensors, room occu-

pancy information was extracted. To do this, a time delay is calculated to evaluate the

movement data in terms of occupancy, which is the minimum time between two se-

quential movements. If no movement is detected within the set time frame, it is pre-

sumed that no individuals are present. In another research, user personal desk fan usage

preferences were recorded, together with user presence data and indoor and outdoor

environmental factors. Tree-based approaches were examined to predict the switching

on and off of desk fans and to estimate the fan speed that the user desires. In Ref [52], a

visual camera is used to recognize indoor human activity, which is then utilized to deter-

mine the metabolic rate. Visual cameras were also used for the identification of clothing

insulation. Zang et al. proposed a machine learning classification technique that could

translate an individual’s visual image to various metabolic rates and clothing level [53].

Yang et al. have successfully used machine learning algorithms to identify human ther-

mal conditions based on their poses [54]A digital camera captured images of occupant

positions linked to thermoregulation systems, and the appropriate two-dimensional co-

ordinates were acquired. These positions have been transformed into skeleton shapes.

An algorithm was created to identify thermal discomfort-related postures, such as self-

hugging and wiping sweat from the forehead. The platform could distinguish twelve

thermal discomforts associated with human postures.

Interacting: Voting platforms are one of the main types of subject interaction meth-

ods with the control system to provide feedback. In the voting system, thermal scale

preferences are used for quantifying the comfort to be utilized in participatory sensing

systems [55, 56, 57]. Earlier research studies had utilized surveys at office buildings to

collect feedback data from the employees, which was successfully implemented in cre-
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ating thermal comfort models[58]. Guenther et al. have tried the voting system as the

only feedback form from users about their thermal condition in a relatively large office

building [55]. User input was gathered as part of everyday work tasks and utilized for

the creation of a customized comfort prediction model, which enabled the creation of

personalized thermal conditions. In some other studies, voting systems are used as

an addition to another type of feedback data, such as physiological conditions, which

will be further discussed in the next section. The voting systems require continuous

feedback input from the occupants. Another approach is to investigate the user’s in-

teraction with the provided thermal regulation devices for the purpose of learning their

thermal preference. Monitoring occupant behavior while using thermal control devices

may be considered non-intrusive and provide feedback for determining people’s ther-

mal comfort. Personal Comfort Systems (PCS) are small portable heating and/or cool-

ing devices that are capable of modifying the thermal condition on a personal level. The

thermal conditions are controlled by devices that can be located on desktops, ceilings,

or floors based on the building’s mechanical system design and architectural planning.

"Task Ambient Conditioning" (TAC) was first used to define localized and small space

conditioning systems, which were then replaced by the term "Personal Environmental

Control" (PEC). This term includes both Personal Ventilation Systems (PVS), and Per-

sonal Comfort Systems (PCS)[59]. As it can be inferred from their names, the differ-

ence between these two systems is due to ventilation through outdoor air in the for-

mer. However, the regulation in the PCS is only related to the thermal conditions of

the microzone[59]. As an example, for a PCS, a heated and cooled chair provides lo-

cal heating and/or cooling through integrated heating strips and fans [60]. Through

the use of personal thermal control devices, we can directly connect individual com-

fort to the corresponding behavior. Recently, monitoring occupant engagement with

thermal control systems has become more cost-efficient due to decreasing sensor costs

and pervasive wireless connectivity in buildings. In addition, it is promising to include
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this feedback into the environmental control loop since IoT advancements have signif-

icantly decreased the difficulty of the required devices’ communication. Continuous

data collection may be automated when the basic infrastructure is set up, demanding

only routine activity from the users. As a result, thermal comfort devices provide a great

way to study user thermal preferences. Personal comfort models are developed based on

each individual’s behavioral data and are linked to their thermal preferences. In addi-

tion to using and configuring predictive models correctly, selecting the right equipment

for each setting is essential for environmental control to work at its optimum. Some of

these devices that have been used and studied until now are heating and cooling chairs

[24, 61] , desk fans [62, 63], air jets [64], and foot warmers [18]. One of the early studies

on the subject of PCS automation is by Kim et al., which works on the prediction of ther-

mal comfort when utilizing a cooling/heating chair [60]. In this study, the researchers

tried to learn the occupant’s heating and cooling behavior and predict the thermal com-

fort based on this data. Their best-performing algorithm for personal comfort models

had a median accuracy of 0.73, which was higher than the predictions made by tradi-

tional comfort models (PMV and adaptive), which had a median accuracy of 0.51 at the

time. Other related research has studied the prediction performance of neural network-

based models for the prediction of personalized heating settings, using environmental

features as the input factors [65]. According to the results of their online testing, the test

participants were satisfied with the heating settings that were automatically regulated

using models built based on the acquired data. Researchers of the same study have also

combined PCSs with monitoring physiological parameters of skin temperature for the

thermal comfort prediction [66]. This research has also compared the prediction per-

formance of the model when utilizing different input parameters, including behavioral

factors (PCS control intensity), physiological factors (skin temperature), or environmen-

tal factors. The results prove that the prediction accuracy is higher when inputting per-

sonal parameters in addition to just environmental factors. Also, the performance of
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the model was approximately the same when selecting behavioral or physiological pa-

rameters as the input features. Another study in this area has worked with the personal

thermostat levels in an office building with individual rooms [51]. The study presents

an online-learning-based control method to build an occupant-centric indoor thermal

environment. The findings of the experiment indicate that occupant preferences in the

different rooms vary with respect to thermal settings. In addition, during the learning

period, the number of weekdays per month on which occupants needed to alter room

temperatures based on their satisfaction decreased from four to nine to a maximum of

one [51]. PCSs can provide thermal comfort for the occupants and energy savings for

the building. However, this highly depends on the type of device and the microclimate

control strategy. The HVAC systems in commercial buildings regulate the indoor tem-

perature by maintaining a narrow range of set points, which are mostly pre-defined.

Not only does this approach fail to provide comfort for all inhabitants of a building, but

it is also responsible for around 20% of total energy consumption in buildings [67]. Per-

sonal comfort devices provide the possibility of relaxing the central indoor set point in

both heating and cooling mode. This will result in 10% of energy savings per degree C

and will also prevent energy waste caused by actions such as simultaneous heating and

cooling in HVAC systems to maintain the setpoint [68]. Another research has reported

energy savings ranging from 4 to 25 percent [51] after providing personal thermostats

for occupants of an office building. Ngarambe et al. have also created thermal comfort

predictive models using ML and their implementation in building control systems for

energy saving [69].

2.3.1.2 Physiological

In an attempt to reduce or eliminate the need for occupants to interact with PCSs

during voting or adjusting the devices, studies have aimed to discover personalized at-

tributes from human bio-signals. Physiological data is a group of bio-signals that have

been proven to have acceptable prediction accuracy for creating data-driven comfort
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models. For personalized comfort model development, a variety of personal character-

istics, such as skin temperature, heart rate and pulse, and other occupant information,

were investigated [70]. Recent commercially available wearable devices enable the af-

fordable and accurate collection of real-time heart rate, pulse, and activity data. Due

to the simplicity with which these wearable devices and computers or smartphone ap-

plications may be linked, biometrics can be simply integrated into a predictive thermal

comfort model. Thermal comfort is a cognitive inference that relies on physical, physi-

ological, and other human-related contextual elements and is attained when physiolog-

ical efforts for thermoregulation are minimal, and the core body temperature is main-

tained within a narrow range. As part of these processes, the blood flow to the skin’s

surface is regulated by vasodilation at higher temperatures and constriction at lower

ranges. Through the operations of vasoconstriction and vasodilation using subcuta-

neous heat receptors, skin temperature and skin conductance play important roles in

the thermoregulation process. Given the strong association between thermal sensation

and skin temperature, the most common technique has been to use skin temperature

[71]. Skin temperature at different body parts is one of the most successfully used vari-

ables for developing a personalized comfort model [72, 31, 73]. Non-contact thermal

cameras have also been used to measure the skin temperature for creating a personal

comfort model [74, 18, 75]. The heart rate and pulse rate were the second and third

most preferred physical factors due to their superior ability to represent variations in

metabolic rate when individuals alter their activity level [76]. According to these inves-

tigations, there is a moderate correlation between changes in heart rate and thermal

sensations or environmental factors. In particular, compared to more complex levels

of thermal comfort perception, heart rate seems to correlate with a three-class ther-

mal comfort rating [77]. In the physiological feedback system, these two previously

proven indicators of thermal comfort are used individually as skin temperature [78, 79]

or together [76]. Some other researchers have utilized the skin galvanic response as
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the best prediction variable with a high prediction accuracy among other physiological

variables[80, 81]. Skin conductance or skin galvanic response refers to the convective

heat transmission by blood circulation and conductive heat transfer through the skin

layer [82]. Electroencephalography (EEG) and electrocardiogram (ECG) signals are also

used to measure human thermal comfort. We can monitor EEG and ECG signals using

biomedical equipment as well as with inexpensive wearable devices that are currently

on the market. In the first approach, the user’s head is covered with a helmet with elec-

trodes to capture these signals. It is possible to create models that distinguish between

various sentiments related to thermal comfort using the spectral power of EEG [83]. It

was also shown that correlations between the user’s temperature perception and EEG in-

dices are possible. However, wearing an EEG helmet throughout the day is impossible.

Table has displayed the research that has used skin temperature, heart rate, metabolic

rate, and clothing level as the four mostly user-related variables. In this study, we have

categorized the physiological-based data gathering platforms based on their application

methods, which can be (a) wearable or (b) non-contact:

Wearable: The wearable data collection devices are either lab-grade sensors or commer-

cially available personal wristbands. Thermocouples and thermistors with connecting

wires are often utilized in lab-grade sensors and were frequently used in early thermal

comfort studies. Although this sort of sensor often has the benefit of high precision,

the connections and wires do significantly reduce the application’s convenience. A lot

of thermal comfort research requires high precision and continues to employ intrusive

sensors with great accuracy [82, 64, 76]. Researchers have also measured the varia-

tions in the heat exchange rate (heat flux) and skin temperature during gradual transient

temperature shifts by placing heat flux sensors on participant skin at the wrist and fa-

cial area. Investigations were conducted into the relationships between occupant ther-

mal preferences, the ambient environment, human-environment heat exchange, and

thermophysiological responses. They have found strong positive correlations between
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heat exchange rate and thermal preferences, whereas strong negative correlations were

found between air temperature and skin temperature. Other user-centered models uti-

lize wristbands to gather physiological data such as skin temperature, heart rate, and

skin conductance to predict the comfort condition of each occupant. Due to the person-

alized character of wearable technology, the data produced by streaming is distinctive.

By utilizing Microsoft Band 2, researchers have successfully had the ability to compre-

hend user behavior and anticipate demands in the[84]. Another study has utilized the

Empatica E4 wristbands, which were used to measure Analysing Electrodermal Activity

(EDA), heart rate, and skin temperature [85]. In order to be integrated with the IoT data

gathering platform, both of these wearable devices provide source data through an API.

The Polar H7 strap was outperformed by the use of wearable devices to measure heart

rate [76, 86]. Researchers also employed heart rate variability analysis software, which

focused exclusively on heartbeat-related factors for thermal comfort study [60]. Wear-

able devices were also used in another article to investigate the impact of activity-based

metabolic rate on predicting personal thermal comfort [87]. In this study, wearable sen-

sors and machine learning techniques were utilized to continually monitor and analyze

individual physiological data, activity-based metabolic rates, and environmental indi-

cators. Results indicated that predictive models that took metabolic rate into account

produced an improved performance of up to 8.5 percent, suggesting that activity-based

metabolic rates provide a better knowledge of individual thermal comfort. These data-

gathering approaches are intrusive as the sensor devices need to be in contact with the

human skin throughout the day, which may be distracting in a work environment. The

need for a contactless data gathering approach is also important in healthcare facili-

ties, where using a wristband sensor may not be preferable for patients. In addition,

it requires sensors for each occupant of the workplace, which is not always possible.

This data-gathering shows the extent to which considering contactless, non-intrusive

approaches can be beneficial for obtaining personal physiological data for each occu-



26

pant.

Non-contact Devices: The emergence of visual and thermal imaging techniques pro-

vides a great opportunity for contactless data gathering with no interruption in occu-

pant conditions and activities. In this research, we are looking into the possibility of

a non-contact vision-based method from a distance for gathering occupants’ thermal

condition data.

Infrared Images: The internal energy of any physical system can be quantified by tem-

perature continuously. Thermal radiation is the electromagnetic wavelength between

(0.75-1000m) that is emitted from any object or subject with a temperature above ab-

solute zero [88]. IR cameras produce thermal images by measuring this radiation from

a surface, which is a function of its temperature. As body temperature increases, the

human body emits more infrared radiation, which is detectable through infrared ther-

mal cameras. There are several studies investigating the feasibility of using a thermal

scanner instead of traditional oral or other invasive thermometers. [89]. There has been

increasing evidence in the literature that Transmitted Infrared Photography (IRTs) can

provide greater accuracy in estimating body temperature than Non-Contact Infrared

Thermometers (NCITs). A study that directly compared an NCIT to three IRTs indicated

the NCIT was less accurate [90]. The infrared cameras can be installed at a distance

from the occupant and capture the skin temperature by reading the pixel values of the

desired regions. By proving the feasibility of this technique with an accuracy of 94% -95

% when using FLIR A655sc

Table 2.2: General Study Information

[83] 2020 X 16-30°C X X X

Personal comfort

prediction using

electroencephalo-

gram (EEG)

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R

Continued on next page
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Table 2.2: General Study Information (Continued)

[84] 2020 X NM X X X

Utilizing wearable

devices as a com-

ponent of an IoT

setup

[60] 2018 X 22.2-26.9°C X X X
Heating/cooling

chair

[66] 2020 X Avrg. : 20.1°C X X X X Heated Chair

[91] 2020 X 20-27°C X X
Window opening

behavior

[87] 2020 X Avrg. : 23.3°C X X X
Importance of

metabolic rate

[92] 2018 X NM X X X

Connecting sen-

sors through

IoT

[51] 2019 X 20.5-24°C X X

Saving energy

by learning occu-

pant thermostat

preference

[76] 2019 X 17.1-34.8°C X X X

Attached sensors

to the body for at

least 14 days/ 20

hours per day

[31] 2019 X
21.11-

27.78°C
X X X

Combination

of visual, ther-

mal and depth

camera, skin tem-

peratures and

mean clothing

temperatures for

clothing covered

body parts

[55] 2019 X NM X X

Considering fan

level for comfort

prediction

[93] 2019 X 24-27°C X X

Predicting desk

fan usage and its

speed

[64] 2019 X 26-32°C X X X

Thermal Sensa-

tion in different

body parts and

localized airflow

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R

Continued on next page
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Table 2.2: General Study Information (Continued)

[94] 2019 X 20-30°C X X X

Measuring heat

flux (heat ex-

change rate) in

face and wrist

[95] 2020 X
Constant:

20°C
X X X

Influence of red

and blue colors

on thermal com-

fort in real and VR

setting

[85] 2018 X 18.8-25.06°C X X X

IoT for utilizing

both wearable

and environmen-

tal sensors in a

field investigation

[70] 2021 X 15-26°C X X X

Exposing sub-

jects to cold

discomfort, warm

discomfort and

transient condi-

tion

[96] 2021 X 20-21°C X X X

Using a small

robot to detect

the occupants’

metabolic rat and

environmental

data

[97] 2015 X NM X X X

Long term moni-

toring of subjects

preference (as

long as 90 days)

[98] 2015 X NM X X X

Study of users’

thermal comfort

at their home

environment-

galvanic skin re-

sponse, heart rate,

step count,calorie

consump-

tion,approximate

sweat level

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R

Continued on next page
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Table 2.2: General Study Information (Continued)

[99] 2016 X 25.6-32°C X X X

Prediction of

personal thermal

sensation with

environmental

factors, metabolic

rate , and clothing

level

[73] 2017 X 14-26°C X X X

Thermocouples

attached to 28

body locations

[100] 2017 NM X X X

Predicting ther-

mal sensation

through 3 en-

vironmental

sensors and Mi-

crosoft band2

[56] 2017 X ≈ 19−29C X X

Learning occu-

pants’ thermal

sensation through

long term voting

using SVM

[57] 2017 X NM X X

Gathering on-

line votes in a

library and office

through QR code

in a poster by the

sensors

[101] 2018 X 18-27°C X X X

In addition to

thermal sensation

four subjective

responses of

thermal com-

fort,thermal pref-

erence,humidity

sensation,airflow

sensation were

recorded

[102] 2018 X 18-29°C 25°C X X X

Skin temper-

ature reading

through an in-

frared sensing

system installed

on an eyeglass

frame

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R

Continued on next page
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Table 2.2: General Study Information (Continued)

[103] 2018 X 18-30°C X X X

Predicting ther-

mal comfort

through heart rate

[104] 2019 X 18-30°C X X X

Using deep trans-

fer learning tech-

niques to train

the thermal com-

fort model, the

model training

use the trans-

ferred knowledge

from the existing

datasets

[81] 2018 X NM X X

Creating personal

comfort model

with physiological

factors including

Galvanic Skin

Response

[65] 2020 X Avrg. : 20.1°C X X X

The environmen-

tal parameters

and user behavior

to predict thermal

comfort using a

heated chair

[105] 2019 X
20/24/28°C

20-28°C
X X X

Prediction of

thermal comfort

through contrast

in thermal images

[53] 2019 X NM X X

Machine learn-

ing is used for

defining subject’s

metabolic rate

and clothing level

through RGB

videos

[106] 2019 X X X

Using ASHRAE

database to create

a personalized

thermal comfort

model through

reinforcement

learning

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R

Continued on next page
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Table 2.2: General Study Information (Continued)

[107] 2019 X X X

Deep reinforce-

ment learning-

based model in

TRNSYS simu-

lated environ-

ment

[36] 2019 X
14.4-

29.9°C
X X X

Personalized ther-

mal comfort using

skin temperature

extracted from

thermal camera

[108] 2019 X 19-29°C X X X

Personalized ther-

mal comfort using

skin temperature

extracted from

different facial

parts

[109] 2019 X Avrg. : 20.1°C X X X

A transfer ac-

tive learning

framework to

minimizes the

number of la-

beled examples

via active learning

[110] 2020 X 20/24/26°C X X X

Prediction of

thermal com-

fort in and office

with natural

ventilation and

personalized ven-

tilation through

simulation

[111] 2020 X 26/33°C X X X

Personal comfort

prediction using

electroencephalo-

gram (EEG)

[80] 2020 X NM X X X X

Thermal comfort

learning through

user’s interaction

with an infrared

radiant heating

panel for 6 weeks

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R

Continued on next page
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Table 2.2: General Study Information (Continued)

[18] 2020 X 19-31°C X X X X

Personalized

comfort systems

using personal

fan and radiant

foot heaters

[112] 2022 X 21-30 °C X X X

Thermal com-

fort temperature

through skin tem-

perature from

sensors attached

to several body

parts in addition

to environmental

temperature

[113] 2021 X NM X X

Using the existing

ASHRAE dataset

for personal

thermal comfort

prediction

[82] 2021 X 18-30°C X X X
Detailed study of

thermal sensation

[114] 2021 X 19-30°C X X X

Hybrid physics-

based/data-

driven model

for personalized

thermal comfort

prediction

[29] 2018 X 22-28°C X X X

Thermal com-

fort prediction

through skin

temperature in

different facial

parts through

low-cost thermal

camera

[27] 2016 X 23-26°C X X X

Recording ther-

mal images in the

field for thermal

comfort predic-

tion

Study Location Control Mode DataCollection Prediction
Personal Comfort

system

Ref. Year Lab Field Transient Uncontrolled Behavior Voting Physiological S U R
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2.3.2 Experimental Condition

The experiment design varied in the reviewed research based on the goals and ob-

jectives of each study, the available equipment, and the limitations. One of the main

aspects that we have reviewed in this article is the experiment location. The experi-

ments were generally conducted at two main locations: the lab environment and the

field, based on the research objectives. Field research is research undertaken in the nat-

ural environment, such as an existing office building. This type of experiment seeks to

observe, analyze, and explain what already exists, as opposed to influencing a studied

aspect. Preserving the regularity of the environment, the study settings mimic scenarios

seen in everyday life [115]. In contrast, controlled lab research is done in an environ-

ment intended exclusively for the thermal condition of the study. Laboratory research

is characterized as a controlled examination in which the researcher manipulates a spe-

cific component, such as thermal conditions, to evaluate whether or not such manip-

ulation produces a change in the participants. As shown in Table 2.3.1.2, most of the

lab-conducted experiments are intended to create a transient thermal condition for the

subjects to provide as many data points as possible. The transient or constant thermal

condition is an important feature of the data collection experiment. , Cosma [31] , and

Aryal [108] have designed their experiment in a transient thermal condition. The model

used by Youssef et al. [86] was trained under step-changing circumstances. Because

most people spend their time in environments close to thermal neutrality, it is more dif-

ficult but more beneficial to anticipate occupants’ thermal comfort perceptions in near

thermal neutral circumstances than the cold or hot sensation in extreme situations. An-

other important factor that we have reviewed in our survey is the number, gender, and

age range of the participants, which are displayed in Figure 2.3. As the objective of all the

studies is the creation of a personalized comfort model, instead of working with many

subjects, more data points need to be gathered from a smaller number of subjects. Since

gender difference has proved to be an influencing factor in predicting the thermal com-
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fort state, it is desirable to have participants from different gender types in relevant ex-

periments.

Figure 2.3: Feedback Collection Systems

2.3.3 Thermal Scales

Thermal comfort models are a method for quantifying human subjective evaluations

and thermal states in order to provide a common understanding of thermal satisfaction.

To evaluate this thermal state, we need a subjective voting scale to report the thermal

comfort state as accurately as possible. Generally, a categorical value is used to describe

the response variable assessed by either thermal sensation, thermal preference, or ther-

mal acceptance. The majority of the research under consideration utilizes the users’

thermal sensation (TS) input to determine thermal comfort along with the seven-point

scale Fanger used to define the PMV. Due to its capacity to give enough answer options,

the subjective rating system with a seven-point rating scale is the most common rating

system for assessing the thermal sensation. The seven-point ASHRAE thermal feeling

scale is as follows: hot (+3), warm (+2), slightly warm (+1), neutral (0), slightly cool (1),

chilly (2), and cold (3). Since, in some research, the aim is to predict simply thermal

comfort or discomfort, they have applied the reduction of scales to two levels after data

collection for model training to simplify the models and use a thermal acceptance scale
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[82]. The scales might also be reduced to three values for maximum simplicity. It would

also allow for reporting the adjustment’s direction, such as whether the set point should

be decreased or increased. The 3-value thermal preference scale of ASHRAE 55 is rec-

ommended for simplifying the model and improving the model’s accuracy [61]. Aryal

et al. have utilized thermal satisfaction in addition to thermal sensation in their study

[18]. Thermal preference is also another scale mostly in research that attempts to control

the thermal condition based on the user’s preference. To suit their particular modeling

needs, several modelers have chosen to adapt existing scales or develop new ones, such

as 5-point [105] or 11-point [94] thermal preference. Table

Table 2.3: Subjects’ Information and subjective thermal votes

[83] 3 3 0
23-

25

Summer

Cloth
7points

15 sessions

30 min.

Every 1 min.

for the last 10 mins.
150

[84] 3 2 1
20-

24
Variable 12points 3points Not mentioned Not mentioned 54-143

[60] 34 NM NM NM Variable 3points Apr. & Oct. 2016 3 times a day 33-218

[66] 2 0 2 29 0.72-0.92 clo 7points 3points 14 sessions 4 hr. 15 min. 238

[87] 10 6 4
27-

36

Summer

Cloth

0.5-0.6

7points 3points 8 hr. 5 min. 63-115

[92] 8 5 3
29-

61
NM 7point 4-5 Days NM NM

[76] 14 8 6
20-

38
Variable 7points 3points 14 days 20 hr. 12/day 164-393

[31] 24 11 13 NM 0.44 clo 7points 5points 27 mins. 1 min. 27

[55]
14-

20
NM NM NM Variable 7point NM 1-2 hrs. NM

[93] 8 5 3
26-

35
Variable 12points Not mentioned Not mentioned 54-143

[64] 50 34 16
20-

25

Summer

Cloth

0.4-0.6

7points
2-3 sessions 20

min.
5 min. NM

Study Participants Subjective Vote Timing Data Points

Ref. Total Male Female Age Clothing TSV TPV Scaled Duration Voting Frequency
Total

Votes

Continued on next page
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Table 2.3: Subjects’ Information and subjective thermal votes (Continued)

[94] 18 12 6 NM Variable 11points 3points 100–120 min

When feeling a

change in

thermal

preference

NM

[95] 25 13 12
avrg.:

45.21

Variable

avrg. : 0.94 clo
7points

2 sessions, 17

min.
3 times 6

[85] 8 5 3
avrg.:

45.21

Variable

avrg. : 0.94 clo
7points

4-5days,

9am-5pm
NM NM

[70] 18 9 9
24-

47

Variable

0.60-0.91clo
7points 25-30 min.

When feeling a

change in

thermal

sensation

NM

[96] 34 NM NM NM
Summer: 0.5clo

Winter: 0.91clo
7point

July22-August15

January6-March19
Not mentioned 54-143

[97] 33 NM NM NM 0.8clo 10points 3points 5-90 days 10votes/day 19-137

[98] 11 6 5 NM Variable 7/4points 5points 4 weeks NM 91-187

[99] 20 NM NM
20-

30
0.26clo 7points

10 sessions, 90

mins.
10 mins. NM

[73] 1 1 0 NM 0.6/1.15clo 7points 3points
13sessions, 30

mins.
NM 59

[100] 1 1 0 NM Variable 7point NM NM NM

[56] 8 NM NM
22-

26
Variable 7point 3Months 1 hour 185-273

[57] 23 NM NM NM Variable 7points 2 weeks NA 159 FA*

[101] 20 10 10
Avrg.

23.2

Summer Cloth

0.35-0.58
7points 3point 40 mins.

TSV: 1min

other votes: 10mins
20

[102] 10 7 3 NM Variable 7points 3points 4sessions, 2hrs 15mins 40

[103] 17 17 0
avrg.

22.35

long sleeve Tshirt

pants
10points 3points

3 sessions, 30

mins.
once 3

[104] 3 1 2
17-

32
Variable 6points 6 sessions, 3hrs. 5-25 mins. 341-345

[81] 3 2 1
20-

24
Variable 7points 3points NM NM 54-143

[65] 2 0 2 29 0.72-0.92 clo 7points 3points 14 sessions 4 hr. 15 min. 238

[105] 33 21 12
21-

43

Both variable

and constant
7points 5points 2.5hrs 15 mins 363 FA*

Study Participants Subjective Vote Timing Data Points

Ref. Total Male Female Age Clothing TSV TPV Scaled Duration Voting Frequency
Total

Votes

Continued on next page
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Table 2.3: Subjects’ Information and subjective thermal votes (Continued)

[36] 2 1 1
mid

20s
Variable 7points

14 sessions,

≈ 2hr s.
NM 362-413

[108] 20 12 8
avrg.

26.2

Summer

Cloth
7points 1-1.5 hrs. 5 mins. NM

[109] 5 3 2
avrg.

30
Variable 7points 14days, 9am-5pm 20 mins 97-400

[111] 22 10 12 NM Variable 9points
4 sessions, 20

mins
1/session NM

[80] 3 1 2

≈
30−
50

Variable 5points 3points 6 weeks
whenever needed

change
54-143

[18] 15 11 4
avrg.

21.6
0.57 clo 7points

3sessions, 1.5-2

hrs.
5 mins 28

[112] 12 8 4
avrg.

23.5
1 clo 7points 3points 3points

6 sessions, 150

mins.
2 mins. 450

[113] 6 5 1
13-

57
Variable 7points 7 days ≈ 15/d ay 32-116

[82] 6 6 0
avrg.

25

black short

sleeves,

trousers,

cotton socks

7points 2points 3points
2sessions, 40

mins.
20 Sec. NM

[114] 8 4 4
22-

24
Variable 7points

15 days,

8:50-12:00am,

2:20-5:30pm

30 mins 25

[29] 12 7 5
22-

27

Sweatshirt,

pants
5points 3points

3 session, 60

mins.
3 mins. 60

[27] 30 24 6 NM Variable 7points 5 weeks twice/week 8-33

[84] 3 2 1
20-

24
Variable 7points Not mentioned Not mentioned 54-143

[84] 3 2 1
20-

24
Variable 7points Not mentioned Not mentioned 54-143

[84] 3 2 1
20-

24
Variable 7points Not mentioned Not mentioned 54-143

Study Participants Subjective Vote Timing Data Points

Ref. Total Male Female Age Clothing TSV TPV Scaled Duration Voting Frequency
Total

Votes

FA* : For All Subjects Together

2.3.4 Input variables

All the thermal comfort experiments require some additional environmental or phys-

iological feedback variables in addition to subjective thermal comfort votes. Table 2.3.4

presents the environmental and physiological data utilized in the selected articles. The
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type of these variables depends on the experimental design and the objectives of the

study. While the reviewed research has included different types of environmental vari-

ables, all of them have recorded Air Temperature (AT), and most of them have included

Relative Humidity (RH). As we can observe in Figure 2.4 Globe Temperature (GT) and Air

Velocity (AV) are the next two most used environmental variables, followed by Outdoor

Temperature (OT), Outdoor Humidity (OH), and CO2 level. This figure also displays the

percentage of research that has recorded the presented physiological variables. We need

to mention that the percentage value is calculated among the studies that have been

designed to record the physiological factors as their default constraints. It can be ob-

served that Skin Temperature (ST) has the highest share of research in this regard. Heart

Rate(HR), Metabolic Rate (MR), and Clothing level (CLO) are the next most utilized vari-

ables. Some other research has recorded other physiological variables such as Galvanic

Skin Response [81, 80], and EEG signals [111] .

Figure 2.4: The Percentage of Research That Different Environmental and Physiological
Variables
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Table 2.4: Collected Variables

[83] X X X X
Wrist,neck,chest, upper arm, thigh,

calf

[84] X X X X X X Wrist

[60] X X X X X X

[66] X X X X X X
Chest,Back,Arm,Hand,Thigh,Lower

leg,Foot

[91] X X X X X X X

[87] X X X X X

Wrist temperature and 3-axis

accelerometer to capture motion-

based activity

[92] X X X X X X Wrist

[51] X X X X X

[76] X X X X X X X X X Wrist, ankle, body proximity

[31] X X X X Hand, elbow, shoulder, torso, head

[55] X X X X X X

[93] X X X X

[64] X X X X

Forehead, left chest, left back, left

upper arm, left lower arm, left hand,

right anterior thigh, and anterior

calf

[94] X X X Wrist

[95] X X X X X X X Wrist

[85] X X X X X X X X X X Wrist

[70] X X X X X X X

[96] X X X Wrist

[97] X X

[98] X X X X X X Wrist

[99] X X X X X X

[73] X X X

Forehead, cheek, chest, back,

abdomen, upper arm,forearm,

hand,finger, thigh, shin, calf,foot*

[100] X X X X X X Wrist

[56] X X

[101] X X X X X X X X X Wrist

[102] X X
Nose, front face, back of ear, cheek-

bone

[103] X X

[104] X X X X X X Wrist

[81] X X X X X X Wrist

Study EnvironmentalVariables PhysiologicalVariables BodyParts

Ref. AT RH GT/SR AV OT OH CO2 ST HR MET CLO

Continued on next page
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Table 2.4: Collected Variables (Continued)

[65] X X X

[105] X X Face

[53] X X X

[36] X X X X Face

[108] X X Wrist, forehead, nose, cheek

[109] X X X X X Wrist

[80] X X X X X X X Wrist

[18] X X X X X Wrist, face

[112] X X X X
Forehead, abdomen, elbow, hand,

thigh, calf, foot

[113] X X X X X X X

[82] X X X

Forehead, upper chest, lateral arm,

dorsum of hand, abdomen, scapu-

lar blade, anterior thigh, fibular

shin, dorsum of foot

[114] X X X X

[29] X X X
Forehead, cheek,ear, nose, mouth,

neck

[27] X X X

Forehead, cheeks, lips, jaw,lips, up-

per neck, lower neck, palm core,

palm, back-of-hand

[97] X X X Wrist

[97] X X X Wrist

[97] X X X Wrist

Study EnvironmentalVariables PhysiologicalVariables BodyParts

Ref. AT RH GT/SR AV OT OH CO2 ST HR MET CLO

*Only shin,back and hand were used for the prediction

2.3.5 Machine Learning Approaches

While having manual control over the indoor environment provides more comfort

for the occupants, it may have an adverse effect on the productivity of the employees

by impacting their ability to focus on a given task [116, 117]. This indeterminacy in

the better performance of manual or autonomous systems brings the need for a hybrid

control system that functions automatically, but that has the potential to be manually

overwritten whenever needed. The learning feature of smart buildings can be a solu-

tion to the comfort problem that is caused by using fully automated building systems.
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In this section, we are looking into the learning methods utilized in the reviewed stud-

ies. As Table 2.3.1.2 presents, the learning approaches are divided into three categories:

supervised, unsupervised, and reinforcement learning. Figure 2.5 displays the num-

ber of researchers that have used the selected machine learning algorithms for the 40

research with the supervised method. As the figure shows, Random Forest, K-Nearest

Neighbor, Support Vector Machine, and Decision Tree are the most used algorithms in

the reviewed studies. As it is shown in Table 2.3.5.1 researchers have utilized a wide

range of machine learning algorithms for creating personalized thermal comfort mod-

els. In this table, we have presented the supervised algorithms that were utilized in each

study through the maximum reported accuracy of the algorithm in the paper. Although

there is still no mathematical justification for this claim, algorithms with the ability to

regulate large dimensions, such as the RF are thought to be able to predict thermal sen-

sation and thermal preference better than other algorithms [73]. Using many algorithms

in a single task to reduce prediction biases by a single algorithm is a common method in

current research since there is no clear conclusion on algorithm selection [118]. Various

studies used different ways to compare performance and investigated suitable models

for their study [72]. On the other hand, several other studies, such as those in Refs. [99],

and [119], have calculated the best performance of a particular modeling technique for

thermal comfort assessment. Hu et al. [104] have proposed a new approach for creat-

ing the prediction model through the use of deep learning algorithms. Deep learning

is defined as a machine learning approach that uses Artificial Neural Networks (ANN)

at a hierarchical level, which allows nonlinear data processing. Deep learning utilizes

neural networks with more than two layers, a large number of parameters, and layers in

one of four defined fundamental network architectures: unsupervised, convolutional,

recurrent, recursive, or a hybrid of these. One of the great advantages of deep learn-

ing over other machine learning approaches is the automatic feature extraction, which

is both time-saving and more accurate [120]. As the difference between deep learning
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and traditional neural networks is the number of hidden layers, they can be used for

large sets of labeled data to learn directly from them and extract the important features.

Using a two-stage learning paradigm, the researchers present the Heterogeneous Trans-

fer Learning (HTL)-based Intelligent Thermal Comfort Neural Network (HTL-ITCNN)

for thermal comfort modeling in their research. The schematic representation of the

two-stage HTL-based learning model is as follows. In the first step, they employed each

source-domain dataset to create a Deep Neural Network (DNN)-based pre-trained base

classifier. In the second step, they obtained the knowledge-transferred features of the

target-domain dataset using the previously constructed base classifiers and then fed

them into a new DNN to train the HTL-based classifier. All the reviewed studies have

utilized a type of generalization method for their developed model, which is commonly

a k-fold cross validation or a train/test split technique. Cross-validation is a variable

selection technique to assess machine learning models with a relatively limited data

sample. It is a common technique because it is easy to comprehend and because it

often yields a less biased assessment of the model’s performance than other techniques,

such as a simple train/test split. A single parameter named K specifies the number of

groups into which a given sample data would be divided. Consequently, the process is

often known as K-fold cross-validation. This approach is intended to decrease predic-

tion issues such as biases and overfitting. In supervised learning models, the random

train-test split approach may be utilized for large datasets, whereas the cross-validation

split is more suited for small datasets. Reinforcement Learning (RL) is recently getting

popular in smart building predictive models due to its capabilities for online learning

over time, which makes it a great option for real-time control of the buildings. RL, as an

agent-based learning algorithm, has a suitable platform for defining the optimal actions,

policies, and interactions with the environment. Through its self-adaptability, model-

free nature, and learning from historical data, RL can interrelate human comfort with

environmental conditions, making it a perfect candidate for controlling indoor environ-
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ment [121]. The first application of RL for controlling the built environment is believed

to be in 1998 by Mozer M in controlling a residential building comfort system including

HVAC and lighting based on observing the lifestyle of the inhabitants [122]. Recent re-

search has reviewed up-to-date RL-based projects in the building control systems and

has found promising results of the capabilities of this system in providing comfort and

energy saving; however, there are few incorporations of occupancy patterns or occupant

feedback in these control loops [123]. Thermal comfort had the most interest compared

to other comfort factors in RL controlling research. To create a user-centered control

approach, we will use reinforcement learning as an interactive machine learning algo-

rithm. The system will learn human behavior and adapt itself to the environment over

time to request the least amount of interaction from the occupant in the future [121]. Re-

cently, skin temperature and heart rate have also been used as inputs to reinforcement

learning-based personal comfort models [124]. Although the online learning quality

of the RL is a strength of this model, it can also be an obstacle for the offline training

applications where the batch historical data is already gathered and ready for training.

Offline reinforcement learning is recently been used in such applications to learn from

previously gathered data [107].
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Figure 2.5: Feedback Collection Systems

2.3.5.1 Prediction Performance Report

The prediction performance approach in the reviewed studies is based on the type

of selected algorithms. Accuracy, precision, and recall are the three primary measures

used to evaluate the effectiveness of a classification algorithm. Accuracy is defined as

the proportion of accurate predictions, which may be determined by dividing the true

predictions by the total number of predictions. Precision is defined as the percentage of

instances that are meaningful (also known as true positives) out of all the examples that

were predicted to fall into a certain class. Most of the reviewed papers in this article have

reported their model performance through prediction accuracy, as is shown in Table

2.3.5.1 . However, the evaluation measures we outlined for classification models are

not the same as those for regression models. The regression-based machine learning

algorithms present their model performance through Mean Squared Error (MSE) Mean
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Squared Error is one of the most commonly used metrics for regression models, which

is the average of the squared differences between the predicted, and actual output [65]

[109]. The R2 coefficient indicates the ratio of result variation that our model can predict

based on its features. The Mean Absolute Error (MAE) differs from the Mean Standard

Error (MSE) in definition just slightly; yet, it exhibits virtually opposite features, and

RMSE is the square root of MSE. In addition, the MAE, is the difference between the

model’s predictions and the ground truth.

Table 2.5: Prediction Algorithms

[84] 87.5% 86.6% 83.2% 85.9% 83.5%

[60] 96% 94% 84% 85% 94% 94%

[66] 97.0% 98.3% 98.3% 87.4%

[87] 91.76% 86.47% 87.04% 90.02% 87.57%

[92] 95.9% 97.9% 99.7% 95.3%

[51] 98% 98% 98% 95% 98%

[76] 87% 87% 88% 85% 88% 87% 84% 85% 88% 84% 88% 87% 87%

[31] 80% 80% 76% 80%

[55] 74%

[93] 97.73% NM

[64] 59.69% 44.91% 83.99%

[94] 100% 99.3% 98.1%

[95] 99.8% 72.3% 99.6% 71.6% 71.2%

[85] 99.19% 98% 82.1% 99.3% 83.7%

[70] 100% 100% NM 100%

[96] 88.31*%

[97] 64.8*% 63.5*% 66.29*% 66.67*% 98%

[98] NM NM

[99] 100%

[73] 94.1%

[100] NM NM NM NM

[56] 97.04%

[101] 94.29%

[102] 82.8%

[103] 100% 100% 100% 100% 100% 100% 100% 100% 100%

Ref. RF KNN SVM DT ANN GB AB RUSB GP LR LVQ GNB MLP RBC RFR J48 C5. BCRT LDA HMM

[83] 94.1%

Continued on next page
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Table 2.5: Prediction Algorithms (Continued)

[104] 66.32%* 62.31%* 59.1% 60.01%* 46.61%* 62.19%*

[81] 87.51% 86.64% 84.59% 85.6% 84.55%

[65] NM** <90% NM** NM**

[105] 76.1% 73.9%

[36] 99% 98%

[108] 84% 85% 85%

[109] 98% 98% 98% 95% 98%

[111] 100% 100%

[80]**
≈
95%

≈
97%

≈
97%

≈
97%

≈
95%

[18] 89% 90% 88% 88% 88%

[112] 92.9% 93% 90.3% 91%

[113] 73.5% 57.8% 69.6%

[82] 68% 68%

[114] NM** NM** NM** NM**

[29] 92%

[27] NM NM NM

[76] 98% 98% 98% 95% 98%

[76] 98% 98% 98% 95% 98%

[76] 98% 98% 98% 95% 98%

[76] 98% 98% 98% 95% 98%

Ref. RF KNN SVM DT ANN GB AB RUSB GP LR LVQ GNB MLP RBC RFR J48 C5. BCRT LDA HMM

[83] 94.1%

GB: Gradient Boost, RUSB:RUSBoosted, GP: Gaussian Process, LVQ: Learning Vector Quantization, GNB: Gaussian Naive Bayes, MLP: Multi-Layer Perceptron, RBC: Rule-Based

Classifier, BCRT: Bagged Classification and Regression Trees, ET/RFR: Extra Tree/ Random Forest by Randomization, J48: J48 Decision Tree, LDA: Linear Discriminant Analysis,

HMM: Hidden Markov Model ** Approxiamte numbers extracted from figures

2.4 Conclusion

This paper offers a comprehensive review of studies on machine learning-based per-

sonalized thermal comfort. The purpose of this work is to emphasize the use of ma-

chine learning in thermal comfort studies from several aspects. In this review, we have

conducted a comprehensive survey of the most current personalized thermal comfort

research that has utilized machine learning approaches to create their thermal com-

fort prediction models. In addition, we have highlighted and compared their associated

methodologies and performances in several aspects. We have investigated the selected
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publications based on three main aspects: their application, data collection method,

and model creation strategy. In the application section, the selected articles were inves-

tigated based on their implemented feedback type, which is behavioral or physiological

features. In addition, we have compared the experiment design in different studies with

regard to the thermal condition, experiment location, and studied subjects. In the data

collection comparison report, each study was investigated based on the input variables,

including environmental and physiological variables. To study the subjective variables,

we have compared the subjective thermal votes based on their type and thermal scale.

Finally, the machine learning models were studied based on their learning model type

and their performance report method. Based on our review, we highlight a number of

observations:

• Personalized thermal comfort modeling is a growing and promising approach due

to the potential for decreasing the necessity for long-term feedback collection

from occupants. Personal characteristics obtained through physiological sensing

technologies might be investigated further following the recent accelerated devel-

opment of wearable sensor technology.

• The participants of the studies need to be more diverse in terms of including dif-

ferent age groups, gender types, ethnicity, skin color, and health status. In this re-

gard, skin color is particularly important for the non-contact camera-based ther-

mal comfort prediction methods as it results in changing the emissivity of the tar-

get area and impacts the thermal readings.

• There are currently several thermal comfort scales utilized for reporting occu-

pants’ subjective thermal votes. Most of the researchers are using the thermal sen-

sation scale. However, other thermal scales, such as thermal preferences, maybe

a better option for being applied in the building control systems. Different ther-

mal scales of application and performance need more investigation for improved
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future research.

• Although supervised learning algorithms, especially RF, KNN, SVM, and DT, have

been widely used in the state of the art studies, reinforcement learning RL-based

research still needs more research. One main reason for fewer RL papers is the dif-

ficulty of application and performance validation of an online system, which has

made researchers use offline simulated testbeds for this objective. Future research

on online learning approaches for personalized thermal comfort would be helpful

for the field.

• The reported accuracy of the thermal comfort model in all the studied papers

showed improvement in comparison to the conventional, widely used PMV method.

This will highlight the importance of the subject and the necessity of further up-

dated regulations in this area.

Therefore, future studies may benefit from the outlined areas and increase understand-

ing of machine learning-based personalized thermal comfort models from a compre-

hensive viewpoint.



CHAPTER 3: A Novel Fully Annotated Thermal Infrared Face Dataset: Recorded in

Various Environment Conditions and Distances From The Camera

3.1 Introduction

The emergence of thermal imaging techniques has provided an excellent opportu-

nity for contactless data gathering without interruption to occupants’ activities. As el-

evated body temperature is an important indicator of a possible underlying physio-

logical process, thermal imaging is a great non-intrusive tool for presenting that bi-

ological state. The non-invasive nature of thermal cameras has resulted in extensive

utilization of these devices for detecting and diagnostic purposes in several areas of

medicine [125, 126, 127], and none-medical research such as fire safety[128, 129, 130],

transportation[131, 132, 133], and building construction[134, 135, 136].

Recent accelerated innovations in thermal imaging devices make it possible to utilize

lower-priced thermal cameras to collect high-quality information that can improve sev-

eral aspects of our lives. Facial thermography, in particular, is one of the most widely

studied areas due to its proven practical applications. Facial thermal imagery has been

successfully studied as an indicator of human identity[9, 10], emotions[11, 12, 13], and

comfort [105, 137, 36] in several research. More than ever before, the current pandemic

has also highlighted the facial thermography potential in the non-intrusive evaluation

of human conditions [14, 15].

While facial thermography has gained lots of recent attention, this is still a new re-

search area that needs to be evaluated and studied in different domains. The lack of

public datasets of facial thermal images is a significant obstacle to research improve-

ment in this area. Currently, there are lots of RGB facial datasets available in diverse

conditions [138], but the facial infrared image databases are limited and need improve-
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ment for several reasons. First, due to the lower quality of older thermal cameras, several

current thermal datasets are of low resolution. They are not appropriate for use in sen-

sitive areas, such as health-related applications [19]. Second, most of the existing public

datasets are not in the original raw format and are converted frames, which results in

the loss of important information [20]. The original thermal images are created utiliz-

ing 14-bit or 16-bit radiometric data that comprises information about the heat flux or

temperature of each pixel. However, the majority of these datasets are transformed to

lower bit resolutions, such as 8-bit RGB files, to make them smaller and more compati-

ble with common imaging software. As a result of this process, temperature data is lost

and cannot be retrieved later. Third, the current public datasets lack diversity in several

aspects, such as face resolution and environmental properties. Most of the available

datasets are appropriate for facial recognition purposes with no variation in environ-

mental properties such as air temperature, relative humidity, and air speed.None of the

current public datasets include data on controlled thermal variations, which is one of

our top objectives in collecting this dataset. While some of the current datasets were

recorded in uncontrolled thermal circumstances, resulting in temperature fluctuation,

yet there is no information about the ambient temperature at the time of thermography

recordings. In addition, there are no publicly available datasets with varying distances

from the camera[41], while several studies have indicated the importance of distance

in the infrared thermography readings [40, 38, 39].In field thermography applications,

when precision is required , the temperature variance induced by distance is substan-

tial and needs to be considered.

Fourth, while some recent research has demonstrated the great potential of using

thermal cameras in smart buildings to predict occupant thermal sensations, none of

them have made their datasets available for use in other projects. The improvements

in thermal imaging technology enable the collection of data for use in the control sys-

tems of our smart buildings. Temperature data has been shown to be a viable variable
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for predicting occupant thermal preferences and controlling indoor environmental sys-

tems.While some of the current datasets were recorded in uncontrolled thermal circum-

stances, resulting in temperature fluctuation, there is no information about the ambient

temperature at the time of thermography recordings. However, there are currently no

public datasets available that include the thermal sensation of the subjects in different

thermal conditions. Finally, the majority of thermal datasets are either missing any land-

mark annotations or include just a few facial landmarks and the bounding box. Lack of

manual facial landmark annotation makes the application of this datasets limited. Fa-

cial landmarks provide an extra supervisory signal and assist in the recognition of com-

plex cases, in addition to making it possible to align the face during the face recognition

process.

Figure 3.1: A Sample of Included Data Frames in Different Thermal Conditions

To address some of the limitations mentioned above, we present the Charlotte-ThermalFace

dataset with unique properties. As Figure3.2 shows through some sample images, our

dataset includes thermal images of the same subjects in various thermal and physical

conditions, including the environmental temperature, distance from the camera, and

head position. In contrast to the existing datasets that are recorded mostly at a fixed
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distance from the camera, our dataset includes a variation in distance, which has re-

sulted in thermal images with several different resolutions. In addition, each subject is

recorded in at least four different thermal conditions at all the specified distances. We

have included the environmental temperatures data in the dataset, which we present

in this sample figure for each image frame. The first column of the figure shows the

lowest temperature range images, which increase as we go to the left side columns. We

can also observe in this figure that varying distances from the camera have resulted in

a dataset with different thermal resolutions. We recorded the data frames at 10 relative

distances from the camera, of which this sample figure includes the three main ones

(closest, middle, and farthest).In addition to environmental data annotations, all the

images are manually annotated with extensive facial landmark localization, which in-

clude 72 points for full or semi-profile positions, and 42 points for profile faces [139].To

avoid missing temperature data, our dataset is published in the original high accuracy

recording format of Flir cameras, which is 16-bit raw data in the TLinear mode [140].

This capability stores the thermal data for each pixel in the frames, and the users can

read the temperature of each pixel independently. Based on the aforementioned infor-

mation, the Charlotte-ThermalFace dataset is available publicly with the following main

characteristics:

• We have captured approximately 10,000 infrared thermal images in varying ther-

mal conditions, several distances from the camera, and changing head positions.

We have also controlled the air temperature to change from 20.5°C ( 69°F) to 26.5

°C( 80°F). Images are available in four different temperatures, 10 relative distances

from the camera, starting at 1m ( 3.3 ft) to 6.6m( 21.6 ft), and 25 head positions.

• The first public facial thermal dataset annotated with the environmental prop-

erties including air temperature, relative humidity, air speed, distance from the

camera, and subjective thermal sensation of each person at the time.
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• All the images are manually annotated with 72 facial landmarks.

• We are publishing the data in the original 16-bit radiometric TemperatureLinear

format, which has the thermal value of each pixel.

This study has two main contributions. First, it presents a comprehensive compar-

ison of the current public datasets in facial thermography. Second, it introduces the

Charlotte-ThermalFace public dataset on facial thermography with a brief investigation.

The rest of this paper has three main sections. In section 2. literature Review, first, we

look into the applications of facial thermography in different domains. Then we study

and compare the existing publicly available thermal datasets with a brief description of

each. In Section 3, we introduce our developed dataset and how we address some of the

existing gaps by publishing our dataset. Section 4. provides a preliminary analysis of the

dataset to show its applicability for future projects.

3.2 Literature Review

3.2.0.1 Facial Thermography Applications

A significant decrease in the prices of thermal cameras and their improved quality and

resolution are paving the way for the utilization of these sensors in more research and

real-world applications. The applications of biometric thermal images are defined in

four categories: detection, monitoring, and recognition/identification [141]. In this sec-

tion, we have looked into the applications of facial thermography in these three major

areas in detail.

Face Detection:

While variations in lighting conditions can easily degrade the performance of face de-

tection algorithms, infrared thermography provides accurate results even in complete

darkness. This quality has resulted in better performance of thermal images in com-

parison to visual images in pedestrian detection for autonomous vehicles. Their results

show the Missing Rate (MR) when using Histogram of Oriented Gradients (HOG) fea-
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tures for visual images is %73, which decreases to %50 by using thermal image [142]. In

regards to face detection, it is demonstrated that when employing visual photos for face

identification, non-uniform illumination and fake faces may easily make cascade clas-

sifiers inoperable. However, the thermal frames do not have this downside. Through

utilizing thermal images, machine learning-based face detection algorithms use clas-

sifiers such as AdaBoost and Support Vector Machine for considering facial and non-

facial patches as positive and negative regions, which have been successful [6]. Addi-

tionally, other research teams have conducted field experiments to evaluate and com-

pare the proposed approaches to face detection using RGB photos and have demon-

strated the benefits of utilizing thermal images to detect faces [143]. Researchers have

shown promising results using Haar-like features combined with a cascade of boosted

tree classifiers [7], and Faster R-CNN and YOLO [8] as viable strategies for face detection

in the thermal domain. It is important to mention that the accuracy of these face de-

tection algorithms was shown to be significantly reduced when pictures are flipped and

rotated. [144].

Face Monitoring:

The two major applications of facial monitoring is in medicine and building science,

which are described below:

Medical Facial Thermography: The feasibility of using thermal scanners for reading

skin temperature instead of traditional oral or rectal thermometers has been studied

in several research [89][90]. The consensus, also supported by recent data, indicates

that the temperature of the eye area has the highest temperature on the head, which

makes it suitable for detecting fever [145]. It has also been shown that the side temple,

inner eye area, and ear have shown the best correlation of internal body temperature

[146]. At the same time, because these two areas are most affected by environmental

temperature [147], cheeks and nose temperature are promising measured facial areas

for calibrating and offsetting the impacts of environmental factors. Thermal imaging
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has also been used for respiration rate detection by monitoring the temperature change

frequency in the nasal area [148]. This approach can eliminate the adverse effect of

the lighting condition; however, the relatively lower resolution of thermal cameras re-

quires lower distances to the camera even in the recent research [149]. The combination

of RGB and thermal imaging has led to higher accuracy of respiratory rate monitoring

[150][151][14]. Due to the COVID-19 pandemic, the accuracy of infrared thermogra-

phy in the medical sector has become more critical than ever. Some early studies have

shown a few successful cases of using thermal cameras to detect febrile patients world-

wide [152, 153, 154]. In this regard, the U.S. Food and Drug Administration (FDA) has

enforced policies for Telethermograph systems during the COVID-19 pandemic based

on a recent international standard (IEC 80601-2-59)[155].

Environmental Monitoring: Environmental monitoring has recently become of much

importance due to the influence of lighting [156, 157, 158] and thermal conditions on

both occupants’ health [159] and building energy consumption [160, 161, 162]. This has

resulted in designing high performance buildings, which is also energy saving [163, 164].

Recent research has also proved thermal imaging to be a successful indicator of the

building’s occupants’ thermal preferences[165]. The infrared cameras can be installed at

a distance from the occupant and capture the skin temperature by reading the pixel val-

ues of the desired facial regions, proving the feasibility of this technique with 94% -95 %

accuracy when using FLIR A655 [27]. A real-time feedback system using FlirA35 thermal

cameras was developed in 2018, analyzing both face temperature and occupants’ posi-

tion [28]. A lower-cost could also replace the previously mentioned expensive cameras

and smaller infrared camera, Flir Lepton, with an acceptable accuracy of 85% for pre-

dicting the skin temperature [29]. The accuracy of thermal comfort prediction was com-

pared between different monitoring devices, including air temperature sensors, wear-

able skin temperature wristbands, and thermal infrared cameras. The findings highlight

a slight improvement in the prediction accuracy by adding physiological sensors to the
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environmental sensors. However, it questions the efficiency of using physiological sen-

sors for this slight accuracy increase (%3-%4) [166]. In another recent study in this area,

Li et al. had successful experience monitoring and recording the skin temperature of two

occupants simultaneously with two thermal camera nodes, while each camera captured

some parts of the faces [34].

Facial recognition:

Facial recognition is one of the most studied areas of facial thermography [141]. Face

recognition in the thermal spectrum has gained more attention after showing success-

ful results of Long Wave Infrared Imaging (LWIR), which was even superior to the visi-

ble spectrum face recognition results[167]. The research in this area has been ongoing

ever since through utilizing several image processing methods, which have proved to be

promising even in the outdo or environments, where illumination and face alignment

vary substantially [168]. Multi-modal face recognition was also introduced in 2005 by

utilizing both thermal and RGB images to develop a three-dimensional model of the

face, and its thermal texture map [169]. Research has performed experiments involving

data fusion of multi-spectral imagery and was able to confirm the improvement in face

recognition rate from 0.789 to 0.870 as a result of image fusion[170]. Furthermore, dual

camera setups were designed to be used in dynamic illumination conditions to switch

between the visible and infrared spectrum and select the most confident result in differ-

ent lighting situations [171].

Emotion and expression detection as two other application of face recognition, which

have also shown promising results [172]. for detecting conditions such as anxiety, fear,

and alertness [173]. The main reason for effectiveness of thermal images for this appli-

cation is variations in the skin temperature while expressing different emotions , which

had made thermal data an essential source of additional information to improve in the

evaluation of facial expressions and emotions [174]. This quality has helped with cre-

ation and robot, capable of communicating with children and recognition of their emo-



57

tions including disgust, fear, happiness, sadness, and surprise. These emotions could

be recognized with an 85% accuracy rate using low-cost hardware and low-cost ap-

proaches for visual and thermal image processing [175]. Another research has shown the

increased expression prediction accuracy from %89.5 when using visual images to %93.7

by using thermal frames. Multi-modal fusion through utilizing thermal, visual, and

depth domains have also been proved to be successful in emotion recognition through

utilizing more sophisticated late fusion approaches, such as fuzzy inference systems and

Bayesian inference [138]. Intoxication detection is another application of facial ther-

mography in the facial recognition category. Alcohol consumption results in abnormally

dilated blood vessels and increased blood pressure. In the facial area, this biological be-

havior shows itself by increasing the temperature around the nose, forehead, and eye

area [176]. Despite several challenges, recent research has shown an average percentage

accuracy of %99.63 in identifying drunk individuals through thermal images [177].

In conclusion, we have shown that thermal images can be of great importance in sev-

eral domains. Although both visual and thermal images are influenced by the change

in lighting and thermal conditions, the intensity of the change varies extensively based

on the cameras’ dynamic range. As a consequence, when using an visual camera, the

change in pixel values in the facial regions may be close to 100% of the dynamic range of

the sensor. However, the thermal domain changes are much less than the dynamic range

that a typical thermal camera can capture, which will result in the higher consistency of

thermal images, even in varying thermal conditions [143].
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Figure 3.2: A Sample of Included Data Frames in Different Thermal Conditions

3.2.1 Existing Facial Thermal Datasets

Increased application of facial thermography in the mentioned sectors has highlighted

the need for a comprehensive database for further studies. This section presents the

current publicly available thermal face datasets and compares them to their key charac-

teristics and limitations. This information is also available in Table 3.1 for better com-

parison.

IRIS: The IRIS (Imaging, Robotics, and Intelligent Systems Lab) database contains

4228 pairs of images in both thermal and visible domains from 32 subjects, captured

simultaneously. Similar to the Equinox database, each subject demonstrated three fa-

cial expressions: smiling, frowning, and surprised in five different illumination settings.

This database also includes a 4-second video in each scenario at 10fps as the subjects
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Table 3.1: Public Available Datasets, P: Position, I: Illumination, E/D: Expres-
sion/Disguise,S*: Several

Dataset Thermal RGB Subjects P I E Resolution Distance
(cm)

Landmarks Size(images)

IRIS [178]
p p

32 11 5 3 320×240 183 - 4228
IRIS-M3 [170]

p p
82 25 S* 1 640×480 120 - 2624

UND [179]
p p

241 1 3 3 320×240 ? - 2624
UH [180]

p
138 5 1 1-5 640×512 ? - 7590

FSU [181]
p

10 0-20 1 0-20 320×240 ? 234
Carl [9]

p p
41 1 3 1 160×120 135 - 7,380

NVIE [182]
p p

215 1 3 7 320×240 75 - 234
KTFE[174]

p p
26 1 1 7 320×240 85 - 126 GB

ARL-
MMFDV1[183]

p p
60 1 1 videoe 640×480 250,

500,
750

6 ?

ARL-MMFDV2
[41]

p p
51 1 1 video 640×480 250 6 ?

ULFMT[184]
p p

236 1 1 7 640×512 100 - ?
Eurocom[185]

p p
50 4 5 7 160×120 150 - 4200

Tuft[186]
p p

113 9 2 5 336×256 150 - 10,000
RWTH[187]

p
90 9 2 8 1024×768 90 68 10,000

ARL-VTF[19]
p p

395 3 1 2 640×512 210 6 500,000
Sejong-A[188]

p p
30 1 1 13 768×756 200 - 1,500

Sejong-B[188]
p p

70 5-15 1 13 768×756 200 - 23,000
I2BVSD[189]

p p
75 1 1 7 720×576 ? - 681

Sober-Drunk
Database[190]

p
41 1 1 2 128×160 30 - 4,100

PUCV-DTF[191]
p

- 46 1 1 4 640×480 ? - 11,500
TFW[192]

p p
147 S* S* video 464×348 S* 5 9,982

SpeakingFaces[193]
p p

142 9 1 S* 464×348 100 - 4,581,595
TIV[194]

p
20 3 S* 3 320×240 ? - 21,676

pronounce the vowels. Each scenario is captured in 11 different positions by rotating

the camera 36 degrees for each modality, at a fixed distance of 183 cm from the subject

[178].

IRIS-M3: This upgrade of the IRIS lab database contains 2624 pairs of images from

82 subjects in multi-band spectrum information, including one thermal and 25 visual

bands per participant, in both outdoor and indoor environments. Another significant

contribution of this upgrade is a diverse ethnic collection of Caucasian, Asian, Asian

Indian, and African participants, with 24% female and 76% male participants. However,

the database includes only one variation in facial expression and one frontal position

toward the camera, while the distance from the camera is 1.2 meters for all the images

[170].

UND: The University of Notre Dame database had published this database, which in-

cludes 2492 image pairs from 241 subjects, which is one of the most significant subject
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populations in the thermal/visual datasets. Each subject demonstrates two facial ex-

pressions of smiling and a natural face under three different indoor lighting conditions.

Another unique feature of this dataset is capturing images in 4 sessions throughout the

month. However, there are only four image pairs per subject [179].

UH: The University of Houston database contains 7590 images of 138 subjects, cap-

tured in the Mid Wave MW thermal IR domain. There are 55 images of each subject in

the database, demonstrating different facial expressions and arbitrary facial positions

[180].

FSU: The State University of Florida database contains 234 images from 9 subjects in

thermal infrared in 7-14 µm spectral range information, which includes 25 visual bands

and one thermal per participant. The images include varying angles and facial expres-

sions for all the subjects. The dataset is at 320×240 resolution and in 8-bit BMP format

[181].

Carl: This dataset includes a total of 7,380 images that were recorded simultaneously

with visible, near-infrared, and thermal sensors. 41 subjects participated in this study

under three different illuminating conditions: natural, infrared, and artificial. The snap-

shots are all in frontal face position with neutral facial expressions. The Thermographic

camera TESTO 880-3, equipped with an uncooled detector, captured both thermal and

visible images. The images are captured in four separate sessions in which were two

days apart [9].

NVIE: The Natural Visible and Infrared Facial Expression database mainly focuses on

capturing different facial expressions among several subjects. The dataset is from 215

subjects and includes two sub-databases: (1) Spontaneous and (2) Pose. The sponta-

neous dataset contains sequences from starting an expression to the final frame, and the

Pose dataset contains only the last expression in both the visual and thermal spectrum.

The researchers have captured all the images under three different indoor illumination

settings [182] .
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KTFE: Kotani Thermal Facial Emotion dataset includes simultaneous thermal and

visible images in seven spontaneous emotions, including neutral, anger, happiness, sad-

ness, fear, disgust, and surprise. 26 subjects participated in the study, with an age range

of 11-years-old to 32-years-old. An infrared camera, the NEC R300, was used for cap-

turing both thermal and visual videos. The dataset includes 126 gigabytes of visible and

thermal facial emotion facial expression data frames. This database is one of the few

datasets that mentions the recording room air temperature, kept between 24 °C and 26

°C [174].

ARL-MMFD: Army Research Laboratory Multi-Modal Face Database was recorded si-

multaneously by a long-wave infrared camera and a visible spectrum camera. The uti-

lized polymetric sensor is capable of recording geometric and textural facial details. The

dataset included 60 subjects in the first published version[183] that was then extended

to 111 subjects [41]. The researchers have used LWIR polarimetric for capturing images

in both datasets, which are named Volume1 and Volume2. The expression change in the

subjects’ faces was created by counting out loud numerically. The first volume dataset

is the only dataset collected at three different distances from the camera, which are 2 m,

5 m, and 7.5 m. However, the second volume is captured only at a single range of 2.5 m

from the camera.

ULFMT: Université Laval Face Motion and Time-Lapse Video Database is recorded

within four years from 238 subjects. This experiment includes different facial poses and

expressions, ethnicities, ages, and sexes. The researchers have recorded the images in 4

different spectrum ranges with different cameras, including a Jenoptik camera for LWIR,

a Phoenix Indigo IR camera produced by FLIR for MWIR, a CMOS made by Goodrich for

SWIR, and a standard CCD made by Much for the NIR/Visible spectrum. The subjects

had changed their facial expression arbitrarily and changed their head position from

full-frontal face to complete profile for the video frames captured at 30 fps for 10 seconds

[184].
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Eurocom: The dataset includes a total of 4200 images from 50 subjects, captured si-

multaneously in the visible and thermal spectrum. The dataset contains six illumination

settings: ambient light, rim light, key light, fill light, all lights on, all lights off; seven ex-

pressions: neutral, happy, angry, sad, surprised, blinking, yawning; four head positions:

up, down, right at 30°, left at 30°; and occlusion: eyeglasses, sunglasses, cap, mouth oc-

cluded by hand, eye occluded by hand. The thermostat temperature was at the average

temperature of 25°C for the test room. The thermal camera is a Flir Duo with an un-

cooled VoX microbolometer and a thermal resolution of 160x120 pixels [185].

Tufts: The Tufts University database focuses on capturing images in various modali-

ties from subjects in 15 different countries, genders, ages (4–70 years old), and ethnici-

ties. A total of 10,000 images from 113 subjects had participated in the dataset. Images

are under different scenarios of simultaneous visible and thermal images, near-infrared

(NIR) images, a recorded video, a computerized facial sketch using the FACEs software,

and 3D images of all the subjects. The researchers have utilized FLIR Vue Pro camera for

recording the thermal images. The facial expressions for each subject are neutral, with a

smile, eyes closed, an exaggerated shocked expression, and wearing sunglasses [186].

RWTH: The RWTH Aachen University database contains 2935 images in the thermal

domain from 90 subjects. The subjects’ distance from the camera is 90 centimeters.

Each subject demonstrates six facial expressions of contempt, disgust, anger, fear, sur-

prise, sadness, happiness, and a neutral face. The neutral scenario is captured in 9 differ-

ent positions by rotating the head in vertical and horizontal positions. The database is a

manually annotated dataset with 68 facial landmark points, emotions, and positions[187].

ARL-VTF: DEVCOM Army Research Laboratory Visible-Thermal Face Dataset (ARL-

VTF) presents 500,000 images from 395 subjects, captured simultaneously with spec-

trum information. The dataset was recorded with a long wave infrared LWIR camera and

three visible spectrum cameras. The FLIR Boson uncooled VOx microbolometer camera

captured the thermal images with a spectral band of 7.5 µm to 13.5 µm. The database
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includes a variation in facial expressions created by counting out loud the numbers and

facial positions created by rotating the head from left to right. The distance from the

camera was 2.1 meters for all the images. The database is annotated with face bounding

boxes and 6 points of facial landmarks, including left eye center, right eye center, the

base of the nose, left mouth corner, right mouth corner, and center of the mouth [19].

Sejong: Sejong is a recent multi-modal disguise face database, which contains im-

ages recorded in four modalities including visible, infrared, thermal, and visible-plus-

infrared. The database contains two subsets and subset B were captured one year after

the first one (subset A). Subset-A has 30 participants (16 men and 14 females) and the

total of 1,500 images, whereas Subset-B contains 70 subjects (44 males and 26 females)

with the total number of 23,000 images. The highlight of this database is the add-on

images that were captured in all four modalities. In the thermal images as they are not

a part of the human body, disguise add-ons have a lower temperature than human skin

and so seem darker than human skin or hair. In addition, subset B contains five to fifteen

different poses for each subject. For the recordings the camera box were placed in the

fixed distance of two meters from the subject and the room temperature was kept at 25

± 5 ◦C. The thermal images were captured by a Therm-App camera with the resolution

of 768x756 pixels [188].

I2BVSD: The IIITD In and Beyond Visible Spectrum Disguise (I2BVSD) face database

includes disguised/obfuscated face images in both thermal and visual spectrum. The

database’s disguise modifications are listed as follows. (1) No disguise: unambiguous

appearance, (2) Hairstyles: wigs come in a variety of styles and hues. (3) Beard and mus-

tache: many kinds of beards and mustaches (4) Eyeglasses: sunglasses and spectacles

(5) Cap and hat several types of caps, turbans, veils, and bandanas (6) Mask-related

variation: disposable mask; and (7) Multiple variations: A mix of disguised accessories.

The dataset includes 75 subjects, with one neutral and at least five disguised images for

each subject. There are 681 images in each spectrum, which includes 6 to 10 images for
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each individual. The resolution of thermal images is 720 x 576 pixels.

Sober-Drunk Database: The dataset include images of drunk and sober individuals in

thermal modality and was created at Electronics Laboratory, Physics Department, Uni-

versity of Patras, Greece. The images were captured with the FLIR Thermo Vision Micron

A10 Model infrared camera with a resolution of 128x160 pixels. The dataset contains

thermal images of both drunk and sober states for each individual. 41 individuals were

included in this experimental method, 31 males and 10 females. The recording distance

was 30 centimeters from the camera. The first 50 frames were acquired for each indi-

vidual immediately before to initiating alcohol intake, and the second 50 frames were

acquired 30 minutes after the fourth glass of wine was consumed. A total of 100 frames

were captured for each participant, resulting in a database of 4100 pictures [190].

PUCV-DTF: The Pontificia Universidad Católica de Valparaíso-Drunk Thermal Face

database is also a drunk classification dataset. 40 men and 6 women, with an average

age of 24 years, have participated in this study. The images were captured with the FLIR

TAU 2 thermal camera, which had a resolution of 640x480 pixels, a thermal sensitivity of

50 mK, and a wavelength range of 7.5–13.5 m. The dataset includes 250 images for each

subject, which results in 11,500 total images. The room temperature and distance to the

camera were not mentioned in the dataset publication [191].

TFW: Thermal Faces in the Wild (TFW) dataset contains thermal images of people

both in outdoor and indoor environments with manually labeled bounding boxes and

five-point facial landmarks (eye centers, nose tips, and mouth corners). The outdoor

images were recorded in a variety of weather conditions, which included thermal photos

acquired in both bright and cloudy conditions. The dataset has 9,982 frames and 16,509

labelled faces from 147 subjects. 5,112 images (5,112 faces) are recorded in a controlled

setting and 4,870 image frames (11,397 faces) are collected outdoor. Occlusion, head

position changes, various scales, face masks, diverse settings, and weather conditions

are all part of the set. The FLIR T540 thermal camera, with a resolution of 464 x 348
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pixels, a waveband of 7.5–14 m, a field of view of 24, and an iron color palette, was used

to capture the datasets [192].

SpeakingFaces: SpeakingFaces dataset combines high-resolution thermal and visual

spectral picture streams of fully-framed faces with audio recordings of each participant

speaking about 100 sentences. The dataset includes 142 individuals, in nearly 13,000

instances of synced data from 9 different positions (3.8 TB). During a single trial, each

individual participated in two different sessions. Subjects were requested to stay quiet

and steady throughout the first session, while the operator captured visual and thermal

video feeds from a sequence of nine collecting angles. The other session had the subject

reading a sequence of words while visual, thermal, and audio data were recorded from

the same nine camera angles. The images were recorded with FLIR T540 thermal cam-

era with a resolution of 464x348 pixels. Subjects were seated in a distance of one meter

from the camera, and the room temperature was set at 25 degrees Celsius[193].

TIV: Terravic Facial IR Database contains facial images in both thermal and visual

spectrum. This database contains twenty individuals, each of whom has a unique set of

frames with a variety of modifications, including front, left, and right orientations, in-

door/outdoor setting and using glasses or a hat. It contains 21676 thermal facial photos

of 20 different individuals. The image frames were recorded with Raytheon L-3 Thermal-

Eye 2000AS with a resolution of 320x240 pixels and delivered in the 8-bit gray scale JPEG

format [194].

As presented, most of the current datasets include a diverse number of facial expres-

sions, emotions, and head positions, which makes them suitable for facial recognition

purposes. However, there is a substantial lack of facial landmark annotation in these

datasets. Only RWTH and ARL-VTF have included manual facial annotations, while the

ARL-VTF dataset contains only 6 main landmark points. Landmark detection is one

of the most important tasks required for extracting biometric data from face thermal

images. One main approach to detecting facial landmarks is utilizing visual images,
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which requires calibrating an RGB camera and thermal camera together [195]. Other

approaches rely on the pixel value differences between the individuals’ faces and their

backgrounds. However, this approach does not work properly when the subject’s head

position changes [196]. As presented in RWTH dataset analysis [187] learning-based

methods improve the facial landmark detection accuracy. However, there is currently

only the RWTH dataset that includes a complete facial landmark annotation for 2935

images, which was inspired by similarly annotated datasets such as HELEN [197]. How-

ever, the data is gathered at a fixed distance of 90 centimeters from the camera and is

published in 8 bit PNG format, which makes it loose some thermal information in the

conversion process [20]. The Charlotte-ThermalFace dataset provides all the images in

a 16 bit TIFF format. Furthermore, none of the currently available datasets covers con-

trolled thermal variation, which is one of the main focuses of our data collection. Some

of these datasets are recorded in uncontrolled thermal conditions, which results in tem-

perature variation, but there is no information about the ambient temperature while

thermography. Another value of our dataset is the ambient temperature and relative

humidity variation, which is not been considered previously. We have recorded the ther-

mal images for each subject in at least four different room air temperatures and included

that information in the dataset annotations.

In addition, the only dataset that has included distance in the facial thermography

variation is the recent ARL-VTF dataset that has been developed by the DEVCOM Army

Research Laboratory in 2021 and includes images at 3 different distances from the cam-

era [19]. However, this dataset does not include any controlled ambient temperature

variation, and only 6 facial landmarks are tagged.

Finally, as most of the presented datasets were recorded for computational purposes,

and the human aspects such as the thermal sensation of the subjects were not consid-

ered. With the recent advances in thermography and its application in smart buildings

[30, 108, 36] thermal imaging is going to be part of the future infrastructures. Our dataset
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would be a great help for researchers in this area.

3.3 Charlotte-ThermalFace: UNC Charlotte Thermal Face Database Overview

As discussed in the previous section, the current facial thermography datasets are still

very limited in quality and quantity and need improvement in many aspects. The facial

thermal data is provided based on variation in environmental temperature, distance,

and head position. We have gathered 10000 infrared thermal images from 10 healthy

subjects in varying thermal conditions, several distances from the camera, and different

head positions. We have annotated the data with the ambient temperature, relative hu-

midity, and air speed of the room at the exact time of capturing each image. In addition,

72 facial points are manually marked and added to the annotations.

UNCC-ThermalFace is the first publicly available thermal database annotated with

the thermal sensation of each subject in different thermal conditions. It also enables ra-

diometric enabled raw data frames. The radiometric option defines retaining the elec-

tromagnetic radiation in the data frame files[140]. By enabling this option, our dataset

provides information about the captured radiance in each pixel of the recorded images.

All the data is in the original 16-bit radiometric raw format, with a thermal value for each

pixel. Flir A700 has recorded the frames, which is one of the most recent Flir Systems’

cameras [198]. The thermal sensor is an uncooled microbolometer with the tempera-

ture range of 0°C to 650°C and accuracy of ±2°C (±3.6°F) or ±2% of reading for ambient

temperature 15°C to 35°C. The images are captured at 10 relative distances to the cam-

era for each temperature range, as is shown in Figure 3.3. The original resolution of the

thermal sensor is 640x480 pixels, and the resolution of the cropped facial area varies for

each distance range.

3.3.1 Data Collection Methodology

The Office of Research Protections and Integrity UNCC-IRB183845 has approved this

study. The data collection process took place in Jun 2021. We have collected the data in
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Table 3.2: Subjects’ Information

ID Sex Age Height(cm) Weight(kg) BMI(kg/m²)
1 Female 34 168 69 24.4
2 Male 42 170 87 30.1
3 Female 30 170 54 18.7
4 Male 33 173 70 23.4
5 Female 34 163 57 21.5
6 Female 35 171 89 29.4
7 Male 32 168 70 24.8
8 Male 34 183 78 23.3
9 Female 33 168 72 25.5

10 Male 27 175 72 23.5
AVG - 33.4 170.9 71.8 23.3

a one-day long session or two shorter sessions over two days based on the subject’s pref-

erence. Participants are five males and five females, healthy adults. We made certain

that the subjects did not have any thermoregulatory illnesses, heat intolerance, colds,

flu, or infections. The participants did not use any makeup or facial cream and removed

their glasses for the recordings. All participants wore light-colored short-sleeve shirts

and pants. Two of the male participants had facial hair. Table 3.2 shows the informa-

tion for each subject in detail. Each recording session is designed for capturing thermal

recordings from one subject at ten relative distances from the camera and 25 different

head positions in each interval. In addition, the temperature of each session is differ-

ent from the previous session, which have resulted in several variations in the thermal

condition. All the ten subjects have participated in at least four recording sessions.

After taking the informed consent, the researchers recorded the participant’s age, gen-

der, height, and weight. Adaptation is a common part of human-related thermal con-

dition research, which helps subjects’ bodies reach a steady metabolic rate and thermal

state, as it is influenced by their prior activities and environments. Earlier research has

suggested that the mean skin temperature and thermal sensation stabilize after 40 min-

utes of being exposed to a new thermal environment with a temperature difference of

less than 10°C [199, 200, 201]. The adaptation time period is sometimes selected to be
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less than this period in similar previous research, such as 20 minutes[35] or 30 minutes

[202]. As one purpose of our experiment has been the development of a facial thermog-

raphy dataset, we have decided to choose a longer acclimatization period so we can be

sure of the reliability of our dataset. The participants had entered the test room and

stayed in a seated position for 60 minutes before the test, so their metabolic rate had

reached a stable state, and any influence from the prior outdoor temperature was elimi-

nated. The experiment for each participant was a combination of five sub-sessions in an

approximately one-hour time frame for each sub-session. The recording was initiated

at a temperature of 21°C while the thermostat held the ambient temperature constant

with a 1°C fluctuation allowance in each steady state session. Each subsequent session

started at a 1.5°C higher temperature in the same one-hour time frame.

Figure 3.3 displays the test room layout and the positioning of the following: (1)ther-

mal camera, (2)subject’s stations, (3)data loggers, (4)temperature and relative humidity

sensors, and (5)air diffuser and airflow sensor. This figure shows that the temperature

and humidity sensors are placed at the number(4) and mounted on a pole at three dif-

ferent heights (0.1, 1.1, and 1.7 meters). The recordings are at ten different relational

distances from 1 to 6.6 meters, which this figure shows by number(2). Participants were

seated in front of the camera during the study and changed their head positions as in-

structed while recording RGB and thermal frames pairs.



70

Figure 3.3: Test Room and Recording Stations’ Layout

The researchers performed the recordings in each station from the camera and in 25

different head positions instructed to the subjects (Figure 3.4). The user logged the ther-

mal sensation in each station from the camera through a "Google Form" with three stan-

dard levels: cool, slightly cool, neutral, slightly warm, and hot. An approximate number

of 1,000 frames were captured for each subject, with a total of 10,000 thermal frames for

the dataset. Table 4.3 shows the recorded variables and recording sensors’ information

in more detail. The air temperature and relative humidity are measured with HOBO Pro

v2 temperature/relative humidity data logger sensors, which were calibrated with ice

water before the experiments. The airspeed is recorded at the air diffuser proximity with

an average distance of 3 meters from the subject’s station. The dataset is annotated with

the face landmarks coordinates, distance to the camera, room air temperature, relative

humidity, airflow, and subject thermal sensation.
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Figure 3.4: Distances From The Camera and Head Positions

table[h]

Variable Device Brand Model Accuracy Resolution

Indoor Air Temperature Onset S-THB-M008 +/- 0.21°C from 0° to 50°C 0.02°C at 25°C

Relative Humidity Onset S-THB-M008 +/- 2.5% from 10% to 90% RH 0.1% RH

Air Velocity Fluke 922 Airflow Meter ±2.5% of reading 10.00 m/s) 0.001 m/s

3.3.2 Dataset Analysis

This section presents a preliminary study of the gathered dataset. The goal of this

evaluation is to investigate the applicability of the data. The analysis of the subjects’

thermal sensation based on their skin temperature is not in the scope of this study and

will be covered in our next publication as our objective in this section is to show the key

statistical properties of the whole dataset. First, we analyze the main independent vari-
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ables, including environmental temperature, relative humidity, and distance from the

camera. Then, we look into the correlation of facial skin temperature in different facial

areas with the environmental temperature and each other. The authors will also com-

pare sample frames together to study skin temperature differences in diverse thermal

conditions and among different subjects. The provided results for facial area correlation

are based on our developed method for detecting facial landmarks. The complete expla-

nation of this method is outside the scope of this paper and will be explained in detail

in another relevant publication. In addition, we have not included the utilized visual

images in the published dataset. Some recent research has succeeded in detecting facial

thermal images without using RGB data [8].

Figure 3.5: Identified Facial Areas Based on Landmarks In Three Different Facial Posi-
tions

Since our dataset includes images with various resolutions, it would be a great fit to

evaluate the prediction accuracy of such algorithms, which would be one of our future

objectives. Here we provide a brief explanation of data preparation and the results’ anal-

ysis. We have first cropped the images to the facial area with some margins. We have

utilized the Dlib-based model for face recognition, which is based on a 29 convolutional

layer in Residual Networks ResNet. This model is a version of the ResNet-34 network

that works by removing some layers and reducing the number of filters per layer to half

[203][204]. For locating the facial areas, the position of the facial landmarks has been

transferred from the RGB image to the thermal image by calculating the homography

matrix between the two frames, as is presented in detail by Negishi et al. [205]. As the
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covered distance is 1-6.6 meters from the camera and the facial area resolution gets as

low as 25*30 pixels, the HRNet algorithm has been used to identify facial landmarks in

the RGB images [42]. Four facial areas (nose, cheeks, forehead, and chin) have been

selected based on the literature to be studied individually in detail [166, 34].

The authors have utilized the estimated facial landmarks to define the selected facial

areas, as shown in Figure 4.4. Since the recorded frames are raw radiometric data, the

value of each pixel presents the temperature of the pixel’s representing area in the ac-

tual world. According to the Flir camera’s datasheet, when using the TemperatureLinear

(TLinear) option, the temperature of each pixel in degrees of Kelvin can be defined with

Formula 4.1. This is also very important to set the emissivity of the measuring target to

the correct number before the captures, which is 0.98 for the human skin. We have set

the TLinear resolution is set to 100 mK(millikelvins) in our recordings [140].

Ski nTemper atur e = (Pi xelV al ue/T l i near r esoluti on–273.15K ) (3.1)

3.4 Dataset Evaluation

First, the dataset frames’ environmental properties are studied to ensure the proper

coverage of different thermal conditions in the dataset. Figure 3.6 displays the (a)temperature

and (b)relative humidity coverage based on the number of images for each range. The

temperature range is between 20.6 °C and 26.6 °C, divided into four groups with a 1.5

°C range for each. This figure shows an approximately uniform distribution in the room

(a)air temperature, which means the number of data frames in different temperature

ranges is approximately the same. Although we have not controlled the (b)relative hu-

midity in the recording process, controlling the air temperature has resulted in changes

in relative humidity, which were recorded and added to the annotations. Additional

statistical information about the environmental properties, including air temperature,

globe temperature, relative humidity, and airflow, is provided in Table 3.3. Most of the
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sessions had zero airflows to ensure image consistency; however, the air conditioner was

at 0.5 m/s airspeed at the diffuser proximity in extremely cold conditions.

Figure 3.6: Covered Environmental Temperature and Relative Humidity in the Dataset

Table 3.3: Environmental Properties Measurement Results Overview

Mean Median Range Minimum Maximum Standard Deviation
Air Temperature(°C) 23.62 323.65 6.00 20.61 26.59 1.76

Globe Temperature(°C) 23.89 24.05 7.38 20.63 28.01 1.84
Relative Humidity(%) 54.16 54.45 8.63 49.96 58.59 2.07

Air Speed(m/s) 0.08 0.0 0.508 0.0 0.508 0.18

Furthermore, we have studied the changes in the skin temperature in each region for

the whole dataset. The temperature of each pixel in the desired Region of Interest (ROI)

is calculated by the equation4.1, used to identify the average temperature in each facial

area. Table 3.4 shows an overview of the dataset’s skin temperature measurement results

for all the recorded frames. As the table shows, the temperature in the forehead area

has the highest mean value (34.3 °C), while other facial areas’ mean values are closer to-

gether in the range of 33.17 °C to 33.82 °C. The low standard error numbers (0.02-0.03) in

all facial regions demonstrate that a sample data set can be an acceptable representation

of the entire dataset. In addition, the close amounts of mean and median numbers show

the relatively symmetrical distribution of the data. Additionally, Figure 3.7 presents box

plots for the temperature variation of each facial region based on the environmental

temperature. As expected by the literature, the nasal area has the highest variation, and

the forehead temperature shows the lowest variation.
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Table 3.4: Skin Temperature Measurement Results Overview For All Subjects

Right Cheek Left Cheek Cheeks Average Nose Forehead Chin
Mean 32.72 33.17 33.71 33.82 34.30 33.18

Standard Deviation 2.18 2.01 1.28 1.41 1.31 1.897
Standard Error 0.03 0.02 0.02 0.02 0.02 0.03

Median 33.15 33.57 33.86 34.07 34.47 33.55
Sample Variance 4.76 4.03 1.63 1.98 1.71 3.56

Figure 3.7: Skin Temperature Range For Each Facial Location

To have another holistic view of the changing patterns of different facial parts with

room temperature, figure 4.9 shows the relationship between skin temperature and room

temperature. The changing pattern of these charts shows that the temperature in all fa-

cial areas for the whole dataset has a positive weak linear association with the room

ambient temperature. The The R2 values for these linear patterns are chin 0.13, fore-

head 0.4, nose 0.4, cheeks’ average 0.6, left cheek 0.25, and right cheek 0.25, which backs

up this linear relation. The linear correlation values with the Pearson method are also

presented in Table 3.5, which will be further discussed. As it is shown the forehead area

has the lowest linear slope (0.1918) and the temperature range as the air temperature in-

creases to the highest amount. On the other hand, the nose temperature shows the most

significant change as the air temperature increases with a linear slope of 0.5742. These

findings are in line with the literature [147] , highlighting that the nose area has the high-

est correlation with the room temperature. In contrast, the forehead area changes the
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least and can be a good indicator of internal body temperature. As shown in this figure,

we have looked into both rights and left cheek temperature and their average temper-

ature. The average cheek temperature is the average temperature of the left and right

sides when both sides are visible in the thermal frame. If the head position is a full pro-

file, the invisible cheek is excluded from the calculation. Therefore, although the num-

ber of data points for the right and left cheek is less than the other facial parts, the cheek

average has the same data point as the other face areas.

Figure 3.8: Correlation of Facial Locations With Room Temperature for All Subjects

Furthermore, Table 3.5 presents the "Pearson Correlation Values" for different facial

regions with the environmental temperature and the subjects’ thermal sensations across

the whole dataset. The Pearson correlation coefficient indicates the strength and direc-



77

tion of a linear relationship between different variables, and it would be a relevant fac-

tor for our investigation. Table 3.5 shows that the cheek average and nose area have the

highest correlation with the environmental temperature, which is 0.76 and 0.67, respec-

tively. On the other hand, the forehead area has the lowest correlation with the environ-

mental temperature, which proves the applicability of this facial area as an indicator of

core body temperature, as environmental properties less influence this area. This result

is in line with the previous findings from the literature[147] on the correlation of differ-

ent facial regions with the environmental temperature. In addition, we can see that the

cheeks and the nose area are the best indicators of subjective thermal sensation, while

the forehead area is not that suitable for that purpose.

Table 3.5: Correlation of Facial Regions With Room Temperature and Thermal Sensation

Right Cheek Left Cheek Cheeks Average Nose Forehead Chin

Correlation with

Room Temperature 0.5 0.5 0.76 0.67 0.35 0.55

Correlation with

Thermal Sensation 0.42 0.43 0.63 0.55 0.22 0.45

The relationship between different facial regions among all the subjects is also calcu-

lated based on the Pearson Correlation Coefficient and visualized in a heat map figure.

As Figure 3.9 shows, most of the facial regions have a moderate to relatively strong cor-

relation . The right and left cheeks show no correlation, which results from the change

in the head positions that makes the two sides have different angles with the camera in

most of the data frames. When the head is in a semi-profile position, one of the cheeks is

right in front of the thermal camera, while the other side has an angel with the thermal

camera, which makes the reading of that side lower than the actual temperature. As a

result, the two facial sides can only have an approximately similar reading condition in

the full frontal face position. This correlation heatmap also shows that the cheek area

has the highest correlation with other facial regions, especially the nose and chin region

(0.62). On the other hand, the forehead has the lowest correlation values with other fa-
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cial regions, which was expected based on both literature and the correlation values of

the forehead area with the environmental temperature from Table 3.5.

Figure 3.9: Correlation of Different Facial Areas Among All Subjects

Moreover, as one of the main focuses of this study, the importance of environmental

temperature in changing the facial thermal images is highlighted by studying some sam-

ple images from the dataset of three selected subjects. Figure 3.10 shows how the facial

skin temperature changes in three different thermal conditions for these three individ-

uals. The first row has the lowest Room Temperatures (RT), which increases gradually

as we reach the last row. The RT for each row is approximately the same for all three

subjects. In addition, the reported Thermal Sensation (TS) of each subject is included,

which is also the same for images of subjects in the same row. Ironbow A false-color

pallet is used for easier identification of changes in different facial areas.

The authors have selected an ellipse-shaped Region of Interest (ROI) in the facial area.
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Figure 3.10: False Color and Histogram Representation of Sample Data In Different Tem-
peratures, TS: Thermal Sensation, RT: Room Temperature

The histogram of the pixel value distribution in the defined ROI also shows how skin

temperature changes on the whole face for each subject. As mentioned in Equation 4.1

the skin temperature is calculated linearly from the pixel value, so the larger amounts

of this value show a higher skin temperature. We can observe that the nose and cheek

area show more apparent changes than the forehead and chin for all three subjects. In

addition, we can see in both the false-colored images and histograms subjects (a) and (b)

have a noticeable increase in their skin temperature as the room temperature increases.

The individual differences in facial regions’ temperatures can also be detected eas-

ily in images of different subjects in the same row when the Room Temperatures (RT)

are relatively close together. For instance, in the first row, the room temperature is

in the range of (21.5°C-21.7°C), but the user’s skin temperature shows apparent differ-

ences in different facial regions. It is also important that all three subjects have re-
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ported their thermal sensation as "Slightly Cool," while their facial thermal image and

the ROI histogram vary to a great extent. While subjects (a) and (b) show an increase

in the facial skin temperature, subject (c) shows a different pattern in skin temperature

changes, which is an initial increase followed by an identifiable decrease when the tem-

perature reaches 25.2°C ( 77°F). The explanation for this behavior change is that the sub-

ject was beginning to sweat in the forehead area, which was not noticeable even by him-

self. The higher ambient temperature was the cause of the sweating. As mentioned by

the individual, he typically has a lower tolerance for increased ambient temperatures,

which results in him sweating more frequently in a hot room temperature. However,

the perspiration was insignificant and therefore not noticeable by the researchers or

the subject at the time of the experiment. This behavior highlights the importance of

including ambient temperature variation in the facial thermography dataset. We can

observe that the forehead area of this subject shows an increase when the room tem-

perature changes from 21.6 °C to 23.5 °C and the subject’s thermal sensation changes

from "Slightly Cool" to "Neutral". However, as the unnoticeable sweating begins in the

next two rows, the forehead temperature decreases, while the subject’s thermal sensa-

tion changes to "Slightly Warm". These individual differences in the facial thermal im-

ages have reoccurred in the three next rows, as well as the whole dataset. The personal

differences in facial thermal images are one of the main reasons we need a compre-

hensive dataset in several different thermal conditions for our investigations into facial

thermography.

Although the subjects show personal differences in their facial thermal images, we

can observe a linear correlation between the temperature of different facial areas and

the environmental temperature in all of them. Figure 3.11 presents this linear correla-

tion in all the facial regions and for all the included subjects. The horizontal axis presents

the room temperature, and the primary vertical axis shows the facial skin temperature.

In addition, each person’s reported subjective thermal sensation as the temperature in-
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Figure 3.11: Linear Correlation of Facial Skin Temperature in Different Areas With Room
Temperature For Each Subject In Addition To Their Thermal Sensation (C-Cold, N-
Neutral, W-Warm)

creases is displayed in the secondary vertical axis. As shown in Figure3.11, for all the

individual subjects, the highest skin temperature variations as the room temperature

increases are in the nose and cheeks area, and the lowest variation is in the forehead

and chin area. This is important to note that subject 2’s forehead temperature decreases

as the room temperature increases, which was previously explained in Figure3.10 for

the same subject in column (c). Another important observation from this figure is the

higher temperature differences in facial areas when the room temperature is low com-

pared to higher room temperatures. This pattern is repeated in all the subjects, while the

differences are much greater in some of them, such as subjects 3 and 10. These figures

also show that all the subjects have experienced different thermal sensations; however,
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the pattern and frequency of each thermal vote are different and based on individual

differences.

3.5 Discussion and Future Work

This paper presents a novel facial infrared thermal dataset with variation in envi-

ronmental properties, distance from the camera, and head position in raw 16-bit data

frames. The data is annotated with each person’s environmental conditions, facial land-

marks, and at the time of recording each frame. The subjective thermal sensation anno-

tations are a new addition to the face thermal image datasets. The comparative study of

the temperature in different facial areas shows the importance of environmental tem-

perature in facial thermography. Variation in environmental temperature, facial resolu-

tion, and head position makes our dataset an excellent fit for training facial recognition

algorithms. Another important consideration is identifying facial landmarks for a more

precise evaluation of facial skin temperature. Although we have used the RGB paired im-

ages for facial area identification in this paper, there is other state-of-the-art research for

facial landmark detection. Since our dataset includes images with various resolutions, it

would be a great fit to evaluate the prediction accuracy of such algorithms, which would

be one of our future research objectives. The explanation for this behavior change is that

the subject was beginning to sweat in the forehead area, which was not noticeable even

by himself.

In the data analysis section for this paper, we have focused on the reliability of the

dataset for future research. Therefore, we have looked into the temperature range of the

images and the correlation of ambient temperature with the skin temperature of each

subject. However, other analyses can be performed on this dataset, including inves-

tigation of the performance of different learning algorithms on facial landmark detec-

tion. In addition, studies can be performed to investigate the accuracy of detecting sub-

jects’ thermal comfort based on their skin temperature. Although previously included

research has already proved this possibility [34], it is important to study this feature in a
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farther distance from the camera if we want to apply it in real buildings. Another sub-

sequent study would be on the prediction of subjects’ thermal sensations based on the

infrared thermal images by utilizing the current dataset. We will analyse the influence of

distance and head position on the thermal camera readings and the prediction accuracy

of thermal comfort based on the subjects’ skin temperature. The manual annotation of

the facial frames will provide us with the ground truth facial landmarks in the thermal

frames, which will be used for the validation of our presented approach.

More projects are in progress for the improvement of this dataset based on its current

limitations. Our dataset does not include different facial expressions, which are included

in some datasets and will be added to our updated versions. Currently, due to the high

variety of recording conditions for each subject, we have included ten subjects in our ex-

periment. We are planning on adding more subjects in the future version of our dataset

from different ethnic groups. The current dataset was recorded in a controlled indoor

environment. Including images that were taken outdoors could make this dataset more

suitable applicable. In addition, our current dataset does not include RGB images, which

can be included in our following versions to make the dataset helpful for a broader range

of projects. The complete dataset is available for downloading on our Github page [206].



CHAPTER 4: Deep-Comfort: A Deep-learning Based Multi-Camera Approach for

Personalized Thermal Comfort Prediction at the Distance

4.1 Introduction

In our current society, people spend more than 90% of their time indoors, which

causes indoor environmental qualities to have a significant influence on their health

conditions. Although the building sector consumes approximately 40% of the globally

produced energy, the majority of which is used in Heating, Ventilation, and Air Condi-

tioning (HVAC) systems, people are generally dissatisfied with their environmental com-

fort conditions. In this regard, a recent large-scale survey reports that approximately

40% of building occupants are dissatisfied with the thermal conditions in their indoor

environment. This global survey, which is the result of a 20-year study, focuses mostly

on office buildings, which account for 77% of the investigated buildings [1]. Another re-

search on 52,980 occupants in 351 predominately North American office buildings has

indicated that only 2% of the studied buildings are providing thermal comfort for 80%

of their occupants [2]. This wide range of dissatisfaction with thermal conditions urges

the need to improve the indoor environment to prevent the health problems resulting

from discomfort caused by poor indoor thermal conditions. Sick Building Syndrome

(SBS) is a recent concept that has attracted the attention of researchers in this area to

the influence of built environments on human health conditions. The thermal state is

one of the primary factors of Indoor Environmental Qualities (IEQ) that can impact oc-

cupants’ well-being. It has also been proven that temperature and humidity conditions

are significant contributors to the SBS symptoms, which include fatigue, headache, sus-

ceptibility to cold and flu, and disruption of sleep patterns [3]. One of the main causes

of these poor environmental conditions is relying on explicit, predefined models of ther-
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mal comfort, which do not correspond to the actual preferences of different occupants

in the environment [4]. Depending on general standards, it is nearly impossible to ac-

commodate varying degrees of people’s thermal preferences. [5]. Recent research in

human-centered design attempts to leverage occupants’ demand in the control loop of

the buildings to consider the well-being of each individual based on their own physi-

ological properties. This research is also referred to as personalized comfort. Person-

alized comfort is a recent concept in the area of human-centered building that focuses

on providing comfortable conditions for each occupant based on their own preferences.

Therefore, a real-time feedback system is needed to provide data from occupants’ phys-

iological conditions that can be used for controlling the building’s HVAC system. The

innovations in environmental data gathering have provided a unique opportunity to col-

lect large amounts of information from the buildings’ occupants, which can be studied

to improve building control conditions. In this regard, the emergence of thermal imag-

ing technology has made contactless data collection possible without interfering with

occupants’ activities. The collected physiological and environmental data can then be

utilized for predicting and controlling each occupant’s thermal comfort conditions in

the built environment through personalized comfort models. The promising results

of initial studies in this area have attracted researchers’ attention to utilizing thermal

cameras as a feedback system in the buildings’ control loop. While there is currently

an increasing interest in utilizing infrared thermal cameras in public buildings because

of their non-invasive quality, these state-of-the-art methods need additional modifica-

tions to become more reliable and holistic. There are some critical gaps in the current

methods that have limited the application of this platform in real buildings. Firstly, the

distance of the subject in the current studies is a maximum of 2 meters from the cam-

era, which makes the platform applicable only to very small rooms. Secondly, desired

Regions Of Interest (ROIs) for thermal readings are generally defined manually or with a

lack of accuracy in detection. Thirdly, in most of the current research, subjects are asked
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to maintain a frontal face position or have minimal changes in head position as their

landmark detection methods are limited. In this research, we are studying the collection

of facial skin temperature data in a completely non-intrusive approach through thermal

cameras for thermal comfort prediction. In addition, we create a platform for more pre-

cise readings from larger distances, which makes it a great fit for real-time applications

in the current world. This is accomplished by leveraging both visual and thermal cam-

eras to create a multi-modal sensing platform. To capitalize on the potential and address

the existing limitations, this study takes a more holistic view of non-intrusive thermal

monitoring for thermal comfort prediction. In this research, we are looking into collect-

ing thermal conditions from subjects at a farther distance in a completely non-intrusive

method. The project is significant because it creates an automated approach for utiliz-

ing both thermal and visual images to detect facial landmarks in several different head

positions.

• Firstly, to address the limitation of a subject’s distance from the camera and their

position, our study takes into account facial thermal images from subjects at sev-

eral distances and different head positions. By utilizing the powerful HRnet algo-

rithm [42, 43], we have successfully investigated the subjects at a maximum dis-

tance of 6.6 meters from the camera and 25 different head positions. In addition,

to resolve the lack of accuracy, we have utilized an automated mapping approach

for registering thermal and visual images that can detect the specific Region Of

Interest in images of any resolution and head position.

• Secondly, to increase the accuracy of thermal comfort prediction, we have in-

cluded the distance from the camera and head position as an input to the predic-

tion algorithms. Our results have indicated that including the distance and head

position in the prediction process can increase prediction accuracy in general.

In this paper, we have combined deep learning-based object detection and facial land-
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mark detection through the HRnet algorithm with supervised machine learning algo-

rithms to accurately predict personalized thermal comfort from a distance. We have uti-

lized the two powerful classification algorithms of Random Forest and K-Nearest Neigh-

bor to predict the thermal preferences of the subjects at different distances from the

camera and head positions. For both algorithms, we have conducted a comprehensive

grid search to select the best combination of input variables and hyperparameters. The

results of our study highlight the superior performance of the Random Forest machine

learning algorithm in comparison to K-Nearest Neighbor algorithms. In this study, we

could achieve an accuracy of 92.3% for personalized thermal comfort prediction, and

the average accuracy among all subjects was 86.1%, which proves the successful appli-

cation of our platform. In addition, we have investigated the influence of distance from

the camera and head position on the thermal reading of infrared thermal cameras.

The rest of this paper has three main sections. In Section 2. Literature Review, we study

the conventional and personalized thermal comfort models and provide a compari-

son of the current thermal camera-based personalized comfort prediction. Section 3.

Methodology explains the data collection process, followed by data extraction and anal-

ysis. In Section 4. Results present the influence of room temperature, distance from the

camera, and head positions on the skin temperature and infrared thermal readings. In

addition, the results of the two selected prediction algorithms are discussed in detail.

Section 5. Conclusion, including a final review of the highlights of our study and future

work.

4.2 Literature Review

Thermal comfort models are an approach for quantifying the subjective evaluations

of a human’s thermal state, which enables a shared understanding of thermal satisfac-

tion. Thermal comfort assessment is a tough process due to the presence of numerous

influential variables such as air temperature, air velocity, relative humidity, solar radia-

tion, clothing level, and level of activity. Here, we are reviewing two conventional ther-
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mal comfort models, which include one widely used Predicted Mean Vote (PMV)and

adaptive model, and more recent personalized models.

4.2.1 Conventional Thermal Comfort Models

For over thirty years, scientists have studied and applied many human thermal com-

fort models based on physiological and psychological responses[21]. The Predicted Mean

Vote (PMV) is a frequently used model for assessing thermal comfort, which was de-

veloped by Fanger in 1960 to represent the average thermal sensation vote of a wide

group of individuals. The model is based on the differential between generated and

released heat from the human body, as well as its correlation with subjective comfort

perception. The final contributing factors to this model are environmental factors, in-

cluding air temperature, mean radiant temperature, air velocity, and relative humidity,

and human-related factors, which are activity and clothing level. Subjective comfort is

measured on a scale of +3 for very hot, -3 for very cold, and 0 for neutral. Although PMV

is currently the most widely used thermal comfort model, it has performed poorly in

recent research for three main reasons. Firstly, this model was developed in a chamber

setting under the air conditioning of the space, so the result is expected to be differ-

ent in actual settings and naturally ventilated buildings. Secondly, several physiological

and psychological differences in individuals result in different subjective thermal prefer-

ences, which were not accounted for in the PMV calculation. The third major reason for

PMV model inaccuracy is the adaptable behavior of humans to their environment dur-

ing different temperatures at different times of the year. This behavior is hypothesized as

adaptive hypothesis highlighting the different features such as past history, thermal ex-

pectations, and thermal controls to have an impact on human thermal preferences. The

second conventional thermal comfort model is the adaptive model, which works based

on this theory. In other words, the individual’s thermal acceptance and preference are

under the influence of the outdoor conditions during different times of the year. [23].

The adaptive comfort model was incorporated into the ASHRAE 55-2004 standard and
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continued to improve in further versions. The adaptive model has shown better per-

formance in occupant-controlled buildings and naturally ventilated spaces due to the

wider tolerance range of temperature when the buildings are ventilated naturally. Adap-

tive processes are known to be both physiological, such as thermal expectancy, or be-

havioral, such as changing the clothing level or other controlling options. According to

this model, the range of thermal conditions that are acceptable to the occupants is de-

pendent on the outdoor temperature and also on the actions that can be performed to

reduce the discomfort or the possibilities for change. The majority of today’s building

control systems rely on these explicit predefined models, which do not accurately reflect

the actual comfort of various occupants in the environment [22]. As space may be used

for various purposes or duties over time, the occupants and their thermal comfort pref-

erences may change. Additionally, the thermal comfort level would be influenced by

human attributions such as age, gender, and metabolic rate. Along with physiological

qualities, psychological factors such as emotional state (happiness or anger), and level

of stress can significantly influence a person’s subjective thermal sensations[22]. This

makes it impossible to analyze individuals’ thermal preferences, and the relative value

of each contributing component based on general standards [5].

4.2.2 Personalize Thermal Comfort Models

Personalized comfort is a recent concept in the building design area that focuses on

providing a comfortable environment for the occupants based on their preferences. This

results from zonal conditioning, instead of the central air conditioning system, and the

ability of occupants to change their thermal environment [24, 25] . Personalized models

are based on the Human-in-the-Loop (HITL) concept, which has redefined the relation-

ship between humans and their surroundings. Based on this concept, to achieve a high-

performance building throughout the operation phase, it is necessary to embrace sub-

jective human aspects in the control loop. Personal thermal comfort models are created

based on behavioral or physiological variables associated with an individual’s thermal
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comfort. Research employs the two basic methodologies of the voting system and phys-

iological sensing system to regulate the circumstances through direct feedback from the

occupants regarding their comfort [26]. Thermal scale preferences are utilized to eval-

uate the level of comfort in participative sensor devices in the voting system [199, 207].

These voting methods are obtrusive and may be considered inefficient since they re-

quire continual feedback from the occupants. In some other platforms, individuals’

preferences are learned over time through their habits, such as adjusting their desk-

top fan, heater, or other personal or central air conditioning devices. Several of these

devices have been used and studied previously, including heating and cooling chairs

[24, 208] , desk fans [62, 63] , radiant floors [209] . Physiological data is another type of

information that has been demonstrated to have high predictive accuracy when used to

create personalized comfort models. The temperature of the skin at various body loca-

tions is one of the most effective variables for developing a personalized comfort model

[76, 31, 73]. In this regard, non-contact thermal cameras have been utilized to deter-

mine the skin temperature in order to develop a personal comfort model [36, 18, 34].

Incorporating IoT-based systems with HITL techniques enables the communication be-

tween various devices and also facilitates the exchange of data for sensing, actuation,

and control [210]. The information acquired from users via IoT sensors is used to adjust

and regulate building systems, including air conditioning [211]. A critical prerequisite

for an efficient IoT system is data collection devices that provide real-time feedback on

the controlling loop’s current state. By utilizing different sensors, we can collect both

environmental and physiological data on the building’s occupants. In the Physiological

feedback system, in addition to psychological data, we utilized established markers of

thermal comfort, including skin temperature[73], heart rate [212], or both [76]. Some

user-centered models incorporate wristbands to collect physiological data such as skin

temperature and heart rate, as well as environmental data, in order to predict each oc-

cupant’s comfort level [73, 212]. To develop another accurate data collection method,
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infrared sensors were embedded in eyeglasses to measure the temperature of the front

face, cheeks, nose, and ears. This increased the accuracy of predicting unpleasant situa-

tions to 82.8 percent [102]. The data gathering techniques listed above are invasive since

the sensor devices must remain close to the human skin throughout the day, which may

be distracting in a work environment. Furthermore, some users may be hesitant to uti-

lize wearable sensors or may just forget to do so. Additionally, it requires the installation

of sensors for all individual occupants, which is not always practical. These problems

demonstrate how helpful it might be to use contactless, non-intrusive methods to col-

lect physiological information from individual occupants.

4.2.3 Infrared Camera Based Thermal Comfort

Infrared cameras have the ability to assess the temperature of targeted areas from the

occupants, making them an excellent alternative for measuring skin temperature from

a distance. In this section, we review the current studies on thermal comfort predic-

tion through infrared thermal cameras, which are also listed in table 4.1. Researchers

started to extract facial skin temperature for detecting thermal stress by using infrared

thermal cameras in 2007 [213]. Thermal cameras have been proven to be a reliable, non-

invasive way to predict the need to change thermal conditions with a 94–95% level of

accuracy [27]. This study has shown personalized comfort prediction has improved per-

formance compared to when the subject’s ID is not provided, which was 63% in cooling

and 68% in heating, while Fanger’s PMV method had a prediction accuracy of less than

65%. Researchers have also developed a real-time feedback system using the FlirA35

thermal camera and a depth sensor to analyze both the face temperature and the body

pose of the occupants [28]. Further research has revealed the possibility of replacing

the previous cameras with a less expensive and smaller infrared camera capable of pre-

dicting skin temperature with an acceptable accuracy of 85 percent [29]. This study has

further investigated the possibility of developing a smart thermostat based on the de-

veloped prediction algorithms [30]. Thermal cameras have also been integrated with
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visual RGB cameras for landmark detection and higher accuracy, [31]. Studies have also

assessed the effectiveness of several facial feature detection algorithms in identifying ar-

eas of interest (ROIs) [32]. In this regard, research has compared the accuracy of three

distinct sensor types, including air temperature sensors, wristband-based skin tempera-

ture monitoring, and thermal imaging-based facial temperature monitoring. This devel-

opment proves the marginal improvement in accuracy when physiological sensors are

combined with environmental sensors and casts doubt on the efficacy of physiological

sensors as a consequence of this marginal improvement in accuracy (3% to 4% )[33] . Li

et al. proved successful in monitoring and recording the skin temperature of two inhab-

itants concurrently utilizing two thermal camera nodes, each camera catching sections

of their faces [34]. Although facial skin temperature is used as the primary physiological

factor for thermal comfort prediction, other studies have considered several other body

parts, including hands, shoulders, and torso [35, 36, 37] Thermal cameras have also

been shown to be a promising tool for the non-invasive prediction of elderly thermal

comfort in nursing homes [37].
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Table 4.1: State of the art research overview

Study Region*
Thermal

condition
Duration Temperature Camera Distance

Head

Position
ROI

Prediction

Method

W L Ch Cn N F E

[27]

2016
* * * * Uncontrolled

Twice/day

Five weeks
23-26°C

Thermal

FLIR A655

-
Frontal

Face

Manual

Rectan-

gle

Rotation

Forest

[28]

2018
* * * * *

Transient

Cooling
60 minutes 25-17°C

Thermal

FLIR A35

Depth

Microsoft Kinect

1.40

m

Frontal

Face

Active

Appearance

Model

No Prediction

Sensor Fusion

Techniques

[29]

2018
* * * * *

Transient

Heating

Cooling

3 Hours 22-28°C
Thermal

FLIR Lepton

1

m

Frontal

Face

Haar Cascade

Rectangular

Random

Forest

[35]

2018
*

Transient

Heating
40 minutes

21.11

27.78 °C.

Thermal:

FLIR Lepton

Depth-Visual:

Kinect

2

m

Frontal

Face

Facial Patch

by joint

detection

No prediction

ANOVA Test

[31]

2019
* * * * * *

Constant

Transient:

Heating

Cooling

2.5 hours

Constant:

20/24/28°C

Transient:

20-28°C

Thermal:

FLIR Lepton

Visual:

Pi Camera

Close Up
Frontal

Face

Haar-Like

Features

Contrast

in heatmap

Random Forest

Support Vector

Machine

[34]

2019
*

Transient

Heating
50 minutes

23-

27 °C.

Thermal:

FLIR Lepton

Depth-Visual:

Kinect

1-1.30

m

Frontal

Profile

Haar Cascade

Dual

camera

nodes

No prediction

ANOVA Test

[108]

2019
* * *

Transient:

Heating

Cooling

1-1.5 hours
24-19°C

22-29°C

Thermal:

FLIR Lepton

Visual:

RGB

1-2

m

Free

Frontal

Face

Haar-Cascade

dlib

Random Forest

SVM

KNN

[36]

2019
*

Transient

Heating

2 hours

14 Sessions

17-

30 °C.

Thermal:

FLIR

B8400

1

m

Semi-Profile
Manual

Flir tools

Random Forest

SVM

[37]

2020
* * * * Uncontrolled 5 minutes

19-

25 °C.

Thermal:

FLIR

E60bx

0.5

m

Frontal

Face

Facial Patch

by joint detection

PMV

PPD

* W: Whole Face, L: Lips, Ch: Cheeks, Cn: Chin, N: Nose, F: Forehead, E: Ears

The presented review shows that although the initial results are promising, the plat-
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form’s application in actual buildings has been limited by a number of major short-

comings. Firstly, the greatest subject-to-camera distance in the present investigations

is two meters, making the platform appropriate for relatively small spaces. In addition,

it has been proven that one of the major factors that influences Thermal Infrared Read-

ing (TIR) is the shooting distance, which is defined as the distance between the object

and the thermal camera. This measure becomes more important in remote thermal

readings, where the shooting distance is well over one meter. Although there is aware-

ness of this factor’s influence on thermal readings, there has been very little research

conducted on this area until recently. Most of the previous researchers had performed

their studies at equal distances from the camera to avoid this inconsistency. One main

study on the influence of distance on TIR of living organisms was performed in 2016,

which studied the shooting distance range from 0.3 to 80 meters. The study showed the

powerful influence of the measuring distance on the first 20 meters of the subject. A

non-linear decrease has resulted in an underestimation of the surface temperature [38].

Other studies on the influence of distance on human facial (inner-canthi of the eye) TIR

have shown a measurement error in distances larger than 80 cm from the camera [39].

The findings from other recent research align with the previous studies on the distance

variation effect. This field application of thermography has shown the strong influence

of spot size and shooting distance on the surface temperature of both calibrated tem-

perature sources and wild birds. The decrease in temperature can be as high as 6°C at

a 10 m distance from the subject [40]. Secondly, required Regions of Interest (ROIs) for

thermal measurements are often selected manually or with insufficient detection preci-

sion. Therefore, in the majority of current research, participants are instructed to keep

a frontal face posture or have minimal head position movements due to the limitations

of their landmark identification approach. Any change in the human head position will

result in a change in the degree between the camera and the facial area. Research has

shown that the influence of object position on the camera alters the TIR by affecting the
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apparent emissivity[40]. This effect may result in errors as high as 8 °C if the angle is

90 degrees to the camera in comparison to 0 °, which also depends on the target area

emissivity. Additional research has also studied the influence of the angle of the camera

on the inner-canthi of the eye temperature, which also aligns with the previous findings.

The mean temperature of the inner-canthi of the eye has decreased by 0.5 °C at 75 de-

grees to the camera [39]. As mentioned previously, the contribution of our study in this

area is to develop a more advanced thermal comfort assessment from a distance through

the integration of thermal and visual images. This includes performing several readings

at different distances and head positions. One main objective of this study is the col-

lection of facial skin temperature data in a completely non-intrusive approach through

thermal cameras. In addition, this research creates a platform for a more precise reading

from larger distances, which makes it a great fit for real-time applications in the actual

world. This is accomplished by leveraging both visual and thermal cameras to create a

multi-modal sensing platform. Through this integrated system, we will use visual cam-

eras for localizing facial areas and thermal cameras to measure the thermal values of

those areas, which will enhance the accuracy and robustness of sensing and measure-

ment. The proposed system performs fine-tuning and calibration based on the actual

physical properties, including the subject’s distance to the camera and head position.

The collected physiological and environmental data can then be utilized for predicting

and controlling each occupant’s thermal conditions in the built environment through

personalized comfort models.

4.3 Deep-Comfort Methodology

Based on the literature, it has been found that there is a gap in utilizing these influenc-

ing factors in facial skin temperature readings for developing thermal comfort models.

As mentioned previously, the contribution of our study in the thermal infrared imaging

area is to develop a more advanced thermal comfort prediction platform from a distance

through the integration of thermal and visual images. This includes performing several
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readings at different distances and head positions to create the training dataset. As Fig-

ure 4.1 displays the methodology section consists of three main phases: data collection,

data preparation, and comfort prediction.

Figure 4.1: The Methodology Phases and Process

4.3.1 Data Collection

We have designed the data gathering process with the objective of creating a dataset

that includes thermal and visual images in several thermal conditions and at several dif-

ferent distances from the camera and head positions. The Office of Research Protection

and Integrity (UNCC-IRB 183845 has approved this study. The data collection process

took place in June 2021. We collected the data in a one-day long session or two shorter

sessions over two days based on the subject’s preference. Participants are five males and

five females, healthy adults. We made certain that the subjects were not suffering from

any thermoregulatory illnesses, heat intolerance, colds, flu, or infections. The partici-

pants did not use any makeup or facial cream and removed their glasses for the record-

ings. All participants wore light-colored short-sleeve shirts and pants. Two of the male

participants had facial hair. Table4.2 shows the information for each subject in detail.

The test room arrangement is shown in Figure 4.2, along with the locations of the

following items: (1) thermal camera, (2) subject stations, (3) data loggers, (4) temper-

ature and relative humidity sensors, and (5) air diffuser and airflow sensor. The tem-
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Table 4.2: Subjects’ Information

ID Sex Age Height(cm) Weight(kg) BMI(kg/m²)
1 Female 34 168 69 24.4
2 Male 42 170 87 30.1
3 Female 30 170 54 18.7
4 Male 33 173 70 23.4
5 Female 34 163 57 21.5
6 Female 35 171 89 29.4
7 Male 32 168 70 24.8
8 Male 34 183 78 23.3
9 Female 33 168 72 25.5

10 Male 27 175 72 23.5
AVG - 33.4 170.9 71.8 23.3

perature and humidity sensors are set at the number(4) and fixed on a pole at three

different heights, as shown in this diagram (0.1, 1.1, and 1.7 meters). The recordings

were made at 10 various relative distances ranging from 1 to 6.6 meters, as seen in this

graph (2). After taking the informed consent, researchers recorded the participant’s age,

Figure 4.2: Test Room (a) Head Positions (b) Recording Stations’ Layout

gender, height, and weight. The participants had entered the test room and stayed in

a seated position for 60 minutes before the test, so their metabolic rate had reached

a stable state, and to eliminate any influence of the prior outdoor temperature, which
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was eliminated. The data collection was performed in semi-controlled setups. The ex-

periment for each participant was a combination of at least four sub-sessions in an ap-

proximately 90-minute time frame for each sub-session. The recording was initiated

at a temperature of 21°C while the thermostat held the ambient temperature constant

with a 1°C fluctuation allowance in each steady state session. Each subsequent ses-

sion started at a 1.5°C higher temperature in the same one-hour time frame. The air-

flow was under 0.2 m3/s for all the sessions except the first session, which was the

coolest, and as the experiment was conducted in the summertime, we needed the air

conditioning to keep the temperature constant. Participants were seated in front of the

camera during the study and changed their head positions as instructed while record-

ing RGB and thermal frame pairs. The researchers performed the recordings in each

station from the camera and in 25 different head positions instructed to the subjects

(Figure 4.2). The user logged the thermal sensation in each station from the camera

through a "Google Form" with standard levels. The thermal sensation scale is sim-

ilar to the ASHRAE 7-point scale (3- "hot",2-"warm",1-"slightly warm",0-"neutral", -

1-"slightly cool",-2-"cool", -3- "cold") and the thermal preference is the 5-point scale

(slightly cooler, no change, slightly warmer, much warmer). An approximate number of

1,000 frames were captured for each subject, with a total of 10,903 thermal frames for

the dataset. Table 4.3 shows the recorded variables and recording sensors’ information

in more detail. The air temperature and relative humidity are measured with HOBO Pro

v2 temperature and relative humidity data logger sensors, which were calibrated with

ice water before the experiments. The airspeed is recorded at the air diffuser proximity

with an average distance of 3 meters from the subject’s station. The data collected can be

found at citeTeCSAR-UNCC/UNCC-ThermalFace. UNCC-ThermalFace is the first pub-

lic thermal database annotated with each subject’s thermal sensation at various temper-

atures. It also provides raw data frames with radiometric capabilities.
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Table 4.3: List of Data Acquisition Devices

Variable Device Brand Model Accuracy Resolution
Indoor Air Temperature Onset S-THB-M008 +/- 0.21°C from 0° to 50°C 0.02°C at 25°C

Relative Humidity Onset S-THB-M008 +/- 2.5% from 10% to 90% RH 0.1% RH
Air Velocity Fluke 922 Airflow Meter ±2.5% of reading 10.00 m/s) 0.001 m/s

4.3.2 Data Extraction

We have extracted the skin temperature from the thermal images through the follow-

ing steps, as Figure 4.4 displays. 1,2. In both thermal and visual frames, the face re-

gion is cropped by the detected facial area in the visual image. After using several face

identification methods, we cropped the facial region using a Dlib-based face recognition

model. This model is built on a Residual Networks ResNet layer with 29 convolutional

layers [203]. 3. Two masked images are generated from thermal and visual RGB frames

in order to calibrate the two images together accurately. The masking of the thermal

images is conducted by assigning black or white values to pixels with less than or more

than a threshold value. For the visual images, we have utilized the deep learning-based

segmentation code by HrNet [42]. 4.The Homography matrix is constructed by using

the orientated fast and rotated BRIEF (ORB) properties between the two masked frames

[214]. 5.Facial landmarks are identified from the visual frame, and required ROIs are

computed based on these facial landmarks. In each RGB picture, 68 face landmark co-

ordinates are recognized and converted to the thermal image using the homography

matrix established in the previous stage. 6.Based on the specified ROIs and the thermal

image type, we can read the skin temperature of the desired facial areas.

The authors have utilized the estimated facial landmarks to define the selected facial

areas, as shown in Figure 4.4. Since the recorded frames are raw radiometric data, the

value of each pixel presents the temperature of the pixel’s representing area in the ac-

tual world. According to the Flir camera’s datasheet, when using the TemperatureLinear

(TLinear) option, the temperature of each pixel in degrees of Kelvin can be defined with

Formula 4.1. It is also very important to set the emissivity of the measuring target to the
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Figure 4.3: Identified Facial Areas Based on Landmarks In Three Different Facial Posi-
tions

correct number before the capture, which is 0.98 for the human skin. We have set the

TLinear resolution is set to 100 mK(millikelvins) in our recordings [140].

Ski nTemper atur e = (Pi xelV al ue/T l i near r esoluti on–273.15K ) (4.1)

Figure 4.4: ROI Detection Based on Facial Landmarks in Some Head Positions

The physical variables include the distance from the camera and head position vari-

ables. We have calculated three independent variables based on the facial landmark
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status to present the head position, which includes yaw, pitch, and roll. As figure 4.5

presents yaw variable is the rotation of the head along the Y axis (horizontal rotation)

and the pitch variable presents the rotation along the X axis (vertical rotation). The face

roll presents the face rotation in the XY plane. Table 4.4 presents the recorded depen-

dent and independent variables, including environmental, physical, physiological, and

psychological features.

Table 4.4: Recorded Variables

Category Feature

Survey Thermal preference

Thermal sensation

Indoor Air temperature

Relative humidity

Environmental properties Globe temperature

Airflow

Illuminance level

Outdoor Temperature

Physical Properties Distance to camera

Head Position

forehead

Infrared Thermal Reading cheeks

Nose

Chin
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4.3.3 Comfort Prediction

We have prepared all three types of environmental, physiological, and psychological

data to investigate the accuracy of different machine learning algorithms in predicting

subjects’ thermal preferences. In addition, we have studied the influence of indepen-

dent variables, including room temperature, distance from the camera, and head posi-

tion on the skin temperature-dependent variables. This section includes an initial in-

vestigation of all environmental and physiological data and the correlation of facial skin

temperature in different regions with room temperature. To that end, we have calcu-

lated the correlation factors between room temperature and skin temperature values

based on the Pearson Correlation Coefficient. The Pearson correlation coefficient indi-

cates the strength and direction of a linear relationship between variables and is relevant

for our calculations. The main part of the analysis section is the machine learning-

based thermal comfort prediction. In this study, thermal preference is a state, which

makes our case a classification problem. We have gathered two types of subjective ther-

mal votes, including thermal preference and thermal sensation. Considering the final

objective of these predictions, which is the personalized thermal environment control

in smart buildings, we have utilized the thermal preference variable for our machine

learning problem. We have trained two supervised machine learning algorithms to test

the accuracy of the prediction of the thermal preference based on the provided input

variables. We have selected the Random Forest (RF) and K-Nearest-Neighbor (KNN) al-

gorithms among all others due to our prior findings in our previous study. Based on our

research, these two algorithms perform better than the Support Vector Machine algo-

rithm in thermal comfort prediction based on personalized thermal images [165]. Other

researchers have also studied different machine learning algorithms for thermal com-

fort prediction, concluding the successful performance of Random Forest [29], Support

Vector Machine [36], and K-Nearest Neighbor [18]. The KNN is a classifier algorithm that

works based on the close proximity of similar data points, which has a wide application
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in recommender systems. An essential task in utilizing this classifier is selecting the best

number for the K hyperparameter, which provides us with the most accurate results. To

select the best K number for each subject, we have compared the accuracy of the classi-

fication with K numbers from 1 to 30 and selected the best K for each. Figure 4.6 displays

a visualization of the KNN classification when K=5 and with just two features of "Nose

Minimum Temperature" and "Right Cheek Minimum Temperature".

Figure 4.6: KNN Classification Visualization With Two Features for a Subject

The RF classifier is another supervised machine learning algorithm which works based

on several decision tree algorithms and subsets of data. RF employs several hyper-

parameters to either improve the performance and prediction accuracy or speed up

the model-making process. Therefore, it is essential to select the right combination

of hyperparameters based on the provided data to achieve an acceptable level of ac-

curacy. For the RF algorithm, we have conducted a grid search for tuning the hyper-

parameters by testing the accuracy of unique each configuration. The available op-
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tions include ’max-depth’: (40,60,80,100,110), ’max-features’: (’auto’,’sqrt’, ’log2’);’min-

samples-leaf’: (2,3,5);’min-samples-split’: (2, 5, 10), ’n-estimators’: (300,500,700, 1000).

Table 4.5 presents the selected hyperparameter combinations for each subject. Another

essential step in preparing our prediction models is feature selection process, which

helps us with choosing the most important input variables to reduce overfitting, im-

prove performance, and decrease computation time. Based on the data types, we have

selected the Chi-Squared method for our feature selection task. We have selected a lim-

ited number of features for each subject based on the chi-squared feature selection ap-

proach. Using this method, we could identify the dataset attributes that contribute the

most to our prediction variable, thermal preference. To increase the score of the model,

we require a dataset with high chi-squared statistics; thus, it would be advantageous if

we could choose features from the dataset that have high chi-squared statistics. Also,

the chance of data overfitting would go down if we chose 12 variables from the factors

given. We need to highlight that the total number of input variables is 22, which includes

18 skin temperature variables, 3 variables related to head position, and 1 variable for the

distance to the camera.
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Figure 4.7: A part of a Tree in the Random Forest Classification for a Subject

Moreover, we have used the K-fold cross-validation method to limit the likelihood of

over-fitting the model to the training set and produce a model that is more generally

applicable. That would be using a small sample to see how well the model is expected

to work when used to make predictions on data that wasn’t used during training. Both

algorithms were investigated using 10-fold cross-validation, in which the dataset was

randomly divided into 10 groups. Cross-validation performs the fitting operation ten

times, with each fit being conducted on a training set comprised of 90 percent of the

entire training set, with the remaining 10 percent being utilized as a holdout set for vali-

dation.

4.4 Results and Evaluation

4.4.1 Initial Analysis

A total of 10,930 image pairs were captured from 10 subjects. As the facial landmarks

are detected in the visual RGB images, we first need to look into the performance of the
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Table 4.5: Selected Random Forest Hyper-parameters For Each Subject

max_depth max_features min_samples_leaf min_samples_split n_estimators
S1 110 log2 3 10 300
S2 80 sqrt 2 5 1000
S3 40 auto 2 2 500
S4 60 auto 2 2 300
S5 100 sqrt 2 5 500
S6 60 sqrt 2 2 700
S7 40 auto 2 2 1000
S8 40 log2 2 2 300
S9 40 sqrt 3 5 300

S10 80 auto 2 5 300

landmark detection algorithm. Table 4.6 presents in detail the total number of recorded

frames for each subject, in addition to the number of frames that their facial landmarks

could be detected. All the subjects have participated in at least four experimental ses-

sions. Subject 3 and subject 5 have participated in five sessions. The number of cap-

tured images for subject 1 is slightly less than the other subjects due to some damaged

recorded frames, which were deleted. The highest number of captured frames is 1340

frames for subject 5. As shown in Figure 4.8 the percentage of detectable frames de-

creases as the distance from the camera increases. This decrease in face detection algo-

rithm performance is expected as by going farther from the camera, the image resolution

decreases as well. Although the integrated RGB camera has a resolution of 1280x960 pix-

els, the face recognition algorithms depend on the resolution of the facial frame detected

in the image. In addition, the face position influences the facial detection algorithm per-

formance. As an instance, the performance of a recent facial recognition algorithm was

98% in the frontal view, 84% for profile position, and 57% for half profile position. [215].

Distance from the camera has also been shown to impact the performance of landmark

detection algorithms (reference). Figure 4.8 displays that the lowest amount of facial

landmark detection for the whole dataset is 33% detection rate at 6.6 meters distance

from the camera, and the highest detection rate is 85% at the distance of 1.8 meters.

For each facial region, three measures of mean, maximum, and minimum are calcu-

lated in each frame. The initial results from our previous experiment have shown that
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Table 4.6: Recorded Frames and Detected Faces For All Subjects

Total Detected Percentage
S1 858 506 59%
s2 1050 736 70%
S3 1340 852 64%
S4 1071 641 60%
S5 1340 1036 77%
S6 1083 817 75%
S7 1084 636 59%
S8 1083 785 72%
S9 945 636 67%

S10 1076 669 62%
10930 6645 61%

Figure 4.8: Skin Temperature Range For Each Facial Location

there are some inconsistencies in the thermal camera readings. This change in thermal

measurements is due to the camera’s Fast Field Correction (FFC) action, which is exe-

cuted every 3 minutes to re-calibrate the camera. We have removed this thermal drift

by calibrating all the thermal values in each image frame with a reference point in the

background. We have used an IButton sensor to record the accurate temperature of the

subjects’ background partition and used this temperature value and its corresponding

pixels in the thermal images to calibrate all the other pixels’ thermal values. IButton

sensors have an accuracy range of ±0.5°C, and the resolution of this device is 0.125°C

[216]. For removing the outliers, we have only deleted the data with skin temperature

less than 20 °C and more than 37°C. We have not used any other smoothing filter on the

data as the previous research in this area [34, 18]. The reason for this decision is that
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our data includes image frames with sudden changes in the head position, which we

expect to influence the thermal readings to a high extent. Applying any filter to this data

for smoothing the data points may result in an inaccurate investigation of how chang-

ing the head position changes the infrared temperature. To have an initial presentation

of the extracted data, Figure 4.9 displays the room temperature, calculated minimum,

maximum, and mean for the nose and cheek area for subject 3. This figure includes

both the right and left cheek in addition to the average of these two in each frame. The

cheek average is calculated based on the head’s rotation degree and the visibility of each

side in the thermal frame. As it was mentioned in the literature and will be explained in

the next section. The thermal readings change as the head position changes in front of

the camera. This makes the thermal readings of some facial areas, such as the cheeks,

unrealistic at high rotation degrees. We have decided to add the cheek’s average fac-

tor based on the readings from both cheeks and the rotation degree of the head as it is

shown in conditional Equation 1:

Rotation < 30 : Cheeks Average Value = Average (Right Cheek, Left Cheek)

Rotation > 30 AND Yaw > 0 : Cheeks Average Value = Right Cheek

Rotation > 30 AND Yaw < 0 : Cheeks Average Value = Left Cheek

By comparing graphs (a) and (b) with graphs (c) and (d), we can see that the noise

resulting from changing the head position is much less in the nose area than the noise

in the right and left cheek. This shows that when the thermal reading in one cheek is im-

pacted due to the change in head position, the thermal reading of the other cheek is also

changed in the opposite way, which results in a more stable cheek average temperature.

Moreover, as the room temperature in this figure shows, the experiment successfully is a
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combination of constant and transient conditions. The whole section is transient ther-

mal heating, while the thermal condition in each sub-section was kept constant with the

thermal range allowance of 1°C.

Figure 4.9: Skin Temperature Range at Nose and Cheeks Area for Subject 3

The covered thermal conditions and subjective thermal preference votes for all sub-

jects are presented in Figure 4.10. As the experiment covers a wide range of room air

temperatures, all the subjects have experienced at least three different thermal prefer-

ences. In addition, subjects 2, 4,6,9, and 10 have experienced another level of prefer-

ringring "much colder". In addition, the total number of both thermal sensation and

thermal preference and the percentage of each vote are presented in the table 4.7. The

thermal preference measure was used in the prediction process as it was shown to be a

better predictor of thermal comfort [17].
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Table 4.7: Thermal Sensation and Thermal Preference Scaled Votes For All Subjects

Thermal Sensation Thermal Preference Total

Slightly

Cool

Neutral Slightly

Warm

Warm Slightly

Warmer

No

Change

Slightly

Cooler

Much

Cooler

S1 170 155 182 0 182 170 155 0 507

34 % 31 % 36 % 0 % 36 % 34 % 31 % 0 %

S2 61 488 137 49 367 182 55 131 735

8 % 66 % 19 % 7 % 50 % 25 % 7 % 18 %

S3 214 463 183 0 214 463 183 0 860

25 % 54 % 21 % 0 % 25 % 54 % 21 % 0 %

S4 154 118 244 124 154 190 172 124 640

24 % 18 % 38 % 19 % 24 % 30 % 27 % 19 %

S5 109 269 659 0 109 456 472 0 1037

11 % 26 % 64 % 0 % 11 % 44 % 46 % 0 %

S6 139 458 141 78 340 257 83 136 816

17 % 56 % 17 % 10 % 42 % 31 % 10 % 17 %

S7 248 230 157 0 248 230 157 0 635

39 % 36 % 25 % 0 % 39 % 36 % 25 % 0 %

S8 94 398 212 0 340 212 152 0 704

13 % 57 % 30 % 0 % 48 % 30 % 22 % 0 %

S9 37 270 184 204 15 86 243 351 695

5 % 39 % 26 % 29 % 2 % 12 % 35 % 51 %

S10 218 276 174 0 77 114 174 303 668

33 % 41 % 26 % 0 % 12 % 17 % 26 % 45 %
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Figure 4.10: Skin Temperature Range For Each Facial Location

The correlation factors between room temperature and skin temperature values are

calculated based on the Pearson Correlation Coefficient to better understand the in-

fluence of room air temperature on the skin temperature in different facial areas. The

Pearson correlation coefficient indicates the strength and direction of a linear relation-

ship between variables and is relevant for our calculations. As presented in Figure 3.9

the correlation value is calculated for all the subjects, and the average value is calcu-

lated in the last row. Regarding the average amounts of correlation among all subjects,

the cheeks’ average had the highest correlation of 0.75 with the room temperature. This

amount is followed by the nose area with a 0.63 and the chin area with a 0.54 correlation

number. The lowest correlation factors are for the left cheek, right cheek, and forehead

area, which is 0.46 for all of them. The comparison of the correlation of minimum, max-

imum, and mean temperature values in each region shows that the mean temperatures

have a higher correlation with the room temperature. Compared to the average correla-

tion values of the right and left cheeks, they show the same number of 0.46 for the mean

value and 0.31 for the maximum value.

By looking into the values for each subject, we can learn that for almost all the subjects,

the correlation values are highest in the average of the cheeks and the nose area. How-

ever, for some subjects, such as subjects 6 and 7, the cheek average is the highest, with
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correlation numbers of 0.91 and 0.84, while for subjects 3 and 4, the nose region has a

higher correlation of 0.80 and 0.83. Subject 9 shows approximately similar and high cor-

relation numbers of 0.81 and 0.84 for the nose and cheek average, respectively. A more

detailed investigation into the correlation of nose and cheek average among all subjects

shows that the highest amount is for subject 6, with 0.91 for the cheeks and 0.83 for the

nose area. The lowest correlation numbers are for subject 2 due to the subject’s unno-

ticed facial perspiration. Since the subject has a lower thermal tolerance, he perspires

more readily when temperatures rise. When it came to the experiment, however, the

amount of sweat was so small that it was hardly detectable to researchers or the partic-

ipant. In light of this behavior, it is essential to consider the sweating factor in a whole

other study as we change the emissivity of the skin temperature and apply other essen-

tial changes. However, we did not eliminate these subjects from this paper to have an

initial look at the impact of sweating behavior on the results. Another conclusion from

this table is that the cheek average correlation values have more consistency among all

subjects. Although the correlation in the nose area is as high as 0.83, for some subjects,

such as subject 10, it is only 0.35, which is low. However, the cheek average correlation

numbers are approximately high among all subjects, with a minimum value of 0.61 for

subject 1, which is still meaningful.
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Figure 4.11: Correlation of Different Facial Areas With Room Temperature For All Sub-
jects

Figure 4.12 shows the whole considered temperature data for subject 3 from five

experiment sessions. This figure displays a better visual understanding of how the tem-

perature in each facial region changes with the change in the room air temperature.

The linear trend line calculated for each facial area shows that the nose area has the

most changing range with a slope of 0.98 for the linear trend. The forehead temper-

ature changes the least, which is in line with the previous findings of our studies and

other literature [217]. The high amount of change in the cheek temperature is displayed

in this figure again. This shows that although the cheek temperatures increase as the

room temperature increases, the thermal readings vary to a high extent for the images

recorded at a constant temperature, which is due to the change in head position. This

variation is much lower when we calculate the average temperature of the two cheeks in

each frame.
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Figure 4.12: Skin Temperature Range For Each Facial Location

To have a better understanding of the influence of distance from the camera on the

thermal infrared readings, Figure 4.13 presents the range of maximum recorded values

at the forehead in each station for the whole dataset. The number of data points for

this chart is 7,260 thermal readings, which is the maximum recorded temperature of the

forehead in each data frame. The forehead area is selected for this purpose for two main

reasons. First, as it was said previously, the forehead temperature has more stability,

which makes it a better feature for looking into the influence of other factors. Second,

by changing the head position, some facial areas become invisible to the camera. How-

ever, the forehead temperature is always visible in the thermal images. As Figure 4.13

shows, the mean and median of the skin temperature decrease as the subjects get far-

ther from the thermal camera. The upper and lower quartile of the thermal readings also

have a decreasing pattern with the maximum amounts of (36.22°C, 34.96°C) at a 1-meter

distance from the camera and a minimum of (35.5°C, 34.19°C) at 6.6 meters from the

camera. Moreover, Figure 4.13 shows the changes in maximum reading of the forehead

area as the subjects change their head position. As we have mentioned in the literature
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review, the angle to the camera was proven to influence the skin thermal readings [39].

This change in the thermal readings was around 2°C for the eye area when we compared

the full frontal face and full profile images. In our experiment, we have recorded sev-

eral readings at various distances from the camera and at various temperatures, which

makes the temperature range in different head positions less. However, the increase in

the thermal readings’ mean temperature from full profile (35.13°C) to full frontal face

(35.38°C) , followed by a decrease to the profile face at the other side (35.15°C), is shown

in this figure.

Figure 4.13: Skin Temperature Reading Change with Distance From the Camera

4.4.2 Thermal Comfort Prediction

The objective of this phase was to compare the performance of two selected algo-

rithms on the prediction of thermal preference in a personalized approach. We have an-

alyzed the results using the two selected prediction algorithms, Random Forest (RF) and

K-Nearest-Neighbor (KNN). As mentioned in the methodology section, we have used

the chi-squared feature selection to select a limited number of features for each sub-

ject. Therefore, we could identify the dataset attributes that contribute the most to our

prediction variable, thermal preference. To avoid the problem of overfitting, we have

modified the number of selected features to ten variables. Moreover, for both algo-

rithms, we have utilized k-fold cross-validation to limit the likelihood of over-fitting the
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model to the training set and produce a model that is more generally applicable. That

would be using a small sample to assess how well the model is predicted to perform

when used to generate predictions on data that was not included during training. For

the RF algorithm, we have conducted a grid search for tuning the hyper-parameters in

order to exhaustively test the accuracy of each configuration for performance improve-

ment. Through this grid search, we have selected the best combination of hyperparame-

ters for each subject, which includes: max-depth, max-features, min-samples-leaf, min-

samples-split, and n-estimators. Table 4.5 shows the selected hyperparameters for each

subject. A grid search was also applied to the KNN algorithm to select the number of

neighbors from 1 to 30. The prediction results for the RF algorithm are presented in Ta-

ble 4.9, and the results of the KNN method are shown in Table 4.10. In addition, we have

compared the accuracy of these algorithms for all subjects in Figure 4.14. As this figure

shows, the RF algorithm performed much better than KNN for all the subjects. The high-

est accuracy for the RF algorithm is 92.2% for subjects 8 and 9; for the KNN algorithm,

the highest accuracy is 85.2% for subject 5. Although in our previous studies, the accu-

racy of the RF algorithm and the KNN algorithm was approximately similar [217], the RF

had better accuracy numbers in this experiment. This can result from introducing new

features to the training process, including head position and distance from the camera.

In regards to the precision values of each classifier, the average of precision values in

RF is approximately the same for "Slightly Warmer": 84.7%, "No Change": 84.7%, and

"Slightly Cooler": 86.4%, while the "Much Cooler": 92.8% has higher accuracy. The KNN

algorithm precision values are lower in all classes, with the highest precision of 76.1%

for the "Slightly Warmer" class.
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Table 4.8: Ten Most Important Selected Features for Each Subject

S1 ’Roll’, ’Yaw’, ’Pitch’, ’RcheekMin’, ’Rcheek’, ’NoseMin’, ’ForeheadMin’, ’Forehead’, ’ForeheadMax’, ’NoseMax’

S2 ’Yaw’, ’Pitch’, ’Distance’, ’LcheekMin’, ’RcheekMin’, ’ChinMin’, ’Rcheek’, ’Roll’, ’ForeheadMax’, ’Chin’

S3 ’Pitch’, ’Roll’, ’NoseMin’, ’Nose’, ’ChinMin’, ’Yaw’, ’Lcheek’, ’Distance’, ’RcheekMin’, ’Forehead’

S4 ’NoseMin’, ’Pitch’, ’Distance’, ’RcheekMin’, ’Roll’, ’Nose’, ’ChinMin’, ’Rcheek’, ’LcheekMin’, ’ForeheadMin’

S5 ’Yaw’, ’RcheekMin’, ’LcheekMin’, ’ChinMin’, ’NoseMin’, ’Rcheek’, ’Lcheek’, ’Nose’, ’ForeheadMin’, ’Chin’

S6 ’Yaw’, ’NoseMin’, ’RcheekMin’, ’Rcheek’,’LcheekMin’, ’Nose’, ’Lcheek’, ’Distance’, ’ChinMin’, ’RcheekMax’

S7 ’NoseMin’, ’Pitch’, ’Distance’, ’Nose’, ’LcheekMin’, ’Roll’, ’ChinMin’, ’Lcheek’, ’ForeheadMin’, ’LcheekMax’

S8 ’Pitch’, ’Yaw’, ’NoseMin’, ’LcheekMin’, ’ChinMin’, ’RcheekMin’, ’Distance’, ’Nose’, ’Lcheek’, ’ForeheadMin’

S9 ’NoseMin’, ’Yaw’, ’RcheekMin’, ’Nose’, ’LcheekMin’, ’ChinMin’, ’Rcheek’, ’Lcheek’, ’Distance’, ’ForeheadMin’

S10 ’Roll’, ’NoseMin’, ’Distance’, ’RcheekMin’, ’Nose’, ’ChinMin’, ’Rcheek’, ’RcheekMax’, ’ForeheadMin’, ’NoseMax’

Figure 4.14: Prediction Accuracy of RF and KNN algorithms for All Subjects

Table 4.9: Prediction Accuracy and Precision of RF Algorithm For Each Subject

Accuracy Precision

Slightly Warmer No Change Slightly Cooler Much Cooler

S1 83.0% 91.5% 74.0% 82.1% -

S2 83.8% 94.7% 83.3% 79.8% 88.9%

S3 85.6% 87.8% 84.7% 85.9% -

S4 82.0% 82.2% 80.2% 80.1% 88.7%

S5 87.8% 60.0% 87.5% 91.2% -

S6 88.1% 83.0% 86.9% 90.3% 98.7%

S7 88.2% 85.8% 90.2% 89.8% -

S8 92.3% 90.6% 93.0% 91.8% -

S9 92.3% 90.6% 93.0% 91.8% 94.9%

S10 78.0% 81.0% 74.2% 81.3% -

AVRG. 86.1% 84.7% 84.7% 86.4% 92.8%
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Table 4.10: Prediction Accuracy and Precision of KNN Algorithm For Each Subject

Accuracy Precision

Slightly Warmer No Change Slightly Cooler Much Cooler

S1 67.3% 82.8% 49.1% 69.6% -

S2 76.5% 80.3% 80.0% 57.8% 40.0%

S3 77.3% 76.5% 76.5% 80.2% -

S4 66.3% 65.5% 60.6% 69.4% 65.2%

S5 85.2% 55.4% 87.3% 86.8% -

S6 74.6% 53.5% 81.1% 79.7% 63.2%

S7 77.2% 79.9% 68.3% 89.7% -

S8 77.3% 55.3% 80.7% 81.7% -

S9 77.3% 44.7% 78.2% 72.3% 86.1%

S10 64.5% 59.3% 62.9% 73.4% -

AVRG. 74.3% 65.3% 72.5% 63.6% 63.6%

Considering the better performance of RF, we have continued the next phase just with

this classifier. The confusion matrices for all the subjects were calculated, and the results

are displayed in Figure 4.15. Based on these matrices, "Warmer" is the hardest class to

predict for most subjects. The percentage of wrong predictions in this class goes as high

as 37% which means 63% of the time, the classifier confuses wanting "No Change" with

preferring " Warmer" or even "Slightly Cooler". Although this subject participated in an

additional sub-session for the experiment and the number of data points was a total of

1037 image frames for this subject, the percentage of "Warmer" votes was 10% of the

whole dataset. The fifth session for this subject was on the hotter side of the thermal

spectrum, which has added additional "cooler" votes. We can conclude from this exper-

iment that, in addition to the total number of data points, the inconsistent number of

thermal votes will result in low accuracy. The low performance of the "Warmer" classi-

fier is shown in other subjects as well, including Subject 6: 51% true positives, Subject

8: 64% true positives, Subject 9 : 50% true positives, and Subject 10 : 61% true posi-
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tives. This can be explained by the lower number of "warmer" votes and the absence of

colder thermal conditions. As the clothing level of all the subjects were one short sleeve

shirt with pants, and due to the health concerns, we had decided to keep the minimum

temperature of all experiments at approximately 21°C. The best performance of the RF

classifier for the "Warmer" class is for subjects 1 and 7, with 90% correct predictions.

The most correct prediction is for the "Slightly Cooler" class, which goes as high as 97%

true predictions for subject 7. The predictions for subject 2 are the worst performance

of this classifier in all the classes, which is due to the unnoticed sweating of this subject

at the higher temperatures, which was previously explained in the previous section. Al-

though sweat changes the whole path of how a thermal image needs to be studied for

thermal comfort prediction, we have included this case as an example of the reasons for

an unsuccessful prediction process.
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Figure 4.15: Confusion Matrices for RF Classifier

4.5 Conclusion and Future Work

An automated infrared thermal reading platform was investigated to predict the indi-

vidual’s thermal preference at a farther distance from the camera. The advantage of this

system is the automated calibration of thermal and RGB data frames without manual

registration or information about the distance between the camera and the subject. The

framework allowed the investigation of the influence of distance from the camera and

angle to the camera on thermal readings for the whole dataset. The experimental results
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confirmed that changes in all three variables, including the environmental temperature,

distance from the camera, and head positions, change the thermal readings. While the

changes in temperature readings in different thermal sessions are due to changes in fa-

cial skin temperature, distance and head position do not change the skin temperature

but just the thermal reading through the thermal camera. It was highlighted that the

thermal readings from the subjects’ facial skin decreased in value while they increased

their distance from the camera. Head rotation was also proven to decrease the thermal

readings compared to the full frontal face position. Furthermore, all the facial areas

have shown a strong correlation with the room air temperature, while the cheek has the

highest correlation with the environmental temperature, followed by the nose area. A

new variable was also introduced as the average present value of both cheeks that could

eliminate the noise in the data while the head position changes. Another significance of

this study is the combination of at least four sub-sessions, each continuing for 90 min-

utes at an approximately constant temperature. The gradual increase in the constant

thermal environment of each sub-session could create several unique and realistic data

points. All the previous studies were conducted in transient heating or cooling sessions

with a fast rate of change in the air temperature, which is unrealistic compared to the

conditions in an actual office setting. We have introduced a new value for the average of

the two cheeks based on the face rotation value, which has higher consistency while the

head position changes. Moreover, we have examined the correlation of the skin temper-

ature in different facial areas with the room temperature. Our results indicate a higher

correlation of nose and cheek averages with the room temperature. However, the cheek

average correlation numbers have a higher consistency among all subjects. In addition,

we have investigated the potential of predicting an individual’s thermal comfort. We

have studied the accuracy and precision of the Random Forest and K-Nearest Neighbor

prediction algorithms. The result highlighted an average accuracy of 86% for the Ran-

dom Forest algorithm and 74% for the K-Nearest Neighbor algorithm. We can conclude
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from this experiment that, in addition to the total number of data points, the inconsis-

tent number of thermal votes will result in low accuracy. This research has some limita-

tions in regards to both data collection and analysis. Firstly, although we have consid-

ered personalized thermal comfort, which does not require many subjects, it would be

best to include subjects from diverse skin colors, ages, and body mass index (BMI) con-

ditions. With regard to the prediction process, we have included supervised algorithms,

which are not always the best option for online applications. In our next studies, we will

focus on the online prediction process and related approaches such as reinforcement

learning.



CHAPTER 5: CONCLUSIONS

5.1 Dissertation Highlights

An automated infrared thermal reading platform was investigated to predict the indi-

viduals’ thermal preferences at a farther distance from the camera. The advantage of this

system is the automated calibration of thermal and RGB data frames without manual

registration. The framework allowed the investigation of the influence of distance from

the camera and angle to the camera on thermal readings for the whole dataset. To create

a holistic database for the experiment, we have developed and published the Charlotte-

Thermal Face dataset. This publicly available dataset includes facial thermal images

with variations in environmental properties, distance from the camera, and head posi-

tion in raw 16-bit data frames. The data is annotated with each person’s environmen-

tal conditions, facial landmarks, and thermal sensations at the time of recording each

frame. The subjective thermal sensation annotations are a new addition to the face

thermal image datasets. The comparative study of the temperature in different facial

areas shows the importance of environmental temperature in facial thermography. To

investigate the reliability of the dataset, we have looked into the temperature range of

the images and the correlation of ambient temperature with the skin temperature of

each subject. The experimental results confirmed that changes in all three variables, in-

cluding the environmental temperature, distance from the camera, and head positions,

change the thermal readings. While the changes in temperature readings in different

thermal sessions are due to changes in facial skin temperature, distance and head po-

sition do not change the skin temperature but just the thermal reading through the in-

frared camera. It was highlighted that the thermal readings from the subjects’ facial skin

decreased in value while they increased their distance from the camera. Head rotation
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was also proven to decrease the thermal readings compared to the full frontal face posi-

tion. Furthermore, all the facial areas have shown a strong correlation with the room air

temperature, while the cheek thermal value has the highest correlation with the envi-

ronmental temperature, followed by the nose area. A new variable was also introduced

as the average present value of both cheeks that could eliminate the noise in the data

while the head position changes. Additionally, significant to this study is the combina-

tion of at least four sub-sessions, each continuing for 90 minutes at an approximately

constant temperature. The gradual increase in the constant thermal environment of

each sub-session could create several unique and realistic data points. Most of the pre-

vious studies were conducted in transient heating or cooling sessions with a fast rate

of change in the air temperature, which is unrealistic compared to the conditions in an

actual office setting. In addition, we have investigated the potential of predicting an

individual’s thermal comfort. We have studied the accuracy and precision of the Ran-

dom Forest and K-Nearest Neighbor prediction algorithms. The result highlighted an

average accuracy of 86% for the Random Forest algorithm and 74% for the K-Nearest

Neighbor algorithm. We can conclude from this experiment that, in addition to the total

number of data points, the inconsistent number of thermal votes will result in low ac-

curacy. Utilizing thermal cameras, this research provides encouraging findings for the

establishment of automated thermal comfort prediction from a distance.

5.2 Future Work

Utilizing thermal cameras, this research provides encouraging findings for the estab-

lishment of automated thermal comfort prediction from a distance. Personalized ther-

mal comfort modeling is a growing and promising approach due to the potential for de-

creasing the necessity for long-term feedback collection from occupants. This research

has some limitations in regards to both data collection and analysis. Personal charac-

teristics obtained through physiological sensing technologies might be investigated fur-

ther following the recent accelerated development of infrared camera technologies. In
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addition, the participants of the studies can be more diverse in future research in terms

of including different age groups, gender types, ethnicity, skin color, and health status.

In this regard, skin color is particularly important for the non-contact camera-based

thermal comfort prediction methods as it results in changing the emissivity of the tar-

get area and impacts the thermal readings. There are currently several thermal comfort

scales utilized for reporting occupants’ subjective thermal votes. Most of the researchers

are using the thermal sensation scale. In this research, we have utilized thermal sensa-

tion and thermal preference. However, other thermal scales could be studied further

to be applied in the building control systems. Different thermal scales of application

and performance need more investigation for improved future research. Although su-

pervised learning algorithms, especially RF and KNN, have resulted in good accuracy,

reinforcement learning RL-based research still needs more research. One main reason

for the limited RL research is the difficulty of application and performance validation of

an online system, forcing researchers to use offline simulated test beds for this objective.

Future research on online learning approaches for personalized thermal comfort would

be helpful for the field.
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