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ABSTRACT

DAWN RAY. Average Genus of Oriented Rational Links. (Under the direction of
DR. YUANAN DIAO)

The goal of this dissertation is to develop the formulation of the average genus

of all reduced alternating rational links and knots with a given crossing number. In

2014, Nathan Dunfield presented a preliminary report wherein he approximated the

growth of the genus of knots with respect to the crossing number. His findings led

him to hypothesize that this growth is linear [1]. Moshe Cohen recently submitted a

paper providing a lower bound estimate of the average genus of knots with a given

crossing number [2]. However, the actual average for knots and links has yet to be

determined. Using the counting methods in a paper produced by Y. Diao, M. Finney,

and D. Ray [3], we are able to derive a precise average for the genus of links and

knots with crossing number given and estimate a weighted average of the genus for

all rational links.

This dissertation consists of six chapters. Our most significant contribution and

calculations are presented in chapters four and five after we familiarize the reader on

the essentials of knot theory and its invariants and provide an overview of the results

from our paper on enumerating rational links. The structure of the dissertation is

organized as follows: in the first chapter, we provide a background of the field of knot

theory as it relates to our results. The second chapter will familiarize the reader with

definitions in knot theory as it pertains to our research. The next chapter will present

the results from our enumeration paper including examples on how we addressed over

counting and a walk-through of the construction of our computations. The fourth

chapter will give specifics on how we were able to count the number of rational links

with given crossing number based on the number of Seifert circles in the Seifert circle

decomposition. In the fifth chapter we will discuss the theorems that will lay the final
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foundational piece needed to determine the average genus and then discuss the final

results. Lastly, the sixth chapter will discuss another type of link, the Montesinos

link, and details how the results of our paper can be extended to future work in

enumerating this special class of links.
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CHAPTER 1: INTRODUCTION

The genus invariant is a geometric invariant of knots and links. In 1934 Herbert

Seifert introduced an algorithm to create a connected orientable surface, known as

a Seifert surface, from any given knot diagram. The genus of a link L is the mini-

mum genus of any Seifert surface that spans L. In 1958 Richard Crowell and Kunio

Murasugi both independently showed that by applying Seifert’s algorithm to a re-

duced alternating diagram of an oriented alternating link one obtains a surface with

minimal genus of that link [6], [7]. Formulations of the genus of 2-bridge, or rational,

knots and links have been published but only in relation to polynomial invariants ([6],

[7], [8], [9]). Recently Moshe Cohen used billiard table diagrams to determine a lower

bound on the average genus of 2-bridge knots (a surface with only one component)

with crossing number c(D) [2]. In 2014 Nathan Dunfield used rejection sampling to

compute upper and lower bounds on the average genus of rational knots when com-

pared to the crossing number. His preliminary data indicated a linear relationship

between the crossing number and the average genus [1]. In 2022 Cohen produced

results that the average genus of a knot asymptotically approaches c(D)/4 + 1/12

[10].

We are particularly interested in determining the precise average genus for alter-

nating rational knots and links with minimal diagram D and crossing number c(D).

It is known that we can use the formula 2g(L) = c(D)−s(D)−µ(D)+2 to determine

the genus of an alternating link diagram, where s(D) is the number of Seifert circles

and µ(D) is the number of components in D. In order to utilize this formula, there are

two values we need to calculate to ascertain the average genus for rational links and

knots with crossing number c(D). First, in Chapter 4 we calculate the exact average
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number of Seifert circles, s(D), for all of the knots and links with crossing number

c(D). Second, we present theorems that allow for the differentiation between rational

links (µ(D) = 2) and rational knots (µ(D) = 1). Our main result in Chapter 5 proves

that this distinction is possible if we know c(D) and s(D). Using these two results, we

are able to determine the average genus of links (knots) with given crossing number,

glc(D)(D) (gkc(D)(D)). Further, we can estimate a general weighted average, gc(D)(D).

Results from our data show a strong linear relationship between the average genus

and the crossing number as c(D)→∞, a conjecture consistent with the results from

Cohen [10].

Rational links are the closure of rational tangles. It is hypothesized that rational

tangles play an important role in molecular biology in relation to the topology of DNA

molecules. Enzymes that act on DNA during replication and recombination modify

the structure of the helices to relieve super-coiling. During this process a substrate

binds to the enzyme and the enzyme then performs an assigned action and releases

a product. Observations of this process under electron micrography have produced

pictures of DNA tangles that are converted into mathematical models of rational

tangles. The role that the topology of these rational tangles play in DNA replication

is not completely understood, but it is believed that particular configurations might

serve a function.

An example from one particular experiment using the enzyme Tn3 resolvase shows

several different links appearing throughout each step of the process of recombination.

In this experiment the initial enzyme complex is an un-knotted DNA strand tA, or

the trivial knot. The substrate N(ts
⊕

ta) acts on tA within the enzyme. During the

first iteration in this process, the enzyme releases its product resulting in the Hopf

link. The second iteration produces a figure-8 knot. After two subsequent products

researchers were able to detect the 62 knot, as illustrated in Figure 1.1 [11].

Knot theory is a broad and deep subject with many classical problems and con-
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Figure 1.1: The DNA Knot 62 as a result of four rounds of recombination [4].

jectures. Enumerating links was one of the first challenges faced by knot theorists in

its infancy. Peter Tait printed the first catalogue of knots in 1876 and in 1987 Claus

Ernst and DeWitt Sumners obtained a precise formula for the number of un-oriented

rational links. Readers interested in the history of enumeration can refer to [12],

[13], [14], and [15]. Our paper [3], the results of which are summarized in Chapter 3,

completely enumerates the oriented rational links with crossing number c(D) using

an invariant called the deficiency number. To do this we define a particular repre-

sentation of the Seifert circle diagram, called a R-template. We use this template

as a foundation for our results in Chapters 4 and 5, and as a result we are able to

determine the average genus of all rational knots and links.

Our future work will consist of applying our enumeration techniques to a larger

class of links called the Montesinos links.



CHAPTER 2: DEFINITIONS

In this chapter, we will discuss background information needed to understand the

subsequent chapters. We begin with definitions in topology as it relates to surfaces

and genus, we will then describe key concepts within knot theory and introduce the

rational tangle and detail the importance of this tangle as it relates to our research.

Finally, we will define and discuss specific invariants used in our research.

2.1 Seifert Surfaces and Genus

A n-manifold is a topological space X in which each point x ∈ X has a neighbor-

hood U that contains x and is homeomorphic (or topologically equivalent) to Rn. If

X has a boundary, and x ∈ U maps to a point on the boundary, then x is a boundary

point. The set of all boundary points in X is called the boundary of X. X is compact

when any covering of X by open sets has a finite subcover [16]. A closed, compact

manifold is a manifold with no boundary. Our main interest lies in compact manifolds

of dimensions 1 and 2. A surface is a compact 2-manifold.

A surface F is orientable if every point in F can be consistently associated with a

clockwise or counter-clockwise direction. Surfaces that are not orientable are referred

to as unorientable. One of the most-well known unorientable surfaces is the Möbius

band, illustrated in Figure 2.1 below. For our purposes we will only be interested

in orientable surfaces. The Classification Theorem for Compact Surfaces states that

every oriented compact surface is homeomorphic to a sphere or a connected sum of

tori [17], thus we are able to classify any orientable surface.

A function f mapping topological spaces f : X → f(X) ⊂ Y is a homeomorphism

if f and f−1 are continuous and f is a bijection. Further, we say f is an embedding



5

Figure 2.1: Left: A surface with orientation (torus), Right: An unorientable surface
(Möbius band)

and X is embedded in Y .

A homotopy of a topological space X ⊂ R3 is a continuous map f : X× [0, 1]→ R3.

Let t ∈ [0, 1] with ft(X) representing the evolution of X at any given time, t, and

f0 be the identity map. We define the mapping as an isotopy if ft is injective for all

t ∈ [0, 1] [16]. A genus is the number of holes or handles that a surface has. A torus

is a surface of genus 1. Figure 2.2 is an example of a surface with genus 2.

Figure 2.2: A surface with genus 2

2.2 Knots and Links

A knot K ⊂ R3 is the embedding of a unit circle S1 into Euclidean 3-space,

R3. A link is a finite disjoint union of knots: L = K1 ∪ K2 ∪ .... ∪ Kn, where

each Ki is called a component of the link. Two knots are identified as equivalent

when carrying out certain moves in 3-space doesn’t damage or change the essential

topological properties of the knots. Two knots K1 and K2 are ambient isotopic if

there is an isotopy h : R3 × [0, 1]→ R3 such that h0 is the identity map, and each ht

is a homeomorphism for t ∈ [0, 1]. Thus two knots are equivalent if they are ambient

isotopic.
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Figure 2.3: Presentations of a knot (left) and a link (right) in R3.

The projection of a knot onto a two-dimensional plane gives a planar representation

of the knot called a knot projection or a knot diagram. Let π : R3 → R2 be the

mapping of the projection of a knot K ⊂ R3. We say a point x1 ∈ π(K)) is a

multiple point if a neighborhood U around π−1(x1) contains more than one element.

The projection of a knot is called regular if there are a finite number of multiple

points and all such points are double points, known as crossings. In other words,

|π−1(x)| ≤ 2 for all x ∈ π(K) and |π−1(x)| = 2 for a finite subset of x ∈ π(K).

Projections of almost all knots and links, with the exception of the wild knots, have

a regular projection.

Figure 2.4: Two presentations of the knot projection of the trefoil knot.

Let D be the regular planar diagram of a link L. As shown in Figure 2.4, this

diagram D has breaks at each crossing to indicate an over and under strand. We can

give the link L orientation by choosing a direction to traverse the link. If the link L

is oriented, then D will inherit this orientation. Each crossing is given a sign based

on the direction of the over strand. A crossing is defined as positive if it is presented

as the left crossing in Figure 2.5 and negative otherwise.

Equivalent planar diagrams have many different presentations. For example, Figure
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Figure 2.5: Example of a positive and negative crossing in D

2.4 shows two equivalent presentations of the trefoil knot. Let D1 and D2 be regular

projections representing a link L. Then there exists a finite sequence of moves, called

Reidermeister moves that will take D1 to D2. Performing these moves on a link

diagram allows for manipulation of a projection while preserving the link type. There

are three types of Reidermeister moves as illustrated in Figure 2.6. Type 1 (R1) adds

or removes a curl, type 2 passes one string over another, and type 3 pushes one strand

past a crossing involving two strands. Reidermeister proved that these three moves

in conjunction with a planar isotopy are all that is required to transform D1 to D2

[18]. Since each of these operations can be realized via an ambient isotopy to the link,

equivalent diagrams define equivalent links [19].

Figure 2.6: Reidermeister moves

A projection is alternating when traversing the knot results in each over crossing

subsequently followed by an under crossing and vice versa. Most links are non-

alternating, however alternating links are a very important class of links with several

nice properties. Crossings that can be removed by a simple twist are called nugatory,

see Figure 2.7. A diagram with no nugatory crossings is called a reduced diagram.

Let D now be a reduced, alternating projection of a link L. By choosing an
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Figure 2.7: Removing a nugatory crossing.

orientation for each component, at each crossing we will create a small neighborhood

and make a local change as shown in Figure 2.8: first delete the crossing and then

connect the two compatible ends based on their orientation. We continue to do this at

each crossing, resulting in a series of disjointed loops in R2 with no crossings. These

loops are called Seifert circles. The collection of all Seifert circles in D is called the

Seifert circle decomposition of D. Note that some Seifert circles may be nested. Let

s(D) be number of Seifert circles in D.

Figure 2.8: A neighborhood of a crossing (top left) shown with the crossing smoothed
based on their orientation (top right). Smoothing all crossings (bottom left) results
in the Seifert circle decomposition (bottom right)

A Seifert graph G is constructed by associating each Seifert circle with a vertex

and each edge with their shared crossing(s). Each edge can be labelled with a + or

− to indicate the sign of the associated crossing in D. A single edge between two

circles indicates a single or lone crossing. Two vertices that share more than one edge
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represent two Seifert circles that share multiple crossings. A cycle is a circuit with

2n vertices. In Figure 2.9, the Seifert graph of the 1012 knot shows the Seifert circle

decomposition has five Seifert circles including a 4-cycle with three lone crossings and

one multiple crossing.

Figure 2.9: A planar representation of the 1012 knot with orientation and its associ-
ated Seifert graph.

A Seifert surface of a link L is an orientable surface S embedded in R3 with L as

its boundary. Given a projection of a link, we can create a Seifert surface as follows:

placing the projection on the xy-plane, we will perform the operations to create a

Seifert circle decomposition. Each circle in the decomposition will then be made to

bound a disc in the plane. We will place the circles at different heights in the z-plane

so that no circle will lie on the same horizontal plane. Each crossing will be presented

as twisted bands that will connect the discs to one another. The resulting surface

will have one boundary component so that the boundary component is the link [20].

Figure 2.10: Creation of a Seifert surface from a projection of the trefoil knot.
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The genus of a link L is the minimal genus among all Seifert surfaces of L [19]. We

will denote g(L) as the genus of L. The genus of L is an invariant. Invariants are

constants or polynomials that are intrinsically associated with a link. If two links are

equivalent, then their invariants will be equal. However equality of invariants does

not guarantee link equivalence.

The genus of a projection surface of L constructed from D satisfies the equation

2g(L) = c(D)−s(D)−µ(D)+2 where µ(D) is the number of components in D. How-

ever, a minimal crossing diagram does not guarantee the construction of a minimal

genus surface. There are some knots where it is impossible to construct a minimal

genus spanning surface on any diagram.

2.3 Rational Tangles

A tangle, T , is a region in the projection plane surrounded by a circle. Four strings

protrude from T in the four intermediate directions. A rational tangle or a 2-tangle,

lies within the circle and is constructed by alternatively twisting the ends in a series

of vertical/horizontal twists. The tangle is referred to as (a1, a2, ..., an) where each

ai, 1 ≤ i ≤ n represents the number of twists. For example in Figure 2.11, we have a

rational tangle presented as (3, 2, 2). Rational tangles are classified by relating them

to loops on a torus and in so doing we can associate them with a pair of coprime

integers (p, q) [16]. The rational tangle is thus referred to as the p/q-tangle.

Figure 2.11: An example of a p/q tangle on the projection plane.

A rational link can be formed by connecting the loose ends of the tangle. There

are several ways to represent a planar diagram of a rational link. We can perform a
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numerator or denominator closure on the tangle, in which neighboring loose ends are

joined together, an example of which is shown on the left in Figure 2.12. They can also

be presented as a braid or plat closure (Figure 2.12 (right)) with four strings. This

presentation is also known as a 4-plat, or a 2-bridge, link [21]. These representations

are equivalent, as can easily be seen between the rational link and 4-plat in Figure

2.12, by performing a planar isotopy.

Figure 2.12: Left: Denominator closure of the (3, 2, 2) rational tangle results in a
link. Right: equivalent representation of the (3, 2, 2) link as a braid.

Let L = d(p, q) be the denominator closure of a rational link, where p and q are

co-prime integers and 0 < p < q. Let the components of the odd-lengthed vector

(a1, a2, ...., a2n+1) represent the twists in the rational tangle. We can represent the

vector as a continued fraction decomposition with each a1 > 0 and

p

q
=

1

a1 + 1
a2+

1

....+a2n+ 1
a2n+1

.

Under these given conditions the continued fraction decomposition is unique [22].

In 1956 Shubert presented two very important results proving the equivalence be-

tween rational links [23]. The first is that two unoriented links d(p, q) and d(p′, q′)

are topologically equivalent if and only if i) q = q′ and ii) either p = p′(mod q) or

p · p′ = 1(mod q) [23]. The second states that two oriented links are topologically

equivalent if and only if i) q = q′ and ii) either p = p′(mod 2q) or p · p′ = 1(mod 2q)

[23].
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2.4 Braids and Additional Invariants

A cylindrical n-tangle is a ball D2× [0, 1] with a series of n-inputs descending from

the top (D2×1) and a line of n-outputs in the bottom directly below [16]. A cylindrical

n-tangle is called a n-string braid if it has no extra loops, and each string does not

intersect others and descends monotonically, that is, without reversing direction.

Figure 2.13: A 4-string braid

A closed braid is formed when the two discs are glued together. It is known that

every oriented link can be presented as the closure of a braid [24]. The braid index

b(L) of a link L, is another knot invariant. It is the minimum number of strings

needed to present a link as a closed braid from all possible projections of L. Similar

to the genus, the braid index requires the minimization of a geometric property, so it

can be very difficult to calculate. Let s̃(L) represent the minimal number of Seifert

circles for all possible Seifert circle diagrams of L. In 1987, Yamada proved that for

any oriented link, s̃(L) = b(L) [25]. In 1993, Murasagi and Przytycki proved there

was a systematic way to reduce the number of Seifert circles to their minimal value

using a link preserving operation (M-P operation). The foundation of this operation

reroutes lone crossings in a cycle of Seifert circles. Note that lone crossings can only

occur in cycles, otherwise they would be nugatory. By systematically rerouting any

existing single, non-nugatory crossings, cycles are reduced and eventually collapse into

a Seifert graph with no cycles. Once all the cycles have been removed, the minimal

diagram has been obtained. The authors conjectured (M-P conjecture) that the braid

index may be equal to the number of Seifert circles in D minus the maximal number
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of M-P operations.

Figure 2.14: A Seifert decomposition with six Seifert circles, two 4-cycles and corre-
sponding Seifert graph [5]

Figure 2.15: A single crossing in the top 4-cycle is rerouted and reduces the number
of Seifert circles to four. [5]

Figure 2.16: Another lone crossing is rerouted reducing the second cycle resulting in
a reduced diagram with no lone crossings and its associated reduced Seifert graph [5]

Using the M-P operation, Diao, Hetyei and Liu proved that, for a reduced alter-

nating diagram D of an alternating link L, b(L) equals the number of Seifert circles

s(D) if and only if the Seifert graph has no edges of weight one (no lone crossings)
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[26]. They further proved that the M-P conjecture was in fact true for many reduced

alternating diagrams including all rational links and alternating Montesinos links.

The reduction number r(D) is defined as the maximum number of Seifert circles that

can be reduced by rerouting lone crossings in D. In [27] Diao, Ernst, Hetyei, and Liu

proved for several classes of links that b(D) = s(D)− r(D).

Consider two links L1 and L2 and their projections D1 and D2, these two links

can be summed by cutting into each link and reconnecting the ends, as illustrated in

Figure 2.17. This construction is called the connected sum operation and is denoted

L1#L2. A long conjectured question in knot theory is whether the crossing number

of a link is additive under the connected sum operation, in other words is it true that

c(L1) + c(L2) = c(L1#L2). The answer is known for several classes of links, but not

for all. To prove this conjecture is true for the torus knots, Diao defined an invariant

called the deficiency number d(L) of a link L as d(L) = c(L)−2g(L)−b(L)−µ(L)+2

[28]. Furthermore, he proved that for links with deficiency zero (d(L) = 0) the

connected sum equality holds. Using the results from [27] and the definition of genus,

2g(L) = c(D) − s(D) − µ(D) + 2 we can now redefine the deficiency number. For

a reduced alternating link L and its associated planar diagram D, it is known that

g(D) = g(L), c(D) = c(L), and µ(D) = µ(L). Thus a simple substitution results in

d(L) = (2g(L) + s(D) + µ(D)− 2)− 2g(L)− b(L)− µ(L) + 2 = s(D)− b(L). Since

b(L) = s(D) − d(L), a link is of deficiency zero only if b(L) = s(D). Finally we can

see from our definition of the reduction number that d(L) = r(D).

Figure 2.17: Projections of the connected sum of two trefoil knots L1 and L2

Using the reduction (deficiency) number and the results summarized in this section,
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we will next present how we were able to enumerate the set of oriented rational links

with a given deficiency number.



CHAPTER 3: ENUMERATION OF RATIONAL LINKS

In this chapter, we will discuss the results from our paper [3] which details how to

enumerate the oriented rational links, for a more detailed reading, we refer the reader

to Diao, Finney, and Ray [3]. Note that in the following discussion that the usage of

the word knot specifically indicates a link with only one component while a link can

have one or more components.

The challenge of enumerating links and knots is a classic problem in knot theory.

Peter Tait was the first mathematician to print a catalog of knots in 1876. It contained

the diagrams of 15 knots with up to 7 crossings. In 1885, Charles Little created a

more extensive catalog of alternating links up to order (crossing number) 10 and then

took an additional six years to create a catalog of non-alternating diagrams with up

to 10 crossings. This list, done all by hand, had no omissions and only one duplication

(left undiscovered until 1974) [14]. In the 1960’s John Conway introduced the concept

of the tangle. Using this powerful notation, he was able to enumerate knots up to

order 11 and links up to order 10 with only 4 omissions. This ended the era of hand

calculation. In the 1980’s Dowker and Thistlethwaite used computers to extend the

catalog to 13 crossings. And in the 1990’s Thistlethwaite extended the list to order

16, a catalog of over 1.7 million knots. [16]

The discovery of invariants has been an invaluable tool in the advancement of

solving the enumeration problem for links with n crossings. In 1987, Ernst and

Sumners were able to define a precise formula for the set of un-oriented rational links

|Un| with crossing number n [15].

|Un| = 2n−3 + 2b
n−3
2
c
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Using their calculation of un-oriented rational links, in our paper Diao formulated

the count of the oriented rational links, Λn as [3]

|Λn| =
1

3

(
2n−1 +

5 + (−1)n

2
2b

n
2
c−1 +

−1 + (−1)n + 2(−1)b
n+1
2
cn

2

)

Using the Seifert circle decomposition of a rational link and the reduction number

invariant, the purpose of this chapter is to show how to get a precise count of the

number of oriented rational links.

3.1 Preferred Standard form and R-Decompositions

Let p, q ∈ N with 0 < p < q and gcd(p, q) = 1. Let a1, a2, ..... ∈ Z+ and

(a1, a2, ..., a2k+1) be the unique vector of odd length such that

p

q
=

1

a1 + 1
a2+

1

.... 1

a2k+ 1
a2k+1

.

The above will be presented as p/q = [a1, a2, ..., a2k+1]. The rational link correspond-

ing to p/q will be presented as the 4-plat projection L where each aj represents

crossings in the 4-plat. Labelling the strings of the 4-plat I-IV from top to bottom

as shown in 3.1, we will begin with a1 representing leftmost crossings between strings

II and III and shift up to strings I and II for crossings a2, then down to strings II

and III for a3 and so on. This pattern will continue until we reach a2k+1, the right-

most crossing, between strands II and III. We will refer to this projection as being in

preferred standard form (or PS form) if the link is drawn so that the bottom string

of the 4-plat is oriented from right to left and the first crossing on the left (a1) is an

under crossing with respect to the long strand (string IV) at the bottom.

The inverse of a link L is realized by changing the orientation of all components.

Given a projection L in the PS form, we will define the reversal of the 4-plat to be the

inverse of L rotated 180 degrees around a vertical axis. The reversal will result in a
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Figure 3.1: The rational link (56/191) presented in the PS form with strings labelled.

second 4-plat L′, see Figure 3.2. Rational links where L and L′ are indistinguishable

are called symmetric. The reversal of a 4-plat is equivalent to the inverse of L. Since

rational links are invertible, we know that L′ is equivalent to L, thus L ∼ L′.

Figure 3.2: The rational link L and its reversal L′

Using Shubert’s results [23], we proved that every oriented rational link L can be

presented as at most two 4-plats in the PS form [3]. In the case that the projection of

L in the PS form can be represented by exactly two distinct projections, then these

two rational links must be the reversals of each other.

A rational link can only have one or two components and L(p/q) will have two

components if and only if q is even. If it has one component, then q is odd and

the sign of the first crossing a1 is determined by the designated orientation given by

the definition of the PS form. If it has two components, the first crossing will be

positive or negative based on the orientation of the second component, which will be

determined by the orientation of the top strand.

The Seifert circle decomposition of an oriented rational link in PS form will be

called an R-decomposition. Let the Seifert circle C created by the long arc on the

bottom be called the large Seifert circle.
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Figure 3.3: Top: The rational link [3, 2, 3, 3,−1,−2,−3, 4,−4] with orientation; Bot-
tom: the associated R-decomposition

Assigning orientation of the component(s) will result in a signed vector [b1, b2, ..., b2m+1]

where each bi = ±ai corresponds to the sign of each ai crossing. For example, Figure

3.4 shows L(5075/17426) with orientation resulting in the signed vector

[3, 2, 3, 3,−1,−2,−3, 4,−4]. We can now group consecutive bj’s with the same signs

together, which will result in a series of blocks, which we will denote as B1, B2, ....

One can see that positive crossings reside outside of C while negative crossings are

inside C. This can be further clarified into the statement: positive blocks result in

Seifert circles outside of C and negative blocks result in Seifert circles inside of C. In

Figure 3.4, the R-decomposition shows blocks B1 = (3, 2, 3, 3), B2 = (−1,−2,−3),

B3 = (4), and B4 = (−4)

Figure 3.4: R-decomposition of [3, 2, 3, 3,−1,−2,−3, 4,−4] with the shown orienta-
tion of L(5075/17426)

3.2 Rational Links Types and Addressing Over Counting

Since L ∼ L′ and each non-symmetrical link L and L′ have distinct PS forms and

thus distinct Seifert circle decompositions, we have to address the over-counting that

will naturally occur when enumerating the oriented rational links. To do this, we will
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break up the links into four possible vector block arrangements. We will refer to these

as Types. We will define Type I rational links as links that have an even number of

blocks where the first block is positive (and thus last block is negative). A Type II

link will have an even number of blocks with a negative first block.

Figure 3.5: Top: Example of a Type I (left) R-decomposition and (right) a Type II

Conversely the Type III links will have an odd number of blocks, with a positive

first block (and positive last block) and Type IV will also have an odd number of

blocks, but with a negative first block.

Figure 3.6: Top: Example of a Type III (right) rational link and (left) a Type IV

We useRI
n, RII

n , RIII
n andRIV

n to denote the sets of rational links with R-decompositions

of Type I, II, III, IV. Additionally, we will use RSIn, RSIIn , RSIIIn and RSIVn to corre-

spond to the subset of links that are symmetric with respect to the reversal operation.

The reversal of a Type I (Type II) results in a Type II (Type I) As can be seen

by looking at the R-decomposition in Figure 3.5. Since there are an even number

of blocks there are no Type I or II symmetrical links, thus RSIn = RSIIn = ∅. The

reversal of a Type I will always result in a Type II, and therefore there is a one-to-one

correspondence between the Type I and Type II R-decompositions, or equivalently

|RI
n| = |RII

n |.

The reversal of a Type III (Type IV) 4-plat remains a Type III (Type IV) 4-plat.

This is also true of the Type III (IV) symmetric links. However, when we take the
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mapping of a (symmetric) Type III 4-plat to its mirror image, there is a one to one

correspondence between the (symmetric) Type III and (symmetric) Type IV 4-plats,

thus |RIII
n | = |RIV

n | and |RSIIIn | = |RSIVn |

Figure 3.7: The rational link with signed vector [3, 4,−2,−2,−2, 3, 2] (Top) is of Type
III. (Bottom) The mirror image [−1,−2,−4, 2, 2, 2,−3,−1,−1] (Bottom) is a Type
IV.

Let Ωn be the set of all R-decompositions with crossing number n. Since |RI
n| =

|RII
n | and |RIII

n | = |RIV
n |, then

|Ωn| = |RI
n|+ |RII

n |+ |RIII
n |+ |RIV

n | = 2|RI
n|+ 2|RIII

n |

and since |RSIIIn | = |RSIVn |, let Ω′n be the set of all symmetric R-decompositions then

|Ω′n| = |RSIIIn |+ |RSIVn | = 2|RSIIIn |

Let Λn be the set of all oriented rational links presented in PS form with crossing

number n. Since each link and its reversal reside in the set |Ωn| and |Ω′n| , then

|Λn| =
|Ωn|+ |Ω′n|

2

and therefore

|Λn| = |RI
n|+ |RIII

n |+ |RSIIIn |.
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3.3 Enumeration of Rational Links using the Reduction Number

We will now further define specific Seifert circles in the R-decomposition of L(p/q).

We have already defined C as the large Seifert circle. A medium Seifert circle will

be a Seifert circle that may share at least one crossing with C. A Seifert circle that

cannot share any crossings with C will be referred to as a small Seifert circle. Thus,

a small Seifert circle will share single crossings on both sides with medium Seifert

circles, but will not share a crossing with C.

Figure 3.8: R-decomposition with Seifert circles identified. Medium Seifert circles
appear in blue and small Seifert circles appear in green.

We define a reduction operation as the removal of a small Seifert circle and com-

bining its two neighboring medium Seifert circles into a single medium Seifert circle,

see Figure 3.9 (left). The deficiency, d, is defined as the total number of reduction

operations one can perform on L.

Figure 3.9: A reduction operation on a rational link in PS form combines three small
Seifert circles into one medium and removes two crossings (left). (Right) The result
of all reduction operations performed upon Figure 3.8. Dashed lines indicate where
each reduction operations occurred.

The crossings deleted by the reduction operation will be referred to as r-crossings.

Performing each reduction operation will reduce a small Seifert circle and conse-

quently the number of r-crossings will decrease by two. Once all reduction operations

are performed, the R-decomposition will be of deficiency zero and will consist of C
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and medium Seifert circles see Figure 3.9 (right). The first and last crossing that

each medium Seifert circle shares with the C will be called essential crossings. The

crossings that are not essential will be called free crossings.

An R-template is an R-decomposition with zero deficiency and no free crossings.

An R-decomposition with deficiency d and f free crossings can be reduced to an

R-template by performing reduction operations and removing all the free crossings.

Reversing this process, we can reconstruct an R-decomposition starting with its R-

template. For example, we can construct the R-decomposition of the link in Figure

3.9 by using an R-template with five medium Seifert circles. Since d = 7, we will

perform 7 insertions by inserting small Seifert circles and their associated r-crossings

in the locations indicated by the dashed lines. We can then place the free crossings

to complete the R-decomposition. R-templates that contain k medium Seifert circles

will have 2k essential crossings. The deficiency d represents the insertion of a small

Seifert circle, and each insertion results in the addition of two r-crossings. Thus a

R-decomposition with k medium Seifert circles and deficiency d will have a total of

n = f + 2d+ 2k crossings.

Figure 3.10: Example of an R-template with eight essential crossings and four medium
Seifert circles.

We can now refer back to the signed vector notation in Section 3.1 and note that

the number of blocks relates directly to k, the number of medium Seifert circles in an

R-template. Thus we can say that an R-template of a Type I link will have k = 2j-

medium Seifert circles (j ≥ 1) and a Type III (symmetric) will have k = (1 + 2j)-

medium Seifert circles.
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3.4 Counting the R-decompositions by Type

By definition, since a Type I link has k = 2j medium Seifert circles, then the num-

ber of free crossings will be f = n− 2d− 2k = n− 2d− 4j (where n ≥ 4). The grey

boxes in Figure 3.10 represent spaces where the free crossings can be distributed, and

there are 2j of these spaces. Thus there are C(f + 2j − 1, 2j − 1) ways to distribute

the free crossings. Once the free crossings have been placed, there are f + 2j spots to

insert small Seifert circles and there are C(d+ f + 2j− 1, f + 2j− 1) ways to perform

the d insertions. From here it follows that [3]

|RI
n(d)| =

bn−2d
4
c∑

j=1

(
n− 2d− 2j − 1

2j − 1

)(
n− d− 2j − 1

d

)
.

Using a similar argument for the Type III links, we have

|RIII
n (d)| =

bn−2d−2
4
c∑

j=0

(
n− 2d− 2j − 2

2j

)(
n− d− 2j − 2

d

)
.

The enumeration of the symmetric Type III rational links required us to address

the nature of a symmetrical R-decomposition. In order to do this, we split the R-

decomposition in half and discussed how we can distribute the free crossings and small

Seifert circles on one side and the other half would have to fill in in a symmetrical

manner. This resulted in four possible combinations of n and d. We encourage the

reader to refer to our paper [3] for a detailed account, however these cases will be

revisited in chapter 4, thus for the sake of brevity we will state only the resulting
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formulation below.

|RSIIIn (d)|

=



∑bn−2d−2
4
c

j=0

(n
2
−d−j−1
j

)(n−d
2
−j−1
d
2

)
, n even, d even∑bn−2d−2

4
c

j=0

(n
2
−d−j−1
j

)(n−d−1
2
−j−1

d−1
2

)
, n even, d odd∑bn−2d−2

4
c

j=0

(n−1
2
−d−j−1
j

)(n−d−1
2
−j−1

d
2

)
, n odd, d even

0, n odd, d odd

=
1 + (−1)nd

2

bn−2d−2
4
c∑

j=0

(
bn
2
c − d− j − 1

j

)(bn−d
2
c − j − 1

bd
2
c

)
.

Table 4.2 contains the computational results of |RI
n(d)|, |RIII

n (d)|, |RSIIIn (d)| and

|Λn| for 2 ≤ n ≤ 13.

Table 3.1: The three numbers in each (n, d) position are presented in the order |RI
n(d)|,

|RIII
n (d)| and |RSIIIn (d)|.

n/d 0 1 2 3 4 5 |Λn|
2 0,1,1 2
3 0,1,1 2
4 1,1,1 0,1,1 5
5 2,1,1 0,2,0 6
6 3,2,2 2,3,1 0,1,1 15
7 4,4,2 6,4,0 0,3,1 24
8 6,7,3 12,8,2 3,6,2 0,1,1 51
9 10,11,3 20,18,0 12,10,2 0,4,0 90
10 17,17,5 34,37,3 30,21,5 4,10,2 0,1,1 187
11 28,27,5 62,68,0 60,51,5 20,20,0 0,5,1 352
12 45,44,8 116,119,5 115,118,10 60,45,5 5,15,3 0,1,1 715
13 72,72,8 212,208,0 228,246,10 140,116,0 30,35,3 0,6,0 1386



CHAPTER 4: ENUMERATION OF LINKS BASED ON SEIFERT CIRCLE AND

CROSSING NUMBER

A Seifert surface for an oriented rational link (L) is an orientable surface whose

oriented boundary is the link. The minimal genus of a Seifert surface of L is known

as the genus and is denoted as g(L). Let D be a reduced alternating link diagram of

a link L. Let s(D) be the number of Seifert circles in L and g(D) be the genus of the

Seifert surface constructed from the Seifert circle decomposition of D. It is known

that g(D) = g(L) and that Seifert’s algorithm can be used to determine the minimal

genus using the formula 2g(D) = c(D)− s(D)−µ(D) + 2, where c(D) is the crossing

number and µ(D) is the number of components in D. We are interested in finding

the average genus of a reduced alternating rational link D for all rational knots and

links with crossing number c(D). In order to do this, we will need to first determine

the average number of Seifert circles (s(D)) for each c(D). This chapter discusses

how we were able to determine that average.

4.1 Enumeration of the Type I links with Seifert circles s and crossing number

c(D)

We will start by looking at the R-templates with an odd number of Seifert circles

s = 2j + 1. Since there is always one large Seifert circle (C), this means we will have

an even number (2j) of remaining (medium and small) Seifert circles.

Consider an R-template with no small Seifert circles. In Chapter 3 we defined

the reduction operation as the removal of a small Seifert circle, we will now define

an insertion operation as the addition of a small Seifert circle, see Figure 4.1. This

operation will result in two medium Seifert circles with a small Seifert circle in between
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them.

Figure 4.1: Insertion and reduction operations

Let j = 1. In this case, there is only one template option, since the insertion of

a small Seifert circle into a medium Seifert circle would result in a total of 4 Seifert

circles (C plus three other Seifert circles). Therefore the only possible R-template

has two medium Seifert circles and one large Seifert circle C. We will call this a

3R-template as shown in Figure 4.2. Each medium Seifert circle will allow for the

possibility of the insertion of free crossings and we define insertion boxes as the places

where free crossings may be placed (shown as grey boxes in each R-template).

Figure 4.2: A 3R-Template shown with two insertion boxes

There will be f = c(D)− 2(2j) = c(D)− 4 free crossings and b = 2j = 2 insertion

boxes to distribute the free crossings. This is the only configuration for a 3R-template.

Let ψIc(D)(s) represent the total number of links of Type I with c(D) crossings and

s Seifert circles. We then have
(

b+f−1
b−1=2+c(D)−4−12−1

)
possible ways to distribute free

crossings, resulting in ψIc(D)(3) = c(D)− 3.

Let s = 5, we have two possible R-templates. The first is a 3R-template with two

medium Seifert circles and the insertion of one small Seifert circle. We will perform

the θ = 1 insertion operation on either medium Seifert circle to get 1 small Seifert

circle and 3 medium Seifert circles as shown in Figure 4.3.

There are f = c(D) − 2(2j) − 2θ = c(D) − 6 free crossings and b = 2 + θ = 3

insertion boxes to distribute the free crossings. The result is that there are
(
b+f−1
b−1

)
=
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Figure 4.3: A 3R-Template shown with one insertion of a small (dashed) Seifert circle
and three insertion boxes

(
c(D)−4

2

)
3R-templates with 5 Seifert circles. Now insert the θ = 1 small Seifert circle

into one of the two medium Seifert circles, and we have
(
2+θ−1
2−1

)
=
(
2
1

)
=2 ways to do

so, resulting in a total of 2
(
c(D)−4

2

)
3R-templates with 5 Seifert circles.

The second template with s = 5 is a 5R-template, with 4 medium Seifert circles

and θ = 0 insertions. Thus we have f = c(D) − 8 and b = 4, and a total of
(
c(D)−5

3

)
templates of this type. Therefore, ψIc(D)(5) =

(
c(D)−5

3

)
+ 2
(
c(D)−4

2

)
We will continue to count the Type I Seifert circle (2j + 1)R-templates as follows:

Each addition of two more medium Seifert circles to the R-template will result in one

more insertion box being placed into each previous template plus the addition of a

(2j + 1)R-template with no insertions. Figure 4.4 shows three possible R-templates

for s = 7. The computation for s = 7 is:

• Two insertions result in a 3R-template with f = c(D)− 8, b = 2 + θ, and θ = 2,

thus
(
2+θ+f−1
2+θ−1

)(
2+θ−1
2−1

)
=
(
c(D)−5

3

)(
3
1

)
• One insertion gives a 5R-template with f = c(D) − 10, b = 4 + θ, and θ = 1,

thus
(
4+θ+f−1
4+θ−1

)(
4+θ−1
4−1

)
=
(
c(D)−6

4

)(
4
3

)
• Zero insertions in a 7R-template produces f = c(D) − 12, b = 6, θ = 0,(

b+f−1
b−1

)(
b−1
6−1

)
=
(
c(D)−7

5

)(
5
5

)
This gives ψIc(D)(7) =

(
c(D)−5

3

)(
3
1

)
+
(
c(D)−6

4

)(
4
3

)
+
(
c(D)−7

5

)(
5
5

)
.

Now, let us consider s = 2j + 1 Seifert circles. Let 2k be the amount of medium

Seifert circles in a (2k + 1)R-template and θ = j − k, f = c(D) − 2(2k) − 2θ =

c(D)− 2k − 2j, and b = 2k + θ. Then we have:
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Figure 4.4: Example of R-templates with 7 Seifert circles. Top: A 3R-Template
shown with two insertion and four insertion boxes. Middle: a 5R-Template with one
insertion and 5 insertion boxes. Bottom: a 7R-Template with no insertions and 6
insertion boxes.

ψIc(D)(s) =

min[j,b c(D)
2
c−j]∑

k=1

(
c(D)− j − k − 1

k + j − 1

)(
k + j − 1

2k − 1

)
(4.1)

4.2 Enumerating Type III links with Seifert circle and crossing number given

Type III links have an even number of Seifert circles s = 2j, with one large Seifert

circle and 2j − 1 remaining medium and small Seifert circles. We know from the

discussion in Chapter 3 that a symmetrical Type III link is its own reversal, and that

the R-template cannot differentiate between the two links. Thus when we are counting

all Type III links, the algorithm does not recognize the reversal of a symmetrical link

as a different link. To resolve this issue, we will need to count the Type III symmetrical

links separately. In section 4.3 we will detail how to count the Type III symmetric

links.

Beginning with s = 2, this decomposition has two Seifert circles and all crossings

occur between them. This will give us a 2R-Template with only one insertion box.

In this case θ = 0, b = 1, f = c(D)− 2, thus we have ψIIIc(D)(2) =
(
c(D)−2

0

)(
0
0

)
= 1
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Figure 4.5: Example of a 2R-Template

Using the same R-Template techniques from the Type I’s we have for s = 2j

there are 2k − 1 medium Seifert circles for each (2k)R-template, θ = j − k, b =

(2k−1)+(j−k) = k+j−1, and f = c(D)−2(2k−1)−2(j−k) = c(D)−2k−2j+2,

ψIIIc(D)(s) =

min[j,b c(D)+2
2
c−j]∑

k=1

(
c(D)− j − k
k + j − 2

)(
k + j − 2

2k − 2

)
(4.2)

Using the fact that s = 2j + 1 for ψIc(D)(s) and s = 2j for ψIIIc(D)(s), courtesy of Y.

Diao [29] the formulas above can consolidate to:

(ψIc(D) ∪ ψIIIc(D))(s) =

min{d s−1
2
e,b c(D)

2
c−b s−1

2
c}∑

k=1

(
c(D)− b s+1

2
c − k

k + b s−1
2
c − 1

)(
k + b s−1

2
c − 1

2k − (−1)s+1
2
− 1

)
(4.3)

4.3 Enumerating the Type III symmetrical links with s Seifert circles and

crossing number c(D)

We now need to address the symmetrical links to add to our count of the (2j)R-

templates. To do this we will split our templates in half and allocate the insertions

and free crossings to one half, then the other half will fill out in a symmetrical manner

as shown in Figure 4.6.

The free crossings for Type III is given by f = c(D)−2k−2j+ 2, which will result

in four different cases:

Case 1: c(D)-odd, θ-odd. This is not possible since an odd number of insertions
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Figure 4.6: Example of splitting a Type III symmetrical link

would result in a center Seifert circle with no free crossings, thus the free crossings

would have to distribute half on the left and half on the right, meaning f would be

even, but if c(D) is odd, then so is f , so c(D) cannot be odd.

Case 2: c(D)-even, θ-odd. There are an odd number of insertions and an odd

number (2j − 1) of remaining Seifert circles (see Figure 4.6). Splitting the template

down the middle, we see that for 2k− 1 medium Seifert circles, there are k− 1 spots

to place the insertions. In addition, we have to place the insertions in such a way to

make sure that the insertions are symmetrical on both sides, thus for θ = j−k, there

are θ+1
2

insertions we can put on one side. This means there are
(
(θ+1)/2+(k−1)−1

(θ+1)/2−1

)
=(

(j+k−1)/2−1
(j−k+1)/2−1

)
ways to place the insertions in a symmetrical manner.

Since c(D) is even, then f is also even and there are f = c(D)−2(2k−1)−2(j−k) =

c(D)− 2k− 2j+ 2 free crossings after the insertions and b = j+k− 1 insertion boxes

to place the free crossings, dividing each by two gives(
(j+k−1)/2+(c(D)−2k−2j+2)/2−1

(j+k−1)/2−1

)
=
(
(c(D)−j−k+1)/2−1

(j+k−1)/2−1

)
Case 3: c(D)-even, θ-even. Similar to case 2, there are 2k − 1 medium Seifert

circles and k − 1 spots to place the insertions. Since θ = j − k is even, we have to

place the insertions in such a way to make sure that the insertions are symmetrical

on both sides, this means there are θ+2
2

insertions we can put on one side. This gives(
(θ+2)/2+(k−1)−1

(θ+2)/2−1

)
=
(
(j+k)/2−1
(j−k)/2

)
ways to place the insertions in a symmetrical manner.

There are f = c(D) − 2(2k − 1) − 2(j − k) = c(D) − 2k − 2j + 2 free crossings

leftover after the insertions and b = j + k − 1 + 1 insertion boxes to place the free

crossings (after adding the middle box to place free crossings), dividing each by two
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Figure 4.7: Example of splitting a Type III symmetrical link with an even number of
insertions

gives
(
(j+k)/2+(c(D)−2k−2j+2)/2−1

(j+k)/2−1

)
=
(
(c(D)−j−k)/2
(j+k)/2−1

)
Case 4: c(D)-odd, θ-even. This case is similar to case 3, since c(D) is odd, one of

the free crossings will be the middle crossing in the middle box. Thus f = c(D) −

2k − 2j + 1, so we have
(
(j+k)/2+(c(D)−2k−2j+1)/2−1

(j+k)/2−1

)
=
(
(c(D)−j−k+1)/2−1

(j+k)/2−1

)
Summarizing the cases listed above, we have the Type III Symmetrical with 2j

Seifert circles and with θ = j − k:

ψIIISc(d) (s)

=



∑min{j,b c(D)
2
c−j}

k=1

( c(D)−j−k
2

j+k
2
−1

)( j+k
2
−1

j−k
2

)
, c(D) even, θ even∑min{j,b c(D)

2
c−j}

k=1

( c(D)−j−k+1
2

−1
j+k
2
−1

)( j+k
2
−1

j−k
2

)
, c(D) odd, θ even∑min{j,b c(D)

2
c−j}

k=1

( c(D)−j−k+1
2

−1
j+k−1

2
−1

)( j+k−1
2
−1

j−k−1
2

)
, c(D) even, θ odd

0, n odd, θ odd

=
1 + (−1)c(D)(j−k)

2

min{j,b c(D)
2
c−j}∑

k=1

(b c(D)−j−k+2
2

c − 1

b j+k
2
c − 1

)(b j+k
2
c − 1

b j−k
2
c

)
.

Furthermore, this can be stated as [29]

ψIIISc(d) (s) =

(
(−1)s + 1

2

)min{b s
2
c,bn

2
c+1−b s

2
c}∑

j=1

(
(−1)(j+b

s
2
c)n + 1

2

)(bn
2
c − d j+b

s
2
c

2
e

b j+b
s
2
c

2
c − 1

)(
b j+b

s
2
c

2
c − 1

j − 1

)
.

(4.4)

In table 4.1, we list the total Type I and III links separately for each c(D). We
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then add them together in the third column and finally in our last column we list

out the enumeration of the Type III symmetric links. Notice that for for c(D) = 2n,

ψIIISc(d) = 2n−1, and for both ψIc(D)+ψ
III
c(D) and ψ

IIIS
c(d) (where c(D) = 2n+1) the resulting

sequence is one known as the Jacobsthal Sequence.

Table 4.1: Number of Type I, Type III links and their totals and Type III symmetric
for crossing number c(D).

n ψIc(D) ψIIIc(D) ψIc(D) + ψIIIc(D) ψIIISc(d)

2 0 1 1 1
3 0 1 1 1
4 1 2 3 2
5 2 3 5 1
6 5 6 11 4
7 10 11 21 3
8 21 22 43 8
9 42 43 85 5
10 85 86 171 16
11 170 171 341 11
12 341 342 683 32
13 682 683 1365 21
14 1365 1366 2731 64
15 2730 2731 5461 43

In Table 4.2, the first row represents number of Seifert circles, s and the first column

is the crossing number. The last column is the total number of links with crossing

number c(D). The remaining output values are the ψIIIc(D)(s) or ψIc(D)(s) respectively.

We are now able to determine s(D), the average number of Seifert circles for any

given c(D). However, calculating g(D) also requires that we know the number of

components in our link. In order for this to occur, we must be able to differentiate

which rational links have only one component and which have two. That will be the

goal of our next chapter.
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Table 4.2: Each number in the (c(D), s) position represent the total number of rational
links with Seifert circle s and crossing number c(D)

c(D)/s 2 3 4 5 6 7 8 9 10 11 12 13 14 |Λc(D)|
4 2 1 2 5
5 2 2 2 6
6 2 3 6 2 2 15
7 2 4 8 6 4 24
8 2 5 14 13 12 3 2 51
9 2 6 18 24 24 12 4 90
10 2 7 26 40 52 34 20 4 2 187
11 2 8 32 62 90 80 52 20 6 352
12 2 9 42 91 158 166 140 70 30 5 2 715
13 2 10 50 128 246 314 302 200 98 30 6 1386
14 2 11 62 174 382 553 630 496 310 125 42 6 2 2795
15 2 12 72 230 552 920 1176 1106 800 420 164 42 8 5504



CHAPTER 5: DETERMINING THE NUMBER OF COMPONENTS AND

AVERAGE GENUS

The formula for the average genus g(D) of a link or knot with crossing number c(D)

is given as 2g(D) = c(D) − s(D) − µ(D) + 2. In the previous chapter we provided

the computations necessary to determine the value of s(D), the average number of

Seifert circles, for any given c(D). In this chapter we will prove how to ascertain if a

rational link has µ(D) = 1 or µ(D) = 2 component(s) and then compute the average

genus for all rational links. In this chapter, we will specifically refer to a knot as a

link with one component while a link will have exactly two components.

Theorem 5.0.1. A (2j)R-template is a link and a (2j + 1)R-template is a knot.

Proof. Let j = 1 and µ(D) be the number of components for any oriented rational

link D. Starting with a standard 2R-template, we can see from the projection that

there are two components.

Figure 5.1: A 2R-template is a link

An insertion of small Seifert circle into the 2R-Template will create what we will

call a parity crossing similar to the one on the left of Figure 5.2, which will not

change the number of components since the incoming and outgoing strand remain

on the same level (and thus in the same component). Thus the addition of a parity
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crossing will not change µ(D). This will be true for the insertion of any number of

Seifert circles, as illustrated in Figure 5.3.

Figure 5.2: Left: Example of a parity crossing. Right: example of a non-parity
crossing which will cause the number of components to change.

Note the addition of each non-parity crossing will cause the number of components

in L to increase by one. Thus a knot with one component will increase to two

components with the introduction of a non-parity crossing. However, since rational

links in general cannot have more than two components, the addition of a non-parity

crossing to a link will result in a knot. Thus the addition of each non-parity crossing

will alternate the number of components between µ(D) = 1 and µ(D) = 2.

Figure 5.3: Left: The insertion of a small Seifert circle into a 2R-template results in
the same number of components as a 2R-template (right)

We can see in Figure 5.4 that for any (2j)R-template, the addition of medium Seifert

circles results in more parity crossings and µ(D) will remain unchanged. Similarly,

the insertion of a small Seifert circle will result in another parity crossing. Therefore

the insertion of Seifert circles will not change the number of components.

Figure 5.4: Left: A 6R-template adds more medium Seifert circles and thus more
parity crossings that result in a link (right)
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A similar argument can be made for the (2j + 1)R-Templates. Let j = 1, then

the 3R-Template is a knot with one component. Each insertion of medium or small

Seifert circles will result in (2j + 1)R-Templates with additional parity crossings and

the number of components will remained unchanged.

Figure 5.5: Left: A 3R-template results in one parity crossing that can be realized as
a knot.

Therefore s = 2j results in a link and s = 2j + 1 is realized as a knot.

Theorem 5.0.2. Let s be the number of Seifert circles in an R-decomposition and

c(D) be the number of crossings, then for s+ c(D) = 0mod 2, L is a link (µ(D) = 2)

and for s+ c(D) = 1mod 2, L is a knot (µ(D) = 1).

Proof. Consider the R-Templates s = 2j and s = 2j + 1. Let f = 1 and j = 1,

then for the 2R-template, we have added one non-parity crossing, resulting in a knot.

Using the same argument for a 3R-template, the addition of one non-parity crossing

will result in a link.

Figure 5.6: Top: A 2R-template with 1 free crossing results in a knot Bottom: a
3R-template with f = 1 results in a link
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Let s = 2j (or 2j + 1) with free crossings f distributed among b insertion boxes.

Each box will have an even or odd number of free crossings. If the box has an even

number of free crossings, then µ(D) will remain unchanged. However, if a box has an

odd number of crossings, the parity will change. Since a rational link can only have

one or two components, the parity will alternate between µ(D) = 1 and µ(D) = 2.

If f is even, there will be an even number of switches, keeping the parity unchanged,

when f is odd there is an odd number of switches, resulting in a change in parity.

Since c(D) is odd (even) if f is odd(even), then we have for s+ c(D) = 0mod 2, L

is a link (µ(D) = 2) and for s+ c(D) = 1mod 2, L is a knot (µ(D) = 1).

5.1 Determining the R-decomposition using vector notation

As discussed in Chapter 3, the signed vector [b1, b2, ..., b2m+1] represents the cross-

ings in the oriented rational link L(p/q). We will again group the consecutive bj’s

with the same signs together into blocks, however we will now denote them by B1,

B2, ..., Bρ, where B1 = (b11, b
2
1, ....b

2q1
1 ), B2 = (b12, ...b

2q2+1
2 ),...Bρ = (b1ρ, ...b

z
ρ).

Also, as previously discussed, we can see that positive crossings in the PS form

correspond with Seifert circles outside C and negative crossings correspond to Seifert

circles inside C where each block represents a medium Seifert circle, thus the Seifert

circle decomposition of the 4-plat is a (ρ + 1)R-Template. By analyzing the vector

and its blocks, we can determine the number of insertions (thus Seifert circles), free

crossings, and the number of components in the 4-plat. The blocks will be determined

as follows:

B1: We defined our Type I and Type III rational links to always start with a

positive block, so this medium Seifert circle will be outside C where |B1| = 2q1. b11

will contain one essential crossing and b11 − 1 free crossings. All other b2h1+1
1 in B1

will be free crossings. Each b2h11 = 2σ2h1 , where 2h1 6= 2q1 will be even and represent

θ = σ2h1 insertions. The last entry, b2q11 = 2σ2q1 + 1, will be odd, with one essential

crossing and θ = σ2q1 insertions.
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Bm, 1 < m ≤ ρ: All other blocks in a Type I and all but the last block in a Type

III will have an odd length and adhere to the following: If the block only has one

entry, then b1m = 2σm1 and will have 2σm1 − 1 Seifert circles in the block. Otherwise,

each even entry in the block are free crossings and the first and last entry in the block

follow the same rule as b2q11 . All other odd entries will act as the insertion entries in

B1.

Bρ for Type III: The last block in a Type III will have an even number of entries

with b1ρ acting as b2q1 , each b2hρ are the free crossings and each b2h+1
ρ = 2σρ2h+1

are

insertions and finally the last entry will follow the same format as b11.

Figure 5.7: The Seifert circle decomposition corresponding to the rational link
[3, 2, 1, 5,−4, 1, 2, 2, 3, 3,−1,−3,−1, 3, 2].

In the example above, we see that this is a 6R-template, the first block is B1 =

[3, 2, 1, 5], there are (3 − 1) + 1 = 3 free crossings and (1 + 2 + 5) − 1 = 7 Seifert

circles. The second block has no free crossings and 4 − 1 = 3 Seifert circles. B3 has

2 + 3 = 5 free crossings and (1 + 2 + 3)− 1 = 5 Seifert circles. B4 had 3 free crossings

and 1 Seifert circle and B5 has 2 − 1 = 1 free crossings and (3 + 1) − 1 = 3 Seifert

circles. For this link f = 12 and s = 20.

Using Theorem 5.0.2, we can determine if the 4-plat in vector form is a link or a

knot. The 4-plat will have a (ρ + 1)R-template. Since any additional Seifert circles

inserted will not change the number of components, we can substitute the value of

ρ+ 1 in for s in 5.0.2. We can use the value of f or c(D) =
∑2m+1

i=1 ai to complete our

analysis. In this example, we have a ρ+ 1 = 6 with c(D) = 36, so this is a link.
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5.2 Average Genus of link L with crossing number c(D).

The genus of an oriented link is given by g(D) =
c(D)− s(D)− µ(D) + 2

2
. Given

c(D), we can now find the average genus of knots gκc(D)(D) and links glc(D)(D) and

also determine a weighted average for the genus using

gc(D)(D) =
gκc(D)(D) ∗ |κc(D)|+ glc(D)(D) ∗ |lc(D)|

|Λc(D)|

For example, let c(D) = 9, then we know when s is odd µ(D) = 2 and when s is even

µ(D) = 1. The average s(D) when µ(D) = 2 is sl9(D) =
6 ∗ 3 + 24 ∗ 5 + 12 ∗ 7

42
=

37

7
= 5.2857. The average genus is given by gl9(D) =

c(D)− sl9(D)− µ(D) + 2

2
which

will be 1.85714. When µ(D) = 1, the average is sκ9(D) =
2 ∗ 2 + 18 ∗ 4 + 24 ∗ 6 + 4 ∗ 8

48
=

21

4
= 5.25. The average genus is gκ9 (D) = 2.375. Thus the weighted average genus

for c(D) = 9 is

g9(D) =
2.375 ∗ 48 + 1.857 ∗ 42

90
= 2.133333

.

Experimental data from Dunfield [1] suggests that the genus of a knot grows linearly

with respect to c(D). Cohen determined the average genus of a knot approaches

c(D)/4 + 1/12 [10]. Using the data from our findings, our analysis finds a linear

model is reasonable for knots and links.
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Table 5.1: In the table, sk(D) (sl(D)) represents the average number of Seifert circles
for all knots (links) with crossing number c(D). Similarly, gk(D) (gl(D)) represents
the average genus for all knots (links). g(D) is the weighted average and |Λc(D)| =
|k|+ |l| is the total number of rational links with crossing number c(D).

c(D) sk(D) gk(D) sl(D) gl(D) g(D) |k| |l| |Λc(D)|
4 3 1 3 0.5 0.6 1 4 5
5 3 1.5 3 1 1.33333 4 2 6
6 3.8 1.6 4 1 1.2 5 10 15
7 4.2857 1.8571 4.2 1.4 1.6667 14 10 24
8 4.8095 2.0952 4.9333 1.5333 1.7647 21 30 51
9 5.25 2.375 5.2857 1.857 2.13333 48 42 90
10 5.8235 2.5882 5.88241 2.05882 2.2995 85 102 187
11 6.3077 2.8462 6.3176 2.34121 2.6023 182 170 352
12 6.8299 3.08504 6.8556 2.5722 2.8168 341 374 715
13 7.3125 3.3438 7.3284 2.8358 3.0938 704 682 1386
14 7.8322 3.5839 7.84333 3.0783 3.3252 1365 1430 2795
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gLc(D)
= 0.249967706c(D)− 0.41563816

R2 = 0.999913155

The models indicate a reasonable conjecture that there is a linear relationship

between c(D) and gKc(D)
(gLc(D)

) with at R2 value of 0.999939253 (0.999913155).

An analysis of the spread of the average genus gc(D) also produces a strong linear

relationship between c(D) and gc(D) indicating that as c(D) → ∞, gc(D) = 0.25c(D)

with R2 = 0.999739351.
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CHAPTER 6: FUTURE WORK AND CONCLUSION

Our work on the enumeration of oriented rational links has led us to research the

possibility of enumerating a larger class of links called the Montesinos links. In this

chapter, we will define some properties of Montesinos links and outline our progress

thus far on enumerating Montesinos links of deficiency zero.

6.1 Montesinos Links

A Montesinos link L = M(β1/α1, ....βk/αk, e) is a link where each tangle Aj cor-

responds to each βj/αj where |βj/αj| < 1 for 1 ≤ j ≤ k and e stands for an arbitrary

number of half twists, as shown in Figure 6.1. Since we are interested in alternating

Montesinos links, all βj/αj will be required to have the same signs and that will be

matched by the sign of e, which is not to be confused with the sign of the individual

crossings.

The Classification Theorem states that Montesinos links with k ≥ 3 rational tangles

are classified by the ordered set of fractions ( β1
α1
mod1, ... βk

αk
mod1) and are considered

equivalent up to cyclic permutations and reversal of order, together with the rational

number e0 = e−
∑r

j=1
βj
αj

[19].

For each tangle Aj, βj/αj will consist of the standard continued fraction with an

odd number of positive entries, thus it will be of the form (aj1, ...., a
j
2qj+1), allowing

for aj2qj+1 to equal one to make the vector have an odd length.

The closure of each rational tangle will be obtained by connecting the NW and SW

strands and the NE and SE strands, resulting in a denominator closure D(Aj) of the

tangle Aj. Requiring that βj/αj < 1 means that each rational tangle will begin with

a vertical row of twists.
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Each oriented Montesinos link will be drawn with the top strand oriented from

right to left. Note that if k = 2, then our link is actually a two bridge link and the

counting for those have been completely determined as outlined in Chapter 3.

Assigning orientation to each tangle results in the signed vector (bj1, .., b
j
kj
, .., bj2qj+1),

where each |bjm| = ajm. The notation Aj(bj1, .., b
j
kj
, .., bj2qj+1) is used to denote the tan-

gle Aj and the signed vector associated with it. We will refer to the first set of vertical

twists in each tangle Aj as bj1.

Figure 6.1: Montesinos linkM(50/89, 6/11, 32/55, 4) with orientation.

Based on the assigned orientation of the top strand, the Seifert circle decompo-

sition of L will have one or two huge Seifert circles containing the top and bottom

strands. In addition, there will be large Seifert circles consisting of the strands that

are entering/exiting one or more tangles. Finally there will be medium and small

Seifert circles within each tangle.

Figure 6.2 shows the eight possible ways arcs can enter and exit each tangle [27]

to create huge and large Seifert circles. Within each tangle, there could be medium

and small Seifert circles, however for now we will focus on these two specific strands.

First, consider options (vi) and (viii), each tangle has a denominator closure and the

NE-SE and NW-SW strings meet at the first crossing bj1. This means that if these two

strands belong to two different Seifert circles then they must have parallel orientation.

However, figures (vi) and (viii) do not have parallel orientation, and therefore these
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two options are not possible. Since the orientation of the top strand is assigned as

right to left, option (iii) is also not possible. We will define three Seifert Parities

from the remaining possibilities. A tangle is of Seifert Parity 1 if the Seifert circles

entering and exiting decomposes like (i), Seifert Parity 2 if it decomposes as (ii) or

(iv) and Seifert Parity 3 if it presents as (v) or (vii). We can further classify L into

three classes.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 6.2: Eight options for tangles consisting of three different parities

Class M1: An M1 link has the top and bottom strands running parallel (from right

to left) as shown in Figure 6.1, thus there are two huge Seifert circles and all tangles

Aj are of Seifert Parity 1 with all crossings in e negative. All tangles will decompose

as (i).

Class M2: The bottom strand has orientation from left to right and thus the top

and bottom strands belong to two huge Seifert circles. Each Aj will be of Seifert

Parity 2 and thus will decompose as (ii) in Figure 6.2 with e = 0.

Class M3: The top and bottom strand belong to one huge Seifert circle. A link L

is a class M3 link if and only if at least one Aj is of Seifert Parity 3 and all crossings

in e are positive.

6.2 M1 Montesinos Links of Deficiency Zero

Let L(d) be the deficiency of link L. The requirement that L(d) = 0 means that

each Aj must be deficiency zero. The purpose of this next section is to determine the

restrictions on each Aj in a class M1 link to guarantee d(L) = 0.
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First note that since e ≤ 0, the crossings in e will smooth horizontally and thus e

can be any negative value.

Since each tangle is of Seifert Parity 1, the strands corresponding with SE and SW

will enter the tangle in a vertical block as a negative crossing, bj1 < 0 (which will

smooth horizontally), to ensure there are no cycles within each tangle, this must be

a single crossing and bj1 = −1.

We will call the Seifert circle decomposition of the M1 Montesinos link a M1-

decomposition. In the Seifert circle diagram, we will call the large circle containing

the long arc on top γ1 and the large circle containing the bottom long arc γ2. Each

tangle shares one essential crossing (bj1) between γ1 and γ2 as shown in Figure 6.3.

We will call the Seifert circles inside and outside γ1 medium Seifert circles. Each

medium Seifert circle is connected to γ1 via 2 essential crossings. Any crossings shared

between a medium Seifert circle and γ1 that are not essential are the free crossings.

Figure 6.3: M1-decomposition of a zero deficiency M1 link

Since all tangles must be of Seifert parity 1, this will require that bj2 > 0 will consist

of essential crossings. Thus bj2 has two possible values; if the medium Seifert circle

has free crossings then bj2 = 1, if not, then bj2 = 2. If bj2 = 1, then bj3 > 0 will be free

crossings and bj4 = 1 will be an essential crossing. These three components comprises

the first block and creates a medium Seifert circle which lies within γ1.

The next block will consist of components that will construct a medium Seifert circle

outside of γ1. Assuming the medium Seifert circle has free crossings, bj5 = −1, bj6 < 0,
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and bj7 = −1, otherwise the block consists of one component, −2. All subsequent

blocks will result in medium Seifert circles alternating inside and outside γ1. Each

block will consist of one value (±2) or three (±1,±f j,±1), where f j are the free

crossings in each block. For our counting purposes, we will require that a block

consisting of (±2) be written as (±1, 0,±1).

Referring to the signed vector (bj1, .., b
j
kj
, .., bj2qj+1), where each |bjm| = ajm, the es-

sential crossings will be distributed so that:

Each tangle Aj will share one essential crossing between γ1 and γ2, this is the

crossing |bj1| = 1. Thus there are j essential crossings.

Each subsequent set of three components represent a Seifert circle inside then

outside of γ1, which will each have two essential crossings. If 2qj + 1 = 1mod3,

then this pattern will hold throughout the tangle. If 2qj + 1 = 0mod3, then the last

block will have only two components wherein bj2qj+1 will consist of free crossing(s) and

one essential crossing, as can be seen in the second tangle in Figure 6.3. Otherwise,

each block must have three components, thus 2qj + 1 6= 2mod3. All of the blocks

will contribute a total of
∑j

i=1(2b
2qi+1

3
c) essential crossings, resulting in a total of∑j

i=1 1 + (2b2qi+1

3
c) essential crossings.

All free crossings will be distributed throughout the kj = 3mod6 and kj = 0mod6

components of the vector, as well as e. There will be 2 +
∑j

i=1b
2qi+1

3
c Seifert circles

and there will be 1 +
∑j

i=1b
2qi+1

3
c insertion boxes to distribute the free crossings.

Let n be the total number of crossings, j be the number of tangles and k be the total

number of medium Seifert circles. Then there are a total of 2k+ j essential crossings.

Let f be the number of free crossings, then n = f + 2k + j, or f = n− 2k − j where

n ≥ 9, 3 ≤ j ≤ k.

The Classification Theorem states that Montesinos links are isotopic up to reversal

of order and cyclic permutation thus without loss of generality we will let the first

tangle A1 be the tangle with the least number of medium Seifert circles. There are j
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tangles and each must have at least one medium Seifert circle and there are k medium

Seifert circles, thus we can distribute the remaining k− j Seifert circles and there are(
j+(k−j)−1

j−1

)
=
(
k−1
j−1

)
ways to do so.

Free crossings can be placed in e or between essential crossings for each medium

Seifert circle, thus there are k+1 spots to place free crossings. Therefore
(
(k+1)+(n−2k−j)−1

(k+1)−1

)
=
(
n−k−j

k

)
. Let |R1

nj
| be the number of M1 Montesinos links where L(d) = 0, then

|R1
nj
| =

∑bn
3
c

j=3

∑min[j,bn−j
2
c]

k=j

(
k−1
j−1

) (
n−k−j

k

)
6.3 Remaining Classes

The M2 class of Montesinos links contain all Aj’s with Seifert Parity 2, thus sim-

ilarly to M1 the SE and SW strands entering the tangle must be a negative vertical

crossing, thus bj1 = −1. The next crossing will be a horizontal crossing with bj2 < 0.

However, since j ≥ 3 and there are two huge Seifert circles with antiparallel orien-

tation, then each tangle Aj must create at least one (large) Seifert circle in between

the two huge Seifert circles. The existence of large Seifert circles between the two

huge ones will result in cycle(s) with lone crossings. However, the requirement that

L(d) = 0 dictates that there are no cycles in the Seifert circle decomposition. There-

fore, there are no M2 links of deficiency zero.

The class M3 links have a significantly more complicated structure. Because the

top and bottom strand connect to one huge Seifert circle γ, tangles within γ are only

limited to the requirement that one be of Seifert Parity 3, thus tangles within γ can

be any combination of (v), (vii), (ii) or (iv). This is a topic that can be further

considered in the future. Once done, we would like to get a bound on the deficiency

zero links of class M1 and M3. We can then expand our research to higher deficiency

values.
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